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Abstract

Quantum Chromo-Dynamics (QCD) is the part of the Standardélahich describes
the interaction of the strong nuclear force with matter. Q€BRBsymptotically free, so at
high energies perturbation expansions in the coupling earskbd to calculate expectation
values. Away from this limit, however, perturbation expans in the coupling do not
converge.

Lattice QCD (LQCD) is a non-perturbative approach to catiahs in QCD. LQCD
first performs a Wick rotatiom — —itz, and then discretises spacetime into a regular
lattice with some lattice spacing QCD is then expressed in terms of parallel transport
operators of the gauge field between grid points, and ferrfigdds which are defined
at the grid points. Operators are evaluated in terms of thjesatities, and the lattice
spacing is then taken to zero to recover continuum values.

We perform computer simulations of Lattice QCD in order tér&st a variety of
meson observables. In particular, we perform a comprehessirvey of the light and
strange meson octets, obtain for the first time exotic messults consistent with exper-
iment, calculate the charge form-factor of the light andrsge pseudoscalar mesons, and
determine (for the first time in Lattice QCD) all three forarctors of the vector meson.
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Introduction

“Research ! A mere excuse for idleness; it has never
achieved, and will never achieve any results of the

slightest value.”
Benjamin Jowett (1817-93), British theologian.

In this thesis we determine how to explore various mesonestigs using Lattice
techniques. We do so by evaluating the following quark-fleagcams:

Fig. 1.1: Quark-flow diagrams for three-point and two-pan@son vertices.

The fact that the evaluation of these diagrams is sufficiemionstitute the basis of
a thesis is testament to the complexity of Quantum Chromauatyecs. We shall now
describe exactly why this is so.

1.1 Quantum Chromodynamics

Quantum Chromodynamics is a tremendously succesful thebtize strong interac-
tion. Mathematically, it is a non-Abelian Gauge Field Thedt’s origins are, however,
strongly empirical - they lie in an attempt to explain hurd$ref apparently ‘fundamental’
particles discovered in the 1950s in accelerator expetisnen

Sorting the spin-0 mesons, for example, by Charge and Streesg (indicated by an
abnormally long lifetime as strong decays preserve flavadithus strange particles took
longer to decay) yields the structure depicted in Figure 1.2

This structure (an octet and a singlet ) can be obtained framplat and anti-triplet
obect as follows3 ® 3 =8 @ 1.

It was a natural step to consider each of the elements of strgiet to be a ‘flavour’
of new fundamental particle which Gell-Mann labelled ‘cksr The scalar and vector
nonets, as well as the baryon octet are very simply explameerms of three quarks,

1



1.1. Quantum Chromodynamics

Fig. 1.2: The scalar meson octet and singletmage courtesy of Wikilmages



1.1. Quantum Chromodynamics

called ‘up’, ‘down’, and ‘strange’, each with spity2 and charges‘r%, —£, and —¢
respectively withe the magnitude of the electron’s charge. A meson is formealiin a
quark and an antiquark, a baryon through three quarks.

However, theA**, which has a spin 03/2 and a charge of twice that of the proton
would then require three ‘up’-quarks with their spins abgn There are not enough quan-
tum numbers available to make such a thing totally antisytrifgequired for fermions).
So a new quantum number had to be created, which Gell-Matedcablour’.

The need to introduce colour gave the theory it's most ingrdrtharacteristics. First,
this new quantum number was not observed directly, so theryh&as required to be
invariant under an arbitrary, local, relabelling of colsuThis requirement embeds in the
theory some sort of mechanism to keep the colours togethsingiet states (confine-
ment), the precise physical mechanism (as opposed to thematical requirement) for
which is still a great puzzle. The locality of the requirernesquired the introduction of
a gauge field. The relevant gauge group turned out t8be\V, ). Experiments were able
to determine thaiV. should be 3 to a fairly high degree of certainty.

SU(3) is a non-abelian group, which makes the theory intringiaadimplex, but the
major complications of the resultant theo®¢' D, are that the theory admits coupling be-
tween the gauge bosons with the same strength as betweeunaties @nd gauge bosons
(‘gluons’), and that the coupling strength is not small,eptcat very high energies. Per-
turbation expansions in the coupling thus do not work in megimes.

These serve to rend€)C D analytically intractable except at regimes in which the
coupling becomes small (the regime of ‘asymptotic freegom’

In this thesis, we investigate the masses, characterigis,sand electromagnetic
form-factors of mesons via numerical simulations. We alsibp for some of the more
exotic offspring of QCD. The method chosen is that of Lattimeantum Chromodynam-
ics.



2
Lattice QCD

2.1 Introduction

First, let us step away from Quantum Field Theory altoge#rat consider a classical
Lagrangian field theory. In this case, we start out with a bagran, which describes
in some sense the deviation of the system from an energy delaii the Lagrangian
at some point in configuration space is zero, then the fouramum of the system is
shared equally between all degrees of freedom - in this ¢eesedrious fields and their
interactions.

Integrating over the four-volume in which this system existnd imposing appro-
priate boundary conditions gives us the Action associatiéld thve system, and we then
obtain the equations of motion for the fields - the Euler-laagie equations, through the
assumption that the trajectory taken by the system in fieltfiguration-space will be an
extremum of this action. This assumption gives us a seriegjoations (1 per field), the
solutions to which define the evolution of our system.

For a theory ofN fields ¢y, ¢, ..., ¢n, we could express this as

Z-1] ( / m) 5(55(n, 6]

where the first denotes the Dirac delta-function andl denotes the variation &f. Thus
if we were to consider some quanti®¢, . . ., o], we could express the classical value
of this functional as

10y = i (J D8 0(0S[on, o) Qo . &
IT; (/ Dg:) 6381, -, o))

In fact, in the classical case the denominator is identiaatity by the properties of
delta functions, but we introduce it for the sake of claritywhat follows. From this
point of view, the transition from classical field theory ta@&tum field theory is one
simple step - replacing the Dirac delta-function from thaatepn withe 5/, The major
contribution to the integral will still come from the point minimum action, since away
from this point the exponential will be fluctuating rapidgnd contributions from these
trajectories should thus cancel each other.

Our quantum-field-theoretical expectation value is thempsy

(Q) =

The Lattice was introduced by Kenneth Wilson as a methodttmtysng Quark Con-
finement [47]. QCD is reformulated on a discrete Euclide#sickawhilst retaining local

4



2.2. Discrete symmetries

gauge invariance, and physical quantities are derived thenimits of this theory as the
lattice spacing goes to zero (continuum limit), and the nends lattice sites goes to in-
finity (infinite volume limit).

The key step is a change of variables from the gauge figld:) to parallel transport
operators (linksY/,(z) = 9P Jo Aulz+uiddy whereP is an operator which path-orders
the terms in the exponential. A closed product of such liska gauge-invariant object,
and we can in fact express any gauge functional in terms afymts of these links.

We can rewrite, for example, a correlation function in thisice formalism as:

€,y = (QIT(0,6,)|) = lim L PUDYDYe "1H76.6,

_ - 2.1
a—0 [ DUDYDVe-5:¥Y] D

Let us now writeS[U, 1, )] = Sc[U] + ¥ M[U]¥. We can then carry out the integra-
tion over¥ andV to give

_ fDUe_SG[U}det(M[U]) ﬁij [U]

[ DUe=ScllUl det(M[U]) (2:2)

wheren;; is the sum of all full contractions @&;, ©,.

In general, we cannot carry out the integration explicilyg, we instead make use
of an importance sampling process to yield a finite ensembl€ gauge-fieldd/ with
P(U,) = det(M[Uy])e=%¢lUxl, We now write

1 N

2.2 Discrete symmetries

2.2.1 Symmetries of Correlation functions

In this section, we show that for the case of QCD, baryonicatation functions are gen-
erally real. We also see how it is possible to enforce thiltyea correlation functions,
which proves a useful method for reducing statistical eriofattice calculations of these
quantities. This technology was pioneered by Dragiexl. [19] during the 1980s.

For the following discussion, we need to introduce one irtgtrtheorem:

Pauli's Theorem: If [v,,,7,], = 2¢""I = [},,7.], thend an invertible matrix S such
thaty, = 57,51, u=0,..,3

Therefore we can define an invertible matrix S such ghatS—' = +. Pauli’s theo-
rem holds under a Wick rotation, i.e the replacemeny,ofwith ¢,,,, So we can make an

5



2.2. Discrete symmetries

analogous construction in Euclidean space.
Assertion®: If v, =~,1, 1 =0,1,2,3, thenS = Cs.
We are now ready to proceed:

Correlation function :
The correlation function in a QCD-like theory is defined dtofws:

[ DUDYDYeSV¥YQ,0,

(2.4)

Supposewe can writeS[U, 1, ¢] = Sg[U] + WM|[U]¥. We can then carry out the
integration ove’r andV to give

_ fDUe_SG[U} det(M[U]) ﬁij [U]

Ci [ DUe=5cIU1 det(M[U])

(2.5)

wheren;; is the sum of all full contractions @&;, ©,.

SinceU,(z) = exp {iga [, A.(x + a'fi)da’}, U — U* is equivalent tod — —A*.
eg.F,,[U*] = —(F.|U])*.

SupposeM[U] = M[U*].
Assertior?: For a Clover-like action we havi/ [U]=M [U*]

Thusdet(M[U*]) = det(SM[U*]S™!) = det(M[U]*) = det(M[U])*. Then if
Sq[U] = S¢|U*], we can write

=L (f DU~ 511 det(M[U]) {0, [U] + N [U*]}) 26
2 [ DUe=SclVl det(M[U])
If we make the following approximation (finite ensemble apg@mation):
1 N
/DUe_SG[U] Ny [U] =~ N ; N[ U] (2.7)

where thel/,, are a finite ensemble wherein the probability of finding a canéitionU,,
is e~3¢[Ux] then we can replace the above with

N

1proof on page 8
2proof on page 8



2.2. Discrete symmetries

Define G;; = try,{C;;I'} with I" a y-matrix product, wherer,, denotes the spinor
trace.
|f tI’Sp {HU[U*]} = tI'Sp {ﬂ”[U]*}, thenGij € R

Note that this is satisfied §(N;;[U*])S~ = (N;;[U])*

Assertion®: For a theory of the form described abo@; € R, subject to the condi-
tion that for all vector-field operatoS[U] in N;;, O[U*] = O*[U].

2.2.2 Generalisation

Let us restrict ourselves to consideration of (possibly raotum-dependent) gauge-functionals
G(p)[U] which are eigenstates of charge conjugati@mnd parityP.
That is to say,

G(p)[U] = spG(-p)[U]
G(p)[U] = scG™(p)[U7]
Then one can make the replaceméttp) (U] — 1(G(p)[U] £ scspG*(—p)[U*]) to

obtain an improved estimator which is unbiased with resfmeptrity and charge conju-
gation. In all of our lattice codes we implement just suchegp st

3proof on page 8



2.2. Discrete symmetries

2.2.3 Proofs

If v, = 7.1, u=0,1,2,3,then S = Cs.

Recall the commutator algebra foy: {v5,7,} =0,75* =1

Thusys7,75 = =

Also recall the action of the charge conjugation operat@mnupe gamma matrices:
C'%C'_l = —%T

ThereforeSy,S™! =, = (7,1)" =+,* whereS = Cv; 1§

For Clover-like Action, M [U]| = M[U~].

MU] = Z (real.ry, + real .U, .7y, +io,, F*[U])
JTRY

Then

SM[U*)S ! = (Z (real~} +real .U}~ — iaZV(F“”[U])*)> =M[U" 1

2l

S(N;[U*])S~1 = (ny;[U])* for given theory.
The terms denoted collectively Iby; will most generally be of the following types:
e Gamma matrices - and we have shown thigtS—' = .

e Propagators: These will be of the forhi—![U], and since inversion and complex
conjugation are orthogonal operatioss)/[U*]|~1 S~ = (M[U]~!)* by the prop-
erties of M.

¢ Vector-field operator®|U]: These will not posess Dirac indices, so we will require

thatO[U*] = (O[U])*.
ForexampleF),, [U*] = —i(—F},[U]) = iF},,[U].

e Products of the above types of terms: These we can split umdsrting.sS—1
between terms, so they add nothing to the discussion.

Thus ifO[U*] = (O[U])*, then we have shown tha{(n;;[U*])S~! = (N, [U])*. 1



Mesons from LQCD

3.1 Introduction

As low-lying states in the QCD spectrum, mesons (via theatiamal structure of the
action) play a crucial role in mediating the exchange foreeveen particles such as the
proton or neutron. Indeed, various successful models ec&fk field theories have been
constructed by simply considering theand K (x PT), and sometimes the (e.g Vector
Meson Dominance).

3.2 Meson correlation functions at the hadronic
level

3.2.1 Lorentz Scalar fields

ConsiderGy;(p,t) = [d3x e77%(0|x,;(7,t)x;(0)|0), with subscripts and j there to
remind us we could have different operators involved intto@aand annhilation.

Suppose that;|0) andy;|0) both have overlap with N different states. Label these
states byn, p) wheren € {1,.., N}.

We shall take the normalisation of these states to be suth tha

N

d3p/ . .
> [ Gl =1.
n=1

Then

N
— dgp/ — DT — - )
LEDS / &y / @ ¢ (01i(Z, 1), p) . 71 (0)10)
n=1

Next, we invoke translation invariance to write:
X(fv t) — 6th6—iP.fX(0)6iP.fe—th

We can thus rewrité&/(p, t) as follows:
N
, d’p'
Gij<p7 t) = Z/ (271')3
n=1

Now, (0eifte=iP% = (0], ande'PFe=Ht|n, pi) = ¢ Fe=iEnt|pn, pi), thus:
9
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3.2. Meson correlation functions at the hadronic level

N d3 / P _Z B L
:Z/ 5 [ B (O, ) (.71, 0)10)
Thus, finally:
N
Gu(7.8) = 3= P (O (Ol ) (n. 71, 0)10) 31)

If we continue this expression to Euclidean space-titne: —it ), we get the equivalent
expression:

Ze 21 (0 (0) I, ) (. 715 (0)]0) (3:2)
If we have NV distinct creation operatorg; and NV distinct annhilation operatorg,; ,

then we can construct theé x N matrix G, whose components are given above. Note that
G is not generally a symmetric matrix.

3.2.2 Lorentz Vector fields

Consider the momentum-space meson two-point functioh fof),

G (t.7) = / Bz QI (1 7)1 (0, 0) ) (3.3)

wherei, j label the different interpolating fields apdy label the Lorentz indices. At the
hadronic level,

G = [deew [ Ly );, S0l ) 75 0010

where thdn, ', s) are a complete set of hadronic states, of energpomentuny”’, and

spins,
d3 /
/ 3Z|np sy(n,p’,s|=1. (3.4)

We shall denote the vacuum couplings as follows:

QX 5 s) = Noeu(p',s)
(n, s30T 1Q) = Niep',s)

where the on-shell four-vectepr = (E,, p”) is introduced, with®,, = /p? + m2.
10



3.3. Analysis

We can translate the sink operator franto 0 to write this as

a*p/ —ipE i iP-2—H .
[ [ G TG0 )

x (n, 7", 5| x31(0)|2)
= YRGB ) (0,7 sl 1)

n,s

= Y e N eu(p, )N e (b, s) (3.5)

n,s

In general the number of state¥, in this tower of excited states may be very large,
but we will only ever need to consider a finite set of the loveestrgy states here, as higher
states will be exponentially suppressed as we evolve te lacglidean time. Finally, the
transversality condition:

Z €u(p, s) €, (p,s) = — (gw, — %) (3.6)

implies that forp'= 0, we have

Gio(t,0)
G(t,0) =) oA, M, et (3.7)

SinceGY,, G%,,andG%, are all estimates for the same quantity we add them together
to reduce variance, forming the sum

GY = GY, + G, + Gy .

Evolving to large Euclidean time suppresses higher masssséxponentially with
respect to the lowest-lying, leading to the following defon of the effective mass

i . Gij (tv 6)
MU.(t) = In (7@&(1& ) 6)) (3.8)

The presence of a plateau .z as a function of time, then, signals that only the
ground state signal remains.

3.3 Analysis

We can extract the masses and coupling strengtGsthmough the so-called “variational”
approach. It is discussed briefly by McNedeal. [40], but we will examine it here in
some greater depth.

11



3.3. Analysis

We seek to diagonalise our matrix of correlation function®rms of mass eigenstates
of the hamiltonian. This corresponds to maximising;;(¢)u; for constanty;G;;(t —
a)uj, wherea is some integer, i.e finding all of the solutionswtr;; (t)u; = Av;G,;(t —
a)u; for some.

The presence of both andv terms in these expressions is to allow for the fact that
we may not in general have a symmetric matrix we may wish to treat source and sink
operators differently (say, through a different smeariregpription).

We can cancel the; terms on both sides, and premultiply 6 (¢ — a) to get the
eigenvalue equation:

Gt — a)G(t)ud = (\*)"u® (3.9)

To see how these eigenvalues are related to masses, itrisctingt to consider the
same procedure from a slightly different angle:

Let ¢% = upxk, S.t.¢%n) = 206na|n)
Let ¢* = v;%k, St (n|o® = 25%0,a(n|,

wherey; is thek’th interpolator. Then, expanding in an orthonormal bases have that

aa,@ —-m
= 2120 ot

[ sz o@o)),

p=0

e, v*Gy(t) Zv*az7 Tty = 2yt 6Pem (3.10)

ie., z?z;a = v " Zoug

If v;%u$ # 0, we can divide through by this term to recover the correspand;.
Premultlplylng Eq. (3.10) by gives:
S0rGi(t ) = 202%™ty P = e Myl vi Gy (t — a)u]@
Provided that$v;* # 0 (satisfied automatically for symmetri), we can divide
both sides of this equatlon by this term, to give us our finsliite

Gij(t)uf =M Gyj(t — a)u (3.11)

J

We recognise this as Eq. (3.9), making the identificatiom NMa= ¢~"~. Note that
we can also construct an equivalent left-eigenvalue eguiaind thus recover theterms.
Also note that the:, (and hence) vectors are still real since both the matéixand the
eigenvalues\* are real.

In practice we calculate our correlation functions on thieda in a discrete approxi-
mation to our path integral, a finite sum over some carefuilysen gauge fields. Further,
we do not calculate these quantities in a continuum. Thegef@ can expect error in
our quantities. Last, it may be that the correlation funtdiare too computationally ex-
pensive for us to construct avx N matrix whereN is the number of states in the system.

12



3.4. Meson correlation functions at quark level

Let us now consider the case where thereMargates in the system, and we have only
M distinct creation and/ distinct annhilation operators, withl < V.
In this case we can write our correlation matrix as follows:

Giy(Bt) = D> e ™ (0[xi(0)n, 2/, 5){n, o/, 5[, (0)[0)

n=1 s

= D> Op(0) g 5) (., 1 (0)]0)

n=1 s

Y e (0l (0) k' s) (k. 1, 5[ (0)]0)

k=M s

We shall now write this symbolically a8 = G + E. G is anM x M matrix with M
exponential terms with real coefficients, and in the casesyframetricGG, these will be
all positive, so if we could somehow remove the higher ordgoeential terms that we
have collected intdZ we would be in the same position we were in earlier, save tleat w
are fitting with M/ masses vslV.

This brings us to the crux of the problem - “How can we get ridtiegse higher
terms?”. Since these terms will have larger negative cagftecoft ; in the exponentials,
we expect that if we diagonalisé and examine the logarithms of the eigenvalues that
these will become independentigf at sufficiently large ¢, indicating that the contribu-
tions of these higher correlation functions at latgewe find that the statistical error in
our measurements become large. At smgallwhere our statistical errors are small (and
where our correlations are large), we will generally have@ng contribution from these
higher states. Thus we are in need of a solution.

The simplest approach is to increa®e- thus providing us with a better approxima-
tion to the full spectrum of masses. To think of it another wegyare introducing an extra
degree of freedom for our rotation to single-mass statess #fiowing more flexibility
(and hence noise-resistance). In principle, the commutatieffort goes ad/?, so simul-
taneous extraction of 3 states is 9 times as expensive agttiaeteon of the ground state.
In practice, however, we rarely have a large number of indéeet operators, and imple-
mentations of this procedure grow in sensitivity to errothaiank, so we rarely employ
M > 3.

3.4 Meson correlation functions at quark level

3.4.1 Mesonic operators from the naive quark model

The naive quark model approximates the mesons of gauge lietayt as a bound state
of a quark and an antiquark, where the quantum numbers obthiad state are then
determined by the relative angular momentum of the quatkyaark pair. In a spinor
representation, this corresponds to mixing different elet® of the quark and antiquark
spinors together via Dirac gamma-matrices.

13



3.5. Hybrid Mesons

e 0¢-D

Fig. 3.1: Author’s sketch of a quark-model meson vs a hybrédom

Recall that under a Lorentz transform, we have that:
PO — iA;lOA%w
If O, is a Lorentz vector, then we can write this as
OA O A = MO

SO(3) rotations form a proper subgroup of the Lorentz tramsétions, and thus we
can obtain the angular momentum from lorentz transformatioperties of the field. A
Lorentz scalar object must correspondjte= 0, and similarly a vector must correspond
toJ =1.

3.5 Hybrid Mesons

3.5.1 Introduction

A hybrid meson is a boson formed by coupling quark-antiqyeaiks with the gauge field
in order to produce a colour singlet.

We consider the local interpolating fields summarized inld&l. Gauge-invariant
Gaussian smearing [24,52] is applied at the fermion souree §), and local sinks are
used to maintain strong signal in the two-point correlationctions. Chromo-electric
and -magnetic fields are created from 3-D APE-smeared libk&2] at both the source
and sink using the highly-improvefi(a*)-improved lattice field strength tensor [11] de-
scribed in greater detail below.

Some comments can already be made, however. In the noivisglatimit, the lower
components of the spinor become small relative to the uppaponents, and vice versa
for the antispinor. So we expect strong signal from opesatdrich are skew-diagonal
and thus couple the large components of the spinor with ttge laomponents of the
antispinor. Additionally, our hybrid operators will be eegied to have larger statistical
fluctuations since we are including more information abautfmite ensemble of gauge
fields. Thus we do not expect good signal for @ur meson interpolator, nor for the
0t~ interpolatorz'cj“%ij;bqb. For the remainin@™*— operator, we note with Bernas.

14



3.5. Hybrid Mesons

Table 3.1:J7¢ quantum numbers and their associated meson interpolatiig fi

0FF 0F— 0+ 0—
7'q" 10"y, B¢ 7" V59" s EL g
v B 7"1q" V571"
@715 B iq"; B¢’
ke iq' 17 By
1 ++ 1+— 1 —+ 1
7"75759" 7" Y5747 4" "Er i7"y By g’
iq*y4 B " 574 Elq" i€ Bt g9
Gud* B’ B g B q"Esq
end Bt "Bt end™ s vanElq 7"vq"
i7" B¢

al [10] that the interpolating fielg~,q corresponds to the operator for Baryon number
and is thus expected to be zero.

3.5.2 Method

Fat-Link Irrelevant Fermion Action

Propagators are generated using the fat-link irrelevaviecl(FLIC) fermion action [54]
where the irrelevant Wilson and clover terms of the fermiotiom are constructed using
fat links, while the relevant operators use the untouchkuh)tyauge links. Fat links
are created via APE smearing [1, 22]. In the FLIC action, thtuces the problem of
exceptional configurations encountered with clover ast{d2], and minimizes the effect
of renormalization on the action improvement terms [31]céss to the light quark mass
regime is enabled by the improved chiral properties of thigck fermion action [12].
By smearing only the irrelevant, higher dimensional termthe action, and leaving the
relevant dimension-four operators untouched, shortigtguark and gluon interactions
are retained. Details of this approach may be found in raterd54]. FLIC fermions
provide a new form of nonperturbativ&a) improvement [12,31] where near-continuum
results are obtained at finite lattice spacing.

Gauge Action

We use quenched-QCD gauge fields created by the CSSM LattitabGration with
the O(a?) mean-field improved Luscher-Weisz plaquette plus redeagguge action [38]
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3.5. Hybrid Mesons

.
=

K My
0.12780 0.8356(14)
0.12830 0.7744(15)
0.12885 0.7012(15)
0.12940 0.6201(15)
0.12990 0.5354(16)
0.13025 0.4660(20)
0.13060 0.3732(79)
0.13080 0.3076(63)

oO~NOUTA, WN B

Table 3.2:x values, and corresponding pion masses (and uncertaiimi€gV.
using the plaquette measure for the mean link. The gaugkdahmeters are defined by

50 — 1
Se = EggReTr(l—PW(x))
V>

3 1
2 NT CReTr (2 - R, (7)) ,

v>p

whereP,, andR,,, are defined in the usual manner and the link prodyjgtcontains the
sum of the rectanguldr x 2 and2 x 1 Wilson loops.

The CSSM configurations are generated using the Cabibbaxdapseudo-heat-bath
algorithm [16] using a parallel algorithm with appropriditeék partitioning [13]. To im-
prove the ergodicity of the Markov chain process, the thiagahal SU(2) subgroups of
SU(3) are looped over twice [14] and a parity transformal&5] is applied randomly to
each gauge field configuration saved during the Markov chaiogss.

Simulation Parameters

The calculations of meson masses are performezbdx 40 lattices at3 = 4.53, which
provides a lattice spacing af= 0.128(2) fm set by the Sommer parametgr= 0.49 fm.

A fixed boundary condition in the time direction is used foe fermions by setting
U,(Z, N;) = 0V & in the hopping terms of the fermion action, with periodic bdary
conditions imposed in the spatial directions.

Eight quark masses are considered in the calculations anstitange quark mass is
taken to be the third heaviest quark mass. This provides adpsealar mass of 701
MeV which compares well with the experimental valug@M/2 — M?)'/2 = 693 MeV
motivated by leading order chiral perturbation theoryvalues and the corresponding
pion masses are given in Table 3.2.
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3.5. Hybrid Mesons
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Fig. 3.2: Effective mass for standard pseudovector intatpw field, for equal (left) and
unequal (right) quark-masses. Results are shown for dit engsses.

02 F . 02 F 1

Fig. 3.3: Effective mass for axial-vector pion interpahatifield, for equal (left) and un-
equal (right) quark-masses. Results are shown for all emglsses.

3.5.3 Results

7 (pseudoscalar meson, J¢ = 0~7)

The pseudoscalar channel gives an extremely strong siggmastrong that all four of our
operators yield convincing plateaus. We can make use oféhisire to extract excited
state masses. The same is true for Hxenesons. In all results that follow, ‘unequal’
guark-antiquark masses means that we hold the quark massafix@ur third heaviest
guark mass (corresponding to the strange quark mass).

Figure 3.2 shows effective mass plots using the stangayg pseudovector interpo-
lating field. The statistical errors are very small, allogvirs to determine masses with an
uncertainty of less than 3%.

In Figure 3.3, we show the same plot for the alternative praarpolator: gysv.q,
corresponding to the-component of the four-vector operaw®y;y,q. A significant dif-
ference in excited-state information relative to the stmddperator is seen close to the
source, making the combination of this operator and thedstahone an excellent choice
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3.5. Hybrid Mesons

Fig. 3.4: Effective mass for the hybrid pion interpolatimgj(ﬂiicj‘ij;bqb, for equal (left)
and unequal (right) quark-masses. Results are shown feigdit masses.
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Fig. 3.5: Effective mass for the hybrid pion interpolatinglcﬂiiqayj74B§”bqb, for equal
(left) and unequal (right) quark-masses. Results are sliomall eight masses.

for obtaining the first excited-state.

Figure 3.4 illustrates the behaviour of a hybrid pion dedifrem contracting a vector
meson with the magnetic field. The signal exhibits signifiamore jitter than the two
conventional operators, but it is clear that the same gratate is being accessed.

In the non-relativistic limit, the two upper (lower) compnts of particle (antipar-
ticle) spinors become large relative to the lower (uppemponents. Both hybrid pion
operators couple large-large and small-small componaritss limit, but by introducing
a relative minus sign via introduction of, as is done in Figure 3.5 significantly reduces
both statistical fluctuations and curvature near the sowsave are excluding the first
excited state by taking an axial-vector spinor structure.

The sources considered here are, as stated earlier, snseamegs corresponding to
48 sweeps of Gauge-invariant Gaussian smearing, with a snggaarametedy,,. = 0.7.
The procedure is defined precisely in the next chapter.

Using the interpolating fields, = ¢ysq, x2 = ¢7574¢, andxs = iq*y;B;°¢", we can
construct a matrix of correlation functions. From this, b variational process described
above, we can obtain more than just the ground state. Fig@reh®ws the first excited-
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3.5. Hybrid Mesons
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Fig. 3.6: Ground (triangles) and excited state (circlesysea for the pion, extracted using
a3 x 3 variational process using the first three pion interpotafields. Signal is only
obtained for the heaviest 3 quark masses.

state mass extracted using this process. Unfortunatedysehsitivity of the variational
procedure to statistical noise precludes us from perfagraifit below the SU(3) flavour
limit. The data from which this graph was generated can badaon tables 3.3 and 3.4.
For this calculation, the matrix diagonalisation was perfed att = 9.

ao (scalar meson, J7¢ = 0*+%)

The scalar channel is problematic, with a large decay widith @nsiderable overlap
with many other resonances and ngnobjects such as glueballs. For an excellent dis-
cussion of the problem, see the section entitled ‘Note olasoaesons’ in the PDG data
book [21]. In our lattice simulations we admit the deeay— =7’ [8] (in full QCD,
this would beay — 77, but in SU(2)-flavour they andr’ are the same patrticle). In the
quenched approximation thg is degenerate with the pion, so we will expect our cal-
culations of effective mass to break down when thdecomes heavier than twice the
pion mass on the same lattice. We can observe just this ogcuriFigure 3.7 where the
correlation function becomes negative for intermediatee at the four lightest quark
masses. Table 3.5 shows fitted effective mass ofighes then’r decay channel mass for
the heaviest three quarks. We see that by the time we rea@(® flavour limit thea,
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Fig. 3.7: Theay scalar meson correlation function vs. time.
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3.5. Hybrid Mesons

Table 3.3: Pion ground-state mass fits from8 & 3 correlation matrix analysiSt;a.t

andt.,q denote the limits of the fit-windowM« is the mass, in lattice unitsz is the
uncertainty.y?/d.o.f is the x* per degree of freedom of the fit, labels thex value as
per Table 3.2.

in tstart tcnd Ma g Xz/dOf

1 10 14 0.5458 0.0018 0.129
2 10 14 0.5063 0.0019 0.281
3 10 14 0.4592 0.0020 0.492

Table 3.4: Pion excited-state mass fit. Column labels arerakable 3.3.

in tstart tcnd Ma g Xz/dOf

1 10 12 1.2551 0.1112 0.885
2 10 12 1.2216 0.1168 0.913
3 10 12 1.1821 0.1253 0.898

is already unbound on our lattice.

p (vector meson, JF¢ = 177)

In the case of the meson, we are able to extract information from 5 independpat-
ators. The effective mass plots can be found in Figures 3digh 3.12. The cannot
decay torm as there is no way to produce a neutral flavour non-singlet tiee vacuum
in Quenched QCD [6]. The decay— =7’ is forbidden by G-parity, but even if it were
not so forbidden, the' is degenerate in mass with thein quenched QCD, and the
mass is well below the energy of this state, which woul@ Q/Q,T + 2—2 corresponding
to approximatelyl.1 GeV at our lightest quark mass.

It is instructive to contrast the results in Figures 3.8 aréd Bs for the case of the-
meson interpolating fields, we see that by changing theivelaign between large-large

and small-small terms in the spinor sum we can effect a sagmfireduction in excited
state contamination.

Table 3.5:q scalar meson mass vs decay channel mass.

2m,(GeV) mg,(GeV)

1.668(3) 1.453(12)
1.545(3) 1.430(15)
1.399(3) 1.416(20)
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Fig. 3.8: p-meson effective mass derived from standasgl; interpolator. Results are
shown for both equal (left) and unequal (right) quark-aumidk masses. Results for every
second quark mass are depicted.
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Fig. 3.9: p-meson (left) andk™ (right) effective
q7;719. Every second quark mass is depicted.
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Fig. 3.10: Vector meson effective mass from hybrid inteapmﬂq“E;”bqb. Every second
quark mass is depicted, and results are depicted for/b@#it) and K* (right) mesons.
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3.5. Hybrid Mesons

Fig. 3.11: Vector meson effective mass from hybrid inteapm1iqay5B§”bqb. Every sec-
ond quark mass is depicted, and results are depicted for b@ift) and K™ (right)
mesons.
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Fig. 3.12: Vector meson effective mass from hybrid integapo iq“7475B;bqb. Every
second quark mass is depicted, and results are depicteddop fleft) and K™ (right)
mesons.
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3.5. Hybrid Mesons

20 p

Fig. 3.13: Effective mass plots far axial-vector meson interpolator. Results are shown
for light (left) and strange-light (right) quark-masses.
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Fig. 3.14: b, axial-vector meson effective mass. Results are shown fir lght (left)
and strange-light (right) quark masses.

There are three available hybrid vector-meson interpaddields. The strongest sig-
nal is obtained from the interpolat@qfa%%B;bqb. The results are compatible with the
conventional operators, albeit with larger statisticatentainties. It is clear that stronger
signal is observed in those operators which couple the (atativistically) large-large
components compared to those which couple the large to thi.sm

The K* mesons extracted using these operators display quadiasimilar behaviour,
although statistical fluctuations are reduced due to theemee of the strange quark,
whose larger mass makes it less sensitive to it’s gluonic@mment.

axial-vector (J© = 1%)
Strong signal in the; axial-vector channel is obtained via the use of interpogafield
qvs7viq- The resulting effective mass plots for both equal and uakquark masses are
shown in Figure 3.13. This signal shows strange behaviolargeér Euclidean times, but
the correlation function does not become negative as indakscase.

For theb;, only the non-hybrid operator provides a good signal, degpe fact that it
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Fig. 3.15: Summary of results for pion interpolating fields., derived from the standard
pion interpolator, provides a measure of the input quarksmas

couples large to small components. The interpolating feld i

Xb1 = @547 -

The effective mass is shown in Figure 3.14. TKe meson signal derived from this is
also shown.

3.5.4 Summary

Now we move on to placing these results in context. Figurd 8tibws results for all four
of our 7-meson interpolating fields. These demonstrate excellgmetement, indicating
that our hybrid operators share the same ground state a®iierdional interpolating
fields. For an estimate of the systematic effects on thesdéisekie to quenching see [23].
For reference, the physical pion mass is also provided.r€igul6 is the corresponding
plot for the K-meson results.

For thep (Figure 3.17), and{* the same broad pattern applies. The results for each
of our interpolating fields are consistent with each otheor the x5 ( cj“E;qub ) noise
dominates over signal for the lightest quark mass, so thist p® omitted. Recall that
x3 couples large-small components, so we might expect it taeelthus. The situa-
tion is even more dramatic in the case of tki¢, where we have a signal only for the
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Fig. 3.16: Summary of results for K interpolating fields2, derived from the standard
pion interpolator, provides a measure of the input quarksmas
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Fig. 3.17: Summary of results formeson interpolating fieldsm?, derived from the
standard pion interpolator, provides a measure of the igpatk mass.

four heaviest quark masses. Further discussion of thestitati errors associated with
the hybrid operators can be found in the next chapter, wherel@monstrate that the
source-smearing prescription used for this study (48 sseé@auge-invariant Gaussian
smearing withn = 6 is somewhat less than ideal.

It is instructive to compare the; and b; mesons as in Figure 3.19, which lie at
1230(40) and1230(3) MeV respectively according to the Particle Data Group [ZTje
masses of the two particles are indistinguishable in ounkition, but sit somewhat above
the experimental results. Little literature exists on th@d of thea, in lattice simulations,
but a previous simulation [48] did not see this behaviouyrreng ana; mass in agree-
ment with the experimental value. It is, however, somewlfécdlt to compare directly
with this simulation as they have used a very different sahtmset the scale.

Curiously, it is theb, interpolator which shows the largest statistical erroftserg the
experimental situation has the largest uncertaintiescéssal with thea, .

This concludes our survey of local hybrid meson interpotafields. The primary
lesson has been the importance of constructing interpgldilds which have the large-
large components coupled together. We now move on tatheexotic meson.
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Fig. 3.18: Summary of results fdk *-meson interpolating fields»?2, derived from the
standard pion interpolator, provides a measure of the igpatk mass.
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Fig. 3.19: Summary of results for pseudovector-mesonpolating fields.m?2, derived
from the standard pion interpolator, provides a measurbeoirtput quark mass.
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3.6. Exotic Mesons

3.6 Exotic Mesons

3.6.1 Introduction

A A g system is an eigenstate of parity with= (—1)X"!. Charge conjugation applied
to a neutral system provid€s = (—1)-5. ForJ = 1, for example we can either have
L=1,8=0,providing(P,C) = (+—),or L = 0,5 = 1, providing(P,C) = (——).
We cannot form, for example the staf€“ = 1-*. Such states as these are called
‘exotic’.

The characterisation of these so-called ‘exotic’ mesormdtracting considerable at-
tention from the experimental community [2,17,37,43,46@aehicle for the elucidation
of the relatively unexplored role of gluons in QCD. The E8b6Hatboration has published
experimental results indicating an isovector mass in the range2 — 1.6 GeV [17,37],
and anothet ~* exotic state having a mass around 2 GeV [37]. Recently, Daiet. al
have published a paper showing the absence of a signal far, the00) in ther_m_m
andr_mymg systems [20].

Early work in the field of light-quark lattice exotics has begerformed by other
groups . In [29], the UKQCD Collaboration made use of gauyediiant non-local oper-
ators to explore” and D-wave mesons, as well as exotics. They used a tadpole-iragrov
clover action, with 375 configurations fori&* x 48 lattice and reported &+ exotic
mass ofl.9(4) GeV.

In 1997, the MILC Collaboration published [10], in which thesed local operators
formed by combining the gluon field strength tensor and stethdjuark bilinears, the
same approach we have taken in this paper. They also usely higisotropic lattices
to allow many time slices to be used to determine the masseoéxbtic, and used large
203 x 48 and32? x 64 lattices with multiple fermion sources per lattice. The $tih action
was used throughout. They reported a possibtevalue of1.97(9) GeV, but emphasised
that extrapolation to the continuum was troublesome duargelerrors.

The UKQCD collaboration then released [30], which updatesirtearlier work by
using dynamical fermions. The new mass estimate forlthie exotic was reported as
1.9(2) GeV.

Further work using the Clover action, but this time with Loicgerpolators was per-
formed by Meiet al. [41]. Very heavy quark masses were used to get good control of
statistical errors. Their extrapolation to the continuudicted a mass &f.01(7) GeV.

In 2002 the MILC Collaboration published new work [9] whehey used dynamical
improved Kogut-Susskind fermions on the same lattices dieeaand compared these
with both quenched and Wilson results. They quote two setesafits for thel =™ mass
corresponding to different choices of scale85(7) and2.03(7) GeV.

Michael [42] provides a good summary of work to 2003, contigdhat the light-
quark exotic is predicted by lattice studies to have a mas9¢2) GeV.

The hybrid exotic interpolating fields considered in thisdst are the following:

X2 = ieud B
X3 = Z'Ejqua%%Blabqb- (3.12)
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Fig. 3.20: Exotic meson propagator for interpolater Results are shown for every 2nd
quark mass in the simulation. Lower lines correspond toileeguark masses. For all but
the heaviest mass, the signal is lost after t=12. Pion massessponding to each quark
mass may be found at the beginning of appendix A

Figures 3.20 and 3.21 show the natural log of the correldtimictions calculated
with interpolatorsy, and y; from Eq. (3.12) respectively. The curves become linear
after two time slices from the source, corresponding to @gprately0.256 fm. This is
consistent with Ref. [10], where a similar effect is seererfipproximately 3 to 4 time
slices, corresponding @21 to 0.28 fm following the source.

Figures 3.22 and 3.23 show the effective mass for the twerifft interpolators. For
clarity, we have plotted the results for every second quaskswsed in our simulation.
The plateaus demonstrate that we do indeed see an exotat gsigluenched lattice QCD.
This is significant, as we expect the two interpolating fiétdgossess considerably differ-
ent excited-state contributions, based on experiencepsitndoscalar interpolators [25].

For example, the approach to the pion mass plateau is fromeatb@low) for the
pseudo-scalar (axial-vector) interpolating field as tlated in Fig. 3.2 (Fig. 3.3) earlier
in this chapter. This exhibits the very different overlapttod interpolators with excited
states. As in the@ T interpolators, the role of, in the pion interpolators is to change the
sign with which the large-large and small-small spinor comgnts are combined.

We also present results for the strangenes@nalogue of thé ~+ in Figs. 3.24 and
3.25.

Table 3.6 summarizes our results for the mass ofltiie meson, with the squared
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Fig. 3.21: Exotic meson propagator for interpolatgr Results are shown for every 2nd
quark mass in the simulation. Lower lines correspond to ieeauark masses.

pion-mass provided as a measure of the input quark mass.gréeraent observed in the
results obtained from the two differeht ™ hybrid interpolators provides evidence that a
genuine ground-state signal for the exotic has been olderve

Table 3.7 summarizes our results for the mass of the straisgen, J” = 1~ meson.

Finally, in Fig. 3.26 we summarize a collection of resultstfee mass of =+ obtained
in lattice QCD simulations thus far. The current resultsspreed herein are compared
with results from the MILC [9,10] and SESAM [30] collaboratis, both of which provide
a consistent scale vig.

Our results compare favorably with earlier work at largerguaasses. Agreement
within one sigma is observed for all the quenched simulatssults illustrated by filled
symbols. It is interesting that the dynamical Wilson fermresults of the SESAM col-
laboration [30] tend to sit somewhat higher as this is a wediiin effect in baryon spec-
troscopy [50,51,53, 54].

3.6.2 Physical Predictions

In comparing the results of quenched QCD simulations witheexnent, the most com-
mon practice is to simply extrapolate the results lineanlyri, or m2 to the physical
values. However, such an approach provides no opportunégdount for the incorrect
chiral nonanalytic behavior of quenched QCD [32, 33,49, 50]
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Table 3.6:1~" Exotic Meson mass: (GeV) vs square of pion mass? (GeV?).

m?2 xo fit 10-11 X2 fit 10-12 xs fit 10-11
m X*/dof m X*/dof m x*/dof
0.693(3) 2.15(12) 0.69 2.16(11) 0.44 2.20(15) 0.45
0.595(4) 2.11(12) 0.77 2.12(11) 0.51 2.18(16) 0.46
0.488(3) 2.07(12) 0.85 2.08(12) 0.59 2.15(17) 0.41
0.381(3) 2.01(12) 0.91 2.03(12) 0.65 2.14(19) 0.29
0.284(3) 1.97(13) 0.78 1.98(13) 0.55 2.27(29) 0.00012
0.215(3) 1.92(14) 0.78 1.92(14) 0.40 2.25(31) 0.02
0.145(3) 1.85(17) 0.57 1.84(17) 1.76 2.26(37) 0.02
0.102(4) 1.80(23) 0.13 1.75(23) 3.04 2.46(58) 0.03

Table 3.7: Strangenessl 1~ Meson mass» (GeV) vs square of pion mass? (GeV?).

mZ Yo fit 10-11 Yo fit 10-12 s fit 10-11

m X*/dof m X*/dof m x*/dof
0.693(3) 2.11(12) 0.76  2.12(11) 051  2.17(16) 0.44
0.595(4) 2.09(12) 0.81  2.10(12) 0.55  2.16(16) 0.44
0.488(3) 2.07(12) 0.85  2.08(12) 0.59  2.15(17) 0.41
0.381(3) 2.04(12) 0.88  2.05(12) 0.63  2.15(18) 0.36
0.284(3) 2.01(13) 0.85  2.02(12) 0.63  2.25(20) 0.22
0.215(3) 1.99(13) 0.87  2.00(12) 0.64  2.11(20) 0.29
0.145(3) 1.97(13) 0.73  1.97(13) 054  2.12(22) 0.11
0.102(4) 1.96(14) 0.56  1.96(14) 0.39  2.09(24) 0.01

Unfortunately, little is known about the chiral nonanadytiehavior of thel =+ me-
son. Ref. [45] provides a full QCD exploration of the chiraineature to be expected
from transitions to nearby virtual states and channels whre open at physical quark
masses. While virtual channels act to push the lower-lyingls-particlel ~* state down
in mass, it is possible to have sufficient strength lying tetloe 1~ in the decay chan-
nels such that th&~* mass is increased [4, 34]. Depending on the parametersiesadi
in Ref. [45] governing the couplings of the various channetsrections due to chiral
curvature are estimated at the order@0 to —40 MeV.

Generally speaking, chiral curvature is suppressed in tlenched approximation.
For mesons, most of the physically relevant diagrams irval\sea-quark loop and are
therefore absent [4, 44]. However, the light quenchecheson can provide new non-
analytic behavior, with the lowest order contributions @ognas a negative-metric con-
tribution through the double-hairpin diagrams. Not onlytdese contributions alter the
1~" mass through self-energy contributions, but at sufficyeight quarks masses, open
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Fig. 3.22: Effective mass for interpolatgs. Plot symbols are as for the corresponding
propagator plot.

decay channels can dominate the two-point correlator arderdts sign negative.

For the quenched~™ meson, thei; 7’ channel can be open. Using the pion mass as
then’ mass a direct calculation of the mass ofan’ two-particle state indicates that
the 1= hybrid lies lower than the two-particle state for heavy inquark mass. This
indicates that the hybrid interpolator is effective at &g a single-particle bound state
as opposed to the two-particle state at heavy quark mass$es.isiparticularly true for
the case here, where long Euclidean time evolution is difficu

As the light quark mass regime is approached, the trend obtleeand two-particle
states illustrated in Fig. 3.27, suggests that they eitleegmor cross at our second lightest
quark mass, such that the exotict may be a resonance at our lightest quark mass and
at the physical quark masses. We note that the exoticmass displays the common
resonance behavior of becoming bound at quark masses satlavger than the physical
quark masses. This must happen at sufficiently heavy quasisesaby quark counting
rules, i.e2q — 4q for the1~" to a,7 transition.

One might have some concerns abeouf contaminations in the two-point correlation
function affecting the extraction of the* meson mass. However we can already make
some comments.

Under the assumption that the coupling to the quenchetl channel comes with
a negative metric, as suggested by chiral perturbationrgh@guments, and from the
observation that our correlation functions are positibentit would appear that our in-
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Fig. 3.23: As for Fig. 3.22, but for interpolatgg. Signal is lost aftet = 11.

terpolators couple weakly to the decay channel. Furthezpairheavy quark masses the
correlation function is dominated by the™ bound state already at early Euclidean times
suggesting that coupling to the decay channel is weak.

Thus we conclude that the hybrid interpolating fields usezkfmore thel =+ quantum
numbers are well-suited to isolating the single-particlé exotic meson.

Moreover, since the mass of tlhgn’ channel is similar or greater than the single-
particle1~* state, one can conclude that the double-haigpiyi contribution to the self
energy of the single-particle"* exotic meson is repulsive in quenched QCD. Since the
curvature observed in Fig. 3.26 reflects attractive intevas, we can also conclude that
guenched chiral artifacts are unlikely to be large.

Hence we proceed with simple linear and quadratic extraipolsin quark mass to
the physical pion mass, with the caution that chiral nongiabehavior could provide
corrections to our simple extrapolations the order of 50 Niethe 1~ mass [45].

Figures 3.27 and 3.28 illustrate the extrapolation ofithé exotic and its associated
strangenesg-1 1~ state to the limit of physical quark mass. We perform thedmfi
using the four lightest quark masses and fit the quadratmo forall 8 masses. A third-
order single-elimination jackknife error analysis yieldasses of.74(24) and1.74(25)
GeV for the linear and quadratic fits, respectively. Thesalte agree within one standard
deviation with the experimental (1600) result of1.596*7; GeV, and exclude the mass
of ther(1400) candidate.
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Fig. 3.24: Effective mass for the interpolatpr with a strange quark.

The associated parameters of the fits are as follows. Tharlfoem
mi—+ = Qg+ G2 m?r s
yields best fit parameters of

ap = 1.734+0.15GeV,
as = 0.85+0.35 GeV L.

The quadratic fit, with formula
mi—+ = Qo +a2m72T +a4mi,
returns parameters

ap = +1.74 +0.15 GeV,
a; =4+0.91+0.39 GeV !,
ay = —0.46 £ 0.35 GeV 3.

3.6.3 Summary

We have found a compelling signal for tH€¢ = 1~+ exotic meson , from which we can
extrapolate a physical mass bf4(24) GeV. Thus for the first time in lattice studies, we
find al~* mass in agreement with the(1600) candidate.
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Fig. 3.25: As for Fig. 3.24, but for interpolatgs.

The v, interpolating field appears to be extremely useful for avgdontamination
from thea;n’ channel, and thus is an excellent choice for this kind ofystud

We have also presented the first results for a strangenepsrtner of the exoti¢ ~+
meson lying af.92(15) GeV.

Looking forward, it will be important to quantify the effexcof the quenched approx-
imation. We plan to revisit these calculations at some upoint using full dynamical
FLIC fermions [27, 28]. Of particular interest will be thetert to which the curvature
observed in approaching the chiral regime is preservediQfoD.

At some point, a detailed finite volume analysis should béopered in order to fur-
ther explore the role of the two-body decay channel.
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Fig. 3.26: A survey of results in this field. The MILC resulte daken from [10] and
show theirQ*, 1=+ — 1=+ results, fitted front = 3to¢ = 11. Open and closed symbols
denote dynamical and quenched simulations respectively.
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Fig. 3.27: Thel~* exotic meson mass obtained from fits of the effective massef t
hybrid interpolatory, from¢ = 10 — 12 (full triangles) are compared with then’ two-
particle state (open triangles). The extrapolation cumelside a quadratic fit to all eight
quark masses (dashed line) and a linear fit through the fghtdst quark masses (solid
line). The full square is result of linear extrapolationhe physical pion mass, while the
open square (offset for clarity) indicates thg1600) experimental candidate.
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Fig. 3.28: Extrapolation of the associated strangereisg” = 1~ state obtained from
X2. Symbols are as in Fig. 3.27.
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Source dependence of Hybrid and
Exotic signal

4.1 Introduction

In our simulations of conventional mesons we have severahpeters which can be ad-
justed to optimise the overlap of the interpolators withtigatar mass eigenstates. These
include

® o, 0gnk. The smearing parameters for Gauge-invariant Gaussiamrsrgeat
Source and Sink

e N, Nsink. 1he number of sweeps of Gauge-invariant Gaussian Smeatribgurce
and Sink

By Gauge-invariant Gaussian smearing, we refer to theviatig procedure [24]: We
start with a point sourcey), (%, to), at space-time locatiofiy, t,) and proceed via the
iterative scheme,

Yilw ) =Y Fla, o)) i (2 1), (4.1)

where

3
, (6]
F(ZE’, T ) = (1 - 04)6:1:,:1:’ + 6 Z [Uﬂ(x) 61"71""/7
pn=1

+Ul (2 — 1) 60 7] - (4.2)

Repeating the proceduré times gives the resulting fermion field

Un(a,t) =Y FN () ol 1) (4.3)

It has been shown that for reasonable valued’a&nd« it is the productVa that is
the significant parameter [14], so we shall halfixed at0.7.

The inclusion of gauge functionals in our interpolatorsaxs the parameter space
with another three degrees of freedom:

e ag: The gauge-field APE-smearing parameter

e ng. The number of sweeps of APE-smearing performed on the lisksl in the
gauge-functional

e (paths: The number of link paths used to construct the gauge-fonats.
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4.1. Introduction

The APE-smearing procedure [1, 22] replaces a [iAk,x), with a sum of(1 — a()
times the link and; times its staples

Uu(x) = U (z) = (1 — ag)U,(z) (4.4)

+%G 3 [Uy(x)Uu(x +va)Ul(z + pa)

v=1

vF#u

+Ul (2 — va)U,(x — va)U,(z — va + pa)|
followed by projection back to SU(3). We select the unitagtrx UEL which maximises
Retr(US U,

by iterating over the three diagonal SU(2) subgroups of $UIBis procedure of smear-
ing followed immediately by projection is repeated times.

In order to obtain the chromo-electric and chromo-magnigids with which we
build the hybrid operators, we make use of a modified versidxRk smearing, in which
the smeared links do not involve averages which includeslinkhe temporal direction.
In this way we preserve the notion of a Euclidean ‘time’ andidwverlap of the creation
and annihilation operators.

Each iteration of our modified APE-smearing algorithm pextseas

Ui(z) — (1 — o) Ui(x)

Q " " A A
+ 1 Z(l — i) UJT(x — N Uz =) Uj(x — 7 +1),

j=1

Us(z) = (1 — o) Us()
+ %ZUj(x) Us(z +j) UJT(xJFZl)
+ BZU;(x—j)U4($—5)Uj(Qf_5+21)‘

J=1

As above, it is the product;ag which is of physical significance [14], so we shall
hold o, fixed at0.7 and simply varyn.

In summary, we are left with three independent parameteestore: ng,.., ng, and
Qpaths. Here we perform a systematic exploration of this rathegdgrarameter space in
order to determine the optimal prescription for both a hylwith ¢ quantum numbers
and also for our, exotic meson interpolator.
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4.2. Method

4.2 Method

We calculate two-point correlation functions for owr (i€ 1,7y B ¢°) exotic interpolat-
ing field and also for thes (ig*y; B¢ ") andx. (iq*v4v; B$"") hybrid pion interpolating
fields. We use a lattice of dimension6® x 32 at 3 = 1.100 using a doubly-blocked
Wilson-2 (DBW?2) action, with a lattice spacing 0f1273 fm.

On this lattice we are able to vary not only the andQ s, but alson.. In particu-
lar we choosey,,. = {0, 16,48, 144}, ne = {4, 6, 10,20}, and a 1- or 3-loop construction
of F,, [11]. Seven values for the hopping parameteare used, corresponding to pion
masses betweedt0 — 800 MeV.

We have also performed a similar calculation on the la2gérx 40 lattice used in the
previous section. These results can be found in appendix C.

4.3 Results
4.3.1 Hybrid Pion

We consider the two hybrid?¢ = 0+ interpolators of Table 3.1, and refer to them as
x3 and y4. Comparing Figures (4.3) through (4.6), it is immediatghparent that the
strongest signal is obtained for,. = 0, i.e for a point source. This is in strong contrast
to the picture observed for a conventional pion interpalats in the following figure:

0 sweeps 16 sweeps

48 sweeps 144 sweeps

M(GeV)

‘ ‘
R0 1 RO 1 RO 1 RO
= 15 | 1 15 1 = 15 1 = 15
e e e
Siop EE S S B ER

05 [ ] 05 [ - ] 05 [ - B 05 [

0.0 Lt L L L 0.0 Lt L L L 0.0 Lt L L L 0.0 Lt

Fig. 4.1: Fermion-source smearing-dependence of cor@ltpion signal

This sensitive dependence ay. is also observed foy,, suggesting that the ground
state of these Fock-space components is one where the guar§gite close together.

Considering the left-hand columns of Figures (4.3) and)(4é see that the hybrid
pion interpolators exhibit increasing jitter with an inastng amount of APE-smearing of
the gauge fields used to constru¢t,. Figure 4.2 summarizes the pattern far

A more quantitative approach is taken in Table 4.1 which shbaw varying the
parameters affects our ability to extract a ground-statesm@he window = [8,13] is
chosen as it gives an acceptalyfevalue for then; = 4 case. The heaviest input quark
mass is chosen so as to give the strongest signal, and thesteasnparison. In summary,
the hybrid pion interpolators are best calculated with = 0, ng < 6, andQpams = 1.
To put it plainly, the quarks are close together, and thecsigrfairly localised.
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4.3. Results

10 sweeps

20 sweeps

6 sweeps

Fig. 4.2: Gauge-field smearing-dependenceg olfiybrid pion signal. Here,,. = 0, i.e a
point source is used for the quark fields.

Table 4.1: Effect of gauge-field smearing @i hybrid pion mass determination, =

8, 13]

Qpaths =1 Qpaths =3
Nge na | Ma o x?/dof| Ma o x%/d.o.f
0 4 | 05505 0.0061 1.034|0.5506 0.0061 0.811
6 | 0.5511 0.0063 1.711|0.5513 0.0063 1.598
10 | 0.5524 0.0069 2.573| 0.5526 0.0067 2.376
20 | 0.5498 0.0090 4.464| 0.5501 0.0089 4.370
16 4 |0.5523 0.0221 0.598| 0.5548 0.0237 0.523
6 | 0.5513 0.0198 0.605| 0.5503 0.0203 0.480
10 | 0.5555 0.0198 0.971| 0.5563 0.0200 0.925
20 | 0.5488 0.0235 1.254| 0.5471 0.0237 1.064
48 4 |0.5248 0.0841 0.258| 0.5427 0.0988 0.199
6 |0.5183 0.0660 0.422| 0.5242 0.0682 0.365
10 | 0.5337 0.0489 0.873| 0.5358 0.0502 0.750
20 | 0.5473 0.0537 1.724| 0.5472 0.0539 1.703
144 4 |0.4989 0.1395 0.345| 0.5540 0.1878 0.179
6 | 05108 0.1003 0.627|0.5269 0.1105 0.469
10 | 0.4891 0.0900 0.977| 0.4988 0.0808 0.928
20 | 0.4783 0.1287 1.103|0.4888 0.1148 1.051
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4.3. Results
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Fig. 4.3: Hybridr- meson {3) effective masses from thi&® x 32 lattice withn,,. = 0.

Results for the heaviest four quark masses are depicted.
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4.3. Results

nag Qpaths =1 Qpaths =3
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Fig. 4.4: Hybridr- meson {;) effective masses from thig?® x 32 lattice withn,,. = 16.
Results for the heaviest four quark masses are depicted.
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4.3. Results
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Fig. 4.5: Hybridr- meson {) effective masses from thi&* x 32 lattice withn,,. = 48.
Results for the heaviest four quark masses are depicted.
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4.3. Results
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Fig. 4.6: Hybridr- meson ;) effective masses from th&? x 32 lattice withn,. = 144.
Results for the heaviest four quark masses are depicted.
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4.3. Results
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Fig. 4.7: Hybridr- meson {,) effective masses from thi&® x 32 lattice withn,,. = 0.

Results for the heaviest four quark masses are depicted.
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4.3. Results
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Fig. 4.8: Hybridr- meson ) effective masses from thig* x 32 lattice withng,. = 16

Results for the heaviest four quark masses are depicted.
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Results for the heaviest four quark masses are depicted.
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4.3. Results
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Fig. 4.10: Hybridr- meson {,) effective masses from th&? x 32 lattice withn,,. = 144.
Results for the heaviest four quark masses are depicted.
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4.3. Results

4.3.2 EXxotic

For the exotic interpolator, the situation is different.e@test control of statistical error
occurs whereu,,. = 0, but in contrast to the hybrid pion case, the signal is maseahifor

ng = 20. In addition, whilst setting.,,. = 16 effects a large increase in error bars, the
central values in this case exhibit a plateau from 5, i.e immediately after the source.
The net result is, however, an increase in uncertainty ofithéncreasingn,,. beyond

16 results in the effective mass ceasing to be positive defohiige the source indicating
that we are possibly accessing the two-partigh¢ decay channel instead of the desired
exotic state,.wns = 1 gives approximately0% smaller errors tha®),...s = 3 for a fit
betweent = 6 andt = 8 atng. = 0 andng = 20.

Table 4.2: Effect of gauge-field smearing b~ Exotic meson mass determinatiagns-
[5,7]

Qpaths =1 Qpaths =3

Nge na | Ma o x?/dof| Ma o x%/d.o.f

0 4 | 25986 0.0827 10.758 2.6471 0.0900 9.489
6 | 2.4935 0.0783 16.246 2.5249 0.0824 15.255
10 | 2.3777 0.0741 22.181 2.3913 0.0756 21.838
20 | 2.2859 0.0813 20.403 2.2860 0.0810 20.394

16 4 |1.7909 0.2414 0.552| 1.8277 0.2708 0.347
6 |1.7806 0.2179 0.621|1.8615 0.2681 0.407
10 | 1.7874 0.1976 0.360| 1.8058 0.2136 0.413
20 | 1.7208 0.1796 0.058| 1.7492 0.1937 0.092

Table 4.3: Effect of gauge-field smearing bn* Exotic meson mass determinatiagn:
[6, 8]

Qpaths =1 Qpaths =3

Nge na | Ma o x?/dof| Ma o x%/d.o.f

16 4 |2.1086 0.1156 0.708| 2.1458 0.1285 0.523
6 |2.0101 0.0965 0.971|2.0298 0.1025 0.892
10 | 1.9145 0.0858 0.675| 1.9321 0.0875 0.741
20 | 1.8422 0.0878 0.461| 1.8441 0.0878 0.445

In summary, the ideal prescription for the exotic interpiolgfield isng.. € (0, 16),
ng =~ 20, Qpaths = 1. As in the hybrid pion case the quarks remain close togekhgr,
this time they are surrounded by a large cloud of gluons.
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4.3. Results
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Fig. 4.11: Exotic meson effective masses fromthéx 32 lattice withn,,. = 0. Results
for the heaviest four quark masses are depicted.
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Fig. 4.12: Exotic meson effective masses fromibiex 32 lattice withn,,. = 16.
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4.3. Results
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Fig. 4.13: Exotic meson effective masses fromtbex 32 lattice withn,,, = 48. Results

for the heaviest four quark masses are depicted.
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Fig. 4.14: Exotic meson effective masses from ti6é x 32 lattice withng,, = 144.
Results for the heaviest four quark masses are depicted.
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4.4. Discussion and Summary

4.4 Discussion and Summary

Our hybrid and exotic interpolators show a signficant depand on the spatial extent of
the operators from which they are constructed. For the exoéson in particular, good
signal requires

e Considerable smearing of the gauge-field$jip ( ng ~ 10 — 20)

¢ Very little smearing of the fermion sourcex(,. < 16)

Taken together, these suggest a picture of hybrid mesomhwhive a quark-antiquark
pair very close together with a gluon cloud surrounding tliensome distance. This is
different from the usual picture of a quark-antiquark paingd by a flux tube.

For APE-smearing)y smearing sweeps with smearing fractioapplied to the gauge-
fields corresponds to notionally replacing point sourceh distributed objects of charac-
teristic size%\/m [14]. Thus, 10 sweeps of APE-smearing with= 0.7 corresponds
on our lattice, which has lattice spacingof= 0.128 fm, to an average spatial extent for
the hybrid’s gluon structure of approximatély2 fm, vs approximately).3 for the 1=+,
Neither the hybrid pion nor the~* benefited from a highly-improved version 8f,,, so
future calculations may use the far simpler single-looparer

In order to gain a deeper appreciation of this behaviour itild/de instructive to
perform calculations with greater statistics, examing higher resolution the region of
nse = [0, 16]. A calculation of the electromagnetic form-factors of #hégbrid particles
would also be of assistance.
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Meson form factors

5.1 Introduction

Masses are the simplest meson observables we can extractHeolattice, but we can
in principle obtain many observables. Of particular ins¢@e the form-factors, as these
encode information about the charge radii, magnetic andrggpale momentg,e. they
tell us about the shape of the hadrons, and give us valuadilghinnto the behaviour of
the quarks inside.

In 1980, Arnoldet al. published a paper showing the general formd6rand 7'-
invariant form-factors for a spin-1 object [7]. Calculatgfrom QCD sum-rules followed,
a notable papers being that of loffe and Smilga [26]. A ligbte calculation was later
performed by Brodsky and Hiller [15].

Here we present the first lattice calculation of flreneson quadrupole form-factor.
Charge and magnetic form-factors are also calculated. Fhase we can extract the
relevant static quantities of mean square charge-raddisragnetic moment.

We also analyse the dependence of light-quark contribsittorthese form-factors
on their environment and contrast these with a new calauwabf the corresponding
pseudoscalar-sector result.

We begin by introducing some formalism, and proceed to meitlhe process for ex-
tracting these quantities for themeson and then the general case for a spin-1 meson.

5.2 Three-point function with current insertion

Consider the following three-point function:

G (ta, 5, p) = Y e P BT Q) () T (1) X1 (0)2) (5.1)

3,71

The quark-flow diagrams relevant to this calculation arenshim figure 5.2 for the
case of aK*. The relevant quark-level calculation is performed in ape D. For
our purposes, it is sufficient to observe that we may make tifigeccharge symmetry
properties of the quarks to rewrite the second of these aimagas the charge-conjugate
of the s-quark contribution to &~ meson and we may thus concern ourselves only with
the case of the current striking a forward-going quark.
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5.2. Three-point function with current insertion

§

Fig. 5.1: Quark-flow diagrams relevant {6 meson electromagnetic form-factors.

Inserting two sets of complete states, we can rewrite Ef)) €5

Guay(t%tl?ﬁ p)
= 3NN e @A B Q) (20) Ipg, ) by 51T (@) i, 8) (i, 51X (0)]€2)

2,21 PisPf 8,8

. s a(k) T L) o )
- Z Z Z Z Zp 2 Zp xle_lp wlelpf 20 ZEﬁf t2e_2pf-$leZE5f tlezpi.:vle—zE,;Ji t1

A jk iy 8
X (Qlxulps, 8)pys 81T P, ><pz>5|X |Q>
1,k p;  s,8
< A(Qxulp, )P 8| T pis s) (i sIXFIQ)
= Y R e E QS ) sl (5.2)

%,j s,s

We then perform an analytic continuation to Euclidean sgpaeevia the replacement
t — —it. For larget; and largel, — t; the ground state signal dominates.

The time dependence of Eq. (5.2) can be removed by takingsrafith the two-point
function defined in Eq. (3.7). By careful choice of the form wan also remove any
constants of normalisation. Thus we form the ratio

(Graa,7:t:10) ) (G50 1.11))

= (5.3)
<GP t)> <G, (p,t)>

Rual/ (pla p) =

Y

Z (Qxulps 8D, 8| Talp, 8) (D, sIXEI(Qx0 [P, 8) (0, 8| Talp, ') (1, ' X1 Q)
(Qxulp, 8 W', 8 IR QX [P, 8) (. s|xb Q)

which has no remaining time-dependence. This method is iantaof that used by
Draperet al.[19], differing in the choice of momenta used in the numetato
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5.2. Three-point function with current insertion

5.2.1 m-meson case

For a pion, the vertex is extraordinarily simple. As the dpirero,s ands’ play a trivial
role. Including the state normalization factorslgf, /2 £

W19elp) = 5 e PR@) = 1) 54
Defining
QU (O)p) = \/%A(p),
(Qx(0)[P) (0| Ta|p) (X (0)|2) = A(P)A(p) 5., [pa + 1o F1(Q7) . (5.5)

Using the same parameterisation, the expressions in therdeator evaluate to

(Qxu(0)[p', )P, 8'[xL(0) |22 x. (0) I, 5) (p, s[x](0)]2)

- 5 M), 56)

Thus we have no remaining couplings$n the ratio, and we can rewrite 5.4 as

(5.7)

_1
iB,E,

J (i [P + P R(Q2)

This reduces to simply

1
Rew (', p) = Ra(p,p) = ——=—=== [p* +P""|F1(Q?), 5.8
(P D) (', p) 2\/%[1? PF(Q%) (5.8)
such that the large Euclidean time limits of the rafipis a direct measure df; (Q?) up
to kinematical factors.
Inverting to giveF, or G¢ to use the notation we will adopt for the vector case gives:
2/E,E!

p

Fl(QQ) = GC(QQ) = W

R(p,p') (5.9)

5.2.2 Spin-1 case
Following [15], we may write the vector current matrix elemhas

1

2\/E,E,

ex(p, s )es(p, s) I (P, p)
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5.2. Three-point function with current insertion

where
TR (p p) = — {Gl(éf)gaﬁ P+ "]+ Go(QY)g" " — 9"*¢”) - G3(Q%) ¢ © 2_;§W
(5.10)

defines the covariant vertex functiofis o s.
As in Chapter 3, we denote the vacuum couplings as follows:

Q5 s) = Noeu(p'ss)
(n, 5" s 19Q) = Niep',s)

where the on-shell four-vectepr = (E,, p”) is introduced, with®,, = /p? + m2.
The Sachs form-factors are related to the covariant veuestions as follows [15]:

Gol@) = GU(@) = Ga(Q®) + (1 +1)Ca(Q) (5.11)
GM(Q2) = Gz(Q2) (5-12)
Gol@) = CU@) + 2nGo(Q?). (5.13)

3

wheren = Q%/4m? andQ? = —¢* = ¢ — ¢2.
The expression for***(p’, p) may be written directly in terms of the Sachs form-
factors:

JH(p p) =
oyt
—{ GM(Q2> ([ “ﬁ ¢ — g“aqﬁ] - gaﬁ2(pl ;L;;mz)
a B
+GC(Q2>[pM + p™] <ga5 - m)

a0
~Ga(@ )l + ") (o + 21+ 35 } (5.14)

The quantity of interest is

> Qe s (' 51T p s) (p slxbQ)

s,s’

1 1\ * _pﬂpa

o bsp
) I (g — =) (5.15)
m
where we have made use of the transversality condition,
Z _ Pubv
Eu p,s b, g/u/ m2 )

to evaluate the sum over spin states.
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5.2. Three-point function with current insertion

As can be seen, the vacuum couplings cancel in the ratio of5e4). to provide
1

R,uau(p/?p) = —F—F X
2/E,E,

\l (9o = "2 T2 (0, 2)(Gow — %) (G — B ) ) (0, P') (G — ")

PvPv

(G — pup“)(gw — T2 )

From Eq. (5.10) we have the following symmetry

JHE (' p) = J(p,p')

and we may thus take the square root, yielding

R (p/ p) o ]- (gﬂp - p:;f;p)t]paa(p/?p)(go'l/ - p;f;l/) (5 16)
wov \P = .
2v/ Epky \/(guu - v T pTl;L—pQD)

In our calculations, we have chosgh= k = (E,p,,0,0) andp = [ = (m,0,0,0). In
this case, the following identity holds

Il
(gQBA—-;;g) = dag (30 = 1), (5.17)

and we can simplify Eq. (5.16) to

1 k.k, (0,0 — 1)
R (k1) = ——— JPY (k) | —————— . 5.18
pow (K5 1) o Em <gup m2 ) (k,1) (gw_k:;_k;) ( )

Henceforth, when we refer t8 we shall meari(k, ). A straightforward calculation (see
appendix E for a REDUCE script that implements this) yieldsfollowing:

G3(Q?) (E 4+ m)p? — 2 G2(Q?) mp? + 2G1(Q?) Em(E + m)

RlOl =

4m2\/ Em
Dz 9
Riss = R = G
133 331 2@ Z(Q )
(E+m) 9
Rogs = R G .
202 303 2@ I(Q)
In terms of the Sachs form-factors,
2
yos 2 E+m 2
R = —* @ + G
ol Bmﬂ%idQ)2¢F_C@)
= Ras =~ Go(@) + Z @)
202 T 6mf__ WEm
Pz 2
Riss =R = G .
133 331 2@ M(Q)
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5.2. Three-point function with current insertion

Rearranging, we see that the linear combinations isoldtiegjorm-factors are the
following:

2VE
Go(Q%) = 3E —1—721 (Ri01 + Rao2 + R303) (5.19)
VvE
Gu(Q%) = » = (Riss + Ras1) (5.20)
E
Go(@) = = 7 ™ (2R101 — Raoa — Rgs) (5.21)

5.2.3 Extracting static quantities

At (Q* = 0, the Sachs form factors are proportional to various statamtjties of interest.
Specifically:

eGo(0) = e,
eGr(0) = 2mpy,
eGo(0) = m*Qy, (5.22)

wherem is the mass of the spin-1 system,is the magnetic momen®); is the quadrupole
moment, ana is the charge of the system.

Our calculations will be performed at a single, fini§é. At Q* =0, ¢, = ¢, = ¢. =
0, and therefore in the laboratory frame considered here; p, = p. = 0. The presence
of p, in the denominator of expressions f@f, andG¢ in Eq. (5.19) prevents us, in
this case, from extracting information about the magnetit quadrupole form-factors.
Moreover, our use of a conserved vector current guarantegé&’t:(Q* = 0) = 1, and
this fact has been used to test our implementation of theeatmwmnalism.

It remains to show how we can extrapolate to zero momentunsfiea We do so as
follows.

Charge form-factor and (r?)

The mean squared charge radius is giveq3y = [ drr?p(r), wherer is the distance
from the centre of mass of the system. We can obtaih from the charge form-factor
through the following relatioh

0

2 2
= —6=—G .
(%) = ~655:G(@)] ,_,
We extrapolate ta@)? = 0 through a 1-parameter phenomenological formdhy. A
convenient form is the monopole:

Ge(Q?) = <#> . (5.24)

@ +1

(5.23)

1This is derived explicitly in Appendix B
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5.2. Three-point function with current insertion

Inserting this form into Eq. (5.23) gives

6
(r¥) = e (5.25)
Rearranging Eq. (5.24) to give® yields
2
P (5.26)
(GC(Q2) N 1)
Substituting this back in to the previous expression(féf gives
6 1
L e 1) 5.27
- (@ 627

Choosing a dipole form instead of the above yields a resuithvis smaller by ap-
proximately 7%, which is comparable to the statistical eimdahis calculation.

Magnetic moment

From studies of nucleon moments, it is observed that théngpaf G, andG¢ in Q? is
very similar when))? is small [36].i.e. if

Gu(Q%) = F(Q*)Gum(0)

for some function®’ then
Ge(Q?) ~ F(Q*)Gc(0) .

Rearranging gives

Gu(0)  Gu(@?)
~ ) 5.28
Gel0) ~ Gol@?) (5:28)
We shall simply assume that this scaling will also hold for eson. Since for a*
mesonG(0) = 1, this is simply

_ Gu(@?)
Gu(0) ~ Col0D) (5.29)
Quadrupole form-factor
The Quadrupole tensor is defined as
Qij = /d?’rp(F) (37"2‘7’j — 62' '7’2) . (530)
Then
Qu = [ @ror =) = [ Pro(ert -2 -1 (5.31)
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5.3. Method

which is exactly the form of out7, - recall:

mv Em - - -
Go(Q?) = e (23101 — Ropa — R303>

T

We can clearly see that a negative valu€ef corresponds to an oblate deformation -
a shape which is larger in the directions perpendicularecsphn than parallel to it.
More rigorously, write

T (p,p') = —Gar(Q*) Ft’ (p,p) + G (@) Fa™ (p,p) + Go(Q*) F5" (p,p')
then by comparison with Eq. (5.14) we have:

dn+3
An(n + 1)m?

Recalling thaty’ = & = (E,p,,0,0) andp = [ = (m,0,0,0), we haveq = (F —
m, ps,0,0), and so

N 2
FS(p,p) = ZLp* + p"(—=Fo(p,p') +

a8
3 )

. 2 2E+m.
FS (pp') = 200 + "~ Folp.p) + (g )a%d”)
3 mp2
For spatiakv and, this is
. 2 2F
F§"(p,p) = gn[p“ + "] (—Fc(p,p’) +(1+ E)éaléﬁl) :

which we recognise as a difference of terms involving thegddorm-factor in all di-
rections and the chosdndirection. Comparing with Eq. (5.30), we see that this imtur
corresponds to a quadrupole moment about theis.

Whilst a similar scaling to that used in the case of the magretm-factor could be
used to relate our quadrupole form-factor to the moment, elie\e that the form-factor
at our small finite? ( ~ 0.22GeV) will be of greater phenomenological interest.

5.3 Method

Two- and three-point correlation functions of the kind désed above were calculated
on a lattice of dimension20?® x 40, with lattice parametef = 4.53, corresponding to
a lattice spacing 06.128(2) fm. For full details of this lattice, the reader may refer to
Chapter 3 of this text.

Three point propagators, detailed in appendix D, encodiggaak interacting with
a photon at some intermediate time between creation andlatoi, were created us-
ing the sequential source technique (SST) [19]. An imprdegiice definition of the
conserved vector current [39] was employed, with the cdiriregertion occuring at time
t = 14. The strange quark mass is chosen to be the third heaviedt opaegs. This pro-
vides a pseudoscalar mass of 697 MeV which compares wellthatkexperimental value
of (2M2 — M?)'/? = 693 MeV motivated by leading order chiral perturbation theory.
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5.4. Results

An ensemble of 379 configurations was used, with error argabfsthe correlation
function ratios performed via a second-order, single-gation jack-knife. We then per-
formed a series of fits through the ratios after the curresgrition att = 14. Through
examining they? value as determined through the covariance matrix we aectalgstab-
lish a valid window through which we may fit in order to extractr observables. In all
cases, we required a valuegf no larger than 1.4. The data from which these graphs are
derived is presented in tabular form in appendix F. Valuestepion a per quark-sector
basis correspond exclusively to values for single quarkshdfcharge.

5.4 Results

The following plots show the time-evolution behaviour oé ttorrelation function ratios
we use to measure form-factors. Vertical bars depict thiediaf the fit windows we have
used in this analysis. Care has been taken to choose carisuitelows across the quark-
sectors in order to eliminate systematic errors in compagsve will later undertake to
determine mass and environment sensitivities.

We perform direct fits to the correlators for the 3 heaviegtrgunasses, and fit the
splittings between adjacent quark masses (G; — G;.1) for the five lightest quark
masses. By fitting the splittings significant cancellatibrexcited state contributions is
observed. Indeed, th¢?/d.o.f analysis encourages fits at earlier time slices and confirms
that systematic errors are within the statistical errors.

Figures 5.2, 5.3, and 5.4 show the Charge form-factor ratidaHe light quark in a
pion, the light-quark in a Kaon, and the strange quark in arki@spectively. Statistical
fluctuations are very small, allowing as many as twelve tliroes to be used in constrain-
ing our fit.

Figures 5.5, 5.6, and 5.7 show the Charge form-factor ratidHe light quark in a
p-meson, the light-quark in &*, and the strange quark inf&* respectively. Statistical
fluctuations are larger than for the pseudoscalar case, dutwe no particular difficulty
establishing a consistent and valid fit regime across aktlquark-sectors.

In figures 5.8, 5.9, and 5.10 we show the Magnetic form-fafiothe light quark in
a p-meson, the light-quark in &*, and the strange quark inf&* respectively. This data
is considerably noisier than faf-, and exhibits a rapid die-off of signal with time as we
go to lighter quark-masses. Care must be taken when attegnatifit a constant to this
data, but we are nevertheless able to obtain a consisteggiiihe across all quark-sectors
with a goody? value.

Figures 5.11, 5.12, and 5.13 we show the Quadrupole fortoiféar the light quark
in a p-meson, the light-quark in &*, and the strange quark in/g* respectively. The
signal is noisier again than for the magnetic case, but wealaleeto fit self-consistently
to the data across all quark-sectors.
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Fig. 5.2: The up-quark contribution to pion charge form dactThe data correspond to
m, ~ 830MeV (top left), 770 MeV (top right), 700 MeV (second row left)616 MeV
(second row right)530 MeV (third row left), 460 MeV (third row right), 367 MeV (bot-
tom row left), and290 MeV (bottom row right). For the five lightest quark masses, the
splitting between the values far andi, + 1 is shown. The data are illustrated only to the
point at which the error bars diverge.
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Fig. 5.3: As in Fig. 5.2 but for the up-quark contribution t@dk charge form factor.
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Fig. 5.5: As in Fig. 5.2 but for the up-quark contributiongdcharge form factor.
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Fig. 5.6: As in Fig. 5.2 but for the up-quark contributionAd charge form factor.
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Fig. 5.7: As in Fig. 5.2 but for the strange-quark contribatio K* charge form factor.
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Fig. 5.11: As in Fig. 5.2 but for the up-quark contributionptQuadrupole form factor.
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symbols are offset for clarity.

Figure 5.14 shows the contributions &) from each of the quark sectors examined
in this study. It is clear that the-meson has a much larger RMS charge radius than
does ther. This behaviour is consistent with quark-model physicserehwe would
expect a hyperfine term proportional%%. Such a term would be attractive forraand
repulsive for go. Nevertheless, it is fascinating that the heavier parigkxhibiting the
larger characteristic size, despite a smaller Compton \wagéh. As we might expect,
the (r?) values are smaller for the case of an up quark in the presdrecstmnge quark
as the denominator of the hyperfine term is the product of tlkekgmasses.
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Fig. 5.15: Strange and non-strange meson mean squarece dlaaigfor charged pseu-
doscalar (left) and vector (right) cases. Symbols are téfsén fig. 5.14

The strange neutral pseudoscalar and vector meson mearedduearge radii are
shown in Figure 5.16. For the neutral strange mesons, we segative value fofr?),
indicating that the negatively charge@dquark is lying further from the centre of mass
on average than the We should expect just such a behaviour for two reasons, both
stemming from the fact that thequark is considerably heavier than tthethe centre of
mass must lie closer to tlieand thei-quark will also have a larger Compton wavelength.
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In Figure 5.17, we contrast the environment-dependendeafp-quark contributions
to the pseudoscalar and vector mesons. The differencekmgtrfor the pseudoscalar
case it could be argued that we see no environment-depem@eradl, whereas in the
vector case we see that the presence of a strange quark &eavity suppress the light
charge distribution. This is the effect one predicts fronuar§ model, where hyperfine
repulsion is reduced in the environment ofsaaquark.

Figure 5.18 places our new results in some context. A pravidudy [18] has sug-
gested that the™, p* and proton should have a very similar RMS charge radius getar
quark masses. In contrast to this, we find a significant sgittmost clearly present at
heavier quark masses. It is possible that the agreemennebta the previous study
reflects finite-volume effects attendant with their combioraof a small spatial volume.

Regarding the magnetic moment, we present Figures 5.19 20d 2t the SU(3)
flavour limit, where we take the light quark flavours to have $hme mass as the strange
quark, quark model arguments suggest the magnetic momeapfoshould be -3 times
the strange magnetic moment of the(assuming no environmental dependence). The
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Fig. 5.18: Mean squared charge radii for positively chargggons.

PDG [21] gives this figure as0.613 11y, SO we would naively expect a value B4 y .
The agreement displayed by the results is surprisingly good

Figure 5.21 shows the-meson g-factoy, essentially the-meson magnetic moment
in natural magnetons. Andersenal [5] have argued that this quantity should be approx-
imately 2 at large quark masses, which we do indeed observéigh# quark masses,
however, we do see some evidence of chiral curvature, whizcHdvndicate that perhaps
the linear chiral extrapolations of that paper should bat&@ with caution.

As the d-quark becomes lighter than tlein our calculations we see the magnetic
moment exhibiting a very linear negative slope. The magieaitof the magnetic moment
is quite small, but clearly differentiable from zero evehewe except at the SU(3) flavour
limit where symmetry forces it to be exactly zero.

The magnetic moment of the vector meson, like the RMS chades, shows con-
siderable environment dependence. The larger contribofi@an up quark in @ relative
to a K* is consistent with what we have already observed with the RN&8ge radius, as
follows: since(r?) is larger for the up quark in ameson than for the up quark inf&,
the effective mass is reciprocally smaller for the up quark p. This smaller effective
mass gives rise in turn to a larger magnetic moment. Fig2& $hows this pattern.

The Quadrupole form-factor, shown in Figure 5.24 on a perlggactor basis and in
Figure 5.25 for theo™ and K** mesons, is observed to be categorically negative. The
statistical fluctuations attendant to our finite ensembtie lany information that might
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exist about a systematic dependence on quark mass, butritralcelues show no par-
ticular pattern as we vary this. A negative quadrupole mdroerresponds to an oblate
shape - one which is compressed along the spin axis. Thigides with the calcula-
tion of Alexandrouet al. [3] who observed a negative quadrupole moment for ggin
p-meson states in a density-density analysis. A simple guaxdkel would predict a value
of zero for this quantity, requiring an admixture ef and d-wave-functions in order to
admit such asymmetry. Importantly, the quadrupole foroteiais shown to be negative
at heavy quark masses, indicating that the simplest of quadels is insufficient even in
this regime.

Environmental sensitivity for the quadrupole form-fac{ér26) is masked to some
degree by the amount of statistical uncertainty presentuiresults. Nevertheless, the
central values show a downward trend at light quark masdes.nfass-dependence plot
shows that most of the contribution of th& deformation is due to the up quark.

At light quark masses we see a small positive quadrupole mbfoethe K*° meson,
but with little statistical significance. It would be verytémesting to re-examine this with
better statistics in order to more precisely determine xipeeted value at the very lightest
guark masses.
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5.5 Conclusions

We have obtained the electric, magnetic, and quadrupofa-factors (and associated
static quantities). Of particular interest is a firm preictof a negative Quadrupole
moment. The ratio of quadrupole moment to mean square chadlges is approximately
1 : 30, so the deformation is small but not negligible. A largereanble of configurations
would enable better control of statistical uncertaintied potentially enable some work in
extrapolating these quantities, but this is beyond theesobthis thesis. Further work will
encompass examining the form-factors of theneson, and the — 7 electromagnetic
decay, as well as a repeat of this work using dynamical (FGID@propagators.
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Conclusions

We have completed a comprehensive analysis of mesons fraiod @CD in the quenched
approximation. Some striking results include:

e afirst-ever first-principles calculation of all three of thextor meson form-factors,
including the environment and mass-sensitivity of the gu@mntributions to each
form-factor

¢ a high precision calculation of the pseudoscalar meson-faator

e a potential reconciliation of the lattice and experimengsults for the mass of the
1~* exotic meson

e adetermination that the optimal smearing prescriptiomhdoal hybrid interpolating
fields is different from what one might natively expect frorfilx-tube picture

e a calculation of meson excited states
e a comprehensive survey of conventional and hybrid mesoratpe

e adetermination that themeson is oblate, and not spherically symmetric as a naive
quark model would predict. Importantly, this holds evenedVy quark masses.

It is hoped that the results of this work will be of assistatecphysicists in constrain-
ing model parameters, especially as experimental valuabégp-meson are difficult to
come by due to the short lifetime of the particle. In pari@cuthe result for the quadrupole
may help constrain the amount 6fFwave admixture in quark-model wave functions of
the p, and the source-dependence results may result in moressuobgaining precise
calculations of the properties of the exotic mesons.

Scope for future work lies in addressing the two main linndtas of this work, both
imposed by the current state-of-the-art in computatiooalgr. These are the quenched
approximation, whereby sea-quark loops are omitted, whédomes increasingly impor-
tant at light quark-masses, and the finite size of our ensenffyt addressing the former
we would greatly simplify the physical interpretation ofraasults, and by increasing our
ensemble we would gain better control of statistical errémsparticular, a four-fold in-
crease in statistics would afford us much greater insigbttime environment dependence
of the light-quark contributions to the vector meson elatiagnetic form-factors.
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A

Data pertaining to the calculation of
meson effective masses

These results were generated on a lattice of spdcira$ fm. The conversion factor from
dimensionless masses to GeV is tfug)73GeVim/0.128fm = 1.5414GeV. We shall
use the symbok to refer to our ‘strange’ (heavy) quark. The relationshifpwzen «
values and pion masses is given in Table A.1.

Table A.1:k values, and corresponding pion masses (and uncertaimi€gV.

.
=

K My
0.12780 0.8356(14)
0.12830 0.7744(15)
0.12885 0.7012(15)
0.12940 0.6201(15)
0.12990 0.5354(16)
0.13025 0.4660(20)
0.13060 0.3732(79)
0.13080 0.3076(63)

O~NO O WNPRE
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Table A.2:a, scalar meson mass fits. Column headings are in ordekhe number,
the lower and upper bounds of the fit window, the mass, errdndrirom our analysis.

Is  tstart  tend Ma o x%/d.o.f

1 9 11 0.942468 0.008561 0.569828
2 9 11 0.927582 0.010346 0.550105
3 9 11 0.918652 0.013697 0.624862
4 9 11 0.928701 0.020547 0.989549

Table A.3: As in Table A.2, but for th&;.

7;/4 tstart tond MCL o Xz/dOf

1 9 11 0.928457 0.010659 0.580351
2 9 11 0.922306 0.011843 0.579739
3 9 11 0.918652 0.013697 0.624862
4 9 11 0.921341 0.016632 0.785677

Table A.4: As in Table A.2 but for conventionalmeson operatafysg.

Is  tstart  tend Ma o x?/d.o.f

1 16 26 0.542076 0.000933 1.050107
2 16 26 0.502415 0.000966 1.066433
3 16 26 0.454885 0.000991 0.850827
4 16 26 0.402287 0.001030 0.735460
5 16 26 0.347436 0.001105 0.781297
6 16 26 0.302289 0.001287 0.943519
7 16 26 0.242118 0.005106 0.963553
8 16 26 0.199537 0.004086 0.974327
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Table A.5: As in Table A.2 but for conventional meson operatofy;q.

In  lstart Tend Ma o x?/d.o.f

1 16 26 0.500447 0.000975 1.073315
2 16 26 0.479317 0.000983 0.990409
3 16 26 0.454885 0.000991 0.850827
4 16 26 0.429533 0.001014 0.810890
5 16 26 0.405371 0.001059 0.837823
6 16 26 0.387684 0.001123 0.923336
7 16 26 0.368507 0.001670 0.888473
8 16 26 0.358399 0.001425 1.156427

Table A.6: As in Table A.2 but for axial-vector pion interptdrgvs7v.q.

7;/4 tstart tond MCL o X2/d0f

1 11 20 0.540293 0.001238 0.598628
2 11 20 0.500503 0.001278 0.521659
3 11 20 0.453187 0.001334 0.471202
4 11 20 0.400662 0.001405 0.468622
5 11 20 0.345862 0.001506 0.525954
6 11 20 0.300941 0.001632 0.542129
7 11 20 0.247653 0.002655 0.754260
8 11 20 0.207590 0.004310 0.978518

Table A.7: As in Table A.2 but for axial-vectdt interpolatorsysy.q

Is  tstart  tend Ma o x?/d.o.f

1 11 20 0.498332 0.001292 0.522991
2 11 20 0.477352 0.001308 0.492776
3 11 20 0.453187 0.001334 0.471202
4 11 20 0.427686 0.001372 0.464957
5 11 20 0.403065 0.001430 0.474499
6 11 20 0.384818 0.001499 0.451416
7 11 20 0.365499 0.001662 0.418255
8 11 20 0.354341 0.001804 0.328788
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Table A.8: As in Table A.2 but for hybrid pion interpolatingfl iq*~; B"q".

Is  tstart  tend Ma o x%/d.o.f

1 14 20 0.540098 0.007257 0.977018
2 14 20 0.499982 0.007463 0.920785
3 14 20 0.452610 0.007801 0.852279
4 14 20 0.400714 0.008351 0.809458
5 14 20 0.346413 0.009261 0.842781
6 14 20 0.301686 0.010280 1.010559
7 14 20 0.248318 0.011460 1.252199
8 14 20 0.194288 0.020123 0.667699

Table A.9: As in Table A.2 but for hybrid interpolating fieldis*~; B2*¢".

7;/4 tstart tond MCL o Xz/dOf

1 14 20 0.497599 0.007541 0.923259
2 14 20 0.476691 0.007634 0.888033
3 14 20 0.452610 0.007801 0.852279
4 14 20 0.427266 0.008067 0.828729
5 14 20 0.402446 0.008470 0.833725
6 14 20 0.383880 0.008929 0.904069
7 14 20 0.363574 0.009673 1.061964
8 14 20 0.352858 0.010477 1.067675
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Table A.10: As in Table A.2 but for hybrid pion interpolatifigld ig*~;7,B{¢".

In  lstart Tend Ma o x?/d.o.f

1 12 26 0.545971 0.002851 0.832075
2 12 26 0.506394 0.002804 0.742263
3 12 26 0.458760 0.002777 0.656149
4 12 26 0.405994 0.002895 0.598155
5 12 26 0.350475 0.003298 0.533417
6 12 26 0.304385 0.003804 0.606792
7 12 26 0.249358 0.004178 1.360696
8 12 26 0.208625 0.006253 1.052875

Table A.11: As in Table A.2 but for hybrid” interpolating fieldis®y;v,B{"q".

In  lstart Tend Ma o x*/d.o.f

1 12 30 0.507508 0.002329 1.103564
2 12 30 0.486136 0.002295 1.053223
3 12 30 0.461294 0.002267 0.984236
4 12 30 0.435686 0.002312 0.937038
5 12 30 0.411526 0.002464 0.941930
6 12 30 0.393909 0.002702 0.972512
7 12 30 0.375299 0.003155 0.957629
8 12 30 0.364972 0.003837 0.946693

Table A.12: As in Table A.2 but for conventionaimeson interpolating fielg~,q for

equal (left) and unequal (right) input quark masses.

Is  tstart  tend Ma o x%/d.o.f

1 16 22 0.727977 0.003081 1.430645
2 16 22 0.703885 0.003569 1.443563
3 16 22 0.677396 0.004380 1.419843
4 16 22 0.651460 0.005776 1.376014
5 16 22 0.628950 0.008230 1.270934
6 16 22 0.613760 0.011680 1.056854
7 16 22 0.600671 0.019740 0.371343
8 16 22 0.610257 0.033558 0.314031
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Table A.13: As in Table A.2 but for conventionAl*-meson interpolating fieldy;q.

in tstart tend Ma a X2/d0f

1 16 21 0.702220 0.003712 1.226565
2 16 21 0.690099 0.004005 1.165699
3 16 21 0.676832 0.004436 1.087662
4 16 21 0.663954 0.005059 1.028479
5 16 21 0.652908 0.005924 0.993326
6 16 21 0.645702 0.006864 0.995203
7 16 21 0.638674 0.008543 0.980531
8 16 21 0.639873 0.010192 0.541121

Table A.14: As in Table A.2 but for conventionaimeson interpolating fielgy;.q.

in tstart tend Ma a X2/d0f

1 14 19 0.730291 0.003023 1.277665
2 14 19 0.706060 0.003362 1.222823
3 14 19 0.679365 0.003920 1.144671
4 14 19 0.652795 0.004849 1.027337
5 14 19 0.629165 0.006514 0.842173
6 14 19 0.611177 0.008703 0.750687
7 14 19 0.591406 0.013972 1.174988
8 14 19 0.571187 0.025088 0.980223

Table A.15: As in Table A.2 but for convention&l*-meson interpolating fielgy,;4q.

7;/4 tstart tond MCL o Xz/dOf

1 14 19 0.705001 0.003419 1.212617
2 14 19 0.692769 0.003622 1.186451
3 14 19 0.679365 0.003920 1.144671
4 14 19 0.666161 0.004340 1.093618
5 14 19 0.654555 0.004935 1.025103
6 14 19 0.646385 0.005571 0.977872
7 14 19 0.638678 0.006803 0.940564
8 14 19 0.636179 0.008225 0.602243
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Table A.16: As in Table A.2 but for Hybrig-meson interpolatof£;q. Error bars are
larger than signal for lightest quark mass, so this line igtteah

in tstart tend Ma a X2/d0f

1 12 19 0.742066 0.031162 1.236414
2 12 19 0.728289 0.038336 1.217807
3 12 19 0.721750 0.051659 1.125934
4 12 19 0.727662 0.076253 0.949960
5 12 19 0.716127 0.117422 0.887201
6 12 19 0.739333 0.182135 0.179079
7 12 19 0.563291 0.256713 1.428986

Table A.17: As in Table A.2 but for Hybrid *-meson interpolatof E;q.
larger than signal for 3 lightest quark masses.

in tstart tend Ma a X2/d0f

1 15 19 0.664570 0.079990 0.951697
2 15 19 0.650558 0.096416 0.952065
3 15 19 0.632943 0.126131 0.902783
4 15 19 0.606679 0.184527 0.773465
5 15 19 0.540478 0.326554 0.553247

Table A.18:

Error bars are

As in Table A.2 but for Hybrig-meson interpolatoig*~s B{’q".
7;/4 tstart tond MCL o Xz/dOf

1 12 22 0.755673 0.019271 1.379385

2 12 22 0.728676 0.021446 1.381606

3 12 22 0.698463 0.024823 1.310405

4 12 22 0.667503 0.030086 1.159886

5 12 20 0.638159 0.037711 1.267486

6 12 22 0.620516 0.049515 1.293002

7 12 22 0.599346 0.092423 1.242542

8 12 22 0.482873 0.166664 1.150640
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Table A.19: As in Table A.2 but for Hybrid*-meson interpolatoi;~; Bi"q".

Is  tstart  tend Ma o x?/d.o.f

1 12 16 0.727823 0.026971 1.856496
2 12 16 0.714623 0.027849 1.823662
3 12 16 0.700190 0.029151 1.767746
4 12 16 0.685916 0.031003 1.695327
5 12 16 0.673457 0.033508 1.583995
6 12 16 0.667761 0.036388 1.480800
7 12 16 0.666913 0.041800 1.304392
8 12 16 0.670980 0.048906 1.033869

Table A.20: As in Table A.2 but for Hybrig-meson interpolatoig®~,y; B{q".

in tstart tend Ma a X2/d0f

1 12 19 0.748734 0.018952 1.161976
2 12 19 0.725957 0.021154 1.054827
3 12 19 0.702988 0.024949 0.868723
4 12 19 0.683667 0.031311 0.650179
5 12 19 0.670175 0.040881 0.477861
6 12 19 0.665139 0.051335 0.381633
7 12 19 0.663100 0.067830 0.322528
8 12 19 0.645117 0.092296 0.616030

Table A.21: As in Table A.2 but for Hybrid-meson interpolatoig*~,7s B"q".

In  lstart Tond Ma o x?/d.o.f

1 12 22 0.728549 0.020418 0.762931
2 12 22 0.717493 0.021863 0.709354
3 12 22 0.705967 0.023989 0.637575
4 12 22 0.695830 0.026968 0.567746
5 12 22 0.688051 0.030813 0.514944
6 12 22 0.684327 0.034726 0.487495
7 12 22 0.680818 0.039806 0.551833
8 12 22 0.678415 0.044186 0.566844
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Table A.22: As in Table A.2 but for pseudovector interpaigtfield gsv.v;¢ with equal

guark-antiquark masses.

In  lstart Tend Ma o x?/d.o.f

1 11 16 1.032468 0.008605 0.655486
2 11 16 1.012554 0.009433 0.636995
3 11 16 0.991178 0.010702 0.668774
4 11 16 0.970774 0.012717 0.756178
5 11 16 0.954319 0.016296 0.860163
6 11 16 0.943740 0.021157 1.035939
7 11 16 0.944531 0.036163 1.114880
8 11 16 0.964143 0.067878 0.832436

Table A.23: As in Table A.2 but for pseudovector interpalgtfield gvsv,v;¢ with un-

equal quark-antiquark masses.

Is  tstart  tend Ma o x?/d.o.f

1 11 17 1.012299 0.009573 0.761536
2 11 17 1.002074 0.010059 0.760418
3 11 17 0.991242 0.010736 0.771770
4 11 17 0.981190 0.011679 0.799178
5 11 17 0.973582 0.013056 0.842819
6 11 17 0.969448 0.014549 0.908081
7 11 17 0.970464 0.018018 0.951555
8 11 17 0.979468 0.023043 0.983875
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Table A.24: Asin Table A.2 but for axial-vector interpotagifield gv5v;q for equal quark-
antiquark masses. No appropriate fit window exists for thelightest quark-masses.

Table A.25: As in Table A.2 but for axial-vector interpotadifield gy5+;¢ for unequal
quark-antiquark masses. No appropriate fit window existshe two lightest quark-

masses.

in tstart tend Ma a X2/d0f

1 11 15 1.024361 0.007554 1.324197
2 11 15 1.005865 0.008140 1.322558
3 11 15 0.986890 0.009012 1.376443
4 11 15 0.970093 0.010275 1.431509
5 11 15 0.957989 0.012059 1.447858
6 11 15 0.953572 0.014024 1.486133

in tstart tend Ma a X2/d0f

1 11 15 1.005589 0.008229 1.337163
2 11 15 0.996364 0.008559 1.347139
3 11 15 0.986890 0.009012 1.376443
4 11 15 0.978504 0.009616 1.405811
5 11 15 0.972625 0.010402 1.413036
6 11 15 0.971012 0.011214 1.426639
7 11 15 0.974346 0.012624 1.393397
8 11 15 0.983868 0.014333 1.351058
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B

Obtaining the form of (r2)

ConsiderG(q), the Breit-frame fourier transform of the spatial chargasity

q) /dX3 zqa:

— G
a%‘ aQi C((
We can rewrite the LHS via the chain rule as

0 0Q* 0

2
~9a 0g, 92l

Q2=0"
where

Q= =G = 44 — QP = G
in the Breit frame.

Recall that
0Q* »
94; qi -
Thus we may write
8 0
2 2
(%) = =5 205m G (@) -
%qi = 3in 3-dimensions, so this is simply
0
< > = _6@G<Q2>‘Q2:0 I
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Source dependence results for the
SU(3) 3 = 4.60, 20° x 40 lattice
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Table C.1: Exotic meson Effective masses fromabiex 40 lattice fory, with ng.. = 35.

Results for the heaviest four quark masses are depicted.
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Table C.2: Exotic meson Effective masses fromabiex 40 lattice fory, with ng.. = 35.
Results for the heaviest four quark masses are depicted.
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Table C.3: Exotic meson Effective masses fromabiex 40 lattice forys with ng.. = 35.
Results for the heaviest four quark masses are depicted.
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Table C.4: Exotic meson Effective masses fromabiex 40 lattice fory; with ng.. = 35.
Results for the heaviest four quark masses are depicted.
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D
Quark-level calculations

D.1 Two-point function

Consider the following two-point function for somewith z, > 0.

x(a; [UDXT(0; [U]) (D.1)

wherey = @@H®¢ andy! = qlf'%}ﬁba v4¢¢. Here theH and H are a product of
gamma matrices and gauge functionals, the tilde indichisthese may be different at
source and sink. We shall restrict ourselves here to the gageq,, as this is the only
case that can be handled efficiently using lattice techisigle minimise the necessity of
indices, let us choosg, ¢» = u, d.

Inserting these operators, we rewrite the two-point fuorcts

A (o) HOPu ()i (0)u T 7 (0) (D-2)
With the spinor indices written out explicitly this is
- / ~ ba /
do () Hag (@) g (0) (aHT " 74) gy i (0) (D.3)

One proceeds by contracting out quark pairs to construgiggators:
ga()3(0) = Sap(,0)
Ga(2)a5(0) = —S5(0,2). (D-4)

We denoteS(x, 0) the fermion propagator froiito .
Eq. (D.3) corresponds to

/ / ~ . ba
—(Sa)ara(0,2) Hig (Su) gy (2,0) (aH " ) gy (D.5)
For Wilson-like fermions, the following property holds:
(%) aar S (0,25 [U]) (75) g = S (,0; [U]) (D-6)

enabling us to write the above in terms of forward-going gymaopagators as

1% / ~ . ba

~(98), (Sa)55 (2, 0. [U]) (48) 0 Hay (Su) e (2. 0, [U]) (aH" " a) g - (D7)
Finally, we make use of the symmetryof under transposition to rewrite this as

1% / ~ ba

~(95)10(Sa)55 (2, 0. [U]) (48) 05 Hay (Su) (2. 0, [U]) (vaHT " 4)gor (D-8)
’ ~ ba aa’ T
= —trep {75 H* (S)" (2,0, [UD)yaHT ™ 7475(82)™ (2,0,[U])}  (D.9)
In the case of the-meson, wherél = ~;, this is Simplytrsp{(Su)"“'(Sd)"“'T}.
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D.2. Electromagnetic current insertion

D.2 Electromagnetic current insertion

Consider the following three-point function:
G (w2, 11,0) = x(22)3" (x1)x"(0) (D.10)

Let us take the case whege= @I'¢¢. Theny' = ¢@v,I'Ty.q5. The electromagnetic
current can be written ag' = Zf Qrqry*qr, WhereQ); is the electric charge of the
particular flavour involved. As above, let us takeg, asu, d to economise on indices.
Inner products, and thus bra-ket expressions are lineareszan take this sum out to
write G* (x4, 1, 0) as
qudg (w2)Dapufy(w2) @ (x1) 05w (1) @5 (0) (val M) 5 (0)
+ qadg (v2)Dapuf(ez) &) (21)Vhsds (1) 5(0) (1al ), d5 (0) .
Contracting the fermion operators to form quark propagaya@lds
0S5 (0, 22)Cap(S3) 5 (w2, 21, 0; 1) (1al M)
+ qalap(Ss) 5 (w2, 21, 0; p)ufy () 5(0) (74FT74) (D.11)

where we introduce the “ forwards 3-point propagator”:

(Ss)gbg(xz’ 21,05 0) = qo(w2) G5 (71)75,05(71) 672(0) (D.12)
= ngc (x2>x1)70p5;§g($17 0) - Sgl,)ﬁ(x27 )’ngs*cc (xlaxl)

and the “backwards 3-point propagator”:
5 \xab —a —c c
(S3) g2, 21,05 1) = @) G5 (1) 7k, 05 (1) q3(0) (D.13)
S*Cll ('Tlv x2)70p5*50<0 1’1) + 8% (xb xl)fyaps*ﬁa((] 1’2)

The second terms in the forwards and backwards 3-point gedpes represent dis-
connected loop contributions, and in the spirit of the qhexdcapproximation we simply
drop them. The final feature of our calculation is that we usengproved conserved
vector current derived from the fermion action, rather tthanlocal formulation above.
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E

REDUCE script for calculating ratios of
three to two-point functions

% To run type: in "SpinlFormFactors.red";
% To quit: bye;
%
ON DIV;
%
% A few definitions
%
INDEX AL,B,RHO,LAM,SIG;
VECTOR PRho,PpRho,MU,NU,PFinal,PInitial, TAU;
VECTOR pplus,pzero,pminus;
NOSPUR L; % Use LTR for traces.
MASS PRho=mRho, PpRho=mRho;
MSHELL PRho,PpRho;
VECTOR Dir0,Dirl,DirJ,DirK;
%
ORDER G1,G2,G3;
%
FOR ALL L,ALB LET SIGMA(LAL,B) = (I/2) *(G(L,AL,B)-G(L,B,AL));
%
FOR ALL AL,B,P,M LET SPINSUM(AL,B,P,M) =
- ((ALB) - (P.AL) *(P.B)(M2) );
%
% Note g = p-p matches PRD 46 2141 (1992)
%
FOR ALL RHO,MU,SIG,P,PP,M LET HINT(RHO,MU,SIG,P,PP,M) = - (
G1 * (RHO.SIG) * (P.MU+PP.MU)
+G2 * ( (PP.RHO-P.RHO) * (MU.SIG) - (PP.SIG-P.SIG) * (MU.RHO) )
-G3 * ( (PP.RHO-P.RHO) * (PP.SIG-P.SIG) * (P.MU+PP.MU) )/((2 *M"2) );
%
% Define vector p_0

LET pzero.Dir0 = mRho;
LET pzero.Dirl = px_i;
LET pzero.DirJ = py_i;
LET pzero.Dirk = pz_i;

LET pzero.pzero = mRho *mRho;
LET abs(mRho) = mRho;
normRho := 1/(4 *eRho*mRho);

% Define vector p_+

LET pplus.Dir0 = eRho;
LET pplus.Dirl = px + px_i;
LET pplus.Dird = py_i;
LET pplus.DirK = pz_i;

LET pplus.pplus = mRho  * mRho;

% Define vector p_-

LET pminus.Dir0 = eRho;
LET pminus.Dirl = px_i -px;

LET pminus.Dird = py_i;

LET pminus.DirK = pz_i;

LET pminus.pminus = mRho * mRho;

LET pplus.pzero = mRho * eRho;
LET pminus.pzero = mRho * eRho;

LET PRho.PpRho = mRho * eRho;
LET Dir0.Dir0 =
LET Dir0.Dirl =
LET Dir0.Dird =
LET Dir0.DirK =

1:
0;
0;

LET Dirl.DirJ
LET Dirl.Dirk
LET DirJ.DirkK
LET Dirl.Dirl
LET DirJ.DirJ

0;
0;
0;

LET DirK.DirK

LET px_i = 0;

LET py_i = 0;

LET pz_i = 0;

LET eRho = SQRT(px2 + mRho"2);

%

%

ResEle := SPINSUM(MU,RHO,PFinal,mRho) * HINT(RHO,TAU,SIG,PInitial,PFinal,mRho) *

SPINSUM(SIG,NU,PInitial, nRho) *normRho;
Forwards := SUB(PInitial=pzero,PFinal=pplus,ResEle);
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Backwards := SUB(PInitial=pplus,PFinal=pzero,ResEle);

Denom := SPINSUM(MU,MU,pplus,mRho) * SPINSUM(NU,NU,pzero,mRho) *normRho;

%

% Separation of components.

%

ResEle001 := SUB(MU=Dir0,NU=Dirl, TAU=Dir0,Forwards)
ResEle101 := SUB(MU=Dirl,NU=Dirl, TAU=Dir0,Forwards)
ResEle101Forwards := SUB(MU=Dirl,NU=Dirl, TAU=Dir0,For

ResEle202 := SUB(MU=DirJ,NU=DirJ, TAU=Dir0,Forwards)
ResEle203 := SUB(MU=DirJ,NU=DirK, TAU=Dir0,Forwards)
ResEle303 := SUB(MU=DirK,NU=DirK,TAU=Dir0,Forwards)
ResEle302 := SUB(MU=DirK,NU=DirJ, TAU=Dir0,Forwards)
ResEle133 := SUB(MU=Dirl,NU=DirK,TAU=DirK,Forwards)
ResEle132 := SUB(MU=Dirl, NU=DirJ, TAU=DirK,Forwards)
ResEle331 := SUB(MU=DirK,NU=Dirl, TAU=DirK,Forwards)
%

ON FACTOR;

%

OUT "SpinlProduct.res";

ResEle001;

ResElel101;

ResElel01Forwards;

ResEle202;

ResEle203;

ResEle303;

ResEle302;

ResElel133;

ResElel132;

ResEle331;

ResEle101 + ResElel01 - ResEle202 - ResEle303;
SHUT "SpinlProduct.res";

OUT T;

%

END;

%

% BYE;

* SUB(MU=Dirl,NU=Dir0, TAU=Dir0,Backwards) / SUB(MU=Dir0

* * ok b x *

*

*

SUB(MU=Dirl,NU=Dirl, TAU=Dir0,Backwards) / SUB(MU=Dirl
wards);

SUB(MU=DirJ,NU=DirJ, TAU=Dir0,Backwards) / SUB(MU=DirJ
SUB(MU=DirK,NU=DirJ, TAU=Dir0,Backwards) / SUB(MU=DirJ
SUB(MU=DirK,NU=DirK,TAU=Dir0,Backwards) / SUB(MU=DirK
SUB(MU=DirJ,NU=DirK,TAU=Dir0,Backwards) / SUB(MU=DirK

SUB(MU=DirK,NU=Dirl, TAU=DirK,Backwards) / SUB(MU=Dirl

SUB(MU=DirJ,NU=Dirl, TAU=DirK,Backwards) / SUB(MU=Dirl
SUB(MU=Dirl,NU=DirK,TAU=DirK,Backwards) / SUB(MU=DirK
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F

Data pertaining to the calculation of
meson form-factors

Table F.1: Rho meson mass data

tstart tena  Ma o x?/d.o.f

17 30 0.7312 0.0030 1.230
17 30 0.7067 0.0036 1.209
17 30 0.6797 0.0046 1.131
13 21 0.6537 0.0049 0.936
13 21 0.6309 0.0056 0.737
13 21 0.6160 0.0064 0.610
11 20 0.6039 0.0071 0.122
11 20 0.5982 0.0080 0.634

.
=

O~NO O WNPR
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Table F.2: Pion mass data

lstart  Tend Ma a X2/d0f

16 24 0.5411 0.0010 1.272
16 24 0.5013 0.0011 1.124
16 24 0.4539 0.0011 0.906
16 24 0.4014 0.0012 0.749
16 24 0.3471 0.0015 0.802
16 24 0.3020 0.0019 0.938
16 24 0.2412 0.0042 0.659
16 24 0.1968 0.0052 1.044

.
=

O~NO O WN PR

Table F.3: Strange quark contribution&o-meson form-factor.

.
=

lstart  Tend GC’ g X2/d0f

20 30 0.8178 0.0041 0.405
20 30 0.8196 0.0045 0.363
20 30 0.8215 0.0051 0.329
18 30 0.8233 0.0055 0.621
18 30 0.8249 0.0061 0.510
18 30 0.8256 0.0068 0.576
18 24 0.8260 0.0077 0.971
16 24 0.8279 0.0078 0.742

oO~NO U WNPE

Table F.4: Strange quark contribution&g'-meson charge form-factor.

tstart tcnd GC o Xz/dOf

20 30 0.7713 0.0070 0.845
20 29 0.7706 0.0077 0.853
20 28 0.7689 0.0087 0.918
20 28 0.7657 0.0103 1.014
20 27 0.7602 0.0124 0.972
18 27 0.7564 0.0134 1.183
18 25 0.7491 0.0148 0.751
17 25 0.7454 0.0154 0.626

.
=

oO~NOUITA, WN PP
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Table F.5: Up quark contribution th-meson form-factor.

tstart tcnd GC o Xz/dOf

20 30 0.8346 0.0042 0.619
20 30 0.8302 0.0045 0.346
20 30 0.8215 0.0051 0.329
18 30 0.8126 0.0055 0.415
18 30 0.8041 0.0062 0.398
18 30 0.7976 0.0068 0.361
18 24 0.7920 0.0077 0.750
16 24 0.7910 0.0081 0.935

.
=

oOo~NOUThA WNBE

Table F.6: Up quark contribution t&*-meson charge form-factor.

tstart tcnd GC o Xz/dOf

20 30 0.7939 0.0067 0.897
20 29 0.7828 0.0075 0.886
20 28 0.7689 0.0087 0.918
20 28 0.7538 0.0106 1.016
20 27 0.7384 0.0133 1.021
18 27 0.7271 0.0147 1.206
18 24 0.7160 0.0172 0.806
17 24 0.7074 0.0192 0.695

.
=

oO~NOUTA, WN P

Table F.7: Up quark contribution te-meson charge form-factor.

lstart  Tend GC’ g X2/d0f

20 30 0.8327 0.0035 0.649
20 30 0.8284 0.0041 0.387
20 30 0.8215 0.0051 0.329
18 30 0.8149 0.0061 0.464
18 30 0.8100 0.0083 0.616
18 30 0.8091 0.0120 0.825
18 21 0.8123 0.0219 0.013
16 21 0.8332 0.0301 0.646

.
=

oO~NO O WNPE
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Table F.8: Up quark contribution f@meson Charge form-factor.

tstart tcnd GC o Xz/dOf

20 30 0.7954 0.0054 1.021
20 29 0.7841 0.0066 0.940
20 28 0.7689 0.0087 0.918
20 25 0.7501 0.0122 1.102
20 24 0.7267 0.0179 1.116
18 23 0.7079 0.0218 1.491
18 21 0.6830 0.0316 0.406
17 20 0.6602 0.0398 0.914

.
=

oOo~NOUTPA, WN B

Table F.9: Strange quark contribution&d" magnetic form-factor.

tstart tcnd GJ\/[ g X2/d0f

18 24 14064 0.0213 0.864
18 24 14125 0.0228 0.777
18 24 14182 0.0252 0.664
16 20 14276 0.0265 0.580
16 20 1.4352 0.0282 0.517
16 20 1.4378 0.0299 1.161
15 20 1.4403 0.0314 1.216
15 20 1.4409 0.0332 0.196

.
=

oO~NOUT A WNPE

Table F.10: Up quark contribution t&* magnetic form-factor.

lstart  Tend G]\/I g X2/d0f

18 24 1.3733 0.0187 0.776
18 24 1.3953 0.0213 0.712
18 24 14182 0.0252 0.664
16 20 1.4453 0.0277 0.639
16 20 1.4687 0.0314 0.636
16 20 1.4850 0.0356 0.920
15 19 1.5006 0.0405 0.454
15 19 1.5127 0.0460 0.359

.
=

oO~NO O WNPE
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Table F.11: Up quark contribution gomagnetic form-factor.

tstart tcnd GJ\/[ o Xz/dOf

18 24 13599 0.0160 1.113
18 24 13889 0.0194 0.845
18 24 14182 0.0252 0.664
16 20 1.4547 0.0293 0.716
16 20 1.4838 0.0365 0.874
16 20 14961 0.0467 1.114
15 19 1.5002 0.0601 1.007
15 17 1.4828 0.0812 0.329

.
=

oOo~NOUTPA, WN B

Table F.12: Strange quark contributionA0" quadrupole form-factor.

tstart  Tond Go o x?/d.o.f

16 20 -0.2936 0.0280 0.268
16 20 -0.2937 0.0299 0.293
16 20 -0.2932 0.0327 0.339
16 21 -0.2921 0.0371 0.478
15 20 -0.2912 0.0411 0.524
15 19 -0.2875 0.0456 0.138
15 19 -0.2815 0.0527 0.323
15 19 -0.2798 0.0603 0.439

~.
N

O~NO O A~ WNPE

Table F.13: Up quark contribution t&* quadrupole form-factor.

tstart  tend Go o x%/d.o.f

16 20 -0.2857 0.0264 0.455
16 20 -0.2886 0.0288 0.376
16 20 -0.2932 0.0327 0.339
16 21 -0.3014 0.0389 1.227
15 20 -0.3073 0.0447 1.174
15 22 -0.3170 0.0520 1.255
15 19 -0.3339 0.0646 1.032
15 19 -0.3417 0.0791 1.024

.
By

O~NO O A~ WDN PR
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Table F.14: Up quark contribution yoquadrupole form-factor.

Is  tstart  tend Go o x?/d.o.f

1 16 20 -0.2852 0.0224 0.537
2 16 20 -0.2887 0.0263 0.367
3 16 20 -0.2932 0.0327 0.339
4 16 21 -0.2992 0.0438 0.788
5 15 20 -0.3026 0.0560 0.623
6 15 19 -0.2962 0.0744 0.451
7 15 19 -0.3091 0.1116 0.525
8 15 18 -0.3039 0.1652 0.626

Table F.15:Q? values for pion (lattice units)

.
=

Q2

g

O~NO O WNPRE

0.091542
0.090542
0.089069
0.086962
0.084038
0.080797
0.074714
0.068450

0.000023
0.000029
0.000038
0.000054
0.000094
0.000159
0.000505
0.000838

Table F.16:Q? values forK (lattice units)

.
=

Q2

o

O~NO O WNPRE

0.090486
0.089868
0.089069
0.088124
0.087097
0.086234
0.085220
0.084666

0.000030
0.000033
0.000038
0.000045
0.000055
0.000065
0.000108
0.000092
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Table F.17:Q* values forp (lattice units)

.
=

Q2

o

O~NO O WN PR

0.094518
0.094250
0.093923
0.093574
0.093236
0.092998
0.092793
0.092694

0.000032
0.000041
0.000058
0.000070
0.000086
0.000106
0.000123
0.000143

Table F.18:(? values forK* (lattice units)

.
=

Q2

o

oO~NOUT A WNPE

0.094238
0.094091
0.093923
0.093753
0.093600
0.093497
0.093409
0.093364

0.000042
0.000049
0.000058
0.000064
0.000070
0.000075
0.000080
0.000084
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