
PERFORMANCE MODELLING OF MESSAGE-PASSING
PARALLEL PROGRAMS

a dissertation

submitted to the department of computer science

of the university of adelaide

for the degree of

Doctor of Philosophy

By

Duncan A. Grove, B.E.(Comp. Sys.)(Hons)

May 30, 2003

Contents

Abstract xi

Declaration xiii

Acknowledgements xv

1 Parallel Computing 1

1.1 Introduction . 1

1.2 Parallel Computers . 3

1.3 Parallel Programs . 5

1.4 Performance Modelling . 9

1.5 Thesis Outline . 11

2 Performance Modelling Techniques 13

2.1 Introduction . 13

2.2 Amdahl . 15

2.3 Fortune and Wylie . 15

2.4 Hoare; Milner; Alur and Dill . 16

2.5 Valiant . 18

2.6 Hockney . 19

2.7 Saavedra and Smith . 20

2.8 Culler et al. 20

2.9 Grama et al. 22

2.10 Adve . 23

2.11 Singh et al. 25

2.12 Mehra et al. 26

2.13 Parashar and Hariri . 28

2.14 Skillicorn . 30

2.15 Crovella and LeBlanc . 32

2.16 Mraz; Tabe et al. 33

2.17 Clement, Quinn and Steed . 35

2.18 Islam . 37

2.19 Jonkers . 38

iii

2.20 van Gemund . 41

2.21 Labarta and Girona et al. 45

2.22 Dunlop and Hey et al. 46

2.23 Becker et al. 48

2.24 Gautama . 49

2.25 Tam and Wang . 50

2.26 Kranzlmüller and Schaubschläger . 50

2.27 Magnusson et al.; Hughes et al. 52

2.28 An Overview of the Approaches . 53

3 The PEVPM Performance Model 55

3.1 Introduction . 55

3.2 Key Features of Performance Models . 56

3.3 Scope . 61

3.4 Modelling Message-Passing Codes . 62

3.4.1 Modelling Local Processing . 63

3.4.2 Modelling Communication Events 65

3.4.3 Combining Processing and Communication Models 71

3.4.4 The Modelling Formalisms . 72

3.4.5 Building a PEVPM Model . 82

3.5 Automatic Performance Evaluation . 88

3.6 Advantages of the PEVPM Approach . 96

3.7 Implications for Other Parallel Methodologies 98

3.8 Summary . 99

4 Benchmarking Point-to-Point Communication 101

4.1 Introduction . 101

4.2 Existing Message-Passing Benchmarks 102

4.2.1 Genesis/PARKBENCH . 103

4.2.2 NetPIPE . 103

4.2.3 Pallas MPI Benchmarks . 104

4.2.4 MPBench . 104

4.2.5 Mpptest . 105

4.2.6 SKaMPI . 106

4.2.7 Profiling Tools . 106

4.2.8 Limitations of Existing Techniques 107

4.3 Design and Implementation of MPIBench 108

4.3.1 Constructing a Timing Harness 108

4.3.2 An Accurate Global Clock . 109

iv

4.3.3 Communication Patterns . 112

4.3.4 Generation of Results . 115

4.4 Benchmarking Experiments . 117

4.4.1 Machines Used . 117

4.4.2 Tests Performed . 120

4.5 Results for MPI Isend . 122

4.5.1 Inter-node, end-to-end completion time 122

4.5.2 Intra-node, end-to-end completion time 136

4.5.3 Inter-node, local completion time 139

4.6 Results for MPI Sendrecv . 144

4.7 Analytical Models . 151

4.8 Stability and Interference . 162

4.9 Summary . 167

5 Benchmarking Collective Communication 169

5.1 Introduction . 169

5.2 Results for MPI Bcast . 170

5.3 Results for MPI Barrier . 184

5.4 Results for MPI Scatter and MPI Gather 190

5.5 Results for MPI Alltoall . 202

5.6 Discussion of Collective Computation . 213

5.7 Summary . 214

6 Case Studies 217

6.1 Introduction . 217

6.2 Jacobi Iteration . 219

6.3 Bag of Tasks . 231

6.4 Fast Fourier Transform . 239

6.5 Summary . 249

7 Conclusions and Further Work 251

A PEVPM Definitions 257

B Using MPIBench 261

B.1 Running MPIBench . 261

B.2 Customising MPIBench . 263

Bibliography 265

v

List of Algorithms

1 PEVPM Process Sweep . 90

2 PEVPM Match Sweep . 91

List of Tables

1 Benchmarking experiments carried out in this thesis 121

2 Perseus.2-64x1.barrier predictions and measurements 187

3 APAC NF.4-32x1-4.barrier measurements 189

List of Figures

Parallel Computing

1 Common interconnection networks in parallel computers. 4

PEVPM design

2 Inter-node communication pathway between MPI processes 68

3 Performance distributions for point-to-point communication 70

4 Computational basis of the PEVPM . 89

5 Locking semantics for 3+ process interactions 93

6 PEVPM match-sweep line processing . 94

MPIBench design

7 An iteration of the MPIBench clock synchronisation algorithm 110

8 Clock drift and the MPIBench clock synchronisation algorithm 111

9 Process placement for benchmarking balanced communication 113

10 Example program with intra- and inter-node communication 114

11 Raw output from MPIBench for perseus.32x1.bcast.small 116

vi

MPI Isend (inter-node) measurements

12 Perseus.2-64x1-2.isend.small.averages . 123

13 Perseus.2-64x1-2.isend.large.averages . 124

14 Perseus.64x2.isend.small.3dhistograms 125

15 Perseus.32x1.isend.large.2dhistograms . 127

16 Perseus.64x1.isend.large.2dhistograms . 128

17 Orion.2-32x1-4.isend.small.averages . 129

18 Orion.2-32x1-4.isend.large.averages . 130

19 Orion.32x1-4.isend.small.3dhistograms 131

20 Orion.32x1.isend.large.2dhistograms . 132

21 APAC NF.2-32x1-4.isend.small.averages 134

22 APAC NF.2-32x1-4.isend.large.averages 134

23 APAC NF.32x1-4.isend.small.3dhistograms 135

24 APAC NF.32x1.isend.large.2dhistograms 136

MPI Isend (intra-node) measurements

25 Perseus-Orion-APAC NF.1x2-4.isend.small.averages 137

26 Perseus-Orion-APAC NF.1x2-4.isend.large.averages 137

MPI Isend (local completion) measurements

27 Perseus.2-64x1-2.isendlocal.small.averages 140

28 Perseus.2-64x1-2.isendlocal.large.averages 140

29 Orion.2-32x1-4.isendlocal.small.averages 142

30 Orion.2-32x1-4.isendlocal.large.averages 142

31 APAC NF.2-32x1-4.isendlocal.small.averages 143

32 APAC NF.2-32x1-4.isendlocal.large.averages 143

MPI Sendrecv measurements

33 Perseus.2-64x1-2.sendrecv.small.averages 146

34 Perseus.2-64x1-2.sendrecv.large.averages 146

35 Orion.2-32x1-4.sendrecv.small.averages 148

36 Orion.2-32x1-4.sendrecv.large.averages 148

37 Orion.2x1.sendrecv.512.2dhistograms . 149

38 APAC NF.2-32x1-4.sendrecv.small.averages 150

39 APAC NF.2-32x1-4.sendrecv.large.averages 150

Analytical models for MPI Isend (inter-node) measurements

40 Perseus.32x1.isend.512.2dhistogram.fit 158

41 Perseus.32x1.isend.16384.2dhistogram.fit 158

42 Orion.32x1.isend.512.2dhistogram.fit . 159

vii

43 Orion.32x1.isend.28672.2dhistogram.fit 159

44 APAC NF.32x1.isend.512.2dhistogram.fit 160

45 APAC NF.32x1.isend.16384.2dhistogram.fit 160

MPI Bcast models and measurements

46 A software-based broadcast tree for 16 processes 171

47 Perseus.4-64x1-2.bcast.small.averages . 172

48 Perseus.4-64x1-2.bcast.large.averages . 172

49 Perseus.32x1.bcast.65536.2dhistogram . 173

50 Perseus.4-64x1-2.bcast.large.outliers . 173

51 Perseus.16x1.bcast.128.2dhistogram . 174

52 Figure 46 augmented with per process delays 176

53 Orion.4-32x1-4.bcast.large.averages . 179

54 Orion.16x1-4.32768.2dhistograms . 179

55 APAC NF.4-32x1-4.bcast.large.averages 181

56 APAC NF.32x1-4.bcast.16384.2dhistograms 181

57 APAC NF.32x1.bcast.16384.2dhistogram (root process only) 182

58 APAC NF.16x1.bcast.32.2dhistogram (switch serialisation) 182

59 APAC NF.8x1.bcast.large.averages (software-based) 183

60 APAC NF.8x1.bcast-sw.16384.2dhistogram (software-based) 183

MPI Barrier measurements

61 Perseus.4-64x1.barrier.2dhistograms . 186

62 Perseus.4-64x2.barrier.2dhistograms . 186

63 Orion.4-32x1.barrier.2dhistograms . 188

64 Orion.4-32x4.barrier.2dhistograms . 188

MPI Scatter and MPI Gather measurements

65 Perseus.4-64x1-2.scatter.large.averages 193

66 Perseus.16x1.scatter.65536.2dhistogram 193

67 Perseus.4-64x1-2.gather.large.averages . 195

68 Perseus.8x1.gather.65536.2dhistogram . 195

69 Orion.4-32x1-4.scatter.large.averages . 197

70 Orion.16-32x1.scatter.65536.2dhistograms 197

71 Orion.4-32x1-4.gather.large.averages . 198

72 Orion.8x1.gather.16384+32768.2dhistograms 198

73 APAC NF.4-32x1-4.scatter.large.averages 199

74 APAC NF.32x1.scatter.65536.2dhistogram 199

75 APAC NF.4-32x1-4.gather.large.averages 200

viii

76 APAC NF.32x1-4.gather.65536.2dhistograms 200

MPI Alltoall measurements

77 Perseus.4-64x1-2.alltoall.large.outliers . 204

78 Perseus.4-64x1-2.alltoall.large.averages 204

79 Perseus.32-64x1.alltoall.4096.2dhistogram 206

80 Perseus.64x2.alltoall.65536.2dhistogram 206

81 Orion.4-32x1-4.alltoall.large.averages . 209

82 Orion.8-32x1-2.alltoall.65536.2dhistogram 209

83 APAC NF.4-32x1-4.alltoall.large.averages 212

84 APAC-SC.16x1.alltoall.0-262144.2dhistograms 212

Jacobi Iteration code, predictions and measurements

85 Jacobi Iteration skeleton code. 220

86 Jacobi Iteration PEVPM annotations. 222

87 Perseus.2-64x1-2.jacobi.averages . 225

88 Perseus.2-64x1-2.jacobi.speedups . 225

89 Orion.2-32x1-4.jacobi.averages . 226

90 Orion.2-32x1-4.jacobi.speedups . 226

91 APAC NF.2-32x1-4.jacobi.averages . 227

92 APAC NF.2-32x1-4.jacobi.speedups . 227

Bag of Tasks predictions and measurements

93 Bag of Tasks skeleton code. 232

94 Perseus.2-64x1-2.bots.averages . 236

95 Perseus.2-64x1-2.bots.speedups . 236

96 Orion.2-32x1-4.bots.averages . 237

97 Orion.2-32x1-4.bots.speedups . 237

98 APAC NF.2-32x1-4.bots.averages . 238

99 APAC NF.2-32x1-4.bots.speedups . 238

2D Fast Fourier Transform predictions and measurements

100 2D Fast Fourier Transform skeleton code. 241

101 Perseus.2-64x1-2.fft.averages . 243

102 Perseus.2-64x1-2.fft.speedups . 243

103 Orion.2-32x1-4.fft.averages . 244

104 Orion.2-32x1-4.fft.speedups . 244

105 APAC NF.2-32x1-4.fft.averages . 245

106 APAC NF.2-32x1-4.fft.speedups . 245

ix

x

Abstract

Parallel computing is essential for solving very large scientific and engineering problems.

An effective parallel computing solution requires an appropriate parallel machine and a

well-optimised parallel program, both of which can be selected via performance modelling.

This dissertation describes a new performance modelling system, called the Performance

Evaluating Virtual Parallel Machine (PEVPM). Unlike previous techniques, the PEVPM

system is relatively easy to use, inexpensive to apply and extremely accurate. It uses

a novel bottom-up approach, where submodels of individual computation and commu-

nication events are dynamically constructed from data-dependencies, current contention

levels and the performance distributions of low-level operations, which define performance

variability in the face of contention. During model evaluation, the performance distribu-

tion attached to each submodel is sampled using Monte Carlo techniques, thus simulating

the effects of contention. This allows the PEVPM to accurately simulate a program’s

execution structure, even if it is non-deterministic, and thus to predict its performance.

Obtaining these performance distributions required the development of a new bench-

marking tool, called MPIBench. Unlike previous tools, which simply measure average

message-passing time over a large number of repeated message transfers, MPIBench uses

a highly accurate and globally synchronised clock to measure the performance of in-

dividual communication operations. MPIBench was used to benchmark three parallel

computers, which encompassed a wide range of network performance capabilities, namely

those provided by Fast Ethernet, Myrinet and QsNet. Network contention, a problem

ignored by most research in this area, was found to cause extensive performance variation

during message-passing operations. For point-to-point communication, this variation was

best described by Pearson 5 distributions. Collective communication operations were able

to be modelled using their constituent point-to-point operations. In cases of severe con-

tention, extreme outliers were common in the observed performance distributions, which

were shown to be the result of lost messages and their subsequent retransmit timeouts.

The highly accurate benchmark results provided by MPIBench were coupled with the

PEVPMmodels of a range of parallel programs, and simulated by the PEVPM. These case

studies proved that, unlike previous modelling approaches, the PEVPM technique suc-

cessfully unites generality, flexibility, cost-effectiveness and accuracy in one performance

modelling system for parallel programs. This makes it a valuable tool for the development

of parallel computing solutions.

xi

xii

Declaration

This thesis contains no material which has been accepted for the award of any other degree

or diploma in any university. This thesis contains no material which has been previously

published or written by another person, except where due reference has been made in the

text. I consent to this copy of my thesis being available for loan and photocopying from

the University Library.

Duncan A. Grove, B.E.(Comp. Sys.)(Hons)

May 30, 2003

xiii

xiv

Acknowledgements

Firstly, my sincerest thanks go to my supervisors, Dr. Paul Coddington and Prof. Ken

Hawick. Ken, your exuberance for parallel and distributed computing whetted my desire

to undertake advanced research in computer science, if not my taste for whiskey; slàinte!

Paul, your earnest and steadfast mentorship helped reveal to me the true nature of scien-

tific enquiry, for which you have earned my deepest respect and gratitude. I would also

like to thank my friend and unofficial advisor – on matters of thesis, life, the universe and

everything – Dr. Francis Vaughan: Francis, you were often wrong, but somehow managed

to always help me find the right answer!

Many thanks are due to the University of Adelaide and in particular its Department of

Computer Science, as well as the Advanced Computational Systems and Research Data

Networks CRCs, for supporting my research and giving me the chance to present the

fruits of that labour at conferences around the world. I am also indebted to the School

of Informatics at the University of Wales, Bangor, for inviting me to spend six months

there to pursue my work. Likewise, I am grateful to the Centre for High Performance

Computing and Applications at the University of Adelaide and the Australian Partnership

for Advanced Computing for making supercomputer time available to me.

Studies aside, I am deeply thankful to the many friends who filled my life with laughter

and joy throughout my PhD candidature. While it is impossible to name them all, some

demand special mention: Benji, our lunches and walks by the river have held immeasurable

pleasure for me; Craig, your insight for happenings in the department provided no end of

fun; Kate – yes, you won, but the impetus from our show-down did us both much good;

Richard, Jezz and Mike, thank you for looking over bits of thesis draft – it was much

appreciated; and finally, to the Hungers crowd – I can’t imagine a better bunch of friends

to have had along for the ride.

Most importantly, I owe an immense debt of gratitude to my family. Gray, Bron and

Lach: I could never be as happy as I am without each of you, who are so precious to me,

in my life. Mum and Dad, you are more deserving of my thanks than anyone for bringing

this thesis to fruition. Dad, your continual interest, advice, enthusiasm and support were

my life-raft; Mum, your love and encouragement were my ration-kit. Last, and most

of all, I would like to thank my fiancée, Alex, for, quite simply, everything: Alee, your

companionship means the world to me.

xv

xvi

Another turning point, a fork stuck in the road.

Time grabs you by the wrist, directs you where to go.

So make the best of this test, and don’t ask why.

It’s not a question, but a lesson learned in time.

It’s something unpredictable, but in the end is right.

I hope you had the time of your life.

So take the photographs, and still frames in your mind.

Hang it on a shelf of good health and good time.

Tattoos of memories and dead skin on trial.

For what it’s worth, it was worth all the while.

It’s something unpredictable, but in the end is right.

I hope you had the time of your life.

Good Riddance, Green Day

xvii

xviii

Chapter 1

Parallel Computing

1.1 Introduction

Ever since the invention of the computer, users have demanded more and more com-

putational power to tackle increasingly complex problems. In particular, the numerical

simulation of scientific and engineering problems creates an insatiable demand for com-

putational resources, as researchers seek to solve larger problems with greater accuracy

and in a shorter time. A typical example of such a problem is weather forecasting. This

involves dividing the atmosphere into a three-dimensional mesh, where each cell repre-

sents the state of a different part of the atmosphere and varies with time. The temporal

and spatial characteristics of the weather can then be simulated by iteratively carrying

out a number of calculations (derived from theoretical models) based on the states of

each cell and its neighbours. The quality of a forecast using a given theoretical model is

determined by the size of the cells that the atmosphere is divided into and the duration

that each model iteration signifies. Consequently, the amount of computation required

for an accurate forecast is enormous, yet the calculations must be completed in a timely

manner to be of use.

A common means of increasing the amount of computational power available for solv-

ing a problem is to use parallel computing. A parallel computer consists of two or more

independent processors connected by some form of communication network. If a prob-

lem can be sub-divided into n smaller problems, a parallel program can be written to

concurrently solve those sub-problems on n independent processors. Ideally this would

take 1
n

th
of the time that would be required to solve the same problem using one proces-

sor, but this is rarely the case in practice for two main reasons. Firstly, many problems

contain significant amounts of computation that cannot be parallelised easily or at all.

While these serial parts are executing on one processor, other processors remain idle. Sec-

ondly, many problems require significant amounts of communication and synchronisation

between sub-problems, which can introduce long delays. For examples of both of these

2 CHAPTER 1. PARALLEL COMPUTING

effects, consider the weather forecasting example from above. Prime examples of parts of

this problem that are difficult to parallelise are reading the initial states into each cell,

and coalescing the simulation results to one processor for output at the end of simulation.

Communication between cells (and hence processors) is extensive and frequent, because

calculations at each of the many cells depend on values at that cell as well as its neigh-

bours, for each of many iterations. Synchronisation is also required at the end of each

iteration to keep the entire simulation in step.

Creating efficient parallel programs is notoriously difficult and time-consuming for two

main reasons. Firstly, it can be very difficult to determine a near-optimal parallel algo-

rithm for solving a given problem. Secondly, the debugging process for parallel programs

is far more difficult than for serial programs because of the exponential number of interac-

tions that can occur between processors [235]. This thesis focuses on the first problem. In

addition to all of the well-known problems that are associated with constructing a good

serial algorithm, there are a number of problems specifically associated with construct-

ing a good parallel algorithm. These mainly revolve around ensuring that all processors

are kept busy and that they have timely access to the data that they require. Quite

simply, as mentioned earlier, controlling a number of processors operating in parallel can

be exponentially more complicated than controlling one processor. Furthermore, unlike

data placement in serial programs, where sophisticated compilation techniques that opti-

mise cache behaviour and memory interleaving are common, optimising data placement

throughout the vastly more complex memory hierarchy present in parallel computers is

often left to the parallel application programmer. All of these problems are compounded

by the large number of parallel computing architectures that exist, because they often

exhibit vastly different performance characteristics, which makes writing well-optimised,

portable code especially difficult.

This thesis is not about how to write well-optimised parallel programs per se; rather,

it is about how to construct models of parallel programs that can accurately predict pro-

gram performance. The main performance metric of a parallel program is normally the

wall-clock time, for example as measured by a wrist-watch, required to run a program

from start to finish. Other metrics that are also often important are efficiency (i.e. the

wall-clock time required by one processor to run a program divided by the total number

of processor-hours required to run a parallelised version of the same program) and re-

source usage (i.e. the amount of memory and disk space required to run the program).

Compared to actually building parallel computers and parallel programs and measuring

their performance, performance models can be quickly and easily produced and evaluated

for both real and hypothetical parallel machines and programs. It is important to realise

that these models cannot actually solve the problems that the parallel programs are be-

ing written for, they can only estimate how well various implementations will perform.

1.2. PARALLEL COMPUTERS 3

However, this information is critical at the program design stage, and can help program-

mers to quickly make effective decisions about parallel algorithm design and the parallel

architecture required to achieve good performance for a particular application.

This chapter introduces the Performance Modelling (in Section 1.4) of Message-Passing

Parallel Programs (in Section 1.3) on Parallel Computers (in Section 1.2). Section 1.5 out-

lines the structure of the rest of this dissertation.

1.2 Parallel Computers

Parallel computers [91,321] are commonly classified as either tightly coupled shared mem-

ory multiprocessors, loosely coupled distributed memory multicomputers (often called

clusters), or a mixture of the two. These different types of parallel computers are distin-

guished by how processors and memories are connected to each other. In shared mem-

ory systems, all processors can access memory through a global address space. In such

systems, processors communicate by operating on shared data structures using shared

variables for synchronisation. Shared memory systems can be subdivided into Uniform

Memory Architectures (UMAs), which are also known as Symmetric Multi-Processors

(SMPs), and Non-Uniform Memory Architectures (NUMAs). The distinction between

these two classes is that processors in UMAs can access memory in constant time, whereas

processors in NUMAs take different amounts of time to access different memory banks,

depending on how far away they are from the processor. It is easier to efficiently connect

a large number of processors using NUMA techniques – typical current UMA machines

have between 2 and 64 processors, whereas some current NUMA machines scale to 1024

processors. Almost all implementations of both UMA and NUMA machines are also

Cache Coherent (CC), which means that hardware mechanisms are employed to ensure

that cached copies of data stored at individual processors are kept synchronised with

global memory. In contrast, in distributed memory systems every processor has its own

local memory, and processors communicate by explicitly copying data from one proces-

sor’s memory to another using message-passing. Distributed memory systems usually

have slightly slower communication speeds than shared memory machines, but allow even

larger systems to be built – a number of existing systems are built from many thousands

of processors – and are significantly cheaper for a given number of processors. A popular

contemporary trend in constructing parallel computers is to connect large numbers of

SMP nodes using multicomputer communication networks, in an attempt to get the best

of both systems.

Many different types of communication networks are in common use, some of which

are shown in Figure 1. The simplest is the communication bus (shown in Figure 1(i)),

which is often used in low-end shared memory systems. A bus is conceptually a single

4 CHAPTER 1. PARALLEL COMPUTING

P0

P0

P1 P2 P3 P4 P5 P6 P7 P8 P9 PA PB PC

processor nPn

PD PE PF

P0 P1 P2

(iii)

(i)

(ii)

P4P3 P5 P6 P7 P8 P9 PA PB PC PD PE PF

X

8-way crossbarX

X

X X

X X

output buffer

P1

P2

P3

P0 P1 P2 P3

one communication link

two communication links

Figure 1: Common interconnection networks in parallel computers: (i) a 16-port com-
munication bus; (ii) a 4-way output-queued crossbar switch; (iii) a 16-port fat-tree, con-
structed from 8-way crossbar switches.

wire that acts as the connection between processors. It is a shared medium, where the

available bandwidth must be distributed amongst all the processors that are connected to

it. This approach does not scale particularly well. A slightly more sophisticated network

is the multiple-bus, where every processor is connected to several independent buses.

Although this provides a relatively easy means of increasing the bandwidth available to

processors using commodity bus parts, it suffers from the same fundamental limitation to

scalability as the single bus. More sophisticated again is the crossbar network (shown in

Figure 1(ii)), where all processors can communicate simultaneously without a reduction

in bandwidth (provided that a number of processors are not trying to communicate with

one processor, which will result in output queue contention). A crossbar network for n

processors requires n2 switches and either n input-queued buffers or n2 output-queued

buffers. Consequently, while the bandwidth of this network increases linearly with the

number of processors, its scalability is also limited.

A crossbar network is perhaps the simplest form of multi-stage communication net-

works. The term multi-stage means that a message from one processor to another needs

1.3. PARALLEL PROGRAMS 5

to be routed via some intermediary. In the case of the crossbar network, these inter-

mediaries are buffers in the network. More complicated multi-stage networks are often

constructed by connecting small crossbar switches in series, which trades off the number

and size of crossbar switches required with the number of switches that a message must

traverse. Examples of such networks are Delta, Omega, Clos and fat-tree networks. A

fat-tree network (shown in Figure 1(iii)), for example, connects processors to each other

through a hierarchy of switches, where the bandwidth at each level of the hierarchy grows

to allow every processor to communicate simultaneously with full bandwidth (once again,

provided that a number of processors are not trying to communicate with one processor,

which will result in output queue contention). An alternative to buffering messages in the

network is to use processors in nodes with multiple network interfaces as routing interme-

diaries. Communication networks of this kind are often connected using ring, star, mesh,

torus, hypercube and completely connected topologies. The main distinguishing feature

between these networks is their degree of connectedness, which determines the number of

hops between switching elements that a message must make to travel from one processor

to another. For example, in an n processor bidirectional ring network, a message will

require up to n
2
hops to reach its destination; in an n = 2k processor k-dimensional

hypercube network (where every node has k output links in orthogonal dimensions) at

most k hops will ever be required; and in a fully connected network only one hop will

ever be required. Naturally, the increased bandwidth and decreased latency available to

the more connected networks comes at the price of requiring more network links.

For the purposes of performance modelling, the only information about the communi-

cation network that is really necessary is how fast processors can communicate with each

other. Therefore, regardless of the network topology that actually connects processors in a

parallel computer, all types of communication network can simply be viewed as collection

of processors and memories connected by “some” interconnect, along with a performance

function that describes how fast messages can travel between various processors under

various circumstances. Likewise, the processors can be considered as black boxes capable

of computing at a certain speed, thereby abstracting over the details of superscalar func-

tional units, pipelining, vectorising, cache behaviour, and the like. This abstract view of

processing and communication is used for the rest of this thesis.

1.3 Parallel Programs

There are a number of different programming methodologies that can be used to create

parallel programs that can run on parallel computers [144, 181]. A good programming

methodology for parallel computation needs to: 1) allow a programmer to decompose a

problem into pieces that may be evaluated in parallel; 2) provide a means for mapping

6 CHAPTER 1. PARALLEL COMPUTING

that parallelism to processing power; and 3) allow communication and synchronisation

between processes. Note the introduction of this new term: processes are parts of a

parallel program that run on processors. Usually in large-scale parallel computing (and

exclusively assumed throughout this thesis) exactly one process runs on each processor,

so the terms are often used interchangeably. Two of the most fundamental program-

ming methodologies are closely associated with the main parallel computer architectures

that are available: shared memory programming for shared memory multiprocessors and

message-passing programming for distributed memory multicomputers. In Flynn’s famous

taxonomy of parallel computing [131], these are both categorised as Multiple Instruction

stream, Multiple-Data stream (MIMD) programming methodologies, which signifies that

every processor can independently operate on independent data. Flynn termed the other

main class of parallel programming methodologies as Single-Instruction, Multiple-Data

(SIMD) methodologies1. In SIMD computing, a single processor acts as a control unit,

and all other processors work in synchrony with it to process data in parallel. For obvious

reasons, this is often called data-parallel computing. While large scale SIMD parallel

architectures were popular in the early years of parallel computing, they have all but dis-

appeared – although SIMD hardware remains common on the small scale, in the form of

high performance vector processors and multimedia instruction sets for commodity micro-

processors. Despite this, the data-parallel approach to large scale parallel programming

remains alive and well. This is because data-parallel programs can be run on MIMD hard-

ware, which is sufficiently powerful to run all types of parallel programs. In this context,

data-parallel programs are often called Single-Program, Multiple-Data (SPMD) programs.

MIMD programming methodologies, such as shared memory or message-passing program-

ming, can also be used to create SPMD programs. In addition, however, they can be used

to express more general Multiple-Program, Multiple-Data (MPMD) programs.

Shared memory programming is the oldest extant approach to parallel programming,

mainly because shared memory multiprocessors were among the first parallel computers

and they are still commonplace today. As noted in the previous section, processes in

shared memory programs, which are called threads, communicate by operating on shared

data in a global address space. Synchronisation using semaphores is required to prevent

other threads from reading from/writing to a shared data structure while another thread

is writing to it, as described by Dijkstra’s seminal papers on critical sections, deadlock,

mutual exclusion and the dining philosophers [98,100], as well as Courtois et al’s related

paper on the multiple readers and writers problem [80]. Shared memory programming

is considered by many to be the easiest of the low-level ways in which to write parallel

programs, because programmers need only worry about synchronisation; communication

1Flynn also specified two other classifications, but they are of little relevance. They were: SISD, for
serial programming architectures; and MISD, for completeness rather than for any practical purpose.

1.3. PARALLEL PROGRAMS 7

is unnecessary because there is always only one copy of any data structure. Moreover,

some compilers are available that can automatically extract parallelism from normal se-

quential source code, which makes writing a shared memory parallel program even easier.

Unfortunately, as the memory hierarchy is hidden from the programmer in the shared

memory programming paradigm, the performance implications of the memory hierarchy

cannot be exploited for maximum scalability.

Message-passing parallel programming, on the other hand, requires the programmer

to move copies of data throughout the memory hierarchy using explicit communication.

In message-passing programs, each process has its own local memory. Processes must

communicate cooperatively and pair-wise, with one process initiating a send operation

that must match with a receive operation issued by another process. These send and

receive operations may be either synchronous, where a sender or receiver blocks until the

call completes, or asynchronous. An asynchronous send operation initiates message trans-

mission and then immediately returns programmed control to the calling process, without

waiting for the message to be received. An asynchronous receive operation checks to see

if there are any messages in an arrival queue; it receives a message if one is available,

otherwise it immediately returns programmed control to the calling process. In order to

allow synchronisation, asynchronous message-passing operations must be used in conjunc-

tion with operations that test whether or not messages have arrived. Using asynchronous

message-passing is more complicated than using synchronous message-passing, but it pro-

vides programmers with the ability to overlap communication with computation. This

permits programmers to ameliorate the effects of latency by delaying synchronisation until

it is absolutely necessary, so that useful computation can be carried out in the mean time.

While these factors necessitate greater programmer effort, they provide greater control

over data locality and synchronisation, which can be exploited to maximise performance.

Because message-passing is a MIMD approach, it is ideally suited to distributed memory

parallel computers, and can also efficiently cope with irregular problems. However, careful

data distribution and load balancing is required to ensure that processors are kept busy,

which further increases programmer effort.

While shared memory and message-passing programming techniques are very different

in practice, they are both fundamentally able to describe parallelism in a general way.

Because of this, any shared memory program can be translated into a semantically equiv-

alent message-passing program, and vice versa [205,323,369]. However, this equivalence is

usually leveraged at a lower level than source code translation. For example, Distributed

Shared Memory (DSM) libraries are available to simulate the appearance of shared mem-

ory on a distributed memory multicomputer and message-passing libraries are available

for shared memory multiprocessors. DSM libraries are usually supplied to bring the con-

venience of shared memory programming to distributed memory machines, but they do

8 CHAPTER 1. PARALLEL COMPUTING

not allow the same levels of performance as pure message-passing programs on the same

machines. The same convenience factor is true of bringing message-passing libraries to

shared memory multiprocessors (often in nodes of SMP clusters), but these libraries are

still able to provide high performance because they continue to expose the memory hi-

erarchy to application programmers. Finally, so-called remote memory operations have

recently become possible on some essentially distributed memory hardware platforms and

thus one-sided communication routines have been introduced into many message-passing

libraries. These routines allow processes to directly read and write data owned by remote

processes without their cooperation or any copying involved. This provides the option of

shared memory programming simplicity from within the message-passing paradigm.

Data parallel programming techniques evolved out of the use of computational pipelines

in high performance vector processing. These pipelines were devised to reduce the con-

trol overhead required for highly repetitive but independent low level computation, mainly

found in array processing. Obviously these pipelines could be evaluated even more quickly

in parallel, and so SIMD data parallel computing was born. As explained earlier, while

large scale SIMD parallel architectures have all but disappeared, SIMD-style data parallel

programming techniques for MIMD parallel architectures remain popular today. This is

because they reduce the amount of effort required by programmers to express parallelism.

Data parallel programming techniques provide operations that work on arrays, rather

than individual elements of arrays. This simplifies programming because computations

that require loops in lower-level parallel languages can be written as single operations.

Compilers for data parallel programming languages, such as High Performance Fortran

(HPF) [174], OpenMP [258] and HPJava [62], typically allow programmers to use their

insight to annotate source code with distribution directives that indicate how data par-

titioning should take place, so that performance may be maximised. This information

is used to automatically schedule whatever computation and communication (usually in

the form of message-passing) is required. In addition, procedural data parallel languages

usually provide directives that allow programmers to specify that the iterations of a par-

ticular loop can be executed concurrently. These directives are not generally verifiable

by the compiler, so it is the programmer’s responsibility to guarantee their correctness.

There are three other issues that also hamper the data parallel programming approach.

Firstly, most data parallel languages do not provide a means to intricately control data

distribution on machines with complex memory hierarchies. While this is intended to be

managed by the compiler, it is extremely difficult to optimise automatically, so perform-

ance cannot always be perfectly tuned in these cases. Secondly, load balancing of irregular

problems must be achieved by dynamically redistributing data, which can attract a large

performance overhead. Finally, the data-parallel paradigm cannot be used to express

task-parallel programs at all.

1.4. PERFORMANCE MODELLING 9

From a performance modelling perspective, data parallel programs are simply message-

passing programs in disguise, and shared memory programs can be expressed as message-

passing programs. Furthermore, neither shared memory nor data parallel programming

paradigms are as powerful as the message-passing approach; for example, they cannot

express programs that achieve optimal performance on machines with complex memory

hierarchies. With these facts in mind, it becomes apparent why message-passing was

once described as “the assembly language of the 1990’s” [370]. In this regard, a perform-

ance modelling system for message-passing parallel programs can serve as a performance

modelling system for all parallel programs.

1.4 Performance Modelling

The word model is a very over-loaded term in the field of parallel computing. It is com-

monly used in three ways, all of which have been described in several papers [172,227,320].

Firstly, a model can be an abstract representation of a computing system where details

are removed in order to reveal basic characteristics. A common example of this is an

architectural model, which focuses on the structure of the physical and technological

properties of underlying hardware components, such as processing units, memory units

and communication network. Secondly, the word model is often used as a substitute for

the word methodology. This is intended to denote a broad way of programming, for ex-

ample, a code could be programmed using a data parallel programming model. These

first two uses for the word model are often used in the context of parallel computers and

parallel programs, described in the previous two sections respectively. Finally, however,

in the context of performance modelling, a model is a formalised description of a pro-

gram running on a machine that can be used to reason about the program’s performance

characteristics [163,190].

As elucidated in Section 1.1, the main purpose of running message-passing parallel

programs on high performance parallel computers is to solve problems that would take

too long to run on conventional sequential machines. In order to make enlightened de-

cisions about which parallel computer to buy, or how to effectively code a solution to

a given problem, it is very important to understand the performance characteristics of

such systems. To reiterate a point made in the introduction to this chapter, the perform-

ance characteristic usually of principal concern is overall execution time. Unfortunately,

communication performance in message-passing programs is non-deterministic in many

realistic situations [211], mainly due to contention. Not only does this make predicting

the performance of communication events difficult, it can also result in an enormous num-

ber of possible execution sequences that completely alter program structure, resulting in

10 CHAPTER 1. PARALLEL COMPUTING

further effects on performance. Although in pathological cases this will create an over-

whelmingly chaotic system that makes performance prediction nigh impossible, in almost

all real-world programs, the temporal extent to which small timing variations can cause

uncertainty is far more bounded, because of synchronisation points during program execu-

tion [309]. This is why many message-passing parallel programs exhibit remarkably stable

overall execution time, despite internal processes replete with non-determinism. Because

of this performance stability, it should be possible to predict the overall execution time

of message-passing parallel programs with some degree of certainty. The difficulty lies

in accurately modelling both the direct and flow-on performance effects of variability in

computation and message-passing time.

Some research groups have developed enormously detailed models of specific parallel

hardware/parallel software systems, and used these to accurately predict performance.

These sorts of performance models suffer from four main problems. Firstly, they are very

complex and time-consuming to create. Secondly, they are large and expensive to solve.

Thirdly, they are not usually very flexible so new models need to be constructed for every

new situation. Finally, they can be extremely difficult to understand, mainly because

they are usually completely numerical rather than symbolic. These four factors make

such models fairly useless in the design stage, when it is necessary to quickly decide upon

an effective parallel architecture and parallel algorithm for a given problem from a very

large number of possible choices.

At the other end of the spectrum, some research has focussed on simple, abstract

models that allow the performance of parallel programs under different conditions to be

quickly and easily estimated. These approaches are generally designed to be so simple that

programmers can carry out estimates using back-of-the-envelope calculations; Amdahl’s

Law (see Section 2.2) is a famous example of this. While these techniques provide reason-

able ball-park estimates of performance in some cases, they fail to provide much useful

information for most real parallel applications because they do not take into account any

of the complex, non-linear effects such as contention and non-determinism which play

such an important part in the performance of large parallel systems.

An intermediate approach allows a trade-off between accuracy and flexibility. This dis-

sertation presents such an intermediate approach. It describes a new performance model

that, unlike other intermediate approaches, achieves extremely good accuracy and can be

applied to arbitrary parallel programs. In this model a set of parallel program primitives,

or fundamental building blocks, are identified that can be used to compose performance

descriptions of message-passing parallel programs. Next, a means for precisely quantifying

the performance of these building blocks with a new tool called MPIBench is presented.

Finally, a Performance Evaluating Virtual Parallel Machine (PEVPM) is used to simu-

late program performance, with particular attention paid to the effects of contention and

1.5. THESIS OUTLINE 11

non-determinism, which play a crucial role in the performance of large parallel programs.

This makes it is possible to accurately predict how real or hypothetical parallel programs

will behave at a macroscopic level on real or hypothetical parallel machines. This new

model can be used to support better parallel algorithm design and purchasing decisions

for high performance computers destined to run specific codes.

1.5 Thesis Outline

The introduction to this chapter in Section 1.1 explained why high performance parallel

computing is an essential part of solving very large and complex scientific and engineering

problems in a reasonable amount of time. The two main tasks that must be carried

out to deliver a good parallel computing solution to a given problem are choosing an

appropriate parallel machine (of which various types were discussed in Section 1.2) and

writing a well-optimised parallel program to solve the problem (using the paradigms

described in Section 1.3). These tasks are often carried out in concert, usually cycling

through manifold candidate solutions, all the while conducting time-consuming empirical

benchmarking until a satisfactory solution is found. An alternative approach is to use

performance modelling techniques to more quickly and effectively choose from a number

of possible implementations. This approach has its own complications, of course, and

Section 1.4 described the challenges associated with accurate performance modelling of

parallel programs, and of message-passing programs in particular.

The remainder of this thesis is devoted to developing a useful, general and accurate

performance modelling system for message-passing parallel programs. Many of the inspir-

ational ideas for this work are derived from previous performance modelling techniques,

which are discussed in Chapter 2. Using these ideas as a starting point, Chapter 3 de-

velops a new performance modelling system for message-passing parallel programs, called

the Performance Evaluating Virtual Parallel Machine, with novel techniques to accurately

yet inexpensively account for and detail the many sources of non-determinism and hence

performance variability that are observed in parallel programs. In order to validate this

new performance modelling system, case studies of three parallel applications on three

parallel computers are presented in Chapter 6. Vital elements of these case studies (and

of interest in their own right) are detailed studies of the message-passing performance

on those three parallel machines, which can be found in Chapters 4 (on point-to-point

communication) and 5 (on collective communication). Importantly, these studies required

the design and implementation of a new tool for accurately benchmarking and analysing

the performance of message-passing operations, called MPIBench, which is also described

in Chapter 4. Finally, Chapter 7 summarises the major findings of this dissertation, and

indicates some areas that are worthy of further research.

12 CHAPTER 1. PARALLEL COMPUTING

Chapter 2

Performance Modelling Techniques

2.1 Introduction

Throughout the genesis of parallel computing in the 1960s and 1970s, research develop-

ments in parallel algorithms were strongly grounded in theory. The main early formalisms

for parallel processing were summarised in a book by Peterson [275]. In particular, he

identified the work of Dijkstra on P/V constructs in 1965 [98], Karp and Miller on com-

putation graphs in 1966 [200], Bredt on finite state machines in 1970 [50], and extended

petri net models in 1974 by Peterson and Bredt [274], Agerwala [3] and Lipton et al. [217].

Although these works have provided robust formalisms that continue to serve as a useful

basis for modelling parallel processing, the computational requirements of solving these

models grow exponentially with the size of a system. This makes them practically appli-

cable to only relatively small systems or where very high costs in terms of solution time

or resource requirements are acceptable (see Sections 2.4 and 2.27).

In the 1980s significant research attention was focused on practical ways of devising

efficient parallel algorithms using the Parallel Random Access Machine (PRAM) model

and closely related variants (see Section 2.3). These models require an algorithm to

be completely described in terms of instructions that control individual memory accesses.

This allowed researchers to understand the very fine-grained characteristics of the parallel

algorithms that they were studying. Unfortunately, the underlying machine models upon

which these studies were based were unable to accurately reflect the complexity of the

physical processes that occur in a parallel computer system. Although many extensions to

the PRAM model were suggested to try and overcome its various limitations, these were

largely unsuccessful because the numerous modifications could not be effectively unified.

During the late 1980s and early 1990s researchers began contemplating new ways to

tackle the problem of modelling the performance of parallel programs. New method-

ologies were devised that allowed a direct evaluation of performance from the structure

of source code (such as those discussed in Sections 2.5, 2.8 and 2.15). In many cases

14 CHAPTER 2. PERFORMANCE MODELLING TECHNIQUES

the programming structures that these techniques encouraged allowed performance to be

modelled using several parameters and simple equations. Although these methodologies

allowed the creation of efficient programs with predictable performance, the techniques

were not amenable to the increasing number of irregular problems that high performance

computing was aiming to solve and which required more complicated control structures.

To deal with these more complicated programs, researchers turned to statistical and

Markov modelling techniques to try to estimate the performance characteristics of a pro-

gram. While these approaches were relatively successful in modelling specific situations,

they suffered from two problems. The first of these was the high computational re-

quirement of these approaches because solution techniques were generally of exponential

order, although solution requirements were potentially less than those generated by the

very early techniques mentioned previously. Still, these techniques remain in use today

for certain well defined problems. The second difficulty was more significant: these tech-

niques did not really help a programmer to understand their parallel program better or

provide insight into ways that would allow them to improve it.

More recently, modelling research has favoured techniques that involve a detailed

understanding of the performance of small chunks of code (see Sections 2.7, 2.12, 2.13

and 2.14) rather than a general notion of the average performance of macroscopic blocks

of code. In a way, this is very similar to the early PRAM modelling techniques, although

significant advances have been made in understanding the general causes of performance

degradation in parallel programs (see Sections 2.10, 2.11, 2.15, 2.16, 2.17, 2.18, 2.19, 2.20,

2.24 and 2.25). This philosophy has encouraged the development of performance modelling

tools able to tackle arbitrary parallel programs (see Sections 2.21, 2.22 and 2.26).

Research in the field of performance modelling for parallel programs has still to settle

on an appropriate level of abstraction. At one extreme, a complete model of every intricacy

of a problem is intractable and, what is more, it will not usually increase a programmer’s

insight into a problem. At the other extreme, reducing the performance of a program to

a number of simple equations (such as the techniques discussed in Sections 2.2, 2.6, 2.9,

2.12 and 2.23) is too simplistic and likewise does not significantly help a programmer see

ways to improve a solution to a problem. It seems that the most promising modelling

techniques lie somewhere in between.

A convenient way of providing an overview of the performance modelling of parallel

programs is to present a historical summary of research that has been carried out. This

is possible because most of the advances that have been made occurred sequentially, or

addressed independent issues. The following sections are organised so as to highlight the

major contributions that have formed the basis for the work that will be presented in the

remainder of this thesis, although attention will also be drawn to related material within

each section.

2.2. AMDAHL 15

2.2 Amdahl

The earliest model commonly used to determine the performance bounds of parallel pro-

grams was devised by Amdahl in 1967 [14]. When applied to parallel processing, this

model can be used to compute the maximum possible speedup S of the parallel version of

a program compared with a corresponding serial version of the same program using the

formula:

S(P) ≤
(

f +
1− f

P

)−1

where f is the serial fraction of the program and P is the number of processors available to

the parallel version. The serial fraction of a code represents the run-time that is associated

with any parts of the code that cannot be parallelised and must therefore be run on only

one processor.

2.3 Fortune and Wylie

In 1978, Fortune and Wylie [132] described an abstract model of parallel computation

based on the Parallel Random Access Machine (PRAM). Early models related to the

PRAM were described by Schwartz [314] and Goldschlager [147]. The PRAM aimed to

provide a general model of parallel computation, in contrast to a special purpose model of

parallel computation that could fully exploit the available hardware. Unfortunately, spe-

cial purpose models were rarely portable to other situations. The general model provided

by the PRAM aimed to abstract over the details of specific machines and programming

styles and instead focus on the inherent parallelism available in a given problem, but

possibly at the cost of optimisations based on full knowledge of those details.

The basic PRAM is an idealised parallel processing machine, consisting of P syn-

chronous processors communicating via shared memory. Each processor is able to exe-

cute one instruction or perform one communication operation per clock cycle. There are

several families of PRAMs which are classified by the semantics used for accessing shared

memory. These are: the Exclusive Read, Exclusive Write (EREW) PRAM; the Concur-

rent Read, Exclusive Write (CREW) PRAM; and the Concurrent Read, Concurrent Write

(CRCW) PRAM. In the case of the CRCW PRAM, a further sub-classification applies,

based on the conflict resolution used to arbitrate over concurrent writes.

The simplicity and generality of the PRAM model led to its wide acceptance as a

research tool, especially for research into: the concurrent access problem of how to ser-

vice concurrent requests without underlying hardware support; the memory management

problem of how to layout data in order to minimise contention [43, 44]; and the rout-

ing/interconnection problem of minimising slow-down caused by the routing of data. Un-

fortunately, the cost model associated with the PRAM did not prove to be very useful in

16 CHAPTER 2. PERFORMANCE MODELLING TECHNIQUES

practice. It was unable to express the disparate costs associated with real machines, such

as the difference between accessing local or remote memory. Several additions to the basic

PRAMmodel were made over the years in attempts to fix the mismatch between the model

and reality. These extensions included attempts to account for processor asynchrony [74],

network latency and limited bandwidth [4] and topological locality [171,185,347]. A good

survey of the basic PRAM model and its variants can be found in [159]. Despite these

improvements, the basic PRAM model is still unable to generate accurate cost estimates

for code running on real hardware platforms and it usefulness for performance prediction

on actual parallel machines is of very limited scope.

2.4 Hoare; Milner; Alur and Dill

There are several well known methods for the formal analysis of concurrency. Principal

among these are Hoare’s famous Communicating Sequential Processes (CSP) [177, 178,

301], proposed in 1978, and Milner’s Calculus of Communicating Systems (CCS) [243]

from 1980; both are closely related [53] and can be traced to Dijkstra’s pioneering work

on Cooperating Sequential Processes in 1968 [99]. CSP and CCS are often described as

process algebras, because they provide a powerful mathematical framework for specifying

the behaviour of parallel processes. However, brief perusal of any work on, for example,

CSP will attest that “all of these dialects have been ‘blackboard’ languages: they have

been used for describing parallel systems when the intended audience is human” [308]

(although that cited work was aimed at making CSP definitions more amenable to me-

chanical analysis). The reason for this is connected with the way in which these formal

methods are constructed.

Formal methods define a rigorous syntax and semantics for a small number of basic

operators that describe sequential processing, parallel composition, synchronisation, com-

munication, interruption and deterministic or non-deterministic choice. These operators

can be used to create models of specific applications. These models are then evaluated

for all possible sets of event sequences that could occur, typically with respect to some

sort of acceptance condition for the purpose of model validation. Common acceptance

conditions are the absence of deadlock or livelock, or constraint checking for model pa-

rameters. Essentially, the main purpose of most formal methods is to rigorously prove

or disprove the correct operation of concurrent systems. In order to achieve this, every

operational detail of a parallel system must be specified in great detail. Because of the

complexity involved with this, both in terms of model construction and model evaluation,

formal methods are mainly reserved for modelling concurrent systems where failure is not

an option. For example, communication protocols are frequently verified for correctness

using formal modelling techniques.

2.4. HOARE; MILNER; ALUR AND DILL 17

One of the main extensions to the original CSP definition was the inclusion of timing

information [92,93,291,310,311], resulting in Timed CSP (TCSP). Obviously performance

modelling would be impossible without this facility. The extensions are relatively straight-

forward, and merely consist of annotating CSP operators with a deterministic quantity

that represents the time required for the operation to complete. A further experimen-

tal addition to CSP resulted in Probabilistic Biased Timed CSP (PBTCSP) [222, 223],

which allowed probabilistic models to be attached to the choice operator. However, these

probabilistic choice operators only allowed binary decisions to be made based on two

probabilities, which seems overly restrictive. Despite this simplification, proofs involving

PBTCSP were described as rather complex; perhaps tellingly, PBTCSP models do not

appear to have been described or applied elsewhere. Both the binary choice limitation of

PBTCSP and the difficulty just described highlight the primary aim of all TCSP-based

approaches. Despite the notion of time, TCSP-based approaches are obviously designed

to prove the correct ordering of modelled events, rather than the time at which they

occur; time is merely added to facilitate modelling of systems where time is inextrica-

bly linked with the ordering of events, such as timeouts in network protocols. Arguably,

therefore, TCSP-based approaches are not truly intended for performance modelling of

parallel systems, although in theory they could be used in such a way.

Conversely, similar work by Alur and Dill on a formal theory of timed automata [13]

was fundamentally designed around the notion of time. Therefore, although their ap-

proach was also mainly intended for model-checking, it is arguably more applicable to

the performance modelling of concurrent systems. Furthermore, and unusual for formal

modelling systems, their approach can incorporate probabilistic timing delays with state

transitions [12], which makes it particularly appropriate for realistic modelling of physical

processes. Recently, some research has applied these general principles to the performance

modelling of parallel processes [166].

Unfortunately, however, despite the accuracy and provable correctness that can be

achieved with formal modelling tools, they are yet to be generally useful for the perform-

ance modelling of large-scale parallel programs. Currently, it is essentially impossible

to translate many real-world problems – for example non-trivial message-passing parallel

programs – into realistic formal models. Even if this could be achieved, these models

generally take an exponential (in the size of the model) amount of time to solve, and

any performance implications they uncover may be difficult to understand due to model

complexity. In summary, formal methods are not currently able to effectively model the

performance of large-scale parallel programs.

18 CHAPTER 2. PERFORMANCE MODELLING TECHNIQUES

2.5 Valiant

In 1990, Valiant [354] described a promising technique for writing efficient, portable par-

allel programs with predictable performance called Bulk Synchronous Parallelism (BSP).

Valiant saw that one of the biggest problems with the message-passing approach was

that deriving analytic cost models for performance prediction was very difficult because

of the number and complexity of data transfers associated with it. Instead, the BSP

methodology requires parallel programs to be structured so that their computation and

communication are separated so that each can be considered as a bulk quantity. Because

BSP considers communications en masse it is simpler to estimate bounds on communica-

tion time compared with unstructured message-passing. A good overview and comparison

of BSP to other techniques can be found in [326].

Computation in BSP programs flows through a series of parallel supersteps, each of

which is divided into three phases. In the first phase, each processor/memory pair P

is involved in computation using only local data. This can be modelled by McColl’s

parameter s [234] which represents the number of basic operations (such as addition or

multiplication) that can be carried out by a processor in one second. In the second phase,

processes share data in a communication phase. During the communication phase, any

number of messages can be sent and received. The communication pattern is defined by

what is called an h-relation, which involves each process sending and receiving at most h

messages. Usually, h is used as a compound parameter that also accounts for the total size

in bytes of messages encountered by a process, m; i.e. hm is usually abbreviated to h. The

communication time is modelled by the parameter g which represents the time required

for an h-relation to complete under continuous message traffic between random processes.

The parameter g is normally determined empirically for a particular machine, and is

related to the machine’s bisection bandwidth, the performance of the network stack, the

buffer management used, the routing strategy and the BSP run-time system. In the final

phase a barrier synchronisation is performed, where the duration of this synchronisation

is modelled by the parameter l which is also determined empirically.

The execution time of a BSP superstep can be computed from the text of the program

and the parameters of the target architecture which were described above. The standard

cost model used to do this is:

cost of a superstep = max{w0, ..., wi, ..., wP} + max{h0g, ..., hig, ..., hP g} + l

where i ranges over the processes and wi is the time for local computation at process

i. Hence, subject to the constraints of predicting the run-time of serial programs (for

example using techniques such as those of Knuth [203] or Dunning [109]) performance

can be predicted. Inspecting the standard cost model, it is clear that efficient BSP

2.6. HOCKNEY 19

programs must: balance the computation between processes to minimise wi; balance the

communication between processes to minimise hig; and minimise the number of supersteps

to reduce the number of barrier synchronisations of duration l that are required.

Achieving these requirements for a specific program can be aided by tools from the

BSPlib Toolset [176], which can create a performance description from trace data obtained

by a once-only run of the code on any parallel machine. The performance model that is

generated can be used in the design process for writing the BSP program, when porting

the BSP program to new parallel computers, or when making purchasing decisions for a

parallel computer (based on its s, g and l parameters). The BSPlib Toolset also provides

some insight into the extent of performance improvements that could be made by using

an asynchronous message-passing implementation such as the Message-Passing Interface

(MPI) [239, 240, 152] or E-BSP [194], which extended the definition of the h-relation by

adding notions of locality and unbalanced communication to the BSP model.

2.6 Hockney

In 1991, Hockney introduced a model for describing asymptotic performance [180]. It was

based on the maximum rate at which some activity can be performed (r∞) and an asso-

ciated value, based on a parameterisation of size, at which half the peak performance can

be sustained (n1/2). The original purpose of this model was to characterise performance

on vector processors, where r∞ represented the maximum rate of floating point opera-

tions that could be achieved, and n1/2 represented the vector length for which half of

that rate was actually achieved. More recently, this approach has been applied to charac-

terise the performance of many systems. Notably, it is used when specifying a machine’s

performance on the Linpack benchmark [105] to rank the Top 500 fastest computers in

the world [102]. More relevant to performance modelling, in a paper by Getov, Hockney

and Hey [143], it was applied to distributed memory multicomputers. They showed that

a machine could be empirically characterised by peak and half-performance parameters

for a variety of small parcels of computation and communication. The performance of a

program could then be predicted by counting its number and size of operations and sum-

ming their contributions to overall execution time. While this model is certainly useful

for modelling simple, regular parallel programs, it suffers from two main problems in gen-

eral. Firstly, it becomes intractable for complex parallel programs (at least without some

form of automation), because it requires a large number of separate empirical models.

Secondly, it does not provide particularly accurate models. Indeed, it simply provides a

first order linear approximation to performance characteristics.

20 CHAPTER 2. PERFORMANCE MODELLING TECHNIQUES

2.7 Saavedra and Smith

A simple yet attractive approach to performance modelling was proposed by Saavedra and

Smith in 1992 [303,304]. Although this method was not designed to account for parallelism

at all, it is possible that the general principles on which it operates could be applied

to parallel programs. Saavedra and Smith’s work noted that traditional benchmarking

techniques alone fail to characterise programs and machines, hence results generated in

such a way were tied to a specific program on a particular machine. They showed that a

more general performance modelling system could be achieved with: a narrow-spectrum

(micro) benchmarking tool [33] as a machine characteriser to determine the performance

of abstract operations on a particular machine; a program analyser to statically count

the number of those abstract operations in each basic block and dynamically count the

order of those basic blocks during a trial run of an instrumented version of the program;

and an “execution predictor”, which could combine the results of the previous two stages

and predict overall program performance. The one notable limitation of this technique is

that it does require each program to actually be run at least once (and again where any

different compiler optimisations are in play) prior to modelling, which limits its usefulness

as a prototyping tool. To verify their approach, Saavedra and Smith used it to predict

the Standard Performance Evaluation Corporation (SPEC) ’89 [332] and Perfect Club [87]

benchmark performance of several Reduced Instruction Set Computer (RISC) machines.

In summary of those results, their simulations could quickly predict overall run-time

to within 30% accuracy for 95% of cases. The difficulty of conducting accurate micro-

benchmarking was listed as the major factor limiting overall modelling accuracy.

Clearly this general technique could be applied to the performance modelling of

message-passing (in particular) parallel programs if accurate micro-benchmarking of

message-passing operations could be conducted, and the problems of performance vari-

ability and non-determinism (described in 1.4) could be addressed.

2.8 Culler et al.

In 1993 Culler et al. [85] noted that vast amounts of previous research had focused on

overly detailed but flawed models of parallel computation, for example the PRAM which

they considered unrealistic because it was synchronous and it assumed instantaneous in-

terprocessor communication [330]. Furthermore, although the BSP model had attempted

to bridge these limitations by allowing processors to communicate asynchronously and by

accounting for memory latency and finite bandwidth availability, it did so at the cost of

prescribing a restricted programming methodology.

Accordingly, Culler et al. developed a new model called LogP that is based on BSP

2.8. CULLER ET AL. 21

but requires less enforced program structure and allows a programmer more control over

their program. In contrast to the BSP model, the LogP model does not require a global

barrier to separate communication and computation phases and it adds the notion of a

finite network capacity that can only support a certain number of messages in transit at

once. This makes LogP slightly more general than BSP, although the two models are

able to efficiently simulate each other in most circumstances [34]. In other circumstances,

LogP empowers programmers to take into account technology trends in order to improve

the performance of their solution to a problem. In particular, Culler et al. realised that

“technological forces [were] leading to massively parallel machines constructed from at

most a few thousand nodes, each containing a powerful processor and substantial memory,

interconnected by networks with limited bandwidth and significant latency.” [85]. The

LogP model uses four parameters that were designed to capture the effects of these factors.

These are:

• Computing bandwidth supplied by the number of processors/memory units, P .

• Communication bandwidth between the processors 1/g, where g represents the min-

imum gap between consecutive messages.

• Communication latency between processors, modelled as a constant L which rep-

resents the upper bound of the actual latency that may be observed by a short

message when measured under unloaded conditions.

• Coupling efficiency between communication and computation, which is modelled by

a parameter o that represents the overhead involved in message transmission.

Culler et al. [85] also suggested some general programming recommendations to guide

efficient parallel algorithm design. Although these are not specifically related to the LogP

model, they do highlight common parallel programming techniques that a performance

model should be capable of accounting for:

• The coordination of work assignment [15, 358], which is concerned with how the

processing that must be done should be divided up between available processors.

• The coordination of data placement [45, 86], which is concerned with how the data

that is required by individual processors should be distributed.

• The provision of balanced communication to make the best and most timely use of

bandwidth availability.

• The overlapping of communication with computation because it is important to

keep processors busy with useful work while waiting for data to arrive from remote

processes.

22 CHAPTER 2. PERFORMANCE MODELLING TECHNIQUES

2.9 Grama et al.

Finding a good parallel algorithm to solve a given problem is usually very difficult because

the efficiency of parallel algorithms is often very dependent on critical system parameters,

such as the number of processors used, and the latency and bandwidth of the network

that connects them. Therefore, scalability analyses are often done to determine how well

particular algorithms perform, or scale, as the number of processors, interconnection speed

or problem size are varied. One of the most common techniques for assessing scalability is

to use an isoefficiency function, described by Grama et al. in 1993 [148]. The isoefficiency

function of a parallel algorithm is an analytic expression that expresses the increase in

problem size that is required to maintain efficiency as the number of processors assigned to

a problem is increased. In order to find the isoefficiency function for a given algorithm, the

efficiency E of the algorithm is first found by either direct measurement and subsequent

curve fitting or complexity analysis (such as that found in [204]) and expressed as:

E =
Speedup

Number of processors
=

1

1 + To
T1

where To represents the parallel overhead as a function of problem size and number of

processors used, and T1 is the execution time of the algorithm on one processor. This

expression is then transformed via algebraic manipulation to determine an isoefficiency

expression for To that maintains constant efficiency for increasing numbers of processors.

Practically speaking, because of their simple nature, isoefficiency functions are not

able to cope with non-linear sources of performance loss, such as load imbalance or con-

tention. However, the isoefficiency function of an application with regular computation

and communication can be used to predict the performance of that application for fixed-

size problems on various numbers of processors, or on machines with different network

characteristics (provided that these characteristics can be explicitly stated in the expres-

sion for To). In another form, the isoefficiency function of an algorithm can also be used

to determine the size of a problem that can be solved by a given machine in a fixed time.

Finally, the scalability of different algorithms can be contrasted by comparing their res-

pective isoefficiency functions with respect to the number of processors used. Algorithms

are said to be highly-scalable if the data size only needs to increase linearly with the num-

ber of processors used. Poorly scalable algorithms require the data size to be increased

more rapidly in order to maintain constant efficiency.

2.10. ADVE 23

2.10 Adve

In 1993, Adve [1] submitted a dissertation that analysed the behaviour and performance

of parallel programs. The model he presented was a significant step forward in the per-

formance modelling of parallel programs because it provided far more qualitative and

quantitative information about the performance of a parallel program than earlier meth-

ods had, but for comparable computational effort. While most of the models developed

prior to Adve’s model could only be applied to programs with simple synchronisation

structures or required complex and heuristic solution techniques, his model could enable

a programmer to relatively accurately predict the impact of underlying system changes as

well as guide program design decisions for finding an effective, efficient parallel solution

to a problem.

Adve’s thesis developed and validated a deterministic model of parallel program per-

formance prediction and testing its accuracy, efficiency, and practicality for real programs

on realistic input data sets. The model used deterministic values for mean task times and

communication times, while shared resource contention was computed from a separate,

stochastic model. Combined with abstract representations for the separate behaviour of

programs and systems, the model made it possible to analyse hypothetical programs and

systems as well as combinations of these.

Although a fundamental limitation of Adve’s model is that it cannot account for

variance due to communication delays, his research showed that in reality, for many

codes on many machines, the principal effect of random delays is to increase the mean

execution time between synchronisation points and to leave the variance unaffected. This

result contradicted a common assumption at that time that there was a large variance

in parallel execution times. The key implication of Adve’s thesis is that “it could be

reasonable to ignore the variance of task and process execution times when computing

synchronisation costs in a parallel program” [1].

In Adve’s model, the total execution time was the sum of four components:

ttotal = tcomputation + tcommunication + tresource contention + tsynchronisation

where tcomputation excluded any computation performed when overlapped communication

was occurring. While this model was conceptually simple, in practice it was non-trivial

because of the non-deterministic nature of resource contention and because it can be

extremely difficult to estimate average synchronisation delays.

Deriving model inputs is an important part of the modelling process. Adve’s approach

required two main inputs. The first was the task graph of the program. The second were

the sets of resource usage parameters for individual tasks which were either deduced or

24 CHAPTER 2. PERFORMANCE MODELLING TECHNIQUES

measured by experiment. Constructing the task graph for a program is equivalent to re-

producing the parallel control structure of the program. This can be achieved from a basic

understanding of the program and carrying out little or none of its actual computation.

Adve used a task graph to represent program behaviour because he believed that it is an

appropriate level of abstraction for an analytical model. He defined:

• A task as the basic unit of work;

• A task graph as a directed acyclic graph that describes the inherent parallelism in a

program, where nodes represent tasks and edges represent the relationships between

tasks.

• A process as an entity that could be scheduled on a processor to execute tasks.

• A condensed task graph as a task graph, reduced so that each node denotes a col-

lection of tasks that could be executed by a single process.

• A fork-join task graph, consisting of parallel phases of computation separated by

full barrier synchronisations.

Construction of a condensed task graph reduces a graph so that each vertex represents

the work performed between synchronisation points. Condensed task graphs can be orders

of magnitude smaller than task graphs and are a useful construct for reducing complexity.

A commonly occurring subclass of condensed task graphs are fork-join task graphs which

are able to describe programs written in procedural languages. These fork-join task graphs

have boundaries between synchronisation points and this helps to avoid a state-space

explosion. A number of other models have been developed for reducing task graphs but

these are likewise restricted, in particular, to the relatively simple but extremely common

fork-join task graphs [16, 106,348,349,360].

One troublesome problem of these approaches is that some programs have non-determin-

istic processing requirements, which can vary significantly between different executions of

a program. This occurs in part because of the presence of data-dependent effects such as

conditional branch probabilities or dynamic loop bounds. Although other techniques had

been successfully used to model this using stochastic task execution times [16,106,196,230,

231, 306], they were not compatible for incorporation with the deterministic task model

used by Adve. Even so, Adve’s technique remains applicable for a significant proportion

of message-passing programs, with the added advantage that:

“the deterministic assumption ... implies a unique execution sequence for the

program, and furthermore [that] the delay at each synchronisation point in this

sequence can be calculated as simply the numerical maximum of the execution

times of the synchronising process.” [1]

2.11. SINGH ET AL. 25

2.11 Singh et al.

In 1994 Singh et al. [317] published a paper that examined the advantages of emerging

methodologies over PRAMs. Singh et al. suggested that a useful parallel programming

methodology must be abstract enough to be usable, detailed enough to capture funda-

mental properties, and general enough to run efficiently on different platforms without

algorithmic changes. They argued that in order to achieve this, the modelling commu-

nity needs to obtain a better understanding of the communication properties of parallel

algorithms. Although several communication patterns such as dense linear algebra com-

putations, computations on regular grids and fast Fourier transforms are determinable

analytically, it is difficult to model the dynamic computations that are crucial in many

real world applications such as computations on irregular grids (for example [31,65,90]), in

Monte Carlo simulations, or in codes exhibiting adaptive parallelism (such as [63]). Still,

they believed that even for these more complex algorithms, some form of characterisation

of their communication properties should be possible.

A necessary input to performance models is a description of the communication prop-

erties of the program. Determining these properties is one of the most difficult parts of the

modelling process. Singh et al. identified three sources of communication in a program:

• Inherent communication in the algorithm, i.e. the communication which would

occur even if every processor had the entire dataset of the program in local memory.

• Communication resulting from finite local memory capacity.

• Communication from memory organisation effects.

This is instructive because it makes a distinction between local and remote data that a

process must access. Furthermore, it highlights that there will be complex performance

considerations even for local data depending on where the data reside in the storage

hierarchy. In addition to these concerns, modelling of communication is made difficult by

several other factors:

• Realistic data sets are often non-uniform over the input domain creating data-

dependencies which make analysis difficult.

• Algorithm complexity can render even uniform domains difficult to model because

of processing dependencies and interacting data structures.

• Some algorithms have a dynamically changing structure or utilise dynamic load

balancing techniques [67, 90, 95,219,269,316,328].

Most models prior to the work of Singh et al. focused on the second and third factors

identified above. The main contribution made by Singh et al. was the demonstration that

characterising data sets is often just as important as characterising algorithms.

26 CHAPTER 2. PERFORMANCE MODELLING TECHNIQUES

2.12 Mehra et al.

In a 1994 paper, Mehra et al. [237] described how simulation could be a convenient tool

for answering “what-if” questions during program design (see also [38, 293]) such as:

• What if the communication links were twice as fast?

• What if the CPU on each node could be sped up twofold?

• What would happen if one could have a machine with 8192 processors running a

scaled-up problem?

• What if algorithm B was used instead of algorithm A?

• What if data were distributed across the processors differently?

They suggested several characteristics that a modelling technique should possess in

order to answer such questions:

• Generality. A model should not be tied to a particular problem size, process map-

ping or system configuration and performance estimates should be easily adaptable

to other platforms by substituting appropriate constants for the relative costs of

computation and communication.

• Accuracy. A model should provide some quantitative measure as to its accuracy.

• Rapid modelling. It should be possible to create a model quickly without having to

model minutiae.

At the lowest level, instruction level models have very accurate predictions but simu-

lated runs take even longer than actual runs and they will not generalise to other plat-

forms easily. Higher level models are more amenable to rapid modelling and can provide

generality through abstractions that can model data distributions, interprocessor data

movements and the like, but it is more difficult to quantify the accuracy of such models.

Mehra et al. [237] demonstrated that an effective way to represent a performance

model at arbitrary levels of detail was to use a performance language. They found that

the performance characteristics of Single Program, Multiple Data (SPMD) programs,

which they noted form the majority of all message-passing programs, could be described

with a performance language that supported syntactic constructs such as subroutines and

loops so that repetitive behaviours could be expressed compactly. Furthermore, they were

able to preserve procedure and block boundaries throughout the modelling process. Their

modelling technique considered the order complexity of sequential blocks of code as well

as dependency information for communication operations. This required a knowledge of

the run-times of sequential blocks of code, the lengths and destinations of messages, and

the extent of loop bounds. Obtaining this information from a program was a two-step

process that involved the extraction of relevant information for parameter estimation from

2.12. MEHRA ET AL. 27

the program followed by formula discovery to fit parameterised equations to measured or

hypothetical run-times.

An object-oriented “behaviour description language” was used to represent parallel

programs as a collection of autonomous computing objects called players. These players

had methods called key application subroutines that could be invoked by messages. Their

model used the following constructs to model parallel programs:

• Sequential blocks of code were modelled using the statement (Run duration); which

represented duration seconds of computation on a processor.

• Non-blocking send statements were modelled by the statement

(Post recipient message : length bytes); where recipient represented the destina-

tion processor of a message containing the data message of length bytes.

• Blocking receives were modelled by the statement

(Receive message [: from sender]); where message was the label of the data

contained in the message and the optional sender parameter denoted the source of

the message.

• Overheads such as buffer copying were simulated using the (Hold duration) state-

ment which caused duration seconds of idling on the processor. In particular,

message-passing delays were determined empirically and modelled using a (Hold msg-

xmitdelay) statement.

• Program control flow was modelled with the following C-like expressions:

– (BdlRoutine name (args)(variables)statement+)
– (Repeat times statement+)
– (If condition statement+)
– (Branch (probability statement+)...)

They developed a simulator called Axe which modelled multicomputers of homogen-

eous processing elements connected by a point-to-point network where each node had

its own local memory, CPU and operating system kernel for message forwarding, task

scheduling and memory management. Axe was sufficiently expressive to parameterise

message-passing programs on distributed memory machines and was used to present a

comparison of the profiled performance of two example programs with models that were

generated for the same programs. The models were built by hand and required many

man-months of effort but were very accurate. However, it was believed that the mod-

elling procedure could be automated and investigations were subsequently begun into an

automatic model generator [236].

28 CHAPTER 2. PERFORMANCE MODELLING TECHNIQUES

2.13 Parashar and Hariri

Parashar’s 1994 PhD thesis [266] and a related paper authored with Hariri [267] described

a novel, interpretive approach for making accurate and cost-effective predictions about

the performance of parallel programs. In contrast to existing tools, which required either

hand-crafted models or post processed run-time traces to enable performance visualisation

and analysis, their techniques provided the means for purely compile-time performance

estimation. This allowed the ramifications of decisions about problem decomposition,

communication and synchronisation strategies to be far more easily explored. The three

step process they described involved: 1) the creation of an abstract model of system

hardware capabilities; 2) the creation of an abstract model of application structure; and

3) subsequent evaluation of the execution of the abstract application on the abstract

system hardware.

System abstraction involved the manual hierarchical decomposition of a parallel mach-

ine’s hardware into a system abstraction graph (SAG), where each node in the graph, or

system abstraction unit (SAU), represented the performance characteristics of either a

processing component, memory component, communication/synchronisation component

or I/O component. In contrast, application abstraction was performed by an automatic

compiler. Parashar and Hariri implemented a compiler for translating HPF or Fortran

90D programs into Fortran 77 plus message-passing programs, augmented with parametric

information describing the performance behaviour of individual programming constructs

called application abstraction units (AAU). In particular, they used AAUs to signify

sequential computation, process forking, iterative and conditional execution, communi-

cation and synchronisation. Iterative AAUs were subclassified into either deterministic,

synchronised or non-deterministic varieties. If the compiler could statically decide that

a loop had a fixed number of iterations and did not contain any communication or syn-

chronisation calls, this would result in a deterministic AAU that linearly extrapolated the

execution time of the sequential computation. The case where a loop contained commu-

nication or synchronisation operations would result in a series of interleaved deterministic

AAUs and communication/synchronisation AAUs, which would be used to construct a

recursively defined analytical performance expression. In the most general case of non-

deterministic loop conditions, loop unrolling would evaluate each iteration separately.

Conditional AAUs were similarly subclassified, using functional interpretation to resolve

execution flow. Where variables affecting control flow could not be automatically deter-

mined, they would be tagged and the user would be asked to specify their value during

the model evaluation phase. Finally, all AAUs would be combined into an application

abstraction graph, defined by the execution structure of the program, with nodes repre-

senting computation events and edges representing communication and synchronisation

2.13. PARASHAR AND HARIRI 29

events.

Given the resources defined by a parameterised SAU, an interpretation engine was

designed to recurse over AAGs, evaluating the time required for each of its AAUs to

execute (and timestamping those events), thereby predicting overall program perform-

ance. Estimation of the time required for each AAU to read or write various parts of

the memory hierarchy used an approximation of access patterns based on global access

and miss counts for each program variable as well as local block access counts and last

used timestamps for each program variable, and the cache block size, associativity and

replacement algorithm defined by the SAG. Communication and synchronisation perform-

ance was modelled using fixed latency and bandwidth parameters, plus the waiting time

required to access communication links and buffers. The waiting time was modelled by a

global communication structure, which maintained information such as the source, des-

tination, and transmission time of each communication and synchronisation event. This

information could theoretically be used by the interpretation engine to simulate the ef-

fects of access contention to shared network resources, given a sufficiently detailed SAG.

However, it seems that this information was only intended to be used for roughly synchro-

nising the simulated start/finish times of group communication. Indeed, this is confirmed

by the existence of a global, user-defined factor foverlap in Parshar and Hariri’s model,

which must be empirically derived from performance measurements of a specific code,

that weights the time required for communication AAUs to account for the overlapping

of communication and computation. These facts suggest that the underlying network

models used by Parashar and Hariri were not accurate enough to account for network

contention nor the non-determinism to which they contribute.

Because of the parametric nature of SAGs, Parshar and Hariri’s modelling system

could easily predict the effects of different hardware platforms on program performance

simply by re-evaluating AAGs for various parameter settings. The output module of

the interpretation presents performance statistics, including a breakdown of computation

time, communication time and wait time, as well as execution traces that can be viewed

in Paragraph [162]. In [267], Parashar and Hariri provided an experimental validation of

their modelling system using the NPAC HPF benchmark suite [245]. On tests using up

to 8 processors, they managed to achieve prediction accuracy within 5% most of the time,

and 20% in the worst case – the latter for higher numbers of processors. In addition,

they used their system to make (unvalidated) predictions for larger configurations, and

showed predicted results for 16 and 32 processor jobs, with varying processor speed and

network load. Importantly, they showed how a hypothetical increase in network load

would become extremely important for jobs utilising a large number of processors, clearly

showing that very good network models will be required to obtain good performance

predictions of programs run on large parallel machines.

30 CHAPTER 2. PERFORMANCE MODELLING TECHNIQUES

2.14 Skillicorn

In 1995, Skillicorn [322] identified three criteria that a parallel programming methodology

must meet to be generally useful:

• Architectural independence. Since code is likely to be run on a wide variety of

platforms, efficiency should not be tied to a particular architecture.

• Congruency. It is essential that the true cost of a program in terms of time and

resources on the machine is reflected in the programming model.

• Descriptive simplicity. If software that is developed for a particular methodology is

to outlast a specific architecture, it is crucial that that it be built around a model

that is sufficiently abstract.

Widely available libraries for message-passing such as MPI or the Parallel Virtual

Machine (PVM) [137] have dealt successfully with the issues of architectural and platform

independence (for instance, refer to Baker and Fox [29]) and descriptive simplicity, but

congruency has not been adequately dealt with. Although message-passing inherently

has the properties that make it a congruent methodology, this had not been specifically

studied before Skillicorn’s work and the property is still rarely used in practice. One of

the contributions of Skillicorn’s work was his systematic development of a theory and

practice of congruency in message-passing programs.

Since the design of many programs is driven more or less by performance concerns,

it is important for a programming methodology to have predictable costs. Run-time is

usually the primary concern but others include development costs or resource costs. Cost

measures are more difficult to analyse for parallel programs than sequential programs. The

construction of cost measures for sequential programs is often divided into two phases:

algorithm choice and fine tuning, since only the constants in front of asymptotic costs

are affected. This means that the cost functions of serial software are usually composable

and total cost is easily computable by summing the cost of its parts since it is convex;

importantly, it is not possible to reduce the overall cost by increasing the cost of one part.

In 1994, Skillicorn wrote more about the desirable properties of cost systems:

“It is highly desirable to have the cost function defined in the same compo-

sitional way as the program semantics: A cost is associated with each basic

operation, and rules are given to compute the cost of a composed program

from the cost of its components”. [319]

Given this goal, he went on to develop the idea of a cost calculus for the performance of

parallel systems [325]. This is not simple for parallel systems because there are cost im-

plications associated with rearranging operations. Because of this, such a calculus would

require a calculational transformation system where the cost of a transformation could be

2.14. SKILLICORN 31

calculated by a set of rules. Such a system could be made to work for any programming

language for which deterministic costs could be obtained for the basic operations, even if

they were in a parametric form.

Skillicorn argued that without this kind of composability it would be impractical

to derive or optimise program performance in a modular way because implementation

choices at some particular part of the program would necessitate a consideration of the

cost implications for every other part of the program. Also, for this idea of composability

to remain valid, Skillicorn noted that the decisions made by the compiler and run-time

system must be reflected in the cost system, even though they may not be explicitly

described by the programmer at implementation time. One way to build such a cost

system would be to make the programming model low-level enough so that all of the

decisions such as data decomposition, process placement and communication would need

to be explicitly made by the programmer. Determining the cost of a program would then

become an exercise in analysing program structure. Skillicorn acknowledged that MPI

programs are amenable to such analysis in another paper also published in 1994, although

in that paper he also alluded to shortcomings with the basic MPI program model:

“The big problem with parallel computation today is finding the right level of

abstraction. Machines and architectures change frequently. There is a need to

develop software that can run on new machines with relatively little change.

A good level of abstraction should be mathematically based. MPI makes it

easy to build efficient implementations but does not help much with properties

that programmers want.” [323]

Although MPI does not always provide the features that programmers want, such as those

provided by higher level languages such as High Performance Fortran (HPF), OpenMP,

or other massively parallel systems [89], these properties can easily be (and often are)

implemented on top of message-passing primitives [205]. Since message-passing can serve

as the technological base for such features and many foreseeable developments in parallel

programming methodologies (for example those that emerge with new technologies such as

the Virtual Interface Architecture (VIA) [78]), this issue is not so important. Developing

performance models of MPI primitives will automatically provide a performance model

for these new methodologies.

Skillicorn also extended the algorithmic skeleton idea [73, 55] of using pre-structured

building blocks for computation to the realm of communication skeletons [324]. Algorith-

mic skeletons encapsulate control structures such as frameworks for divide and conquer

algorithms or task queueing systems. Each skeleton corresponds to a standard algorithm

fragment which can be used as part of a larger program. The compiler or library writer

chooses how each algorithm is implemented and how intra-skeleton and inter-skeleton

32 CHAPTER 2. PERFORMANCE MODELLING TECHNIQUES

parallelism can be exploited on the target architecture. This raises the level of abstrac-

tion considerably. It also means that the implementation of each building block needs

to only be done once per architecture. A communication skeleton is an interleaving of

computation steps and fixed patterns of communication on an abstract topology. Com-

munication skeletons are efficiently implementable and can have defined cost measures. It

allows building blocks to be internally parallel but composable sequentially so program-

mers do not need to be aware of parallel programming pitfalls. A real world example of

this philosophy is ScaLAPACK [66], which combines a set of basic communication sub-

routines [368] and linear algebra subroutines [35] to create a package of parallelised linear

algebra subroutines.

2.15 Crovella and LeBlanc

In 1994 Crovella and LeBlanc [82, 83] presented a novel approach to the performance

estimation problem called lost cycles analysis which distinguished between productive

computation and parallel overhead. They reasoned that if they could predict the total

performance lost to overhead in a parallel program and then subtract this from the peak

performance that it is possible for the machine to reach, they would be able to predict

the overall performance of a parallel program.

Although this may seem a convoluted way of predicting performance, it was not so

strange after all, since if one knows the characteristics of a machine, its peak perform-

ance is trivial to calculate. Furthermore, predicting the performance degradation induced

by the individual sources of overhead in a parallel program simplified the overall per-

formance prediction problem by explicitly separating those effects that had a bearing on

performance.

The model they designed was carefully crafted to be complete so that it captured

all possible sources of overhead, as well as orthogonal so that the sources of overhead

were mutually exclusive. Completeness is critical but it is often ignored in performance

modelling tools, usually due to a focus on particular metrics such as cache-hit ratios or

message traffic. Although such a focus would be useful if it corresponded to a dominant

source of overhead, in reality, performance is often dominated by unexpected effects.

Together, the properties of completeness and orthogonality ensured that their system

could correctly calculate lost cycles and hence, indirectly determine pure computation.

In practice, the lost cycles approach used a tool to measure the sources of overhead in

a program and another tool to fit the measurements that were made to analytic forms. A

tool called pp measured parallel overhead by processing simple event logs that had been

collected at run-time by using a logging library. A tool called lca was used to guide the

user through the selection of a model to fit the output data from pp to analytic forms.

2.16. MRAZ; TABE ET AL. 33

All categories of overhead were measured using the unifying metric lost cycles, an

aggregate in seconds of parallel overhead. An advantage of the lost cycles approach was

that it allowed quantitative study of the trade-offs between effects often modelled in

incompatible ways. The categories of performance loss that were measured were:

• Load imbalance where any idle processor cycles occurred while unfinished parallel

work existed.

• Insufficient parallelism for any idle processor cycles that occurred while no unfin-

ished parallel work existed.

• Synchronisation loss for cycles that were spent acquiring a lock or waiting for a

barrier synchronisation to complete.

• Communication loss for cycles that were spent waiting for messages to arrive from

remote processes.

• Resource contention for cycles that were spent waiting for access to a shared hard-

ware resource.

A small number of measurements for each effect was sufficient to parameterise an ex-

ample model and lead to an aggregate model spanning the entire parameter space. The

model was useful under varying conditions and crossover boundaries where one program-

ming technique outperformed another were able to be obtained by solving simultaneous

equations.

2.16 Mraz; Tabe et al.

Variation in communication time, often called jitter, is a well-known phenomenon in

telecommunication networks. However, studies by Mraz [248] in 1994 and Tabe et al. [340]

in 1995 seem to be the only substantive investigations into the variance of communication

time on parallel computers. The dearth of studies on this topic is probably because highly

accurate clocks have not been generally available for most parallel computers in the past,

which makes it impossible to time individual message-passing operations, and hence obtain

distributions of message-passing performance. Therefore, most benchmarking efforts have

focussed on average communication time over a large number of communications. Mraz

and Tabe’s studies of message-passing variance were possible, however, because their

investigations focussed on the high-end IBM SP2 running AIX, which does provide a high

resolution globally synchronised clock.

It is important to minimise jitter in real-time systems to maintain a steady flow of

information. For example, too much jitter creates pop sounds in audio signals or jerkiness

in video signals. Some parallel programs provide real-time output, and in these cases

it is obviously important to minimise jitter. More problematic for parallel programs in

34 CHAPTER 2. PERFORMANCE MODELLING TECHNIQUES

general, however, is the detrimental effect of jitter on performance. If message delivery

to one process of a parallel system is slow, that delay, to some extent, will eventually

propagate through to every other process. In the worst case, every other process will sit

idle, waiting for the delayed process to catch up. The chances of one process suffering late

message delivery increases at least proportionately with the number of processes involved,

but usually even more so due to increased contention. Further the performance degra-

dation of a delayed message also increases in proportion with the number of processes.

Unfortunately, therefore, while this effect may be negligible for parallel programs running

on a small number of processors, it has the potential to severely limit performance when

a larger number of processors are used. In fact, at some point, overall performance will

begin to reduce as more processors are assigned to a problem; and beyond even that,

another point will be reached where overall performance will become slower than if only

one processor were used.

Mraz developed a “hot-potato” benchmark that measured the time to pass a virtual

token around a ring of processors. Although, strictly speaking, this did not measure in-

dividual communication times, the number of processors in the ring was relatively small

(2 to 64 in different cases) compared to the large number of repetitions used in other

benchmarks to obtain average times (typically many thousands), so fine-grained timing

characteristics did not become completely washed out. One noteworthy limitation of

Mraz’s approach is that he assumed that the time a message spent actually traversing the

interconnection network was constant. Although in the case of his benchmark this would

have been essentially true, because only one message could ever traverse the network at

any given time (ignoring operating system traffic), it does not hold true in general: con-

tention will introduce even more variance. Despite this he obtained some very interesting

results. Mraz conducted 100,000 point-to-point communication tests using various mes-

sage and ring sizes, and recorded the best, average and worst completion times observed,

as well as a histogram of results for one test. His results showed that the average and

minimum times were of the same magnitude, while the maximum times were up to two

orders of magnitude larger. Closer examination of the histogram revealed that the bulk

of the measurements formed an exponential-type distribution that tailed off within sev-

eral multiples of the message latency, while a small but appreciable number of results

accounted for the outlying events. Despite the significant variance of the delays, which

in themselves would severely affect parallel program performance on a large numbers of

processors, Mraz largely disregarded the main (i.e. exponential) part of the distribution

in favour of analysing the outliers. By timing the iterations of a busy loop and correlating

the results with the message-passing times that were observed, he deduced that the long

delays corresponding to his outlying observations were due to operating system interrup-

tions. The most significant of these was the operating system’s process scheduler, which

2.17. CLEMENT, QUINN AND STEED 35

ran for 30-40µs every 10ms. Other interruptions he was able to identify were due to the

parallel program environment and page faulting. This insight was used to improve the

AIX operating system by ganging common interrupts across all processors simultaneously,

thereby removing the effect of unsynchronised stalls.

Tabe et al’s work extended Mraz’s study by quantitatively investigating the effect of

the very slow, outlying message-passing times on an all-to-all communication pattern. In

particular, Tabe et al used a simulator to show how the performance variance of point-

to-point message-passing introduced load imbalance on a microscopic scale, which, when

summed over all communication operations, caused macroscopic performance degradation.

This was validated against actual measurements of all-to-all performance, for the first time

providing reasonable proof of why collective communication performance does not live up

to expectations based on simple (constant) point-to-point microbenchmark performance.

Two other studies have also briefly mentioned the variance in message-passing commu-

nication times. Georgitsis [140, 141] observed that the distributions measured in Mraz’s

work could well be Poisson distributions, although no quantitative verification of this

statement was provided. More recently, in a study on the architectural requirements of

NASA’s NAS Parallel Benchmarks (NPB) [28], Wong et al. [373] noted that the actual

distribution of times observed in low-level message-passing on heavily loaded commodity

networks did not correlate at all well with typical microbenchmark performance. For their

machine, they found that while the return trip time measured by common microbench-

marking tools was only 50µs, the mean time actually observed was 5ms with a similar

variance.

2.17 Clement, Quinn and Steed

An interesting approach aimed at dealing with the performance variability of parallel

programs was presented by Clement and Quinn [70, 71]. They believed that because the

low-level operations in a parallel program could take different lengths of time to complete,

for example due to contention, the performance of those low-level operations should be

modelled by stochastic values. Rather than trying to measure those values directly, their

approach centred around inferring them from an analysis of program structure as well as

measurements of overall program performance. The first stage of this process required

a static program analysis tool to count the number of low-level operations in each basic

block and a (dynamic) instrumentation run to determine the execution frequency of each

basic block. In the second stage, this information would be mechanically converted into a

(long) analytic expression parameterised by the performance of each low-level operation

and input into a standard symbolic manipulation package. Finally, given a number of as-

sumptions, they showed how multivariate data analyses could be used to discern the mean,

36 CHAPTER 2. PERFORMANCE MODELLING TECHNIQUES

variance and confidence interval for the performance of each low-level operation. The im-

portant assumptions were that: the performance parameters could be well-approximated

by normal distributions with constant variances under all circumstances; the program

comprised of a deterministic task structure, and especially that the number of loop itera-

tions and the shape of data structures scaled linearly with problem size; communication

performance could be well-approximated by a linear model based on message size; and

that all models remained invariant across machine/compiler pairs. If all of these assump-

tions could be met, a program’s performance sensitivity to critical system parameters

such as message latency or bandwidth could easily be estimated by perturbing the in-

ferred parameter values and re-evaluating the analytical performance expression. As an

obvious extension to this, different (even hypothetical) values for the performance of low-

level operations could be used to estimate the performance that could be achieved for the

application on various parallel machines.

Although this approach was originally designed to cope only with regular communi-

cation in data parallel languages, it was later extended by Clement and Steed to deal

with arbitrary PVM programs, and incarnated in a tool called APACHE [72, 333]. In

this revised approach, they also introduced a simple means to roughly account for con-

tention in shared networks (such as non-switched Ethernet) which involved augmenting

the standard linear model of communication time T with a contention factor γ:

T = l +
bγ

W

where l is link latency in seconds, b is the size of the message in bytes and W is the

bandwidth of the link in bytes per second. Although, in general, γ could vary for every

message, the APACHE model does not retain enough information to account for this, so

γ must be assumed to be constant and equal to the number of processes. Consequently,

a restriction of this model is that it assumes that all processes communicate simultane-

ously, which is only even roughly true for problems exhibiting regular computation and

communication patterns. In several example cases where this assumption was shown to

hold, however, Clement and Steed found the simple contention model greatly enhanced

the accuracy of their performance predictions for essentially zero extra effort. For up to

8 processors on each of three different parallel machines, they found that APACHE was

able to model the performance of Jacobi iteration to within 10% accuracy and matrix

multiplication to within 30% accuracy. Prediction accuracy using more processors or on

codes with less regular computation and communication patterns would presumably suffer

because of APACHE’s inability to predict the effects of non-linear performance factors.

2.18. ISLAM 37

2.18 Islam

In a book published in 1995 [188] there is a useful chapter by Islam on Characterising

Parallel and Distributed Applications. In it he explained that a parallel code has static

attributes which are explicitly defined by the programmer, as well as dynamic attributes

which can vary from one run of the program to another, even on the same machine.

Even though many dynamic events occur during a parallel program’s execution, the

processes of a parallel computation generally synchronise the execution of various parts

of their own computations with subcomputations of other processes. The result of this

is that common process interaction patterns between communication and computation

phases can be identified. This is often referred to as a communication pattern. Of course,

for any particular program there are dynamic attributes such as message size or iteration

time that determine a unique version of the pattern. Typically, an application consists of

a series of basic patterns, which Islam identified as:

• Asynchronous process interaction patterns with no explicit dependencies between

processes.

• Synchronous process interaction patterns with explicit synchronisation points at the

end of each phase of computation. This commonly occurring pattern is often found

in iterative phases of SPMD programs, for which synchronisation occurs at the end

of a loop.

• Pipelined patterns, either synchronous or asynchronous, where data flow through a

process in a predefined order.

• Client-server and the related bag-of-tasks patterns where client processes compute

results and communicate these with several servers or a single server, respectively.

These very standard process interaction patterns are often built on top of a message-

passing paradigm using the following primitives:

• Synchronous sends and receives where both the sending and receiving processes

block until they have completed successfully.

• Asynchronous sends where the sending process returns control immediately to the

current thread of control and a separate thread is started to deal with the outgoing

message. Similarly asynchronous receives do not block and wait for incoming data

but must be used in conjunction with a polling method that determines when a

message has arrived.

• Exchange calls where two processes send and receive data simultaneously.

• Request-response calls where a message is sent by a process that initiates processing

on a remote process and a response is returned.

38 CHAPTER 2. PERFORMANCE MODELLING TECHNIQUES

• Multicast and broadcast calls where a message is sent to some or all of the processes

of an application respectively.

• Reduction where one process recombines messages from many sources at one desti-

nation.

Although it is possible to view all communication patterns as a collection of sends and

receives, and they are usually implemented this way at low levels, aggregation into higher

level patterns can provide a better characterisation for modelling purposes.

2.19 Jonkers

In October 1995 Jonkers published his PhD thesis [192] which presented a new mod-

elling formalism and associated software tools for the efficient performance prediction of

parallel programs called GLAMIS (GeneraLised Architecture Modelling wIth Stochastic

techniques).

To put his approach into perspective, he categorised the ways in which parallel program

performance could be evaluated into three broad groups, namely measurement, simula-

tion and analytical techniques. Measurement is only of very limited use during the initial

stages of program design and implementation because it forces a measure-then-modify

programming cycle which is very labour intensive. In some cases it is not even possi-

ble to measure program performance in the early stages of program design because the

hardware is not available. Simulation is a more flexible option and can be used when the

hardware is not available. It is also more suited to parameter studies although the results

of a simulation are numerical and a separate evaluation is required for each set of input

parameters. This can be computationally very expensive. Analytical techniques provide

the most useful approach in the early stages of program development. Either numeric

or symbolic models can be created, usually involving a trade-off between accuracy and

flexibility. Numeric approaches are similar to simulation and usually more accurate, but

symbolic models have far more scope for providing performance estimates under a wide

range of conditions. This is useful in the early stages of program development because

it can enable a programmer to find the best solution to a problem. Jonkers classified

analytical performance modelling techniques according to their:

• Expressive power which is concerned with the ability of a model to describe the

performance characteristics of a program and the machine it is running on.

• Prediction accuracy, where there are two sorts of errors that can be incurred. Firstly,

there are inherent modelling errors because models are a simplification of reality

and secondly, analytical errors which occur where small modelling inaccuracies are

tolerated in order to make the models analytically tractable.

2.19. JONKERS 39

• Robustness which refers to the reliability of the predictions that are given by a

performance model. This is often in the form of a sensitivity analysis to identify the

situations that may lead to high prediction errors.

• Analytical complexity, in particular, the computing resources that will be required

for computing a prediction and how long it will take to get that prediction.

• Scalability through the utilisation of replication constructs to allow the specifica-

tion of machines with high degrees of symmetry. Large machines are often highly

symmetric and model constructs for replication can improve comprehensibility and

decrease analytical complexity.

• Ease and comprehensibility of modelling, especially in large and complex systems.

Jonkers chose to use a formal modelling language that allowed for the explicit spec-

ification of parallelism because it provided the most expressive power for an analytical

modelling technique. It allowed a unified description of both parallel architecture mod-

els and program models to be constructed. Within this modelling framework, Jonkers

described two general sources of performance loss. The first of these is called condition

synchronisation. In the static form, which is familiar from normal serial computing, this is

also known as a precedence relationship and it is implicit in the structure of the program.

In parallel programs a dynamic form exists and it is associated with communication be-

tween cooperating processes. The second source of performance loss is mutual exclusion

which is inherently dynamic. This can occur both at the machine level where it is called

resource contention and at the program level where it is referred to as critical sections.

Mutual exclusion is one of the most noticeable sources of non-determinism in parallel

programs.

Because precedence relations are static, both deterministic and stochastic task times

can be naturally modelled using task graphs, although complications arise due to condi-

tional execution. In deterministic models, all quantities such as timing parameters and

loop bounds need to be constant or at least representable in a symbolic fashion. In prob-

abilistic models, some degree of uncertainty exists in timing parameters and stochastic

quantities are used in the model. Many of the parameters that need to be modelled in

a real system are nearly deterministic. For example, there is usually very little variation

in time needed for a floating point operation. At a program level, numerical applica-

tions often use fixed loop bounds, for example to iterate over the number of columns in a

matrix. Message-passing, however, is more problematic. It is dynamic and it cannot be

modelled with task graphs unless communication times are assumed to be deterministic.

Worse, mutual exclusion is inherently non-deterministic and cannot be modelled using

task graphs at all.

Jonkers adopted a hybrid approach that used task graphs to express condition syn-

chronisation and queueing networks to express mutual exclusion. This allowed both the

40 CHAPTER 2. PERFORMANCE MODELLING TECHNIQUES

machine and program to be described in a natural, comprehensible way. He devised an

algorithm for the analysis of program models represented by general task graphs under

the assumption of deterministic task completion times. This considerably simplified his

analysis compared with purely stochastic approaches but still yielded very accurate pre-

dictions for a wide range of parallel applications.

In GLAMIS, Jonkers represented tasks dependencies with Simple (or series parallel)

graphs. He did this because they could describe most commonly occurring message-

passing programs and they were relatively simple to solve. For deterministic series par-

allel graphs, the total execution time could be deduced simply by using a critical path

algorithm. A number of tasks in series could be replaced by one task with a delay equal

to the sum of the delays, and a number of tasks in parallel could be replaced by a task

with a delay equal to the maximum delay of the parallel tasks. Although Jonkers was

focused on deterministic models, the previous work of Gelenbe and Liu [138] had shown

that stochastic models were still feasible. In those models Gelenbe and Liu had obtained

the overall distribution for parallel constructs by multiplying the constituent distributions

and the overall distribution for series constructs by convolution.

Although Jonkers assumed task times to be deterministic in GLAMIS, service times

for the queueing model representing the machine were probabilistic. Parallel architectures

were modelled as virtual machines using a logical instruction set. Each of the instructions

was parameterised and modelled by a queueing centre. The virtual machine instructions

he used were floating point instructions, memory loads and stores, as well as message-

passing primitives such as sends and receives. Programs were modelled using a sequence

of series-parallel sections using a directed acyclic graph. The annotation of nodes in a

task graph included an instruction count of the average number of times each instruction

type is called in that task. Mapping from instructions to visit counts, which defined

the queue structure, was machine-dependent. This machine model was formally defined

using the tuple < Q,S, Y,M, δ, I, F >. Q represented the queueing model elements with

mean service time S, queue type Y , relative speedup δ and number of equivalent queueing

centres M where replication was involved. I represented the logical instruction set of the

machine and the function F was used to map instructions to visit counts.

One of the drawbacks of Jonkers’ technique is that model construction involves signifi-

cant manual effort, especially while building machine models. Regarding program models,

Jonkers believed that construction could be partly automated using the by-products of

parallelising compilers.

2.20. VAN GEMUND 41

2.20 van Gemund

In 1996, van Gemund described the performance modelling of parallel systems [355]. He

attributed the difficulty in modelling parallel processes to the role that synchronisation

plays in parallel systems. Like Jonkers, he divided this synchronisation into a static

component and a dynamic component. The static component, known as condition syn-

chronisation, occurs because of the precedence relationships between tasks. The dynamic

component is caused by mutual exclusion which is due to resource contention at the ma-

chine level and critical sections at the program level. Van Gemund extended the scope

of Jonkers’ work to include the effects of conditional control flow, which also alters the

dynamic nature of a program. The dynamic forms of synchronisation and conditional

control flow lead to non-determinism which is very computationally expensive to model

accurately. Accurate modelling involves solving a problem where the solution complexity

grows with exponential order compared to the size of the system. This is because it re-

quires evaluation of all the combinations of event orderings that can occur in the problem.

As background for his work, van Gemund classified existing parallel program performance

modelling techniques according to their ability to model synchronisation and conditional

computation. Brief summaries of these approaches follow.

Deterministic graphs are a popular choice for modelling condition synchronisation in

parallel programs because they have a very low solution cost. The crucial abstraction

is performed during the modelling step which extracts a graph representing the inherent

parallelism in a code from the program text. After this, the technique yields to an

exact analysis and execution time can be determined using a critical path algorithm.

Unfortunately, these graphs cannot model mutual exclusion or conditional control flow

which limits their predictive capability.

Stochastic graphs are an extension of the deterministic graph concept. Stochastic

rather than deterministic values are used to represent task times by annotating graph

edges with distributions that approximate the effect of conditional control flow and mu-

tual exclusion (see Tayyab [344] and Yazici [376] for examples). Unfortunately, while it

is relatively easy to determine average execution time from such graphs, determining the

distribution of run-times that will be observed is very difficult unless restrictive assump-

tions are made [139,215]. Instead, some approaches have investigated the simpler problem

of determining performance bounds [110,215].

Queueing networks can model mutual exclusion between contesting processes by us-

ing queueing centres to simulate the delays associated with access to a shared resource.

For example, message-passing delays can be approximated by setting the mean service

demand and service times at queueing centres based on the number of messages in transit

and minimum message latencies. Such networks are usually solved for an average case

42 CHAPTER 2. PERFORMANCE MODELLING TECHNIQUES

using steady-state analysis. Often, exponentially distributed service times are assumed

(citing a justification offered by Salza [305]) since this allows the queueing networks to

be mapped to Markov chains. This is advantageous because such models can be solved

using Mean Value Analysis (MVA) [289,294] which allows an exact solution in polynomial

time. Unfortunately, this assumption places unrealistic restrictions on the structure of

code that it can model effectively [192]. Furthermore, although queueing networks can

be good at estimating the delays in single phases of a parallel program, they are not able

to model condition synchronisation. Because of this, they have been combined with task

graphs to form hybrid models [192], resulting in a model that is essentially equivalent to

a stochastic graph.

Petri nets (see Breanl [49] or Murata [250] for an overview of their properties) have

more modelling power than task graphs or queueing networks and they can accurately

model parallel systems [19, 199]. In fact, the closely related extended petri nets are as

powerful as a Turing machine and theoretically they can describe any program written in

any programming language. In the case of performance models, timed petri nets represent

the time of basic operations with a transition time at each node of the network, condition

synchronisation in the structure of the network, and mutual exclusion by using a non-

determinism operator. In the case of a message-passing parallel program, a petri net model

is normally constructed by separately modelling the blocks of computation between two

consecutive communication statements. These submodels are then merged using rules that

model communication among the processes. Although petri nets are very powerful, they

have exponential solution complexity and are prohibitively expensive to solve for models

of parallel programs of practical size. Furthermore, models of large programs become

difficult to comprehend and aid programmers very little in understanding performance

implications of algorithm choice during program design.

Simulation languages allow for arbitrarily high levels of modelling detail which gives

them the potential to be most similar to the actual system. Simulation languages naturally

account for condition synchronisation and mutual exclusion. Data-dependent control flow

can be supported although this is often in a probabilistic context using weighted model

parameters. Deriving performance estimates from simulation has the advantage over

directly measuring actual systems because it is non-invasive and can even be done for hy-

pothetical machines. Unfortunately, simulation languages are typically numerical rather

than analytical in nature, which restricts the insight they can provide for performance

optimisation.

Analytical modelling techniques (such as CSP and CCS from Section 2.4, APACHE

from Section 2.17, PEL [215], TCAS [288] and others [25,30,88]) have an underlying cal-

culus that can be used to describe the performance of a code. Successive approximations

are used that produce less accurate but simpler models and ultimately, a performance

2.20. VAN GEMUND 43

model is expressed as a system of equations that retains parameters of interest. The

advantage of this is that a model could then be used to easily investigate the performance

implications of different parameter choices [70]. For example, Mendes et al. [238] pro-

duced a symbolic model for a code in terms of its problem size, the number of processors

used, and a number of system parameters that were evaluated via benchmarking.

None of the analytical approaches before that of van Gemund’s accounted for mutual

exclusion. Van Gemund developed an analytical technique with a mathematical frame-

work and calculus for approximating the performance of parallel systems aimed primarily

at the initial phases of program design where extremely low solution cost rather than high

accuracy is important. Techniques with low solution cost are of vital importance in initial

design phases in order to study the performance implications of design choices through

exploration of large parameter spaces. Van Gemund described a static approximation to

the effects of mutual exclusion using his structured PerformAnce ModEling LAnguage

(PAMELA) which defined a symbolic calculus for describing synchronisation. This cal-

culus provided a set of approximation rules that, when repeatedly applied, reduced a

model to an analytical expression in the time domain where machine and program pa-

rameters of interest were symbolically retained in the final time domain performance

model. This allowed the computation of a deterministic time domain result that could

be easily evaluated for different input parameters. This relied on several restrictions (in

particular it assumed individual task times to be deterministic, based on previous work by

Adve [1,2]) to support low-cost, statically determinable models that had robust accuracy

across entire parameter spaces. Examples of similar techniques can be found in a number

of studies [112,113,114,115,116,155,356].

PAMELA evaluated performance models using critical path analysis for condition

synchronisation and bounds analysis to approximate mutual exclusion. It used the same

syntax to describe programs and machines which allowed a unified description of mutual

exclusion at both the program and machine level. Van Gemund called the combination

of critical path analysis and bounds analysis serialisation analysis since it was based on

identifying the potential serialisation of contending model parameters. In addition, the

symbolic nature of his analysis process allowed the effects of conditional control flow to

be retained in the final performance model. The constructs that PAMELA used to model

condition synchronisation, mutual exclusion and conditional control flow are summarised

below.

Condition synchronisation was modelled in two ways. Condition synchronisation that

was implicit in the structure of a program code was modelled using the sequential op-

erator “;” and the parallel operator “||”. Explicit condition synchronisation could be

used to expressed using wait{c1, c2, c3...} and signal(c1) directives, which acted on con-

ditions Ci. Mutual exclusion was supported at two levels of accuracy. At an exact level,

44 CHAPTER 2. PERFORMANCE MODELLING TECHNIQUES

achieved using numerical simulation, PAMELA supported the P/V construct of Dijk-

stra [98]. Van Gemund also defined a PAMELA construct to approximate mutual ex-

clusion where access to resources (such as memory banks or processor scheduling slots)

was controlled by use constructs. He defined use(U, τ) = P (U); delay(τ);V (U) where U

represented a set of resources. From this definition he developed a series of equations for

calculating the delays caused by use statements in the time domain.

PAMELA provided an interesting solution for a fundamental problem of analytic pre-

diction: static un-decidability due to data-dependent program parameters. Conditional

control flow was partially supported by symbolic parameter retention. For example, con-

sider the conditional operator if(p) L where p is the probability of running the code L.

In the final model the parameter p would be retained, which could then be specified by

human intervention, or the model could be subjected to analysis given various p’s. An-

other example of this is the while(c) L loop where c is the loop condition and L is the

loop code. Here, the unbounded while loop would be modelled as a loop bounded by a

user specified parameter c. In other cases, van Gemund showed that it was possible to

derive valid performance models of a program despite data-dependent execution since it

is often known how much work needs to be done, even if the exact order in which it is

computed is not known.

Calibration was not supported by PAMELA although van Gemund recognised its

importance. Some analytical approaches feature calibration where certain parameters

are determined by direct measurement of calibration routines rather than by calculation

[135,216]. A similar example of this can be found in a paper by Gupta and Banerjee [155]

where communication cost was estimated in terms of an MPI-like abstract kernel of high

level instructions.

In general, the execution time of code modelled using PAMELA should be stochastic

with a finite distribution between a lower bound T l and upper bound T u. However, cal-

culation of these distributions, even given the assumption of deterministic task times is a

very complicated task and was not tackled by van Gemund in his dissertation. Instead,

he chose to approximate these distributions by their lower and upper bounds. He devel-

oped exact solutions for the lower bound of run-time, T l. Developing an exact bound for

T u proved to very complicated. Instead he derived equations for the upper bound of a

distribution that was correct to within an unknown factor less than 2, which depended

on specific circumstances. This was not a major concern, however, since he also showed

that the vast majority of systems had a Tmean much closer to T l than to T u anyway.

2.21. LABARTA AND GIRONA ET AL. 45

2.21 Labarta and Girona et al.

One of the most mature tools for predicting and visualising the performance of message-

passing programs is Dimemas, which was conceived by Labarta and Girona et al. and

described in their 1996 paper [210]. Dimemas simulates the time behaviour of a message-

passing program using a trace file of its computation and communication structure and

some simple parameters describing a target machine. For MPI programs, Dimemas uses

trace files generated by linking a program with the VampirTrace [260] instrumented MPI

library and running the resultant code on an existing parallel machine. Any parallel ma-

chine can be used for this instrumentation run - even a uniprocessor workstation running

a number parallel processes in a time-shared fashion. Dimemas analyses the trace file

based on elapsed CPU time measurements rather than wall-clock measurements for each

process, and automatically adjusts the trace file to remove the time spent on unrelated

processes. This introduces non-linear errors, for example by ignoring the effect of cache

flushing as processes are swapped in and out, but a paper by Girona and Labarta [145] ar-

gued that the overall accuracy of the technique remains reasonable in many cases. A more

fundamental limitation of Dimemas, however, is its inability to model non-determinism.

Because the trace file is immutable, determined by the order of events during the in-

strumentation run, applications where the number and sequence of computations and

communications depends on timing cannot be accurately modelled using Dimemas.

The target architecture supported by Dimemas is a network of SMP nodes, each with

their own local memory and one or more processors. Processors are connected by multiple

levels of bus-based communication links. Point-to-point communication performance is

computed using a simple linear performance model, which can be roughly determined

from the trace file or explicitly specified, augmented by a simple principle to roughly

account for dynamic (non-linear) network contention: only one message may traverse a

given bus at a time. More specifically, if there are m messages ready for transit but only

b available buses then the messages are serialised into dm/be waves. This constitutes a

first order approximation to contention, which is inherently non-linear.

For collective operations, a fan-in/fan-out model based on point-to-point communica-

tion is used [146]. The time required for the fan-in stage of a collective communication is

modelled by:

Tfan−in =
(

l +
s

w

)

∗ model in factor

where l is the link latency, s is the size of the data to operate on, w is the link bandwidth

and model in factor is used to describe the number of steps in the collective algorithm.

The expression for the time required during the fan-out stage of a collective algorithm

is identical, except that “in” is replaced with “out”. The model in/out factors for any

particular collective routine can be specified by the user, although a number of sensible

46 CHAPTER 2. PERFORMANCE MODELLING TECHNIQUES

defaults exist. Typical model in/out factors are constant-, linear- or log2-based func-

tions, parameterised by number of processors. It is worth noting that this model assumes

an implicit barrier so that all collective operations start at the same time. While this

greatly simplifies the model, it comes at the cost of ignoring the effect of staggered starts

on collective performance, which is common, especially in irregular programs.

Given a trace file of a program and the architectural parameters of a target platform,

Dimemas performs a critical path analysis. It reports summary statistics such as total

CPU usage for different code blocks and their importance for overall program execution

time. It also produces output traces that can be viewed as space-time diagrams using

Vampir [260]. Because the architectural parameters can be changed and the performance

model re-run, Dimemas also allows a user to easily analyse a program’s performance

sensitivity to factors such as network latency or bandwidth. All of this information can

be used to study load imbalances and potential parallelism, and ultimately predict the

benefits of particular code optimisations.

2.22 Dunlop and Hey et al.

In 1997, Dunlop and Hey showed that using instruction counting to model serial perform-

ance and simple ping-pong results to model communication performance fails to account

for the memory hierarchy and can lead to a very significant mis-estimation of perform-

ance [170]. While it is well appreciated that cache behaviour plays a significant role in

most serial codes [165], its effects are often neglected when predicting the behaviour and

performance of parallel programs [170]. A possible reason for this is that cache behaviour

is critically dependent on memory access patterns, hence a good model of cache behaviour

can only be obtained by exactly simulating every single memory access. This is tremend-

ously expensive; simulating the cache behaviour of a program will be far slower than

actually running that program. Despite this, it can be very worthwhile to model and

tune the cache behaviour of serial code because of the enormous performance improve-

ments to which it may lead. Unfortunately, modelling the cache behaviour of parallel code

is far more problematic. Obviously, there will be many processors to model, which makes

cache simulation even slower. Far worse, though, are the effects that process scheduling

and non-determinism – which are exponentially greater for parallel programs – can have

on cache behaviour. Unlike the execution of serial code, where interruptions almost always

lead only to transient anomalies in cache behaviour, the slightest change in the execution

structure of some parallel codes can lead to radically different cache behaviour. Solving

each of these behaviours is completely intractable. Despite this, however, it should still

be possible to individually model the cache behaviour of the serial/computational parts

of a parallel program in many cases. Strangely, however, very few modelling systems for

2.22. DUNLOP AND HEY ET AL. 47

parallel programs seem to take advantage of this reprieve.

In order to fill the void of performance estimation tools for parallel programs that take

into account the memory hierarchy, Dunlop and Hey developed a Performance EstimatoR

FOr RISC Microprocessors (PERFORM) [107, 108]. PERFORM uses execution-driven

simulation to run the control framework of serial sections of code, taking into account

any variables that may affect control flow. In addition, PERFORM relies on several

simple but effective heuristics to avoid having to execute the entire control structure of

a code, yet takes care to maintain reasonable accuracy. These mainly involve avoiding

the need to simulate every loop iteration. For example, one heuristic is to only simulate

a small number of loop iterations, check whether the completion time for each repetition

has reached a steady state, and if so then use extrapolation to approximate the time

required for all remaining iterations. Putting these optimisations aside, the time required

to execute a serial section is computed by summing the time required to execute any data

movement, computation or library calls that it encompasses. The time required for data

movement - either explicit stores or implicit loads – through register sets, cache memories

and main memory, is simulated using a fairly detailed cache model; computation time

is determined using instruction timing formulae for basic arithmetic and logic operations

(but note that multiple functional units are not taken into account, so timing overestimates

will result for multiple-issue CPUs); and the time required for library calls needs to be

supplied from empirical benchmark data. The PERFORM simulator was shown to achieve

good accuracy for a Jacobi iteration example, but took about the same amount of time

to run as the actual program [170]. In the same paper, Hey and Dunlop also presented

results that showed that cache behaviour could also have a direct effect on message-passing

performance. Using a tool based on Lebep [122], they showed that the message-passing

time for strided data (for example, communication of a row of a matrix stored by column)

could be significantly different than for contiguous data. Using PVM on a Meiko CS2

they showed that the extent of memory stride could alter communication performance by

up to 1000%. On a workstation cluster using MPI, however, an overhead of only 20% was

observed.

By considering message-passing calls as library calls, PERFORM could also be made

to simulate message-passing parallel programs. This idea was investigated by Reeve [292],

although he chose to abstract over the details of serial computation. Instead, he focussed

on the communication operations in a message-passing program, statically generating in-

struction streams for each processor based only on the total number of processors and

each individual processor’s identity tag. In particular, he conceived a model with six basic

operations: send, receive, asynchronous send, asynchronous receive (all parameterised by

message size), wait (for asynchronous operations to complete) and work (parameterised by

a number of floating point operations). Although very thin on details, Reeve explained

48 CHAPTER 2. PERFORMANCE MODELLING TECHNIQUES

that the instruction streams could be deterministically evaluated using two queues for

each process, to represent local execution time and potential communication events [292].

Whenever two processes participating in a communication become ready, their local ex-

ecution time could simply be incremented according to a model of communication time;

Reeve chose to use a linear latency/bandwidth model with bandwidth sharing, ignoring

non-linear network contention. The results and discussion presented by Reeve suggest

that this is reasonable for a small number of processors, but that detailed contention

effects for the interconnect network and memory hierarchy will play a significant role

when run on a larger machine. While the work described above has made good progress

at accounting for the memory hierarchy, a related study by Hernandez and Hey [167]

claims that substantial effort is still needed to marry the performance results of low-level

communication benchmarks with the performance achieved in real parallel codes.

2.23 Becker et al.

In 1997, Becker and his colleagues from the Whitney project published a paper [32] that

developed several simple models of NASA’s NAS Parallel Benchmarks (NPB) version

2 [28]. The models were used to explore the performance trade-offs involved in building

a balanced parallel cluster computer capable of supporting scientific workloads. The

models that were developed were simple analytical expressions using the number and size

of messages sent by each benchmark. Coupled with measurements of single processor

performance, network latency and network bandwidth, these models were used to predict

performance and hence find a well balanced machine for running NPB-type applications.

It was recognised that the parameter space for cluster design was quite large. Designers

must consider factors such as CPU type, the amount and type of memory per node, the

network technology and topology, and operating operating system. The Whitney team’s

design goal was to choose the most suitable configuration of a machine for a certain code

based on metrics of speed, efficiency and financial cost. Clearly, not every possible cluster

architecture could be physically tried. Thus, by developing simple abstract models of the

NPB benchmarks as representatives of the target workload, the Whitney project evaluated

the effectiveness of various architectures by calculation and simulation.

The architectural model they used for the system was characterised by network latency

l in seconds, bandwidth b in bytes per second, single node performance f in operations

per second, the number of nodes p and monetary hardware cost. This allowed the com-

parison of different technologies, for example Fast Ethernet versus Myrinet, at any given

price. The communication model they used for calculating the message-passing time was

msgtime = l +message size/b. The program models for each of the NPB benchmarks

were created by hand and were parameterised by the number of iterations i, the total

2.24. GAUTAMA 49

number of operations required to complete the benchmark m, and the grid size used by

the benchmark. The overall time for a benchmark could then be calculated by:

time = m/f + i ∗ comm(n, p, b, l)

where comm(n, p, b, l) represented the total communication time of the code. For exam-

ple, the completion time for the “BT class A” benchmark was modelled by an equation

representing the three communication phases of the algorithm:

6 ∗msgtime ∗ (√p− 1) ∗ n2

p
∗ 2 ∗ 5 ∗ 8

+3 ∗msgtime ∗ (√p− 1) ∗ n2

p
∗ 2 ∗ (25 + 5) ∗ 8

+3 ∗msgtime ∗ (√p− 1) ∗ n2

p
∗ 2 ∗ 5 ∗ 8

A verification of this model using four nodes and Fast Ethernet was presented. The

model predicted overall run-time to within 30%. However, the analysis of the situation

was questionable because the modelled situation was dominated by computation, which is

relatively easy to model accurately, while the communication cost, which is more difficult

to model, was severely underestimated. Importantly, the analysis process would tend to

underestimate the communication cost even more if the number of nodes were increased.

2.24 Gautama

The low-cost performance analysis techniques developed for PAMELA by van Gemund

(see Section 2.20) had assumed that model parameters were deterministic. This assump-

tion ignored the fact that data-dependencies could significantly alter program execution.

Schopf and Berman [313] had shown that the use of stochastic values for model parameters

could give far more insightful predictions of parallel program execution time than single

point values. In 1998, Gautama [136] added statistical distributions to the PAMELA

performance modelling approach, although it was primarily focused on PAMELA’s se-

rial constructs rather than its parallel constructs, which were too difficult to analyse.

Gautama characterised the probability distribution function (PDF) of model parameters

using statistical moments including mean, variance, skewness and kurtosis. His treatment

was mainly mathematical and did not focus on the sources of variability for the distribu-

tions. Instead, his raw data were obtained from trace-driven simulation over many runs of

manually instrumented source code. While Gautama’s work was not focused on parallel

performance modelling, the notion of generating performance distributions is particularly

relevant to the performance prediction of parallel programs, because parallel programs

tend to exhibit variable performance even more than regular serial programs.

50 CHAPTER 2. PERFORMANCE MODELLING TECHNIQUES

2.25 Tam and Wang

An important part of modelling parallel programs is understanding the communication

network that they use [233, 295, 327, 334, 336]. Tam’s PhD thesis published in 2001 [341]

and a related publication with Wang in 1999 [342] recognised that modern parallel ar-

chitectures were converging towards machines built around collections of general purpose

nodes with local memory, interfaced to each other through a reliable and scalable network.

Taking this into account, they developed a performance model for communication in such

networks. In their model, costs were induced by data movement through an extended

memory hierarchy, consisting of a node’s local cache and memory, and remote memory

based at other nodes. A detailed investigation was made of the common physical and op-

erating system processes that supported this data movement. The data movement from

a sender’s memory to a receiver’s memory was abstracted by three phases. In the first

of these, send time Os was characterised by the expression Os(m) = κs + τsm where κs

accounted for any initial operating system queueing overhead and τsm accounted for the

time associated with buffer copying a message of size m. In the second phase, transfer

time L through the network was modelled using the costs associated with connection

setup and finite bandwidth. Contention in the network was modelled by introducing a

send gap gs between output packets from a node, as well as a minimum service time at

network routers gr. In the final phase, asynchronous receives were characterised using

Or, which was analogous to Os for the send time, plus Ur which represented the time for

the receiving process at user level to access the new data using a polling scheme, or to

un-block and wake-up. To test their modelling system, models of a gather operation [342]

and complete exchange operation [341] were constructed. In contrast to existing models

of point-to-point message-passing performance, Tam and Wang’s detailed studies showed

that the overall execution times for these collective operations are dominated by network

contention and congestive packet loss, the effects of which are very difficult to quantify.

2.26 Kranzlmüller and Schaubschläger

The only substantial attempts to tackle head-on the problem of simulating non-determinism

in message-passing programs seem to have been performed by Kranzlmüller in 1992 [207]

and (extended by) Schaubschläger in 2000 [309]. In general, the dynamic computation and

communication structure of message-passing programs can evolve non-deterministically,

depending on the exact times when messages are sent; these times vary because of proces-

sor speed, process scheduling, processor load, cache effects, memory contention, network

contention, interactions with inherently non-deterministic physical processes, randomly

generated input data (which is common in scientific simulation), or even dynamic program

2.26. KRANZLMÜLLER AND SCHAUBSCHLÄGER 51

structure itself. This last situation introduces a feedback loop, where non-determinism

begets yet more non-determinism. In such cases, non-determinism will obviously play a

critical role in program execution. A very common parallelisation technique that exhibits

this behaviour is the simple master-slave task farm, where the master distributes small

work parcels to slave processes as they become idle.

The most difficult aspect of modelling non-determinism is that it introduces a poten-

tially exponential number of different possible execution paths for any given input data.

This greatly amplifies the risk of many problems, such as deadlock, livelock and race

conditions. Kranzlmüller and Schaubschläger’s work was aimed at automatically testing

message-passing parallel programs for these problems to aid in the debugging purposes.

In particular, they created a NOn-deterministic Program Evaluator (NOPE) that could

record and replay program execution up to points where non-deterministic choice could

occur, systematically make every possible choice, and thereby recurse through all possible

program execution sequences. These executions could then be automatically validated for

the absence of livelock, deadlocks and race conditions. While this work was not directly

related to performance modelling, many of their ideas are extremely relevant here.

In order to determine a program’s computation and communication structure,

Kranzlmüller created an instrumented MPI library that could log the entry and exit points

of all communication routines. Special consideration was given to the crucial points at

which non-determinism could occur. These fundamental points are encountered during

wildcard receives. In contrast to an explicit receive operation where the destination pro-

cess is listening for a message from a specific process, in a wildcard receive the destination

process does not care about the source of incoming messages – it will simply accept the

first message to arrive from any source. Therefore, all wildcard receive operations imply

a point of non-deterministic choice. In order to evaluate every different choice that could

possibly occur in these situations, NOPE checkpoints program execution and, using Lam-

port’s “happened-before” concept of causal dependence [211], systematically selects any

possible inbound message to pair with the wildcard receive. This choice will be recorded

and the program will be allowed to continue; depth-first traversal will eventually yield all

possible execution paths.

Unfortunately, it is completely intractable to actually evaluate all possible program

execution sequences, even for relatively short running parallel programs. Therefore, it is

necessary to try and identify event orderings that are likely to happen and thus prune the

tree of possible execution sequences to test. Schaubschläger recorded the event orderings

of several highly non-deterministic benchmark programs on two parallel machines. He

discovered that despite the huge number of event sequences that could theoretically occur,

only a small number of event orderings were ever observed in practice. For example, for

one application run on an nCUBE-2 with 7 points of non-determinism, hence 7! = 5040

52 CHAPTER 2. PERFORMANCE MODELLING TECHNIQUES

possible execution paths, only 116 of those paths occurred in 10 million runs. In fact, 96%

of the executions resulted in one of only 3 different execution paths. On a heavily loaded

Origin2000 running the same application, 100 paths accounted for 80% of 10 million runs;

for the same machine in an unloaded state, 100 paths accounted for 92% of 10 million

runs. Schaubschläger’s basic conclusion was that network topology and load means that

some messages are more likely to be preferentially received, for example because of the

number of hops required to get from source to destination. Thus, if the communication

time for particular messages could be accurately estimated, that information could be

used to steer NOPE to only evaluate the most probable executions.

To achieve this, Schaubschläger used a modified version of a tool called SKaMPI [296,

297] to try and accurately benchmark the communication performance of the nCUBE-2

and Origin2000. By making measurements using both lightly and heavily loaded networks

he discovered that contention can cause extreme variation in communication times. At

this point he became discouraged and proclaimed that:

“making exact predictions about message transfer times on a heavily loaded

[parallel machine] seems impossible ... this makes predictions hardly possible

and our desired estimations too inaccurate.” [309]

In acquiescence to this setback, fixed latency/bandwidth parameters were chosen to model

message-passing time in NOPE, although Schaubschläger lamented the inadequacies of

that approach.

Finally, it is important to make two points about the direct applicability of this work

to performance modelling. Firstly, it requires message-passing programs to be actually

executed for each possible event ordering that is chosen for simulation; this is immensely

slow. Secondly, the presented algorithms do not handle timestamps accurately during

artificial replay; only information about the ordering of events is preserved. Hence, as it

is, the system cannot be used for performance modelling.

2.27 Magnusson et al.; Hughes et al.

Several tools are able to directly simulate program execution at the instruction set level

of an architecture, and hence determine performance. Simics [228, 359], for example, is

able to precisely simulate complete computer systems including the operating system and

its device drivers as well as user programs on a huge variety of hardware platforms. Sim-

ics is an instruction level simulator that is able to accurately model complex cache and

memory behaviour and out-of-order processing, although it does have some limitations.

Other advantages of the simulation approach are that debugging sessions and performance

analyses are completely non-intrusive, can access arbitrarily detailed information and can

2.28. AN OVERVIEW OF THE APPROACHES 53

be started, stopped or replayed at will. In addition, because Simics exactly simulates

entire computer systems, it is able to simulate complete communication stacks, and hence

multiprocessor parallel computers. It is, however, up to the user to specify timing models

for network transfers, although a default model exists. The default model for network

communication uses fixed latency and bandwidth parameters. While this allows deter-

ministic simulation, it is unrealistic because it does not account for contention. Since

parallel programs are typically heavily dependent on communication performance, more

accurate network models are obviously a necessity for accurate simulation results.

Rsim is another widely used instruction-level simulation tool [183,302]. Unlike Simics,

Rsim does not support full system simulation. It only simulates statically linked Sparc

v9 binaries and ignores the operating system entirely. In its favour, however, Rsim is

able to accurately simulate Instruction Level Parallelism (ILP), multithreading and CC-

NUMA architectures. The default network model used by Rsim is a wormhole routed

2D mesh network, complete with contention and buffer space modelling. Like Simics,

it is also possible to replace the network model with more accurate network simulators.

For example, the SICOSYS communication simulator, which is capable of determining

parallel application performance using arbitrary communication topologies and common

traffic patterns, has been integrated in Rsim (see [286,287]).

While tools like Simics and Rsim are extremely accurate, they have one major draw-

back: they are extremely slow. For example, Simics is only able to simulate applications

at about 1/80 to 1/350 of their native speed, depending on architecture. Because Rsim

also simulates ILP it is even slower and can only simulate applications at about 1/2400

to 1/7100 of their native speed. Obviously these tools run counter to one of the require-

ments of a performance prediction system for designing parallel algorithms: it needs to

be fast. Performance predictions using these tools would take many, many times longer

than actually implementing different algorithms and measuring their performance. These

methods are still useful, however, for accurately simulating application performance on

hypothetical or difficult to obtain parallel machines, albeit slowly. The main reason for

the existence of these tools is to help hardware, operating system and compiler design-

ers optimise the performance of very low level operations – it is not for simulating full

scientific workloads.

2.28 An Overview of the Approaches

The specific performance modelling techniques for parallel programs that have been pre-

sented in this chapter are by no means exhaustive. An enormous number of other general

performance modelling techniques as well as models of specific systems have been pro-

posed, such as those by Blasko [36, 37, 38, 39, 40, 41], Fleischmann [127, 128], Foster [64],

54 CHAPTER 2. PERFORMANCE MODELLING TECHNIQUES

Halderen [158], Juurlink et al. [193, 195], Kerbyson and Nudd and Papaefstathiou et

al. [202, 256, 257, 262, 263, 264], Mohan [246], Moritz and Frank and Al-Tawil [8, 247],

Nelson [253], Nicol [254], Norman and Thanisch [255], Prakash [282, 283], Riley [299],

Shaw [315], Sötz [331], Wabnig and Haring [361], Wen and Fox [367], Worlton [374]

and more [27, 51, 202, 209, 216, 280, 339, 373]. Many further techniques have been pro-

posed [23, 24, 118, 123, 124, 313, 312, 375] to take into account specific problems for the

increasingly abundant class of cluster computers [17,96,175,298,335,362]. Recently, per-

formance models have also begun appearing for programs running on the Grid [133], such

as that of Bu and Xu [154]. The techniques that were presented in this chapter, however,

are sufficient to introduce the difficulties that are involved with modelling the perform-

ance of parallel programs on a wide range of parallel architectures. It is these difficulties

that the majority of the research community have reached consensus on; the plethora of

different solutions that have been proposed merely serve to indicate that the answers to

these difficulties remain to be comprehensively solved. There are four main themes from

this chapter that set the scene for the remainder of this dissertation. These are:

• The properties that a parallel programming methodology must possess to support

efficient parallel programs, namely: the coordination of work assignment and data

placement; the provision of balanced communication; and the ability to overlap

communication with computation. In order to be generally useful, this needs to be

done in an architecturally independent, congruent and descriptively simple manner.

• The sources of performance loss that occur in parallel programs, namely: condition

synchronisation due to static precedence relationships; mutual exclusion, which is

dynamic and includes resource contention at the machine level and critical sections

at the program level; and conditional control flow caused by data-dependencies.

• The characteristics that a performance modelling technique possesses, such as its

generality, expressive power, comprehensibility, accuracy, robustness and cost.

• The fact that no existing performance modelling methodologies are optimal (or even

sufficient) with respect to all of the characteristics listed in the previous point.

While many previous performance modelling techniques for parallel programs were

designed to address various subsets of the important issues listed above, those techniques

are impossible to reconcile into one, generally useful approach, because of their piecemeal

nature. The rest of this dissertation presents a new, unified performance modelling tech-

nique for parallel processing, in particular, for programs that follow the message-passing

methodology. In contrast to previous approaches, this simple-to-use modelling technique

is able to accurately and cost-effectively model all the sources of performance loss in a

parallel program and thus provide programmers with insightful details that will help them

improve the performance of their programs.

Chapter 3

The PEVPM Performance Model

3.1 Introduction

Optimising the performance of parallel programs is significantly more difficult than opti-

mising the performance of serial programs. The main reasons for this are the wide variety

of architectures and associated performance characteristics that parallel computers ex-

hibit compared with serial computers. To a large extent, the asymptotic performance of

serial programs can be optimised for all serial computers during the design phase, and

performance tuning is required only to streamline the program’s execution. In contrast,

creating high performance parallel codes depends intimately on exploiting the specific

characteristics of the machine on which a particular code will run. Unfortunately, there is

already great complexity involved with creating parallel programs, and a parallel solution

cannot be hand-crafted for every architecture. Instead, programmers struggle with the

difficult task of designing parallel programs with the potential to run efficiently on a wide

variety of target architectures. In order to meet this potential, a large burden is left on

the performance tuning phase of implementing an effective parallel solution to a problem.

Despite the best efforts made at the program design stage, most parallel performance

tuning still relies on a “measure-modify approach” [82] because of the difficulties in fore-

seeing the effect on performance of factors such as input data, the number of available

processors and the characteristics of the communication network that connect them. The

measure-modify approach is heavily dependent on making detailed performance measure-

ments of programs during execution and can be an extremely time consuming process,

particularly if it is necessary to repeat this process for many target machines.

Performance modelling provides an alternative to the measure-modify development

process by bringing the focus of performance optimisation for parallel programs back

from the tuning phase to the design phase. This is possible because of the predictive

capabilities of performance models, which empower programmers to make better deci-

sions at the design stage. Of course, the benefits to development of using performance

56 CHAPTER 3. THE PEVPM PERFORMANCE MODEL

models need to be weighed against the costs incurred in their development. Indeed, one

of the reasons that performance models are rarely used in practice is the high cost of

their creation and/or solution. However, while performance tuning is a relatively mature

art, performance modelling is not. There are certainly many advances that can be made

to the theory and practice of performance modelling that would both lower the cost of

model development and increase model effectiveness, thereby enhancing the usefulness

of performance modelling. For example, the cost of model development could be re-

duced by improving the accessibility of performance modelling techniques to the average

programmer, not just experts in performance modelling. Also, model effectiveness des-

perately requires researchers to focus on techniques with sufficient accuracy but without

prohibitive development cost, so that programmers can choose appropriate solutions from

among many alternative implementation possibilities.

This chapter describes a new system for modelling the performance of parallel pro-

grams, called the Performance Evaluating Virtual Parallel Machine (PEVPM), that aims

to address the need for a sufficiently powerful yet generally accessible performance mod-

elling technique. Based on the models discussed in Chapter 2, Section 3.2 explores the

requirements of a performance modelling system, as well as the properties of parallel pro-

grams that make this possible. Section 3.3 clarifies the range of programming method-

ologies and parallel architectures that are of particular (although not exclusive) inter-

est, namely message-passing codes on distributed memory computers. Sections 3.4, 3.5

and 3.6 form the central discussion of this chapter. They explain the fundamentals of

modelling message-passing code, a way of describing the features of parallel code that

are salient to performance, and how to evaluate the performance implications of those

features. Finally, Sections 3.7 and 3.8 summarise the relevance of this technique to other

programming methodologies and to the question of performance modelling for parallel

programs in general.

3.2 Key Features of Performance Models

While the mechanics of the PEVPM modelling technique presented in this chapter do not

simply involve the extension of any existing methodology, the problems and issues that

the PEVPM modelling technique faces have been extensively researched. Because the

PEVPM does not explicitly build upon any previous performance modelling techniques,

this chapter contains few direct references to the prior research discussed in Chapter 2.

Instead, this section summarises the key research ideas that inspired the design of the

PEVPM, in terms of:

• The requirements for a good performance modelling system.

3.2. KEY FEATURES OF PERFORMANCE MODELS 57

• Some postulates concerning the performance properties of parallel programs that

are generally regarded to be true.

• Some provable theorems and corollaries that can be applied to the problem of per-

formance modelling for parallel programs.

These requirements, postulates, theorems and corollaries will be called upon throughout

this chapter to aid in the development of the PEVPM modelling system.

Many early performance modelling techniques for parallel programs were restricted to

a particular architecture, such as the PRAMmodel of Fortune and Wylie (see Section 2.3),

or to a particular programming model, such as the BSP model of Valiant (see Section 2.5).

Because of these restrictions, none of these models enjoy wide-spread relevance today.

Thus:

Requirement 1 A performance modelling technique for parallel programs should be ap-

plicable to any parallel programming methodology and to any parallel machine.

The work of Culler et al. presented in Section 2.8 highlighted that technical and

economic forces are driving parallel computers to cluster architectures. Fulfilling Re-

quirement 1 implies enough flexibility to cope with these architectures, however:

Requirement 2 A performance modelling technique for parallel programs should be par-

ticularly relevant for cluster architectures.

The work of Crovella and LeBlanc, presented in Section 2.15, introduced the benefits

of using completeness and orthogonality properties for performance modelling. Unlike the

non-descriptive performance modelling techniques proposed by Amdahl (see Section 2.2),

Hockney (see Section 2.6) and Grama et al. (see Section 2.9), ensuring these properties in

a modelling formalism allows the sources of performance loss to be modelled in a holistic

way that allows programmers to understand the performance implications of the design

and implementation of their parallel programs. Thus:

Requirement 3 A modelling technique should provide ordinary programmers with insight

into the effects on performance of load imbalance, insufficient parallelism, synchronisation

loss, communication loss and resource contention on their code.

The predictive capability of performance models was shown to be of great value in

the introduction to this chapter. The work of Mehra et al. on Axe, which was reviewed

in Section 2.12, provided an example of the usefulness of tools for answering “what-if”

type questions. Although the models they constructed were very expensive to create, the

accuracy with which they could predict performance on hypothetical architectures and

hypothetical problem sizes enhanced the ability of programmers to design their code right

“the first time”. Hence:

58 CHAPTER 3. THE PEVPM PERFORMANCE MODEL

Requirement 4 Performance modelling techniques should help programmers to accu-

rately answer “what-if” questions about their code at the design stage.

Because of the effort involved with creating models using Mehra et al.’s technique,

or indeed many similar techniques, such as that of Becker et al. (see Section 2.23),

performance modelling during the design process has not found wide-spread use. Instead,

like the techniques developed by Saavedra and Smith (see Section 2.7), Parashar and

Hariri (see Section 2.13), Labarta and Girona et al. (see Section 2.21) or Dunlop and Hey

et al. (see Section 2.22):

Requirement 5 A performance modelling technique should allow the construction of per-

formance models without prohibitive creation cost.

Related to this, unlike the extremely computationally expensive modelling techniques of

Hoare, Milner, Alur and Dill (see Section 2.4) or Magnusson et al. and Hughes et al. (see

Section 2.27):

Requirement 6 A performance modelling technique should allow the construction of per-

formance models without prohibitive solution cost.

As discussed in Section 2.20, van Gemund investigated the idea of a performance com-

piler. This required a program/machine description to be produced in a performance

modelling language. Like the modelling language defined by Mehra et al., van Gemund’s

performance modelling language had syntax for describing loops, limited conditional con-

trol flow and message-passing. Van Gemund went further, however, and developed a

calculus with a set of rules to reduce performance descriptions to simpler models by stat-

ically approximating the effects of dynamic sources of performance loss. This allowed

approximate models to be used for wide-ranging parameter studies where low-cost was

important, or higher accuracy models where high-quality solutions were required:

Requirement 7 A performance modelling technique should support a trade-off between

low evaluation cost and high solution accuracy.

If truly accurate models are required, Gautama showed that the execution time of

code should be modelled probabilistically (see Section 2.24). Although Gautama tackled

this problem for serial problems, the applicability of his research to parallel codes was

very limited. In fact, although techniques to generate performance bounds have been

investigated, no previous techniques have been able to produce probabilistic performance

evaluations of parallel codes. Despite the fact that the variance in the performance of

most parallel programs is bounded (see Postulate 1, shortly), this variance can be quite

extensive. Therefore:

3.2. KEY FEATURES OF PERFORMANCE MODELS 59

Requirement 8 A performance modelling technique should be able to produce models

that describe the variability in performance between runs of a parallel program.

Related to this and briefly investigated by Mraz as well as Tabe et al. (see Section 2.16)

and Clement, Quinn and Steed (see Section 2.17):

Requirement 9 For accurate modelling, the performance of communication primitives

must be treated as probabilistic quantities.

Furthermore, Tam and Wang showed that it is important to look closely at how these

primitives are implemented in order to model them accurately (see Section 2.25). Doing so

requires a detailed evaluation of all the processes that occur in end-to-end communication.

Thus:

Requirement 10 A model of a communication event must include all of the processes

involved in the end-to-end transmission of information, in particular operating system

overhead and buffer copying at either end, as well as transmission time and routing latency

in the network.

Interestingly, Jonkers showed that in many cases, variance in the individual task times

constituting a parallel program usually increases the mean execution time of a program

but leaves the total variance unaffected (see Section 2.19). He found that this was due to

synchronisation in parallel algorithms, and this suggests that:

Postulate 1 The effect of non-deterministic task times during the execution of a parallel

program does not usually affect the control structure of the program but merely increases

the execution time between synchronisation points.

A form of sensitivity analysis described by Singh et al. was presented in Section 2.11.

They noted that characterising the input data set to a parallel code is just as important

as characterising the algorithmic structure of the code itself. They found that the per-

formance of many code structures is stable for different input data sets (of the same size),

so:

Postulate 2 There is scope for estimating the effect of data-dependencies on performance

in many codes.

As discussed in Section 2.14, Skillicorn showed that message-passing systems are con-

gruent. This means that the cost of a message-passing program can be determined in a

composable way from the cost of its pieces, if they are modelled at an appropriate level

of abstraction:

Theorem 1 The performance of message-passing parallel codes can be modelled by mod-

elling the performance of their constituent parts.

60 CHAPTER 3. THE PEVPM PERFORMANCE MODEL

He went on to show that message-passing primitives are sufficiently powerful to describe

all parallel programming methodologies. For example, shared memory operations can be

modelled using send and receive operations; and data parallel operations can be imple-

mented on top of message-passing systems. So:

Theorem 2 A performance model for message-passing codes can be used as the basis for

a performance model for codes written using other parallel programming techniques, such

as shared memory or data parallel programming.

It is crucial to understand the underlying communication primitives of message-passing

parallel programs in order to model such programs effectively. These primitives were

identified by Islam, and enumerated in Section 2.18. Only a handful of primitives are

needed to completely describe even the most complex communication patterns:

Theorem 3 There are only a small number of message-passing primitives that are re-

quired to describe any message-passing parallel program.

Hence, by Theorem 1:

Corollary 4 Only a small number of performance models need to be created to model the

performance implications of communication operations in message-passing programs;

and by Theorem 2:

Corollary 5 Only a small number of performance models need to be created to model the

performance implications of communication operations in all parallel programs.

Adve’s work on performance modelling covered in Section 2.10 showed that a unique

execution sequence is implied if task times are modelled by deterministic task times. In

most cases this allows the basic control structure of a parallel code to be determined stati-

cally. An extension of this concept by Kranzlmüller and Schaubschläger (see Section 2.26)

showed that:

Theorem 6 The control structure of a parallel code can be determined statically and

automatically in most cases, by carrying out small amounts of computation to determine

data-dependencies in most of the remaining cases, and cannot be done in only a very

small proportion of parallel programs (which may still be modelled in abstract ways through

human intervention).

The remainder of this chapter is dedicated to designing a performance modelling sys-

tem for parallel programs that fulfils all of the requirements that have just been listed.

3.3. SCOPE 61

3.3 Scope

The introduction to this thesis in Chapter 1 showed that there are many ways of writing

parallel programs, as well as a large range of parallel architectures that they may run

on. This makes devising a performance modelling technique that is capable of satisfy-

ing Requirement 1, i.e. that a performance modelling technique should be applicable to

any parallel programming methodology and to any parallel machine, a potentially diffi-

cult task. Fortunately, this problem is made more amenable to solution by the fact that

message-passing is sufficiently powerful to describe any parallel program. Hence Theo-

rem 2, i.e. a performance model for message-passing codes can be used as the basis of

a performance model for codes written using other parallel programming methodologies.

Therefore, the performance modelling technique that will be presented in the remainder

of this chapter will focus on modelling message-passing codes. Codes written using other

programming methodologies can be modelled by first translating them to an equivalent

message-passing code, as discussed in Section 3.7.

Interestingly, focusing on the message-passing programming methodology simplifies

the exercise of choosing a parallel architecture that can sufficiently describe all other par-

allel architectures. Hoare’s CSP and Milner’s CCS (see Section 2.4) separately showed

that regardless of the physical complexities that underly any particular parallel machine,

conceptually, a generalised machine that is capable of supporting message-passing pro-

grams needs to support only two tasks: local processing and communication between

processing elements. Therefore, for a performance model, it is possible to abstract over

the architectural details of a parallel machine, instead focusing only on the speed of local

processing and communication events. Of course, it is necessary to evaluate the perform-

ance of these tasks taking into consideration their relationship with each other, which

must be determined from the structure of the message-passing program. Admittedly,

modelling these tasks and determining program structure are complicated endeavours

(that will be covered in the remainder of this thesis), but the important point for now is

this: as long as a performance model is based on the performance of local processing and

the communication between processes, it is applicable to any parallel machine.

There is one important caveat that has not been addressed yet: contention from

unrelated processes, caused by either non-essential operating system services or other

user programs1. The effect on performance of interference from such processes is highly

variable and depends intimately on each program’s specific structure and scheduling.

Hence, incorporating the effect of such processes in a performance model is immensely

complex and can only be even loosely approximated in certain, specific cases [19,375]. The

1Of course, this does not include contention from processes that are related to the program that is
being modelled, for example operating system involvement during communication; understanding the
contention between those processes is critical in understanding the performance of the entire program.

62 CHAPTER 3. THE PEVPM PERFORMANCE MODEL

performance modelling technique that will be presented in the rest of this thesis ignores

this issue entirely, so it is therefore only valid for systems where a parallel program will

have dedicated access to the parallel machine that it is to be run on, and in particular

where only one user process is run on any processor. However, this restriction is becoming

less of a concern because of trends in the way that high performance computing is being

used.

In the past, because of the expense of high performance computing hardware, resources

dedicated to running a single program have been relatively rare. However, with the de-

velopment of affordable high performance computing using clusters [17, 96, 97, 175, 290,

298,335,334,362], whose computing resources and, to an extent, communication resources

can be easily partitioned, single purpose partitions of parallel machines have become far

more widespread (for example, see [161]). This is particularly advantageous because such

parallel machines provide the perfect candidates for performance modelling using only the

performance of local processing and communication events, because architecturally they

are completely independent processing nodes that are connected by a distinct communi-

cation network.

So, to summarise, the primary focus of the performance modelling technique that will

follow is for message-passing codes that run in a dedicated fashion on distributed memory

(for example, cluster) computers. The applicability of this performance modelling tech-

nique to other parallel programming techniques and parallel machines will be discussed

in Section 3.7.

3.4 Modelling Message-Passing Codes

In the previous section it was stated that the performance of a message-passing code on

a parallel computer can be determined from the structure of the code, the performance

of local processing and the speed of communication events. To understand the process by

which this is achieved, imagine an arbitrary execution sequence of an arbitrary message-

passing program on an arbitrary parallel machine. When a processor is performing local

computation, it is acting entirely independently from the rest of the system. This serial

segment of code is amenable to separate performance modelling using traditional tech-

niques. A key point is that the times taken to run segments of local computation are

relatively stable in most parallel applications. The reasons for this and the techniques for

modelling serial segments of code are presented in Section 3.4.1.

The end of a local computation is encountered whenever a processor becomes involved

in a communication operation. For most parallel programs (i.e. those with the statically

defined communication structures identified in Theorem 6) it is at this point that there

is the most potential for non-deterministic program execution to occur. This is because

3.4. MODELLING MESSAGE-PASSING CODES 63

the times taken for communication can be very variable due to the effects of network

contention. Accurate modelling of the effect of this non-determinism in the time domain

is the key to accurately modelling the performance of an entire parallel program. This

can be achieved by modelling each individual communication event separately, based on

properties such as from whence and to where it was sent, when it was sent, its length, and

the number of other messages simultaneously in transit. Section 3.4.2 introduces a tax-

onomy of the communication events that commonly occur in message-passing programs,

and describes how they can be effectively modelled.

The time at which messages are sent, and therefore the number in transit simultane-

ously, are dynamic properties. They are not apparent initially so must instead be derived

from the execution of the program that will have occurred prior to their invocation. Sect-

ion 3.4.3 describes how they are derived using a semi-static approach that combines the

static models of serial computation and static program structure with the dynamic effects

of network contention on the actual run-time structure of a program.

Using this conceptual model of the execution of a parallel program, the unimportant

details of serial computation remain hidden, while the important and variable structure of

the communication between the processes is manifest. Following discussion of the target

computational model, Section 3.4.4 defines a mapping from programming constructs to a

performance evaluation language and Section 3.4.5 discusses how this can be automated.

3.4.1 Modelling Local Processing

There is a large body of literature that addresses the problem of estimating the perform-

ance of serial code. Many techniques [5, 6, 160, 203, 204] are concerned with determining

the asymptotic performance of code fragments and are expressed using complexity anal-

ysis with “big-oh” notation. A big-oh expression is usually used to choose from among

several alternative algorithm choices for solving a certain problem. Although determining

the exact performance of a code fragment requires detailed knowledge of the compiler and

target architecture, it is possible to use big-oh expressions to roughly determine which

algorithms perform best under which situations. To do this a big-oh expression represents

the approximate run-time of a code fragment as a function f of “input size” n, for exam-

ple O(f(n)). The function f represents the rate of growth of run-time for the fragment

given increasing input size. The input size for a big-oh expression of a code fragment is a

reflection of the amount of work that must be carried out.

Usually, the input size for a big-oh expression depends on the size of the data structure

that is being operated on by the associated code fragment, for example array size or the

number of elements in a list. Common big-oh run-times for code fragments are O(1)

(constant), O(logn) (logarithmic), O(n) (linear), O(n2) (quadratic), O(n3) (cubic) and

64 CHAPTER 3. THE PEVPM PERFORMANCE MODEL

O(2n) (exponential). The function f is usually unit-less, so any constants c are ignored,

i.e. O(cf(n)) is equivalent to O(f(n)). Big-oh expressions are transitive, so the big-oh

expression for a succession of code fragments is the summation of the individual big-oh

expressions for each fragment. Furthermore, because big-oh expressions are aimed at the

asymptotic cost of a code fragment, i.e. for large n, low order terms of f are ignored. For

example O(n2 + n) reduces to O(n2).

Of course, accurately modelling the performance of a serial block of code requires

far more effort than merely determining its asymptotic big-oh expression. Instead, the

performance implications of every source instruction need to be accounted for. This can

be achieved by not applying the two rules that are usually applied to big-oh formulae, i.e.

that neither constants nor low order terms can be ignored. Determining the constants of

a big-oh expression analytically is a very complicated task. It can only be achieved for

specific instances of code generated using a specific compiler for a specific architecture.

Even then assumptions must be made about the scheduling and memory management of

the code by the operating system. Assuming that the code has dedicated access to the

CPU and memory (which is a reasonably accurate assumption provided that no other

user programs are running on the CPU), the code’s performance can theoretically be

determined by evaluating the time taken for the assembly language instructions in the

compiled object code [279]. This can be done using instruction timing formulae for the

instructions set architecture, a knowledge of the pipelining employed by the CPU and

an understanding of the memory hierarchy of the architecture. Unfortunately, however,

dynamic program behaviour caused by data-dependencies and conditional statements on

both program structure and caching behaviour can greatly complicate matters. While

some approaches [107] attempt to model these factors, others [366] opt to use statically

approximated cache hit/miss ratios and compiler generated branch prediction coefficients

together with an instruction counting approach.

The last common cause of complication is disk I/O, which is heavily dependent on

a huge range of factors ranging from operating system caching to disk drive geometry.

While disk I/O will not affect the validity of the model discussed in this chapter, for

the sake of simplicity, it is going to be assumed from here on that no local computation

involves significant disk I/O. This also precludes access to virtual memory, i.e. more than

enough core physical memory is assumed to be available.

In the end, the information that is of interest for each serial segment of code is simply

the time that the serial segment will take to complete. Although this can certainly

be determined using any of the methods described above (or even the simulation tools

described in Section 2.27), it is worthwhile to realise that for many parallel programs, it

may be far more practical to simply measure the completion time of some representative

serial segments.

3.4. MODELLING MESSAGE-PASSING CODES 65

3.4.2 Modelling Communication Events

The modelling technique proposed in this thesis calls for modelling each communication

event that a program will run. In the same way that serial segments of code were consid-

ered independently in the previous section, each communication event will be considered

independently. Before delving too deeply into the generalised model of a communication

event, it is important to recognise the implicit assumption that communication perform-

ance is memory-less, i.e. that the amount of data sent in the past does not affect future

performance. While this section provides a rationale for that assumption, a more rigorous

justification can be found in Section 4.7, which demonstrates the statistical independence

of a series of identical performance measurements.

In order to build a general performance model of a communication event, it is necessary

to consider all the possible messages that could occur. The first step towards developing

this model is to broadly identify the different types of messages that may be used. Since

the scope of this model is the message-passing paradigm, this is a relatively straightforward

task. Because all message-passing implementations, for example MPI, PVM and the Ada

rendezvous mechanism [352], support essentially the same set of operations, any one

implementation can be chosen as a reasonably representative programming system. Since

MPI is the most widely used message-passing system, it will be considered here. Now,

determining the types of messages that may be used simply involves studying the functions

that are defined in the MPI specification.

There are 125 functions defined by the MPI specification [240]. These functions provide

programmers with a vast array of tools for tasks such as instantiating a set of processes,

creating data types, specifying communication topologies and performing communication

and synchronisation. Fortunately, not all of these functions have significant consequences

for modelling the performance of a communication event. In fact, it is only the functions

that perform communication or synchronisation that need to be considered.

The communication functions in MPI are commonly divided into simple sends and

receives, and collective operations. A simple send and receive involves a point-to-point

communication from one process to another. Several different send/receive protocols

are defined in MPI, which offer various levels of performance, flexibility and robustness.

There are standard blocking sends and receives, ordered sends and receives, combined

sends and receives, buffered sends and receives, and asynchronous sends and receives.

Based on performance characteristics alone, most of these can be treated the same. Both

ordered sends and receives as well as buffered sends and receives are mainly used to ensure

correctness in a program. For example, buffered sends and receives give a programmer

more control over the transmission process than standard sends and receives by allowing

them to use explicitly allocated buffer space. However, these functions perform exactly

the same as the standard send and receives, provided that there is enough buffer space

66 CHAPTER 3. THE PEVPM PERFORMANCE MODEL

available. So, ignoring the issues associated with program correctness2, it turns out that

for performance modelling there are only four point-to-point operations that need to

be modelled. These are blocking sends, non-blocking sends, blocking receives and non-

blocking receives. Both varieties of send can be modelled in a very similar way, as can both

varieties of receive. In fact, either type of send can be matched by either type of receive.

Although the inherent performance difference between a synchronous or asynchronous

operation is negligible, their semantic differences completely change the way they need

to be interpreted by a program, with vast potential for affecting program performance.

Separate models for each of these four operations will be discussed shortly.

Collective operations in MPI are a convenient way of instructing a large group of pro-

cesses to participate in primitive but large-scale operations. These can be either data

movement, synchronisation or collective computation (reduction) operations. The data

movement operations are designed to provide a descriptively simple means of distributing

data (usually called scattering data) among processes and collating data (usually called

gathering data) from many processes. This allows programmers to use one function call

to gather or scatter data, rather than using a large number of point-to-point operations to

achieve the same effect. For example, one MPI Broadcast call can be used to send a com-

mon piece of information from a source process to all other processes, rather than sending

it to each process individually. The synchronisation operations, for example MPI Wait

which synchronises on the delivery of a point-to-point message or MPI Barrier which

synchronises a group of processes, provide a means of ensuring precedence relationships

within a parallel program. Lastly, there are the collective computation operations, which

are similar to gather operations, but include data reduction based on the results of a small

amount of computation. Commonly used collective computation operations are minimum,

maximum, sum, etc, which are used to find the minimum, maximum or sum, etc, of data

contained at each process. Once again, operations like this allow a programmer to specify

a large-scale operation in a simple way that avoids the need to use a large number of

individual send and receive operations.

Now, although a (very) few parallel machines have specialised hardware that can

enable them to execute some of these collective operations in an atomic manner, most

parallel machines do not. Even in the event that a parallel machine may have special

hardware to accomplish this, it must be supported by the machine’s MPI implementa-

tion. Since almost all MPI implementations are based on reference designs that do not

support this, very few systems have this capability in practice. Instead, the vast ma-

jority of implementations deconstruct collective operations into individual point-to-point

2Evaluating correctness in parallel programs presents very difficult problems, and is a related but
distinct field of research. Although issues of program correctness are largely beyond the scope of this
thesis, some properties of this modelling process may lend themselves to use in that field. These are
briefly discussed in Section 3.6.

3.4. MODELLING MESSAGE-PASSING CODES 67

operations. (In the rare cases where specialised hardware is available and utilised, a spe-

cial purpose model should be built to accommodate it). Therefore, from a modelling

perspective, the performance of a collective operation can usually be modelled using the

performance models of point-to-point operations. This is, of course, provided that it is

possible to model how an implementation will describe a collective operation in terms

of point-to-point operations. Fortunately, because collective operations are conceptually

quite primitive, yet designed to operate over a large number of processes in an efficient

manner, they exhibit very structured communication patterns. Given little more than a

knowledge of the total number of processes involved, and the source process of a message

for scatters or destination process of a message for gathers, it is usually possible to deter-

mine how a collective operation will be constructed from point-to-point operations. How

this can be done is discussed in Chapter 5.

To summarise the preceding paragraphs, all of the communication in a message-passing

parallel program is ultimately produced by a point-to-point operation. Furthermore, the

only distinct varieties of point-to-point operation that need to be considered for perform-

ance modelling purposes are synchronous sends, asynchronous sends, synchronous receives

and asynchronous receives. Therefore, performance models of only these operations are

required to create a basis for modelling the performance of any communication that can

occur. Having established the types of calls that need to be modelled, the next question

becomes how should this be done? To answer this, it is necessary to understand the

processes that occur during message transmission and reception.

An example of a common communication pathway for a message sent from one process

to another is shown in Figure 2, although some of these steps may be absent in systems

that have special support for message-passing. The figure shows a message moving from

the user-space program, through the MPI library to the operating system for transmission

via the host’s network subsystem. At any of these points there is the potential for the

message to be buffered, and possibly for control to be returned to the calling process,

while the message is dealt with asynchronously. Once the message has been delivered to

the operating system, it will undergo further processing by the network protocol stack

(for example an IP stack [281, 337]). At this point the network interface card will be

instructed to fetch the data from wherever it is in memory and to place it on to the

external communication network. Up until now the data may have traversed the local

bus, such as a PCI bus, several times. Within the scope of using a dedicated paral-

lel machine with uniprocessor nodes, a process will only contend with operating system

functions conducting message-passing for access to local resources such as memory. This

may cause some small delays due to processor or memory contention if communication is

overlapped with computation. However, when the message enters the external communi-

cation network (or similarly, the internal communication network of an SMP node), there

68 CHAPTER 3. THE PEVPM PERFORMANCE MODEL

User program message-passing call

MPI library

OS kernel entry

Packet Transmission

COMMUNICATION NETWORK

Connection establishment

Message buffering

Packet segmentation

Packet routing

head of queue
blocking, crossbar
arbitration, etc ...

COMMUNICATION STACK

Figure 2: The pathway for a point-to-point communication between two MPI processes
on different nodes. The sending process is on the left and the receiving process (which
mirrors the communication stack of the sender) is on the right.

is much more potential for contention. This is because it becomes increasingly difficult

to provide full-speed point-to-point links between processors as the number of connected

processors grows, and at some point the communication network will begin degrading

towards a shared medium. When this happens messages will begin to experience delays

through the network because of contention for the shared communication resource. Once

the message arrives at the destination host, it follows the reverse chain of events that

occurred at the source, and it finally arrives for the user program to process. This entire

process is obviously quite complex and modelling every step of the process individually

would be quite difficult and extremely time-consuming (although it can be done; refer

to Section 2.27). Fortunately, this does not need to be done because the communication

pathway is connected end-to-end. This means that the entire multi-stage process can be

quite accurately described by an equivalent single stage model.

For synchronous messages, all that is necessary for performance modelling processes

is to determine the overall time that a message will take to move through the entire

communication pathway, since this is how the entire process appears to the user pro-

gram. Because contention may occur during the transmission process, this cannot be

modelled by a single value, but must be modelled in a probabilistic manner. A slight

3.4. MODELLING MESSAGE-PASSING CODES 69

variation on this model is needed for asynchronous messages, because programmed con-

trol may be returned to the calling user program before a message has successfully been

delivered. For an asynchronous message, there are three distinct phases that are visible

from a calling MPI program. These are send phase at the source process, transmission

through the communication network, and the receive phase at the destination process.

An asynchronous send will queue a message for delivery and then return control to the

user program. The local completion time required for this phase is mainly dependent on

message size, cache/memory speed and message-passing implementation. On processors

with dedicated memory bus access, the contention and hence performance timing varia-

tion encountered in this stage will be small. On other systems, notably commodity SMP

systems with a shared memory bus and where outgoing messages are buffered by the MPI

implementation or operating system’s network stack, more contention and hence more

performance variation will be observed. In order to take this into account, the queueing

time to initiate the asynchronous send must be modelled as a probabilistic value. Likewise

the most contention-susceptible phase, transmission through the external communication

network, it must also be modelled by a probabilistic value. Its value may be inferred from

the time it takes for a complete synchronous point-to-point transmission minus the time

required for the send and receive phases attached to each of its ends. The time required

for an asynchronous receive must be modelled slightly differently from an asynchronous

send. When used correctly, an asynchronous receive must be applied in conjunction with

operations that either wait for the transmission phase to end, or test whether it has fin-

ished. In the latter case, if the transmission phase has not finished, more computation

may be carried before testing for completion again, etc. Therefore, while the local com-

pletion time of an asynchronous receive operation must also be modelled as a probabilistic

value, account must be taken of whether the data transfer has completed or not. The

three phases just described are shown in Figure 3, labelled as tq−isend, ttransmission and

tirecv respectively; the figure also shows the complete end-to-end completion time for a

synchronous send, labelled tsend, which is what is commonly referred to as the latency of

a message-passing operation.

As well as showing the relationship between the models for synchronous and asyn-

chronous messages, Figure 3 gives hints about how contention affects the completion

time of a point-to-point message. The figure shows the component and total probability

distributions of the time a message will take to make its way through different parts of

the communication pathway. For each distribution, there is a distinct lower bound to

completion time, which depicts the performance of a message that (by chance) avoids

any contention at all. Each distribution then rises smoothly because of the effects of con-

tention (the particular distributions that may occur are discussed in detail in Section 4.7

of the following chapter) and tails off towards infinitely slow completion. Because the

70 CHAPTER 3. THE PEVPM PERFORMANCE MODEL

0 0

tq-isend ttransmission

0

tirecv

0

 tsend
("latency")

Figure 3: Three phases of point-to-point communication are visible to message-passing
programs: the time to asynchronously process an outgoing message (tq−isend), the trans-
mission time through the communication network (ttransmission), and the time to process
the incoming transmission (tirecv). The completion times of each of these phases individu-
ally, or all together (tsend), are inherently variable due to contention, and can be described
by probability distributions. For each distribution shown in the figure, the horizontal axis
represents the times that a communication phase may take, with associated probabilities
shown on the vertical axis.

three phases are connected in series, the overall probability distribution that describes

the end-to-end completion time of the entire communication pathway is described by the

convolution of the three probability distributions.

To understand the probabilistic interpretation of contention it is important to re-

examine the cause and effect of that contention at both microscopic and macroscopic

levels. At a microscopic level contention is caused by two or more competing processes

trying to gain exclusive access to a shared resource. In the case of the communication

network, this is affected by the exact number and exact timing of all the messages in the

network. Although any particular situation will ultimately result in an exact sequence of

events, it is a finely balanced chaotic system so this sequence of events cannot be pre-

dicted reliably. However, the possible outcomes of contention delays are well-described

by probability distributions at a macroscopic level. This proves to be the saving grace for

bottom-up modelling of the macroscopic performance of high performance computing ap-

plications because they typically involve a very large number of messages. Essentially, us-

ing a probability distribution to describe message-passing time macroscopically simulates

the dynamic and microscopically unpredictable performance implications of contention.

3.4. MODELLING MESSAGE-PASSING CODES 71

3.4.3 Combining Processing and Communication Models

This section describes a framework that can be used to construct an overall model of a

complete message-passing code, i.e. one that consists of many segments of local processing

connected by many communication events. To construct an overall model of any given

message-passing code involves two broad problems. Firstly, there is the issue of which

submodels of local computation and message-passing need to be generated. Secondly,

there is the problem of how these many submodels should be coalesced into an overall

model describing the performance of the entire code.

As was explained in Section 3.4, the boundaries between submodels occur wherever

a communication operation is encountered. Since the platform of interest here is MPI,

submodels must be generated every time an MPI operation that induces communication is

called. There is a subtle but crucial point that must be taken from the previous sentence:

the submodels are separated by MPI operations at run-time, not in the source code. For

example, consider an MPI Send operation within the body of a loop that is called many

times. At the source code level, the MPI Send only divides the code into two sections,

but at run-time there are many unique MPI Sends. It is these many sends that form the

boundaries for submodels.

It was explained previously that the most potential for non-deterministic behaviour in

message-passing programs is caused by the variable performance of communication due

to contention. Since any non-deterministic execution can have an enormous impact on

program performance and execution structure, the modelling system must account for

this. Furthermore, because non-determinism is a dynamic property, it must be modelled

in a dynamic way. Coupling this realisation with the necessity of submodel division

at dynamically determined points in program execution, it becomes clear that a wholly

static modelling technique is insufficient. Still, static modelling is achievable at the level of

individual submodels, so the submodels are treated statically because of the lower solution

requirements that this affords. However, while the submodels themselves are constructed

in a static fashion, the initial conditions that they are developed from are based on a

dynamic notion of program state. This is why this modelling technique was described

earlier as a semi-static approach.

The dynamic program state that is used as a basis for creating static submodels of local

processing and communication is provided by a virtual machine. The virtual machine,

which is described in Section 3.5, does this by maintaining a representation of the state of

the program and the parallel machine that it is running on. Then, when either a segment

of local computation or a communication operation is encountered, the stored state is

used to create a submodel of the computation or communication. This entire process

can be considered as a form of partial execution that only performs work to evaluate

the dynamic execution structure of the program, and hence program performance. This

72 CHAPTER 3. THE PEVPM PERFORMANCE MODEL

exemplifies a goal of the modelling technique, namely Requirement 6, that a performance

model should require as little effort as practicable to evaluate.

So, combination of the submodels of serial computation and communication events

is done in a dynamic manner. It depends only on knowing what local computation will

occur until the next communication event is processed and the details of that particu-

lar communication event. Therefore, before describing the algorithms that are used to

combine the submodels (in Section 3.5), it is necessary to examine how these instruction

streams that describe local computation and the immediately following communication

event can be determined.

3.4.4 The Modelling Formalisms

The main simplifying abstraction used by the PEVPM so far is that the execution of

a message-passing code follows a statically determinable sequence of events between

message-passing calls. At the boundaries of these statically determinable sequences of

events, message-passing calls are susceptible to contention. Although this contention is

dynamic, its effect on performance can be simulated by using probability distributions of

message-passing performance, and by considering each message-passing call as a potential

source of non-determinism that can affect program execution structure. In order to apply

this performance abstraction to real (or hypothetical) programs in practice, a means of

converting common programming structures into a description of serial sections of code

and message-passing calls needs to be developed.

Because message-passing is built upon the notion of separating data from the in-

structions that process those data (unlike data-parallel or object-oriented programming

paradigms), it is ideally suited to procedural programming languages. For this reason,

message-passing libraries are almost universally developed for such languages, and in

particular for C, C++ and Fortran. Although the correlations between programming

constructs and model descriptions that are about to be discussed hold equally well for

any procedural language, the C programming language will be used here to facilitate the

discussion.

There are only a handful of programming constructs that provide the basic utility of

any procedural programming language. These are simple and compound statements,

loops, conditional statements and subroutines. For the purposes of the performance

model that has been developed in this thesis, message-passing calls must be considered

separately. This does more than simply create the need for a means to describe these

message-passing calls individually. It also affects the way that the other programming

constructs (other than simple statements) must be considered, because message-passing

calls can occur in the body of those constructs. While these constructs can traditionally

3.4. MODELLING MESSAGE-PASSING CODES 73

be modelled as single entities, if they contain message-passing calls then the modelling

abstraction that has been developed in this thesis requires them to be divided into multi-

ple entities that are separated by message-passing calls. The rest of this section presents

models for each of these programming constructs and any associated message-passing.

Simple and Compound Statements

In C, a simple statement is an expression followed by a semicolon. Expressions are a

sequence of operators and operands that are used to perform computation. For example,

consider the code:

z = a + b;

This entire fragment of code is a simple statement, where the expression z = a + b has

operands a and b operated on by the + operator. Simple statements are (essentially)

directly translated into object code during the code generation phase of program com-

pilation. The assembly language instructions that are used by compilers to implement

simple statements have very explicit execution timing which can be determined from the

Instruction Set Architecture (ISA) of the target machine. For the purposes of the perform-

ance model being developed, the time of a simple instruction can be trivially modelled:

T (simple statement) = tsimple statement

In this equation, T takes a simple statement and computes the time tsimple statement it

requires from the instruction timing formulae specified in the ISA of the target machine (or

alternatively, this may be achieved empirically by measurement). Since the performance

of multiple simple statements is transitive, compound sequences of simple statements can

be used to reduce the computational requirements of the model:

T (compound statement) = tsimple statement1 + ... + tsimple statementn

So far, this is really only a more explicit description of the well-known performance mod-

elling techniques for simple statements described in Section 3.4.1. However, a slight

modification is needed to account for the variable performance of message-passing. Even

though message-passing calls could be considered as a form of simple statement in that

they merely represent a data access (albeit a remote data access), they cannot be rolled

into compound statements for modelling because they are the essential boundaries be-

tween submodels that are imposed by the PEVPM system. Instead, if a message-passing

call falls in the middle of a block of serial computation, this must be modelled by three

separate submodels. For example, the code:

74 CHAPTER 3. THE PEVPM PERFORMANCE MODEL

// serial segment 1

z = a + b;

z = z + c;

...

z = z + n;

MPI_Send(&z, ..., from, to, ...);

// serial segment 2

y = y - m;

y = y - l;

...

y = y - d;

must be modelled as:

T (overall segment) = Tserial segment1 + TMPI Send + Tserial segment2

Modelling the code listed above in this way is necessary because the completion time of

the MPI Send call (TMPI Send) is dynamic, depending on the level of network contention

that is present when it is called. Using this technique, the start time of the MPI Send

call is retained in the model. This information is required when determining the number

of other messages simultaneously in transit, which will be used to dynamically select

an appropriate probability distribution for the performance of the MPI Send call. The

performance models for various MPI operations are examined in detail in the following

chapter, but for now they can be generalised as:

T (MPI operation) = tMPI operation(type, when, size, from, to)

Here the time tMPI Operation for a specific MPI call is determined dynamically from the

state of the virtual machine, introduced in the previous section, based on the type of the

call, when it was initiated, the size of the communication, where it was sent from, its

destination and the level of contention in the communication network.

A minor side track is necessary here to explain why the model described above was

chosen rather than considering message-passing calls as subroutines. Although, strictly

speaking, message-passing calls are subroutines, the subroutine models used in this tech-

nique (which will be covered shortly) are intended for the user program level. They are not

necessary for the majority of library functions because such functions provide the illusion

of simple statement performance. These library functions, such as MPI communication

calls, can be better modelled as quasi-simple statements, i.e. their completion time can be

“looked up” in an analogous way to the instruction timing formulae of simple statements.

3.4. MODELLING MESSAGE-PASSING CODES 75

However, unlike simple statements they may depend on a number of parameters where

no simple mapping between source code and completion time exists. Instead, rather than

simply looking up the completion time of library calls in a table, the completion time

of these quasi-simple statements must be computed by some special purpose model such

as that described above. Some examples of commonly used HPC library functions other

than MPI operations that could be modelled in the same way are math library calls or

optimised sorting routines.

Loop Constructs

The next programming construct to be examined is the loop. Loop constructs provide

programmers with a concise way of repeating a series of statements, either across a range

of values using a for loop, or as long as some some condition remains true using a while

loop. A pseudo-code fragment containing a basic example of each type of loop is shown

below:

for (i = 0; i < n; i ++) {

// loop body

...

}

...

while (c) {

// loop body

...

}

Generally speaking, for loops are used in situations that demand an explicit amount of

repetition, for example processing all the elements of a data structure in order. Conversely,

while loops are used where a statically indeterminate amount of repetition must be carried

out, for example when applying an iterative calculation that must continue until some

specified measure of accuracy is reached. More pedantically, however, either of these

loops can be used to imitate each other (with equal performance) by manipulating the

loop condition and/or by using exit statements. Therefore, the different types of loop

can be considered equivalently provided that they can be transformed to some common

description. From a performance modelling perspective, this common description is simply

the number of loop iterations that will occur and, necessarily in some situations, the

value of the loop condition at the beginning of each iteration. Once these facets of the

loop have been established, the loop can be unrolled [9] and the resultant code can be

modelled accordingly, i.e. it can be modelled as a separate segment of code with its own

interspersed communication, further loops, conditional statements or subroutine calls.

76 CHAPTER 3. THE PEVPM PERFORMANCE MODEL

Also, in situations with fixed per iteration processing requirements, the computational

expense of simulating a highly repetitive loop can be reduced by only simulating the

performance of its first so-many iterations; if the time for each iteration converges to a

steady-state value, the time required to complete the loop can be simulated by that value

multiplied by the number of remaining iterations [107].

As a manifestation of the well known halting problem [350], statically establishing

these parameters for modelling loop behaviour is impossible in the general case. However,

in many situations, and especially in the way that high performance computing codes

are written, it is possible to achieve this. Because of the types of problems that high

performance computing codes aim to solve, i.e. those with very large computational

requirements, they are quite often purpose built to solve very specific problems. More

precisely, they are usually designed to solve problems of a very specific size and to a

very specific accuracy. As a result of these processing requirements, for loop bounds

in such codes are usually quite explicitly defined and do not depend on dynamically

derived values. When this is the case, it is usually a relatively simple matter to statically

extract the loop conditions from the source code, although it can be complicated (but

not impossibly so) if a chain of calculation on static variables is used by the programmer

to specify loop bounds. If this is not the case, one of two simple fall-back strategies

must be applied. Firstly, since the human in charge of the model building process may

possess more insight into the problem than an automatic compiler, he or she could be

prompted to manually specify the loop condition. This could either be a deterministic

condition, or some form of symbolic condition, in which case the condition will remain a

parameter to the final performance model. For example, if neither the automatic compiler

nor human intervention can determine the number of loop repetitions that will occur

when the program is run, it could be modelled by a parameter, say i, that signifies the

number of iterations that will occur. The second strategy is related to this. Rather than

requiring human intervention to parameterise the loop during the model building process,

a loop bounds parameter could be automatically assigned by the compiler. Either of

these approaches are particularly appropriate for while type loops, because the number

of iterations that will be required to satisfy such loops is usually data-dependent and

therefore statically indeterminate. What this means, essentially, is that in any case where

a symbolic performance model results, the problem of loop repetition is being deferred

until model evaluation.

Rather than being problematic, this is advantageous for several reasons. Primarily,

it uncovers important data-dependent model parameters, thus providing a solution that

satisfies Postulate 2, i.e. that it allows the effect of data-dependencies on performance to

be expressed. For example, the input data size will be retained as a parameter to the final

performance model. As another example, consider an iterative code where termination

3.4. MODELLING MESSAGE-PASSING CODES 77

depends on reaching some given value of accuracy. Since this will depend on the input

data, and cannot be determined statically, a useful performance model would identify the

time per iteration. This is exactly what this technique provides, retaining the number

of iterations that will occur as a parameter. Secondly, and related to this, a parametric

model can be subjected to parameter studies to provide insight into program performance

over a range of situations (see Requirement 7).

So, the general modelling formalism for loops is:

T (loop) = tloop body1 + ... + tloop bodyn

Here the completion time of the loop is calculated by unrolling the loop, applying the

appropriate modelling techniques to each iteration i of the loop body in turn to obtain

tloop bodyi , and summing the results. For the common case where the loop body contains

no message-passing calls and performs the same amount of computation per iteration,

this can be optimised to:

T (loop) = tloop body ∗ n

and the resultant performance model may be incorporated with the models for surrounding

code using the modelling technique for serial segments described above.

Conditional Constructs

Many of the concepts that were just discussed for modelling loops are also relevant to

modelling conditional statements. Conditional statements are used to run different seg-

ments of code depending on the value of some condition. In C, this can be achieved

using:

if (c1) {

// segment 1

...

}

else if (c2) {

// segment 2

...

}

...

else {

// segment n

...

}

78 CHAPTER 3. THE PEVPM PERFORMANCE MODEL

This syntax represents the most general form of conditional statement that can exist. It

can express the simplest if-only condition, all the way to (via trivial transformations)

arbitrarily complex switch statements. Semantically, this conditional statement executes

the first segment of code where ci is found to be true. Similarly to modelling loops,

modelling this conditional statement requires the conditions ci to be determined. Once

again, the halting problem makes it impossible to statically establish the value of these

conditions in general. Thankfully, as was the way with loops, the manner in which

conditional statements are often used in high performance computing codes can simplify

this problem in many circumstances. The following paragraphs identify the different ways

that conditional statements can be used within the context of the PEVPM.

The simplest case to deal with occurs where no message-passing functions are con-

tained in any of the conditionally executed code. This is directly analogous to the case

where a loop body contains no message-passing calls, which was discussed above. For

any code where this is the case, modelling the performance of that conditional construct

becomes the responsibility of the local processing model, so traditional performance mod-

els can be used. There are two main traditional methods for modelling the performance

of conditional execution – simulation (for examples, see Section 2.27) and probabilistic

methods (for examples, refer to Section 2.10). Simulation is very accurate but can be very

computationally expensive to evaluate and it requires a specific input data set to generate

a model. Since the performance model being sought here requires both low-cost evaluation

and must generalise to different input data sets, simulation is inappropriate. Probabilistic

methods, however, exhibit exactly these desired features. Probabilistic methods assign

a fractional value to each ci which corresponds to the probability that it will evaluate

true. A performance model is then constructed by summing the run-time of each segment

multiplied by its probability of being executed. Of course, the tricky part of this problem

is determining the probability estimates for each ci.

Putting the problem of determining the probability estimates for ci aside for now,

consider the other case, i.e. where message-passing functions are contained in the body of

a conditional construct. Fortunately, with a few modifications, the probabilistic method

described above is also applicable in these situations. Recall that a basic necessity of the

overall modelling technique is to determine the local instructions that will be executed

at each process until the next communication event occurs. That communication event

serves as a demarcation line between the current state of program execution and all

possible future executions. Only the execution time of the current stream of instructions

is evaluated before a decision is made about the next stream of instructions that will be

executed. That time is then used as a property of the message-passing call, so that an

approximation to the dynamic contention in the system can be made. Therefore, simply

summing the probabilities of each outcome multiplied by the execution time of each

3.4. MODELLING MESSAGE-PASSING CODES 79

outcome to obtain an average execution time is inappropriate. Instead, the probabilities

must be used to randomly (but according to the specified weightings ci) select a specific

execution every time a conditional statement is encountered. This guarantees a unique

instruction execution sequence until the next message-passing event. This is essentially a

form of Monte Carlo sampling (see Fishman [126], Liu [218] or Robert and Casella [300]),

where the outcome sampling is repeated (per conditional construct) during the life-time

of the modelled program (for example when statements are repeated in loops).

The caveat of this technique is that the instruction execution sequence that is being

modelled may not correspond exactly with what will occur in the real system. How-

ever, since the variation in execution sequence in the real program is caused by data-

dependencies, it cannot be modelled statically anyway and the existence of this limitation

is a moot point. Pragmatically, however, what this limitation means is that less confi-

dence can be placed in the performance estimate of a brief execution sequence than a long

execution sequence. In a short execution sequence, the probabilities chosen at random

will have had less chance to converge to their desired values, ci. In a long sequence, how-

ever, it is more likely that the probabilities will have converged to the desired ci values; if

necessary, a statistical error for completion time could be estimated using standard Monte

Carlo techniques, based on uncertainty in the ci values and the length of the execution

sequence. Lastly, this probabilistic approximation to execution sequence closely parallels

the probabilistic approximation to contention that was discussed in Section 3.4.2, and

hence it inherits the same reprieve for high performance applications: by their nature,

such applications are extremely long running, so for any realistic cases, long execution

sequences are intrinsically guaranteed.

Returning to the problem of determining the probability estimates for ci, as with

modelling loop conditions described above, the conditions ci may either be statically

determinate, or statically indeterminate. One extremely common case of a statically

determinable condition is shown below:

MPI_Comm_rank(MPI_COMM_WORLD, &procnum);

if (procnum == 0) {

// code to execute on processor 0

}

else if (procnum == 1) {

// code to execute on processor 1

}

...

else {

// code to execute on all remaining processors

}

80 CHAPTER 3. THE PEVPM PERFORMANCE MODEL

In fact, this is another example of the semi-static nature of this modelling approach. Here,

procnum is not, strictly speaking, a static quantity because its value is not discernible

from the code alone. However, it is not truly dynamic because its value does not change at

run-time3. Rather, procnum is defined semi-statically by the MPI run-time system when

the program is launched. In contrast with the loop conditions, however, in the majority

of cases conditional execution will be statically indeterminate. In these situations, the

conditions will need to be dealt with in the same way that loop conditions are dealt

with, i.e. by prompting the user (who may have more insight into the problem) to enter

either a determinate value or parametric value, or by automatically assigning parameters

to each condition. Once again, this delays the problem of condition determination until

model evaluation, with the same advantages as before, i.e. it retains data-dependent

model parameters in the model and therefore allows parameter studies of performance in

differing circumstances.

In summary of this section, the modelling formalism for conditional statements is

written:

T (conditional) = c1 : tsegment1 | ... | cn : tsegmentn

In this expression the time to run a particular outcome is chosen at random from the

weighted probabilities ci, and then tsegmenti is evaluated as a compound segment.

Functions and Subroutines

The final programming construct that completes the set of structures that are necessary

for writing procedural programs is the subroutine. Subroutines are used as an abstraction

that allows programmers to create simple interfaces to complex or recurring bodies of code.

A subroutine consists of a declarative part that defines how it should be called, a list of

parameters that can be passed to the subroutine, a body of code that is executed when

the subroutine is called, and optionally a return value (in C, a subroutine that returns a

value is called a function). Many examples of subroutines have already been described.

For example, all of the MPI function calls that have been mentioned are functions. At

the time, however, it was noted that those calls (and more generally most library calls)

were going to be considered as quasi-simple statements, i.e. their performance would be

looked up or computed by a special purpose model. That was because such library calls are

mainly used to provide some form of complex but well-defined operation, and are therefore

attractive to modelling as an indivisible entity. More importantly, the code for these

library calls is not intended to be visible to a programmer. Instead, the declarative part

of the library call and the parameter list is intended to give the programmer access to the

3Although in reality procnum is represented by a variable and can therefore be changed, it is intended
to represent a constant quantity at run-time. Changing its value is nonsensical and serves no practical
purpose.

3.4. MODELLING MESSAGE-PASSING CODES 81

functionality of the subroutine without having to worry about its implementation details.

It is impossible, however, to model a user code subroutine in anything but a piecemeal

fashion. At this level, subroutines are used to provide application-specific abstraction

rather than the appearance of a complex instruction. They are likely to contain a large

range of both local computation and message-passing operations in extensive loop and

conditional structures. Therefore, modelling user level subroutines must follow on from

the same modelling techniques that have already been discussed.

Similarly to modelling loops and conditional execution, modelling subroutines in the

general case is fraught with difficulty. Once more, however, the way that subroutines are

mainly used in high performance computing programs simplifies the problem. The main

difficulty in modelling subroutines occurs when recursion is present. Recursion occurs

when one invocation of a subroutine leads to the invocation of the same subroutine before

the original subroutine has finished executing. While understanding about such situations

can be determined using induction, this is a complicated endeavour. Fortunately, although

recursion can produce elegant solutions to some problems, it is rarely used in high per-

formance programs. This is mainly because recursion tends to add significant overhead to

program execution time and alternative solutions can always be achieved without using

recursion. Therefore, rather than provide a complicated procedure for dealing with such

an uncommon and unimportant problem, the possibility of recursion will be excluded

from this modelling technique.

Without recursion, modelling subroutines becomes a trivial problem. Semantically, a

subroutine merely serves to transfer from the source of the subroutine call to the beginning

of the body of the subroutine, where execution continues. When the subroutine completes,

execution returns to where it left off in the calling body of code. Therefore, from the

perspective of the PEVPM, all that is required is to insert the instruction stream from

a subroutine body (up until a message-passing operation occurs) where the subroutine

is called. Thankfully, the ability to do this is possessed by all C compilers by inlining

functions. Therefore, the problem of modelling subroutines can be offloaded to an existing

technique. This is summarised by the formalism:

T (subroutine) = tsubroutine body

Where tsubroutine body is evaluated by applying the rules for a serial segments, loops and

conditional statements to the body of the subroutine.

82 CHAPTER 3. THE PEVPM PERFORMANCE MODEL

3.4.5 Building a PEVPM Model

The previous section formalised a mapping between the basic constructs used in proced-

ural message-passing programming and a modelling language that can be used to describe

their performance. This section builds on that foundation to show how complete models

can be created to describe the performance of entire programs containing many basic

constructs. The C language coupled with MPI will continue to be used as the vehicle for

describing this, although the applicability to other procedural message-passing languages

(including pseudo-code) should be clear.

Two methods for supporting the model building process are possible. These are the

use of an automated compiler [173, 363] to produce performance models from existing

code or a simple pre-processing compiler to interpret programmer supplied performance

directives (for example like in HPF [174] or OpenMP [258]). The idea of augmenting

a code with compiler directives provides an attractive way of developing a prototype

compiler. In contrast to a completely general compiler which requires an extensive set

of rules and associated data structures, the well-structured use of appropriate compiler

directives can support a prototype compiler that requires only simple representations

of general programming structures to be processed. More importantly, there are many

details about program execution that a compiler cannot possibly determine at compile

time, but for which a programmer may have some insight. In addition to this, programmer

insight may allow manually specified directives to focus only on sections of code that have

the potential to greatly affect program performance, thus creating smaller and simpler

models. Although an automated compiler would provide a very useful tool for practical

application to real problems, creating it would require a substantial effort in software

engineering that would not provide any insight into the research questions associated

with the performance modelling of parallel programs. Therefore, an easy-to-parse set

of programmer-supplied performance directives were conceived to facilitate the model

building process. This meta-language that simplifies the translation of program code into

a performance model is described in the following sub-sections.

Since a performance directive is required to simplify the translation process for each of

the programming constructs identified in the previous section, the following discussion will

closely resemble the structure of that section: directives are presented for application to

serial segments of code, message-passing calls, loops, conditional statements and functions

and subroutines. In addition to this, some supplemental directives are needed to represent

the characteristics of the machine that will support the parallel program. These machine-

dependent directives will be examined first, followed by the directives that apply to each

programming construct. All of these directives can also be found in Appendix A.

3.4. MODELLING MESSAGE-PASSING CODES 83

Machine Dependencies

The machine dependent directives are necessary to characterise the processing and message-

passing capabilities of the parallel machine a code will run on. These directives must be

incorporated at the beginning of the source code file containing the main procedure of the

program being modelled. In order to prevent the directives from being interpreted by the

normal C compiler, they must be contained in comment structures. The syntax of the

directives used to define processing and message-passing capabilities are shown below:

// PEVPM Processor description = <processor identifier>

// PEVPM & timing basis = <processor speed>

// PEVPM Network description = <network identifier>

// PEVPM & link <id> = <from> <to> <performance profile>

// PEVPM & ... = ...

The structure of these directives typifies all of the other directives that will follow. A

performance directive is identified by the tag PEVPM at the beginning of a comment line.

This alerts the Performance Evaluating Virtual Parallel Machine (which will be described

in the following section) to the presence of a performance model construct when the source

code is parsed by the performance modelling compiler. Following the PEVPM tag is the

type of performance directive which may be continued on subsequent lines using an &

symbol. In this case, there are Processor and Network directives.

The Processor directive has two attributes. The identifier attribute must be set

to a string which describes the serial processing architecture of the machine, for example

a CPU/compiler/OS triplet. The timing basis defines the speed of the CPU in MHz for

which any serial processing times in the following model are valid (for the given processing

architecture). This flexible approach to describing serial processing capability allows many

performance models using different processor architectures and processor speeds to coexist

in the relevant source file. This can be achieved using several Processor directives, each

with their own unique identifier and timing basis attributes. The Network directive

describes the communication capabilities of a parallel machine as a directed acyclic graph,

where each edge represents an individual link in the communication network, and each

edge is annotated by a performance profile. Each performance profile attribute is

a path that points to a file containing the set of probability distributions that describe

message-passing performance on that link based on message size for a given level of

contention.

When it comes to evaluation, a particular processor architecture, processor speed and

network characteristics can be manually selected in the PEVPM. Alternatively, a Default

directive may be used to specify the default models that should be used for each facet of

the machine model:

84 CHAPTER 3. THE PEVPM PERFORMANCE MODEL

// PEVPM Default processor = <processor identifier>

// PEVPM & numprocs = <number of processors>

// PEVPM & speed = <processor speed>

// PEVPM & speed_i = <processor speed>

// PEVPM & network = <network descriptors>

Notice that there is a default numprocs attribute here that does not correspond to any

attribute of the Processor or Network directives. The numprocs attribute represents

the semi-static number of processors that the code will run on. In the same way that the

number of processors is specified on the command line when an MPI program is launched,

the number of processors must be specified when a performance model is evaluated. The

speed of each of these processors is specified by the speed attribute, although, for het-

erogeneous architectures, this value can be overridden for any processor number using a

subsequent speed i attribute, where i is a number between 0 and numprocs-1.

In addition, the PEVPM assigns a semi-static value procnum to each virtual pro-

cessor numbered 0..numprocs-1 that it instantiates to represent each of the numprocs

processors. Since these pieces of information are critical to the structure (and hence per-

formance) of almost all message-passing programs, the values numprocs and procnum are

exalted above other variables in a program whose performance is being modelled. They

are treated as constants so that a special form of conditional directive can be automat-

ically evaluated. (The general form of the conditional directive is covered below). This

allows the per processor instruction streams that the PEVPM relies on to be constructed

without unnecessary user intervention. An example of this special form of conditional

directive and the program code that it models is shown below:

// PEVPM Runon c1 = procnum < (numprocs / 2)

// PEVPM & c2 = procnum > (numprocs / 2)

if (procnum < (numprocs / 2)){

// run this on the ‘‘bottom half’’ of the machine

...

} else {

// run this on the ‘‘top half’’ of the machine

...

}

The Runon directive takes condition attributes ci that represent the code to run on

each processor depending on the evaluation of the conditional part. The value of the

ci attributes can be either a list of processors, for example 1,2,3,8..10 which would

run on processors 1,2,3,8,9 and 10, or an inequality containing only constants and/or the

semi-static values procnum and numprocs.

3.4. MODELLING MESSAGE-PASSING CODES 85

Serial Processing

Once a processor capability has been defined, the time to execute serial segments of code

can be specified. The syntax of the directive used to model the performance of serial

segments of code is shown below:

// PEVPM Serial [on <processor identifier>] time = <basis time>

This directive contains the Serial keyword followed by an optional on <processor

identifier> attribute and a time attribute. The optional on attribute can be used

to specify an existing processor architecture for which this Serial directive applies.

Since every serial segment can validly be subdivided into other serial segments, a

system for bracketing sections of serial code is needed to ensure that all serial code is as-

sociated with one and only one Serial directive. This requirement is easily met by a com-

bination of the underlying bracket-delimited block structure of C and a convention: every

bracket-delimited code block within a serial segment (i.e. up to conditional, loop or MPI-

call boundaries) must have exactly one Serial directive per processor identifier; which

can be easily verified automatically. Many Serial directives, however, can be attached

to any serial segment of code provided that they are differentiated by their <processor

identifier> attribute. This is important because different compilers/architectures may

produce vastly different assembly instruction streams for a serial segment due to differing

Instruction Set Architectures, compiler optimisations, available libraries, etc. For any

particular processor architecture, the time attribute specifies the amount of time that

the serial segment would take to run on a CPU running at timing basis speed (refer to

the related Processor directive above). By the crude assumption that there is a linear

relationship between serial processing speed and clock speed for any given architecture4

this modelling method allows all speeds of CPU for each modelled architecture to be

roughly catered for. For example, if a Processor directive has a timing basis of 500

MHz but a performance model for a 1GHz processor is required, the value of all Serial

directives must simply be divided by two. Apart from using a <basis time> determined

by using any of the techniques that were covered in Sections 3.4.1 and 3.4.4, the syntax

parameter <parameter name> can be used to introduce a symbolic parameter into the

performance model. This is useful for deferring modelling of the performance of serial

segments of code until model evaluation in cases where the run-time of these segments is

not statically determinable.

4In reality the relationship is non-linear due to bus and memory speeds. Note, however, that it is
particularly accurate for small cache-bound problems because cache access times usually decrease linearly
with clock speed for a given architecture.

86 CHAPTER 3. THE PEVPM PERFORMANCE MODEL

Message-Passing Calls

The next performance directive to tackle is the one that describes a message-passing

event. Any message-passing directive that is encountered implies the end of a segment

of serial computation. The time that the specific message-passing operation described by

such a directive will take to complete is dependent on the type of the call, when it was

initiated, the size of the communication, where it was sent from, its destination and the

level of contention it will encounter in the communication network. With the exception

of contention, which is a dynamic property that must be determined from the state of

the PEVPM (which will be discussed in Section 3.5), this information can be determined

from the program source code. The syntax for this performance directive is shown below:

// PEVPM Message type = <MPI operation>

// PEVPM & size = <message size>

// PEVPM & from = <processor number(s)>

// PEVPM & to = <processor number(s)>

// PEVPM & req/stat = <request/status identifier>

A Message directive consists of a series of attributes that identify the type of MPI op-

eration whose performance is being modelled – for example an MPI Isend, MPI Recv, or

MPI Bcast, etc – the size of that message in bytes, from where the message will originate,

to where the message is being sent, as well as a request/status identifier that will be

used by the PEVPM when it is testing for the completion of asynchronous communication

operations using MPI Test or MPI Wait, etc. The size, from and to attributes can all

be modelled similarly to the time attribute for serial segments, i.e. by using a constant

number, or using parameter <parameter name> syntax. In addition, the source and

destination attributes may be constituted from a simple equation using the semi-static

procnum and numprocs values. Furthermore, in the case of group operations a range of

processor numbers may be specified. For example, an MPI Bcast operation would consist

of a singular from processor and to processors 0..procnum-1. The following two chapters

expand on the details of how the performance of specific MPI operations are modelled.

Loop Constructs

In the previous section, loops were the easiest programming construct to produce a per-

formance formalism for. This maps to a correspondingly simple PEVPM directive, which

is shown below:

// PEVPM Loop iterations = <number of iterations>

Typically, the iterations attribute will be a constant for for-type loops and a parameter

<parameter name> for while-type loops, although some exceptions exist. The exceptions

3.4. MODELLING MESSAGE-PASSING CODES 87

are encountered when conditional statements in the body of the loop are used to manip-

ulate the loop variable. In these cases, a parameter <parameter name> attribute must

be used, and determining the number of iterations must be deferred until the model is

evaluated.

Conditional Constructs

The final PEVPM directive models conditional constructs. For practical reasons, it does

not correspond exactly to the modelling formalism for conditional constructs that was

described in the previous section. Rather than directly specifying the probability of

certain outcomes, a weight is assigned to each outcome. Then the probability of each

outcome is calculated by divided the probability of each outcome by the sum of weights

of all the outcomes. This is more useful than explicitly specifying probabilities because

if conditional outcomes are later added to account for new situations then their weights

may possibly be added such that the dependent probabilities will change appropriately.

The Condition directive is given below:

// PEVPM Condition c1 = <weighting of condition 1>

// PEVPM & c2 = <weighting of condition 2>

// ...

// PEVPM & cn = <weighting of condition n>

Checks and Balances

A useful bonus from using directives to describe the performance of parallel programs

is that any desired elements of an automatic compiler can be added piecemeal. While

PEVPM directives can be included manually, an automated solution could be created

by implementing a compiler to parse the source code and target the constructs of the

PEVPM directive language. As part of this solution, the application of some simple

semantic rules would greatly enhance the robustness of such a compiler. For example,

checks could be made to ensure that every serial segment is preceded by a Serial directive,

every message-passing call is preceded by a Message directive, attributes of Condition

directives correspond to every possible outcome of a conditional statement and so on.

Although no attempts have been made to implement an automated compiler or semantic

checking (because that would be too time consuming and it involves no significant research

questions) it is useful to realise that there are no fundamental hurdles to creating such

valuable tools.

Related to this discussion on the syntactic and semantic checks that could be intro-

duced into the PEVPM system is the question of model validity in the presence of compiler

optimisations. Most optimisations in modern compilers are based on techniques such as

88 CHAPTER 3. THE PEVPM PERFORMANCE MODEL

common subexpression elimination and basic block reordering [7]. Because these proce-

dures are practically impossible to apply across function call boundaries or conditional

statements, etc, the effects of optimisation on this performance model will be confined

to the time attribute of Serial directives. Therefore, using compiler optimisations will

not invalidate a PEVPM model but serial segment submodels will only be applicable

for a particular processor architecture using a particular compiler and any associated

optimisations.

3.5 Automatic Performance Evaluation

Once a performance model of a message-passing code has been created using PEVPM

directives, the implications of that model can be evaluated on the Performance Evaluating

Virtual Parallel Machine. The PEVPM consists of an abstract parallel machine and an

associated set of algorithms that govern the execution of PEVPM directives on that

machine. This combination provides a platform that is capable of reproducing the time-

behaviour (and hence performance) of programs abstracted by the generalised model of

message-passing codes detailed in Section 3.4, i.e. where processors independently run

segments of local computation until they cooperate by exchanging messages. This section

begins by describing the computational basis of the PEVPM, continues on to formalise

the rules that are used to simulate program performance, presents an illustrative example

of how the technique works, discusses the power of the methodology, and concludes by

presenting some situations where it could be usefully applied.

Commensurate with the simplicity of the generalised model of message-passing that

has been described is the conceptual simplicity of the abstract parallel machine that

supports it. The computational basis of the abstract parallel machine is illustrated in

Figure 4, which shows numprocs virtual processors that are capable of serial computation,

each with its own send and receive message queues for communication. However, instead

of executing real code for serial processing or message-passing, the instruction set of this

abstract machine is the collection of PEVPM directives that are detailed in the previous

section. At the beginning of a model evaluation, each virtual processor is provided with

a copy of the entire PEVPM model of the message-passing code, which it then begins

executing according to the placement of Runon directives. Execution progress at each

processor is recorded by a local program counter, which is incremented every time a

PEVPM directive is processed. For example, when a Condition directive is processed

the program counter will move forwards in the directive stream to point at the directive

associated with the outcome of the condition. When a Loop directive is encountered, the

PEVPM directives in the body of the loop are unrolled to meet the loop bounds and the

program counter jumps to the first directive in the first iteration of the loop. For simplicity,

3.5. AUTOMATIC PERFORMANCE EVALUATION 89

PEVPM Directives

PC

procnum = 0

local clock = ...
var1 = ...

var2 = ...

var3 = ...

Sq

Rq

1

n-1

2

"Contention Scoreboard"

link_id1 = contention #
...

Figure 4: The computational basis of the Performance Evaluating Virtual Parallel Ma-
chine is an abstract machine with n virtual processors capable of executing PEVPM
directives, a program counter (PC), send queue (Sq), receive queue (Rq), local clock and
any specially exalted local variables.

it is assumed that neither of these control flow actions incur any explicit time penalty.

While this is usually a reasonable approximation for most message-passing codes, nominal

processing times could easily be associated with these constructs for situations where this

is not the case. Since the time-behaviour of the program is the desired product of this

analysis, each processor also maintains a local clock that is incremented when a PEVPM

directive calls for local processing or a message-passing operation. For local processing

the clock is simply incremented according to the time attribute of the associated Serial

directive. For message-passing operations, the clock is incremented by an amount that is

computed using the performance model for message-passing operations that is described

in the next chapter. Although it is not necessary to understand precisely how those times

are computed for now, the structures on which those calculations rely are pertinent here.

These structures are the send and receive queues that are maintained by each virtual

processor, as well as a global contention scoreboard that maintains an account of the

number of messages in transit throughout the communication network.

Using the computational basis detailed above, the PEVPM employs an iterative two-

phase process to simulate the performance behaviour of a program based on its PEVPM

directives. The first phase, called a process sweep and described by Algorithm 1, simulates

90 CHAPTER 3. THE PEVPM PERFORMANCE MODEL

Algorithm 1 PEVPM Process Sweep

for p in 0 .. numprocs− 1 do
while p.runnable is true do

get p.directive
if p.directive is Condition then

evaluate condition
set p.program counter to branch location

else if p.directive is Loop then
unroll loop
set p.program counter to first loop location

else if p.directive is Subroutine then
inline subroutine
set p.program counter to start of subroutine

else if p.directive is Serial then
get time
increment p.local clock by time
increment p.program counter

else if p.directive is Message then
get type
if type is MPI Isend or MPI Irecv then

get size, from, to
increment p.local clock by local completion time
push (type, size, from, to, p.local clock) onto p.send/recv queue
increment p.program counter

else if type is MPI Send or MPI Recv then
get size, from, to
push (type, size, from, to, p.local clock) onto p.send/recv queue
increment p.program counter
set p.runnable to false

else if type is MPI Test or MPI Wait then
get from, request/status
if request/status.completed is true then
if type is MPI Wait then

set p.local clock to request/status.match time
end if
set “flag” to true
increment p.program counter

else {currently unknown}
push (type, from, request/status, p.local clock) onto p.recv queue
increment p.program counter
set p.runnable to false

end if
else {end of input}

set p.runnable to terminated
end if

end if
end while

end for

3.5. AUTOMATIC PERFORMANCE EVALUATION 91

Algorithm 2 PEVPM Match Sweep

set match time to ∞
for p in 0 .. numprocs− 1 do

sort all unmatched p.send queues into g.send queue by local clock
sort all unmatched p.recv queues into g.send queue by local clock

end for
set s to head of g.send queue
set r to head of g.recv queue
while r is not NULL and then r.from.runnable is false do

get r.type
if r.type is MPI Test then

get r.from
set r.completed to false
set r.from.runnable to true

else if r.type is MPI Wait then
set r to successor in g.recv queue

else {r.type is MPI Recv}
get r.from, r.to, r.size, r.local clock
while s is not NULL and then s.local clock < match time do

get s.from, s.to, s.size, s.local clock
set s.arrival time using s.∗ and contention scoreboard
if s.to is r.from and s.arrival time < match time then

set match from to s
set match to to r
set match time to s.arrival time

end if
set s to successor in g.send queue

end while
if match time is not ∞ then
if match from/to.type is blocking then

set local clock of match from/to to match time
end if
set match from/to.completed to true
set match from/to.runnable to true

end if
if r.from.runnable is false then

set r to successor in g.recv queue
end if

end if
end while
if r.from.runnable is false then

set all r.from.runnable to deadlocked
end if

92 CHAPTER 3. THE PEVPM PERFORMANCE MODEL

the processing that will be performed by all processes until they reach their next decision

point, i.e. a message-passing call that signifies the end of a segment of local computation

by that process. The second phase, called a match sweep and described by Algorithm 2,

searches for the path that further processing will take by identifying the earliest decision

point from all processes, known as the pivotal decision point, and deciding what will occur

at that point. Chaining the decisions made by successive process/match sweeps simulates

the entire execution structure of the program.

An evaluation begins by following the thread of control on the first processor: the

program counter steps through PEVPM directives until a decision point in execution

structure is encountered. Until this occurs: 1) the execution structure of the process is

evolved according to Condition, Serial, Subroutine and MPI Wait directives; 2) the

local clock is incremented in concert with Serial directives or by submodels for the

local completion time of asynchronous message-passing calls; and 3) any communication

events are placed on the local send or receive queue as appropriate. At any point where a

parameter <parameter name> attribute is encountered, execution is suspended while a

higher authority is consulted for the value of the parameter. In most cases this symbolises

user intervention, although in some cases it may be possible to infer the value of the

parameter from the special variables stored in a process description. When a decision

point in the control structure is encountered, e.g. a directive symbolising an MPI Send or

MPI Recv operation is reached, further evaluation of that process is postponed by setting

p.runnable to false and evaluation skips on to the next process. Directives symbolising

MPI Test or MPI Wait operations also imply a decision point in the control structure: in

correct programs they are required to test and “flag” the arrival (or non-arrival) of non-

blocking message-passing operations. Inevitably, this boolean information will eventually

be used to determine the progress of the process involved. Although this must occur in a

conditional statement and could hence be dealt with by its associated Condition directive,

it is sensible to suspend the process sweep at this point. This is because the arrival of

that message cannot be determined until a match sweep has been completed. If complete

process/match sweeps are allowed to occur, the arrival of this message will eventually

be automatically determined and the result can be fed back into the modelling system,

absolving the user in charge of the modelling process from parameter-like intervention in

these situations.

A minor addendum is necessary to explain why non-blocking operations need to be

treated differently to blocking operations. Consider the example show in Figure 5. This

example shows a simple interaction between three processes in which deadlock would

occur if blocking send operations were used. However, this program would complete if

non-blocking send operations were used. Since these are both legitimate (and in fact, com-

mon) ways in which message-passing is used, the PEVPM must behave in a semantically

3.5. AUTOMATIC PERFORMANCE EVALUATION 93

time

P0 P1 P2 P3

S

S
R
S

R
R

computation

anything

message-passing

send

receive

S

R

Figure 5: An example interaction between three processes in which deadlock would occur
if blocking send operations were used; the disposition of the PEVPM to deadlock-or-not
must be the same as the actual programming model.

identical way. Essentially this requires that all possible send and receive operations are

identified during a process sweep so that the match stage can be guaranteed to complete

correctly. This is achieved by allowing a process sweep to continue when non-blocking

operations are encountered.

Related to this, and as will be seen in Chapter 4, many MPI implementations split

long messages into a series of smaller messages to minimise buffering requirements. This

can significantly affect the overall message-passing time that is visible to user applica-

tions. Although these performance effects are implicitly accounted for in PEVPM models

through the benchmark results that are used as inputs, it is also possible to expose such

effects explicitly. For example, if a particular MPI implementation’s transmission strat-

egy is known (via source code, documentation or the detailed examination of benchmark

results) then that strategy can be simulated accordingly by special purpose models.

Once all processes have completed a process sweep, the second phase match sweep is

initiated to determine the result of the earliest decision point that occurs for any process.

This is the only decision point that can be solved during this match sweep because its

outcome can affect any of the future decision points, as shown in Figure 6. The match-

sweep line divides the execution progress into known events and unknown events. Clearly

the earliest unmatched receive, i.e. the one posted by process P3, can only be matched

by the message labelled “1”. However, the match at process P2 cannot be made until all

possible sends that could match it have been discovered during a prior process sweep, i.e.

the messages labelled “?”. Therefore, once a match has been made the match phase is

terminated and a new process sweep is begun. How a match is made depends upon the

type of operation that is at the head of the global receive queue. If it is an MPI Test

operation then the fact that processing did not continue during the process sweep means

94 CHAPTER 3. THE PEVPM PERFORMANCE MODEL

time

S

S

S

R

S

T

S

R

P0 P1 P2 P3

R

S

1

?

?

computation

anything

message-passing

match-sweep line

send

receive

test

match

S

R

T

N

Figure 6: The structure of program execution is recorded by a match-sweep line that
separates events that have happened from the set of future events that may happen.

that the result of the test was unknown at that point, i.e. the previous send or receive

to which it was referring had not been matched yet. However, since this is now the

earliest pivotal decision point, there can no longer be any pending matches between send

and receive pairs that could occur before the test operation. Therefore, the completion

parameter for the test operation can be set to false and a new process sweep can be

initiated, thus providing a forward execution path. Dealing with an MPI Wait operation

at the head of the receive queue is similar, except that its blocking semantics means that

the process must remain blocked (rather than being made runnable) until a match has

been made. Therefore, having yet to determine a forward execution path, the match sweep

must continue by trying the next earliest operation on the receive queue. Finally, on to

the most interesting case: where a receive event must be matched with a complementary

send event. A send provides a potential match partner if its destination matches with the

process associated with the receive call that is currently being evaluated (and provided

that other meta-data such as the MPI tags and communicators match). However, timing

information must also be considered in order to find the correctly ordered match: a receive

will match with the first appropriate message to arrive. Determining the unique message

that fits this criterion can be achieved using the knowledge of when all the messages

were sent (which they were tagged with during the process phase) and their transit times

through the communication network.

3.5. AUTOMATIC PERFORMANCE EVALUATION 95

Obtaining the transit times of messages through the network is a difficult task be-

cause they are affected by contention. As discussed in Section 3.4.2, the technique that

is used to model the performance of messages subject to contention relies on knowing

the number of messages travelling throughout the communication system with which the

message being modelled must compete. This information is maintained in the PEVPM by

a contention scoreboard. The structure of the contention scoreboard must be developed to

match the network topology of the parallel machine that it describes: in the general case,

every possible link in the network is described by a contention number which indicates

the number of messages that are currently in transit on that particular link. For com-

modity crossbar switches serviced by a high-bandwidth backplane, the entire contention

scoreboard is well-described by just one link which represents that backplane. While

the events on the send queue are being scanned during the match sweep, the contention

scoreboard is continually being updated. Every time a new message is encountered, the

contention numbers of any links that it must traverse (which can be determined using

source, destination, and topology information) are increased by one; and the contention

numbers of any links where a previous message has completed are reduced by one.

This is not an exact means of determining the duration of contention on individual

network links because it estimates the contention a message faces on each link only once,

when the message is scanned during the match process. It does not take into account

any increase or decrease in contention that the message will face during its lifetime.

However, this merely serves to more accurately simulate the true effect of contention on

a microscopic scale: any messages that get a head-start are more likely to hold up later

messages than be held up themselves. Furthermore, since this has equal likelihood of

producing both over-estimates or under-estimates of contention, it tends to even out over

simulations with a large number of messages. Fortuitously once again, this is the very

nature of the high performance codes which are of concern for the PEVPM modelling

technique. Finally, once the contention numbers that a message must transit under are

known, an appropriate distribution can be chosen to simulate message-passing time. From

this, a value will be chosen at random, thereby simulating the effect of contention on the

completion time of the message.

Because a probabilistic model is used to calculate communication performance, an

important caveat of the PEVPM methodology is that it evaluates the performance of a

run that could happen, not necessarily what will happen. When the PEVPM requests the

transit time of a particular communication operation a probabilistic model will be con-

sulted and a sample time chosen at random, thus allowing the non-determinism caused

by message-passing delays to be simulated. Although this produces a valid, microscopi-

cally detailed performance trace, the event ordering that occurs in any one run is by no

means representative of all runs. What is more reliable is the macroscopic performance

96 CHAPTER 3. THE PEVPM PERFORMANCE MODEL

prediction for the entire code because the large number of samples that it is constructed

from will help the model converge towards a good prediction of average behaviour (for

exactly the same reasons discussed in regard to the execution of conditional constructs

in Section 3.4.4). This caveat represents more of an opportunity than a problem. By

evaluating submodels many times over a whole simulation, each time calling upon the

in-built Monte Carlo methods that direct execution according to conditional constructs

and variable message-passing performance, a sensitivity analysis can be performed to

produce a probability distribution that describes the performance stability of the system.

Furthermore, for all but pathological non-deterministic programs, good estimates of the

lower and upper bounds on execution time can be obtained by only two evaluations: one

where the minimum time permitted by each submodel is always selected, the other where

the maximum time permitted is always selected.

Related to this last point, it is important to note that even if a probability distribution

of overall performance is not required, a good prediction of average behaviour cannot

be obtained by merely modelling the delivery time of each message by its average value,

since this does not take into account the non-linear nature of non-determinism in program

execution. For example, consider an iterative parallel program where in each iteration

every process communicates with exactly one other process and then takes part in a global

barrier synchronisation. Ignoring the overhead of the barrier synchronisation (which would

merely complicate the example), the completion time of any one iteration will be governed

by the slowest message-passing time between any two processes in that iteration, not

the average. This simple example highlights how contention delays in message-passing

time together with precedence relationships in a parallel program result in performance

deterioration, and therefore why an accurate performance modelling system must take

into account the complete performance distribution (rather than, for example, an average)

when modelling every individual message-passing operation.

3.6 Advantages of the PEVPM Approach

Much of the power of the PEVPMmethodology lies in its quasi-execution of program code.

Because computation and communication evolves in virtual time, the model automatically

accounts for the effects of overlapping communication with computation, load imbalance

and insufficient parallelism. Coupled with the facility to explicitly model communication

losses, synchronisation losses and the associated resource contention issues of each of these,

the PEVPM methodology is capable of accounting for all the sources of both performance

and performance loss in message-passing parallel programs. The PEVPM methodology

has the potential to produce highly accurate performance estimations for only a low-

moderate evaluation cost. High quality results will be obtained when highly accurate

3.6. ADVANTAGES OF THE PEVPM APPROACH 97

times are used to model the run-time of serial segments of code and the completion time

of message-passing events. A low-moderate evaluation cost is ensured because only the

structure of the code is simulated. Therefore all the time-consuming segments of serial

computation that occur in a real code are eliminated and reduced to simple numbers.

Likewise, rather than waiting for time-consuming message-passing operations to finish,

the completion times of those operations are determined using simple models within a

fraction of the time that they abstract.

There are many situations where this performance evaluation methodology could be

very valuable. Obviously, it could be useful to application programmers who are trying

to optimise their code by automatically drawing attention to performance losses caused

by load imbalance or insufficient parallelism, as well as to detect some program correct-

ness issues such as deadlock. More ambitiously, it could find application in automated

compilers for the same purpose. Also, apart from merely providing a probabilistic perform-

ance estimate for an entire code, with a little additional programming effort, individual

execution traces could be made amenable to examination using existing performance vis-

ualisation tools such as Vampir [260] (or others [54]) in the same way as in Dimemas (see

Section 2.21). These tools graphically display computation and the communication rela-

tionships between processes with respect to a global time-line. This can help programmers

to spot the cost of message-passing and performance bottlenecks such as load imbalance

and insufficient parallelism. Further to this, they can also assist in the process of debug-

ging complex message-passing programs by helping programmers to search for unmatched

send/receive pairs or race conditions. Typically these tools use trace data gathered at

run-time from real message-passing code executing on real parallel machines. Gathering

trace data at run-time is an intrusive process that can alter the system that it is meas-

uring. Unfortunately this is a very real problem in the case of message-passing programs

because of the volatility in program execution structure caused by non-determinism [309];

quite often the behaviour of message-passing codes will vary drastically between produc-

tion runs and runs that are subject to the intrusion of a performance debugging tool.

Using the PEVPM technique alleviates this because performance traces are produced

by simulation, which is not susceptible to this problem. Moreover, producing execution

traces using the PEVPM technique is especially useful for cases where access to target

parallel machines for test purposes may be difficult or even impossible (for example for

hypothetical or yet-to-be released machines) and hence traditional techniques cannot be

used. Of course, this would require the provision of theoretical models for communication

and computation performance, but these can usually be easily, if roughly, estimated.

Finally, although this has not been investigated, the PEVPM technique may possibly

be extended to deal entirely in symbolic quantities. A symbolic calculation of execution

time is foreseeable by using (deterministic) symbolic quantities rather than numerical

98 CHAPTER 3. THE PEVPM PERFORMANCE MODEL

data. This is exciting because it would allow for the automatic generation of algebraic

expressions with very low solution costs for describing the approximate performance of

program fragments. These expressions could be used for rapid performance evaluation

over large parameter spaces. The caveat to such a technique would be that model re-

evaluation would need to occur whenever parameter values would cause the ordering of

events to change; the solution to this problem would probably involve using inequalities

to keep track of break-points where execution structure would change. Despite this, the

idea is not untenable because of the automated nature of the evaluation process.

3.7 Implications for Other Parallel Methodologies

Before concluding this chapter, a quick detour will be made to put the PEVPM system

into perspective. Early in this chapter, the primary scope of the modelling technique

was identified to be message-passing codes that run in a dedicated fashion on distributed

memory parallel computers. It was also explained that codes written using other pro-

gramming methodologies and running on different classes of hardware could be modelled

by first translating them to an equivalent message-passing code. The other major parallel

programming methodologies that need to be supported are shared memory programming

and data-parallel programming. This thesis does not examine the details of how this can

be done, but instead refers to previous work that has already tackled this problem.

The relationship between shared memory programming and message-passing is con-

ceptually quite simple. Indicative of this are packages that allow shared memory programs

to run on distributed memory machines [81]. At a very basic level, there are only two

types of operation that each methodology supports: data access and synchronisation. The

data access is very similar in both methodologies. Access to remote data is still achieved

using some form of communication network. Other than the specifics of the function calls

that achieve this, the only real difference between the two methodologies is where the read

or modified data is stored. In shared memory systems, the data remains in its original

remote location. In message-passing systems, a new copy of the data is stored locally,

thus improving performance if it is accessed multiple times. Of course, this comes at the

expense of a more complicated program, since the programmer must explicitly control

the synchronisation between processes to ensure that they are acting on up-to-date data.

These synchronisation issues are made easier for shared memory programming through

the use of operators that exclusively lock shared data while it is being modified. These

simple semantics can be easily emulated by the more powerful synchronisation operations

available to message-passing programs. Taken as a whole, it is clear than shared memory

programs can be easily adapted to message-passing and the distributed memory approach.

The relationship between data-parallel and message-passing paradigms is even simpler.

3.8. SUMMARY 99

Data-parallel languages provide a higher-level way of describing parallelism than shared

memory or message-passing programs. Essentially, they allow the programmer to specify

which data can be processed in parallel, rather than the communication and synchronisa-

tion details of how parallelisation should be accomplished. A data-parallel compiler then

uses this information to lay out the data on processes, and automatically determines the

communication that needs to happen between these processes. At a lower level, however,

the processing and communication must still be carried out – and the crux of the simi-

larity is this - using the same operations that are available to message-passing (or shared

memory) programs [56, 205, 377]. Therefore, a message-passing version of a data-parallel

program can trivially be obtained by compiling to an underlying message-passing system.

3.8 Summary

The introduction to this chapter explained that the main reason for using parallel pro-

cessing is to reduce the computation time required for what would otherwise be very

long-running programs. Because poorly parallelised code tends to offer very little per-

formance benefit, there is great incentive to ensure that parallel programs are highly

optimised. Unfortunately, a lack of sufficiently accurate performance prediction meth-

ods for parallel programs has traditionally necessitated resort to a very time-consuming

measure-modify design cycle to achieve this. This scarcity of useful performance modelling

methods is quite simply due to the notoriously complex behaviour of parallel programs,

which makes it very difficult to devise adequate modelling methods. The main contribu-

tor to this complexity is contention, which causes non-deterministic delays and therefore

non-deterministic program execution. This chapter described a new performance mod-

elling technique for parallel programs with sufficient power to accurately deal with these

issues, thereby providing an opportunity to move much of the performance optimisation

part of writing a parallel program to the initial design phase of the software development

process, with the attendant advantages that that affords.

Much of the inspiration for this new performance modelling technique was based on

previous work done by many researchers, and these influences were chronicled in Sect-

ion 3.2. Section 3.4 built on this foundation and described how the performance of

message-passing codes can be modelled in a very general way. Rigorous instructions were

then provided on how to completely describe the salient performance features of a message-

passing program written in a structural programming language (of which the combination

of C and MPI was chosen as a representative example). Briefly, this involves annotating

existing source code or writing pseudo-code using a performance directive language to de-

fine the computation and communication structure of a parallel program. Section 3.5 de-

scribed an abstract Performance Evaluating Virtual Parallel Machine (PEVPM) that can

100 CHAPTER 3. THE PEVPM PERFORMANCE MODEL

execute these performance directives to simulate the time-structure of the program, and

thereby predict its performance. Two properties make this essentially execution-driven

simulation novel: 1) its ability to abstractly simulate the direct performance effects of

contention; and 2) its ability to simulate the indirect performance effects caused by non-

deterministic program execution due to that contention. This is achieved by dynamically

creating submodels of individual computation and communication events on-the-fly using

Monte Carlo sampling techniques based on data-dependencies, current contention levels

in the system, and detailed probability distributions of the performance of all low-level

operations for a given parallel machine. These probability distributions can either be

hypothetical, or empirically determined by benchmarking a parallel machine using the

techniques described in the next two chapters. This allows the PEVPM methodology to

produce highly accurate performance estimations for only a low-moderate evaluation cost.

Section 3.6 explained that because a PEVPM simulation evolves in virtual time, it

automatically accounts for the effects of overlapping communication with computation,

load imbalance and insufficient parallelism. Coupled with its ability to explicitly model

communication losses, synchronisation losses and the associated resource contention issues

of each of these, the PEVPMmethodology accounts for all the sources of both performance

and performance loss in message-passing parallel programs. Furthermore, because all

of these events can be annotated, the PEVPM is capable of automatically determining

and highlighting the location and extent of performance loss due to any source; it can

also automatically discover program deadlock, and help programmers trace down race-

conditions. This information is of crucial importance in the design of well-optimised

parallel programs; while it is easy to see how an application programmer could use this

information, the PEVPM process and the information it can provide could potentially

be integrated into tools for automatic or semi-automatic program parallelisation. Also,

although the concept was only discussed but not investigated, the PEVPM could possibly

be enhanced to produce entirely symbolic performance models rather than empirical ones,

which would allow for even lower evaluation cost that would make the PEVPM approach

even more attractive for very wide-ranging parametric-based performance optimisation.

Finally, Sections 3.7 and 3.8 summarised the relevance of the PEVPM technique to

other parallel architectures, parallel programming methodologies and to the question of

performance modelling for parallel programs in general.

Chapter 4

Benchmarking Point-to-Point

Communication

4.1 Introduction

As was discussed in the last chapter, one of the keys to making accurate predictions about

the performance of a parallel program is to have a very clear picture of the communication

performance of the machine it is to be run on. This chapter introduces techniques that

can provide an accurate characterisation of the MPI-based point-to-point communication

performance of a parallel machine and the following chapter extends this to MPI-based

collective communication. Together, these address the major outstanding requirements of

the PEVPM performance prediction technique detailed in the previous chapter - namely

the need for accurate submodels of communication operations. In particular, this chapter

describes techniques that can produce very accurate probabilistic performance models for

all types of MPI communication. This is made easier by the portability and widespread

use of MPI. Much of the work involved with developing benchmark tests for characterising

the performance of a parallel machine and associated message-passing system only needs

to be done once, and the techniques may be readily re-applied. Aside from this simplifying

property, however, the development of benchmarks that provide a good characterisation

of MPI communication performance is quite difficult.

In order to obtain useful results from a synthetic benchmark, the performance of com-

munication calls must be measured in the same context in which they will be used in

real systems [142, 168, 373]. This requires knowledge of how a message will perform de-

pending on its length, whether it is in cache or memory, whether it has synchronous or

asynchronous completion semantics, whether it is a point-to-point or collective commu-

nication, and the the level of contention that it will encounter due to the global commu-

nication pattern that is in use. Fortunately, it is possible to enumerate all combinations

of these properties and characterise the performance of each individually, although there

102 CHAPTER 4. BENCHMARKING POINT-TO-POINT COMMUNICATION

will obviously be similarities and common trends.

More problematically, however, obtaining highly accurate performance results has been

almost impossible until recently. In the past it has been necessary to obtain average results

over a large number of iterations because of the inaccuracy of available clocks. This has

the unfortunate effect of washing out any finely grained timing characteristics. Worse still,

a lack of accurate global clock synchronisation has made it impossible to meaningfully

compare communication patterns that start and finish at separate processes, i.e. almost

all primitive communication calls. When combined, these time-keeping problems have

made it impossible to accurately establish the effect that contention and other sources of

non-determinism have on communication performance.

Although the motivation for the work described in this and the following chapter was

primarily to support the PEVPM performance modelling technique, it can also be viewed

as a stand-alone work with application in many other areas. Performance information

that is detailed enough to provide insight into contention effects and other sources of

non-determinism is potentially very useful. It can be used to analyse the performance of

MPI implementations, compare the performance of different parallel computers, provide

deeper insight into the inner workings of parallel programs, and of course, enable improved

performance prediction for MPI programs.

Section 4.2 briefly examines the ability of existing MPI benchmarking techniques to

provide accurate and detailed performance information. In short, they are inadequate, so

new techniques are developed and described in Section 4.3, which details the design and

implementation of a package called MPIBench [153]. The MPIBench package is used to

obtain the performance profiles of several parallel machines in Sections 4.4 – 4.6. Some

analytic approximations to these profiles are discussed in Section 4.7. Both the empirical

results and analytic models will be used to evaluate the effectiveness of the PEVPM

approach in the following two chapters. Finally, a short study on the stability of the

measured results, detailed in Section 4.8, uncovers some important factors that relate to

the scalability of large parallel programs.

4.2 Existing Message-Passing Benchmarks

A number of MPI benchmarks are currently available. The IEEE Task Force on Cluster

Computing has identified those that are in widespread use [20]. The following subsections

categorise the most flexible and wide-spread of these benchmarks according to the com-

munication primitives and patterns that they test and the timing mechanisms that they

employ.

4.2. EXISTING MESSAGE-PASSING BENCHMARKS 103

4.2.1 Genesis/PARKBENCH

The PARKBENCH [169] suite of benchmark programs contains a series of low-level

benchmarks called Genesis [212] that can be used to characterise some of the basic

communication performance properties of an MPI implementation. In particular, its

Comms-PingPong1 and Comms-PingPong3 benchmarks respectively measure the times for

round-trip messages and simultaneous data exchanges over a range of message sizes where

the messages are stored in contiguous memory segments. In addition, two variations on

the Comms-PingPong1 benchmark, namely Comms-Strided1 and Comms-Strided2, allow

strided memory buffers to be used instead of contiguous buffers, so that the effect of the

memory hierarchy on message-transmission performance can be gauged. All of these re-

sults are then fitted using linear regression to obtain values for latency and bandwidth in

each circumstance, which provides a simple description of the message-passing perform-

ance of the system under consideration. On top of this, the Comms-Allgather benchmark

measures the total saturation bandwidth of the communication backplane as a function

of the number of processes used. This provides valuable information about the scalability

of the communication network. Finally, the Comms-Synch benchmark measures the time

required for barrier synchronisation as a function of the number of processes taking part

in the barrier. While the simple parameters that can be measured by Genesis are very

well understood and of undoubted value for making rough comparisons between machines,

they do not provide enough accuracy for detailed performance models.

It is worth noting that the instructions for using the Genesis benchmarks encourage

any tests to be run several times to check whether the results obtained are repeatable,

along with the basic advice that the lowest benchmark times are those that are least likely

to have been affected by contention, and should therefore be considered the most reliable.

Firstly, this is true only to an extent. Because the measurements made by Genesis are

based on averaging the results of a large number of repetitions, even the minimum total

time observed is likely to include time for individual messages that were influenced by

contention effects. Secondly, while the results observed with minimum execution time are

arguably the most repeatable results than can be obtained by the Genesis benchmarks,

ignoring slow results can potentially misrepresent true message-passing performance.

4.2.2 NetPIPE

NetPIPE [329] is a protocol independent network performance measurement tool, al-

though a module has been developed for MPI performance measurement. NetPIPE con-

sists of a protocol independent driver mechanism, and a protocol specific communication

section. The driver mechanism is only designed to measure the performance of simple

104 CHAPTER 4. BENCHMARKING POINT-TO-POINT COMMUNICATION

ping-pong communication between two processes. It does this by timing individual ping-

pong operations using the standard Unix clock at the initiating process, although it only

reports the minimum time observed. While this simplistic performance reporting mecha-

nism could be easily extended to report performance distributions, this would be of little

value because: 1) those measurements are only made using a coarse-grained local clock;

and 2) there is no support for complex communications patterns, where contention and

hence performance variability is likely to be observed.

4.2.3 Pallas MPI Benchmarks

The Pallas MPI Benchmarks (PMB) [259] provide a set of low-level benchmarks that

measure the performance of a large range of common MPI operations. The PMB are

straight-forward, well-documented and have been widely used. Importantly, version 2.2

of the PMB introduced Multi versions of its range of low-level benchmarks, which test

concurrent message-passing performance under global load. However, the accuracy PMB

results is hampered by inadequate timing methods.

The PMB rely on using MPI’s builtin MPI Wtime routine to time the execution of

MPI message-passing operations, which has two disadvantages. The low-level clocks that

MPI Wtime relies upon are often of relatively coarse granularity compared to the duration

of message-passing events. This makes it impossible to accurately time the execution

of individual message-passing events. To compensate for this, the PMB measures the

time to execute a large number number of message-passing operations contained within

a loop and thence determines the average completion time for an individual message-

passing operation. While this would provide reasonable results if there were very little

variance in the completion time of individual message-passing operations, this is not the

case because of network contention. Hence, results obtained using the PMB do not truly

reflect the performance of the message-passing process. Secondly, even if MPI Wtime for

a particular implementation is based on a high-accuracy local clock, it is still usual that

MPI Wtime is not accurately synchronised between processes (the reasons for which will

be examined in following sections). This makes it almost impossible to accurately exam-

ine the performance of individual message-passing events or how message-passing events

interact, because timings can only ever be accurately compared with other timings made

on the same processor. Hence, the PMB are not capable of measuring the performance

variability that may arise in message-passing.

4.2.4 MPBench

MPBench [249] measures the performance of the most common MPI communication prim-

itives over a range of message sizes. The default message sizes range from 4 bytes to

4.2. EXISTING MESSAGE-PASSING BENCHMARKS 105

64 Kbytes, increasing in size by powers of two. For point-to-point routines only two

processes are used. This is an unrealistic test because it does not account for network

contention caused by many communicating processes on a reasonably sized parallel ma-

chine. Round-trip bandwidth using synchronous sends or bidirectional bandwidth using

asynchronous sends can be tested. The asynchronous tests also allow for the application

latency of an asynchronous send to be measured, although the results are highly volatile

due to the effects of buffering schemes employed by any MPI implementation under con-

sideration. MPBench can also test a variety of collective routines, namely broadcast,

reduce, all-reduce and all-all communication patterns, although the completion time of

these routines is only measured at the root process.

MPBench averages the time for a message-passing call to complete over many itera-

tions of the call plus a small acknowledgement message that is required to verify that all

of the messages have been received. The verification message only has a diminishingly

small effect on the calculated average completion time because the already small amount

of extra time that it takes to complete is divided by the number of iterations in the aver-

aging process. In their paper describing MPBench [249] the authors point out that some

machines have hardware timer registers which could be used to measure the completion

time of individual message-passing calls, but the idea was not pursued.

4.2.5 Mpptest

Mpptest [150] avoids many common pitfalls that are made when measuring message-

passing communication performance. Mpptest can measure synchronous and asynchronous

point-to-point communication, as well as a selection of collective operations. The message

sizes it tests are chosen automatically by an adaptive scheme that uses linear interpolation

to focus testing near discontinuities in performance.

The fundamental design principle of the techniques that under-pin Mpptest is that the

results of performance tests should be reproducible. To achieve this, Mpptest measures

the average completion time of many iterations of a message-passing call in the same

way as MPBench, but then repeats that process many times and records the minimum

of the measured averages. The purpose of this meta-measurement technique is to smooth

out (and essentially ignore) the effect of slow messages on the measurement process.

Although this does lead to reproducible results, it ignores the distribution of results that

are actually taking place. Furthermore, because Mpptest relies on round-trip times which

are measured at only one process, it cannot be used to obtain a global perspective on the

network contention effects that messages between other processes can cause.

106 CHAPTER 4. BENCHMARKING POINT-TO-POINT COMMUNICATION

4.2.6 SKaMPI

SKaMPI [297, 296] is the most flexible and thorough of the existing benchmarking tools.

It provides an extensible framework for testing various communication patterns, as well as

built-in support for testing a huge range of point-to-point and collective communication

patterns. Automatic message size selection using a linear interpolation scheme similar

to that of Mpptest is used. Although SKaMPI measures the time of individual message-

passing calls, this is only to allow outliers to be discarded. At the end of a test the

collected data are processed to provide the average of the data observed, and no attempt

is made to characterise the distribution of results or any outliers that have occurred.

SKaMPI makes timing measurements with either the Unix system clock or MPI Wtime.

No attempt is made to synchronise clocks between processes. Because of this, only round-

trip times are measured, and like MPBench and Mpptest, the completion time of group

operations is only measured at a single process. Hence SKaMPI is also unable to provide

detailed insight into the effect of network contention arising from messages between other

processes.

4.2.7 Profiling Tools

There is another class of tools, apart from synthetic benchmarks, that are often useful for

MPI performance analysis. Profiling tools such as Vampirtrace [260] and others [54] are

designed to analyse the performance of “real” codes rather than the performance of arti-

ficial tests. In general, these tools log time stamps for a selection of message-passing calls

and allow a post-mortem analysis of the time at which communication events occurred.

Many of these tools can provide very insightful performance measures. For example, Para-

dyn [265] can present histograms which show the variation in message-passing time of the

recorded data. Unfortunately, however, the accuracy, scalability and nature of these tools

limit their usefulness for extremely detailed performance modelling. Firstly, the global

clock synchronisation techniques that they employ are usually only accurate enough to

guarantee the ordering of time-stamps – so that, for example, a message is never recorded

as having arrived before it is sent. Secondly, when instrumenting a benchmark with

extremely high repetition counts (which is required to generate smooth timing distribu-

tions) these tools can cause significant interference with the measurement process because

of memory requirements and as results are flushed to disk. Thirdly and finally, remember

the purpose of these tools: they are primarily designed to analyse the performance of

real codes. Although they could be used to instrument the performance of (synthetic)

micro-benchmarks, which are of interest here, these benchmarks still need to be written,

and it is far more convenient to roll them into a portable stand-alone application.

4.2. EXISTING MESSAGE-PASSING BENCHMARKS 107

4.2.8 Limitations of Existing Techniques

The previous sections have shown that the current techniques used in performance bench-

marks for MPI systems suffer from one or more of three main inadequacies. The first

inadequacy is the use of relatively coarse grained clocks for timing measurements. This

forces a benchmark to average results over a high number of test repetitions, thereby los-

ing detailed performance insight. In particular, none of the current synthetic benchmarks

can generate distributions that show the variability in completion times that occur, or

outliers that occur, both of which may have a large effect on program performance. More-

over, this important factor has been almost completely ignored in the literature; in fact,

Mraz and Tabe et al.’s statistical examinations of communication time on the IBM SP2

(see Section 2.16) seem to be the only significant works that have made an attempt to

quantify its importance. Tabe et al.’s main conclusions were that “it must be emphasised

that using only means to model communication performance of parallel computers is in-

adequate” and that “understanding the tail behaviour of relevant distributions is critical

to the development of good simulators”. Unfortunately, this praise-worthy advice appears

to have been, until now, either unheard or unheeded.

Secondly, the benchmarks either rely on MPI Wtime to provide a globally synchronised

clock or simply use ping-pong type tests to measure the total round-trip time, often using

only one pair of processors. While relying on MPI Wtime may be acceptable on high-end

systems that have a hardware-synchronised global clock, it is not acceptable on low-end

cluster systems where the accuracy of MPI Wtime is usually bounded – if at all – by half

of the round-trip time of a zero byte message. Alternatively, measuring only round-trip

message-passing times negates the need for a globally synchronised clock, but it does

not allow the direct measurement of the performance distribution of individual message-

passing calls that begin at one process and complete at another. In the case of round-trip

point-to-point messages, only the convolution of the completion time of two messages

can be measured, which tends to broaden the distribution observed. Furthermore, in the

case of collective communication, it is almost impossible to measure anything significant

other than completion time at the root process – which provides no insight into the actual

completion times of collective calls seen by individual processes.

Thirdly, and finally, none of the communication patterns used in current benchmarks

were designed with clusters of SMP nodes in mind. If care is not taken with process

placement, this can lead to measurement of intra-node communication performance when

the intention is to measure inter-node communication performance.

108 CHAPTER 4. BENCHMARKING POINT-TO-POINT COMMUNICATION

4.3 Design and Implementation of MPIBench

Despite the unsuitability of previous techniques to providing highly detailed characteri-

sations of message-passing performance, much can be learned from them. The techniques

for performance characterisation presented in this section build on earlier work, in par-

ticular that of Gropp and Lusk [150] which provides a list of many common pitfalls that

are made when measuring message-passing performance. As was noted in Section 4.2.5,

the fundamental requirement of the techniques presented in Gropp and Lusk’s paper was

that the results of such performance tests should be reproducible. With this aim, they

concluded that only the minimum time and “sort of” average time of a number of tests

are repeatable. However, as the work presented in Section 4.4 will show, it is possible to

achieve reproducible results without needing to resort to such simple, single valued views

of communication performance. This is achieved by using an accurate globally synchro-

nised clock, retaining the timing data of many individual calls to communication routines

and applying post-processing to reveal the timing characteristics of MPI operations –

including statistical analyses of variations in timing and the generation of probability

distributions. These techniques have been packaged into a benchmarking program called

MPIBench, which is capable of gathering comprehensive performance profiles on a large

range of MPI communication primitives under varying conditions.

The following sections describe the timing framework MPIBench is built around, a

global clock synchronisation mechanism that produces accurate results, the communica-

tion patterns that MPIBench employs to conduct tests and how the vast amounts of data

that are captured during the benchmarking process are distilled into a more usable form.

4.3.1 Constructing a Timing Harness

MPIBench provides an easily extensible framework that can test the performance of

message-passing calls in various patterns. The exact range of tests is controlled by a

wrapper script which can also vary the number of test iterations, allowing a trade-off be-

tween measurement time and the accuracy of results. At the heart of MPIBench, an outer

loop controls the test parameters, such as the type of message-passing call, message size

and communication pattern. Each of these tests is run in a tight loop over the number

of repetitions requested. The only operations in the loop are the message-passing calls

themselves (which can be easily modified or extended as described in Appendix B.2), time

stamps before and after each message-passing call using the local clock register and, for

group operations a small amount of code to synchronise the beginning of tests.

As will be discussed in the following sections, the overhead of the time-stamping is

extremely low and has insignificant effect on the code that is being measured. Likewise,

the synchronisation code for group operations was carefully designed to be as non-intrusive

4.3. DESIGN AND IMPLEMENTATION OF MPIBENCH 109

as possible. Rough synchronisation may be achieved using the MPI Barrier operation,

which is sufficiently accurate on many systems. However, on other systems, this imparts

a systematic skew on the time at which each process begins a test. Therefore, a far more

accurate technique was also developed, where each process polls a global clock (discussed

in the next section) until a prearranged global time is reached before it begins the test

proper. In this way, all processes are guaranteed to start simultaneously, within the

accuracy of the global clock. This improved synchronisation technique should only be

used where absolutely necessary, because the prearranged synchronisation points must be

sufficiently distant in time to ensure that all processes are ready to start when required.

In particular, its should only be required when the performance of the MPI Barrier

operation on a machine is prone to experiencing a large number of delays caused by

packet loss. In that case, the separation time should be some small multiple (e.g. 1-3) of

the communication network’s retransmit timeout (see Section 4.8).

MPIBench was designed to allow for high repetitions of each test in order to generate

good quality profile data. Because of the amount of data that is logged in such circum-

stances, processing is performed after each test has been repeated the desired number

of times. Firstly, all the time stamps are normalised to an accurate global clock. Then

log files from all the processes are collated, processed and synchronised to disk before

proceeding, in order to avert network file access interfering with further results.

4.3.2 An Accurate Global Clock

The accuracy of the standard MPI timing routine MPI Wtime varies widely between dif-

ferent MPI implementations on different machines. MPI implementations are required

to define a boolean variable named MPI WTIME IS GLOBAL which specifies whether or not

MPI Wtime uses a globally synchronised clock, but even if this is this is true, the MPI

specification only requires that the clock is synchronised to within half of the round-trip

time of a zero byte message. Although this ensures that MPI Wtime is accurate enough to

measure message ordering, it does not allow message-passing time to be accurately deter-

mined between processes. Therefore an accurate and globally synchronised clock capable

of precise timings of individual calls to MPI routines was designed and implemented.

Most modern processors are now equipped with 64-bit cycle count registers that are

incremented on every clock cycle. These can be used for far greater local timing pre-

cision than has previously been possible. Local timing measurements in MPIBench are

implemented as a preprocessor macro that stores in an array the current contents of the

CPU’s cycle counter (if it is available), or failing that, the value of MPI Wtime. MPIBench

supports cycle counting in modern x86-based processors (using the RDTSC assembly in-

struction [186]) and Sparc v9 processors (using the %tick register [187]). Alpha 21264

110 CHAPTER 4. BENCHMARKING POINT-TO-POINT COMMUNICATION

P0 Pi

t0,n

t0,n+1

send (t0,n + 1/2 tmin)

ti,n

send (last_was_tmin)

last_was_tmin = (t0,n+1 - t0,n < tmin) ? true : false
tmin = (t0,n+1 - t0,n < tmin) ? t0,n+1 - t0,n : tmin

if (last_was_tmin) then
ti,offset = ti,n - (t0,n + tmin/2)

Figure 7: One iteration of the clock synchronisation mechanism between processors P0
and Pi.

processor support was attempted, but the cycle count register (accessed by the RPCC

counter [76]) only provides 32-bit time-stamps, which overflow too quickly to be of prac-

tical use in MPIBench. As mentioned, MPI Wtime can alternatively be used as the local

time source, thereby providing complete portability of MPIBench. However, this should

only be used on high-end machines where the granularity of MPI Wtime is known to be ac-

ceptably fine, otherwise the accuracy of MPIBench measurements will suffer. Regardless

of which method is used for local time measurements, the time-stamps are normalised to

a synchronised global reference clock.

The global clock synchronisation techniques that were developed for MPIBench are

similar to those of Christian [68] and Maillet and Tron [229]. Figure 7 shows one iteration

of how processor Pi is synchronised to the reference clock on processor P0. P0 sends a

message to Pi which contains the current time at P0 plus an estimation of the minimum

amount of time that the message will take to arrive, 1/2tmin, where tmin is the current

minimum round-trip time that has been observed by P0. Pi receives the message and

returns it to P0 which calculates the total time that the round-trip message took to

complete. If the round-trip time was the fastest observed so far, then the estimated time

of arrival of the initial message was (probably) the most accurate yet, and Pi should use

4.3. DESIGN AND IMPLEMENTATION OF MPIBENCH 111

approximated drift
(sync before and after)

approximated drift
(sync before only)

t0

ti - t0

tsync tsynctsync ttest

offseti,s+1

offsetti,s

t0,s+1t0,st0,s-1

actual drift

Figure 8: Comparing drift approximation using synchronisation only before a series of
tests (extrapolation) with synchronisation both before and after a series of tests (interpo-
lation).

the message’s contents to calculate its offset from the reference clock. A second message

is sent from P0 to Pi as to whether or not this was the case, and if so processor Pi

calculates the current approximation of the offset. Both processors repeat this process

until a new tmin has not been observed for a prearranged number of repetitions. This user-

defined parameter allows a trade-off between synchronisation time and synchronisation

quality, which should be manually tuned for any given parallel machine until tmin can be

repeatably obtained to within some desired accuracy. For the various types of network

hardware examined in the remainder of this thesis, repetition values of between 100 and

1000 were found to achieve sub-microsecond accuracy. This pair-wise synchronisation is

repeated for all the processors in the system, so the total time required for synchronisation

is proportional to the number of processors in the system. Unfortunately, synchronising

several processors at once is problematic using this technique because round-trip times

close to the minimum are only observed if the reference processor is free to deal with only

one message pair at a time, i.e. contention is absent.

Because the clocks in each processor run freely, merely calculating their offset at one

point in time is insufficient for synchronisation to remain valid. The clocks on different

112 CHAPTER 4. BENCHMARKING POINT-TO-POINT COMMUNICATION

processors will tend to drift apart from each other as shown in Figure 8. MPIBench uses

a first order linear interpolation (rather than extrapolation) to account for this by calcu-

lating the drift between two synchronisation points: one before the tests themselves and

one after the tests. (Note that clock drift has insignificant effect on the synchronisation

process itself because any iteration of the synchronisation process occurs over a very short

time). Using this approach bounds the error compared with the reference clock to the

greater of the resolution of the local clock on each processor, errors in tmin estimates, and

the maximum deviation from the actual linear drift between the clocks.

Firstly, the resolution of local clock measurements is linearly dependent on the CPU

clock speed because a cycle counter is used; as a guideline example, resolutions of under

100ns were achieved on a 450MHz UltraSparc II and a 500MHz Pentium III. Secondly, as

explained earlier, the magnitude of the errors in tmin estimates are inversely proportional

to the number of synchronisation repetitions made by each process and can easily be

reduced to sub-microsecond values. Finally, noise on the drift of clocks commonly used in

computers is caused by thermal fluctuations in their operating environment. This noise

has been shown to be of the order of about one microsecond in controlled machine-room

environments [229]. Hence, since the overall error between any two clocks in the system is

the superposition of the differences between each of the clocks and the reference processor,

the global error can be reduced to about 2 microseconds.

4.3.3 Communication Patterns

MPIBench has built-in support for measuring the performance (as well as local completion

time for any calls that return asynchronously) of many message-passing primitives, includ-

ing MPI Send, MPI Isend, MPI Recv, MPI Irecv, MPI Sendrecv, MPI Bcast, MPI Barrier,

MPI Scatter, MPI Gather, MPI Allgather, MPI Alltoall and MPI Reduce. Other MPI

routines or even compound communication patterns can be easily inserted within the

timing framework as described in the last section. In addition, MPIBench defines each

and total variations of each of the group operation tests. These keywords control how

the total amount of message data changes as more processors are added. If the each

keyword is used, then each processor sends a fixed amount of message data, and the total

amount of data grows as more processes are added. Conversely, if the total keyword is

used then the total amount of message of data for the test is divided equally between all

the available processes. This feature allows MPIBench to evaluate the effect of allocating

more resources to a bigger problem, or conversely how performance for a problem with

fixed size scales as a machine gets bigger. While this useful feature is a part of many

parallel application benchmarks (for example in the NAS Parallel Benchmarks [28]), no

other purely message-passing benchmarks offer built in support to achieve this.

4.3. DESIGN AND IMPLEMENTATION OF MPIBENCH 113

P0
P1

P2

P3

P4

P5

P6
P7P8

P9

PA

PB

PC

PD

PE

PF P0
P1

P2

P3

P4

P5

P6
P7P8

P9

PA

PB

PC

PD

PE

PF

P0
P1

P2

P3

P4

P5

P6
P7P8

P9

PA

PB

PC

PD

PE

PF P0
P1

P2

P3

P4

P5

P6
P7P8

P9

PA

PB

PC

PD

PE
PF

"Ping" phase "Pong" phase

4 communicating
processes per node

1 communicating
process per node

Figure 9: An example of how MPIBench controls process placement and balances com-
munication for point-to-point tests that involve SMP nodes.

All of the MPIBench tests that measure the performance of peer-peer communication

patterns were designed with clusters of SMP nodes in mind. This is an important con-

sideration because such architectures have become very common over the last few years.

Other studies on the effect of SMP nodes on communication performance, such as that

of Capello et al. [61], have also started to emerge. Figure 9 shows how MPIBench al-

lows the number of inbound/outbound messages from a node to be set, so that pairs of

processes using point-to-point communication are prevented from residing on the same

node. This ensures that all traffic during tests will transit the inter-node communication

network. Note that intra-node communication performance can be determined by running

a smaller test where test processes are only run on processors that are local to a node.

The top half of Figure 9 shows how a collection of 4-way SMP nodes communicate four

concurrent messages, whereas the bottom half of the figure shows how the same nodes

communicate just one message. In particular, it shows a case where the communication is

divided into “ping” and “pong” phases so that all the nodes connected to one half of the

communication network are configured to send while the other half receives. For many

network topologies, and in particular for crossbar-switched (flat) networks and fat-tree

114 CHAPTER 4. BENCHMARKING POINT-TO-POINT COMMUNICATION

P8

P9

PA

PB P4

P5

P6

P7

P0

P1

P2

P3PC

PD

PE
Pn process n

SMP node
(intra-node network)

intra-node message

inter-node message

inter-node communication
network

PF

Figure 10: Intra-node and inter-node communication for a message-passing program with
a unidirectional ring-shaped communication pattern on a cluster of SMPs; each type of
communication must be modelled separately.

networks, which are commonly used to connect cluster computers (of either uniprocessor

or SMP nodes), this communication pattern produces complement traffic [22]. Comple-

ment traffic exerts a uniform strain on the network where every message traverses the

maximum number of communication links. For the topologies listed above, this pro-

vides a realistic simulation of point-to-point communication performance that can be

expected under any properly balanced communication pattern, for example uniform load,

butterfly permutation, matrix transposition, or nearest-neighbour communication [22].

For more exotic network topologies where complement traffic does not sufficiently charac-

terise the performance of the network under different communication patterns, MPIBench

provides hooks that allow custom communication patterns to be used as necessary; see

Appendix B.2 for more details.

As an example of the flexibility of this approach, any application-specific communica-

tion pattern can be approximated by combining a collection of performance measurements

from various network routes. For example, consider a cluster of 4-way nodes running an

application with a unidirectional ring-shaped communication pattern, as shown in Fig-

ure 10. This involves four communication pairs per node, two of which are internal and

two of which pair with a process on a remote node. The message-passing performance of

this communication pattern could be modelled on a per process basis using measurements

of point-to-point communication performance between two local processes and separate

performance measurements of communication two processes running on adjacent nodes.

4.3. DESIGN AND IMPLEMENTATION OF MPIBENCH 115

Any concurrent messages in either an intra-node network or the inter-node network will

result in contention, which will need to be taken into account.

4.3.4 Generation of Results

By default MPIBench automatically generates results across a user-specified range of

parameters, including communication type, message size and number of processes. The

output of this process is a set of data files. These files contain raw timing information, as

well as post-processed data. Although it is possible to log every single time-stamp to disk,

the storage requirements can be significantly reduced by processing the raw data first to

generate histograms of the timing data as well as lists of outlying events. MPIBench uses

the following technique to separate outliers from the vast majority of the timing data.

Firstly, the recorded times for individual messages are sorted into ascending order, and

the time that encompasses the nth percentile data is found. It then usesm times this value

to separate outliers from systematic data. This heuristic, similar to a near mean filter,

is effective because the tail of the most common results dies away very quickly, although

the exact point at which it does this is very difficult to determine analytically. MPIBench

uses default values for n and m of 99 and 10 respectively, which worked well for all of

the machines that were tested in this thesis. A histogram is created for any times falling

below the outlier criteria and any outliers are individually logged for further analysis.

To aid the data examination process, gnuplot files are also created that automatically

generate Postscript plots of the data. An example of the output from a test (borrowed

in part from Sections 4.4.2 and 5.2) is shown in Figure 11. The first line of the figure

title shows that the test was conducted on a machine named Perseus. It also shows that

the test used 32 Fast Ethernet connected nodes, with one process running on each node.

For the remainder of this thesis, the number of processes that a test is run on will be

denoted nxp where n is the number nodes connected to the network fabric, and p is the

number of processes running on an SMP node (which will never be more than the number

of physical processors in the node). The next line of the title shows that an MPI Bcast

test was performed, on message sizes from 0 bytes to 1024 bytes in steps of 128 bytes,

and that measurements for each of these sizes were repeated 312 times at each of the

32 processes; hence producing 312x32=9984 individual measurements at each message

size. All of this information is also used to provide a canonical naming scheme for any

results that are produced. For example, in this test, the data collected was stored in

filenames beginning with perseus.32x1.bcast.0-128-1024 and ending with .summary,

.subsamples, .histograms, .outliers and .gnu, which respectively contained the min-

imum and average values at each message size, a per-process subsampling of completion

times at each message size, a histogram of completion times at each message size, outliers

116 CHAPTER 4. BENCHMARKING POINT-TO-POINT COMMUNICATION

0.0

0.5

1.0

1.5

2.0

0 128 256 384 512 640 768 896 1024

T
im

e
(m

s)

Message size (bytes)

perseus (32 nodes x 1 processor, MPICH 1.2.0 / Fast Ethernet)
bcast, sizes 0-128-1024, 312(x32) repetitions

subsampled data
average

minimum

selected histograms (bin size 0.041297 ms)
average

minimum

0 128 256 384 512 640 768 896 1024Message size (bytes)
0.0

0.4
0.8

1.2
1.6

2.0

Time (ms)

0
200
400
600
800

1000
1200
1400

Occurences

0.1

1

10

100

1000

0 128 256 384 512 640 768 896 1024

T
im

e
(m

s)

Message size (bytes)

outlying data
outlier boundary

average
minimum

0.1

1

10

100

1000

0 128 256 384 512 640 768 896 1024

T
im

e
(m

s)

Message size (bytes)

outlying data
outlier boundary

average
minimum

Figure 11: An example which shows the raw output of MPIBench for an MPI Bcast test
on a machine named Perseus over 32x1 processes using small message sizes. (Refer to the
text for an explanation of each of the graphs).

4.4. BENCHMARKING EXPERIMENTS 117

recorded at each message size and gnuplot instructions.

From these data, three graphs are automatically generated and plotted on one page.

Firstly, a simple overview of the data is produced. This includes the minimum time ob-

served at each message size, the average observed for each message size and a subsampling

of the raw data, which can be used to get an idea of the spread of the data. A collection

of these plots for various tests is useful for observing general trends across large param-

eter spaces. Secondly, a three-dimensional plot with slices showing the distribution of

recorded times for a selection of message sizes is produced. This provides an overview of

how performance distributions change across message size, which can be used to manually

select message sizes for which to plot histograms that show the performance distribution

observed for a specific calls. Finally, there is a plot with a log time scale that shows any

outliers observed in relation to the minimum, average and outlier boundary for each mes-

sage size. This is useful for determining the performance robustness of a communication

routine under exceptional circumstances, for example if messages are lost and need to be

retransmitted.

4.4 Benchmarking Experiments

This section presents some results that were generated using MPIBench. These results

were generated with two purposes in mind. Firstly, they are simply intended to show

how MPIBench can provide detailed insight into the performance aspects of various MPI

routines. More importantly in relation to this thesis they provide a set of benchmark

results that can be used with the PEVPM prediction methodology that was developed in

Chapter 3, and which will be tested in Chapter 6.

4.4.1 Machines Used

MPIBench was used to measure MPI performance on three separate parallel comput-

ing platforms. These were a Beowulf-type cluster of PCs connected by Fast Ethernet,

a Sun Technical Compute Farm connected with Myrinet and a Compaq AlphaServer

SC connected with Quadrics’ QsNet. These three machines cover a wide range of cur-

rently available test platforms, from the low-end Beowulf-type machine to the high-end

AlphaServer SC. The configuration of the three machines is described briefly in the fol-

lowing subsections.

118 CHAPTER 4. BENCHMARKING POINT-TO-POINT COMMUNICATION

Perseus: A Beowulf-type cluster

Perseus is a Beowulf-type cluster at the University of Adelaide. The cluster was purpose

built by the Distributed and High Performance Computing Group to service the compu-

tational chemistry requirements of the three universities in South Australia [161]. The

cluster is comprised of 116 dual processor (mainly 500MHz) Pentium III nodes, each with

256MB of RAM and a large local disk. It has a peak processing speed of 113 Gflop/s.

When commissioned in March 2000 it was the largest and fastest cluster in Australia and

one of the largest PC clusters in the world. Despite this, the machine is a good example

of a low-end parallel computer. This is because the the nodes only have a small amount

of memory and are connected by commodity switched 100 Mbit/s Ethernet. Because

of these limitations, Perseus only achieved a Linpack benchmark result of just under 20

Gflop/s, which was about half the speed of the slowest machine in the June 2000 Top 500

supercomputer list [104]. The network is built around five 24 port Intel 510T switches

with stackable matrix cards that provide 2.1 Gbit/s of backplane bandwidth per switch.

The MPIBench tests on Perseus were conducted under a software environment that

comprised of a RedHat Linux 6.2 base using glibc-2.1.3-15 and a custom-built kernel. The

custom-built kernel was required in order to provide the processor binding functionality

that MPIBench needs to obtain accurate timing measurements. It was based on a vanilla

2.2.12 SMP kernel, with the Pset [179] kernel patch installed. The MPI implementation

that was used was MPICH 1.2.0 [21, 151], which was the most recently available stable

version at the time.

For the purposes of these experiments, MPIBench was run in a dedicated fashion on

Perseus, i.e. no other user programs were allowed to run. Although the cluster normally

operates using NFS and NIS as well as other services1 these were all disabled to reduce

the impact of sporadic system interference. When a minimal OS installation had been

achieved, the only processes left running were the kernel and inetd services for logging

into the machine to begin the tests and collect the results upon completion.

Orion: A commercial HPC cluster

Orion is a Sun Technical Compute Farm [242] at the University of Adelaide. It consists of a

cluster of 40 Sun E420R SMP servers, each with four 450MHz UltraSparc II processors and

4GB of RAM. The nodes are connected by both 100 Mbit/s Ethernet and a Myrinet [42]

network, which provides 1.28 Gbit/s of full duplex bandwidth and a significantly lower

latency than Fast Ethernet. The Myrinet hardware provides an inherently connection-less

data transfer mechanism, on top of which is built a GM protocol layer which provides

1This cluster routinely runs xntpd, NFS, portmapper, sendmail, cron, syslog, NIS, and pump on the
internal nodes. This is not an uncommon practice on commodity clusters despite the overhead they can
cause for parallel program execution.

4.4. BENCHMARKING EXPERIMENTS 119

reliable and ordered end-to-end packet delivery to user-space processes. Also in contrast

to the flat topology of the Fast Ethernet network in Perseus, the Myrinet network in Orion

is connected in a fat tree configuration. Orion has a peak speed of 144 Gflop/s. It was

the fastest supercomputer in Australia when it was installed in June 2000 [103]. Despite

only having a slight peak speed advantage over Perseus, its faster Myrinet interconnection

network, and larger cache and main memory distinguish it from the lower-end Beowulf-

type machine. Orion ranked number 188 in the November 2000 list of the Top 500

supercomputers in the world [104], with a Linpack benchmark result of 110 Gflop/s.

At the time of the tests, Orion was running SunOS 5.8 and the MPI implementation

that was used was Sun HPC ClusterTools 4.0 [241]. In particular, ClusterTools was

configured to use the low-overhead Myrinet GM transport layer [252] (version 1.4) for

MPI programs, with all default settings enabled. As with Perseus, the experiments were

conducted with dedicated access to the machine, thus avoiding interference from any other

user programs.

APAC NF: A national supercomputing facility

At the high-end of machines that were benchmarked was the Australian Partnership for

Advanced Computing (APAC) [26] AlphaServer SC [75]. At the time of the tests (March

2002), it was the fastest supercomputer in Australia. The APAC NF has 120 Compaq

ES45’s, each with four 1 GHz Alpha EV68 processors, 4 Gbytes of memory and 72 Gbytes

of disk, all connected by QsNet [278]. In the same way that Myrinet is superior to Fast

Ethernet, the QsNet is more powerful than Myrinet. Like Myrinet, the QsNet network

was connected in a fat tree configuration. After link protocol requirements of 58 bytes per

packet, QsNet provides 2.7 Gbit/s (peak) of full duplex bandwidth, and a latency of about

35ns. QsNet is based on a synchronous delivery protocol, where the sender of a packet

always waits for a subsequent end of packet token from the receiver before it completes.

The link protocol detects any lost messages or network faults and organises retransmission

and re-routing as necessary. In addition to this, the communications processor on each

QsNet network interface can do a substantial amount of the work required by higher level

protocols such as MPI without the intervention of a node’s main CPU. Overall, QsNet

coupled with the Compaq MPI implementation on the AlphaServer SC provides zero copy,

user level message delivery that bypasses the operating system. Processes initiating either

MPI point-to-point or MPI collective communication simply block and wait for the end

of packet token to be delivered.

Because the APAC NF is a shared resource, it was impossible to get completely ded-

icated access to the machine to perform MPIBench tests. However, the Portable Batch

System (PBS) [164] that the APAC NF uses to control how jobs are scheduled made it pos-

sible to gain dedicated access to a partition of consecutive nodes on the machine. Although

120 CHAPTER 4. BENCHMARKING POINT-TO-POINT COMMUNICATION

this was used to provide MPIBench with dedicated access to compute nodes within such

a partition, communication between those nodes remained subject to interference from

communication among nodes in other partitions. Because of the fat-tree topology of the

QsNet communication network, the bandwidth available to point-to-point routines would

never diminish, but the average latency and variance in completion time of point-to-point

messages could, potentially, be slightly increased (because of small serialisation delays

in the QsNet switches, which will be explained in Section 5.2). Fortunately the already

small performance effects that could be caused by this interference were abated further

in practice because, although other user programs were running on the rest of the ma-

chine during MPIBench tests, relatively few of those were parallel programs that spanned

multiple nodes, and hence the load on the communication network was minimal.

Another reason for insisting on a partition of consecutive nodes was because this

provided a collection of nodes connected by physically contiguous QsNet. Under such a

circumstance, the MPI implementation is able to call upon hardware supported broadcast

and barrier operations for drastically increased performance. With the exception of one

noted software-based MPI Broadcast test (for comparison purposes), all other tests on

the APAC NF were run across physically contiguous nodes. Primarily, this was so that

the performance of the more interesting hardware-assisted MPI calls could be evaluated,

but also for the added benefit of reducing the run-time of MPIBench tests, many of

which make significant use of MPI Barrier. (A more in depth study of the quantitative

performance differences between hardware and software-based collective communication

using QsNet was done by Petrini et al. [276]).

4.4.2 Tests Performed

MPIBench was used to measure the performance of a range of MPI communication prim-

itives across a variety of message sizes and number of processes. (Instructions on how to

run MPIBench can be found in Appendix B.1). Because of the portability of MPI, as

well as access to (almost) the same number of processors on each machine, it was pos-

sible to run an (almost) identical set of tests (enumerated in Table 1) across the three

supercomputers. This was advantageous because it allows direct comparisons between

the performance of MPI operations on each of the machines. In particular, because MPI

performance is usually affected far more by network performance than the processing

capabilities of individual nodes, these results are loosely applicable to other parallel ma-

chines utilising the same network infrastructure.

Because of the sheer amount of data that was generated by these tests, only a careful

selection of results are presented. The results that have been included were chosen in order

to facilitate a discussion of the performance characteristics of various MPI operations on

4.4. BENCHMARKING EXPERIMENTS 121

Table 1: A list of the tests that were run; the data generated from these tests are dis-
cussed in the remainder of this chapter and the following chapter. (Note: MPI Scatter,
MPI Gather and MPI Alltoall tests used the total option described in Section 4.3.3).

Machine Number of procs Test types Sizes Repetitions
Perseus 1x2 MPI Isend

2x1 2x2 MPI Sendrecv 0-8-128 10,000
4x1 4x2 MPI Barrier

8x1 8x2 MPI Bcast

16x1 16x2 MPI Scatter 0-128-1024 10,000
32x1 32x2 MPI Gather

64x1 64x2 MPI Alltoall

0-4096-65536 10,000

Orion 1x2 1x4 MPI Isend

2x1 2x2 2x4 MPI Sendrecv 0-8-128 10,000
4x1 4x2 4x4 MPI Barrier

8x1 8x2 8x4 MPI Bcast

16x1 16x2 16x4 MPI Scatter 0-128-1024 10,000
32x1 32x2 32x4 MPI Gather

MPI Alltoall

0-4096-65536 1,000

APAC NF 1x2 1x4 MPI Isend

2x1 2x2 2x4 MPI Sendrecv 0-4-128 100,000
4x1 4x2 4x4 MPI Barrier

8x1 8x2 8x4 MPI Bcast

16x1 16x2 16x4 MPI Scatter 0-32-1024 100,000
32x1 32x2 32x4 MPI Gather

MPI Alltoall

0-4096-262144 100,000

each of the three machines, with particular attention paid to:

• The scalability of MPI operations on each machine across a range of messages sizes.

• The scalability of MPI operations on each machine across a range of processors,

including the effect of utilising clusters of SMP nodes.

• The performance stability of MPI operations, by examining performance distribu-

tions and outliers observed for each test.

• A comparison of the performance of MPI operations between machines, i.e. the

differences between Fast Ethernet, Myrinet and QsNet (when combined with a par-

ticular MPI implementation on each machine).

• Performance models of group operations built from point-to-point operations.

122 CHAPTER 4. BENCHMARKING POINT-TO-POINT COMMUNICATION

As explained in Section 3.4.2, point-to-point operations usually constitute the most

elemental message-passing operation. From just a handful of these operations, the com-

plete range of message-passing operations can (and usually are) constructed. Therefore a

thorough understanding of the performance of these point-to-point operations lends itself

to better understanding of the performance of more complex group operations. Sect-

ion 3.4.2 also explained the differences between the range of point-to-point operations

that the MPI specification defines. In summary of that discussion, the main differences

relate to buffering and program correctness; as long as the different varieties of point-

to-point operation are used appropriately, their performance is almost identical. Since it

is only the performance of these operations that is the concern of this dissertation, only

the (asynchronous) MPI Isend operation is examined (as a representative example of the

other point-to-point operations), with one exception. The exception is the MPI Sendrecv

operation, because it is conceptually different – it represents the combination of two si-

multaneous point-to-point operations, traversing the network between a pair of processes

in opposite directions. Since the performance of this operation may potentially differ

vastly between networks that use (physical) simplex links and networks that use (physi-

cal) duplex links, this operation is considered separately. Furthermore, in addition to the

standard (simplex) MPI Isend routine, a duplex MPI Isend routine was benchmarked for

comparison with the functionally equivalent MPI Sendrecv routine.

4.5 Results for MPI Isend

4.5.1 Inter-node, end-to-end completion time

Figure 12 shows the average times that were recorded for running MPIBench on Perseus

over a range of small message sizes, for various numbers of communicating processes

(indicated in the key by the number of nodes x the number of processors per node). It also

shows another line, labelled min, which indicates the minimum time that was observed

between one pair of communicating processes. Figure 13 shows the same information for

larger message sizes. To validate the legitimacy of these results they were compared with

results obtained from an equivalent test using SKaMPI. There was a very good correlation:

although for small messages SKaMPI recorded times 15% higher than MPIBench, then

as the message size increased the measured times quickly converged to within 2% of each

other. The most likely reason for the discrepancy at small message sizes is that the clock

used by SKaMPI did not have a sufficiently fine granularity to accurately measure the

short transmission time of small messages.

First, consider the line marked 2x1 in comparison with the line labelledmin, especially

for larger message sizes. This represents a simple-ping pong test, which is commonly

4.5. RESULTS FOR MPI ISEND 123

0.0

0.1

0.2

0.3

0.4

0.5

0 128 256 384 512 640 768 896 1024

T
im

e
(m

s)

Message size (bytes)

Perseus: Average times for MPI_Isend

64x2
32x2
16x2

8x2
4x2
2x2

64x1
32x1
16x1

8x1
4x1
2x1
min

Figure 12: Average times for MPI Isend using small message sizes with various numbers
of communicating processes on Perseus.

used as a model of message-passing time. The similarity between minimum times and

average times for this case highlights the extremely small timing variations that occur

when network congestion is eliminated. When this is the case, message-passing time T

can indeed be closely modelled by the common approximation T = l + b/W where l is

the link latency in seconds, b is the size of the message in bytes and W is the effective

bandwidth of the link in bytes per second. The results in Figure 13 indicate an effective

bandwidth of about 91 Mbit/s for 64 Kbyte message sizes, although the decreasing slope

indicates that bandwidths closer to the theoretical limit of 95.7 Mbit/s will be obtained

using larger messages2. Closer inspection of Figure 13 also reveals two distinct segments

of the curve, with a knee occurring at 12 Kbytes. Although in this case there is only

a slight difference between the scalability of performance in these segments, in some

situations discontinuities can be far more pronounced (such as in the 64x2 case). What

these breakpoints indicate are message sizes which delimit an MPI implementation’s use of

different protocols for sending short versus long messages, as well as the effect of packet

size on the network infrastructure. For example, the results marked 64x1 and 64x2 in

2100 Mbit/s cannot be achieved for user data, because Ethernet has 64 bytes of overhead for every
1500 byte frame. In addition, each message will also have a negligible amount of MPICH overhead, which
will reduce the bandwidth available to user processes to slightly below 95.7 Mbit/s.

124 CHAPTER 4. BENCHMARKING POINT-TO-POINT COMMUNICATION

0

2

4

6

8

10

12

14

16

0 8192 16384 24576 32768 40960 49152 57344 65536

T
im

e
(m

s)

Message size (bytes)

Perseus: Average times for MPI_Isend

64x2
32x2
16x2

8x2
4x2
2x2

64x1
32x1
16x1

8x1
4x1
2x1
min

Figure 13: Average times for MPI Isend using large message sizes with various numbers
of communicating processes on Perseus.

Figure 13 indicate that some new factor clearly comes into effect for messages larger than

12 Kbytes. In this case, the cause of the divergence turned out to be saturation of the

inter-switch network links, which resulted in greatly increased contention.

The results for Perseus shown in Figures 12 and 13 (and all future figures similar

in nature) are colour-coded to indicate the effect of running multiple processes on a

multiprocessor node. Each coloured set of data shows the results obtained for an increasing

number of total nodes. Lines of the same colour can be disambiguated using the legend,

which is sorted to match the the values of each line at the right-hand edge of the plot.

The general effect of increasing the number of processes per node or the total number

of nodes is to increase the level of contention. More precisely, increasing the number of

processes per node increases the contention for the one network interface in a node as

well as in the backplane network, while increasing the number of nodes only increases

contention in the backplane network.

Consider the effect of contention in the backplane network, i.e. compare any data

set of the same colour in either Figure 12 or 13. For small messages, the results become

increasingly dispersed with increased numbers of communicating processes, which shows

the susceptibility of the Fast Ethernet network in Perseus to contention. For example,

4.5. RESULTS FOR MPI ISEND 125

Perseus: Distribution of times for MPI_Isend

64x2
(avg)

min

0 128 256 384 512 640 768 896 1024Message size (bytes) 0.0

0.2

0.4

0.6

0.8

1.0

Time (ms)

0

2

4

6

8

10

12

14

16

Normalised PDF / 1000

Figure 14: Sampled performance profiles for MPI Isend using small message sizes with
64x2 processes (high contention for the local network interface and network backplane)
on Perseus.

Figure 12 shows that, on average, transmission of a 1 Kbyte message takes 70% longer

when 64x1 processes are communicating than when 2x1 processes are communicating.

Clearly, modelling communication time in situations such as this may be very inaccurate

if only a single point value is used. However, as the message size increases the effect of

the number of communicating processes on delays in the backplane network becomes less

noticeable (at least, until saturation of the network occurs leading to severe performance

degradation, as will be discussed shortly). Although the magnitude of the delays for dif-

ferent numbers of processes remains about the same, the percentage difference between

them rapidly shrinks because of the base time to transmit a message at a certain band-

width. This is an important result which governs some approximations that may be made

when modelling the performance of parallel programs. For accurate modelling, it shows

that the effects of contention cannot be ignored for small messages; and that the effects

of contention may only be ignored for large messages provided that saturation has not

occurred in the backplane network.

Although a rough idea of the effect of contention on performance can be gauged from

Figures 12 and 13, the effect is far more clearly demonstrated in Figure 14, which shows

126 CHAPTER 4. BENCHMARKING POINT-TO-POINT COMMUNICATION

selected distributions of times that were recorded for 64x2 communicating processes on

messages between 0 and 1024 bytes in size. Although similar effects can be observed

when any number of communicating processors are present, this large number was chosen

because the associated high level of contention accentuates these effects, and thus they are

more readily apparent. The distributions have been normalised so that the area under each

distribution is equal to one, resulting in a normalised probability density function (PDF).

This allows the scale of the various distributions to be compared. Also plotted in Figure 14

are the minimum times from Figure 12 (i.e. the minimum times observed between two

communicating processes) and the average times of the distribution at each size. Now

it can be clearly seen how the minimum and average times relate to the performance

distributions that they approximate: the distributions have a relatively smooth rise from

a definite minimum time, through a peak which occurs very close to the average time and

drops off quickly to some maximum time.

This is a slight idealisation that requires qualification. Firstly, Figure 14 shows that

a very small number of messages appear to take less time than the values that denote

the minimum time for message-passing between two processes at any particular message

size (which are plotted in the series labelled min). These are erroneous measurements

that occur because the quality of the synchronisation method, despite its usually high

accuracy, cannot be strictly guaranteed. To briefly summarise the earlier explanation in

Section 4.3.2: synchronisation quality between any process and the reference process is

not bounded by an absolute time, but by a heuristic number of iterations where quality

improves monotonically. More instructively, as the number of processes involved increases,

the chance of any particular process being poorly synchronised and hence producing

erroneous measurements increases proportionately. With the exception of this caveat,

however, the results are reliable: poor synchronisation merely results in an observable

noise floor that is insignificant in comparison with the majority of the recorded data.

This is because, unlike the likelihood of erroneous measurement, the level of the noise

floor grows inversely in proportion to the number of communicating processes. Although

the chance of a few processes being poorly synchronised increases proportionally to the

total number of processes in a test, the remaining processes – which are well synchronised

– increase proportionally much faster. Therefore the ratio of good quality to poor quality

measurements increases (i.e. the noise floor decreases) in proportion to the number of

processes involved in the test.

The second qualification is actually more of an amplification. Unlike the minimum

time, which is bounded by the performance of a contention-free message, the maximum

time is theoretically unbounded. In practice, however, the tail of the PDF drops off so

quickly that it soon becomes impossible to distinguish real data from the noise floor.

There is also one caveat to the smooth decline of the PDF tail. Protocol timeouts for lost

4.5. RESULTS FOR MPI ISEND 127

0

2

4

6

8

0 1 2 3 4 5 6 7

N
or

m
al

is
ed

 P
D

F
 /

10
00

Time (ms)

Perseus: Distribution of times for MPI_Isend (32x1)

0K
8K

16K
24K
32K
40K
48K
56K
64K

23

25

27

0 1 2 3 4 5 6 7

Time (ms)

Perseus: Distribution of times for MPI_Isend (32x1)

\\

0K

Figure 15: Sampled performance profiles for MPI Isend using large message sizes with
32x1 processes (moderate network contention) on Perseus.

messages cause message retransmission. This produces similarly shaped outlier distribu-

tions (but of very low probability) at much longer time values. A closer investigation of

the types of curves that fit typical PDFs that are observed can be found in Section 4.7

and a more detailed discussion of outlier distributions can be found in Section 4.8.

Figures 15 and 16 show how the distributions observed for MPI Isend on Perseus

vary across larger message sizes, in the case of 32x1 and 64x1 communicating processes

respectively. An interesting feature of the performance distributions in these figures, and

especially obvious in the 32x1 case, is the small peak before the main peak in each profile.

Remember that the switched Fast Ethernet network topology in Perseus is not completely

flat, but comprises of five Intel 510T 24 port switches connected by a stackable matrix

card. This means that where more than 24 nodes are involved in communication (as in

the 32x1 and 64x1 cases), messages between some nodes must necessarily traverse the

inter-switch link as part of their route. This incurs a small amount of extra message-

passing time due to the latency of the inter-switch connections. Therefore, the first peak

is largely representative of the performance of message-passing between nodes residing

on the same switch, while the main peak is largely representative of the performance of

message-passing between nodes on different switches.

128 CHAPTER 4. BENCHMARKING POINT-TO-POINT COMMUNICATION

0.0

0.5

1.0

1.5

2.0

0 2 4 6 8 10 12 14

N
or

m
al

is
ed

 P
D

F
 /

10
00

Time (ms)

Perseus: Distribution of times for MPI_Isend (64x1)

0K
16K
32K
48K
64K

13.0

13.5

14.0

0 2 4 6 8 10 12 14

Time (ms)

Perseus: Distribution of times for MPI_Isend (64x1)
\\

0K

Figure 16: Sampled performance profiles for MPI Isend using large message sizes with
64x1 communicating processes (high network contention) on Perseus.

The most significant information contained in Figures 15 and 16, however, is in their

disparity. The obvious increase in average message-passing times on more than 32x1

processes of Perseus, shown in Figure 13, indicates that at most 32x1 processes can be

used before performance begins to degrade markedly for larger messages. This is more

clearly seen in the distributions of Figure 15, where larger messages perform as well as

smaller messages (excluding the additional time required to send more information), in

contrast to the distributions of Figure 16, where performance degrades significantly for

larger message sizes. This degradation is readily apparent in the extreme elongation of the

PDF tails for larger messages, and is due to massive contention. Closer inspection reveals

that the degradation begins to appear when the messages reach about 16 Kbytes in size.

For the 64x1 process case, three Intel 510T 24 port switches were spanned: two using

24 ports and one using 16. The onset of performance degradation began when a total of

approximately 24x84.25 Mbit/s (since 81 Mbit/s is achieved between two processes for

16 Kbyte messages, plus 3.25 Mbit/s of Ethernet framing overhead) i.e. 2.02 Gbit/s was

being delivered between the two fully utilised switches. Remembering that the stackable

matrix cards connecting these switches provide 2.1 Gbit/s of backplane bandwidth each,

it seems that the backplane limit of 2.1 Gbit/s per switch had been reached and the

4.5. RESULTS FOR MPI ISEND 129

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0 128 256 384 512 640 768 896 1024

T
im

e
(m

s)

Message size (bytes)

Orion: Average times for MPI_Isend

32x4
16x4

8x4
4x4
2x4

32x2
16x2

8x2
4x2
2x2

32x1
16x1

8x1
4x1
2x1
min

Figure 17: Average times for MPI Isend using small message sizes with various numbers
of communicating processes on Orion.

ensuing inter-switch saturation resulted in greatly reduced performance.

The same series of MPI Isend tests that were run on Perseus using its Fast Ethernet

network were also conducted on Orion using its Myrinet network. This second set of results

is summarised in Figures 17-20. The most obvious differences between the performance

of the two networks are that the Myrinet network in Orion has only about one-sixth

of the latency of Fast Ethernet in Perseus for small messages (i.e. 20-80 µs depending

on the number of nodes and processes per node) and slightly more than 4 times the

bandwidth of Fast Ethernet for the largest message sizes used (i.e. 419 Mbit/s) in the

case of one communicating process per node. However, in the cases where there were four

communicating processes per node, some overhead was amortised and a (peak) effective

bandwidth of 840 Mbit/s was observed. Sadly, this is still appreciably lower than the

1.28 Gbit/s that Orion’s Myrinet network is listed to be capable of. Correspondence

with Sun and Myrinet confirmed that this poor performance is characteristic of Myrinet

using the GM 1.4 driver libraries on Sun hardware because of an under-performing DMA

implementation. Unfortunately, an updated version of the GM driver library (v1.6) only

became available after the majority of the work in this and the following two chapters

had been completed and analysed.

130 CHAPTER 4. BENCHMARKING POINT-TO-POINT COMMUNICATION

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0 8192 16384 24576 32768 40960 49152 57344 65536

T
im

e
(m

s)

Message size (bytes)

Orion: Average times for MPI_Isend

32x4
16x4

8x4
4x4
2x4

32x2
16x2

8x2
4x2
2x2

32x1
16x1

8x1
4x1
2x1
min

Figure 18: Average times for MPI Isend using large message sizes with various numbers
of communicating processes on Orion.

Returning to the subject of contention, consider the effect of contention for access to

a unique network interface in a multiprocessor node. Coupled with message transmission

overhead, this leads to some interesting non-linearities in performance for various numbers

of processes (some if which have been recently noted but not explained by Capello et

al. [61]). Figure 17 shows that 32 4-way nodes can each concurrently send four 128 byte

messages in just over twice the time that it would take to send one 128 byte message.

Although each Myrinet interface provides support for up to eight concurrent processes to

multiplex their communication into the one physical connection at each Myrinet interface,

this is based on a fair queueing system that divides up messages from individual processes

into 4 Kbyte packets. This transmission serialisation means that the cost of startup and

latency overheads have the potential to be partially amortised when more than one process

is communicating per node, and therefore the network hardware is being utilised more

efficiently. In bandwidth-limited programs this effect will lead to improved performance.

However, access contention to the sole network interface also causes increased variance

in message delivery times, as shown in Figure 19. This is likely to lead to degraded

performance in latency-limited programs. To understand the reason for the increased

variance, notice that the minimum message delivery times in these distributions remain

4.5. RESULTS FOR MPI ISEND 131

Orion: Distribution of times for MPI_Isend on 32x1 and 32x4 processors

32x4
(avg)
32x1
(avg)

min

0 128 256 384 512 640 768 896 1024Message size (bytes) 0.00

0.05

0.10

0.15

0.20

Time (ms)

0

10

20

30

40

50

60

70

80

90

Normalised PDF / 1000

Figure 19: Sampled performance profiles for MPI Isend using small message sizes with
32x1 processes (low contention for the local network interface) and 32x4 processes (high
contention for the local network interface) on Orion.

the same regardless of the number of processes contending for the network interface.

These minimum times represent the messages that were always granted immediate access

to shared resources. In contrast, the great majority of times represent messages that

were delayed access to shared resources due to contention; those that were delayed the

most are represented at the far right of the distributions. As contention for the local

network interface is increased, these delays become more common. Hence the normalised

PDFs for message transmission time broaden (and reduce in amplitude appropriately) as

the number of processes per node are increased. For small messages, where this effect is

most significant, the normalised PDFs for message transmission broaden by the number of

processes per node n and reduce in amplitude to 1/n of their original amplitude (shown in

Figure 19), leaving throughput unchanged, although with increased variance. For larger

messages the distributions broaden by a factor less than n, depending on the extent to

which message-passing startup times and packetisation losses are amortised, and reduce

in amplitude appropriately.

Another interesting aspect of the performance of MPI Isend on Orion is obvious in

Figures 18 and 20. This is the degraded performance for messages between 16 Kbytes and

132 CHAPTER 4. BENCHMARKING POINT-TO-POINT COMMUNICATION

0

10

20

30

40

50

60

70

80

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

N
or

m
al

is
ed

 P
D

F
 /

10
00

Time (ms)

Orion: Distribution of times for MPI_Isend (32x1)

0K
4K
8K

12K
16K
24K
32K
40K
48K
56K
64K

Figure 20: Sampled performance profiles for MPI Isend using large message sizes with
32x1 communicating processes (moderate network contention) on Orion.

32 Kbytes. In Figure 18 this is clearly indicated by a distinct rise in the time taken to

send messages in that size range in comparison with the trend for either smaller or larger

messages. Discontinuities such as these in performance graphs are indicative of either

a change in the message-passing protocol of an MPI implementation, or of the effect of

packetisation on messages by the operating system or interconnect network. In this case,

documentation for the Myrinet Protocol Module in ClusterTools 4.0 [251] reveals that it

is due to a change in message-passing protocol. For messages up to 16 Kbytes minus 96

or 112 book-keeping bytes for 32-bit or 64-bit applications respectively, GM uses an eager

message delivery protocol where messages are always sent immediately and buffered by the

MPI implementation at the receiver. Messages larger than this but less than 32 Kbytes

minus 8 bytes are sent using a rendezvous protocol, where the sender does not transmit

any data until the receiver acknowledges that it has buffer space to receive it. Finally,

messages larger again are transmitted using a multiphase-rendezvous protocol, where data

is split into chunks, the first of which is sent using a rendezvous protocol while the rest

follow in a pipelined manner. It is intriguing that messages sent using the rendezvous

protocol perform so poorly, and in fact worse than messages sent with the multiphase-

rendezvous protocol, which should theoretically take longer. However, the unwarranted

4.5. RESULTS FOR MPI ISEND 133

poor performance of message-passing using the rendezvous protocol using ClusterTools

4.0 and GM 1.4 disappeared in brief tests with GM 1.6, so it reasonable to dismiss the

measured poor performance as a bug in the GM 1.4 implementation on Orion.

The final set of MPI Isend results were obtained by running MPIBench on the APAC NF.

A subset of these results (corresponding to those covered for Perseus and Orion) are

plotted in Figures 21-24. Broadly speaking, these figures confirm the results that were

expected, namely that the QsNet communication network in the APAC NF behaves in a

very similar manner to the Myrinet network in Orion, but with lower latency and higher

bandwidth. Looking at the results in more detail, Figure 21 reveals that the latency of

MPI Isend over the QsNet in the APAC NF was about 3.5 µs in the very best case. For

small messages the average message-passing time of the QsNet in the APAC NF was 6-8

times faster than the Myrinet in Orion and 30-45 times faster than the Fast Ethernet in

Perseus, depending on the number of processes per node. For large messages, a band-

width of 262 MByte/s (2.1 Gbit/s) was achieved, which was appreciably lower than the

340 MByte/s of peak bandwidth promised by the hardware specifications. Note that this

is still 2.5-5 times the (effective) bandwidth provided by the Myrinet network in Orion

(for messages up to 64 KByte, depending on the number of simultaneous communicating

processes per node) and 20 times the bandwidth of the Fast Ethernet in Perseus.

Contrasting the width of the PDFs relative to the average value of the PDFs in Fig-

ure 23 with those for Perseus in Figure 14 and Orion in Figure 19 shows that the vari-

ation in message-passing time (roughly) decreases in proportion to the average decrease

in message-passing time of each of the technologies. One curiosity of the performance of

the QsNet is the distinct jump in message-passing time at a message size of 288 bytes.

The reason for this particular jump is due to protocol optimisations for very small mes-

sages. Messages up to 288 bytes are inlined in the underlying Elan message envelope,

which makes them available to the receiver as soon as the message arrives. In contrast,

messages larger than 288 bytes are delivered synchronously by the underlying hardware,

and require an acknowledgement to be sent to the sender before the receiver may process

a messages contents. There is also a barely perceptible change in the slope of the curve

for messages larger than 65536 bytes. Up until this size, messages are buffered directly by

the communication system at remote processes, whereas after this size the receiver must

acknowledge that it has buffers ready to receive the data before the sender transmits the

data.

Worthy of note is a slight difference between the the tests on Orion and Perseus

compared with those on the APAC NF. Because of a large allocation of compute-time

on the APAC NF it was possible to run tests on larger message sizes (up to 256 KBytes

instead of 64 KBytes for the large message tests) and also in smaller increments along the

way (32 bytes instead of 128 bytes for the small message tests). On top of this, a much

134 CHAPTER 4. BENCHMARKING POINT-TO-POINT COMMUNICATION

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0 128 256 384 512 640 768 896 1024

T
im

e
(m

s)

Message size (bytes)

APAC NF: Average times for MPI_Isend

32x4
16x4

8x4
4x4
2x4

32x2
16x2

8x2
4x2
2x2

32x1
16x1

8x1
4x1
2x1
min

Figure 21: Average times for MPI Isend using small message sizes with various numbers
of communicating processes on the APAC NF.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

0 32768 65536 98304 131072 163840 196608 229376 262144

T
im

e
(m

s)

Message size (bytes)

APAC NF: Average times for MPI_Isend

32x4
16x4

8x4
4x4
2x4

32x2
16x2

8x2
4x2
2x2

32x1
16x1

8x1
4x1
2x1
min

Figure 22: Average times for MPI Isend using large message sizes with various numbers
of communicating processes on the APAC NF.

4.5. RESULTS FOR MPI ISEND 135

APAC NF: Distribution of times for MPI_Isend on 32x1 and 32x4 processors

32x4
(avg)
32x1
(avg)

min

0 128 256 384 512 640 768 896 1024Message size (bytes) 0.00

0.01

0.02

0.03

0.04

0.05

Time (ms)

0

100

200

300

400

500

600

700

800

Normalised PDF / 1000

Figure 23: Sampled performance profiles for MPI Isend using small message sizes with
32x1 processes (low contention for the local network interface) and 32x4 processes (high
contention for the local network interface) on the APAC NF.

higher repetition count for each test was possible - 100,000 instead of the 10,000 that were

used for most of the tests on Perseus and Orion. Using a higher repetition count produces

smoother PDFs of the performance of each test, which is qualitatively apparent in the

results of Figure 24, compared with those in Figures 15, 16 and 20. These latest results

show that, with enough tests, very stable PDFs can be produced for the performance

of MPI operations. This assertion, however, raises a question about the cause of the

less-smooth performance profiles for smaller message sizes across 32x1 processes of the

APAC NF that are apparent in Figure 23. There are two factors at play in these results.

Firstly, because the histogram bin-width for any distribution is chosen automatically in

proportion to its variance, along with the fact that the variance for these less-smooth

results is less than for any of the other tests, the histogram bin-width is smaller in this

case than in any of the others. This tends to reduce the appearance of smoothness for a

fixed number of tests, even though the significance of statistical variation from a smooth

distribution remains unchanged. In particular, despite the fine detail of the distribution,

its broad shape is indeed similar to the other distributions observed. Secondly, however,

the fine details are in fact indicative of a physical phenomenon: fundamentally, digital

136 CHAPTER 4. BENCHMARKING POINT-TO-POINT COMMUNICATION

0

5

10

15

20

25

30

35

40

45

50

0.0 0.2 0.4 0.6 0.8 1.0 1.2

N
or

m
al

is
ed

 P
D

F
 /

10
00

Time (ms)

APAC NF: Distribution of times for MPI_Isend (32x1)

0K
16K
32K
48K
64K
80K
96K

112K
128K
144K
160K
176K
192K
208K
224K
240K
256K

Figure 24: Sampled performance profiles for MPI Isend using large message sizes with
32x1 communicating processes (moderate network contention) on the APAC NF.

computers built from synchronous logic perform operations at discrete points in time.

These results were recorded using a histogram bin-width of approximately 50 clock cycles

on the APAC NF, and at this granularity the true discrete nature of computational events

is actually becoming clear. (A more vivid example of this phenomenon is discussed near

the end of Section 5.2, where Figure 57 highlights the effect of the operating system’s

scheduling policy on the completion of an MPI Bcast operation). With this caveat in

mind, the implications of being able to obtain smooth timing distributions for low level

communication events are explored further in Section 4.7.

4.5.2 Intra-node, end-to-end completion time

The MPI Isend tests just described were conducted on the inter-node communication

networks in Perseus, Orion and the APAC NF. In contrast, this subsection presents the

results of similar MPI Isend tests; the only difference being that this time, the intra-

node communication networks connecting local processors in each SMP node of the same

parallel machines were tested. Figures 25 and 26 show the average times that were

recorded for end-to-end MPI Isend-based communication for message sizes between a

pair of processes running on one node of Perseus (labelled perseus 1x2), between pairs

4.5. RESULTS FOR MPI ISEND 137

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0 128 256 384 512 640 768 896 1024

T
im

e
(m

s)

Message size (bytes)

Perseus, Orion and the APAC NF: Average times for MPI_Isend (intra-node)

perseus 1x2
orion 1x4
orion 1x2

APAC NF 1x4
APAC NF 1x2

Figure 25: Average times for MPI Isend (intra-node) using small message sizes with 1x2-4
processes on Perseus, Orion and the APAC NF.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

0 8192 16384 24576 32768 40960 49152 57344 65536

T
im

e
(m

s)

Message size (bytes)

Perseus, Orion and the APAC NF: Average times for MPI_Isend (intra-node)

perseus 1x2
orion 1x4
orion 1x2

APAC NF 1x4
APAC NF 1x2

Figure 26: Average times for MPI Isend (intra-node) using large message sizes with 1x2-4
processes on Perseus, Orion and the APAC NF.

138 CHAPTER 4. BENCHMARKING POINT-TO-POINT COMMUNICATION

of processes running on one node of Orion and one node of the APAC NF respectively

(labelled orion 1x2 and APAC NF 1x2) and between two pairs of processes each, running

on one node of Orion and one node of the APAC NF respectively (labelled orion 1x4 and

APAC NF 1x4).

Roughly-speaking, the intra-node (1x2) message-passing performance on Perseus is

described by a latency of 118µs and a bandwidth of 400 Mbit/s; compared to an inter-

node (2x1) message-passing performance (see Figures 12 and 13) described by a latency

of 160µs and a bandwidth of 91 Mbit/s. Clearly, the intra-node communication perform-

ance is superior, as expected. The extent of this superiority, however, is not as great as

might be expected. In theory, based on the node’s Pentium III memory bus, a band-

width approaching 100MHz∗32bit/2 (since there are two processors sharing the bus) or

1600 Mbit/s could be expected; along with a significantly lower latency than that ob-

served. (After all, the latency of the same memory bus is of the order of 10 nanoseconds;

and the overhead of the MPI implementation is likely to be just a few microseconds). The

reason for slow intra-node performance in this case is that the MPICH version on Perseus

was not compiled with shared memory extensions enabled (due to stability issues; shmem

support had only just been introduced and did not work reliably), so all communication

is forced through the node’s normal TCP/IP networking subsystem. Although the data

is routed via the loopback address and so is never transmitted via the relatively slow

Ethernet interface (as is inter-node communication), the TCP/IP processing must still be

done, and this introduces significant performance penalties.

In contrast to this, the intra-node message-passing on nodes of Orion and the APAC NF

was carried out directly through shared memory, with clear performance benefit: signif-

icantly lower latencies and higher bandwidths. For example, the intra-node message-

passing performance on Orion can be loosely characterised by a latency of about 5µs

(both 1x2 and 1x4) and bandwidths of 1560 Mbit/s (1x2) and 850 Mbit/s (1x4). It is

quite interesting that for small message sizes (i.e. up to 1024 bytes as shown) nodes in

Orion can sustain either one or two pairs of communicating processes with almost no

performance difference. However, as message size is increased, the 1x2 and 1x4 cases

clearly diverge, the latter taking roughly twice as long as the former. This shows that the

shared memory part of the MPI implementation on Orion is very well-optimised for small

messages - probably taking advantage of caching behaviour and memory interleaving - but

that for larger data transfers the (fixed) total memory bandwidth collectively available

to all SMP processors (because of the shared memory bus used by Orion’s E420R nodes)

holds back performance. In fact, bus contention becomes so severe that the ability of

the extra SMP processors to improve the overall performance of a parallel code becomes

highly questionable: adding extra processors merely starves existing processors of the

memory bandwidth required to achieve more than a fraction of their potential.

4.5. RESULTS FOR MPI ISEND 139

The AlphaServer ES45 nodes in the APAC NF, however, are equipped with dual

memory subsystems, so two pairs of processes can communicate concurrently without

interfering with each other. The increased performance that this affords can be clearly

seen in Figure 26, which shows that the 1x4 results are almost as good as the 1x2 results.

The slight performance drop for using 1x4 processes over 1x2 processes is almost certainly

due to increased costs of overseeing extra MPI processes.

4.5.3 Inter-node, local completion time

This subsection is closely related to Section 4.5.1; in fact, the results presented here were

gathered from the same benchmarking runs. However, a different facet of the MPI Isend

performance was measured. Instead of measuring the time for an end-to-end data transfer,

the results here portray the local completion time for an MPI Isend operation. Remember,

the MPI Isend operation is asynchronous, which means that when a process sends data

to another process, it does not wait for that process to receive the data before carrying

on with other work. This subsection examines the amount of time that it takes for the

sending process to queue the outgoing data before it can get on with other work.

Figures 27 and 28 show the local completion time for MPI Isend operations as a

function of message size on Perseus. Consider first the nx1 results for message sizes

up to 14 Kbytes. These results show a very stable linear trend, where the number of

communicating processes has little effect on performance. The linear trend, characterised

by a bandwidth of about 500 Mbit/s, is basically determined by the rate at which data

from the MPI Isend can be processed into TCP/IP packets by Perseus’ underlying network

subsystem. The reason a slightly higher bandwidth was observed here in comparison with

the similar intra-node communication in the last subsection is that the receive part of the

communication does not occur here. (It will eventually occur, but that is not what is

being timed in this case). With regard to the stable performance measured regardless of

the number of communicating processes: because this part of the MPI Isend operation is

entirely local to a node, there is no contention for shared network resources, and hence

very little performance variability. Now, consider the nx2 results over the same range of

message sizes. The basic linear trend remains, but now the number of communicating

processes has a small effect on performance. The clue to what is happening is that over

this range of message sizes the times recorded for 64x2 communicating processes are

the fastest, while those recorded for 2x2 communicating processes are the slowest (note

the legend ordering in Figure 27). For the 2x2, 4x2 and 8x2 results, there is clearly a

significant overhead when compared with x1 results on the same number of nodes. This

is because of intra-node contention for the memory bus as each process attempts to feed

data into the network subsystem. The 16x2, 32x2 and 64x2 results fare better because

140 CHAPTER 4. BENCHMARKING POINT-TO-POINT COMMUNICATION

0.0

0.1

0.2

0.3

0.4

0.5

0 2048 4096 6144 8192 10240 12288 14336 16384

T
im

e
(m

s)

Message size (bytes)

Perseus: Average times for MPI_Isend (local completion)

2x2
4x2
8x2

16x2
32x2
64x2
64x1
32x1
16x1

8x1
4x1
2x1
min

Figure 27: Average times for MPI Isend (local completion) using medium message sizes
with various numbers of communicating processes on Perseus.

0

2

4

6

8

10

0 8192 16384 24576 32768 40960 49152 57344 65536

T
im

e
(m

s)

Message size (bytes)

Perseus: Average times for MPI_Isend (local completion)

64x2
32x2
16x2

8x2
4x2
2x2

64x1
32x1
16x1

8x1
4x1
2x1
min

Figure 28: Average times for MPI Isend (local completion) using large message sizes with
various numbers of communicating processes on Perseus.

4.5. RESULTS FOR MPI ISEND 141

there is less intra-node contention for the memory bus; the subtle reason behind this is

(ironically) that inter-node contention does play a small part in this scenario. Because

the two individual processes running on each node are not explicitly synchronised and

also because they are affected by the variance in inter-node communication, they are not

always sending and receiving data in lock-step. In fact, as more nodes communicate, inter-

node contention increases, the variance in inter-node message-passing increases, and thus

processes spend more time sitting idle. If one process is waiting idle, the other process in

the node can get exclusive access to the memory bus, and hence complete sooner itself.

The counter-intuitive overall effect of this is that while end-to-end time for an MPI Isend

goes up as contention increases, the time for the average local completion of the operation

decreases.

Something is obviously occurring for messages greater than about 14 Kbytes that is

greatly affecting the local completion times of MPI Isend operations on Perseus. This

significant jump in completion time is caused by a protocol change. While messages up to

16 Kbytes minus one IP packet are queued for transmission completely asynchronously,

messages larger than this are not. Instead, because of buffer space limitations, the first

(message size - (16 Kbyte + IP packet size)) bytes are pipelined from sender to receiver,

and only the last part of the message is asynchronously queued. Thus, the local completion

time for messages larger than this breakpoint is roughly equivalent to the end-to-end

time for an MPI ISend of a message 14 Kbytes smaller than the original plus the local

completion time for a 14 Kbyte MPI Isend. One very practical point of interest arises

from this: codes using asynchronous messages to overlap communication and computation

will not perform well unless enough buffer space is provided for messages.

Figures 29 and 30 show the results for the local completion times tests on Orion. There

are three distinct protocols used, depending on message size, as described in Section 4.5.1.

From 0 to 16 Kbytes (minus 96 or 112 book-keeping bytes), the eager message delivery

protocol is used, and the results indicate that an MPI Isend does not return control

to a local MPI process until the data to transmit has been copied to an intermediate

transmission buffer. From about 16 Kbytes to 32 Kbytes the rendezvous message delivery

protocol is used, and for messages larger again the multiphase-rendezvous protocol is used.

Both of these behave almost the same, although messages sent with the plain rendezvous

protocol suffer from the small performance hiccup that has already been observed. Putting

this detail aside, the most important point to make is that the local completion time of

messages transmitted using these protocols does not vary with message size. This indicates

that the true intent of the MPI Isend call is being delivered: that the outgoing message is

simply queued for delivery by the user-level MPI process; the underlying communication

hardware deals with message delivery concurrently in the background.

The most fascinating features of Figures 29 and 30 are the differences in completion

142 CHAPTER 4. BENCHMARKING POINT-TO-POINT COMMUNICATION

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 128 256 384 512 640 768 896 1024

T
im

e
(m

s)

Message size (bytes)

Orion: Average times for MPI_Isend (local completion)

32x4
16x4

8x4
4x4
2x4

32x2
16x2

8x2
4x2
2x2

32x1
16x1

8x1
4x1
2x1
2x1
min

Figure 29: Average times for MPI Isend (local completion) using small message sizes with
various numbers of communicating processes on Orion.

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0 8192 16384 24576 32768 40960 49152 57344 65536

T
im

e
(m

s)

Message size (bytes)

Orion: Average times for MPI_Isend (local completion)

32x4
16x4

8x4
4x4
2x4

32x2
16x2

8x2
4x2
2x2

32x1
16x1

8x1
4x1
2x1
min

Figure 30: Average times for MPI Isend (local completion) using large message sizes with
various numbers of communicating processes on Orion.

4.5. RESULTS FOR MPI ISEND 143

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

0.0040

0.0045

0.0050

0 128 256 384 512 640 768 896 1024

T
im

e
(m

s)

Message size (bytes)

APAC NF: Average times for MPI_Isend (local completion)

32x4
16x4

8x4
4x4
2x4

32x2
16x2

8x2
4x2
2x2

32x1
16x1

8x1
4x1
2x1
min

Figure 31: Average times for MPI Isend (local completion) using small message sizes with
various numbers of communicating processes on the APAC NF.

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 32768 65536 98304 131072 163840 196608 229376 262144

T
im

e
(m

s)

Message size (bytes)

APAC NF: Average times for MPI_Isend (local completion)

32x4
16x4

8x4
4x4
2x4

32x2
16x2

8x2
4x2
2x2

32x1
16x1

8x1
4x1
2x1
min

Figure 32: Average times for MPI Isend (local completion) using large message sizes with
various numbers of communicating processes on the APAC NF.

144 CHAPTER 4. BENCHMARKING POINT-TO-POINT COMMUNICATION

time observed for different numbers of communicating processes. Unlike the results for

Perseus (and those of the APAC NF, which will be discussed shortly), the times observed

for Orion are heavily dependent on the total number of communicating processes. For

example, the 16x4 and 32x2 results are almost the same, the 8x4, 16x2 and 32x1 results are

almost the same, etc. Also, there is an almost linear relationship between the number of

processes and the time required for the operation. While this overhead is clearly caused

by the MPI implementation, it is hard to imagine why it exists – it seems completely

unnecessary. What is clear is that this overhead (which appears to run through all other

MPI operations on Orion too) will have increasingly detrimental effects for large parallel

programs.

Finally, the average local completion times for MPI Isend operations with different

message sizes on the APAC NF are shown in Figures 31 and 32. The trend for results

using message sizes between 0 and 288 bytes resembles that for messages sent using the

eager message delivery protocol on Orion, and a similar process is indeed occurring. The

local completion times for messages in this size range take about as long to complete as

end-to-end messages in the same size range in Figure 21 minus the latency for a zero

byte message. Those end-to-end results represent a round-trip message, because of the

synchronous nature of QsNet. Therefore, the results for local completion of an MPI Isend

show that return of control to the user-level MPI process is synchronously delayed until

the data have been completely transmitted, but returns before the data reception has been

acknowledged. This small expense in local completion time due to immediate processing

is more than offset by the improved performance in end-to-end MPI Isend performance,

which can be seen in Figure 21. Messages larger than 288 bytes are queued for sepa-

rate processing by the communication subsystem, and control is returned directly to the

user-level MPI process. Figure 32 shows that this queueing time depends on message

size, however the very small slope of results in that figure mean that very little time

is spent preparing a message for subsequent delivery. Indeed, comparison of Figure 32

with Figure 22 shows that the local completion time for large MPI Isend messages on the

APAC NF is typically much less than 1% of the complete end-to-end transfer time.

4.6 Results for MPI Sendrecv

The same tests described in Section 4.5 were repeated, except that this time the perform-

ance of MPI Sendrecv operations was measured. From the perspective of a user program,

an MPI Sendrecv operation involves the simultaneous exchange of two messages between

a pair of processes – one in each direction. Physically, many machines (including all

three of the machines benchmarked here) have full-duplex network links so there is the

4.6. RESULTS FOR MPI SENDRECV 145

potential for MPI Sendrecv messages to actually transit those interconnect networks si-

multaneously. Note, however, that message-handling by the operating system at each end

cannot proceed concurrently (at least, not if only one processor is available for that task).

This subsection examines the time taken for MPI Sendrecv operations on Perseus, Orion

and the APAC NF to see how well these machines actually perform when instructed to

carry out simultaneous, bidirectional message-passing.

Firstly, contrast the nx1 curves plotted in Figure 12 with the corresponding curves

in Figure 33. Even though twice as much data is being transmitted in the bidirectional

MPI Sendrecv test, the time taken to achieve this for any particular message size is con-

siderably less than twice that of the MPI Isend test, especially when a large number of

nodes are used. This characterises the situation where the full-duplex nature of the inter-

connect network is able to support the simultaneous communication of the MPI Sendrecv

operation without much performance degradation.

Note, however, that part of the reason for the small difference between the perform-

ance of the two operations in this case is that the work done by the operating system of

processing the incoming and outgoing messages can be divided amongst the two proces-

sors in each node. Although MPIBench binds each MPI process to a separate processor,

there is no such binding of systems routines, and of particular interest in this case, net-

work I/O. Therefore the effect of message-handling overhead on simultaneous bidirectional

message-passing is more pronounced in the comparison of the x2 curves plotted in the

same figures. In these cases, each processor is busy servicing both departing and arriving

messages. Notice, for these cases, that time taken to complete an MPI Sendrecv routine

using small messages is roughly twice as long as the time taken to complete a unidirec-

tional, but otherwise identical, MPI Isend routine. This effect becomes less noticeable as

message size increases, because the greater part of a message’s life time is spent traversing

the network link rather than the operating system’s network stack. Hence, medium-sized

MPI Sendrecv messages perform almost as well as equivalently sized MPI Isend mes-

sages. However, a third effect comes into play for even larger message sizes and increased

contention levels (i.e. the number of participating processes), which is therefore almost

certainly caused by exhaustion of network switching resources. This effect causes perform-

ance for MPI Sendrecv messages to degrade noticeably, and they once more approach half

of the performance of MPI Isend messages.

A final point concerning the performance of the MPI Sendrecv routine on Perseus

relates to the frequent lack of results for message sizes above 32 Kbytes in size (see

Figure 34). It was found that the MPICH 1.2.0 libraries would fail when asked to perform

a large number of MPI Sendrecv operations with message sizes larger than twice the

underlying socket buffer space allocated with P4 SOCKBUFSIZE. It was discovered, however,

that this problem did not recur in the results of further tests that used an updated

146 CHAPTER 4. BENCHMARKING POINT-TO-POINT COMMUNICATION

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 128 256 384 512 640 768 896 1024

T
im

e
(m

s)

Message size (bytes)

Perseus: Average times for MPI_Sendrecv

64x2
32x2
16x2

8x2
4x2
2x2

64x1
32x1
16x1

8x1
4x1
2x1
min

Figure 33: Average times for MPI Sendrecv using small message sizes with various num-
bers of communicating processes on the Perseus.

0

2

4

6

8

10

12

14

16

18

20

22

0 8192 16384 24576 32768 40960 49152 57344 65536

T
im

e
(m

s)

Message size (bytes)

Perseus: Average times for MPI_Sendrecv

64x2
32x2
16x2

8x2
4x2
2x2

64x1
32x1
16x1

8x1
4x1
2x1
min

Figure 34: Average times for MPI Sendrecv using large message sizes with various num-
bers of communicating processes on Perseus.

4.6. RESULTS FOR MPI SENDRECV 147

version (1.2.4) of MPICH, so it appears that the bug has been corrected. Unfortunately,

it was impractical to rerun other tests using the updated MPICH library or an enlarged

P4 SOCKBUFSIZE - there are almost always going to be problems with whichever version

and configuration of a software package is being analysed. Therefore, in the interest

of maintaining uniform experimental conditions for all tests, the buffer space was not

changed from its default setting nor was a different MPICH version benchmarked to fill

in the small gaps in the results, which are of little practical concern anyway.

Surprisingly, the performance of the MPI Sendrecv operation does not appear to bene-

fit from the full-duplex nature of Orion’s Myrinet network. This can be seen by comparing

the completion time of the MPI Sendrecv operations in Figures 35-36 with the MPI Isend

operations in Figures 17-18. This reveals that (for both large and small messages) the

MPI Sendrecv/x1 curves track the MPI Isend/x2 curves, and the MPI Sendrecv/x2 track

the MPI Isend/x4 curves, where two or four messages are simultaneously queued for

transmission at each node respectively. Furthermore, the MPI Sendrecv/x4 curve tracks

two-times the MPI Sendrecv/x2 curve (for large messages), which, because of the high

bandwidth efficiency of the x4 test (that was discussed earlier), indicates that serialisa-

tion of the MPI Sendrecv is indeed occurring. Because the underlying Myrinet hardware

provides full-duplex communication channels, the serialisation cannot occur there. Fur-

thermore, because GM is accessed from user-space, the serialisation cannot be occurring

at the operating system level. This leaves the MPI implementation or the GM implemen-

tation upon which it relies as the culprit. In order to further investigate the source of the

serialisation, the MPI Sendrecv results were compared with results from an MPI Isend test

that had been modified to measure the performance of two simultaneous and out-of-phase

but essentially independent ping-pong streams (rather than a single ping-pong stream).

The results for these bidirectional MPI Isend tests were essentially indistinguishable from

the results of the (in terms of data transfer, identical) MPI Sendrecv test. Because of the

independent nature of the data streams, the most reasonable conclusion that can be drawn

from this is that bidirectional message-passing is serialised in the GM layer implementa-

tion on Orion, although the MPI implementation itself can not be categorically ruled out.

(Unfortunately, only access to the source code would lead to conclusive answers). What-

ever the cause, the effect of the serialisation is clearly demonstrated in Figure 37. This

figure shows the performance profile of a MPI Sendrecv operation between two processes

using 512 byte messages. Given full-duplex operation, there should be one spike, since

data travelling to each process could occur concurrently and so the processes should be

expected to finish at the same time. The fact that there are two well-separated spikes,

where closer analysis revealed that the completion of both processes were always repre-

sented by values in separate peaks for any individual test, demonstrates the serialisation

of the send/receive process.

148 CHAPTER 4. BENCHMARKING POINT-TO-POINT COMMUNICATION

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0 128 256 384 512 640 768 896 1024

T
im

e
(m

s)

Message size (bytes)

Orion: Average times for MPI_Sendrecv

32x4
16x4

8x4
4x4
2x4

32x2
16x2

8x2
8x2
8x2

32x1
16x1

8x1
4x1
2x1
min

Figure 35: Average times for MPI Sendrecv using small message sizes with various num-
bers of communicating processes on Orion.

0

1

2

3

4

5

6

0 8192 16384 24576 32768 40960 49152 57344 65536

T
im

e
(m

s)

Message size (bytes)

Orion: Average times for MPI_Sendrecv

32x4
16x4

8x4
4x4
2x4

32x2
16x2

8x2
4x2
2x2

32x1
16x1

8x1
4x1
2x1
min

Figure 36: Average times for MPI Isend using large message sizes with various numbers
of communicating processes on Orion.

4.6. RESULTS FOR MPI SENDRECV 149

0

50

100

150

200

250

300

0.00 0.02 0.04 0.06 0.08 0.10

N
or

m
al

is
ed

 P
D

F
 /

10
00

Time (ms)

Orion: Distribution of times for MPI_Sendrecv (2x1)

512

Figure 37: Performance profile showing the serialisation of bidirectional message-passing
for an MPI Sendrecv operation using 512 byte messages with 2x1 processes on Orion.

The differences between the performance of MPI Sendrecv (see Figures 38-39) and

MPI Isend (see Figures 21-22) on the APAC NF are very similar to the the differences

between the performance of the same operations on Orion that have just been discussed.

Once again, it seems that the MPI Sendrecv operation does not appear to derive overall

advantage from the full-duplex nature of the underlying network. Other research [277] on

identical hardware, which obtained commensurate values for peak MPI Sendrecv band-

width at various message sizes, has suggested that PCI bottlenecks and DMA contention

between system memory and the network interface are the cause of the unexpectedly poor

performance.

150 CHAPTER 4. BENCHMARKING POINT-TO-POINT COMMUNICATION

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 128 256 384 512 640 768 896 1024

T
im

e
(m

s)

Message size (bytes)

APAC NF: Average times for MPI_Sendrecv

32x4
16x4

8x4
4x4
2x4

32x2
16x2

8x2
4x2
2x2

32x1
16x1

8x1
4x1
2x1
min

Figure 38: Average times for MPI Sendrecv using small message sizes with various num-
bers of communicating processes on the APAC NF.

0

1

2

3

4

5

6

7

8

9

0 32768 65536 98304 131072 163840 196608 229376 262144

T
im

e
(m

s)

Message size (bytes)

APAC NF: Average times for MPI_Sendrecv

32x4
16x4

8x4
4x4
2x4

32x2
16x2

8x2
4x2
2x2

32x1
16x1

8x1
4x1
2x1
min

Figure 39: Average times for MPI Sendrecv using large message sizes with various num-
bers of communicating processes on the APAC NF.

4.7. ANALYTICAL MODELS 151

4.7 Analytical Models

Many of the results and related discussions presented so far have been heavily focussed

on the PDFs of the measured performance data; and in particular with their empirical

qualities. In contrast, this section examines the quantitative nature of the observed distri-

butions to try and determine if and how they can be characterised by analytical models.

Good analytical models would be very useful indeed, for both PEVPM modelling and

a deeper general understanding of the performance characteristics of communication in

parallel programs (or even communication in computer networks in general).

In terms of the PEVPM, being able to randomly select communication time from a

simple analytical expression instead of from an empirical distribution has several signif-

icant advantages. Firstly, it reduces the PEVPM’s storage requirements by potentially

orders of magnitude. Instead of having to store complete histograms of the observed per-

formance of an operation for each message size, only a handful of parameters describing

the distribution need to be recorded. Secondly, because of this, the time-cost of evaluating

a PEVPM model using analytical models for communication performance will be far less.

Using empirical models of communication performance requires the PEVPM to read a

comparatively large amount of data from disk (which it is sensible to cache if sufficient

memory is available) for each specific communication model; this is relatively costly. In

contrast, using analytical models of communication performance would allow the PEVPM

to perform individual selections from the modelled distribution on the fly (which may also

be sensible to cache; there is a space-time trade-off for each selection), which is relatively

cheap. Thirdly, it is quite possible that using analytical models for communication per-

formance will lead to better simulation results, especially in cases where benchmarks were

conducted with only a small number of iterations and using coarse histogram bin sizes.

On the assumption that the real performance distributions are in fact smooth and fol-

low an analytic form (which will be shown to be reasonable in the next paragraph) then

using that analytic form to model communication time would be superior to using the

approximate empirical data. Finally, it is easier to interpolate or extrapolate for gaps

in measured performance data or even speculate on hypothetical performance data using

analytical rather than empirical models of communication speed, especially in the case

that parameters for an analytical model can be derived from physical parameters such as

network latency and bandwidth as well as communication stack processing overheads.

As noted in Section 4.5.1, the true performance distributions that occur are actually

discrete on a small enough time scale. However, as pointed out in Section 3.4.2, using

continuous distributions to gloss over these very fine-grained characteristics still produces

very accurate macroscopic performance results. Therefore, with this caveat in mind, it is

152 CHAPTER 4. BENCHMARKING POINT-TO-POINT COMMUNICATION

reasonable to assume that the PDFs describing the performance of individual communi-

cation operations are in fact smooth. The assumption that these PDFs can be adequately

described by analytical expressions, however, still needs to be examined.

For now, consider any of the PDFs that have been presented (for example Figures 14,

16, 19, 20, 23 or 24 from Section 4.5.1). Roughly speaking, each of these distribu-

tions have a hard lower bound, usually a normal-shaped middle and taper out with an

unbounded tail. The lower bound is determined by the minimum message latency that is

possible under perfect conditions. The shape of the middle-part of the curve is determined

by contention effects. In reality, the right-hand tail does not actually extend to infinity

because of the true discrete nature of the distribution and protocol timeouts (which will

be discussed in the next section). It is convenient, however, to assume an infinite tail and

so fit a continuous analytical function to the observed results. This approximation af-

fects overall accuracy very little because the probabilities associated with the tail become

astronomically small very quickly.

A number of common distribution functions exhibit these broad properties. These in-

clude exponential, Erlang, gamma, Pearson 5, lognormal and Weibull distributions [191].

Unlike the normal distribution, these distributions are asymmetric in general and cannot

be distinguished by their mean and variance alone. In addition to mean and variance,

which are also known as the first and second moments of a distribution, these distribu-

tions must be differentiated by their third and fourth order moments, known as skewness

and kurtosis respectively. The skewness statistic describes the degree of symmetry of

a distribution. A positively skewed (right-skewed) distribution rises rapidly, reaches its

maximum and falls slowly with a pronounced right-tail. A negatively skewed (left-skewed)

distribution rises slowly reaches through a pronounced left-tail, reaches its maximum and

falls rapidly. The kurtosis statistic describes the peakedness/flatness of a distribution

near its mode, relative to the normal distribution.

The distribution functions listed above, and hence their moments, are defined by at

most three parameters, usually known as the scale parameter, the shape parameter and

the location parameter. The scale parameter defines where the bulk of the distribution

lies, or how stretched out the distribution is. In the case of the normal distribution,

for example, the scale parameter is the standard deviation. Unsurprisingly, the shape

parameter defines the shape of a distribution. Some distributions, for example the normal

distribution, do not have a shape parameter because they have a predefined shape that

does not change. Finally, the location parameter shifts the origin of a distribution either

left or right.

Without a location parameter (or with a location parameter of zero) all of the dis-

tributions listed above have a domain of (0,∞] so the location parameter can be used to

4.7. ANALYTICAL MODELS 153

model the lower bound on message latency. Determining which scale and shape parame-

ters should be used to model the PDF of communication performance is less clear. Rather

than blindly trying to fit observed data to known analytical distributions, it is more use-

ful to first examine how the assumptions of those analytical expressions mesh with the

underlying traffic patterns and contention that are fundamental to parallel programs.

Historically, the most frequently used model for the time instants at which events

are observed has been the Poisson process (also known as an M/M/1 queue in Kendall

notation [201]). In particular, this model has been (and still is) heavily used in the

telecommunications industry to model the interarrival and service times of telephone

calls. From these roots, it has been commonly applied to modelling data transmission

in computer networks. A Poisson process is characterised by a sequence of randomly

spaced events, where the (event) arrival behaviour after an event is independent of, but

probabilistically like, the original behaviour. This memoryless property means that the

fact an event has not happened yet provides no information about how much longer it

will be before it does happen. Slightly more formally, a Poisson process must meet three

conditions: 1) that in a sufficiently short time, only 0 or 1 events can occur; 2) that the

probability of exactly 1 event occurring in an interval is proportional to the the duration

of the interval; and 3) that non-overlapping intervals are independent Bernoulli trials.

Mathematically, this implies that the interarrival times between events are exponentially

distributed with a mean of 1/λ, where λ is the average arrival rate.

Under these conditions, the Poisson distribution gives the probability that a given

number of events will occur within a certain time interval. In relation to a communication

network, when a large number of packet arrival events occur in a short period of time

(due to the inherent randomness of interarrival times) communication buffers will become

very full. Hence the time that a packet can spend waiting for transmission can be large.

With this in mind, a Poisson process provides a model of network contention that can

be used to determine the interarrival time and service time (i.e. end-to-end latency) of

message-passing operations. Like the distribution of interarrival times, the service times of

a Poisson process are exponentially distributed. The exponential distribution function is

defined by a location parameter γ and scale parameter λ, but no shape parameter because

it has a fixed shape – it begins at T = γ with a value of λ and decreases exponentially

and monotonically with T .

The Poisson process provides an attractive modelling formalism because it has a num-

ber of properties that greatly simplify its evaluation. Unfortunately, however, it fails as

a realistic model for network traffic, and in particular message-passing traffic for parallel

programs, because in these cases condition 3 (above) is not true. Data communication

is often very bursty and is self-similar in nature [125, 214, 268, 371, 372]. Message-passing

programs, due to their frequent synchronisation (either explicit or implicit), are even

154 CHAPTER 4. BENCHMARKING POINT-TO-POINT COMMUNICATION

more so. This means that contention between seemingly unrelated processes is not truly

independent. For this reason, researchers have suggested that Poisson processes are inap-

propriate for modelling data communication; a number of recent studies, mostly focussed

on wide-area networks, have found that service times for data traffic are much better

modelled by heavy-tailed distributions such as Erlang, lognormal or Weibull distribu-

tions [119,120,121,232,270,272,378].

The Erlang distribution was first described in 1917 [52, 111] by the famous Danish

telephone engineer of the same name, who is considered to be the founder of queueing

theory. It was specifically designed to model the situation where the likelihood of im-

mediate process completion increases with the amount of processing that has already

been done. In particular it describes the waiting time until the mth event of a process

that occurs randomly over time. This makes the Erlang distribution particularly good at

modelling transmission times in the face of contention (or more generally, survival data).

Erlang distributions are defined by their location parameter x, positive integer shape fac-

tor m and scale parameter β. The case of m = 1 reduces an Erlang distribution to an

exponential. For m > 1, the Erlang distribution is 0 at x, peaks at a value that depends

on both m and β and decreases monotonically thereafter.

The Erlang distribution is actually a special case of the gamma distribution, which is

identical, except that the shape factor m may take on non-integer values. Also related

to the gamma distribution is the Pearson 5 distribution, which is sometimes called the

inverse gamma distribution: there is a reciprocal relationship between a Pearson 5 ran-

dom variable and a gamma random variable. The Pearson 5 distribution is particularly

useful for modelling time delays where some minimum delay value is almost assured and

the maximum time is unbounded and variably long [213]. This makes it an attractive

candidate for modelling message-passing time.

The lognormal distribution, first described by Kolmogorov in 1941 [206], results from

the product of many independent random variables, where overall distribution values are

based on the cumulative effect of many small perturbations in those variables. This the-

oretical underpinning also fits well with the idea of contention, where mutually excluded

access to shared resources can increase the chance of further contention, thus causing

increasingly lengthy delays. Mathematically, the lognormal distribution is described by

a random variable whose logarithm is normally distributed. It is a three-parameter dis-

tribution, defined by the parameters: µ′, which represents the mean of the logarithms of

the random variable; σT
′

, which represents the variance of the logarithms of the random

variable; and T , which can be used to shift the distribution left or right. The distribution

looks like a normal curve that has been right-skewed. For σT
′

significantly greater than 1

the PDF rises and falls very sharply, looking almost like an exponential distribution.

Both the gamma family (including Erlang and Pearson 5) and lognormal processes

4.7. ANALYTICAL MODELS 155

provide (different) potential theoretical explanations for the effects of random contention

on message-passing service times. However, a lack of strict randomness in the underlying

process being modelled (in this case contention) could lead to negatively skewed data,

which cannot be fit by either gamma family or lognormal models. The Weibull distribu-

tion, first described by Weibull in 1939 [365] and then to a wider audience in 1951 [364],

is a very versatile, general-purpose distribution that can be used in these cases [191]. It

is defined by three parameters: a shape parameter β, scale parameter η and location

parameter γ. Depending on the values of the parameters, the Weibull distribution can be

used to model a variety of behaviours. For example, using β = 1, the Weibull distribution

reduces to an exponential distribution; β < 1 produces a exponential-like curve, except

that it begins higher and diminishes faster. Using 1 < β < 3.6 results in a distribution

that looks much like a gamma or lognormal, i.e. monotonically rising until the mode, and

then monotonically decreasing with a pronounced right-tail. For β = 3.6 the coefficient of

skewness approaches zero, and the curve approximates a normal distribution. Uniquely,

for β > 3.6 the distribution is negatively skewed, i.e. most data is found in the right-hand

side of the distribution, despite a left-bounded tail.

Interestingly, all of these distributions can be mimicked by a special distribution called

the generalised gamma function f(t), which is a three-parameter distribution that can be

written as:

f(t) =
β

Γ(k)θ
(
t

θ
)
kβ−1

e−(
t
θ
)
β

where θ > 0 is a scale parameter, β > 0 and k > 0 are shape parameters and Γ(x) is the

gamma function of x, defined by:

Γ(x) =

∫ ∞

0

sx−1e−sds

In 1974, Prentice showed that this can be parameterised to a form more suitable for

(automatic) computation [284], by setting:

λ = 1√
k

σ = 1
β

√
k

µ = ln(θ) + 1
β
ln(1

λ2)

for −∞ < µ <∞, σ > 0 and −∞ < λ <∞, giving:

f(t) =

|λ|
σt

1
Γ(1

λ2)
e

λ−
ln(t)−µ

σ +ln(1
λ2)−e

λ−
ln(t)−µ

σ

λ2

if λ 6= 0

1
tσ
√
2π
e−

1
2
(
ln(t)−µ

σ
)
2

otherwise

156 CHAPTER 4. BENCHMARKING POINT-TO-POINT COMMUNICATION

The generalised gamma function includes exponential, gamma (and hence Erlang and

Pearson 5), lognormal and Weibull distributions as special cases: if λ = 1 and σ = 1

the distribution becomes an exponential; if λ = σ the distribution becomes a gamma

(and Erlang if this value is integral, or Pearson 5 with the appropriate inversion); if

λ = 0 the distribution becomes lognormal; if λ = 1, (Weibull parameter) β = 1/σ and

η = ln(µ) then the distribution behaves like a Weibull distribution for σ > 1 ≡ β < 1,

σ = 1 ≡ β = 1 and σ < 1 ≡ β > 1. While the generalised gamma function is not

often used in final-stage models because of its complexity, its ability to behave like other

more common distributions can be helpful in determining which distribution should be

used for a particular set of data.

Consider once more the PDFs in Figures 14, 16, 19, 20, 23 and 24. The data from

a broad selection of those measured distributions were input into a statistics program

called Stat::Fit [149] and analysed to determine which of the analytical distribution(s)

listed above could best describe them. Stat::Fit is very simple to use, in particular via

its Auto::Fit function which automatically fits data to different distributions, provides an

absolute measure of each distribution’s acceptability and ranks the results. Stat::Fit uses

Maximum Likelihood Estimation (MLE) [101] for parameter estimation, which determines

the parameter values that maximise the probability of obtaining the sample data. MLE

is considered the most accurate parameter estimation method for 100 or more samples,

although it suffers from convergence problems for 3-parameter fits of nearly exponential

distributions [226, 346]. Stat::Fit uses χ2, Kolmogorov-Smirnov and Anderson-Darling

tests to provide goodness of fit measures. Notably, the Kolmogorov-Smirnov test provides

the best metric over a wide range of distributions and the Anderson-Darling test provides

the best metric for heavy-tailed distributions [18]. Importantly, it is known that all of

these tests can become too sensitive for a large number (say more than 1000) data points

and thus occasionally reject proposed distributions that in reality provide useful fits [149].

Firstly, Stat::Fit was used to perform independence tests on the input data using

its runs test and autocorrelation test facilities. At a significance level of 0.01, which

means that there was a 1% chance of incorrectly rejecting the correct hypothesis, these

tests indicated that the input data was gathered from a stationary process. This is an

important result because it validates the crucial assumption (made in Section 3.4.2) that

the performance of individual communication operations can be treated independently.

Then, for each investigated distribution, 500 (i.e. greater than 100 but less than 1000) data

points were randomly selected from the 10,000 or 100,000 measured samples available (see

Table 1) and used for fitting. Auto::Fit MLE and goodness of fit analyses were performed

with a significance level of 0.01. Once potential fits were identified (by the Kolmogorov-

Smirnov test for approximately normally distributed data and the Anderson-Darling test

for heavily skewed data) their p-values (i.e. the probability that another sample would

4.7. ANALYTICAL MODELS 157

be as unusual given that the fit under consideration was appropriate) were manually

examined to determine the most promising models. Samples of the fits that were obtained

for the three machines being examined in this thesis, covering small to large messages

being communicated between 32x1 processes, are shown in Figures 40-45.

Significantly, the results support a common interpretation for the behaviour of point-

to-point message-passing performance on all three of the machines that were examined.

The performance distributions observed for small messages (for example the 512 byte re-

sults shown in Figure 40 for Perseus, Figure 42 for Orion and Figure 44 for the APAC NF)

are essentially normal-shaped, although they necessarily have a bounded lower limit. The

best fit in each of these cases was provided by a Weibull distribution with a shape parame-

ter near 3.6. Importantly, however, the standard deviation for each of these distributions,

i.e. 58µs on Perseus, 5µs on Orion and 1.5µs on the APAC NF, is comparatively small:

they are all about half of the minimum message latency for a zero byte message on the

same system. These normal-shaped distributions are consistent with random rather than

contention delays, for example caused during context switching, polling for message ar-

rivals or physical transmission. Also worth noting, for reasons that will be made clear

shortly, is that the Pearson 5 distribution provides a usable, if somewhat crude, alternative

to the Weibull distribution for these small messages.

For larger messages (for example for the 16 Kbyte results for Perseus in Figure 41, the

28 Kbyte results for Orion3 in Figure 42 and the 16 Kbyte results for the APAC NF in

Figure 44), where contention is more prevalent, the Pearson 5 distribution provided by far

the best fit for message-passing time on all three machines. In comparison, Weibull (or

other) distributions could not be used because they were too heavy-tailed and lacked the

peakedness to fit the observed data well. It seems, therefore, that (for the communica-

tion networks examined in this thesis) the best quantitative explanation for performance

variation in message-passing time under a normal contention level lies in the roots of the

Pearson 5 distribution; i.e. performance variation occurs as the result of a transmission

process that has a high chance of succeeding in minimum time, yet has a small chance of

being continually delayed.

Where multiple processes on an SMP node are competing for a shared network in-

terface, as discussed in Section 4.5.1, access contention to the shared network interface

causes increased variance in message delivery times. For smaller messages, the normalised

PDFs for message transmission time broaden by the number of processes per node n and

reduce in amplitude proportionally. For larger messages, the distributions broaden in

duration and reduce in amplitude by a factor less than n, depending on the extent to

which message-passing startup times and packetisation losses are amortised. Because the

3Results for 28 Kbyte messages were used instead of 16 Kbytes to avoid a noisy distribution caused
by Orion’s poorly tuned rendezvous transmission protocol at that size, as described in Section 4.5.1.

158 CHAPTER 4. BENCHMARKING POINT-TO-POINT COMMUNICATION

0.00

0.17

0.35

0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45

Time (ms)

Perseus: Fit of distribution of times for MPI_Isend (32x1, 512B)

N
or

m
al

is
ed

 P
D

F
 /

10
00

Pearson 5(0.112, 2.12, 0.17)

Weibull(0.112, 2.14, 0.134)

Figure 40: Pearson 5- and Weibull-fitted performance profiles for 512 byte MPI Isend

messages with 32x1 processes on Perseus.

0.00

0.17

0.35

1.7 1.8 1.9 2.0 2.1 2.2

Time (ms)

Perseus: Fit of distribution of times for MPI_Isend (32x1, 16KB)

N
or

m
al

is
ed

 P
D

F
 /

10
00

Pearson 5(1.61, 8.95, 1.89)

Figure 41: A Pearson 5-fitted performance profile for 16 Kbyte MPI Isend messages with
32x1 processes on Perseus.

4.7. ANALYTICAL MODELS 159

0.00

0.07

0.14

3.5 4.0 4.5 5.0 5.5 6.0 6.5

Time (ms x10-2)

Orion: Fit of distribution of times for MPI_Isend (32x1, 512B)

N
or

m
al

is
ed

 P
D

F
 /

10
00

Pearson 5(0.0342, 6.95, 0.0983)

Weibull(0.0342, 3.57, 0.0179)

Figure 42: Pearson 5- and Weibull-fitted performance profiles for 512 byte MPI Isend

messages with 32x1 processes on Orion.

0.00

0.15

0.30

0.62 0.64 0.66 0.68 0.70 0.72 0.74 0.76 0.78

Time (ms)

Orion: Fit of distribution of times for MPI_Isend (32x1, 28KB)

N
or

m
al

is
ed

 P
D

F
 /

10
00

Pearson 5(0.69, 3.21, 0.0703)

Figure 43: A Pearson 5-fitted performance profile for 28 Kbyte MPI Isend messages with
32x1 processes on Orion.

160 CHAPTER 4. BENCHMARKING POINT-TO-POINT COMMUNICATION

0.00

0.10

0.20

1.0 1.1 1.2 1.3 1.4 1.5 1.6

Time (ms x10-2)

APAC NF: Fit of distribution of times for MPI_Isend (32x1, 512B)

N
or

m
al

is
ed

 P
D

F
 /

10
00

Pearson 5(0.00908, 4.84, 0.0138)

Weibull(0.00908, 2.97, 0.00388)

Figure 44: Pearson 5- and Weibull-fitted performance profiles for 512 byte MPI Isend

messages with 32x1 processes on the APAC NF.

0.00

0.15

0.30

0.065 0.070 0.075 0.080 0.085 0.090 0.095 0.100

Time (ms)

APAC NF: Fit of distribution of times for MPI_Isend (32x1, 16KB)

N
or

m
al

is
ed

 P
D

F
 /

10
00

Pearson 5(0.0661, 7.53, 0.0701)

Figure 45: A Pearson 5-fitted performance profile for 16 Kbyte MPI Isend messages with
32x1 processes on the APAC NF.

4.7. ANALYTICAL MODELS 161

amount of amortisation that will occur is very difficult to predict quantitatively, bench-

mark results for different numbers of communicating processes per SMP node should be

conducted and analytically modelled separately. Qualitatively, however, the overall ef-

fect of this is that, in the case of multiple communicating processes per node, the (quasi

normal-shaped) Weibull model remains more accurate up to larger message sizes.

Although it is difficult to determine exact bounds on the message sizes and contention

levels for which Pearson 5 distributions provide superior fits to the observed data (com-

pared with a Weibull distribution), it is certainly true that the Pearson 5 distribution

provides by far the most accurate fit over the broadest spectrum of conditions. Even

in the few cases where a Weibull distribution would provide a better fit, the Pearson 5

remains (in the context of the PEVPM) a passable alternative. Therefore, the Pearson 5

process provides the most usable analytical model of point-to-point message-passing time

for parallel programs. Of course, for an overall communication performance model, its pa-

rameters will need to be determined based on network type, the number of communicating

processes, message size and acknowledgement policy.

In general, increasing the message size or the number of contending processes will

decrease the Pearson 5 distribution’s shape parameter, creating a more heavily skewed

distribution. With this knowledge, a useful extension to MPIBench’s functionality can

be envisaged. If a robust automatic distribution fitting mechanism could be included

in MPIBench, then when presenting results across message size, rather than only plot-

ting minimum or average times (for example as done in Figure 12), or using 3D plots of

complete performance profiles (for example as done in Figure 14), 3-parameter plots of

location, shape and scale factors could be made. The location parameter plot would look

the same as traditional minimum latency plots. Trends in the shape and scale parameters,

however, would provide valuable, easy to understand information about how contention

effects scale with message size and the number of communicating processes. The exten-

sion of MPIBench in this way was outside the scope of this thesis, but would be a good

avenue for further research. Even further afield, a model that could predict appropriate

Pearson 5 parameters directly from machine characteristics rather than by measurement

would be very valuable. Then, PEVPM communication submodels could be simply ob-

tained through computation, rather than via extensive benchmarking. Obtaining such a

mapping between machine characteristics and Pearson 5 parameters, however, is likely

to be very difficult. It would require developing accurate models of a parallel machine’s

communication performance from potentially very fine-grained sources of hardware design

information, together with extensive simulations over a wide range workload descriptions.

At the extreme, VHDL-level descriptions of network hardware may be required, although

simpler models based on more coarse-grained hardware characteristics may be usable

162 CHAPTER 4. BENCHMARKING POINT-TO-POINT COMMUNICATION

under certain circumstances. In either case, accurate hardware-based models of a paral-

lel machine’s communication performance will increase the level of simulation detail for

the communication submodels within the PEVPM framework, in the same way that the

PEVPM model has provided an increased level of simulation detail for message-passing

programs.

4.8 Stability and Interference

As explained in Section 4.3.4, MPIBench records outlying time measurements for the

performance of individual message-passing operations. These outliers are indicative of

two qualitatively different phenomena from the normal point-to-point message-passing

processes examined earlier in this chapter. The main causes of these outliers are: 1)

communication protocol timeouts; and 2) spurious interference from unrelated operating

system services. Both can result in extremely long delays compared to the normal time

required for message-passing operations. Importantly, as the number of processes that

are involved in a parallel computation is increased, the chance that one of those processes

will be delayed also increases (according to the binomial distribution). Hence, these long

delays have a multiplicatively large effect for parallel programs, especially those with

frequent synchronisation, because delaying any one process will also retard the progress

of all the others (thus introducing load imbalance on a small scale). This can be a major

cause of slow-down in large parallel programs. In particular it is, in large part, responsible

for the characteristic tail off of parallel application speedup plots where it is not expected

by Amdahl’s Law (see Section 2.2) – especially on Beowulf-type clusters, where using

TCP/IP for communication and running an unnecessary gamut of (standard) system

services is common. A secondary reason for this tail off, noticeable only in extremely

large parallel systems, is variance in normal message-passing time, which introduces load

imbalance on an even smaller scale.

Relatively little research has been published about outliers in message-passing times,

probably due to the lack of sufficiently powerful measurement tools like MPIBench. No-

tably, however, Mraz [248] and Tabe et al. [340] (see Section 2.16) traced the presence

of outliers in message-passing times on an IBM SP2 to the time required by the operat-

ing system to process interrupts and page faults. As a result of Mraz’s work, a number

of common AIX operating system interrupts were ganged together so they would occur

simultaneously on all processors, thereby removing the performance degradation caused

by unsynchronised stalls. It is worth noting that no similar efforts appear to have been

undertaken to synchronise interrupts or other system services on Beowulf-type clusters.

Schaubschlager [309] (see Section 2.26) recorded a large number of slow message-passing

4.8. STABILITY AND INTERFERENCE 163

times on nCUBE-2 and Origin 2000 hardware, especially in the presence of heavy net-

work load, which he attributed to contention effects. Finally, Loncaric [220] reported poor

message-passing performance using Linux 2.2.12’s TCP/IP stack, which he traced to a

flaw in its message acknowledgement mechanism.

As explained in Section 4.4.1, the experiments carried out in this thesis were done on

machines that were running the bare minimum of system services. As a result of this, al-

most all of the spurious interruptions that were measured can be traced to communication

protocol timeouts. Most communication protocol timeouts are required in order to deal

with flow control, communication over an unreliable channel and congestion control. The

Myrinet and QsNet protocols are highly-tuned to provide good message-passing perform-

ance, hence the number of outliers in message-passing times on Orion and the APAC NF

was extremely small. The TCP/IP/Fast Ethernet combination, however, provides a gen-

eral purpose communication network that is not as highly-tuned for message-passing in

parallel programs and thus substantial number of outliers in message-passing times were

observed on Perseus. Therefore, it is appropriate to briefly examine TCP/IP’s acknowl-

edgement policy, retransmit timeout mechanism and congestion avoidance/slowstart al-

gorithm – which collectively affect how TCP provides reliable communication, controls

data flow and copes with congestion – to determine which TCP/IP protocol timeouts

significantly affect message-passing performance.

In order to provide reliable communication, TCP/IP requires that all data messages

(also known as segments in TCP/IP parlance) must be acknowledged by the receiver, so

that the sender is aware of their safe delivery. To facilitate this, every data message is

augmented with an ordinal sequence number (and some other information; the complete

package is called an IP datagram). Then, upon receipt of a data message, the receiver

sends a special acknowledgement message containing that sequence number back to the

original sender. A number of techniques, however, are used to reduce the overheads

associated with sending these acknowledgement messages. Firstly, an acknowledgement

can be piggy-backed on to any data message that the receiver is itself sending to the sender.

Thus, only one message header must be constructed by the sender, processed by network

hardware and evaluated by the receiver. Secondly, the receiver may choose to delay an

acknowledgement message, in the the hope that it can be piggy-backed on to a later

data message. Thirdly, acknowledgements can be grouped together into a cumulative

acknowledgement, so a receiver may also decide to delay sending an acknowledgement

message until several are pending from the receipt of data messages.

If, however, it is not possible to piggy-back or cumulatively acknowledge a message

that has arrived, an acknowledgement message must eventually be sent anyway. Modern

versions of the TCP specification mandate that the delayed acknowledgement interval

must be less than 500ms and also recommend that the receiver should not delay an

164 CHAPTER 4. BENCHMARKING POINT-TO-POINT COMMUNICATION

acknowledgement if two or more unacknowledged, full-sized data messages have been

received [47, 338]. Otherwise, a TCP stack may send acknowledgements as it sees fit,

and a number of different TCP acknowledgement strategies are in common use [10, 273].

Finally, most MPI implementations (including MPICH 1.2.0, used on Perseus) set a special

TCP NODELAY socket option, which, in theory, forces immediate acknowledgements. Thus,

synchronous message-passing operations (for example) should only be delayed by the time

required to transfer the message data plus the time required to transmit a (minimum-

sized) acknowledgement message. However, Loncaric [220] showed that the TCP/IP stacks

in some versions of Linux suffer from regular stalls that delay every nth “small” message

by 1-2 jiffies (which are defined by the 100Hz system clock). For example, he showed

that Linux 2.2.2 delays every 41st message smaller than 125 bytes by 10-20ms. Therefore,

while acknowledgement delays should not theoretically play a major part in message-

passing performance, some imperfectly implemented TCP/IP stacks can cause substantial

acknowledgement delays in practice.

For transmission over a physical network, each internet-layer IP datagram must be

split into a number of link-layer packets, each up to Maximum Transmission Unit (MTU)

bytes in size, and encapsulated along with a link-layer header into what is called a frame.

For example, in the case of MPI/TCP/IP/Ethernet communication, MPI messages are

eventually split into a number of Ethernet frames, which are transmitted through the

network and reassembled at the destination host. The transmission of Ethernet frames

is not guaranteed; frames can be dropped by network switches if the switches run out of

intermediate buffer space or packet processing resources. In an attempt to prevent this

congestive loss, most modern TCP/IP stacks use a pair of interrelated algorithms that

limit the amount of data that they inject into a network.

The first of these is the slow start algorithm [11, 189, 338], which is applied at the

beginning of a TCP connection or after a retransmit timeout (discussed in next paragraph)

has occurred. TCP senders maintain a congestion window of cwnd bytes, which constrains

the amount of unacknowledged data that a sender may have injected into the network.

Slow start initialises this window to one (Maximum Sized) Segment (MSS), and increases

it by one (maximum sized) segment for every segment that gets acknowledged. This

causes the window to increase exponentially in size over time because, as the window

opens up, more and more data are permitted to be sent. This happens until the receiver’s

allowable window size (which is advertised during connection establishment) is reached,

congestive loss is detected or measures to preempt congestive loss are invoked. In the

case that a message is lost, a slow start threshold sstthresh is set to half of the current

congestion window, then the congestion window is reset to one (maximum sized) segment

and slow start is performed until the slow start threshold is reached. At this point,

the congestion avoidance algorithm [11, 189, 338] is set in motion. During this phase,

4.8. STABILITY AND INTERFERENCE 165

the congestion window is increased more conservatively than during slow start; for each

acknowledged segment, the congestion window is increased by MSS2/cwnd bytes (up to

the receiver’s advertised window size), which results in a linear increase in the window

over time. This slower increase in window size prevents congestive loss from being reached

too quickly and thus reduces the amount of time spent transmitting with a small (poorly

performing) window size. Ideally, a segment will never be dropped by the underlying

network and hence the congestion window will increase to, and remain stable at, the

receiver’s advertised window size – thus maximising performance. Unfortunately, however,

as mentioned above, message delivery cannot always be guaranteed.

When a frame is dropped, it becomes impossible to reconstruct its parent IP datagram

at the receiver. Consequently, the receiver will not generate an acknowledgement for the

data message that the IP datagram contained. Eventually, based on the non-arrival

of this (never created) acknowledgement message, the sender will infer that its original

message was lost and will retransmit it. The length of time that a TCP/IP stack will

wait before retransmitting a (supposedly) lost message (since the message may only have

been lengthily delayed) is governed by its Retransmit Time Out (RTO) value, or more

precisely, by an algorithm that computes that value. If the retransmit timeout is too

short, segments will timeout prematurely, leading to unnecessary retransmissions. If it is

too long, the TCP/IP stack will be slow to respond to lost messages.

The original TCP definition [281] suggested setting the retransmit timeout value as

a function of the (estimated) Round Trip Time (RTT) required to send a segment and

receive an acknowledgement for that segment. The round trip time should be estimated by

keeping a running average of observed round trip times (not including any that involved

retransmission [197]), giving a Smoothed Round Trip Time (SRTT) at time i+ 1:

SRTTi+1 = α.SRTTi + (1− α)RTT

where the smoothing factor α ∈ (0, 1) should be set at about 0.8 or 0.9. The retransmission

timeout should be set according to:

RTOi+1 = min{UBOUND,max{LBOUND, (β.SRTTi+1)}}

where UBOUND is an upper bound on the timeout, LBOUND is a lower bound on

the timeout and β > 1.0 is a delay variance factor (with a recommended value of 2.0).

In 1988, Van Jacobson [189] proposed replacing β.SRTTi+1 in the above formula with

SRTTi+1+4D, where D represents the measured variance in round trip times, smoothed

in the same manner as round trip times; this improvement has become standard in modern

TCP/IP stacks. In addition to the above calculations, if retransmission is unsuccessful,

hence leading to further retransmission, the last SRTTi+1+4D value that was used must

166 CHAPTER 4. BENCHMARKING POINT-TO-POINT COMMUNICATION

be doubled; this causes exponential backoff when multiple successive retransmissions are

required. Finally, the current TCP/IP standard suggests using a LBOUND of 1 second

and an UBOUND of 60 seconds [271]. While this is essential for avoiding congestive

collapse in the Internet, it is inappropriately long for modern local area networks, which

have sub-millisecond round trip times. Notably, Linux 2.2 kernels use a UBOUND of

200ms, although this is still far too long on local area networks [307]. The performance of

parallel programs using standard TCP/IP communication protocols over reasonably lossy

(i.e. Ethernet-based) local area networks could be significantly improved by substantially

reducing the lower bound on retransmit timeout values; this is being trialled in some

experimental clusters [221] (but is not done on Perseus).

Obviously, any retransmission timeouts that occur will have a significant impact on

communication performance because of the retransmit timeout itself (especially if expon-

ential backoff is required) as well as the time required to retransmit the lost data. More

insidious still, is that every time a retransmit timeout occurs, the congestion window is

reset and the slow start algorithm is started. This is particularly problematic for par-

allel programs, whose bursty communication can cause frequent timeouts [357]. When

this is the case, the congestion window will constantly cycle, unable to settle on or just

below the size that maintains optimal throughput and avoids congestive packet loss. In

order to combat these problems additions have been made to TCP/IP over the years,

resulting in a number of compatible (but with varying performance) TCP/IP implemen-

tations [48,117,129,130,224,225,244]. The most standard additions are fast retransmission

for when multiple segments are lost from one congestion window and fast recovery, which

advances the congestion window more aggressively (but also safely) after a retransmission.

The details of these algorithms are beyond the scope of this thesis.

Regardless of the exact acknowledgement and retransmission policies of any particular

TCP/IP dialect, what is particularly important for modelling the performance of parallel

programs is under what circumstances and how frequently messages are lost, and what

length of delay is caused. Usually, it should be possible to easily distinguish the number

of messages that have suffered retransmit timeouts and the duration of those timeouts

(for any particular MPIBench test) by examining the distribution of observed message-

passing times. Messages that were transmitted successfully the first time will be grouped

in a large primary distribution, messages that had one retransmit timeout will be grouped

in a smaller secondary distribution, messages that had two retransmit timeouts will be

grouped in an even smaller tertiary distribution (according to exponential backoff), etc.

The quantitative effects of slow start, congestion avoidance, fast retransmission and

fast recovery will be far more difficult to observe; quite likely, this could only be achieved

through detailed examination of particular TCP/IP stacks and packet-level traces of spe-

cific communication patterns. Once again, this is outside the scope of this thesis, but

4.9. SUMMARY 167

it is an area of active research (although usually from the perspective of, for example,

Internet-wide, bulk or satellite data transfers, rather than from the perspective of the ex-

tremely bursty communication that occurs in parallel programs). In terms of this thesis,

however, these effects are secondary in importance compared to the retransmit timeouts

themselves, and will only become significant when a very large percentage of messages

are affected by retransmit timeouts. This should not occur in a parallel computing envi-

ronment; if it does, there are serious problems afoot that should be dealt with to avoid

the excessive message loss. Finally, therefore, only the frequency and rough duration of

delays caused by retransmission timeouts need to be examined in this thesis; this informa-

tion can be graphed for specific operations. Although a small number of retransmission

timeouts were observed during the point-to-point operations carried out for this chapter,

their effect only becomes truly significant during group communication, and in particular

during MPI Bcast and MPI Alltoall operations. Therefore, a quantitative analysis of

retransmit timeouts is left until those operations are discussed in the following chapter.

4.9 Summary

The work described in this chapter grew out of the PEVPM’s need for extremely accu-

rate characterisations of the communication performance of message-passing operations

on parallel computers. Because of the deficiencies of existing techniques, described in

Section 4.2, a new tool for benchmarking low-level MPI operations called MPIBench was

constructed, according to the design described in Section 4.3. In addition to providing

the standard functionality available in existing benchmarks, namely the ability to test

the performance of many operations using different message sizes and in some cases using

different communication patterns, MPIBench provides extra functionality to overcome

some important inadequacies of these existing techniques. Firstly, MPIBench is topology-

aware, and is specifically designed to ensure meaningful results on clusters of SMP nodes.

Secondly, MPIBench uses an accurate global clock to measure the performance charac-

teristics of all of the processes in an MPI program rather than simply measuring the time

required for round-trip messages or collective operations at at a single process. This is

especially important for measuring the complex performance characteristics of collective

operations, as will be seen in the next chapter. Thirdly, and crucially, the extremely fine

resolution of the global clock in MPIBench allows timing data on individual MPI opera-

tions to be obtained, rather than the average time over a large number of repetitions of

an MPI operation. This gives MPIBench the unique ability to accurately quantify the

performance variability of MPI operations due to contention, which it does by producing

probability distributions of the performance of everything that it measures. Performance

168 CHAPTER 4. BENCHMARKING POINT-TO-POINT COMMUNICATION

characterisations of MPI operations at this level of detail are central to the PEVPM per-

formance prediction technique that was described in the previous chapter. In addition

to this, such detailed performance information could also be of great benefit during the

implementation and testing of MPI libraries, systems software, and hardware for parallel

computers.

In order to obtain empirical data for the validation process of the PEVPM system in

Chapter 6, MPIBench was used to benchmark the MPI communication performance of

three large parallel computers, as described in Section 4.4. The performance results for

point-to-point communication were presented in Sections 4.5 and 4.6, while the results

for collective communication will be discussed in the next chapter because of their sub-

stantially different nature. In summary of the major results obtained for point-to-point

operations, it was demonstrated that performance variability due to contention can be

very significant; these effects are especially prevalent when large numbers of processes on

distinct nodes are communicating concurrently and/or when processes in the same SMP

are communicating concurrently, and even more so when transmitting large messages

and/or using bidirectional communication.

Finally, an analysis of the probability distributions describing point-to-point message-

passing performance in the presence of contention was carried out in Section 4.7, which

showed that the Pearson 5 distribution can best explain the results observed earlier in

the chapter. In the future, it would be valuable to extend MPIBench so that it can auto-

matically fit measured data from point-to-point tests to Pearson 5 distributions and plot

the resultant fit parameters across a range of message sizes and contention levels. While

plots of the Pearson 5 location parameter will closely resemble existing (minimum) latency

graphs, the accompanying shape and scale parameters will present important yet easily

digestible information about performance in the face of contention. Section 4.8 extended

Section 4.7 via a short study of systematic outliers that were observed in performance

measurements. In particular, the causes of these very slow message-passing times were

identified – mainly operating system interruptions and retransmission of lost messages –

and the adverse performance effects that they impose on parallel programs were discussed.

Chapter 5

Benchmarking Collective

Communication

5.1 Introduction

This chapter builds on the work in the previous chapter, which used MPIBench to accu-

rately characterise the performance of MPI-based point-to-point communication on three

parallel computers. This chapter presents more MPIBench results, this time to accurately

characterise the performance of MPI-based collective communication on the same three

machines. As the discussion in Section 3.4.2 detailed, most MPI implementations create

collective communication operations using a number of point-to-point operations. It is

clear, then, that “it is important to understand the behaviour of the lower-level com-

munication primitives upon which a higher-level communication is based in order to gain

insight into the behaviour of the higher-level communication primitives” [340]. In addition

to this, however, the performance of collective communication is also heavily dependent

on how point-to-point operations are combined to provide the collection operation. While

the previous chapter showed how different protocols could be used to optimise the per-

formance of point-to-point messages for different message sizes, there is far more scope

for using different algorithms to optimise the performance of collective communication.

Indeed, optimising the performance of collective communication remains a very active

field of research [184,198,318,341,343,353].

Since the performance of point-to-point messages was already examined in detail in the

previous chapter, the results and analyses in this chapter are mainly aimed at determining

how various collective operations are constructed from point-to-point messages on each of

the three machines. This information is vital for simulating the performance of collective

operations, and consequently complete MPI programs, using the PEVPM from Chapter 3.

In fact, each of the collective operations examined in this chapter can be considered as a

miniature MPI program. Hence, explanation of the performance of collective operations

170 CHAPTER 5. BENCHMARKING COLLECTIVE COMMUNICATION

using the PEVPM approach provides a useful validation of the PEVPM modelling system.

In addition to determining how point-to-point operations are combined to form col-

lective operations for each of the three machines, the results outlined in this chapter

also serve as a fall-back resource, similar to the point-to-point results from the previous

chapter. In cases where underlying point-to-point models for collective operations are

either nonsensical (for example for hardware-based collective operations) or unable to be

determined, the benchmark results in this chapter can be used as empirical performance

models for larger PEVPM simulations.

5.2 Results for MPI Bcast

The most conceptually simple MPI collective routine is MPI Bcast, which broadcasts

data from a designated root process to all the others. It is an important operation,

because many parallel algorithms rely on propagating copies of certain data to all processes

involved in a computation. Portable (software-based) versions of the MPI Bcast operation

are almost always implemented using a number of point-to-point operations. However,

because of the importance of the MPI Bcast operation in almost all parallel algorithms,

many high-end parallel machines provide special hardware and custom MPI Bcast routines

to achieve superior performance.

The MPICH MPI implementation that was used for benchmark tests on Perseus does

not (with one exception noted below) take advantage of the hardware broadcast capability

of Fast Ethernet, but provides only a software-based MPI Bcast. This software-based

broadcast mechanism employs a collection of point-to-point routines that are arranged in

a binomial tree, rooted at the process that initiates the broadcast. Sending the data to

be broadcast using point-to-point messages by traversing the tree as shown in Figure 46

provides all processes with a copy of the data. Because message-passing at each level of

the tree can proceed concurrently, the longest communication path is dlog2 ne messages.

Furthermore, for the tests here, where the number of processes used was a power of

two, all broadcast paths have this length. (If this were not the case, 2blog2 nc processes

would have that length blog2 nc, and the remaining n − 2blog2 nc processes would have

length blog2 nc + 1). This has led to the conventional approximation (for example by

Georgitsis [141]) that the message-passing time for a software-based broadcast can be

modelled by dlog2 netMPI Send, where tMPI Send is itself approximated by a single-valued

quantity composed of startup latency and message-size multiplied by bandwidth. This

approximation has traditionally been supported by comparing MPI Bcast times using

large messages and a small number of processes (see Figure 48) with MPI Isend times

using large messages and a small number of processes (see Figure 13). Doing so shows

that, for large messages, the average completion time of a broadcast very closely matches

5.2. RESULTS FOR MPI BCAST 171

P0 P1 P6P4 P5 P7P2 P3 P9P8 PA PB PE PFPC PD

 Time
(not to
 scale)

point-point message (ts)

Figure 46: The binomial tree that constructs a 16 process software-based MPI Bcast from
a collection of point-to-point messages.

that predicted by the simple model above. For example, an MPI Isend of 64 Kbytes takes

almost exactly 6ms (see Figure 13), which predicts that a 4x1 broadcast of 64 Kbytes

should take 12ms, an 8x1 broadcast of 64 Kbytes should take 18ms, a 16x1 broadcast of

64 Kbytes should take 24ms, all of which match the measured values.

However, Figure 48 also shows that the average time for a 32x1 broadcast of 64 Kbytes

is appreciably longer than the expected 30ms – but this is slightly misleading. In that

case, congestion in the network caused packet loss that resulted in a substantial num-

ber of 200ms retransmit timeouts (i.e. retransmit timeouts occurred in more than 1%

of all measurements – see Section 4.3.4). This was enough to cause MPIBench’s auto-

matic outlier detection mechanism (explained in Section 4.3.4) to not identify them as

such. Thus, these extremely slow MPI Bcast measurements, which would not normally

be treated as systematic results, led to the higher than expected average broadcast time.

The more detailed results in Figure 49 shows that most broadcasts of 64 Kbytes across

32x1 nodes do in fact take roughly 30ms. The other results in Figure 48 that deviate from

the expected linear trends (i.e. 16x2, 32x2, 64x1 and 64x2) can be similarly explained.

However, given that the outlier events are not rare in those cases, they will have a sig-

nificant impact on the performance of MPI Bcast operations in practice. It is therefore

important to quantify how often outliers occur for various MPI Bcast operations. This

is done in Figure 50, which shows that a substantial number of MPI Bcast operations on

Perseus incur retransmit timeouts, due to congestive packet loss.

With the important caveat of retransmit delays caused by packet loss, the average

performance results for software-based MPI Bcast operations on Perseus measured using

172 CHAPTER 5. BENCHMARKING COLLECTIVE COMMUNICATION

0.0

0.3

0.6

0.9

1.2

1.5

0 128 256 384 512 640 768 896 1024

T
im

e
(m

s)

Message size (bytes)

Perseus: Average times for MPI_Bcast

64x2
32x2
16x2

8x2
4x2

64x1
32x1
16x1

8x1
4x1

Figure 47: Average times for MPI Bcast using small message sizes with various numbers
of communicating processes on the Perseus.

0

10

20

30

40

50

60

70

80

90

100

110

0 8192 16384 24576 32768 40960 49152 57344 65536

T
im

e
(m

s)

Message size (bytes)

Perseus: Average times for MPI_Bcast

64x2
32x2
16x2

8x2
4x2

64x1
32x1
16x1

8x1
4x1

Figure 48: Average times for MPI Bcast using large message sizes with various numbers
of communicating processes on Perseus.

5.2. RESULTS FOR MPI BCAST 173

0.0

0.1

0.1

0.2

0.2

0.2

0 10 20 30 40 50 60

N
or

m
al

is
ed

 P
D

F
 /

10
00

Time (ms)

Perseus: Distribution of times for MPI_Bcast (32x1)

64K

Figure 49: Sampled performance profile for MPI Bcast using a 64 Kbyte message with
32x1 processes on Perseus.

0

5

10

15

20

25

0 8192 16384 24576 32768 40960 49152 57344 65536

%

Message size (bytes)

Perseus: Percentage of processes experiencing outliers during MPI_Bcast

64x2
32x2
16x2

8x2
4x2

64x1
32x1
16x1

8x1
4x1

Figure 50: Percentage of processes experiencing a TCP/IP retransmit timeout during an
MPI Bcast to various numbers of processes on Perseus.

174 CHAPTER 5. BENCHMARKING COLLECTIVE COMMUNICATION

0

1

2

3

4

5

0.0 0.2 0.4 0.6 0.8 1.0

N
or

m
al

is
ed

 P
D

F
 /

10
00

Time (ms)

Perseus: Distribution of times for MPI_Bcast (16x1)

128B

Figure 51: Sampled performance profile for MPI Bcast using a 128 byte message with
16x1 processes on Perseus.

MPIBench basically agree with conventional models. However, now consider the distri-

bution of completion times for a 16x1 process broadcast of a small message, shown in

Figure 51. Clearly this complex performance profile cannot be modelled using a single-

value, nor even a simple distribution like that of a point-to-point operation. Doing so

would have a severe impact on the accuracy of any simulation using that model. For

example, even using this relatively small number of processes (16x1), there is a two-fold

difference between the minimum and average times observed, and another two-fold differ-

ence between the average and maximum times observed. Such discrepancies become more

significant as the number of processes involved in a broadcast increases. Fortunately, a

good understanding of the cause of this complex performance profile can be achieved, and

used to construct a far more accurate model.

There are two clues about the origins of these interesting results. The first is that

for the 16x1 case shown in Figure 51 there are 5 peaks rather than the more intuitively

expected log2 16 = 4. Furthermore, other results showed that for 4x1 processes there were

3 peaks and not log2 4 = 2, for 8x1 processes there were 4 peaks and not log2 8 = 3, for

32x1 processes there were 6 peaks and not log2 32 = 5, etc. The second clue is in the

distribution of area under each peak. In this case the areas are in the ratio 1:4:6:4:1.

5.2. RESULTS FOR MPI BCAST 175

Furthermore, there is a total area of 1 + 4 + 6 + 4 + 1 = 16 units under all of the peaks,

which matches the number of processes involved in the broadcast. Remembering that the

results show the distribution of completion times of the MPI Bcast call at all processes,

these facts indicate a systematic difference in the completion time of the MPI Bcast call for

individual processes, based on their position in the broadcast tree. A relatively thorough

investigation of the literature revealed that this effect has only been previously studied in

a paper by Supinksi and Karonis [94]. In their study, Supinksi and Karonis used a LogP-

based model (see Section 2.8) to demonstrate how previous benchmarking techniques

mistakenly measure MPI Bcast performance because of a pipelining effect that occurs

when those operations are timed in series (which is necessary without an accurate global

clock). Therefore they proposed an elaborate means of scheduling tests so that the true

performance of MPI Bcast routines could be made clear. Despite their method’s ability

to systematically evaluate the completion times of MPI Bcast operations at individual

processes by using many repetitions of their benchmark, they did not present any results

about the distribution of completion times; instead they reported only the maximum

completion time of any process. Furthermore, because (like other benchmarks) their

benchmark only measured the average time for an MPI Bcast over a large number of

repetitions, it was also unable to account for stochastic delays and overheads; hence

it could not obtain results as revealing as those obtained by MPIBench and shown in

Figure 51.

The MPICH MPI implementation that was used to create these benchmark results

employs non-blocking communication to pipeline the broadcast process, as shown in Fig-

ure 52. Therefore, provided that adequate buffer space can be obtained, the completion

time for any particular process involved in a broadcast can be calculated by summation of

the time for each point-to-point message (modelled by tMPI Send, but labelled ts in the fig-

ure for brevity), local completion delay (modelled by tMPI Isend:local completion but labelled

tlc in the figure for brevity), and finalisation delays on its path to completion. Consider

the path to completion of any process in the broadcast tree, and count the number of

point-to-point messages and local completion delays that it requires. For example, the

path “0-0-2-6-14” (distinguished in green in the figure) comprises of local completion time

delay at P0 while it initiates a message to process P1 (i.e. the “0-0” part of the path), fol-

lowed by three point-to-point communication times (i.e. the “0-2-6-14” part of the path).

In addition, before any process can complete its involvement in the MPI Bcast it must

MPI Wait for all of the non-blocking messages that it has issued to complete. This delays

the completion of the process until the latest response of a zero byte acknowledgement

message from any of the MPI Isends that it issued (but note that these acknowledgement

messages – which are simply in direct response to those already shown in Figure 52 –

are not included in that figure to preserve its clarity). For example, in the case shown in

176 CHAPTER 5. BENCHMARKING COLLECTIVE COMMUNICATION

P0 P1 P6P4 P5 P7P2 P3 P9P8 PA PB PE PFPC PD

4tlc

3tlc + 1ts

3tlc + 1ts

2tlc + 2ts

3tlc + 1ts

2tlc + 2ts

2tlc + 2ts

1tlc + 3ts

3tlc + 1ts

2tlc + 2ts

2tlc + 2ts

1tlc + 3ts

2tlc + 2ts

1tlc + 3ts

1tlc + 3ts

4ts

1 4 6 4 1

point-point message (ts)
local completion time (tlc)

 Time
(not to
 scale)

Figure 52: An augmented version of Figure 46, which includes the number of point-
to-point message-passing times (ts) and local completion times (tlc) on each process’s
broadcast path.

Figure 52, process P0 will have to wait until processes P1, P2, P4 and P8 have all acknowl-

edged receipt of the messages they were sent from process P0. Applying this procedure for

all processes in the broadcast tree – labelling point-to-point messages as ts and local com-

pletion times as tlc, and then grouping like terms - creates a table of the number and type

of communication events in the broadcast path to each process. For example, consider

the 16x1 process broadcast tree shown in Figure 52. This shows one process with four

tlcs (P0), which corresponds to the left-most peak of Figure 51 (at approximately 0.2ms),

four processes with one ts and three tlcs (P1, P2, P4 and P8), which correspond to the next

peak (at approximately 0.35ms), six processes with two tss and two tlcs (P3, P5, P6, P9,

P10 and P12), and one process with four tss (P15), which corresponds to the right-most

peak (at approximately 0.8ms). Hence, the number of tlcs and tss in any given broadcast

path can be used to accurately determine the completion time of any process taking part

in an MPI Bcast operation: it is the sum of any local completion times, the times for

each point-to-point message transmission, and any delay incurred while MPI Waiting for

point-to-point messages to be acknowledged. Finally, the number of processes completing

in any peak of the broadcast distribution can be elegantly determined by application of

5.2. RESULTS FOR MPI BCAST 177

Pascal’s Triangle: a broadcast to one process has peaks distributed in the ratio :1; to

two processes in the ratio 1:1; to 4 processes in the ratio 1:2:1; to 8 processes in the ratio

1:3:3:1; to 16 processes in the ratio 1:4:6:4:1 (as shown in this example); etc. Although this

final curiosity offers little direct applicability to performance simulation of software-based

broadcast trees (because it does not identify which processes are in particular peaks), it

provides valuable insight into how software-based broadcasts scale with the number of

processes involved.

Now that the structure of the performance profile of a software-based broadcast process

is more understandable, it is instructive to briefly revisit the results shown in Figure 49.

Earlier, it seemed that this profile was basically the same as that for a point-to-point

operation, with a few difficult to explain sub-peaks, which could possibly be dismissed as

noise. However, it is now clear that these sub-peaks are indeed systematic, and that the

overall profile is structurally equivalent to the profile with the obvious peaks that is shown

in Figure 51. The reason that the peaks are difficult to see in Figure 49 is because the

variance of each of the peaks is roughly the same size as the separation between them. In

turn, the reasons for this are two-fold. Firstly, the performance variance of point-to-point

messages increases with message size due to greater contention (for example see Figure 15).

Secondly, the separation of peaks, which is governed by the difference ts− tlc, does not (in
this case) increase as rapidly. Incidentally, the slowly growing disparity between ts and

tlc occurs because both are linear functions dependent on message size, where each has

a startup latency and bandwidth. Because both the startup latency of local completion

is less than that of a complete point-to-point MPI Isend call and the bandwidth of local

memory is greater than that of the network, the difference between them slowly grows.

In addition to the main peaks, a number of sub-peaks can be observed in Figure 51.

These extremely fine details are related to completion times for individual processes,

rather than the groups of processes with the same number of ts and tlcs. These subtle

differences in completion time are, in large part, caused by the non-uniform contention

levels to which individual point-to-point messages are subject. In each stage g of the

broadcast, there are log2 g messages transitting the network. These increased contention

levels lead to more message-passing delays, which cascade through the broadcast process.

As confirmation of this, the variance of the peaks (for example see Figure 51) increases as

the broadcast progresses, which is (on average) represented towards the right-hand side

of a broadcast performance distribution.

Predicting these extremely fine details is beyond the abilities of the software-based

broadcast model presented in this subsection. However, it is not beyond the ability of

the PEVPM model presented in the previous chapter. While the model developed here

is essential to building a correct PEVPM model of a software-based broadcast, once

that is done, the ability of the PEVPM to take into account contention levels makes

178 CHAPTER 5. BENCHMARKING COLLECTIVE COMMUNICATION

it capable of reproducing even the extremely fine performance details that have been

observed in practice. Furthermore, this also makes the PEVPM capable of predicting the

performance of broadcasts using SMP nodes that do not provide shared memory support

based on the performance of MPI Isend tests for the required number of processes per

node. Alternatively, the performance of broadcasts using SMP nodes that do provide

shared memory support can be reasonably well modelled using inter-node and intra-node

MPI Isend performance results for constituent point-to-point messages as appropriate.

Finally, there is one important note that must be made about the performance of

MPI Bcast on Perseus, regarding the note made earlier about a special case where hardware-

assistance is (possibly) improving performance. The completion time of zero byte broad-

casts, shown in Figure 47, did not exhibit the characteristic profile of a software-based

MPI Bcast. In fact its performance profile far more closely resembled that of a typical

point-to-point operation, although with a significant number of even shorter comple-

tion times. Although the MPICH implementation makes no exception in its broadcast

technique for zero byte messages, it is clear that hardware-assistance is somehow being

applied. Although the mechanism for this has not yet been conclusively determined, the

significant number of very short completion completion times suggests that some strange

optimisation may be occurring at the TCP/IP level, and in particular in its acknowledge-

ment processing subsystem. Lastly, although the usefulness of broadcasting no actual

data may seem quite pointless, a zero byte broadcast plays an important part in the

MPI Barrier procedure, which will be discussed in the next section.

Based on the discussion so far, analysing the results of the MPI Bcast test for Orion is

a simple matter, because it appears to use essentially the same software-based broadcast

mechanism as Perseus. The performance profiles shown in Figure 54 are virtually iden-

tical in structure to those of Perseus (shown in Figure 51), i.e. the peaks are in the ratio

1:4:6:4:1 as expected for a 16x1 process software-based broadcast. Unlike on Perseus,

however, where the peaks blur together for MPI Bcasts of large messages sizes, the peaks

remain defined for the 32 Kbyte MPI Bcast on Orion. This is simply a consequence of

the smaller variance in performance of point-to-point messages on Orion than on Perseus.

What is of further interest in this figure, however, is the relationship between the per-

formance profiles for the 16x1 and 16x4 process broadcasts. The small performance offset

between these profiles shows that MPI Bcast is optimised to take advantage of the fast

internal shared memory network. A discussion of these optimisations can be found in

Sistare et al. [318]. For completeness, an overview of the performance of the MPI Bcast

operation on Orion is also provided in Figure 53. Note the unstable performance of the

broadcast operation for messages between 16 Kbytes and 32 Kbytes in size, which reflects

the instability of the point-to-point operations (over the same range of message sizes)

from which it is constructed.

5.2. RESULTS FOR MPI BCAST 179

0

1

2

3

4

5

6

7

8

0 8192 16384 24576 32768 40960 49152 57344 65536

T
im

e
(m

s)

Message size (bytes)

Orion: Average times for MPI_Bcast

32x4
16x4

8x4
4x4

32x2
16x2

8x2
4x2

32x1
16x1

8x1
4x1

Figure 53: Average times for MPI Bcast using large message sizes with various numbers
of communicating processes on Orion.

0

2

4

6

8

10

12

2.4 2.6 2.8 3.0 3.2 3.4 3.6

N
or

m
al

is
ed

 P
D

F
 /

10
00

Time (ms)

Orion: Distribution of times for MPI_Bcast (32 Kbytes)

16x1
16x4

0
3.6

//

Figure 54: Sampled performance profile for MPI Bcast using a 32 Kbyte message with
16x1-4 processes on Orion.

180 CHAPTER 5. BENCHMARKING COLLECTIVE COMMUNICATION

The results for MPI Bcast on the APAC NF are completely different than those ob-

served for Perseus or Orion. This is because the QsNet in the APAC NF enables a

hardware-based MPI Bcast when MPI processes are allocated to physically contiguous

nodes. With the exception of one test, which is noted, all results conducted on the

APAC NF used consecutive nodes, hence testing the hardware broadcast capability of

the machine. QsNet provides a hardware-based broadcast mechanism that is capable of

sending a broadcast message in essentially the same time as a point-to-point message

(given that no unrelated messages are in transit on required network links). Broadcast

messages are first sent to the top of the of the (physical) QsNet tree, where the switch at

that level copies the message to every output-link, and it thus cascades down the entire

network tree to all nodes. The average time for an MPI Bcast test on the APAC NF,

shown in Figure 55, when compared with the results for an MPI Isend (see Figure 22),

does indeed confirm that the hardware broadcast completes in essentially the same time

as a point-to-point operation. Furthermore, comparison of the performance profile for

a 16 Kbyte MPI Bcast (using one process per node), shown in Figure 56, with the per-

formance profile for a 16 Kbyte MPI Isend (see Figure 15), underscores the essentially

equivalent performance of the two operations; at least, as long as only one process is

being run on any node. Unfortunately, however, the QsNet hardware broadcast only sup-

ports one process per node, and (like on Orion) the internal shared memory network is

used to propagate the broadcast to any other processes within an SMP node. This can be

seen in the small performance offset between the x1, x2 and x4 cases. As was explained

earlier, this offset can be modelled using MPI Isend results of the relevant message size

for 1x2 or 1x4 processes, which basically represent the time required for an intra-node

memory copy.

There are two further details about the performance of MPI Bcast on the APAC NF

that are quite interesting. First, notice the small peaks that precede the main peak for

each of the distributions in Figure 56. A magnified version of the small initial peak in

the 32x1 case is shown in Figure 57. This peak accounts for 1/32 of the total completion

times recorded, and more particularly, it accounts for all of the completion times recorded

at the root process. This figure shows that the root process completes participation in

the MPI Bcast asynchronously and thus finishes marginally sooner than the other pro-

cesses taking part in the broadcast. More strikingly, although of marginal performance

importance, it also shows the effect of (what is almost certainly) the operating system’s

scheduling quanta on when user level processes are notified of message completion. The

second interesting detail, shown in Figure 58 is that a systematic serialisation of comple-

tion time at different processes still occurs during broadcasts on the APAC NF, although

to much less extent than the software-based broadcasts on Perseus or Orion; this seri-

alisation is only observable for very small broadcasts over a large number of processes.

5.2. RESULTS FOR MPI BCAST 181

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

0 32768 65536 98304 131072 163840 196608 229376 262144

T
im

e
(m

s)

Message size (bytes)

APAC NF: Average times for MPI_Bcast

32x4
16x4

8x4
4x4

32x2
16x2

8x2
4x2

32x1
16x1

8x1
4x1

Figure 55: Average times for MPI Bcast using large message sizes with various numbers
of communicating processes on the APAC NF.

0

50

100

150

200

250

300

350

400

0.07 0.08 0.09 0.10 0.11 0.12 0.13 0.14

N
or

m
al

is
ed

 P
D

F
 /

10
00

Time (ms)

APAC NF: Distribution of times for MPI_Bcast (16 Kbytes)

32x1
32x2
32x4

0
0.14

//

Figure 56: Sampled performance profiles for MPI Bcast using a 16 Kbyte message with
32x1-4 processes on the APAC NF.

182 CHAPTER 5. BENCHMARKING COLLECTIVE COMMUNICATION

0

5

10

15

20

25

0.074 0.076 0.078 0.080 0.082

N
or

m
al

is
ed

 P
D

F
 /

10
00

Time (ms)

APAC NF: Distribution of times for MPI_Bcast (root process only) (16 Kbytes)

32x1

0
0.072

//

Figure 57: Sampled performance profile for MPI Bcast using a 16 Kbyte message with
32x1 processes on the APAC NF, measured at the root process.

0

200

400

600

800

1000

1200

1400

0.007 0.008 0.009 0.010 0.011 0.012

N
or

m
al

is
ed

 P
D

F
 /

10
00

Time (ms)

APAC NF: Distribution of times for MPI_Bcast (32 bytes)

16x1

0
0.012

//

Figure 58: Sampled performance profile for MPI Bcast using a 32 byte message with 16x1
processes on the APAC NF, which shows serialisation by a QsNet switch.

5.2. RESULTS FOR MPI BCAST 183

0.0

1.0

2.0

3.0

4.0

5.0

0 32768 65536 98304 131072 163840 196608 229376 262144

T
im

e
(m

s)

Message size (bytes)

APAC NF: Average times for (software-based) MPI_Bcast

8x1

Figure 59: Average times for software-based MPI Bcast using large message sizes with 8
processes running on nodes 69, 77, 78, 80, 81, 86, 88 and 99 of the APAC NF.

0

20

40

60

80

100

120

0.0 0.1 0.2 0.3 0.4 0.5

N
or

m
al

is
ed

 P
D

F
 /

10
00

Time (ms)

APAC NF: Distribution of times for (software-based) MPI_Bcast (16 Kbytes)

8x1

Figure 60: Sampled performance profile for the software-based MPI Bcast in Figure 60
using a 16 Kbyte message.

184 CHAPTER 5. BENCHMARKING COLLECTIVE COMMUNICATION

The very small separation of peaks in this figure, corresponding to approximately 150ns,

shows the serialisation that occurs in a QsNet switch when copying a broadcast message

to each output link.

Finally, for comparison with the hardware-assisted MPI Bcast, the performance of a

software-based MPI Bcast on the APAC NF was measured by running the test across a

non-contiguous block of nodes. The average completion time of an MPI Bcast using one

process in each of nodes 69, 77, 78, 80, 81, 86, 88 and 99 is shown in Figure 59, with its

associated performance distribution for a 16 Kbyte message in Figure 60. The jumps in

average completion time at 64 Kbyte intervals coincide with the value of a user-defined

shell variable, LIBELAN TPORT BIGMSG; messages larger (in bytes) than this value are sent

only when a matching receive has been posted, which causes the jump in completion

time at each interval. The distribution of peaks, which, from left to right, belong to the

processes on nodes 77 and 78, 80 and 81, 86, 88, 69, and 99 respectively, show that (in

this case, at least) the hardware broadcast capability of the QsNet is still being made use

of where possible. In particular, the results show that the root process broadcasts data

to other processes using a linear (rather than binomial tree) software-based broadcast

algorithm, but where hardware-assistance is called upon to deliver the data to subsets

of consecutively numbered nodes. (Overall, this algorithm is of questionable usefulness

from a performance stand-point: note that in this case the broadcast has five messages

of 64 Kbytes on the critical path, yet a binomial tree algorithm that ignored the hard-

ware broadcast capability would have only three; the overall algorithm could be improved

by combining the hardware broadcast capability for intra-subset communication with a

binomial tree approach for inter-subset communication). Because of the QsNet’s syn-

chronous packet delivery protocol, the root process does not terminate until all other

processes have acknowledged the receipt of the data. (Actually, for a subtle reason, the

root process terminates second-last by the narrowest of margins; the last process to be

sent broadcast data from the root cannot complete until it receives an acknowledgement

of its acknowledgement message from the root, thus completing a three-way handshake).

5.3 Results for MPI Barrier

The purpose of an MPI Barrier operation is to synchronise a group of processes within

an MPI communicator so that two stages of a computation can be isolated from each

other. To achieve this, no individual process is allowed to progress past an MPI Barrier

operation until all of the processes in the group are also ready to do so. Like MPI Bcast

portable (software-based) versions of the MPI Barrier are constructed of point-to-point

operations. Also like MPI Bcast the importance of the MPI Barrier operation encourages

high-end parallel machines to provide hardware-assisted barrier synchronisation.

5.3. RESULTS FOR MPI BARRIER 185

The MPICH implementation of MPI that was used for benchmark tests on Perseus

provides a software-based MPI Barrier operation. The execution of an MPI Barrier

operation proceeds in two stages. In the first stage, which is basically the software-based

broadcast tree from Figure 46 applied in reverse, a tree structure with dlog2 ne levels

is created, where n is the number of processes in the communicator, such that half of

the processes at each level of the tree have arcs to the other half of the processes at

the next level. This defines a precedence hierarchy, and sending messages according to

a bottom-up traversal of the tree results in a notional synchronisation of the processes.

Because this message-passing can occur concurrently at each level of the tree, this first

stage of the process is completed in dlog2 ne steps. The second stage is required to ensure

the semantics of the MPI Barrier operation. Because no process is allowed to progress

until all other processes are also ready to do so, none of the processes may continue

until the process at the root of the tree has received what must necessarily be the last

message of the first stage. Hence, in the second stage, all processes must wait to receive

an acknowledgement message from the root process, which is usually achieved using a

broadcast mechanism. When this message has been received by any process, that process

may continue. It is worth noting that this means that different processes will have to

wait at different times during the MPI Barrier routine. For example, the root process

only becomes involved at the very end of the first stage, and is the first process to exit

the broadcast stage (as explained in the previous section) and hence is the first process to

exit entire barrier synchronisation. The PEVPM model described in Chapter 3 is capable

of taking this into account, but for the the purpose of result verification and subsequent

model construction, a simpler model will be evaluated here.

The performance of the MPI Barrier operation on Perseus is shown in Figures 61-62.

The results towards the tip of the left tail of the distribution are likely to be associ-

ated with the root process, while those towards the tip of the right tail are likely to be

associated with the slowest processes to exit the broadcast phase of the barrier synchro-

nisation. The remaining variability visible in these distributions is caused by the inherent

uncertainty in the performance of the constituent message-passing routines that construct

the MPI Barrier operation (which in turn is due to network contention as discussed in

Section 3.4.2).

A simple model for the performance of the MPI Barrier operation on Perseus can be

obtained by ignoring the variability in message-passing time and considering only average

times (for zero byte messages):

ˆ̄tMPI Barrier = dlog2 net̄MPI Isend + t̄MPI Bcast

The accuracy of this simple model is examined in Table 2, which compares times for

186 CHAPTER 5. BENCHMARKING COLLECTIVE COMMUNICATION

0.0

1.0

2.0

3.0

4.0

5.0

0.0 0.5 1.0 1.5 2.0 2.5

N
or

m
al

is
ed

 P
D

F
 /

10
00

Time (ms)

Perseus: Distribution of times for MPI_Barrier

4x1
8x1

16x1
32x1
64x1

Figure 61: Sampled performance profiles for MPI Barrier using various numbers of pro-
cesses (one per node) on Perseus.

0.0

0.5

1.0

1.5

2.0

2.5

0.0 1.0 2.0 3.0 4.0 5.0

N
or

m
al

is
ed

 P
D

F
 /

10
00

Time (ms)

Perseus: Distribution of times for MPI_Barrier

4x2
8x2

16x2
32x2
64x2

Figure 62: Sampled performance profiles for MPI Barrier using various numbers of pro-
cesses (two per node) on Perseus.

5.3. RESULTS FOR MPI BARRIER 187

MPI Barrier generated using the simple model with actual measurements. The re-

Table 2: A comparison of the measured average times for MPI Barrier on Perseus
(t̄MPI Barrier) with average times generated by the simple model for the same operation

(ˆ̄tMPI Barrier).

n t̄MPI Isend t̄MPI Bcast
ˆ̄tMPI Barrier t̄MPI Barrier δx(%)

4x1 0.165 0.089 0.419 0.432 -3.0
8x1 0.175 0.114 0.639 0.646 -1.1
16x1 0.176 0.139 0.843 0.924 -8.8
32x1 0.178 0.153 1.043 1.136 -8.2
64x1 0.183 0.197 1.295 1.275 1.6

sults in Table 2 show that the simple model is quite accurate for all of the process sizes

measured. However, it cannot account for the large variations in performance that are

shown in Figures 61-62. The simple model does not take into account the effect of the

constituent messages of the MPI Barrier call that complete faster or slower than aver-

age. Because of the precedence relationships present in these constituent messages, any

delays will cascade to higher levels in the synchronisation tree, thus causing performance

variation. This simple case is a good example of why it is important to consider the

performance distribution of individual message-passing operations when constructing a

macroscopic performance model. However, the detailed PEVPM model that would take

into account performance distributions for the constituent messages of an MPI Barrier is

not examined here. Such detailed models are left until the next chapter, where case stud-

ies are undertaken in order to analyse the accuracy of the PEVPM approach. The simple

model presented here merely serves to assert the structural correctness of the precedence

relationships that form the basis of those PEVPM models. In particular, the reasonably

good correlation between the actual results and those predicted using the simple model

provides good evidence that the MPI Barrier routine is being decomposed (for PEVPM

modelling) to its constituent point-to-point messages in the correct manner.

The widening of the performance distribution in Figure 62 by a factor of two with

respect to Figure 61 shows that the same synchronisation algorithm is used in both cases.

In particular, because MPICH was not configured with shared memory support (see Sect-

ion 4.5.2), serialisation of messages from both processes at each node through its one net-

work interface caused those messages to take, probabilistically, twice as long. If MPICH

had been configured to use shared memory for intra-node communication, synchronisation

of nx2 processes should perform almost as well as the nx1 results that were observed.

Unlike MPICH’s MPI Barrier on Perseus, Sun MPI’s MPI Barrier on Orion was

optimised for SMP nodes [318]. The Sun MPI implementation synchronises all processes

on a node using shared memory, which is faster than the inter-node network, and then

188 CHAPTER 5. BENCHMARKING COLLECTIVE COMMUNICATION

0

10

20

30

40

50

0.0 0.1 0.2 0.3 0.4 0.5 0.6

N
or

m
al

is
ed

 P
D

F
 /

10
00

Time (ms)

Orion: Distribution of times for MPI_Barrier

4x1
8x1

16x1
32x1

Figure 63: Sampled performance profiles for MPI Barrier using various numbers of pro-
cesses (one per node) on Orion.

0

10

20

30

40

50

0.0 0.2 0.4 0.6 0.8 1.0 1.2

N
or

m
al

is
ed

 P
D

F
 /

10
00

Time (ms)

Orion: Distribution of times for MPI_Barrier

4x4
8x4

16x4
32x4

Figure 64: Sampled performance profiles for MPI Barrier using various numbers of pro-
cesses (four per node) on Orion.

5.3. RESULTS FOR MPI BARRIER 189

synchronises nodes using the same technique described above. The result of this is that the

synchronisation time for any given number of nodes is not supposed to be as affected by

the number of processes running on each node as would otherwise be the case. Although

the results in Figures 63-64 do show a performance improvement of about a factor of two

when four processes per node are used, there seems to be room for improvement, especially

given the results for the APAC NF below. As a side note, the characteristic effect on the

performance distribution of the MPI Bcast phase of the synchronisation process is quite

clear in the 4x1 process case, because the performance variance of the constituent point-

to-point messages in the first phase of the MPI Barrier is small enough that the peaks do

not merge together. Finally, although they are not plotted, the results of synchronisation

using two processes per node fell between the nx1 and nx4 results.

The APAC NF can achieve very low MPI Barrier times by using the hardware syn-

chronisation capability of the QsNet interconnect, which is available as long as processes

are run on physically contiguous nodes. A slightly slower, software-based MPI Barrier

technique is used when processes are running on nodes that are not physically contigu-

ous. The software-based MPI Barrier call on the APAC NF takes advantage of the

synchronous packet delivery protocol of QsNet and is implemented as two consecutive

software-based MPI Bcasts (see Section 5.2) of zero bytes; therefore there is no need to

investigate it further here. Disregarding the variance caused by contention effects, the

APAC NF’s hardware-based MPI Barrier synchronises one process in each node in con-

stant time regardless of the number of nodes involved, in contrast to the O(log2 n) time

required for the software-based synchronisation technique on Perseus or Orion. However,

as mentioned in Section 5.2, the QsNet hardware synchronisation only supports one pro-

cessor per node, and the internal shared memory network is used to propagate the barrier

to any other processors within an SMP node, leading to a small performance offset de-

pendent on the number of processes run on a node. The distribution of completion times

of the MPI Barrier operation on the APAC NF is almost completely flat (ignoring the

noise caused by the operating system’s scheduling quanta) and spans a very short window

of duration; the best way to present the measured results is in tabular format.

Table 3: Performance of MPI Barrier the APAC NF using various numbers of commun-
icating processes.

n tMPI Barrier

nx1 4.0± 1.2µs
nx2 5.0± 1.2µs
nx4 6.5± 2.0µs

Table 3 shows the impressive performance of the hardware-based MPI Barrier on the

APAC NF, which is orders of magnitude faster than a software-based MPI Barrier on

Perseus or Orion.

190 CHAPTER 5. BENCHMARKING COLLECTIVE COMMUNICATION

5.4 Results for MPI Scatter and MPI Gather

An important pair of collective communication routines in MPI are MPI Scatter and

MPI Gather. The MPI Scatter operation allows one process to divide a copy of specified

local data into equal portions and distribute those portions to other processes. The

MPI Gather operation is the reverse of this, and allows one process to collect equal portions

of data sent from other processes into a single copy. For example, the MPI Scatter

operation is often used to distribute large arrays among many processes, which act on the

data they have received, and the MPI Gather operation is used to collect the results at

one process (probably the same one that scattered the data).

The MPI Scatter operation can be fashioned from n point-to-point transmissions of

s/n bytes, where n is the number of processes involved and s is the total size of the data

to be scattered, for example like this:

if (procnum == r) {

// code to execute at the root process, r

for (i = 0; i < n; i++) {

MPI_Send(sendbuf + i * s/n, s/n, MPI_BYTE, i, ...);

}

}

else {

// code to execute at the other processes

MPI_Recv(recvbuf, s/n, MPI_BYTE, r, ...);

}

Similarly, the MPI gather operation can also be fashioned from n point-to-point trans-

missions of s/n bytes. This time, however, one process receives the n messages from other

processes and stores them in rank order, for example like this:

if (procnum == r) {

// code to execute at the root process, r

for (i = 0; i < n; i++) {

MPI_Recv(recfbuf + i * s/n, s/n, MPI_BYTE, i, ...);

}

}

else {

// code to execute at the other processes

MPI_Send(sendbuf, s/n, MPI_BYTE, r, ...);

}

5.4. RESULTS FOR MPI SCATTER AND MPI GATHER 191

Several optimisations can be made to these simple implementations. Firstly, as with

MPI Bcast in the last section (and in particular given adequate buffer space), the block-

ing sends in both the MPI Scatter and MPI Gather routines can be replaced with non-

blocking ones. In the case of MPI Scatter this allows the root process to quickly queue the

required outgoing messages (at a rate governed by their local completion) and therefore

complete itself sooner, as well as drive the other processes to complete as soon as possible

because of the subsequent efficient utilisation of the root process’s output link. In the

case of MPI Gather this allows the n− 1 sending processes to complete according to their

local completion time and potentially carry on with other useful work. Secondly, but ap-

plicable only to MPI Gather, the receive operation at the root process can be modified to

accept messages from other processes in any order, thereby minimising serialisation delays

(and as a useful side-effect, reducing buffering requirements). Finally, messages can be

grouped together and transmitted using a similar pattern to the software-based broadcast

tree described in the last section. The only difference in the pattern is the amount of data

transmitted by processes at each stage of the tree. While in an MPI Bcast the same data

is transmitted at each stage, in an MPI Scatter a reduced amount of data is transmitted

by processes at each stage. In the first stage, half of the total data to be scattered is

transmitted by the root process to another process, then in the second stage both of these

processes send half of that data (i.e. one-quarter of the original data) to two further

processes, and so on, until the dlog2 nend stage, in which all processes have received their

allotted 1/n bytes of the total data (as well as any other intermediate data). In the first

stage of an MPI Gather (which is the procedural inverse of an MPI Scatter) half of the

processes send their 1/n bytes of the total data to the other half of the processes, which

the receiving processes concatenate with their 1/n bytes of the data and send to a fur-

ther half of their number, and so on, until the dlog2 nend stage which sees the total data

collected at the root process.

Implementing MPI Scatter and MPI Gather operations using the final approach ex-

plained above is especially common for hypercube networks, because data must be routed

through intermediate nodes anyway. On single-hop networks, using this pattern trades off

an increased amount of total traffic for fewer messages on the critical path [208,261]. The

increased total traffic does not usually have a direct performance impact, because it can be

sent in parallel, but indirectly it usually increases contention and hence causes message-

passing delays throughout the network. The benefit of fewer (in particular dlog2 ne instead
of n) messages on the critical path is a reduction in serialised point-to-point startup costs,

especially for small messages where these costs dominate total message-passing time.

Despite these optimisations, however, serialisation remains a central characteristic of

the performance of MPI Scatter and MPI Gather routines, simply because of their res-

pective one-many and many-one natures. If the network interface at the root process is the

192 CHAPTER 5. BENCHMARKING COLLECTIVE COMMUNICATION

same speed as the network interface at other processes (which is almost always the case;

and is the case for the machines benchmarked in this thesis) then it becomes a through-

put bottleneck. For example, consider the case where none of the above optimisations

have been applied to either MPI Scatter or MPI Gather. In the case of MPI Scatter, this

means that data scattered to different processes will be serialised at a rate determined by

the speed of the output link at the root process, and the processes receiving the scattered

data will (barring contention delays) complete in accordance with this serialisation. In

the case of MPI Gather, data sent to the root process will be serialised through its input

link, hence determining the completion time of the gathering process. This can easily be

seen in the following MPIBench results.

The average completion times (measured at the first process to complete) for an

MPI Scatter of a total of up to 64 Kbytes across various numbers of processes on Perseus

are shown in Figure 65. This allows a direct comparison between the scattering time of

a selection of data against a point-to-point operation transmitting the same amount of

data (i.e. compare Figures 65 and 13). There is clearly a massive overhead when scatter-

ing small messages across a large number of processes compared to an MPI Isend of the

same amount of data, but the overhead becomes insignificant for large enough message

sizes. As described in Section 4.3.3, because the total amount of data scattered in the

MPI Scatter test remains constant, this comparison clearly highlights the communication

inefficiencies that are introduced by using more processes, and can therefore provide valu-

able insight into the performance scalability of fixed-size problems as processing resources

are increased.

The simple structure of the performance distribution for an MPI Scatter on Perseus

(shown in Figure 66) makes it quite simple to estimate the completion time of any individ-

ual process from the average completion time measured at the last process to complete.

The completion time for a process p out of n processes can be reasonably well modelled

by p/n multiplied the average completion time (of the last process to complete) of the

MPI Scatter; with the exception that the root process should be modelled by ntlc, where

tlc is the local completion time of the constituent messages of size s/n. Also, noting the

fact that the root process does not actually need to send data to itself (because it is

already there) raises a subtle point. When comparing the performance difference between

MPI Scatters of a constant amount of data across a varying number of processes, the

amount of data transferred via the network is not actually constant. Rather, the amount

of data transferred is (n−1)/n of the total data to be scattered, while the remaining data

simply remains in situ at the root process. This makes the performance of MPI Scatters

in comparison with MPI Isends of the “same” amount of data look better than they actu-

ally are. The PEVPM model for MPI Scatter takes the basic approach described above,

but by its nature provides a more refined model because it naturally accounts for local

5.4. RESULTS FOR MPI SCATTER AND MPI GATHER 193

0

1

2

3

4

5

6

7

8

0 8192 16384 24576 32768 40960 49152 57344 65536

T
im

e
(m

s)

Message size (bytes)

Perseus: Average times for MPI_Scatter (last process only)

32x2
16x2

8x2
4x2

64x1
32x1
16x1

8x1
4x1

Figure 65: Average times for MPI Scatter using large message sizes with various numbers
of communicating processes on Perseus, measured at the last process to complete.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 1 2 3 4 5 6 7

N
or

m
al

is
ed

 P
D

F
 /

10
00

Time (ms)

Perseus: Distribution of times for MPI_Scatter (65536 bytes)

16x1

Figure 66: Sampled performance profile for MPI Scatter using a 64 Kbyte message with
16x1 processes on Perseus.

194 CHAPTER 5. BENCHMARKING COLLECTIVE COMMUNICATION

completion time, the amount of data actually transferred via the network interface, and

network contention.

The performance distributions for an MPI Gather on Perseus are more complex than

those for an MPI Scatter. For example, consider the performance distribution of an

MPI Gather of 64 Kbytes using 8x1 processes shown in Figure 68. In this example, there

are three peaks with areas in the ratio of 4:2:1 at low completion times, and one peak with

area in the ratio of 1 at a higher completion time. For now, consider this as a bimodal

distribution, with a low peak and a high peak with areas in the ratio of 7:1. The low

peak represents the completion time of the seven processes that are sending their data to

the root process, which are completing asynchronously (i.e. they are using MPI Isends).

The high peak represents the completion time of the root process in gathering all of that

data. The root process takes longer to complete because of the serialisation that occurs

at its network interface as the result of the many-one gather process.

The average completion times of both the n− 1 sending processes and one gathering

process for MPI Gather tests using various numbers of processes on Perseus are shown in

Figure 67. Comparing the average completion times of the root process in an MPI Gather

(see Figure 67) with the completion time for an MPI Isend of the same amount of data

(see Figure 13) shows a surprising amount of difference. Because the root process of an

MPI Gather can conceivably receive data from other processes in any order, the overall

effect of delays experienced by any particular message should be reduced. If this were

the case, it would be reasonable to expect that an MPI Gather would perform similarly

to an MPI Isend of the same amount of data. However, this is clearly not the case. In

fact, the performance of an MPI Gather operation (see Figure 67) scales worse than its

relative MPI Scatter (see Figure 65), which has no potential to amortise delayed messages.

Examination of the source code shows that the reason for this is that the MPI Gather on

Perseus is implemented in such a way that data must be gathered in rank order, thereby

serialising delays rather than amortising them.

The sub-peaks at low completion times occur systematically based on process num-

ber, in the ratio ...:8:4:2:1:1, depending on how many processes are involved in the

MPI Scatter. These are simply a carry-over effect of the MPIBench measurement pro-

cess that was used. As explained in Section 4.3.1, MPI Barrier operations were used to

isolate MPI Gather operations so that they could be individually timed. The time differ-

ence between peaks is characteristic of the broadcast stage at the end of each of those

MPI Barrier operations, similar to the way the broadcast pattern shows through for the

MPI Barrier results on Orion (in Figure 63). Use of the alternate and more accurate

synchronisation method described in Section 4.3.1 would avoid incurring this small sys-

tematic error. However, using that method, the tests would have taken approximately

50-100 times longer to run (because the of the large retransmit timeout on Perseus). Since

5.4. RESULTS FOR MPI SCATTER AND MPI GATHER 195

0

2

4

6

8

10

12

14

16

0 8192 16384 24576 32768 40960 49152 57344 65536

T
im

e
(m

s)

Message size (bytes)

Perseus: Average times for MPI_Gather

32x2
16x2

8x2
4x2

64x1
32x1
16x1

8x1
4x1

Figure 67: Average times for MPI Gather using large message sizes with various numbers of
communicating processes on Perseus, measured at both gathering and sending processes.

0

1

2

3

4

5

6

7

0.00 0.25 0.50 0.75

N
or

m
al

is
ed

 P
D

F
 /

10
00

Time (ms)

Perseus: Distribution of times for MPI_Gather (65536 bytes)

8x1

0

1

2

3

4

5

6

7

5.50 5.75 6.00 6.25

N
or

m
al

is
ed

 P
D

F
 /

10
00

Time (ms)

Perseus: Distribution of times for MPI_Gather (65536 bytes)

//

8x1

Figure 68: Sampled performance profile for MPI Gather using a 64 Kbyte message with
8x1 processes on Perseus.

196 CHAPTER 5. BENCHMARKING COLLECTIVE COMMUNICATION

the results obtained here were perfectly sufficient for constructing an accurate model of

MPI Gather performance, those more expensive tests were not run.

Finally, therefore, an MPI Gather on Perseus is modelled by the PEVPM as a collection

of point-to-point messages using a simple linear process. As usual this takes into account

message-ordering and network contention; and finally the concept of limited bandwidth

into an individual processing node is applied to rate-limit the serialising effect of many-one

communication, according to the contention scoreboard described in Section 3.5.

In the light of the previous discussion, the performance of MPI Scatter operations on

Orion (in Figures 69-70) are largely self-explanatory, because, with one exception, the

same algorithms appear to be used. The exception occurs when processes are run on 32

(and presumably more) distinct nodes. When this is the case, the saw-tooth performance

profile is replaced with a normal-like distribution (see Figure 69). This suggests that

synchronous sends are used as the constituent point-to-point message, and the root process

does not send any acknowledgements to other processes until it has successfully scattered

all of the data. In any event, the average time at which the last process completes does not

vary from what is expected (for example, compare the similarity between the 32x1 and

16x2 curves in Figure 69). The only significant effect of this protocol change, therefore,

is that processes complete (approximately) synchronously with the slowest process, but

this will usually make little overall performance difference.

The performance of MPI Gather routines on Orion is plotted in Figure 71. Unlike the

stable performance of the MPI Scatter operation, the average completion time of individ-

ual processes engaging in MPI Gather operations on Orion can be quite unstable, which

can be seen in Figure 71. The reason for this unpredictability seems to lie either in buffer-

ing problems or possibly in an unfortunate interplay caused by the use of synchronous

constituent point-to-point messages. The saw-toothed distribution for the 8x1/32 Kbyte

case shown in Figure 72 suggests that synchronous messages are used to gather the data

to the root process; this case behaves as expected. The 8x1/16 Kbyte case, however,

shows a massive spike in completion times at approximately 0.03ms. Interestingly, this

spike accounts for almost exactly 50% of total completion times, and contains a mixture of

completion times from all processes. It seems that the completion of the processes signi-

fied by this spike may be expedited by the timely output of an acknowledgement from the

root process in preference to other data transfers to be scheduled. Unfortunately, in these

cases it seems impossible to analytically predict the completion time of an MPI Gather at

any individual process. However, because a complete performance distribution has been

measured, that distribution can still be used in conjunction with the PEVPM to make

useful performance predictions where MPI Gather operations are used.

The structural characteristics of the performance of MPI Scatter routines on the

APAC NF (in Figures 73-74) are almost identical to those of Perseus and Orion, with

5.4. RESULTS FOR MPI SCATTER AND MPI GATHER 197

0.1

1

10

0 8192 16384 24576 32768 40960 49152 57344 65536

T
im

e
(m

s)

Message size (bytes)

Orion: Average times for MPI_Scatter (last process only)

32x4
16x4

8x4
4x4

32x2
16x2

8x2
4x2

32x1
16x1

8x1
4x1

Figure 69: Average times for MPI Scatter using large message sizes with various numbers
of communicating processes on Orion, measured at the last process to complete.

0

1

2

3

4

5

6

7

8

9

10

0 0.5 1 1.5 2 2.5 3

N
or

m
al

is
ed

 P
D

F
 /

10
00

Time (ms)

Orion: Distribution of times for MPI_Scatter (65536 bytes)

16x1
32x1

Figure 70: Sampled performance profile for MPI Scatter using 64 Kbyte messages with
16x1 and 32x1 processes on Orion.

198 CHAPTER 5. BENCHMARKING COLLECTIVE COMMUNICATION

0.01

0.1

1

10

0 8192 16384 24576 32768 40960 49152 57344 65536

T
im

e
(m

s)

Message size (bytes)

Orion: Average times for MPI_Gather

32x4
16x4

8x4
4x4

32x2
16x2

8x2
4x2

32x1
16x1

8x1
4x1

Figure 71: Average times for MPI Gather using large message sizes with various numbers
of communicating processes on Orion, measured at both gathering and sending processes.

2

4

6

8

10

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

N
or

m
al

is
ed

 P
D

F
 /

10
00

Time (ms)

Orion: Distribution of times for MPI_Gather (8x1)

16K
32K

148

150

152

154

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

Time (ms)

Orion: Distribution of times for MPI_Gather (8x1)

\\

16K

Figure 72: Sampled performance profile for MPI Gather using 32 KByte and 64 Kbyte
messages with 8x1 processes on Orion.

5.4. RESULTS FOR MPI SCATTER AND MPI GATHER 199

0

0.4

0.8

1.2

1.6

2

2.4

2.8

0 32768 65536 98304 131072 163840 196608 229376 262144

T
im

e
(m

s)

Message size (bytes)

APAC NF: Average times for MPI_Scatter (last process only)

32x4
16x4

8x4
4x4

32x2
16x2

8x2
4x2

32x1
16x1

8x1
4x1

Figure 73: Average times for MPI Scatter using large message sizes with various numbers
of communicating processes on the APAC NF, measured at the last process called.

0

1

2

3

4

5

6

7

8

9

10

0 0.1 0.2 0.3 0.4 0.5

N
or

m
al

is
ed

 P
D

F
 /

10
00

Time (ms)

Scatter: Distribution of times for MPI_Scatter (65536 bytes)

32x1

Figure 74: Sampled performance profile for MPI Scatter using 64 Kbyte messages 32x1
processes on the APAC NF.

200 CHAPTER 5. BENCHMARKING COLLECTIVE COMMUNICATION

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0 32768 65536 98304 131072 163840 196608 229376 262144

T
im

e
(m

s)

Message size (bytes)

APAC NF: Average times for MPI_Gather

32x4
16x4

8x4
4x4

32x2
16x2

8x2
4x2

32x1
16x1

8x1
4x1

Figure 75: Average times for MPI Gather using large message sizes with various numbers
of communicating processes on the APAC NF, measured at both gathering and sending
processes.

0

50

100

150

200

250

300

350

400

450

0.23 0.24 0.25 0.26 0.27 0.28 0.29

N
or

m
al

is
ed

 P
D

F
 /

10
00

Time (ms)

APAC NF: Distribution of times for MPI_Gather (65536 bytes)

32x1
32x2
32x4

Figure 76: Sampled performance profile for MPI Gather using a 64 Kbyte message with
32x1, 32x2 and 32x4 processes on the APAC NF.

5.4. RESULTS FOR MPI SCATTER AND MPI GATHER 201

several minor exceptions. Firstly, there are large jumps in performance at various sizes for

various numbers of processes. These jumps occur where message sizes of 288 bytes per pro-

cess are encountered, coinciding with similar jumps in performance of the MPI Scatter’s

constituent point-to-point messages at that size (due to packetising effects; see Sect-

ion 4.5.1). Secondly, the distribution of performance results on a per-process basis is

far more stable than on Perseus or Orion, which attests to the quality of the hardware

and MPI implementation. It is also interesting to note that the variability in completion

time for a particular processes increases slightly in proportion with its position in line

to receive data. This is because the APAC NF’s underlying QsNet hardware uses syn-

chronous message delivery, and therefore any small delays are accumulated throughout an

MPI Scatter. This property also results in the final note; that the last peak encompasses

twice as many results as any of the others. This is because it accounts for the completion

time of not only process number n but also the root process.

The APAC NF appears to use a similar MPI Gather technique to the one Orion em-

ploys when 32 or more nodes are used, in that all processes involved in a gather finish

synchronously (indicated by the distribution shown in Figure 76). However, in contrast to

Perseus or Orion, where significant performance penalties are incurred as more processes

are involved, the performance of MPI Gather operations on the APAC NF are far less

dependent on the number of processes used, attested to by the similarity of the curves in

Figure 75. Once again, this highlights how well the hardware and MPI implementation

on the APAC NF have been tuned to achieve maximum performance; with the exception

of several obvious non-linearities in the figure which will now be explained. The abrupt

increase in completion times seen at 64 Kbytes and 128 Kbytes are caused by some sort

of buffering problem, which has not yet been tracked down. At the point of these abrupt

changes, it seems that buffer space is being exhausted, and hence large delays are incurred

while earlier messages are finalised and the buffers are reclaimed. Worse, shortly after

these buffers are exhausted, the MPI implementation issues an internal error and crashes;

thus explaining the lack of results after these abrupt changes. Regardless of this bug

(the source of which is still under investigation – a bug report has been submitted to the

manufacturer), the stable performance of the MPI Gather operation before the onset of

buffer shortages portends how it is likely to perform in the absence of such problems.

Finally, there are several variants of MPI Scatter and MPI Gather that can be easily

modelled using trivial modifications to the models just discussed. Firstly, the MPI Scatterv

and MPI Gatherv routines, which respectively scatter and gather varying amounts of data

from each process, can be modelled by varying the size of the point-to-point messages that

construct them. Secondly, the MPI Allgather routine, which is essentially an MPI Gather

but where all processes receive the result, can be modelled as either (depending on how

it is implemented) n MPI Gathers or an MPI Gather followed by an MPI Bcast.

202 CHAPTER 5. BENCHMARKING COLLECTIVE COMMUNICATION

5.5 Results for MPI Alltoall

The most intensive MPI communication routine is MPI Alltoall, which sends distinct

data of size s/n from each process in a communicator to every other process in that

communicator, where s is the total size of the data on all processes and n is the number

of processes involved. More precisely, MPI Alltoall performs a transposition of data

stored across a set of processes, redistributing it so that the j th block of data from process

i is moved to the ith block of data on process j, for example like this:

// scatter part executed at all processes

for (i = 0; i < n; i++){

MPI_Isend(sendbuf + i * s/n, s/n, MPI_BYTE, i, ...);

}

// gather part executed at all processes

for (i = 0; i < n; i++){

MPI_Recv(recfbuf + i * s/n, s/n, MPI_BYTE, i, ...);

}

The actual implementation of an MPI Alltoall operation must deal with buffering issues

and completion testing for asynchronous sends, which are not considered in the example

implementation above, but these do not affect the essential communication structure of

the call. As the comments in the example code hint, an MPI Alltoall is actually just

a collection of MPI Scatter-like and MPI Gather-like communication patterns performed

simultaneously by every process. The scatter-like part of the MPI Alltoall implementa-

tion above uses asynchronous point-to-point routines to avoid deadlock and to maximise

the performance of outgoing traffic at each process. Like an MPI Gather, the gather-like

part of an MPI Alltoall can be optimised by allowing the receive operations at each pro-

cess to accept messages from other processes in any order, thereby avoiding serialisation

delays and reducing buffering requirements.

There are, of course, many other ways of implementing the MPI Alltoall operation.

It could be implemented using MPI Scatter and MPI Gather routines. Because of its

balanced and systematic pattern of data exchange, it could also be implemented using

a collection of MPI Sendrecv operations in a statically determined permutation pattern.

This is a common approach, usually utilising a circular neighbour communication pattern

with s ∈ {1, ..., n − 1} steps in which all processes r send to process (r + smodn) and

receive from process (r − smodn) [184]. Note that the circular neighbour approach does

not match processes (r+smodn) and (r−smodn) to each other in each step, although that

can be achieved using a butterfly-like communication pattern if the number of processes

is a power of two, and doing so may improve performance slightly. Regardless of which

MPI Alltoall algorithm is used, the overall result of the operation remains the same: each

5.5. RESULTS FOR MPI ALLTOALL 203

of n processes exchanges a unique block of data of size s/n with each of the other n− 1

processes; of these total n(n−1) exchanges, n can be made to proceed concurrently in any

network with sufficient parallelism (i.e. switched networks up to their backplane limit, for

example in Perseus; fat trees, for example in Orion or the APAC NF; etc). This amount of

data movement, approximately equivalent to concurrent sequences of n−1 MPI Sendrecv

calls of s/n bytes at every process, provides a yardstick by which the performance of any

MPI Alltoall implementation can be critiqued.

The measured completion times of MPI Alltoall operations on Perseus were ex-

tremely variable, making them difficult to present in a succinct way. Even more so than

the MPI Bcast operation (examined in Section 5.2), the execution of MPI Alltoall op-

erations was plagued by huge numbers of very slow completion times, especially when

large numbers of processes or large data sizes were used. Like the slow completion times

observed for the MPI Bcast, these slow completion times were due to packet losses and

their associated TCP/IP retransmit timeouts, caused by extreme network load. Similar

catastrophic packet loss under extreme network load was noted by Carns et al. [57] in an

all-to-all-like communication pattern that occurs during initial connection setup in the

LAM 6.1 version of MPI [345].

Because of these extraordinarily long completion times, simply presenting the aver-

age completion times of MPI Alltoall operations on Perseus is very misleading. Firstly,

it is useful to present how often retransmit timeouts occurred during the benchmarking

tests. It is easy to distinguish results that were subject to retransmit timeouts on Perseus

because the version of the Linux kernel that was used during the tests has a minimum

retransmit timeout value of 200ms (±10ms due to the resolution of timeout clock). In

the absence of retransmit timeouts, MPI Alltoall operations of up to 64 Kbytes across

up to 64x2 processes on Perseus should not take much more than 40ms or so. There-

fore, it is safe to assume that any measurements of more than 190ms have suffered a

retransmit timeout. The percentages of measurements for various numbers of participat-

ing processes and message sizes that were affected by retransmit timeouts, according to

this criterion, are shown in Figure 77. This shows that no retransmit timeouts were

experienced by 4x1 and 4x2 process MPI Alltoall operations for any message size up to

64 Kbytes. However, as the number of participating processes was increased, the chance

of a retransmit timeout occurring during an MPI Alltoall operation increased rapidly,

especially for MPI Alltoall operations on large amounts of data. For example, the chance

that a process would suffer a retransmit timeout became more likely than not in the 16x1

process case for data sizes greater than 24 Kbytes, in the 32x1 process case for data sizes

greater than 12 Kbytes and in the 64x1 process case for data sizes greater than 4 Kbytes.

The situation was actually even worse than this: higher-numbered processes were more

likely to suffer a retransmit timeout than lower-numbered processes (for reasons that will

204 CHAPTER 5. BENCHMARKING COLLECTIVE COMMUNICATION

0

20

40

60

80

100

0 8192 16384 24576 32768 40960 49152 57344 65536

%

Message size (bytes)

Perseus: Percentage of processes experiencing outliers during MPI_Alltoall

64x2
32x2
16x2

8x2
4x2

64x1
32x1
16x1

8x1
4x1

Figure 77: Percentage of processes experiencing a TCP/IP retransmit timeout during an
MPI Alltoall between various numbers of participating processes on Perseus.

0

5

10

15

20

25

30

35

40

45

50

0 8192 16384 24576 32768 40960 49152 57344 65536

T
im

e
(m

s)

Message size (bytes)

Perseus: Average times for MPI_Alltoall (processes not affected by outliers)

32x2
16x2

8x2
4x2

32x1
16x1

8x1
4x1

Figure 78: Average times for MPI Alltoall operations of various message sizes with var-
ious numbers of participating processes on Perseus when no TCP/IP retransmit timeouts
occurred.

5.5. RESULTS FOR MPI ALLTOALL 205

be explained shortly). Therefore, in any one MPI Alltoall operation, the chances of at

least one of the participating processes being delayed approached 100% even more quickly.

This would devastate parallel efficiency in many real applications, because performance

is often bounded by the maximum rather than average time for any process to complete

each step in a sequence of computations.

The average completion times for MPI Alltoall operations on Perseus in the few

tests where no retransmit timeouts occurred are shown in Figure 78. In these cases,

the MPI Alltoall operations performed as expected. For example, consider the case

where 32x1 processes participated in a 4 Kbyte MPI Alltoall (i.e. where each of the 32

concurrent processes exchanged 31 messages in sequence, with each message containing

64 bytes of data). Based on the total amount of data transferred and using the results

in Figure 33, this was expected to take (roughly) 31 ∗ 0.22 = 6.82ms. As shown in

Figure 78 and Figure 79, this matches quite well with the measured values. The measured

average completion time of 5.91ms was probably slightly faster than the rough prediction

of average completion time because messages could be processed as they arrived rather

than in a predefined order, thereby minimising random serialisation delays. Clearly, the

performance characteristics shown in Figure 79 are commensurate with how MPICH’s

MPI Alltoall operation was intended to behave – performance scaled linearly with data

size, and the number of participating processes affected completion time only through

latency serialisation and increased contention.

However, as the network load was increased, the performance of MPI Alltoall opera-

tions on Perseus degraded markedly. Consider, for example, the distribution of completion

times for the 64x1 process MPI Alltoall of 4 Kbytes shown in Figure 79 (take note of

the scales in the figure, which were chosen to show the two parts of the distribution with

reasonable magnifications, yet with a constant aspect ratio to allow a visual comparison

of the area under each part). In this case, only 47% of processes completed according to

performance expectations (i.e. in the part of the curve from 11-16ms), while the other 53%

suffered a 200ms retransmit timeout. Performance deteriorated even more under further

network load, as shown by the results for the 64x2 process MPI Alltoall of 64 Kbytes in

Figure 80, the most taxing case that was measured. In that case, no processes completed

without experiencing a retransmit timeout. About 42% of processes were delayed by

600ms of retransmit timeouts while the remainder were hindered by 1400ms of retransmit

timeouts.

In Figure 79, the peaks near the expected completion times (i.e. those between 5-7ms

and 11-16ms) represent the completion times of processes that had none of the commu-

nications in which they were involved affected by retransmit timeouts. Processes that

did have data dropped by the network retransmitted the data after a timeout in the

TCP/IP layer. The completion times of processes that finished successfully after that

206 CHAPTER 5. BENCHMARKING COLLECTIVE COMMUNICATION

0

0.2

0.4

0.6

0.8

1

1.2

0 5 10 15 20

N
or

m
al

is
ed

 P
D

F
 /

10
00

Time (ms)

Perseus: Distribution of times for MPI_Alltoall (4 Kbytes)

32x1
64x1

100 150 200 250 300

0.02

0.04

0.06

0.08

0.1

Time (ms)

Perseus: Distribution of times for MPI_Alltoall (4 Kbytes)

//

32x1
64x1

Figure 79: Sampled performance profile for an MPI Alltoall of 4 Kbytes with 32x1 and
64x1 processes on Perseus.

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0 200 400 600 800 1000 1200 1400 1600

N
or

m
al

is
ed

 P
D

F
 /

10
00

Time (ms)

Perseus: Distribution of times for MPI_Alltoall (64 Kbytes)

64x2

Figure 80: Sampled performance profile for an MPI Alltoall of 64 Kbytes with 64x2
processes on Perseus.

5.5. RESULTS FOR MPI ALLTOALL 207

first retransmission are represented by the peak at approximately 200ms. Note that the

packets that were dropped in the initial transmission were all dropped at about the same

time, timed-out at about the same time, were retransmitted at about the same time and

completed at about the same time. Unfortunately, however, in the case of the more taxing

MPI Alltoall operation that was mentioned earlier (see Figure 80), all of the retransmit-

ted messages were dropped again because of the instantaneous load placed on the network

during retransmission. In line with TCP/IP’s exponential backoff of retransmit timeout

in the face of repeated packet loss (see Section 4.8), a 400ms delay was imposed before a

second retransmission, hence the spike at approximately 200 + 400 = 600ms. Similarly,

the spike at approximately 200 + 400 + 800 = 1400ms represents the completion times

of processes that suffered three successive packet losses. Thus, the unusual distribution

of MPI Alltoall completion times that were observed on Perseus were the result of a

cascading sequence of network overload, packet dropping and retransmission after expo-

nentially increasing TCP/IP timeouts. Somewhat ironically, this situation arose despite

the fact that the network was only overloaded for very short periods of time; the network

remained basically idle during the timeout periods.

To further investigate the reasons behind the packet dropping and subsequent TCP/IP

retransmit timeouts, the raw completion time data were manually investigated. This

showed that completion times represented by the first peak in any particular test iteration

belonged to low numbered processes, up to some small but variable limit, where the

completion times jumped to a value commensurate with the next timeout level. The

reason for this can be traced to MPICH 1.2.0’s implementation of the MPI Alltoall

operation. Examination of the source code revealed that each process simply executes a

loop containing MPI Isends of the data it needs to transmit and MPI Irecvs of the data

it needs to receive, and finally tests for the successful completion of those asynchronous

calls with an MPI Wait. Crucially, each process begins by sending data to process 0 first,

then process 1, etc, and finally to process n− 1 (i.e. in the same fashion as the skeleton

code presented at the beginning of this section). At the beginning of this communication

pattern, n processes each send a message containing s/n bytes (for a total of s bytes) to

process 0, which can only receive one message (s/n bytes) in the same time. The rest of

the data remains stored in buffers in the network. Then, the n processes each send another

s/n byte message (for a total of s bytes) to process 1. During this time, processes 0 and 1

each receive one message (s/n bytes) of the data en route to them. Now even more data

is stored in buffers in the network. This continues until every process has transmitted the

messages they are required to, at which point there are n2/2− n messages (containing a

total of ns/2 − s bytes) stored in the network. After this, data is drained from buffers

at the rate of n messages per iteration. Furthermore, one acknowledgement message lags

every data message, because the systolic nature of the communication pattern makes it

208 CHAPTER 5. BENCHMARKING COLLECTIVE COMMUNICATION

impossible to piggy-back acknowledgement messages onto data messages. In the case

of a 64x1 process MPI Alltoall, for example, there will be a peak of approximately

642/2 − 64 = 1984 data messages of size s/64 bytes and 642/2 = 2048 acknowledgement

messages of size 0 bytes buffered in the network.

Interestingly, the results show a clear correlation between the number of packets and/or

amount of data buffered in the network and the number of timed-out message transfers

due to packet loss. The Intel 510T switches in Perseus have a 4 MByte shared buffer space.

For the MPICH 1.2.0 MPI Alltoall algorithm (and not accounting for the small overheads

contributed by Ethernet framing, acknowledgement messages or unrelated system traffic)

this is just enough to support a 64x1 process, 64 Kbyte MPI Alltoall without exhausting

the buffer space. Therefore, the high number of packet losses recorded during much

smaller MPI Alltoall operations (shown in Figure 77) indicates that exhausted buffer

space was not the main cause of the packet losses that were observed. However, as

more packets and more data accumulated in the switches’ buffers, the switches had to

undertake more processing to determine which packets should be scheduled for output

first. It seems likely, therefore, that increased contention for buffer access by the switches’

input queueing processes, packet processing engines and output transmission processes

was causing incoming packets to be dropped on arrival.

The performance of MPICH’s MPI Alltoall operation could be vastly improved by

staggering the destinations of each processes’ MPI Isends, using the circular neighbour

approach described above. The benefits of this would be twofold. Firstly, it would halve

the critical path for an MPI Alltoall operation, thus improving performance in the nor-

mal case (i.e. in the absence of retransmit timeouts) by a factor of two. Secondly, it

would allow all input and output links to be constantly utilised throughout the opera-

tion, and hence prevent data from accumulating in network buffers. In turn, this would

drastically reduce the occurrence of retransmit timeouts, improving performance by an

order of magnitude. While the incorporation of this improved MPI Alltoall algorithm

into MPICH was beyond the scope of this thesis, it has been suggested to the MPICH

development team and is being evaluated for possible inclusion in MPICH 1.2.5.

The average performances of MPI Alltoall operations on Orion for various numbers

of communicating processes and a range of data sizes, shown in Figure 81, fit the ex-

pected trends that were mentioned above. The performance scaled linearly with data size,

and the number of participating processes affected completion time only through latency

serialisation and increased contention. Consider the same example case for Orion that

was discussed for Perseus, i.e. the case where 32x1 processes participated in a 4 Kbyte

MPI Alltoall operation. Based on the total amount of data transferred and using the

results in Figure 35, this was expected to take (roughly) 31∗0.07 = 2.17ms, which matches

well with the measured value of 2.29ms shown in Figure 81. Similarly, a 32x1 process

5.5. RESULTS FOR MPI ALLTOALL 209

0

5

10

15

20

0 8192 16384 24576 32768 40960 49152 57344 65536

T
im

e
(m

s)

Message size (bytes)

Orion: Average times for MPI_Alltoall

32x4
16x4

8x4
4x4

32x2
16x2

8x2
4x2

32x1
16x1

8x1
4x1

Figure 81: Average times for MPI Alltoall using large message sizes with various num-
bers of communicating processes on Orion.

0

2

4

6

8

10

0 1 2 3 4 5 6 7 8 9 10

N
or

m
al

is
ed

 P
D

F
 /

10
00

Time (ms)

Orion: Distribution of times for MPI_Alltoall (64 Kbytes)

8x1
16x1
32x1

8x2
16x2
32x2

Figure 82: Sampled performance profiles for an MPI Alltoall of 64 Kbytes with 8-32x1-2
processes on Orion.

210 CHAPTER 5. BENCHMARKING COLLECTIVE COMMUNICATION

MPI Alltoall of 64 Kbytes was expected to take (roughly) 31 ∗ 0.12 = 3.72ms but actu-

ally took 3.88ms. The fact that the measured completion times took slightly longer than

the rough predictions of average completion time (rather than the other way around, as

was the case for Perseus) suggests that Orion’s MPI Alltoall implementation uses a sys-

tolic communication pattern (rather than processing whichever messages arrive first). In

particular, the results indicate that Orion almost certainly uses a circular neighbour com-

munication pattern with synchronous MPI Sendrecv-like operations, although this could

not be verified for certain because of the lack of access to the source code for Orion’s MPI

library. While using synchronous point-to-point operations as the constituent messages of

a circular neighbour communication pattern imposes some very short precedence delays,

it allows the MPI Alltoall operation to proceed in an orderly fashion that is not prone to

degraded performance from increased contention if the communication pattern becomes

skewed [184] (which is part of what went wrong in MPI Alltoall operations on Perseus).

The orderly execution of MPI Alltoall operations on Orion leads to dependable perform-

ance in those operations, which can be seen in the stability and relatively low variance of

the performance profiles shown in Figure 82.

Figures 81 and 82 also capture two other important performance characteristics of the

circular neighbour implementation of the MPI Alltoall operation. Firstly, it is obvious

that the completion time of this MPI Alltoall algorithm scales very poorly as the number

of participating processes is increased, especially for small amounts of data; it scales as

O(n) rather than O(logn), like many of the group operations that have been investigated

so far. This is caused by the circular neighbour algorithm’s serialisation of n− 1 latency

overheads. Similarly to the optimised MPI Scatter and MPI Gather algorithms discussed

earlier, a more advanced MPI Alltoall algorithm could group messages (especially small

ones) together in order to reduce the number of messages on the critical path (albeit at

the expense of more data transfer overall), thereby reducing the number of costly latency

overheads. Secondly, it is clear that the MPI Alltoall algorithm has not been optimised

for SMP nodes. If it had been, 8x2 process MPI Alltoalls (for example) would perform

about as well an 8x1 process MPI Alltoalls with the same amount of total data. This

could be achieved in the 8x2 process case by concatenating the two half-sized messages

(relative to the 8x1 process case) from each node to any other and transmitting them

as one message. Instead, the results show that the circular neighbour approach used

on Orion treats all processes equally, regardless of which node they reside on, and this

results in non-optimal performance. A further consequence of this is that the nx2 process

MPI Alltoall is slightly slower than the 2nx1 process MPI Alltoall (and likewise for the

nx4 process case versus the 4nx1 or 2nx2 process cases) despite the same total number of

communicating processes in each case. This is because of the increased contention delays

that occur when more processes per node are involved in simultaneous communication.

5.5. RESULTS FOR MPI ALLTOALL 211

The average performance of MPI Alltoall operations on the APAC NF under various

conditions (see Figure 83) show that the APAC NF’s MPI Alltoall operation scales

much better than Perseus’ or Orion’s. Despite the lack of access to the source code for

the APAC NF’s highly tuned MPI implementation [77], some guesswork and a careful

investigation of the measured performance data were able to uncover most of the imple-

mentation details for the APAC NF’s MPI Alltoall operation. Firstly, Figure 83 shows

abrupt performance jumps for MPI Alltoall operations at various total data sizes. In

particular, these jumps occur when the size of constituent messages between participating

processes s/n cross 2 Kbyte and 8 Kbyte boundaries. In addition, the slopes of the av-

erage performance trends also change at these points. Together, these facts suggest that

the APAC NF’s MPI Alltoall operation makes use of one of three different algorithms,

depending on the size of the data being sent from each process to every other. Perform-

ance profiles for 16x1 process MPI Alltoalls of various data sizes on the APAC NF can

be seen in Figure 84, which also highlights the situations where each of the three different

MPI Alltoall algorithms have come into play.

When s/n is less than or equal to 2 Kbytes, a latency tolerant algorithm is used to min-

imise the effects of latency serialisation. The performance of the MPI Alltoall operation

for this range of data sizes is consistent with a multiply-trunked tree-like algorithm, where

the data scattered by each process is recursively transferred through intermediate pro-

cesses in the same way as for the optimised MPI Scatter routine discussed in Section 5.4.

This communication pattern requires dlog2 ne stages, where n/2 bidirectional, s/2 byte

messages are required in each stage. Thus, the time for a 0 byte MPI Alltoall reduces

from 31 times the minimum message latency (using the circular neighbour approach) to 5

times the minimum message latency. Curiously, the results indicate that the constituent

messages should be modelled using MPI Isend messages rather than MPI Sendrecv mes-

sages, despite the duplex nature of the communication. This suggests that the bottlenecks

in bidirectional message passing, described in Section 4.6, are not being encountered in

this case. With this caveat, a 32x1 process, 32 Kbyte MPI Alltoall would require 5

stages, each with 16 pairs of processes simultaneously exchanging 16 Kbyte messages.

Note, however, that in the case above the total amount of data sent and received by

each process has increased from (the intrinsic) 31 Kbytes to 5 ∗ 16 = 70 Kbytes; the

extra 39 Kbytes of data is transferred as a result of each process acting as an intermedi-

ary for data that is ultimately destined for other processes. As the total data size for

an MPI Alltoall is increased, the overhead incurred in transmitting extra (intermedi-

ate) data using this latency-tolerant algorithm will increasingly nullify the performance

advantage gained from having less messages on the critical path. At some point these

trade-offs will completely negate each other. Beyond this point the circular neighbour ap-

proach will perform better than the latency-tolerant algorithm. In order to leverage this

212 CHAPTER 5. BENCHMARKING COLLECTIVE COMMUNICATION

0

2

4

6

8

10

12

14

0 32768 65536 98304 131072 163840 196608 229376 262144

T
im

e
(m

s)

Message size (bytes)

APAC NF: Average times for MPI_Alltoall

32x4
16x4

8x4
4x4

32x2
16x2

8x2
4x2

32x1
16x1

8x1
4x1

Figure 83: Average times for MPI Alltoall using large message sizes with various num-
bers of communicating processes on the APAC NF.

0

10

20

30

40

50

60

0 0.5 1 1.5 2 2.5

N
or

m
al

is
ed

 P
D

F
 /

10
00

Time (ms)

APAC NF: Distribution of times for MPI_Alltoall (16x1)

A1
A2
A3

Figure 84: Sampled performance profiles for MPI Alltoalls with 16x1 processes on the
APAC NF, using algorithms A1 (0-512-2048 bytes per constituent message), A2 (2560-
512-8192 b.p.c.m.) and A3 (8704-512-32768 b.p.c.m.).

5.6. DISCUSSION OF COLLECTIVE COMPUTATION 213

fact, the APAC NF’s MPI Alltoall operation uses a circular neighbour approach when

s/n is more than 2 Kbytes but less than or equal to 8 Kbytes. While the jumps in the

curves (in Figure 83) at points where the constituent message sizes hit 2 Kbyte imply that

the change-over point has not been perfectly optimised, the small value of those jumps

indicates that it has at least been quite well optimised; and furthermore, 2 Kbytes is a

neat message size at which to switch between algorithms.

As the (intrinsic) amount of point-to-point data exchanged between each pair of pro-

cesses increases beyond 8 Kbytes, a third MPI Alltoall algorithm seems to come into

play; although it is also possible that this change is triggered by some sort of buffering

problem, but that seems quite unlikely given that no commensurate jumps were observed

for 8 Kbyte messages in earlier point-to-point performance measurements. Surprisingly,

this third algorithm performs worse than a circular buffer algorithm (theoretically) would.

Therefore it is difficult to imagine the reasoning behind this third algorithm, and deducing

its mechanism is almost impossible without access to the source code. Consequently, the

raw performance measurements of the MPI Alltoall operation will have to serve as the

performance model for the MPI Alltoall operation in any case that this third algorithm

would be used.

Finally, despite the attention that has been paid to optimising the MPI Alltoall

operation on the APAC NF, it is worth noting that, like on Orion, the APAC NF’s

MPI Alltoall operation does not appear to have been optimised for SMP nodes. When

multiple processes per node are involved in an MPI Alltoall, all processes fight for access

to the node’s local network interface and the increased contention delays that result from

this retard the completion of the operation.

5.6 Discussion of Collective Computation

There are two basic types of collective computation routines: reduce and scan; both

of which are very similar. A reduction operation combines data from all processes to

either one process (with an MPI Reduce operation), all processes (with an MPI Allreduce

operation) or cyclicly across the communicator (with an MPI Reduce Scatter operation).

The basic MPI Reduce operation over n processes, where D(i, j) represents the j th data

item at process i, combines all data items to the root process r according to:

D(r, j) = D(0, j) ∗D(1, j) ∗ ... ∗D(n− 1, j)

where ∗ represents a reduction function, which is always assumed to be associative. MPI

provides a number of predefined reduction functions, which can be used to find the max-

imum or minimum data value, the location of that data value, the sum or product of all

214 CHAPTER 5. BENCHMARKING COLLECTIVE COMMUNICATION

data values, or the bitwise or logical and, or or xor of all data values; note that these are

assumed to always be commutative. It is also possible for user-defined reduction functions

to be supplied, which need not be – although they can be – either associative and/or com-

mutative. The scan operation is a prefix-reduction operation that only partially combines

data each process, according to:

D(k, j) = D(0, j) ∗D(1, j) ∗ ... ∗D(k, j)

for k = 0, 1, ... , n− 1.

Essentially, both of these operations work by gathering data to processes and applying

some data reduction operator (and then optionally broadcasting or scattering the result).

Because the computation (data reduction) part of the operation is usually of insignificant

cost compared to the communication (data gathering) part of the operation (at least,

for predefined reduction operations), the performance of these collective computation

routines can be reasonably accurately modelled by the time taken for data movements

alone: in other words, by simply reusing the performance models already constructed for

MPI Gather operations in Section 5.4. Even if the computation part were not insignificant,

for example for some custom reduction operation, it would not be hard to insert delays at

appropriate points of the PEVPMmodel of an MPI Gather operation to create a consonant

performance model.

5.7 Summary

This chapter described how MPIBench was used to accurately characterise the perform-

ance of collective communication on the same three parallel machines for which point-

to-point communication was examined in the previous chapter. In particular, the re-

sults in this chapter were analysed in detail to determine either the means by which

MPI Bcast, MPI Barrier, MPI Scatter, MPI Gather, MPI Alltoall and their variants

were constructed from constituent point-to-point messages, or whether those operations

were hardware-assisted. In the case of collective operations constructed from point-to-

point operations, performance models of those operations were built from the bottom-up

using performance models for their constituent point-to-point operations. Each perform-

ance model of a collective operation was used to analyse the performance of the algorithm,

and was also used as a small validation of the PEVPM modelling approach (see chap-

ter 3). In the case of hardware-assisted collective operations, the benchmark results were

obtained to serve as stand-alone empirical performance models. Many of the results ob-

tained in this chapter, along with results from the previous chapter on point-to-point

message-passing performance, will be used to validate some complete MPI programs in

5.7. SUMMARY 215

the next chapter.

It is also worth summarising the major results of this chapter, which are interesting in

their own right. It was graphically demonstrated that there can be vast differences in the

time that individual processes take to complete their part in collective operations, attested

to by the wide and complicated performance profiles that were observed; for example the

Pascal’s Triangle-shaped PDFs for software-based MPI Bcasts or the saw-tooth-shaped

PDFs for MPI Scatters. While this behaviour has been alluded to in other studies,

none have made a significant attempt to quantify it. The work presented here, however,

provided in-depth analyses, and in particular demonstrated that the standard MPI per-

formance benchmarking technique of measuring average completion time for collective

operations at one process is completely inadequate. Once a thorough understanding of

the general shape of the performance profile for an operation is gained, however, average

completion times can provide valuable summary information for the wary. Sometimes,

however, these performance profiles can be very complicated, and even chaotic. This was

demonstrated for the MPI Alltoall operation on Perseus; in this case, the PDF-approach

to MPI performance benchmarking made it possible to explain that the very poor perform-

ance that was observed was due to massive contention causing packet loss and subsequent

network timeouts. Uncovering the source of this deficiency would have been very difficult,

if in fact it was not completely overlooked, by performance benchmarking tools other than

MPIBench.

216 CHAPTER 5. BENCHMARKING COLLECTIVE COMMUNICATION

Chapter 6

Case Studies

6.1 Introduction

As explained in Chapter 1, parallel computing is essential for solving very large prob-

lems in a reasonable amount of time. The vast array of problems that can benefit from

parallel computing come from all fields of science and engineering, and include Computa-

tional Fluid Dynamics (CFD) simulations of fluid flow and heat transfer, Finite Element

Analysis (FEA) techniques in structural analysis and for modelling wave propagation,

weather forecasting and climate modelling, ab initio quantum chemistry calculations for

determining the electronic structure of molecules, N-body simulations in astronomical

modelling and molecular dynamics computations, the simulation of protein folding, the

simulation of quantum field theories about the fundamental forces of nature and the basic

structure of matter, simulated annealing in optimisation problems, and signal process-

ing in the Search for Extra-Terrestrial Intelligence (SETI). The main computations that

must be performed in all of these applications usually reduce to common mathematical

techniques (albeit on large amounts of data) such as matrix manipulations, the numerical

evaluation of differential equations, Fourier transformations, data sorting and the like. A

range of parallel algorithms have been devised over the years to carry out each of these

mathematical functions.

All of these parallel algorithms can be distinguished, from a performance perspective,

by the computation/communication pattern that they employ. Although a parallel pro-

gram’s computation/communication pattern must be defined in terms of individual com-

putation and communication operations, it is possible to classify any particular pattern

into one of three broad types. Parallel codes exhibit either regular-local communication,

regular-global communication or irregular communication (which may be either local or

global); interspersed computation is implicit in each case. The regularity of a communica-

tion pattern refers to its temporal and spatial repetitiveness, and in particular its temporal

periodicity and spatial symmetry. The spatial extent of a communication pattern, either

218 CHAPTER 6. CASE STUDIES

local or global, describes whether processes communicate only with their immediate neigh-

bours, or with any processes, no matter how distantly they are connected. In general,

the broad performance properties of parallel codes depend closely upon the class of com-

putation/communication pattern to which they belong. Thus, studying the performance

of parallel programs drawn from each of the three classes of communication/computation

pattern can lead to a good understanding of many of the general performance character-

istics of all parallel programs. More importantly in terms of this thesis, all performance

modelling systems for parallel programs can be prudently assessed by their ability to cope

with cases from each of the three classes of parallel code.

All of the previous techniques for the performance modelling of parallel programs that

were described in Chapter 2 are inadequate for one or more of the following reasons:

1. Most are not general enough to model arbitrary parallel code, especially code with

irregular or, even more so, nondeterministic computation/communication patterns;

2. Some are so inflexible that unique models must be created every time a single code

is run with different input parameters (such as problem size) or under different

environmental conditions (such as the number of processors available);

3. Many are prohibitively expensive, in terms of the resources required for model cre-

ation and/or model evaluation;

4. Others are too inaccurate to be useful.

In contrast, the PEVPM performance modelling technique that was developed in Chap-

ter 3 is completely general, arbitrarily flexible, very cost-effective and extremely accurate.

This chapter presents nine case studies that substantiate these claims. The nine case

studies are comprised of three example codes, each coupled, in turn, to each of the three

parallel machines that were benchmarked in Chapters 4 and 5. The three example codes

are representative of the three classes of parallel programs, which were described above.

The first example code performs a Jacobi Iteration (JI), using a regular-local communica-

tion pattern constructed from a number of MPI Send and MPI Recv operations. The second

example code uses a master-slave (or task-farm) approach to process a randomly gener-

ated Bag of Tasks (BOTs), which has both irregular and nondeterministic communication

and computation requirements. The third example code calculates a two-dimensional Fast

Fourier Transform (FFT) using the MPI Alltoall operation, which has a regular-global

communication pattern. The three parallel machines – Perseus, Orion and the APAC NF

– span a wide performance range and exemplify low-end, middle-of-the-range and high-end

parallel supercomputers. This matrix of test cases provides a good general reflection of all

of the ways in which parallel computing can be used, and hence serves as a trustworthy

basis on which to evaluate the quality of the PEVPM performance modelling system.

6.2. JACOBI ITERATION 219

6.2 Jacobi Iteration

Differential equations are arguably the most important mathematical tools for describing

complex physical systems. They are central in a huge number of mathematical models,

ranging across the scientific and engineering problems described in the last section and

beyond. Unfortunately, it is often difficult to find exact solutions to differential equations,

especially if they are non-linear, have coefficients that vary with time, are of high order or

must be solved for many inputs and/or initial conditions – all of which are commonplace

in problems of real-world interest. Fortunately, however, there are a number methods

for finding approximate solutions to differential equations. One of the simplest of these

is Jacobi Iteration, which belongs to a family of algorithms known as relaxation meth-

ods. All of these methods begin by discretising whichever differential equation is under

consideration. This leads to a system of linear equations that can be solved by iteration.

Discretisation of a two-dimensional differential equation, for example, will translate it into

a two-dimensional grid of data that can be solved using some form of nearest-neighbour

updating scheme, or stencil. Although Jacobi Iteration is rarely used in practice because

it converges more slowly that other (more complex) relaxation methods, such as Gauss-

Sidel Iteration (GSI) or Successive Over Relaxation (SOR), it serves as a fine example for

analysis because, in addition to its simplicity, it shares the same communication pattern

as all relaxation methods. More generally, its communication pattern is also similar to

that of all parallel algorithms with regular-local communication, including the large and

important class of algorithms that perform stencil calculations on regular meshes of data.

The program listing in Figure 85 shows the skeleton code for the Jacobi Iteration

that will be examined in this section. For readability, the listing does not include the

code for memory allocation and cleanup, loading initialised values of a discretised differ-

ential equation into the grid array, any MPI call’s tag, communicator or status/request

variable, or auxiliary functions. Conceptually, every point in the 256x256 grid is iter-

atively updated using a 4-point stencil, such that each point is equal to 0.25 times the

sum of the values of its neighbours (excepting boundary values, which do not change).

Parallelism is introduced by a one-dimensional data decomposition that splits the grid

into n subgrids, one for each of the processes involved in the computation. During each

iteration, every process transfers the edge of its subgrid to any immediate neighbours in a

regular-local communication phase and computes the 4-point stencil on its subgrid in con-

junction with any edge data that it received. A one-dimensional data decomposition was

chosen instead of a two-dimensional data decomposition because it is easy to implement.

Note, however, that it also happens to optimise the performance of the Jacobi Iteration

for the case of a small grid because it leads to fewer (but larger) message transfers than

a two-dimensional data decomposition would, hence minimising latency requirements.

220 CHAPTER 6. CASE STUDIES

int i, j, k, procnum, numprocs;

int iterations = 100000;

int xsize = 256;

int ysize = 256/numprocs+2;

float grid[size][size];

float griddash[size][size];

MPI_Comm_rank(MPI_COMM_WORLD, &procnum);

MPI_Comm_size(MPI_COMM_WORLD, &numprocs);

for (i = 0; i < iterations; i++){

// communication part

if (procnum%2 == 0){

if (procnum != 0){

MPI_Send(grid[1], xsize, ... , procnum-1, ...);

}

MPI_Send(grid[ysize-2], xsize, ... , procnum+1, ...);

MPI_Recv(grid[ysize-1], xsize, ... , procnum+1, ...);

if (procnum != 0){

MPI_Recv(grid[0], xsize, ... , procnum-1, ...);

}

}

else{

if (procnum != (numprocs-1)){

MPI_Recv(grid[ysize-1], xsize, ... , procnum+1, ...);

}

MPI_Recv(grid[0], xsize, ... , procnum-1, ...);

MPI_Send(grid[1], xsize, ... , procnum-1, ...);

if (procnum != (numprocs-1)){

MPI_Send(grid[ysize-2], xsize, ... , procnum+1, ...);

}

}

// computation part

for(j = 1; j < ysize-1; j++){

for(k = 1; k < xsize-1; k++){

griddash[j][k]=0.25*

(grid[j][k-1]+grid[j-1][k]+grid[j][k+1]+grid[j+1][k]);

}

}

swap_ptr(grid, griddash);

}

Figure 85: Skeleton code for the Jacobi Iteration.

6.2. JACOBI ITERATION 221

Conversely, a two-dimensional data decomposition would optimise for a larger grid by

minimising the amount of edge data that must be transferred (but at the expense of

requiring more messages to do so), hence minimising bandwidth requirements. In a real

problem, this iteration of communication and computation phases would terminate when

some desired level of convergence was obtained between grid and griddash. Because

that termination condition is data-dependent, it could only be determined by actual exe-

cution of every computation, which would defeat the purpose of performance modelling.

Therefore the example code simply terminates after 1000 iterations. This is perfectly rea-

sonable, as performance comparisons between different Jacobi Iteration implementations

on specific parallel machines make far more sense on a per iteration basis.

A PEVPM-annotated version of the Jacobi Iteration from Figure 85 is listed in Fig-

ure 86. Only a few minutes were required to manually insert these PEVPM directives,

which was achieved by simply applying the rules detailed in Sections 3.4.4 and 3.4.5.

This mostly trivial process could easily be carried out by an automated compiler (like

that envisaged at the end of Section 3.4.5) with little or no human intervention. Because

PEVPM directives are so self-evident, redundant (in that they may be easily generated

from the skeleton code) and rather lengthy, they will not be comprehensively layed out for

the two other example codes that are discussed in the remaining sections of this chapter.

The most noteworthy PEVPM directives for the Jacobi Iteration shown in Figure 86

are those pertaining to the serial segment of computation at the end of the program listing.

As explained in Section 3.4.1, there are a number of traditional methods that are capable

of accurately estimating the run-time of a serial segment of computation, especially one

as structured as the stencil computation being considered here. For simplicity, however,

an empirical method was used to determine appropriate parameters for the PEVPM

Serial directives governing the estimation of completion time of the stencil calculations.

One iteration of the stencil computation was actually run on Perseus, Orion and the

APAC NF, and the execution times were measured. Because the per-processor amount of

computation required for each iteration of the stencil calculations varies inversely with the

number of processors available, the Serial computation time for each iteration of stencil

computations was modelled by the measured execution time divided by numprocs.

A small amount of finesse was required to: 1) ensure the viability of this simple model,

which is only reasonable given constant cache and memory system access patterns; and

2) make certain that the times required for computation and communication were not

so disproportionate as to render either one unimportant. This firstly required choosing a

problem size such that the Jacobi Iteration code and its data structures, most importantly

grid and griddash, would always fit completely in level 2 cache or core memory – not a

mixture of the two – no matter how many processors were used. Each of the 64 nodes in

Perseus had 128MB of RAM split between 2 Pentium III processors, each of those with

222 CHAPTER 6. CASE STUDIES

int i, j, k, procnum, numprocs;

int iterations = 100000;

int xsize = 256;

int ysize = 256/numprocs+2;

float grid[size][size];

float griddash[size][size];

MPI_Comm_rank(MPI_COMM_WORLD, &procnum);

MPI_Comm_size(MPI_COMM_WORLD, &numprocs);

// PEVPM Loop iterations = 100000

// PEVPM {

for (i = 0; i < iterations; i++){

// PEVPM Runon c1 = procnum%2 == 0

// PEVPM & c2 = procnum%2 != 0

// PEVPM {

if (procnum%2 == 0){

// PEVPM Runon c1 = procnum != 0

// PEVPM {

if (procnum != 0){

// PEVPM Message type = MPI_Send

// PEVPM & size = xsize*sizeof(float)

// PEVPM & from = procnum

// PEVPM & to = procnum-1

MPI_Send(grid[1], xsize, ... , procnum-1, ...);

}

// PEVPM }

// PEVPM Message type = MPI_Send

// PEVPM & size = xsize*sizeof(float)

// PEVPM & from = procnum

// PEVPM & to = procnum+1

MPI_Send(grid[ysize-2], xsize, ... , procnum+1, ...);

// PEVPM Message type = MPI_Recv

// PEVPM & size = xsize*sizeof(float)

// PEVPM & from = procnum+1

// PEVPM & to = procnum

MPI_Recv(grid[ysize-1], xsize, ... , procnum+1, ...);

// PEVPM Runon c1 = procnum != 0

// PEVPM {

if (procnum != 0){

// PEVPM Message type = MPI_Recv

// PEVPM & size = xsize*sizeof(float)

// PEVPM & from = procnum-1

// PEVPM & to = procnum

MPI_Recv(grid[0], xsize, ... , procnum-1, ...);

}

// PEVPM }

}

// PEVPM }

Figure 86 (part 1/2): Skeleton code for the Jacobi Iteration with PEVPM annotations.

6.2. JACOBI ITERATION 223

// PEVPM {

else{

// PEVPM Runon c1 = procnum != numprocs-1

// PEVPM {

if (procnum != (numprocs-1)){

// PEVPM Message type = MPI_Recv

// PEVPM & size = xsize*sizeof(float)

// PEVPM & from = procnum+1

// PEVPM & to = procnum

MPI_Recv(grid[ysize-1], xsize, ... , procnum+1, ...);

}

// PEVPM }

// PEVPM Message type = MPI_Recv

// PEVPM & size = xsize*sizeof(float)

// PEVPM & from = procnum-1

// PEVPM & to = procnum

MPI_Recv(grid[0], xsize, ... , procnum-1, ...);

// PEVPM Message type = MPI_Send

// PEVPM & size = xsize*sizeof(float)

// PEVPM & from = procnum

// PEVPM & to = procnum-1

MPI_Send(grid[1], xsize, ... , procnum-1, ...);

// PEVPM Runon c1 = procnum != numprocs-1

// PEVPM {

if (procnum != (numprocs-1)){

// PEVPM Message type = MPI_Send

// PEVPM & size = xsize*sizeof(float)

// PEVPM & from = procnum

// PEVPM & to = procnum+1

MPI_Send(grid[ysize-2], xsize, ... , procnum+1, ...);

}

// PEVPM }

}

// PEVPM }

// PEVPM Serial on perseus time = 3.24/numprocs

// PEVPM Serial on orion time = 5.70/numprocs

// PEVPM Serial on sc time = 1.582/numprocs

for(j = 1; j < ysize-1; j++){

for(k = 1; k < xsize-1; k++){

griddash[j][k]=0.25*

(grid[j][k-1]+grid[j-1][k]+grid[j][k+1]+grid[j+1][k]);

}

}

swap_ptr(grid, griddash);

}

// PEVPM }

Figure 86 (part 2/2): Skeleton code for the Jacobi Iteration with PEVPM annotations.

224 CHAPTER 6. CASE STUDIES

512KB of level 2 cache. Each of the 32 nodes in Orion had 4GB of RAM split between 4

UltraSparc II processors, each of those with 4MB of level 2 cache. Each of the 32 nodes

in the APAC NF had 4GB of RAM split between 4 Alpha EV68 processors, each of those

with 8MB of level 2 cache. A 256x256 (or smaller) grid of (4 byte) floats (plus its

identically sized shadow griddash), totalling 512KB of data, represents the only problem

size that could fit in level 2 cache when using anywhere between 1 and 128 processors of

either Perseus, Orion or the APAC NF; one processor of Perseus being the limiting case.

Similarly, a 11585x11585 (or larger) grid (and griddash), totalling 1GB of data, would

be required to ensure that the problem would never drop entirely into level 2 cache on

any machine; 128 processors of the APAC NF being the limiting case. Since this larger

problem size could not be run on any less than 8 (and more realistically 16) processors

of Perseus because of memory limitations, the smaller 256x256 problem size was chosen.

This problem size was also admirably suited to the second requirement above, because it

led to appreciable amounts of both computation and communication time given the use

of any number of processors on either Perseus, Orion or the APAC NF.

Three of the four criteria that were slated (in Section 6.1) to be used for evaluating

the utility of the PEVPM modelling system have already been touched upon. Firstly,

the generality of the PEVPM has been partially demonstrated by its applicability to a

regular-local code, one of the three possible (general) types of parallel program. The ap-

plicability of the PEVPM to the two other types of parallel program will be demonstrated

in the following two sections. Secondly, the flexibility of the PEVPM has been implicitly

demonstrated; because important program and machine parameters (such as procnum,

numprocs and ostensibly data size arguments, by using appropriate compiler techniques)

are retained symbolically in PEVPM models, those models can be easily re-evaluated

under different input and environmental conditions. Thirdly, the demonstrated simplicity

of adding PEVPM annotations to existing code is testament to the low-cost of PEVPM

model creation.

The costs associated with model evaluation, and the accuracy of PEVPM models are

far more quantifiable. A driver program was manually derived from the PEVPM model

of the Jacobi Iteration listed in Figure 86. Because the driver program merely reflected

the control structure defined by the PEVPM directives, it only took several minutes to

generate; note, however, that this process could also be automated by using appropriate

compiler techniques. This driver program was linked with prototype implementations of

the PEVPM process sweep/match sweep algorithms (which were detailed in Section 3.5)

and hence used to predict the performance of the Jacobi Iteration for many configurations

of Perseus, Orion and the APAC NF. These performance predictions are plotted as dashed

(or dotted) lines in Figures 87-92. The times required to actually execute the same Jacobi

Iterations on the real machines in corresponding situations were also measured and those

6.2. JACOBI ITERATION 225

0

50

100

150

200

250

300

350

1 2 4 8 16 32 64 128

T
im

e
(s

ec
on

ds
)

Total number of processors

Perseus: Average times for Jacobi iteration test

x1 predicted
x1 measured
x2 predicted
x2 measured

x1 avg2x1-predicted
x1 min2x1-predicted

computation

Figure 87: PEVPM-predicted average times and measured average times for the Jacobi
Iteration test using 2-64x1-2 processes on Perseus.

0

1

2

3

4

5

6

7

8

1 2 4 8 16 32 64 128

S
pe

ed
up

Total number of processors

Perseus: Average speedups for Jacobi iteration test

linear
x1 min2x1-predicted
x1 avg2x1-predicted

x1 predicted
x1 measured
x2 predicted
x2 measured

Figure 88: PEVPM-predicted average speedups and measured average speedups for the
Jacobi Iteration test using 2-64x1-2 processes on Perseus.

226 CHAPTER 6. CASE STUDIES

0

100

200

300

400

500

600

1 2 4 8 16 32 64 128

T
im

e
(s

ec
on

ds
)

Total number of processors

Orion: Average times for Jacobi iteration test

x1 predicted
x1 measured
x2 predicted
x2 measured
x4 predicted
x4 measured

x1 avg2x1-predicted
x1 min2x1-predicted

computation

Figure 89: PEVPM-predicted average times and measured average times for the Jacobi
Iteration test using 2-32x1-4 processes on Orion.

0

4

8

12

16

20

1 2 4 8 16 32 64 128

S
pe

ed
up

Total number of processors

Orion: Average speedups for Jacobi iteration test

linear
x1 min2x1-predicted
x1 avg2x1-predicted

x4 predicted
x4 measured
x2 predicted
x2 measured
x1 predicted
x1 measured

Figure 90: PEVPM-predicted average speedups and measured average speedups for the
Jacobi Iteration test using 2-32x1-4 processes on Orion.

6.2. JACOBI ITERATION 227

0

20

40

60

80

100

120

140

160

1 2 4 8 16 32 64 128

T
im

e
(s

ec
on

ds
)

Total number of processors

APAC NF: Average times for Jacobi iteration test

x4 predicted
x4 measured
x2 predicted
x2 measured
x1 predicted
x1 measured

x1 avg2x1-predicted
x1 min2x1-predicted

computation

Figure 91: PEVPM-predicted average times and measured average times for the Jacobi
Iteration test using 2-32x1-4 processes on the APAC NF.

0

4

8

12

16

20

1 2 4 8 16 32 64 128

S
pe

ed
up

Total number of processors

APAC NF: Average speedups for Jacobi iteration test

linear
x1 min2x1-predicted
x1 avg2x1-predicted

x1 predicted
x1 measured
x2 predicted
x2 measured
x4 predicted
x4 measured

Figure 92: PEVPM-predicted average speedups and measured average speedups for the
Jacobi Iteration test using 2-32x1-4 processes on the APAC NF.

228 CHAPTER 6. CASE STUDIES

results are plotted as solid lines in the same figures. Of those six figures, the first two relate

to the Jacobi Iteration’s performance on Perseus, the next two to the Jacobi Iteration’s

performance on Orion, and the final two to the Jacobi Iteration’s performance on the

APAC NF. The first figure in each of these three pairs of figures plots the completion

time of the Jacobi Iteration against the number of processors used, while the second

plots the speedup attained against the number of processors used. All of these curves

were plotted according to conventional guidelines [84], and include the perfect (linear)

speedups that would be achieved under ideal conditions.

The accuracy of the PEVPM predictions is readily apparent in each of Figures 87-

92. In particular, there are two classes of performance predictions in each figure. Firstly,

shown in green, blue or light blue dashes (corresponding to x1, x2 or x4 processor configu-

rations) are the PEVPM predictions that were made using complete performance profiles

of constituent message-passing operations (which were measured with MPIBench). These

are clearly very accurate, always predicting completion time to within 5%1 and usually

to within 1%. Importantly, these predictions were consistently accurate, regardless of

the number of processors used. This suggests that the small prediction errors that were

observed were mainly due the granularity (i.e. histogram bin size) of the benchmark

results that were input into the PEVPM simulation (which, if desired, could be made

finer still at the price of greater solution time requirements) rather than any underlying

deficiency in the PEVPM approach. These constant and high accuracy predictions across

such a wide range of machine sizes are unprecedented; previously devised performance

modelling techniques (see Chapter 2) rapidly lose the ability to make accurate predictions

for parallel programs running on a large number of processors.

This tendency towards inaccurate predictions when a large number of processors are

involved can be seen in the second class of more simplistic PEVPM predictions, shown by

dotted black lines in Figures 87-92. These performance predictions were made by inputting

minimum or average benchmark results into the PEVPM evaluations instead of complete

performance distributions. In particular, these minimum and average times were garnered

from MPIBench 2x1 process benchmarks, i.e. simple ping-pong benchmarks, like those

produced by traditional MPI benchmarking tools. This was done on purpose to highlight

the most inaccurate predictions that could result from using simple benchmark results.

Using minimums and averages from MPIBench nxp process benchmarks, which better

match the actual machine configurations that were used, produced results of intermediate

quality (but these are not shown to avoid excessive clutter in the figures). Also note,

however that traditional MPI benchmarking tools do not typically provide nxp process

benchmarks; and having to use simple uniprocessor ping-pong benchmark results to model

1Except for two anomalous cases, found at 16x4 and 32x4 process configurations of the APAC NF.
The discrepancies between the predicted and measured times in these two cases appear to be due to the
performance saturation of some unknown (and hence unmodelled) subsystem of the APAC NF.

6.2. JACOBI ITERATION 229

communication performance on clusters of SMPs would provide very poor results.

Even for this trivial regular-local code, the more simplistic prediction methods de-

scribed in the last paragraph are prone to large errors, which tend to grow in proportion

with the total number of processors utilised. In particular, these simplistic methods will

always overestimate performance, because they do not account for the flow-on effects

of contention in a parallel system. Hence, while they may possibly be useful for mod-

elling the performance of parallel programs running on a small number of processors,

they are inadequate for modelling large parallel programs, where contention effects be-

come very important. For parallel programs running on a large number of processors,

accurate performance models must take the complete performance distributions of con-

stituent message-passing operations into account, instead of just their ideal or average

performances. This is especially apparent on Perseus, where contention for network re-

sources quickly limits performance. Although it is less evident on Orion and the APAC SC

because of the scalability provided by their fat-tree networks, it is certainly noticeable.

Briefly returning to the discussion about the cost-effectiveness of the PEVPM ap-

proach, consider the actual execution time versus the simulation time for all of the Jacobi

Iterations that were carried out on (for example) Perseus. The 11 hours and 15 minutes

of processor time consumed by actually running the Jacobi Iterations on Perseus were

simulated in just under 10 minutes by a prototype (i.e. unoptimised) PEVPM imple-

mentation running on just one processor of Perseus. This comparison shows that the

PEVPM simulated the Jacobi Iterations on Perseus at about 67.5 times their actual exe-

cution speed. Similar “speedups” were achieved in the simulation of the Jacobi Iterations

on Orion and the APAC NF – although strict comparisons are impossible to make, be-

cause those simulations were also run on Perseus rather than on Orion or the APAC NF

themselves. Interestingly, the PEVPM algorithms themselves are close to embarrassingly

parallel; assuming a parallelised PEVPM implementation exhibiting perfect speedup could

be constructed, the 11 hours and 15 minutes worth of Jacobi Iterations on Perseus could

be simulated in just under 5 seconds of compute time using all 128 processors of Perseus.

While the speedup achieved by any given PEVPM simulation will depend heavily on

model granularity, it seems reasonable to conclude that the great majority of PEVPM

models would be relatively cheap to evaluate.

Finally, there are a number of general comments to be made about the performance

characteristics shown in Figures 87-92. The most obvious observation is that the Jacobi

Iteration code scales much better on Orion and the APAC NF than on Perseus, mainly

because of the low latency and low performance variability of their communication net-

works. Also, judging by the performance of a Jacobi Iteration on one processor, the 1GHz

Alpha EV68 processors in the APAC NF provide the greatest computational speed. The

230 CHAPTER 6. CASE STUDIES

500MHz Pentium III processors in Perseus are only half as fast, and the 450MHz Ul-

traSparc II processors in Orion are only half as fast again. These mixtures of network

performance and processor performance give rise to complex performance trends. For ex-

ample, a 4 processor Beowulf-class machine like Perseus would outperform a 4 processor

Sun TCF like Orion on a Jacobi Iteration of this size. However, an 8 processor Sun TCF

would outperform an 8 processor Beowulf-class machine on the same problem. Beyond

this, adding more processors to the Beowulf-class machine would achieve little extra per-

formance, while adding processors to the Sun TCF (up to at least 32 in total) would

continue to improve overall performance. Maximal performance on the Sun TCF would

be achieved with 64 processors (either 32x2 or 16x4), but this would probably change if

the problem size were altered. As another example, the absolute best performance for the

Jacobi iteration was obtained using 32x2 processors on the APAC NF, although that per-

formance was almost matched using only 32x1 processors on the same machine. Clearly,

without a tool like PEVPM it would be very difficult to determine the size of a problem or

parallel machine that should be used to make the most effective use of available resources

– on the basis of either raw speed, efficiency, or economy, etc.

The number of processors per SMP node used in a machine obviously plays an im-

portant part in determining overall performance. On Perseus it does not seem to matter

greatly whether 2nx1 (i.e. single processor) or nx2 (dual processor) configurations are

used for this Jacobi Iteration implementation – performance scales equally well. On

Orion, however, SMP nodes slightly outperform single processor nodes; on the APAC SC

single processor nodes significantly outperform SMP nodes (given, in both cases, the same

total number of processors). There has been much debate about the merits of multiproc-

essor versus uniprocessors nodes, especially in regards to their performance/price ratios.

Capello et al. [58, 59, 60, 61], Gustafson [157] and Hsieh [182] found (empirically) that

current (at the time of their publications) dual processor nodes outperformed single pro-

cessor nodes on the NAS Parallel Benchmarks [28], in both raw performance and perform-

ance/price. They also found that while quad processor nodes outperformed dual processor

nodes in terms of raw performance, they had less performance/price than even the single

processor nodes. While these empirical discoveries were indeed useful, a first-principles

approach to understanding the reasons for these outcomes is far more valuable. The exact

performance implications of using single processor or SMP nodes depend on many factors,

including the speed of the external an internal communication networks in a cluster of

SMPs, the contention effects that are experienced when multiple processors within a node

try and communicate with other processors (either local or remote), and the communica-

tion pattern of the program being executed. Only with tools like MPIBench and PEVPM

is it possible to accurately and methodically study the effects of these factors.

6.3. BAG OF TASKS 231

6.3 Bag of Tasks

This section evaluates the capacity of the PEVPM to cope with parallel programs that

exhibit irregular computation/communication patterns. This study could arguably have

been left until last, because of the extreme demands that irregular codes place upon the

generality of a performance modelling system. It is presented now, however, because

the (irregular) Bag of Tasks code described here is less taxing on the network (during

actual program execution) than the (regular-global) FFT code described in the following

section. Hence, the accuracy of the PEVPM modelling system is tested under moderate

network stress in this section and under extreme network stress in Section 6.4. In addition,

this ordering of case studies more closely mirrors the ordering of the benchmarking tests

described in the last two chapters. The communication pattern of the Jacobi Iteration

examined in Section 6.2 was defined by point-to-point operations (c.f. the results in

Section 4.5); the Bag of Tasks problem discussed here makes use of scatter/gather-like

communication (c.f. the results in Section 5.4); and the FFT code described in Section 6.4

revolves around the MPI Alltoall operation (c.f. the results in Section 5.5).

The computation/communication patterns and hence performance properties of irreg-

ular codes are interrelated in complex and often nondeterministic ways. This makes those

properties very difficult to understand even in hindsight, let alone determine a priori. Al-

though these difficulties are overcome by the PEVPM’s ability to simulate the execution

structure of any irregular code and hence predict its performance, a bothersome problem

arises out of the need to feed input and/or condition data into that simulation. While the

condition data will almost always be determinable by automatic means2, the input data

must always be explicitly specified. In pathological cases, input data may depend upon

the execution history of the parallel program, which would make specifying the possi-

ble streams of input data exceptionally difficult. Fortunately, although such pathological

programs may be contrived, there is almost no practical need for parallel codes to be

developed in such a way. The Bag of Tasks code developed for study in this section, for

example, utilises a pseudorandom input stream to guarantee fixed input data, but follows

an irregular and nondeterministic execution path. Thus, the ability of the PEVPM to

simulate nondeterministic and irregular codes with (statistically) random input data is

demonstrated, yet experimental repeatability is ensured so that performance comparisons

can be made between different runs (either actual or simulated) of that code.

The skeleton code listed in Figure 93 describes a program that will solve a collection

of independent subproblems, such as may occur during transaction processing, when con-

ducting parametric studies, or in a large number of other applications. The first page

2Note that the condition data are, theoretically, always determinable by automatic means (through
simply executing the actual code). In some cases, however, this may not be computationally feasible and
other solution techniques (such as calling upon programmer insight) will be required.

232 CHAPTER 6. CASE STUDIES

#define DEFN 3001 // MPI communicator tags

#define WORK 3002

#define DIE 3003

#define SIZE_MAX 65536 // per job in/out data size

#define COMPUTE_MAX 25000000 // per job clock cycles

typedef struct{

long sendsize;

long computeops;

long recvsize;

} workdef;

workdef out, in;

int *sbuf, *rbuf;

int rank, procnum, numprocs;

int njobs = 10000

MPI_Status s;

// ranf_start and ranf_arr_next were snarfed from Donald Knuth’s

// portable random number generator described in The Art of Computer

// Programming, Volume 2, 3rd Edition, Section 3.6, 9th printing (2002)

void ranf_start(long seed){

...

}

double ranf_arr_next(void){

...

}

workdef getwork(void){

workdef this;

if (njobs>0){

this.sendsize = (long)(ranf_arr_next()*(double)SIZE_MAX);

this.computeops = (long)(ranf_arr_next()*(double)COMPUTE_MAX);

this.recvsize = (long)(ranf_arr_next()*(double)SIZE_MAX);

njobs--;

}

else{

this.sendsize = this.computeops = this.recvsize = -1;

}

return this;

}

MPI_Comm_rank(MPI_COMM_WORLD, &procnum);

MPI_Comm_size(MPI_COMM_WORLD, &numprocs);

ranf_start(310952);

Figure 93 (part 1/2): Skeleton code for the Bag of Tasks.

6.3. BAG OF TASKS 233

// the master

if (procnum == 0) {

for (rank = 1; rank < numprocs; rank++) {

out = getwork();

MPI_Send(&out, 3, MPI_LONG, rank, DEFN, ...);

MPI_Send(&sbuf[0], out.sendsize, MPI_BYTE, rank, WORK, ...);

}

out = getwork();

while (out.sendsize!=-1) {

MPI_Recv(&in, 3, MPI_LONG, MPI_ANY_SOURCE, DEFN, ... , &s);

MPI_Recv(&rbuf[0], in.recvsize, MPI_BYTE, s.MPI_SOURCE, WORK, ... , &s);

MPI_Send(&out, 3, MPI_LONG, s.MPI_SOURCE, DEFN, ...);

MPI_Send(&sbuf[0], out.sendsize, MPI_BYTE, s.MPI_SOURCE, WORK, ...);

out = getwork();

}

for (rank = 1; rank < numprocs; rank++) {

MPI_Recv(&in, 3, MPI_LONG, MPI_ANY_SOURCE, DEFN, ... , &s);

MPI_Recv(&rbuf[0], in.recvsize, MPI_BYTE, s.MPI_SOURCE, WORK, ... , &s);

}

for (rank = 1; rank < numprocs; rank++) {

MPI_Send(&out, 3, MPI_LONG, rank, DIE, ...);

}

}

// the slaves

else {

for (;;) {

MPI_Recv(&in, 3, MPI_LONG, 0, MPI_ANY_TAG, ... , &s);

if (s.MPI_TAG == DIE) {

break;

}

MPI_Recv(&rbuf[0], in.sendsize, MPI_BYTE, 0, WORK, ... , &s);

wait_cycles(in.computeops); // simulate actual computation

MPI_Send(&in, 3, MPI_LONG, 0, DEFN, ...);

MPI_Send(&sbuf[0], in.recvsize, MPI_BYTE, 0, WORK, ...);

}

}

Figure 93 (part 2/2): Skeleton code for the Bag of Tasks.

234 CHAPTER 6. CASE STUDIES

of the skeleton code defines a number of data types, variables and auxiliary functions,

most of which are geared towards describing and generating a pseudorandom sequence of

tasks. Those tasks, or jobs, are defined by workdef structures, which specify (simulated

versions of) each job’s input data (sendsize), processing requirements (computeops) and

output data (recvsize). (The COMPUTE MAX and SIZE MAX values offer rough control

over the computation/communication ratio of the Bag of Tasks code; the values listed

in Figure 93 were chosen because they defined a computation/communication ratio that

led to interesting speedups – i.e. neither perfect nor completely saturated – on each of

Perseus, Orion and the APAC NF). A new job can be created by calling the getwork

function, which generates a workdef item with pseudorandom input data, processing and

output data requirements. The second page of the skeleton code lists the main computa-

tion/communication part of the Bag of Tasks program, where a master process generates

workdef items, farms them out to any available slave processes for solution, and collects

the results. Initially, all of the slaves are idle, so the master generates jobs as fast as

it can and sends them out to the slaves using a MPI Scatter-like process. When this

computational pipeline is filled, the master enters a new phase of operation, where it

waits to receive the results of a completed job from any slave; upon doing so the master

will immediately issue that slave a new task. When all of the (10,000) jobs have been

dispatched, the master drains the remaining results from the computational pipeline and

instructs the slaves to terminate.

A good feature of the task-farming approach to parallel computation is that it is

inherently load-balanced. Because all of the slaves work independently, it does not matter

if some tasks take longer than others to perform – when a slave completes a task, it simply

asks the master for another, which it begins to process while the other slaves are still busy

working on their own jobs. Hence, given a random Bag of Tasks to process, it is difficult

to predict the order in which computation and communication will proceed, and thus

the problem is irregular. If computation and communication times are exact (i.e. not

stochastic), this will imply a unique program execution sequence and the Bag of Tasks

code will execute deterministically. In this simple case, performance may be evaluated

by simply calculating the critical path. A small number of the previous performance

modelling techniques that were described in Chapter 2 are capable of estimating the

performance of irregular programs using this deterministic assumption.

Unfortunately, due to the variations in processing and communication times that occur

in reality (caused mainly by contention), the Bag of Tasks code will execute nondeter-

ministically. Only a subset of the previous performance modelling techniques mentioned

above account for contention, and even then only some types of contention. Surprisingly,

none of those adequately account for the main type of contention that is encountered

when processing the Bag of Tasks code: gather contention. This very important type of

6.3. BAG OF TASKS 235

contention occurs when multiple slaves all try to communicate with the master simulta-

neously, thus flooding its communication link(s) and hence limiting program scalability.

Although gather contention is conceptually quite simple, it can be difficult to model well

in practice, which perhaps explains the absence of the machinery required to account for

it in previous performance prediction tools. Unfortunately, neglecting to properly account

for gather contention in is almost tantamount to ignoring precedence relationships and

this will have dire consequences on the accuracy of performance predictions.

Accurate bottom-up performance prediction of the (irregular and nondeterministic)

Bag of Tasks code can only be achieved by accounting for the effects of all types of con-

tention (both direct and indirect) on a microscopic scale – which is exactly what the

PEVPM was designed to do. Therefore, in the same way as described in the last section,

the execution structure of the Bag of Tasks code listed in Figure 93 was simulated using

the PEVPM for various configurations of Perseus, Orion and the APAC NF. These per-

formance predictions, along with actual measured results are shown with dashed and solid

lines in Figures 94-99. Once again, the accuracy of the PEVPM is clearly demonstrated,

especially in its ability to predict when saturation will occur on each machine.

In contrast to these exemplary results are the results shown in black dots in the

same figures, which were obtained by predicting the Bag of Tasks’ performance with a

restricted PEVPM evaluation engine that did not account for gather contention. While

these restricted-PEVPM predictions closely match the normal PEVPM predictions for

a small number of processors, they completely fail to foresee the performance saturation

that ensues when larger numbers of processors are used. This is because, in the restricted-

PEVPMmodel, there is no penalty associated with many processes trying to communicate

simultaneously with the master. Given this unrealistic property, every process is able to

communicate with the master just as fast as it would if it were the only slave. Hence,

as the number of slaves is increased, not only do the computation costs scale by 1/n but

the communication costs do also. Thus, constant efficiency is maintained (or it would

be if the master did not count in the speedup calculations – because it does, however,

efficiency starts at 0% for 1 processor and steadily rises until it reaches that defined by the

computation/(computation + communication) ratio). This leads to the close to perfect

speedups shown in Figures 95, 97, and 99. In actual fact, the speedups are not as close to

perfect as they seem, but merely look that way because of the different scales (i.e. linear

versus logarithmic) along the different axes in each case. On Perseus, for example, the

speedup predicted by the restricted-PEVPM had dropped to 102 using 128 processors;

and efficiency had flattened out at almost exactly 80%. For Orion and the APAC NF

the restricted-PEVPM predicted closer to linear speedups, however, because of the higher

bandwidths of the networks in those machines.

Finally, it is worth reiterating that predicting a program’s speedup when given a large

236 CHAPTER 6. CASE STUDIES

0

50

100

150

200

250

300

350

1 2 4 8 16 32 64 128

T
im

e
(s

ec
on

ds
)

Total number of processors

Perseus: Average times for Bag of Tasks test

x1 predicted
x1 measured
x2 predicted
x2 measured

x1/2 contentionless-prediction
computation

Figure 94: PEVPM-predicted average times and measured average times for the Bag of
Tasks test test using 2-64x1-2 processes on Perseus.

0

1

2

3

4

5

6

7

8

1 2 4 8 16 32 64 128

S
pe

ed
up

Total number of processors

Perseus: Average speedups for Bag of Tasks test

linear
x1/2 contentionless-prediction

x1 predicted
x1 measured
x2 predicted
x2 measured

Figure 95: PEVPM-predicted average speedups and measured average speedups for the
Bag of Tasks test test using 2-64x1-2 processes on Perseus.

6.3. BAG OF TASKS 237

0

50

100

150

200

250

300

1 2 4 8 16 32 64 128

T
im

e
(s

ec
on

ds
)

Total number of processors

Orion: Average times for Bag of Tasks test

x1 predicted
x1 measured
x2 predicted
x2 measured
x4 predicted
x4 measured

x1/2/4 contentionless-prediction
computation

Figure 96: PEVPM-predicted average times and measured average times for the Bag of
Tasks test test using 2-32x1-4 processes on Orion.

0

4

8

12

16

20

24

28

32

1 2 4 8 16 32 64 128

S
pe

ed
up

Total number of processors

Orion: Average speedups for Bag of Tasks test

linear
x1/2/4 contentionless-prediction

x1 predicted
x1 measured
x2 predicted
x2 measured
x4 predicted
x4 measured

Figure 97: PEVPM-predicted average speedups and measured average speedups for the
Bag of Tasks test test using 2-32x1-4 processes on Orion.

238 CHAPTER 6. CASE STUDIES

0

20

40

60

80

100

120

140

1 2 4 8 16 32 64 128

T
im

e
(s

ec
on

ds
)

Total number of processors

APAC NF: Average times for Bag of Tasks test

x1 predicted
x1 measured
x2 predicted
x2 measured
x4 predicted
x4 measured

x1/2/4 contentionless-prediction
computation

Figure 98: PEVPM-predicted average times and measured average times for the Bag of
Tasks test test using 2-32x1-4 processes on the APAC NF.

0

8

16

24

32

40

48

56

64

1 2 4 8 16 32 64 128

S
pe

ed
up

Total number of processors

APAC NF: Average speedups for Bag of Tasks test

linear
x1/2/4 contentionless-prediction

x1 measured
x1 predicted
x2 measured
x2 predicted
x4 measured
x4 predicted

Figure 99: PEVPM-predicted average speedups and measured average speedups for the
Bag of Tasks test test using 2-32x1-4 processes on the APAC NF.

6.4. FAST FOURIER TRANSFORM 239

numbers of processors is of crucial importance when sizing a parallel machine to a particu-

lar problem (or vice versa) in order to achieve maximum performance, speedup, efficiency,

or cost-effectiveness. For example, the pseudorandom Bag of Tasks examined here could

only be sped-up by at most 5.4 times on Perseus (using 8x2 processors), 23.3 times on

Orion (using 8x4 processors) and 43.8 times on the APAC NF (using 64 processors or

more in any configuration) – despite the 128 processors available in each case. The onset

of performance saturation occurred with quite a small number of cooperating processors

on Perseus, because of the relatively low bandwidth provided by its Fast Ethernet net-

work; very little benefit could be gained by using more than 8 processors. In contrast,

the superior bandwidth afforded by the Myrinet network in Orion allowed the problem

to scale efficiency to about 32 processors. Even with the supreme (among the networks

examined in this thesis) bandwidth provided by the QsNet network in the APAC NF,

this Bag of Tasks could not be efficiently solved using all of the 128 available processors.

Notably in all three cases, the performance improves almost perfectly with every added

slave processor until saturation is reached. Thus, predicting when performance satura-

tion will occur would be of crucial importance when determining the best (e.g. fastest or

cheapest, etc) machine to use for solving this particular Bag of Tasks; such information

can not be as accurately predicted using previous performance modelling techniques as

it can with the PEVPM. Alternatively, the PEVPM simulation could be easily run with

different Bags of Tasks, to determine which job mixes could be efficiently solved on any

of the three machines examined here; or it could be used to predict this Bag of Tasks’

performance on a hypothetical incarnation of Perseus, where the master’s node was up-

graded with a Gigabit Ethernet card (using, for example, extrapolated versions of the

Fast Ethernet benchmark data for Perseus). Given the enormous cost of actually imple-

menting any of these hypothetical situations and measuring program performance, the

benefits of performance prediction are obvious provided that those predictions accurately

reflect reality; hence the usefulness of the PEVPM modelling system.

6.4 Fast Fourier Transform

Fourier Transforms, which decompose time-varying signals into their frequency compo-

nents, or spectrum, are at the heart of an astounding range of signal processing appli-

cations, from audio processing or image analysis to distinguishing natural seismic events

from nuclear test explosions [46]. In practice, real-world (i.e. analogue) input signals

are usually sampled so that they can be processed by digital computer hardware, using

the closely related Discrete Fourier Transform. Without getting into algorithmic details

(which are not important here), a (one-dimensional) Discrete Fourier Transform requires

O(n2) operations to compute, where n is the total number of data samples. This can

240 CHAPTER 6. CASE STUDIES

take quite a long time if there are a large number of samples. In 1965, Cooley and Tukey

developed the Fast Fourier Transform [79, 285], which, given some restrictions, is able to

compute the same result as an equivalent Discrete Fourier Transform in only O(nlog2n)

operations. This section examines the PEVPM’s performance predictions for a parallel

code that computes the Fast Fourier Transform of a two-dimensional grid of data.

The execution structure of the two-dimensional Fast Fourier Transform implementa-

tion that is used in this section is quite simple: it is comprised of an MPI Alltoall oper-

ation sandwiched between two serial segments of computation. Because of this simplicity,

and because of the highly structured and completely connected communication pattern of

the MPI Alltoall operation (see Section 5.5), two-dimensional Fast Fourier Transforms

are often used as the canonical example of a regular-global code. While the perform-

ance properties of regular-global codes are slightly more complex than the regular-local

codes examined in Section 6.2, they are significantly less complex than the irregular codes

examined in Section 6.3. Unsurprisingly, therefore, most of the previous performance es-

timation techniques described in Chapter 2 are general enough to be sensibly applied to

the modelling of regular-global parallel programs. However, because most regular-global

codes are extremely demanding on communication networks, their performance character-

istics are quite difficult to model accurately in practice. Unlike the PEVPM, none of the

previous performance modelling techniques adequately account for the microscopic (but

very significant when summed-up) precedence relationships (due to contention) which

pervade regular-local codes; this reduces their predictive accuracy. Furthermore, the per-

formance provided by many communication networks can degenerate almost completely

under extreme load, with catastrophic consequences for overall program performance;

simple network models are a completely inadequate basis for performance predictions in

such cases. Later in this section, the accuracy of PEVPM predictions for a regular-global

two-dimensional Fast Fourier Transform will be compared with performance predictions

for the same code based on simpler network models.

The skeleton code listed in Figure 100 makes use of the typical parallelisation strategy

for computing a multidimensional Fast Fourier Transform [69,134,156,351], which involves

performing a succession of one-dimensional Fast Fourier Transforms on each line of data

that is parallel to each axis in the grid of samples. For example, the two-dimensional

Fast Fourier Transform of an m by n grid requires n one-dimensional transforms of length

m along each row of the array followed by m one-dimensional transforms of length n

down each column of the array. While these computations are quite easy to arrange for

serial execution, they are much more difficult to organise for parallel execution, because

the data grid must be redistributed amongst participating processes between each set of

computations along any particular axis. In particular, this redistribution involves the

complete transposition of the data grid. Because the data grid (a) is block-distributed

6.4. FAST FOURIER TRANSFORM 241

int i, j, k, cell, procnum, numprocs;

int iterations = 10000;

int size = 256;

int slice = size/numprocs;

complex a[size][size];

complex a_slice[slice][size];

complex a_chunks[numprocs][slice][slice];

complex b_slice[size][slice];

// a simple 1D FFT kernel snarfed from George Guscoria’s tutorial at

// http://www.mhpcc.edu/training/workshop/mpi/samples/C/mpi_2dfft.c

void fft(complex *data, int size){

...

}

MPI_Comm_rank(MPI_COMM_WORLD, &procnum);

MPI_Comm_size(MPI_COMM_WORLD, &numprocs);

for (i = 0; i < iterations; i++){

// perform 1D row FFTs

for (j = 0; j < slice; j++){

fft(&a_slice[j][0], size);

}

// transpose 2D array

for(cell = 0; cell < numprocs; cell++){

for(j = 0; j < slice; j++){

for(k = 0; k < slice; k++){

a_chunks[cell][j][k].r = a_slice[j][k + (slice * cell)].r;

a_chunks[cell][j][k].i = a_slice[j][k + (slice * cell)].i;

}

}

}

MPI_Alltoall(a_chunks, slice*slice, ... , b_slice, slice*slice, ...);

for(j = 0; j < slice; j++){

for(k = 0; k < size; k++){

a_slice[j][k].r = b_slice[k][j].r;

a_slice[j][k].i = b_slice[k][j].i;

}

}

// perform 1D column FFTs

for (j = 0; j < slice; j++){

fft(&a_slice[j][0], size);

}

}

Figure 100: Skeleton code for the 2D Fast Fourier Transform.

242 CHAPTER 6. CASE STUDIES

between available processors (into rows of a slice), this is achieved by having each pro-

cessor partially transpose its local slice of the data grid (into a chunks), transposing

those chunks between processors using the MPI Alltoall operation and then having each

processor complete the local transpositions (into columns of a slice). Note that the

skeleton code listed in Figure 100 does not include instructions to load a matrix of sam-

ples, perform the block decomposition of that grid (which would be achieved using an

MPI Scatter operation) or collate the results at one processor (which would be achieved

using an MPI Gather operation). In other words, this example code does not consider the

I/O issues of supplying and retrieving data to and from processors; it implicitly assumes

that the two-dimensional Fast Fourier Transform is only part of some longer pipeline of

parallel computation. Also note that the algorithmic details of a one-dimensional Fast

Fourier Transform are not listed in Figure 100. Those details are not important because,

while complicated in its own right, the particular one-dimensional Fast Fourier Transform

implementation [156] used for the case studies in this section is only a serial computation

and is therefore modelled as a single serial segment by the PEVPM.

As was done for the Jacobi Iteration code in Section 6.2 and the Bag of Tasks code

in section 6.3, the execution structure of the two-dimensional Fast Fourier Transform

code listed in Figure 100 was simulated using the PEVPM for various configurations of

Perseus, Orion and the APAC NF. These performance predictions, along with actual

measured results are shown with dashed and solid lines in Figures 101-106.

In order to explain the trends in these results, it is first helpful to describe how the

processing and communication requirements of the code listed in Figure 100 scale as the

number of processors used is increased. In the first phase of the overall computation,

each processor must carry out slice = size/numprocs (row-based) one-dimensional Fast

Fourier Transforms, each on size samples. Because each one-dimensional Fast Fourier

Transform is O(nlog2n), each processor must carry out O(size2

numprocs
log2size) operations in

this phase. Likewise, in the third phase of the overall computation each processor must

carry out O(size2

numprocs
log2size) operations to compute the (column-based) one-dimensional

Fast Fourier Transforms. For the 256x256 grid in this example, these phases together re-

quire 2∗1048576/numprocs floating point computations per processor (where the leading

2 is present because each grid point is a complex number). For the MPI Alltoall oper-

ation in the middle phase of the overall computation, each processor must send/receive

messages of O(size2/numprocs2) to/from each of the other numprocs − 1 processors.

Thus, for a fixed size problem, the total amount of data (in bytes) that each proces-

sor must send and receive (almost) halves as the number of processors is doubled (i.e.

scales according to 1/numprocs, like the computation requirements for phases 1 and 3),

while the number of individual messages required to do so (almost) doubles (i.e. scales

according to numprocs). In comparison, the 256x256 point Jacobi Iteration described in

6.4. FAST FOURIER TRANSFORM 243

0

100

200

300

400

500

600

700

1 2 4 8 16 32 64 128

T
im

e
(s

ec
on

ds
)

Total number of processors

Perseus: Average times for FFT iteration test

to 3160
at 16x1

to 10690
at 16x2

x1 predicted
x1 measured
x2 predicted
x2 measured

x1 min/avg2x1-predicted
computation

Figure 101: PEVPM-predicted average times and measured average times for 10,000 2D
FFT operations on 256x256 points using 2-64x1-2 processes on Perseus.

0

1

2

3

4

5

6

7

8

1 2 4 8 16 32 64 128

S
pe

ed
up

Total number of processors

Perseus: Average speedups for FFT iteration test

linear
x1 min/avg2x1-predicted

x1 predicted
x1 measured
x1 predicted
x2 measured

Figure 102: PEVPM-predicted average speedups and measured average speedups for
10,000 2D FFT operations on 256x256 points using 2-64x1-2 processes on Perseus.

244 CHAPTER 6. CASE STUDIES

0

100

200

300

400

500

600

700

800

1 2 4 8 16 32 64 128

T
im

e
(s

ec
on

ds
)

Total number of processors

Orion: Average times for FFT iteration test

x1 predicted
x1 measured
x2 predicted
x2 measured
x4 predicted
x4 measured

x1 min/avg2x1-predicted
computation

Figure 103: PEVPM-predicted average times and measured average times for 10,000 2D
FFT operations on 256x256 points using 2-32x1-4 processes on Orion.

0

4

8

12

16

20

24

1 2 4 8 16 32 64 128

S
pe

ed
up

Total number of processors

Orion: Average speedups for FFT iteration test

linear
x1 min/avg2x1-predicted

x1 predicted
x1 measured
x2 predicted
x2 measured
x4 predicted
x4 measured

Figure 104: PEVPM-predicted average speedups and measured average speedups for
10,000 2D FFT operations on 256x256 points using 2-32x1-4 processes on Orion.

6.4. FAST FOURIER TRANSFORM 245

0

20

40

60

80

100

120

140

1 2 4 8 16 32 64 128

T
im

e
(s

ec
on

ds
)

Total number of processors

APAC NF: Average times for FFT iteration test

x1 predicted
x1 measured
x2 predicted
x2 measured
x4 predicted
x4 measured

x1 min/avg2x1-predicted
computation

Figure 105: PEVPM-predicted average times and measured average times for 10,000 2D
FFT operations on 256x256 points using 2-32x1-4 processes on the APAC NF.

0

4

8

12

16

20

24

28

32

1 2 4 8 16 32 64 128

S
pe

ed
up

Total number of processors

APAC NF: Average speedups for FFT iteration test

linear
x1 min/avg2x1-predicted

x1 measured
x1 predicted
x2 measured
x2 predicted
x4 measured
x4 predicted

Figure 106: PEVPM-predicted average speedups and measured average speedups for
10,000 2D FFT operations on 256x256 points using 2-32x1-4 processes on the APAC NF.

246 CHAPTER 6. CASE STUDIES

Section 6.2 only required O(4 size2

numprocs
)⇒262144/numprocs floating point computations

per processor, and for each processor to transmit 2 kbytes of (bidirectional) data (in each

iteration); note that the computation requirements for the Jacobi Iteration scaled in pro-

portion to 1/numprocs while the communication requirements remained constant as the

number of processors used was increased.

For both the two-dimensional Fast Fourier Transform and the Jacobi Iteration, the

computation time is (to a very good approximation) directly proportional to the amount

of computation that must be carried out, whereas the communication time is only linearly

related to the amount of communication (in bytes) that must be transferred – there is

a constant “y-intercept” that signifies minimum latency. Hence, because of the big-oh

functions of the MPI Alltoall operation, the two-dimensional Fast Fourier Transform

exhibits an accentuated performance trade-off, which is based heavily on the latency

and bandwidth characteristics of the underlying communication network and the num-

ber of processors involved; it is accentuated (compared to the Jacobi Iteration) because

the effects on performance of communication latency become dominant very quickly as

numprocs is increased (as explained in Section 5.5). Thus, the performance scalability

of the two-dimensional Fast Fourier Transform listed in Figure 100 depends far more on

low latency communication between processes than on high bandwidth. The accentuated

scalability characteristics of the two-dimensional Fast Fourier Transform are manifest in

the peakedness of the speedup plots for Perseus, Orion and the APAC NF shown in Fig-

ures 102, 104 and 106 (compared with the speedup plots for the Jacobi Iteration on the

same machines shown in Figures 88, 90 and 92). It is also worth noting, however, that

the detrimental effects of communication latency on MPI Alltoall performance can be

ameliorated by combining the messages that each process must send, and transmitting

them to their destinations through intermediate processes using a tree-like algorithm (see

Section 5.5). This strategy is only used by the MPI implementation on the APAC NF, not

those on Perseus or Orion, which explains why the two-dimensional Fast Fourier Trans-

form code scaled particularly well (especially for a moderate-large number of processors)

on that machine.

As explained in Section 5.5, the MPI Alltoall operation is the most demanding of all

MPI routines. The extreme stress that it placed on Perseus’ communication network, for

example, produced a large number of very expensive communication protocol timeouts,

hence leading to extremely poor performance (see Figures 77-80). This poor MPI Alltoall

performance is reflected in the poor performance of the two-dimensional Fast Fourier

Transform on Perseus, shown in Figures 101 and 102. The measured performances (shown

by the solid lines) in those figures matched the PEVPM-predicted performances (shown

by dashed lines) very well up to 4xp processes, quite well for 8xp processes, and then

very poorly for larger numbers of processes. The accuracy of these predictions correlates

6.4. FAST FOURIER TRANSFORM 247

closely with the percentage chance of a process involved in the MPI Alltoall operation

being delayed by a retransmit timeout. In this case, it is clear that the performance model

for message-passing time under normal circumstances (i.e. in the absence of message loss)

is totally inadequate for predicting overall application performance. A possible counter-

argument to the importance of this failing is that the MPI Alltoall operation on Perseus

should not behave like this (which it does because it was designed very badly – see

Section 5.5), but the fact is that such bizarre performance problems are (unfortunately)

not unheard of in practice, and being able to model them accurately is sometimes very

important. At this point it must be made clear that the current implementations of

MPIBench and the PEVPM do not completely support the proper modelling of such

unusually long delays in message-passing time. The reason for this is that retransmit

timeout delays do not usually occur with independent and identical distributions for all

participating processors. For the way that the MPI Alltoall operation is implemented

on Perseus, for example, retransmit timeouts are more likely to occur at high-numbered

processes. In that situation, it would be (strictly speaking) incorrect of the PEVPM to

(Monte Carlo) sample from the performance distribution of the MPI Alltoall operation

recorded by MPIBench – although doing so would probably produce better predictions

than ignoring the problem of outliers completely. In any case, the current PEVPM does

not implement this heuristic, although it would be a useful feature to provide in the future,

and there are no theoretical barriers to doing so.

Despite this small (implementational rather than inherent) inadequacy, the PEVPM

still provides much better performance estimates than the simpler contention-ignoring pre-

dictions provided by previous performance modelling techniques. Like the dotted black

lines in the figures from the last two sets of case studies, the dotted black lines in Fig-

ures 101-106 show the performance predictions the PEVPM made when supplied with

the minimum and average message-passing times measured between 2x1 communicating

processes rather than with complete performance distributions measured between nxp

communicating processes. For Perseus, which has quite a high message-passing latency,

the difference between the normal PEVPM predictions (shown by the dashed lines) and

the restricted-PEVPM predictions (shown by the dotted lines) are certainly noticeable,

but not enormous. For Orion and the APAC NF, however, the differences are much more

significant. This is because the cumulative effects of the performance variation in the

point-to-point messages that constitute the MPI Alltoall operation (due to contention)

become (comparatively) more significant in relation to the normal message-passing per-

formance of the (nominally low latency) Myrinet and QsNet networks. On the APAC NF

in particular, it is clear that neglecting to account for message-passing contention will

lead to a considerable overestimation of the speedup that will be achieved by the two-

dimensional Fast Fourier Transform code, at least up to 32x1 processors (see Figure 106).

248 CHAPTER 6. CASE STUDIES

For the 32x1 case, however, the restricted-PEVPM predictions converge on the normal

PEVPM predictions. This is because the MPI implementation on the APAC NF uses the

tree-based MPI Alltoall algorithm rather than the circular neighbour approach (see Sect-

ion 5.5) when this many processes are involved; and the larger (combined) message sizes

used by the tree-based approach are (relatively) less susceptible to performance variation

due to contention.

There are two final points to be made about the performance of the two-dimensional

Fast Fourier Transforms studied in this section. Firstly, on Orion and the APAC NF, the

performance degrades from single processor runs to dual processor or quad processor runs,

(for the same total number of processors). This is caused in part by memory contention

during the one-dimensional Fast Fourier Transforms and local transpositions, but mostly

by memory and link contention during the MPI Alltoall phase. The degradation of per-

formance from single processor to dual processor runs does not occur on Perseus (and

in fact, performance improves) because of interference from retransmit timeout delays.

If this were not the case, however, the same degradation could be expected on Perseus,

but to a lesser extent because the poor efficiency of Perseus’ Fast Ethernet would provide

some headroom for the dual processors to participate in MPI Alltoall operations before

running into significant link contention. Thus, in general (but not withstanding oddi-

ties like the outlier interference on Perseus), single processor nodes will usually perform

two-dimensional Fast Fourier Transforms better than SMP nodes – at least, provided

that each SMP processor does not have its own memory bus and while MPI Alltoall

operations remain unoptimised for SMP nodes (see Section 5.5). Secondly, it is worth

calling attention to the far superior single processor performance of the APAC NF on the

two-dimensional Fast Fourier Transform, compared with Perseus or Orion: one processor

of the APAC NF can solve the two-dimensional Fast Fourier Transform code listed in

Figure 100 in just 133 seconds, compared to the 494 seconds required by Perseus or the

739 seconds required by Orion. This demonstrates the supremacy of the Alpha EV68 pro-

cessors, Compaq ES45’s memory subsystem and compiler combination on the APAC NF

for this application. Coupled with the fantastic performance of QsNet and the optimised

performance of Compaq MPI’s MPI Alltoall operation, the APAC NF is clearly the best

choice (of the parallel machines examined here) for performing fast Fast Fourier Trans-

forms. As was the case with the Jacobi Iteration or the Bag of Tasks codes, however,

other (e.g. economic) considerations may favour using Perseus or Orion; and the PEVPM

approach provides the means with which to accurately weigh the merits of any particular

solution.

6.5. SUMMARY 249

6.5 Summary

This chapter has presented compelling evidence in support of the usefulness of the PEVPM

approach to the prediction of parallel program performance. Unlike previous performance

prediction techniques, the PEVPM approach has been shown to be completely general,

arbitrarily flexible, very cost-effective and extremely accurate.

The generality of the PEVPM modelling system was demonstrated by its applicability

to programs drawn from each of the three possible classes of parallel code – those with

regular-local communication (via the Jacobi Iteration examples in Section 6.2), those

with irregular communication (via the Bag of Tasks code in Section 6.3) and those with

regular-global communication (via the two-dimensional Fast Fourier Transform code in

Section 6.4) – all of which were executed on a wide range of parallel machines, in particular

the low-end Perseus cluster, middle-of-the-range Orion TCF and high-end APAC NF.

The use of symbolic quantities in PEVPM directives (demonstrated for the Jacobi

Iteration example in Section 6.2) highlighted the flexibility of the PEVPM approach. Once

the complete PEVPM model of a code has been built up from fundamental computation

and communication instructions, it can be easily evaluated and re-evaluated for different

input data or machine characteristics. This gives the PEVPM the ability to support

parametric performance studies, for instance to determine the best (i.e. fastest, or most

efficient, or most economical, etc) parallel machine with which to solve a given code.

The PEVPM modelling technique is also very cost-effective. In addition to allowing

parametric performance studies of any particular code, the low-cost of model creation

makes it possible to build and simulate the performance of many alternative algorithmic

solutions to any given problem. As shown for the Jacobi Iteration code in Section 6.2,

PEVPM models are easy to create (for either real or hypothetical codes), through simply

applying the rules for PEVPM directives detailed in Sections 3.4.4 and 3.4.5. Importantly,

this process could be carried out by an automated compiler with little or no human

intervention. While an automated compiler was not actually developed during this thesis

(because doing so would require substantial software engineering effort and provide little

research value), creating such a compiler would be a useful future endeavour. The second

facet of the PEVPM’s cost-effectiveness is the relative cheapness with which PEVPM

models can be solved. The PEVPM simulation of the Jacobi Iteration code, for example,

was carried out at 67.5 times the speed of the code’s actual execution. While the speedup

that will be achieved using any given PEVPM simulation will depend heavily on model

granularity, most PEVPM models should be quite inexpensive to evaluate.

Finally, the results presented in this chapter have clearly demonstrated the superior

accuracy of PEVPM predictions compared to the predictions made by previous perform-

ance estimation techniques. In particular, all of the case studies presented highlight how

250 CHAPTER 6. CASE STUDIES

inaccurate performance predictions will be if contention effects are ignored. This was es-

pecially clear in the performance predictions for parallel codes running on clusters of SMP

nodes, where contention was seen to be far more extensive. Finally, it was also shown

that overall parallel application performance suffers horribly in the face of extensive com-

munication protocol timeouts (such as occurred during the MPI Alltoall operation on

Perseus). No previous performance modelling systems take such communication delays

into account. The current PEVPM implementation does not take these delays into ac-

count either, but the discussion in Section 4.8 paves the way for that to be implemented

in the future.

Chapter 7

Conclusions and Further Work

High performance parallel computing is essential for solving very large and complex scien-

tific and engineering problems in a reasonable amount of time. The two main tasks that

must be carried out in order to deliver a good parallel computing solution to a given prob-

lem are choosing an appropriate parallel machine and writing a well-optimised parallel

program. These tasks are often carried out in concert, by cycling through manifold can-

didate solutions, all the while conducting time-consuming empirical benchmarking until

a satisfactory solution is found. An alternative approach is to use performance modelling

techniques to more quickly and effectively choose from among a number of possible imple-

mentations. Unfortunately there is a scarcity of useful performance modelling methods,

mostly due to the notoriously complex behaviour of parallel programs. The main contrib-

utor to this complexity is contention, which causes non-deterministic delays and therefore

non-deterministic program execution. No previous performance modelling techniques for

parallel programs (which were surveyed in Chapter 2) are able to adequately take these

effects into account.

Given the limited capabilities of these previous techniques, a general, flexible, cost-

effective and accurate performance modelling system for parallel programs called the

Performance Evaluating Virtual Parallel Machine (PEVPM) was developed in Chapter 3.

The PEVPM employs novel techniques which accurately yet inexpensively account for

all of the performance effects of contention and thus performance variability that are ob-

served in parallel programs. The first step of the PEVPM modelling process (described in

Section 3.4) is to annotate existing source code or write pseudo-code with a performance

directive language which defines a program’s computation and communication structure.

Once this is done those performance directives can be executed by the PEVPM, which

simulates the program’s execution structure, and thereby predicts its performance. The

PEVPM uses Monte Carlo sampling techniques to dynamically construct submodels of in-

dividual computation and communication events. These submodels are based on: 1) data-

dependencies; 2) current contention levels; and 3) probability distributions that describe

252 CHAPTER 7. CONCLUSIONS AND FURTHER WORK

the performance of a machine’s low-level computation and communication operations.

Because a PEVPM simulation evolves in virtual time, it automatically accounts for the

effects of overlapping communication with computation, load imbalance and insufficient

parallelism. It also explicitly models communication losses, synchronisation losses and the

associated resource contention issues of each of these. Thus the PEVPM methodology

accounts for all the sources of both performance and performance loss in message-passing

parallel programs. As all of these events can be annotated, the PEVPM is able to auto-

matically determine and highlight the location and extent of performance loss due to any

source, which is of crucial importance for designing well-optimised parallel programs.

The work detailed at the beginning of Chapter 4 was carried out to provide for the

PEVPM’s need for very accurate performance characterisations of message-passing op-

erations. Because of the inability of existing MPI benchmarking techniques to provide

such data, a new benchmarking tool called MPIBench was developed (see Section 4.3).

MPIBench provides the standard functionality available with existing MPI benchmarks

(i.e. the ability to test the performance of many operations using different message sizes

and in some cases using different communication patterns), but MPIBench is superior

in three ways. Firstly, it was specifically designed to produce meaningful results when

run on clusters of SMP nodes. Secondly, it uses an accurate global clock to make timing

measurements at all of the processes in an MPI program, rather than simply making mea-

surements at a single process. Thirdly, the fine resolution of the global clock in MPIBench

allows timing data on individual MPI operations to be obtained. This gives MPIBench

the unique ability to accurately quantify the performance variability of MPI operations

due to contention, using probability distributions instead of average times.

Once developed, MPIBench was used to benchmark the communication performance

of a low-end, a middle-of-the-range and a high-end parallel computer. The perform-

ance results obtained for point-to-point communication on each machine were detailed

in Sections 4.5 and 4.6, while the results for collective communication were recorded in

Sections 5.2 – 5.5. For point-to-point message-passing operations, performance variabil-

ity due to contention was found to be very significant. This was especially true when

large numbers of processes were trying to communicate simultaneously, particularly if

large messages and/or bidirectional communication routines were being used. Probabil-

ity distributions describing the performance variation of point-to-point message-passing

operations were studied in Section 4.7, which concluded that the Pearson 5 distribution

provides the best statistical explanation of point-to-point message-passing performance.

While plots of the Pearson 5 location parameter were found to closely resemble existing

(minimum) latency graphs, the accompanying shape and scale parameters presented im-

portant yet easily digestible information about message-passing performance in the face

253

of contention. Furthermore, a study of the systematic outliers that were observed in per-

formance measurements was carried out in Section 4.8. The main cause of these very slow

message-passing times was identified as timeouts associated with the retransmission of

lost messages. Such delays severely hamper the speedup that can be achieved by parallel

programs running on a moderate to large number of processors.

As for collective communication operations, the results in Chapter 5 show how they

can be modelled based upon their constituent point-to-point messages. Significantly, vast

but repeatable differences were observed in the times that individual processes took to

complete their part in collective operations. For example, software-based MPI Bcasts

were found to have Pascal’s Triangle-shaped performance profiles, where the completion

time of a given process is based on its position in the broadcast tree. While this sort of

behaviour has been alluded to in other studies, none have been able to quantify it un-

til now. Very complicated and even chaotic performance profiles were observed for other

collective communication operations. Such strange results would have been almost impos-

sible to understand using only the standard MPI performance benchmarking technique of

measuring average completion time for collective operations at one process. However, the

accurate performance profiles provided by MPIBench made their interpretation possible.

For example, using MPIBench it could be seen that severe contention caused packet loss

and hence network timeouts during MPI Alltoall operations on a low-end Beowulf clus-

ter. Quite clearly, the power of MPIBench opens up lots of possibilities for analysing the

communication performance of various parallel machines, communication protocols and

MPI implementations.

The theory behind the PEVPM modelling system (from Chapter 3) and the bench-

mark results (from Chapters 4 and 5) were applied in a series of case studies (see Chap-

ter 6). These studies presented compelling evidence in support of the generality, flexibility,

cost-effectiveness and accuracy of the PEVPM approach to parallel program performance

prediction. The generality of the PEVPM modelling system was demonstrated by its

applicability to programs drawn from all possible types of parallel code, running on a

wide range of parallel machines. The use of symbolic quantities in PEVPM directives

highlighted the flexibility of the approach: once the complete PEVPM model of a code

has been built up from fundamental computation and communication instructions, it can

be easily evaluated and re-evaluated for different input data or machine characteristics.

Hence the PEVPM can perform parametric performance studies, for instance to determine

the best (i.e. fastest, or most efficient, or most economical, etc) parallel machine on which

to run a given code. Overall, the PEVPM modelling technique was also shown to be very

cost-effective. The simplicity of PEVPM model creation, which only requires the mechan-

ical insertion of performance annotations, makes it very cheap. In addition, these models

can be solved quite inexpensively. While the speedup that will be achieved using any given

254 CHAPTER 7. CONCLUSIONS AND FURTHER WORK

PEVPM simulation will depend heavily on model granularity, most PEVPM models could

be expected to run about two orders of magnitude faster than a program’s actual exe-

cution. Finally, the superior accuracy of PEVPM predictions was clearly demonstrated.

In particular, all of the case studies showed how inaccurate performance predictions will

be if contention effects are ignored. Because the PEVPM does not ignore contention

effects, it should be able to provide accurate performance predictions of scalability for

parallel programs running on very large numbers (e.g. thousands) of processors. The

PEVPM is the first performance modelling system for parallel programs to concurrently

provide generality, flexibility, cost-effectiveness and accuracy. Thus it will be useful for

anyone who wants to break free of the empirical measure-modify cycle of parallel program

development.

A number of enhancements that could be made to the current implementations of

MPIBench and the PEVPM. These include the following, in ascending order of difficulty:

1. The current MPIBench/PEVPM implementations do not properly account for the

(usually) rare message-passing delays caused by, for example, lost messages and

subsequent retransmit timeouts. The discussion in Section 4.8, however, provides

the base upon which this facility could be built.

2. MPIBench only records raw empirical and simple statistical performance informa-

tion. Based on the knowledge that point-to-point message-passing operations are

best described by Pearson 5 distributions, it would be valuable to extend MPIBench

so that it can automatically fit measured data to such distributions and plot the

resultant fit parameters across a range of message sizes and contention levels.

3. Because of the substantial software-engineering effort that would have been required,

an automated compiler able to generate PEVPM models of input code was not de-

veloped during this thesis. The construction of such a tool would a very valuable

exercise, and would greatly increase the availability of the PEVPM approach to or-

dinary programmers. Creating an automated compiler for annotating MPI/C source

code with PEVPM instructions (according to the rules described in Section 3.4.4)

using standard compiler construction tools such as lex and yacc should be fairly

straightforward. Following that, the code-generation stage for that compiler could

be extended to produce an execution-structure simulator for evaluating the PEVPM

model produced by the preprocessor (according to the PEVPM evaluator described

in Section 3.5).

4. The restrictions to the applicability of the PEVPM modelling system listed in Sect-

ion 3.3 could be relaxed if appropriate techniques were developed to deal with the

problems they cause. For example, the inability to model non-dedicated parallel

255

platforms could be rectified by combining submodels of individual parallel programs

into a meta-program describing the entire workload.

5. It would be interesting to apply the PEVPM approach to emerging parallel pro-

gramming techniques such as Grid programming. In theory, the PEVPM approach

should be well suited to modelling programs on the Grid because of the highly

probabilistic nature of communication performance between sites connected via the

Internet.

6. It would be extremely useful if Pearson 5 performance parameters could be calcu-

lated from a machine’s hardware description, as discussed at the end of Section 4.7.

Then, PEVPM communication submodels could be simply obtained through com-

putation, rather than via extensive benchmarking.

7. The PEVPM could possibly be enhanced to work with entirely symbolic performance

quantities (instead of the current mixture of symbolic and empirical quantities).

This would reduce the already low evaluation cost of PEVPM models, which would

make it even more attractive for very wide-ranging parametric-based performance

optimisation.

256 CHAPTER 7. CONCLUSIONS AND FURTHER WORK

Appendix A

PEVPM Definitions

Machine Dependencies

Source code prototype

N/A

Performance schemas

N/A

PEVPM directives

/* To specify a processor model use: */

// PEVPM Processor description = <processor identifier>

// PEVPM & timing basis = <processor speed>

/* To specify a network model use: */

// PEVPM Network description = <network identifier>

// PEVPM & link <id> = <from> <to> <performance profile>

// PEVPM & ... = ...

/* To specify default processor and network models use: */

// PEVPM Default processor = <processor identifier>

// PEVPM & numprocs = <number of processors>

// PEVPM & speed = <processor speed>

// PEVPM & speed i = <processor speed>

// PEVPM & network = <network descriptors>

Notes

These directives must appear at the top of a complete PEVPM model.

258 APPENDIX A. PEVPM DEFINITIONS

Serial Processing and Message Passing

Source code prototype

z = a + b; // simple statement 1

z = z + c; // ...

... // ...

z = z + n; // simple statement n

MPI Send(&z, ..., from, to, ...); // MPI operation

y = y - m; // new compund statement

y = y - l;

...

y = y - d;

Performance schemas

T (simple statement) = tsimple statement

T (compound statement) = tsimple statement1 + ... + tsimple statementn

T (MPI operation) = tMPI operation(type, when, size, from, to)

T (overall segment) = Tserial segment1 + TMPI Send + Tserial segment2

PEVPM directives

/* To specify a simple or compound statement model use: */

// PEVPM Serial [on <processor identifier>] time = <basis time>

/* To specify an MPI operation model use: */

// PEVPM Message type = <MPI operation>

// PEVPM & size = <message size>

// PEVPM & from = <processor number(s)>

// PEVPM & to = <processor number(s)>

// PEVPM & req/stat = <request/status identifier>

Notes

These performance directives must be used to separate overall models into

segments of serial computation (with the Serial directive) and MPI operations

(with the Message type directive).

259

Functions and Subroutines

Source code prototype

[return type] function|subroutine(arguments){
// function|subroutine body

}

Performance schemas

T (subroutine) = tsubroutine body

PEVPM directives

N/A

Notes

Functions and subroutines should be expanded using preprocessor inlining.

Loop Constructs

Source code prototype

for (i = 0; i < n; i++) {
// loop body

}
while (c) {
// loop body

}

Performance schemas

T (loop) = tloop body1 + ... + tloop bodyn

T (loop) = tloop body ∗ n

PEVPM directives

/* To specify a loop model use: */

// PEVPM Loop iterations = <number of iterations>

// PEVPM {
// PEVPM /* The model for the loop body must be inserted here */

// PEVPM }

Notes

The number of iterations may be a symbolic quantity.

260 APPENDIX A. PEVPM DEFINITIONS

Conditional Constructs

Source code prototype

if (condition1){
// code to execute if condition1 is true

}
else if (condition2){
// code to execute if condition2 is true

}
...

else{
// code to execute otherwise

}

Performance schemas

T (conditional) = c1 : tsegment1 | ... | cn : tsegmentn

PEVPM directives

// PEVPM Condition c1 = <weighting of condition 1>

// PEVPM {
// PEVPM /* The model for condition1 must be inserted here */

// PEVPM }
// PEVPM & c2 = <weighting of condition 2>

// PEVPM {
// PEVPM /* The model for condition1 must be inserted here */

// PEVPM }
...

// PEVPM & cn = <weighting of condition n>

// PEVPM {
// PEVPM /* The model for condition n must be inserted here */

// PEVPM }

Notes

The branch taken during PEVPM model execution should be made using Monte

Carlo sampling, based on the weightings of the condition parameters.

Appendix B

Using MPIBench

B.1 Running MPIBench

NAME

mpibench - a program to benchmark MPI performance

SYNOPSIS

mpibench

[-test type

-size initial increment maximum] |
[-application type]

-reps repetitions

-output filename

-title string

-ppn processes per node

OPTIONS

-test type

Benchmark a low-level MPI operation of type:

allgathereach for MPI Allgather (size bytes per process)

allgathertotal for MPI Allgather (size bytes in total)

alltoalleach for MPI Alltoall (size bytes per process)

alltoalltotal for MPI Alltoall (size bytes in total)

barrier for MPI Barrier

bcast for MPI Bcast

gathereach for MPI Gather (size bytes per process)

gathertotal for MPI Gather (size bytes in total)

isend for MPI Isend

262 APPENDIX B. USING MPIBENCH

isendlocal for MPI Isend (local completion time)

sendrecv for MPI Sendrecv

scattereach for MPI Scatter (size bytes per process)

scattertotal for MPI Scatter (size bytes in total)

-size initial increment maximum

Messages sizes (in bytes) to test in a low-level benchmark

-application type

Benchmark an application kernel of type:

bots 10,000 tasks using a master-slave pattern

fft 100,000 256x256 point Fast Fourier Transforms

jacobi 100,000 Jacobi iterations on a 256x256 grid

-reps repetitions

The number of the times the repeat a test

-output filename

The root name for output files ending with:

.gnu a gnuplot file to plot the recorded data

.histograms histograms recorded for each size

.outliers a list of outliers recorded for each size

.subsamples an unprocessed list of subsampled data

.summary minimum and average times for each size

-title string

The title string for gnuplot output

-ppn processes per node

The number of MPI processes per node (for process placement)

ENVIRONMENT

MPIBENCH HIST BIN (default: 0.05ms)

Bin size for histogram processing

MPIBENCH OUTLIER PERCENTILE (default: 0.99)

MPIBENCH OUTLIER PERCENTILE MULTIPLIER (default: 5)

Separate histogram and outlier data using the

B.2. CUSTOMISING MPIBENCH 263

OUTLIER PERCENTILE’th-ranked value multiplied by

OUTLIER PERCENTILE MULTIPLIER

MPIBENCH RESEND LIMIT (default: 1000)

Continue synchronising until this many messages have been

sent without an improvement in clock resolution

MPIBENCH SETUP REPS (default: 10)

Warm up connections and caches using this many repetitions

MPIBENCH SUBSAMPLES (default: 1)

The number of individual points per processor to sub-sample

numprocs

The number of MPI processes invoked must be a multiple of 2

DIAGNOSTICS

Logging data is printed to standard output. The amount of

feedback can be increased by setting MPIBENCH VERBOSE

B.2 Customising MPIBench

This section describes how to port and extend MPIBench v1.x, which can be obtained

from http://dhpc.adelaide.edu.au/projects/MPIBench/.

Porting MPIBench

The low-level timing code in MPIBench relies upon the ability to access a CPUs cycle

counter. In particular, MPIBench requires a get ticks() function to be supplied, which

should return the value of the cycle counter in an unsigned 64-bit integer value; im-

plementations are supplied out-of-the box for modern x86-based processors and sparcv9

processors. A portable MPI Wtime implementation is also provided, but this should only

be used on high-end parallel machines that provide a very accurate MPI Wtime operation.

Writing a get ticks() function for a new architecture is relatively simple, but requires

writing a very small amount of assembly language; refer to the hardware and compiler

manuals for your machine for guidance.

In most SMP-based machines, component CPUs are not run in lock-step, and cycle

http://dhpc.adelaide.edu.au/projects/MPIBench/

264 APPENDIX B. USING MPIBENCH

counters are synchronised in software by the operating system rather than the underly-

ing hardware. Although the clocks remain in relatively good synchronisation after this

(usually to within several microseconds) the offset between the clocks can be quite large.

Now, because most operating systems dynamically schedule CPU allocation in multiproc-

essor machines, it is quite possible (in these situations) that MPIBench will read the cycle

counter to start timing an operation on one processor and read the cycle counter to start

timing the same operation on another – leading to erroneous results. This needs to be over-

come by binding an MPI process to a single physical processor, to ensure that timing at

any process is conducted with the same physical clock. In particular, therefore, MPIBench

requires a bind to processor function that takes int procs per node as an argument

and should bind the ith MPI process to physical processor procnum%procs per node in

each SMP node. MPIBench currently supports Linux using the pset patch [179] and So-

laris’s using its processor bind function. Note that processor binding is not required if

MPI Wtime-based timing is used. Adding a bind to processor function to MPIBench for

a new operating system is usually relatively simple; refer to the programming manuals

for your operating system for instructions.

Lastly, it is advisable to tweak the amount of time required for global synchronisation

for different types of underlying networks by varying the MPIBENCH RESEND LIMIT.

This controls the number of synchronisation messages that are sent during global synchro-

nisation: synchronisation is deemed sufficient when this number of messages have been

sent without an improvement in global clock resolution. Networks with small perform-

ance variation (such as Myrinet or QsNet) can use quite low values for this parameter

(for example, 100-500), while other networks (such as Fast Ethernet) must use higher

values (for example, 1000) to achieve reasonable results. The best way to determine a

reasonable value this parameter is simply by playing around a little bit to get a feeling

for the performance characteristics of a machine’s communication network.

Extending MPIBench

The easiest way to add a new low-level operation or application kernel benchmark to

MPIBench is to copy-paste-and-modify an existing case. The three types of opera-

tion that can be easily added are point-to-point operations (for example, imitate the

test type==isend case); collective operations (for example, imitate the test type==bcast

case); and application kernels (for example, imitate the test type==jacobi case). For

each of these cases, only a few sections of code need to be augmented: the test type

struct, the command-line processing code, the memory-initialisation code, the timing

cradle and instructions to extract individual times from the array of recorded results. All

of these modifications are quite trivial, and should only require a few lines of code.

Bibliography

[1] V.S. Adve. Analyzing the Behavior and Performance of Parallel Programs. PhD

thesis, University of Wisconsin, Computer Sciences Department, December 1993.

[2] V.S. Adve and M.K. Vernon. The influence of random delays on parallel execution

times. In Proceedings of the ACM SIGMETRICS Conference on Measurement and

Modeling of Computer Systems, pages 61–73, May 1993.

[3] T. Agerwala. An analysis of controlling agents for asynchronous processes. Technical

Report 35, Johns Hopkins Computer Science Program, August 1974.

[4] Alok Aggarwal, Ashok K. Chandra, and Marc Snir. On communication latency in

PRAM computations. In Proceedings of the DAGS/PC Symposium, pages 76–86,

1993.

[5] A. Aho, J. Hopcroft, and J. Ulman. The Design and Analysis of Computer Algo-

rithms. Addison-Wesley, Reading, Massachusetts, 1974.

[6] A. Aho, J. Hopcroft, and J. Ulman. Data Structures and Algorithms. Addison-

Wesley, Reading, Massachusetts, 1983.

[7] A. Aho, R. Sethi, and J. Ulman. Compilers: Principles, Techniques, and Tools.

Addison-Wesley, Reading, Massachusetts, 1986.

[8] Khalid Al-Tawil and Csaba Andras Moritz. Performance modeling and evaluation

of MPI. Journal of Parallel and Distributed Computing, 61(2):202–223, 2001.

[9] J. R. Allen and K. Kennedy. Automatic loop interchange. In Proceedings of the

SIGPLAN Symposium on Compiler Construction, 1984.

[10] Mark Allman. On the generation and use of TCP acknowledgements. ACM Com-

puter Communication Review, 28(5):4–21, October 1998.

[11] Mark Allman, Vern Paxson, and W. Richard Stevens. TCP congestion control.

Technical Report RFC 2581, The Internet Society, April 1999.

265

266 BIBLIOGRAPHY

[12] R. Alur, C. Courcoubetis, and D. Dill. Model-checking for probabilistic real-time

systems. In Proceedings of the 18th International Conference on Automata, Lan-

guages and Programming (LNCS 510), 1991.

[13] R. Alur and D.L. Dill. A theory of timed automata. Theoretical Computer Science,

126:183–236, April 1994.

[14] G.M. Amdahl. Validity of the single-processor approach to achieving large scale

computing capabilities. Proceedings of the American Federation of Information Pro-

cessing Societies, 30:483–485, 1967.

[15] Yair Amir, Baruch Awerbuch, Amnon Barak, Ryan S. Borgstrom, and Arie Keren.

An opportunity cost approach for job assignment and reassignment in a scalable

computing cluster. In Proceedings of the 10th IASTED International Conference on

Parallel and Distributed Computing Systems, 1998.

[16] H.H. Ammar, S.M.R. Islam, M. Ammar, and S. Deng. Performance modeling of

parallel algorithms. In Proceedings of the International Conference on Parallel Pro-

cessing, volume 3, pages 68–71, 1990.

[17] T.E. Anderson, D.E. Culler, D.A. Patterson, and The NOW team. A case for NOW

(Networks Of Workstations). IEEE Micro, pages 54–64, February 1995.

[18] T.W. Anderson and D.A. Darling. Asymptotic theory of certain goodness-of-fit

criteria based on stochastic processes. Annals of Mathematical Statistics, 23:193–

212, 1954.

[19] Cosimo Anglano. Predicting parallel applications performance on non-dedicated

cluster platforms. In Proceedings of Supercomputing, pages 172–179, 1998.

[20] Cosimo Anglano. Cluster benchmarks web page.

http://www.di.unito.it/~mino/cluster/benchmarks/, May 2001.

[21] Argonne National Laboratory and Mississippi State University. MPICH 1.2.0. Avail-

able from http://www-unix.mcs.anl.gov/mpi/mpich/.

[22] Leon David Aronson. A Theory of Routing in Parallel Computers. PhD thesis,

Delft University of Technology, October 1999.

[23] Remzi H. Arpaci, Andrea C. Dusseau, Amin M. Vahdat, Lok T. Liu, Thomas E.

Anderson, and David A. Patterson. The interaction of parallel and sequential work-

loads on a network of workstations. In Proceedings of the ACM SIGMETRICS

Conference on Measurement and Modeling of Computer Systems, 1995.

http://www.di.unito.it/~mino/cluster/benchmarks/
http://www-unix.mcs.anl.gov/mpi/mpich/

BIBLIOGRAPHY 267

[24] Remzi H. Arpaci, Amin M. Vahdat, Tom Anderson, and Dave Patterson. Combin-

ing parallel and sequential workloads on a NOW. Technical Report CSD-94-838,

University of California Berkeley, Computer Science Department, 1994.

[25] D. Atapattu and D. Gannon. Building analytical models into an interactive predic-

tion tool. In Proceedings of Supercomputing, pages 521–530, 1989.

[26] Australian Partnership for Advanced Computing (APAC). National facility home

page. Available from http://nf.apac.edu.au/.

[27] Rajive Bagrodia, Ewa Deelman, Steven Docy, and Thomas Phan. Performance

prediction of large parallel applications using parallel simulations. In Proceedings

of the ACM SIGPLAN Symposium on the Principles and Practice of Parallel Pro-

gramming, May 1999.

[28] D. Bailey, E. Barszcz, J. Barton, D. Browning, et al. The NAS parallel benchmarks.

International Journal of Supercomputer Applications, 5(3):63–73, 1991.

[29] Mark Baker and Geoffrey Fox. MPI on NT: The current status and performance of

the available environments. In Proceedings of the 5th European PVM/MPI Users’

Group Meeting (LNCS 1497), pages 63–75, September 1998.

[30] V. Balasundaram, G. Fox, K Kennedy, and U. Kremer. A static performance estima-

tor to guide data partitioning decisions. In Proceedings of the 3rd ACM SIGPLAN

Symposium on PPoPP, April 1991.

[31] Deb Banerjee, Thomas Tysinger, and Wayne Smith. A scalable high-performance

environment for fluid flow analysis on unstructured grids. In Proceedings of Super-

computing, pages 8–17, 1994.

[32] Jeffrey C. Becker, Bill Nitzberg, and Rob F. Van der Wijngaart. Predicting

cost/performance trade-offs for Whitney: A commodity computing cluster. In Pro-

ceedings of the 31st Hawaii International Conference on System Sciences, volume 7,

pages 504–513, January 1998.

[33] B. Beizer. Micro Analysis of Computer System Performance. Van Nostrand Rein-

hold, New York, 1978.

[34] G Bilardi, K.T. Herley, A. Pietracaprina, G. Pucci, and P. Spirakis. BSP vs LogP.

In Proceedings of the 8th Annual ACM Symposium on Parallel Algorithms and Ar-

chitectures, pages 25–32, June 1996.

[35] L.S. Blackford, A. Cleary, J. Choi, Dongarra, et al. LAPACK working note 93

installation guide for ScaLAPACK, May 1997.

http://nf.apac.edu.au/

268 BIBLIOGRAPHY

[36] R. Blasko. Automatic modeling and performance analysis of parallel processes by

PEPSY. In Proceedings of the ASIM Symposium, pages 241–246, October 1994.

[37] R. Blasko. Process graph and tool for performance analysis of parallel processes.

In Proceedings of the IMACS Symposium on Mathematical Modeling, pages 60–64,

February 1994.

[38] R. Blasko. A systematic strategy for performance prediction by improvement of

parallel programs. In Proceedings of the 4th International Workshop on Computer

Aided Systems Technology, May 1994.

[39] R. Blasko. Hierarchical performance prediction for parallel programs. In Proceedings

of the IEEE International Symposium on Systems Engineering of Computer Based

Systems, pages 398–405, March 1995.

[40] R. Blasko. Simulation based performance prediction by PEPSY. In Proceedings of

the 28th Annual IEEE Simulation Symposium, pages 341–349, April 1995.

[41] R. Blasko. Performance analysis of parallel programs based on simulation. In

Proceedings of the 20th ASU Conference, pages 70–79, September 1999.

[42] Nanette J. Boden, Danny Cohen, Robert E. Felderman, Alan E. Kulawik, Charles L.

Seitz, Jakov N. Seizovic, and Wen-King Si. Myrinet – a gigabit-per-second local-area

network. IEEE Micro, 15(1):29–38, February 1995.

[43] S.H. Bokhari. A shortest tree algorithm for optimal assignments across space and

time in a distributed processor system. IEEE Transactions on Software Engineering,

7(6):583–589, 1981.

[44] Shahid H. Bokhari. On the mapping problem. IEEE Transactions on Computers,

30(3):207–214, 1981.

[45] Shahid H. Bokhari. Partitioning problems in parallel, pipelined and distributed

computing. IEEE Transactions on Computers, 37(1):48–57, 1988.

[46] R. Bracewell. The Fourier Transform and Its Applications. McGraw-Hill, New

York, 1999.

[47] B. Braden (ed.). Requirements for internet hosts – communication layers. Technical

Report RFC 1122, University of Southern California, Information Sciences Institute,

October 1989.

[48] L. Brakmo, S. O’Malley, and L. Peterson. TCP Vegas: New techniques for cong-

estion detection and avoidance. In Proceedings of the 1994 SIGCOMM Symposium,

pages 24–35, August 1994.

BIBLIOGRAPHY 269

[49] Thomas Brëanl. Parallel Programming - An Introduction, chapter 3. Prentice-Hall,

Englewood Cliffs, New Jersey, 1993.

[50] T.H. Bredt and E.J. McCluskey. A model for parallel computer systems. Technical

Report STAN-CS-70-160, Stanford University, Digital Systems Laboratory, April

1970.

[51] J. Brehm, L. Dowdy, M. Madhukar, and E. Smirni. PrePreT - a performance pre-

diction tool. In Quantitative Evaluation of Computing and Communication Systems

(LNCS 977). Springer-Verlag, 1995.

[52] E. Brockmeyer, H.L. Halstrøm, and A. Jensen. The life and works of A.K. Erlang.

Transactions of the Danish Academy of Technology and Science, 2, 1948.

[53] Stephen D. Brookes. On the relationship of CCS and CSP. In Advanced NATO

Study Institute on Logics and Models for Verification and Specification of Concur-

rent Systems. Institut National de Recherche en Informatique et Automatique, 1984.

[54] Shirley Browne, Jack Dongarra, and Kevin London. Review of performance analysis

tools for MPI parallel programs. Technical report, University of Tenessee, Depart-

ment of Computer Science, December 1997.

[55] H. Burkhart, C. Falcó Korn, S. Gutzwiller, P. Ohnacker, and S. Waser. BACS: Basel

Algorithm Classification Scheme. Technical Report 93-3, Institut für Informatik der

Universität Basel, March 1993.

[56] David Callahan and Ken Kennedy. Compiling programs for distributed-memory

multiprocessors. The Journal of Supercomputing, 2:151–169, 1988.

[57] P.H. Canrns, W.B. Lignon III, S.P. McMillan, and R.B. Ross. An evaluation of

message passing implementations on Beowulf workstations. In Proceedings of the

IEEE Aerospace Conference, March 1999.

[58] Franck Cappello and Daniel Etiemble. MPI versus MPI+OpenMP on the IBM SP

for the NAS benchmarks. In Proceedings of Supercomputing, November 2000.

[59] Franck Cappello and Olivier Richard. Performance characteristics of a network of

commodity multiprocessors for the NAS benchmarks using a hybrid memory model.

In Proceedings of PACT’99, 1999.

[60] Franck Cappello, Olivier Richard, and Daniel Etiemble. Investigating the perform-

ance of two programming models for clusters of SMP PCs. In Proceedings of the

Sixth International Symposium on High-Performance Computer Architecture, 1998.

270 BIBLIOGRAPHY

[61] Franck Cappello, Olivier Richard, and Daniel Etiemble. Understanding performance

of SMP clusters running MPI programs. Future Generation Computer Systems,

17(6):711–720, 2001.

[62] Dryan Carpenter, Guansong Zhang, Geoffrey Fox, Xinying Li, and Yuhong Wen.

HPJava: Data parallel extensions to Java. Concurrency: Practice and Experience,

10(11-13):873–877, 1998.

[63] Nick Carriero, Eric Freeman, David Gelernter, and David Kaminsky. Adaptive

parallelism and piranha. IEEE Computer, 28(1):40–49, January 1995.

[64] K.M. Chandy and I. Foster. A deterministic notation for cooperating processes.

IEEE Transactions on Parallel and Distributed Systems, 6(8):863–871, 1995.

[65] B.M. Chapman, P. Mehrotra, and H.P. Zima. Extending HPF for advanced data

parallel applications. In IEEE Magazine on Parallel and Distributed Technology,

pages 59–70, 1994.

[66] J. Choi, J.J. Dongarra, R. Pozo, and D.W. Walker. Scalapack: A scalable linear

algebra library for distributed memory concurrent computers. In Proceedings of the

4th Symposium on the Frontiers of Massively Parallel Computation, pages 120–127,

1992.

[67] Yuan-Chieh Chow and Walter H. Kohler. Models for dynamic load balancing in

a heterogeneous multiple processor system. IEEE Transactions on Computers,

28(5):354–361, 1979.

[68] F. Christian. Probabilistic clock synchronization. Distributed Computing, 3:146–

158, 1989.

[69] E. Chu and A. George. Inside the FFT Black Box: Serial and Parallel Fast Fourier

Transform Algorithms. CRC Press, Boca Raton, Florida, 2000.

[70] Mark J. Clement and Michael J. Quinn. Multivariate statistical techniques for

parallel performance prediction. In Proceedings of the 28th Hawaii International

Conference on System Sciences, volume 2, pages 446–455, January 1995.

[71] Mark J. Clement and Michael J. Quinn. Automated performance prediction for

scalable parallel computing. Parallel Computing, 10(23):1405–1420, 1997.

[72] Mark J. Clement, Michael R. Steed, and Phyllis E. Crandall. Network performance

modeling for PVM clusters. In Proceedings of Supercomputing, November 1996.

BIBLIOGRAPHY 271

[73] M. Cole. Algorithmic skeletons: Structured management of parallel computation.

In Research Monographs in Parallel and Distributed Computing. The MIT Press,

Cambridge, Massachusetts, 1989.

[74] R. Cole and O. Zajicek. The APRAM: Incorporating asynchrony in the PRAM

model. In Proceedings of the 1989 ACM Symposium on Parallel Algorithms and

Architectures, pages 169–178, June 1989.

[75] Compaq Computer Corporation. The Compaq AlphaServer SC supercomputer.

Available from http://www.compaq.com/hpc/systems/sys_sc.html.

[76] Compaq Computer Corporation. Alpha architecture handbook: Version 4, February

1998.

[77] Compaq Computer Corporation. Compaq AlphaServer SC System Software, version

2.4A. Technical Report SPD 80.10.03, Compaq Computer Corporation, May 2002.

[78] Compaq Computer Corporation, Intel Corporation, and Microsoft Corporation.

Virtual Interface Architecture specification, December 1997.

[79] J. W. Cooley and O. W. Tukey. An algorithm for the machine calculation of complex

fourier series. Mathematics of Computation, pages 297–301, April 1965.

[80] P.J. Courtois, F. Heymans, and D.L. Parnas. Concurrent control with ’readers’ and

’writers’. Communications of the ACM, 14(10):667–668, 1971.

[81] Jason A. Crawford and Clark Mobarry. Hrunting: A distributed shared memory

system for the Beowulf parallel workstation. In Proceedings of the IEEE Aerospace

Conference, 1998.

[82] Mark E. Crovella and Thomas J. LeBlanc. Parallel performance prediction using

lost cycles analysis. In Proceedings of Supercomputing, pages 600–609, 1994.

[83] M.E. Crovella. Performance Prediction and Tuning of Parallel Programs. PhD

thesis, University of Rochester, 1994.

[84] Lawrence A. Crowl. How to measure, present and compare parallel performance.

Parallel and Distributed Technology, 2(1):9–25, 1994.

[85] D. Culler, R. Karp, D. Patterson, A. Sahay, K.E. Schauser, E. Santos, R. Subrua-

monian, and T. Eicken. LogP: Towards a realistic model of parallel computation. In

Proceedings of the 5th ACM SIGPLAN Symposium on the Principles and Practices

of Parallel Programming, pages 1–12, May 1993.

http://www.compaq.com/hpc/systems/sys_sc.html

272 BIBLIOGRAPHY

[86] Zarka Cvetanovic. The effects of problem partitioning, allocation, and granularity on

the performance of multiple-processor systems. IEEE Transactions on Computers,

36(4):421–432, 1987.

[87] G. Cybenko, L. Kipp, L. Pointer, and D. Kuck. Supercomputer performance eval-

uation and the Perfect benchmarks. Technical Report 965, University of Illinois

Center for Supercomputing R&D, March 1990.

[88] W.J. Dally and D.S. Willis. Universal mechanisms for concurrency. In Proceedings

of Parallel Architectures and Languages Europe (LNCS 365), pages 19–33, 1989.

[89] M. Danelutto, R. Do Meglio, S. Pelagatti, and M. Vanneschi. High level language

constructs for massively parallel computing. In Proceedings of the 6th International

Symposium on Computer and Information Sciences, pages 777–788, October 1991.

[90] Sajal K. Das, Daniel J. Harvey, and Rupak Biswas. Dynamic load balancing for

adaptive meshes using symmetric broadcast networks. In Proceedings of the 12th

ACM International Conference on Supercomputing, pages 417–424, 1998.

[91] S. Dasgupta. A hierarchical taxonomic system for computer architectures. IEEE

Computer, pages 64–74, March 1990.

[92] J. Davies and S. Schneider. A brief history of timed CSP. Theoretical Computer

Science, 138(10):243–271, 1995.

[93] J.W.M Davies. Specification and Proof in Real-Time Systems. Cambridge University

Press, Cambridge, 1993.

[94] Bronis R. de Supinski and Nicholas T. Karonis. Accurately measuring MPI broad-

casts in a computational grid. In Proceedings of the 8th IEEE Symposium on High

Performance Distributed Computing, pages 29–37, August 1999.

[95] Thomas Decker, Reinhard Luling, and Stefan Tschoke. A distributed load bal-

ancing algorithm for heterogeneous parallel computing systems. In Proceedings of

the International Conference on Parallel and Distributed Processing Techniques and

Applications, volume 2, pages 933–940, 1998.

[96] Viktor K. Decyk, Dean E. Dauger, and Pieter R. Kokelaar. How to build an Ap-

pleSeed: A parallel Macintosh cluster for numerically intensive computing. In Pro-

ceedings of the 6th International School for Space Simulation, September 2001.

[97] Hank Dietz. Linux parallel processing HOWTO, January 1998.

BIBLIOGRAPHY 273

[98] E.W. Dijkstra. Solution of a problem in concurrent programming control. Journal

of the ACM, 8:569, 1965.

[99] E.W. Dijkstra. Cooperating sequential processes. Programming Languages, pages

43–112, 1968.

[100] E.W. Dijkstra. Hierarchical ordering of sequential processes. Acta Informatica,

1(2):115–138, 1971.

[101] Bryan Dodson. Weibull Analysis with Software. ASQ Quality Press, Milwaukee,

1995.

[102] Jack Dongarra, Hans Meuer, and Erich Strohmaier. Top 500 supercomputer sites.

Available from http://www.top500.org/.

[103] Jack Dongarra, Hans Meuer, and Erich Strohmaier. TOP500 supercomputer sites,

15th edition. In Proceedings of Supercomputing, June 2000.

[104] Jack Dongarra, Hans Meuer, and Erich Strohmaier. TOP500 supercomputer sites,

16th edition. In Proceedings of SC2000, November 2000.

[105] J.J. Dongarra, J.R. Bunch, C.B. Moler, and Stewart G.W. LINPACK User’s Guide.

SIAM, 1979.

[106] M. Dubois and M. Briggs. Performance of synchronized iterative processes in multi-

processor systems. IEEE Transactions on Software Engineering, 8:419–431, July

1982.

[107] Alistair Dunlop and Tony Hey. PERFORM - a fast simulator for estimating program

execution time. On-line Journal of Performance Evaluation and Modelling for Com-

puter Systems, November 1997. http://www.netlib.org/utk/papers/PEMCS/.

[108] A.N. Dunlop and D.J. Pritchard. Parallel performance estimator. Technical Re-

port D5.3b, ESPRIT project, Department of Electronics and Computer Science,

University of Southampton, 1995.

[109] Peter J. Dunning. The working set model of program behaviour. Communications

of the ACM, 11(5):323–333, May 1968.

[110] D.L. Eager, J. Zahorjan, and E.D. Lazowska. Speedup versus efficiency in parallel

systems. IEEE Transactions on Computers, 38:408–423, March 1989.

[111] A.K. Erlang. Solution of some problems in the theory of probabilities of significance

in automatic telephone exchanges. Elektroteknikeren, 13, 1917.

http://www.top500.org/
http://www.netlib.org/utk/papers/PEMCS/

274 BIBLIOGRAPHY

[112] T. Fahringer. Automatic Performance Prediction of Parallel Programs on Massively

Parallel Programs. PhD thesis, University of Vienna, 1993.

[113] T. Fahringer. Automatically estimating network contention of parallel programs. In

Proceedings of the 7th International Conference on Modeling Techniques and Tools

for Computer Performance Evaluation, May 1994.

[114] T. Fahringer. Automatic Performance Prediction of Parallel Programs. Kluwer

Academic, Boston, Massachusetts, 1996.

[115] T. Fahringer, R. Blasko, and H.P. Zima. Automatic performance prediction to sup-

port parallelization of Fortran programs for massively parallel systems. In Proceed-

ings of the 6th ACM International Conference on Supercomputing, pages 347–356,

1992.

[116] T. Fahringer and H.P. Zima. A static parameter-based performance prediction tool

for parallel programs. In Proceedings of the 7th ACM International Conference on

Supercomputing, pages 207–219, July 1993.

[117] Kevin Fall and Sally Floyd. Simulation-based comparisons of Tahoe, Reno and

SACK TCP. ACM Computer Communication Review, 26(3):5–21, 1997.

[118] Rod Fatoohi and Sisira Weeratunga. Performance evaluation of three distributed

computing environments for scientific applications. In Proceedings of Supercomput-

ing, pages 400–409, 1994.

[119] Anja Feldman. Impact of non-Poisson arrival sequences for call admission algorithms

with and without delay. In Proceedings of Globecom, 1996.

[120] Anja Feldman. Characteristics of TCP connection arrivals. Technical report, AT&T

Labs-Research, December 1998.

[121] Anja Feldman and Ward Whitt. Fitting mixtures of exponentials to long-tail dis-

tributions to analyze network performance models. Performance Evaluations, 31,

1998.

[122] C. Figueira and Hernández. Benchmarks specification and generation for perform-

ance estimation on MIMD machines. IFIP Transactions on Computer Science and

Technology, 44:215–223, 1994.

[123] Silvia M. Figueira and Francine Berman. Modeling the effects of contention on the

performance of heterogeneous applications. In Proceedings of the 5th International

Symposium on High Performance Distributed Computing, August 1996.

BIBLIOGRAPHY 275

[124] Silvia M. Figueira and Francine Berman. Predicting slowdown for networked work-

stations. In Proceedings of the 6th International Symposium on High Performance

Distributed Computing, August 1997.

[125] R. Figueiredo, B. Lin, V. Misra, and D. Towsley. On the autocorrelation structure

of TCP traffic. Technical Report CMPSCI TR 00-55, University of Massachusetts

at Amherst, Department of Computer Science, 2000.

[126] George S. Fishman. Monte Carlo: Concepts, Algorithms and Applications. Springer-

Verlag, New York, 1996.

[127] G. Fleischmann. Performance evaluation of parallel program based on model calcu-

lations. Parallel Computing, 20(10-11), November 1994.

[128] G. Fleischmann and M. Gente. Modeling and evaluation of parallel programs using

GIANT. In Proceedings of the 6th International Conference on Modelling Techniques

and Tools for Computer Performance Evaluation, September 1992.

[129] S. Floyd. Congestion control principles. Technical Report RFC 2914, The Internet

Society, September 2000.

[130] S. Floyd, J. Mahdavi, M. Mathis, and M. Podolsky. An extension to the Selec-

tive Acknowlegement (SACK) option for TCP. Technical Report RFC 2883, The

Internet Society, July 2000.

[131] M Flynn. Some computer organizations and their effectiveness. IEEE Transactions

on Computers, 21:94, 1972.

[132] S. Fortune and J. Wyllie. Parallelism in random access machines. In Proceedings of

the 10th ACM Symposium on Theory of Computing, pages 114–118, 1978.

[133] I. Foster and C. Kesselman (eds.). The Grid: Blueprint for a New Computing

Infrastructure. Morgan Kaufmann, San Francisco, 1999.

[134] M. Frigo and S. G. Johnson. FFTW: An adaptive software architecture for the

FFT. In Proceedings of the International Conference on Acoustics, Speech and

Signal Processing, volume 3, pages 1381–1384, 1998. Also see MPI FFTW available

from http://www.fftw.org/doc/fftw_4.html#SEC55.

[135] K. Gallivan, W. Jalby, A. Malony, and H. Wijshoff. Performance prediction for par-

allel numerical algorithms. International Journal of High-Speed Computing, 3(1):31–

62, 1991.

http://www.fftw.org/doc/fftw_4.html#SEC55

276 BIBLIOGRAPHY

[136] Hasyim Gautama. A probabilistic approach to the analysis of program execution

time. Master’s thesis, Delft University of Technology, Information Technology and

Systems, 1998.

[137] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, and V. Sunderam.

PVM: Parallel Virtual Machine: A user’s guide and tutorial for networked parallel

computing, 1994.

[138] E. Gelenbe and Z. Liu. Performance analysis approximations for parallel process-

ing in multiprocessor systems. In Proceedings of the IFIP Working Conference on

Parallel Processing, pages 363–375, April 1988.

[139] E. Gelenbe, E. Montagne, R. Suros, and C.M. Woodside. Performance of block-

structured parallel programs. In M. Cosnard et al., editors, Parallel Algorithms and

Architectures, pages 127–138. North-Holland, Amsterdam, 1986.

[140] V. Georgitsis and J. Sobolewski. Performance of MPL and MPICH on the SP2

system. In Proceedings of the MPI Developer’s Conference, June 1995.

[141] Vasilios Georgitsis. Message Passing Performance on SP Systems. PhD thesis,

University of New Mexico, 1996.

[142] Vladimir Getov, Hernández, and Tony Hey. Message-passing performance of parallel

computers. Lecture Notes in Computer Science, 1300, 1997.

[143] V.S. Getov, R.W. Hockney, and A.J.G. Hey. Performance analysis of distributed

applications by suitability functions. In Proceedings of Programming Models for

Massively Parallel Computers, pages 191–197, September 1993.

[144] Wolfgang K. Giloi. Parallel supercomputer architectures and their programming

models. Parallel Computing, 20(10-11):1443–1470, 1994.

[145] S. Girona and J. Labarta. Sensitivity of performance prediction of message passing

programs. In Proceedings of the International Conference on Parallel and Distributed

Processing Techniques and Applications, pages 933–940, June 1999.

[146] S. Girona, J. Labarta, and Rosa M. Badia. Validation of Dimemas communication

model for MPI collective operations. In Proceedings of the 7th European PVM/MPI

Users’ Group Meeting, September 2000.

[147] L.M. Goldschalger. A unified approach to models of synchronous parallel machines.

Journal of the ACM, 24(4):1073–1086, 1982.

BIBLIOGRAPHY 277

[148] A.Y. Grama, Gupta. A, and V. Kumar. Isoefficiency: Measuring the scalability of

parallel algorithms and architectures. IEEE Parallel and Distributed Technology,

1(3):12–21, August 1993.

[149] Greer Mountain Software. Stat::Fit software, version 1.1. Available from

http://www.geerms.com/.

[150] William Gropp and Ewing Lusk. Reproducible measurements of MPI performance

characteristics. In Proceedings of the PVM/MPI Users’ Group Meeting (LNCS

1697), pages 11–18, 1999.

[151] William Gropp, Ewing Lusk, Nathan Doss, and Anthony Skjellum. High-

performance, portable implementation of the MPI Message Passing Interface stan-

dard. Parallel Computing, 22(6):789–828, 1996.

[152] William Gropp, Ewing Lusk, and Anthony Skjellum. Using MPI: Portable Parallel

Programming with the Message-Passing Interface. The MIT Press, Cambridge,

Massachusetts, 1994.

[153] Duncan A. Grove. Precise MPI performance measurement using MPIBench. In

Proceedings of HPC Asia, September 2001.

[154] Bu Guanying and Xu Zhiwei. Grid system theoretical model. In Proceedings of

HPC Asia, September 2001.

[155] M. Gupta and P. Banerjee. Compile-time estimation of communication costs of

programs. In Proceedings of the 2nd Workshop on Automatic Data Layout and

Performance Prediction, April 1995.

[156] George Gusciora. SP parallel programming workshop – 2D FFT example. Available

from http://www.mhpcc.edu/training/workshop/mpi/exercise.html.

[157] John L. Gustafson, Don Heller, Rajat Todi, and Jenwei Hsieh. Cluster performance:

SMP versus uniprocessor nodes. In Proceedings of Supercomputing, November 1999.

[158] B. van Halderen. A tool for application performance prediction. Master’s thesis, Uni-

versity of Amsterdam, Department of Mathematics and Computer Science, Septem-

ber 1995.

[159] Tim J. Harris. A survey of PRAM simulation techniques. ACM Computing Surveys,

26(2):187–200, June 1994.

[160] J. Hartmanis and R.E. Stearns. On the computational complexity of algorithms.

Transactions AMS, 117:285–306, 1965.

http://www.geerms.com/
http://www.mhpcc.edu/training/workshop/mpi/exercise.html

278 BIBLIOGRAPHY

[161] K.A. Hawick, D.A. Grove, P.D. Coddington, and M.A. Buntine. Commodity cluster

computing for computational chemistry. Internet Journal of Chemistry, 3:article 4,

2000.

[162] M.T. Heath. Performance visualization with ParaGraph. In Proceedings of the

2nd Workshop on Environments and Tools for Parallel Scientific Computing, pages

221–230, 1994.

[163] Philip Heidelberger and Stephen S. Lavenberg. Computer performance evaluation

methodology. IEEE Transactions on Computers, 33(12):1195–1220, December 1994.

[164] R. Henderson and D. Tweten. Portable Batch System: External reference specifi-

cation. Technical report, NASA Ames Research Center, 1996.

[165] J.L. Hennessey and D.A. Patterson. Computer Architecture: A Quantitative Ap-

proach. Morgan Kaufmann, San Francisco, 1996.

[166] H. Hermanns, Herzog U., U. Klehmet, V. Mertsiotakis, and M. Siegle. Compo-

sitional performance modelling with the TIPPtool. Lecture Notes in Computer

Science, 1469:51–62, 1998.

[167] E. Hernandez and A.J.G. Hey. White-box benchmarking. In Proceedings of the 4th

International Euro-Par Conference (LNCS 1470), pages 220–223, June 1998.

[168] E. Hernández and T. Hey. Variations on low-level communication benchmarks.

Supercomputing, 12(4):16–27, December 1996.

[169] A.J.G. Hey and D Lancaster. The development of Parkbench and performance

prediction. International Journal of High-Performance Computing, 14(3):205–215,

August 2000.

[170] Anthony J.G. Hey, Alistair N. Dunlop, and E. Hernández. Realistic parallel per-

formance estimation. Parallel Computing, 23(1-2):5–21, April 1997.

[171] T. Heywood and S. Ranka. A practical hierarchical model of parallel computation.

Journal of Parallel and Distributed Computing, 16(3):233–249, November 1992.

[172] Todd Heywood and Claudia Leopold. Models of parallelism. In J.R. Davy and

P.M. Dew, editors, Abstract Machine Models for Highly Parallel Computers. Oxford

University Press, Oxford, 1995.

[173] T. Hickey and J. Choen. Automating program analysis. Journal of the ACM,

35:185–219, January 1988.

BIBLIOGRAPHY 279

[174] High Performance Fortran Forum (HPFF). High Performance Fortran language

specification. Available from http://www.crpc.rice.edu/HPFF/.

[175] Jim Hill, Michael Warren, and Patrick Goda. I’m not going to pay a lot for this

supercomputer. Linux Journal, 45, January 1998.

[176] Jonathan M.D. Hill, Bill McColl, Dan C. Stefanescu, Mark W. Goudreau, Kevin

Lang, Satish B. Rao, Torsten Suel, Thanasis Tsantilas, and Rob H. Bisseling.

BSPlib: The BSP programming library. Parallel Computing, 24(14):1947–1980,

1998.

[177] C.A.R. Hoare. Communicating Sequential Processes. Communications of the ACM,

21(8):666–677, 1978.

[178] C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall, Englewood

Cliffs, New Jersey, 1985.

[179] Tim Hockin. Pset - processor sets for Linux/SMP.

http://isunix.it.ilstu.edu/~thockin/pset/.

[180] R.W. Hockney. Performance parameters and benchmarking of supercomputers.

Parallel Computing, 17(10), December 1991.

[181] R.W. Hockney and C.R. Jesshope. Parallel Computers: Architecture, Programming

and Algorithms. Adam Hilger, Bristol, 1988.

[182] Jenwei Hsieh. Design choices for a cost-effective, high-performance Beowulf-cluster.

Dell Power Solutions, 3, 2000.

[183] Christopher J. Hughes, Vijay S. Pai, Parthasarathy Ranganathan, and Sarita V.

Adve. Rsim: Simulating shared-memory multiprocessors with ILP processors. IEEE

Computer, February 2002.

[184] Lars Paul Huse. Collective communication on dedicated clusters of workstations. In

Proceedings of the 6th European PVM/MPI Users’ Group Meeting, pages 469–476,

September 1999.

[185] R.N. Ibbet, T. Heywood, M.I. Cole, R.J. Pooley, et al. Algorithms, architectures and

models of computation. Technical Report ECS-CSG-22-96, University of Edinburgh,

Division of Informatics, 1996.

[186] Intel Corporation. Using the RDTSC instruction

for performance monitoring, 1997. Available from

http://cedar.intel.com/software/idap/media/pdf/rdtscpm1.pdf.

http://www.crpc.rice.edu/HPFF/
http://isunix.it.ilstu.edu/~thockin/pset/
http://cedar.intel.com/software/idap/media/pdf/rdtscpm1.pdf

280 BIBLIOGRAPHY

[187] SPARC International. The SPARC architecture manual: Version 9. Prentice-Hall,

Englewood Cliffs, New Jersey, 1992.

[188] Nayeem Islam. Characterizing parallel and distributed applications. In Distributed

Objects. IEEE Computer Society Press, 1996.

[189] Van Jacobson. Congestion avoidance and control. ACM Computer Communication

Review, 18(4):316–329, 1988.

[190] R. Jain. The Art of Computer Systems Performance Analysis. Wiley, New York,

1991.

[191] N.I. Johnson, S. Kotz, and N. Balakrishnan. Continuous Univariate Distributions.

Wiley, New York, 1995.

[192] H. Jonkers. Performance Analysis of Parallel Systems: A Hybrid Approach. PhD

thesis, Delft University of Technology, Information Technology and Systems, Octo-

ber 1995.

[193] Ben H.H. Juurlink and Harry A.G. Wijshoff. Experiences with a model for parallel

computation. In Proceedings of the 12th ACM Symposium on the Principles of

Distributed Computing, pages 87–96, August 1993.

[194] Ben H.H. Juurlink and Harry A.G. Wijshoff. The E-BSP model: Incorporating

general locality and unbalanced communication into the BSP model. In Proceedings

of the 2nd International Euro-Par Conference (LNCS 1124), 1996.

[195] Ben H.H. Juurlink and Harry A.G. Wijshoff. A quantitative comparison of parallel

computation models. ACM Transactions on Computer Systems, 16(3):271–318,

August 1998.

[196] A. Kapelnikov, R.R. Muntz, and M.D. Ercegovac. A modeling methodology for

the analysis of concurrent systems and computations. Journal of Parallel and Dis-

tributed Computing, 6(3):568–597, June 1989.

[197] P. Karn and C. Partridge. Improving round-trip time estimates in reliable transport

protocol. ACM Transactions on Computer Systems, 9:365–373, 1991.

[198] Nicholas T. Karonis, Bronis R. De Supinski, Ian Foster, W. Gropp, E. Lusk, and

J. Bresnahan. Exploiting hierarchy in parallel computer networks to optimize col-

lective operation performance. In Proceedings of the 14th International Parallel and

Distributed Processing Symposium, pages 377–384, May 2000.

BIBLIOGRAPHY 281

[199] Richard Karp and Raymond Miller. Parallel program schema: A mathematical

model for parallel computation. In Proceedings of the 8th Annual Symposium on

Switching Automata Theory, pages 55–61, October 1967.

[200] Richard M. Karp and Raymond E. Miller. Properties of a model for parallel com-

putations: Determinacy, termination, queueing. SIAM Journal on Applied Mathe-

matics, 14:1390–1411, November 1966.

[201] D.G. Kendall. Stochastic processes occurring in the theory of queues and their

analysis by the method of the embedded markov chain. Annals of Mathematical

Statistics, 24:338–354, 1953.

[202] Darren Kerbyson, Hank Alme, Adolfy Hoisie, Fabrizio Petrini, Harvey Wasserman,

and Mike Gittings. Predictive performance and scalability modeling of a large-scale

application. In Proceedings of Supercomputing, November 2001.

[203] D.E. Knuth. The Art of Computer Programming Vol. I: Fundamental Algorithms.

Addison-Wesley, Reading, Massachusetts, 1968.

[204] D.E. Knuth. Big Omicron and Big Omega and Big Theta. ACM SIGACT News,

8(2):18–23, 1976.

[205] Charles Howard Koelbel. Compiling Programs for Distributed Memory Machines.

PhD thesis, Purdue University, Department of Computer Science, 1990.

[206] A.N. Kolmogorov. On a logarithmic normal distribution law of the dimensions of

particles under pulverization. Dokl. Akad Nauk, 31(2):99–101, 1941.

[207] D. Kranzlmüller and J. Volkert. NOPE: A nondeterministic program evaluator. In

Proceedings of the 4th International ACPC Conference (LNCS 1557), pages 490–

499, February 1992.

[208] C. Kruskal and M. Snir. Cost-bandwidth tradeoffs for communication networks.

In Proceedings of the ACM Symposium on Parallel Algorithms and Architectures,

pages 32–41, 1989.

[209] Vipin Kumar and Anshul Gupta. Analyzing scalability of parallel algorithms and

architectures. Journal of Parallel and Distributed Computing, 22(3):379–391, June

1991.

[210] J. Labarta, S. Girona, Pillet, Cortes abd T. V., and L. Gregoris. DiP: A parallel

program development environment. In Proceedings of the 2nd International Euro-

Par Conference, volume II, pages 665–674, August 1996.

282 BIBLIOGRAPHY

[211] L. Lamport. Time, clocks, and the ordering of events in a distributed system.

Communications of the ACM, 27(7):558–565, 1978.

[212] D. Lancaster. Parkbench and the new low-level Genesis communication tests. In

Proceedings of the 14th Real Applications on Parallel Systems Workshop, November

1998.

[213] Averill M. Law and W. David Kelton. Simulation Modeling & Analysis. McGraw-

Hill, New York, 1991.

[214] W.E. Leland, M.S. Taqqu, W. Willinger, and D.V. Wilson. On the self-similar

nature of Ethernet traffic (extended version). IEEE/ACM Transactions on Net-

working, 2:1–15, 1994.

[215] B.P Lester. A system for computing the speedup of parallel programs. In Proceedings

of the International Conference on Parallel Processing, pages 145–152, August 1986.

[216] C. Lin and L. Snyder. The Kheystone benchmark for parallel performance predic-

tion. Technical Report 92-06-01, University of Washington, Department of Com-

puter Science and Engineering, 1992.

[217] R. Lipton, L. Snyder, and Y. Zalcstein. A comparative study of models of parallel

computation. In Proceedings of the 15th Annual IEEE Symposium on Switching and

Automata Theory, pages 145–155, October 1974.

[218] Jun S. Liu. Monte Carlo Strategies in Scientific Computing. Springer-Verlag, New

York, 2001.

[219] Michael Lo and Sivarama P. Dandamudi. Performance of hierarchical load sharing in

heterogeneous distributed systems. In Proceedings of the 8th IASTED International

Conference on Parallel and Distributed Computing Systems, pages 370–377, 1996.

[220] Joseph Loncaric. Linux 2.0.36 [2.2.12] TCP performance fix for short messages.

Available from http://www.icase.edu/coral/LinuxTCP[2].html.

[221] Joseph Loncaric. RFC: Linux networking tweaks.

Posted to the Beowulf mailing list, available from

http://www.beowulf.org/listarchives/beowulf/1999/03/0338.html.

[222] G. Lowe. Probabilistic and prioritized models of timed CSP. Theoretical Computer

Science, 138:315–352, 1995.

[223] Gavin Lowe. Probabilities and Priorities in Timed CSP. PhD thesis, St. Hugh’s

College, Oxford University, 1993.

http://www.icase.edu/coral/LinuxTCP[2].html
http://www.beowulf.org/listarchives/beowulf/1999/03/0338.html

BIBLIOGRAPHY 283

[224] R. Ludwig and K. Sklower. The Eifel retransmission timer. ACM Computer Com-

munication Review, 30(3), July 2000.

[225] Reiner Ludwig and Randy H. Katz. The Eifel algorithm: Making TCP robust

against spurious retransmissions. ACM Computer Communication Review, 30(1),

January 2000.

[226] Margaret Mackisack and Ronald Stillman. A cautionary tale about Weibull analysis.

IEEE Transactions on Reliability, 1996.

[227] B.M. Maggs, L.R. Matheson, and R.E. Tarjan. Models of parallel computation: A

survey and synthesis. In Proceedings of the 28th Hawaii International Conference

on System Sciences, pages 61–70, January 1995.

[228] Peter S. Magnusson, Magnus Christensson, Jesper Eskilson, Daniel Forsgren, Gus-

tav Hllberg, Johan Högberg, Fredrik Larsson, Andreas Moestedt, and Bengt Werner.

Simics: A full system simulation platform. IEEE Computer, February 2002.

[229] Eric Maillet and Cecile Tron. On efficiently implementing global time for perform-

ance evaluation on multiprocessor systems. Journal of Parallel and Distributed

Computing, 28(1):84–93, July 1995.

[230] V.W. Mak. Performance Prediction of Concurrent Systems. PhD thesis, Stanford

University, Computer Science Department, 1987.

[231] V.W. Mak and S.F. Lundstrom. Predicting performance of parallel computations.

IEEE Transactions on Parallel and Distributed Systems, 1(3):257–270, July 1990.

[232] W.T. Marshall and S.P. Morgan. Statistics of mixed data traffic on a local area

network. In Proceedings of Computer Networks and ISDN Systems, pages 185–195,

1985.

[233] Richard P. Martin, Amin M. Vahdat, David E. Culler, and Thomas E. Anderson.

Effects of communication latency, overhead, and bandwidth in a cluster architec-

ture. In Proceedings of the 24th International Symposium on Computer Architecture,

pages 85–97, 1997.

[234] W.F. McColl. Foundations of time-critical scalable computing. In Proceedings of

the 15th IFIP World Computer Congress, pages 93–107, 1998.

[235] C.E. McDowell and D.P. Helmbold. Debugging concurrent programs. ACM Com-

puting Surveys, 21(4):593–622, December 1989.

284 BIBLIOGRAPHY

[236] P. Mehra, M. Gower, and M. Bass. Automated modeling of message-passing sys-

tems. In Proceedings of International Workshop on Modeling, Analysis and Simu-

lation of Computer and Telecommunication Systems, pages 187–192, January 1994.

[237] P. Mehra, C.H. Schulback, and J.C. Yan. A comparison of two model-based perform-

ance prediction techniques for message-passing parallel programs. In Proceedings of

the ACM SIGMETRICS Conference on Measurement and Modeling of Computer

Systems, pages 181–189, May 1994.

[238] C.L. Mendes, J-C Wang, and D.A. Reed. Automatic performance prediction and

scalability analysis for data parallel programs. In Proceedings of the 2nd Workshop

on Automatic Data Layout and Performance Prediction, April 1995.

[239] Message-Passing Interface Forum (MPIF). MPI-2: Extensions to the Message Pass-

ing Interface. Available from http://www.mpi-forum.org.

[240] Message-Passing Interface Forum (MPIF). MPI: A Message Passing Interface stan-

dard. Available from http://www.mpi-forum.org.

[241] Sun Microsystems. Sun HPC ClusterTools software.

http://www.sun.com/software/hpc/.

[242] Sun Microsystems. Sun Technical Compute Farm.

http://www.sun.com/desktop/suntcf/.

[243] Robin Milner. A calculus of communicating systems. In Lecture Notes in Computer

Science (92). Springer-Verlag, New York, 1980.

[244] Jeonghoon Mo, Richard J. La, Venkat Anantharam, and Jean C. Walrand. Analysis

and comparison of TCP Reno and Vegas. In Proceedings of IEEE INFOCOM, pages

1556–1563, March 1999.

[245] A.G. Mohamed, G.C. Fox, G. von Laszewski, M. Parashar, T. Haupt, K. Mills, Y.H.

Lu, N.T. Lin, and N.K. Yeh. Application benchmark set for Fortran-D and High

Performance Fortran. Technical Report SCCS-327, Northeast Parallel Architectures

Center, Syracuse University, June 1992.

[246] J. Mohan. Performance of Parallel Programs: Model and Analyses. PhD thesis,

Carnegie Mellon University, School of Computer Science, July 1984.

[247] Csaba Andras Moritz and Matthew I. Frank. LoGPC: Modeling network contention

in message-passing programs. ACM SIGMETRICS Performance Evaluation Review

Special Issue, 26(1), 1998.

http://www.mpi-forum.org
http://www.mpi-forum.org
http://www.sun.com/software/hpc/
http://www.sun.com/desktop/suntcf/

BIBLIOGRAPHY 285

[248] Ronald Mraz. Reducing the variance of point-to-point transfers for parallel real-time

programs. Parallel and Distributed Technology, 2(4):20–31, 1994.

[249] Philip J. Mucci, Kevin London, and John Thurman. The MPBench report. Techni-

cal Report UT-CS-98-394, University of Tenessee, Department of Computer Science,

November 1998.

[250] T. Murata. Petri nets: Properties, analysis and applications. Proceedings of the

IEEE, 77:541–580, April 1989.

[251] Myricom Incorporated. Myrinet Protocol Module – Implementa-

tion of Sun HPC ClusterTools MPI over GM. Available from

http://www.myricom.com/scs/READMES/README-clustertools.

[252] Myricom Incorporated. The GM API. Available from

http://www.myri.com/scs/GM/doc/gm_toc.html.

[253] R Nelson. A performance evaluation of a general parallel processing model. ACM

SIGMETRICS Performance Evaluation Review, 18(1):14–26, 1990.

[254] David Nicol and James Townsend. Accurate modeling of parallel scientific com-

putations. In Proceedings of the ACM SIGMETRICS Conference on Measurement

and Modeling of Computer Systems, pages 165–179, 1989.

[255] Michael G. Norman and Peter Thanisch. Models of machines and modules for map-

ping to minimise makespan in multicomputers. Technical Report 9114, University

of Edinburgh, Edinburgh Parallel Computing Centre, 1996.

[256] G.R. Nudd, D.J. Kerbyson, Papaefstathiou E., S.C. Perry, J.S. Harper, and D.V.

Wilcox. PACE - A toolset for the performance prediction of parallel and distributed

systems. The International Journal of High Performance Computing Applications,

14(3):228–251, Fall 2000.

[257] G.R. Nudd, E. Papaefstathiou, T. Papay, T.J. Atherton, C.T. Clarke, D.J. Ker-

byson, A.F. Stratton, M.J. Zemerly, and R. Ziani. A layered approach to the

characterisation of parallel systems for performance prediction. In Proceedings of

Performance Evaluation of Parallel Systems, pages 26–34, November 1993.

[258] OpenMP Architecture Review Board. OpenMP Fortran Application Program In-

terface. Available from http://www.openmp.org.

[259] Pallas GmbH. Pallas MPI benchmarks home page.

http://www.pallas.com/e/produces/pmb/.

http://www.myricom.com/scs/READMES/README-clustertools
http://www.myri.com/scs/GM/doc/gm_toc.html
http://www.openmp.org
http://www.pallas.com/e/produces/pmb/

286 BIBLIOGRAPHY

[260] Pallas GmbH. Vampir home page. http://www.pallas.com/e/products/vampir/.

[261] C. Papadimitriou and J. Ullman. A communication-time tradeoff. SIAM Journal

of Computation, 19:322–328, 1990.

[262] Efstathios Papaefstathiou. A Framework for Characterising Parallel Systems for

Performance Evaluation. PhD thesis, University of Warwick, Computer Sciences

Department, September 1995.

[263] Efstathios Papaefstathiou and D.J. Kerbyson. Predicting communication delays of

detailed application workloads. In Proceedings of the 13th International Conference

on Parallel and Distributed Computing Systems, August 2000.

[264] Efstathios Papaefstathiou, D.J. Kerbyson, G.R. Nudd, and T.J. Atherton. An

overview of the CHIP3S performance prediction toolset for parallel systems. In

Proceedings of the 8th International Conference on Parallel and Distributed Com-

puting Systems, pages 527–533, 1995.

[265] Paradyn Project. Paradyn project home page.

http://www.cs.wisc.edu/~paradyn/.

[266] Manish Parashar. Interpretive Performance Prediction for High Performance Par-

allel Computing. PhD thesis, Syracuse University, Department of Electrical and

Computer Engineering, July 1994.

[267] Manish Parashar and Salim Hariri. Interpretive performance prediction for parallel

application development. Journal of Parallel and Distributed Computing, 60:17–47,

2000.

[268] K. Park and W. Willinger (eds.). Self-Similar Network Traffic and Performance

Evaluation. Wiley, New York, 2000.

[269] Jeff Parker and George Cybenko. Dynamic load balancing for distributed mem-

ory multiprocessors. Journal of Parallel and Distributed Computing, 7(2):279–301,

October 1989.

[270] V. Paxon and S. Floyd. Wide-area traffic: The failure of Poisson modeling. IEEE/

ACM Transactions on Networking, 3:226–244, 1995.

[271] V. Paxson and M. Allman. Computing TCP’s retransmission timer. Technical

Report RFC 2988, The Internet Society, November 2000.

[272] Vern Paxson. Empirically derived analytic models of wide-area TCP connections.

IEEE/ACM Transactions on Networking, 2(4):316–336, 1994.

http://www.pallas.com/e/products/vampir/
http://www.cs.wisc.edu/~paradyn/

BIBLIOGRAPHY 287

[273] Vern Paxson. Automated packet trace analysis of TCP implementations. ACM

Computer Communication Review, 27:14–18, September 1997.

[274] J. Peterson and T. Bredt. A comparison of models of parallel computation. In

Proceedings of the IFIP Congress, pages 466–470, August 1974.

[275] J. L. Peterson. Petri Net Theory and the Modeling of Systems. Prentice-Hall,

Englewood Cliffs, New Jersey, 1981.

[276] Fabrizio Petrini, Salvador Coll, Eitan Frachtenberg, and Adolfy Hoisie. Hardware-

and software-based collective communication on the Quadrics network. In Proceed-

ings of the IEEE International Symposium on Network Computing and Applications,

October 2001.

[277] Fabrizio Petrini, Salvador Coll Coll, Eitan Frachtenberg, and Adolfy Hoisie. Per-

formance evaluation of the Quadrics interconnection network. Journal of Cluster

Computing, 2002.

[278] Fabrizio Petrini, Wu-Chun Feng, Adolfy Hoisie, Salvador Coll, and Eitan Frachten-

berg. The Quadrics network: High-performance clustering technology. IEEE Micro,

22(1):46–57, February 2002.

[279] B.L. Peuto and L.J. Shustek. An instruction timing model of CPU performance. In

Proceedings of the 4th Annual Symposium on Computer Architecture, pages 165–178,

March 1977.

[280] H. Pfneiszl. Synthetic workload generation for parallel processing systems. Master’s

thesis, University of Vienna, Institute of Applied Computer Science, January 1996.

[281] Jon Postel (ed.). Internet protocol. Technical Report RFC 791, University of South-

ern California, Information Sciences Institute, September 1981.

[282] S. Prakash. Performance Prediction of Parallel Pgorams. PhD thesis, University of

California Los Angeles, Computer Science Department, 1996.

[283] S. Prakash and S. Bagrodia. Using parallel simulation to evaluate MPI programs.

In Proceedings of the Winter Simulation Conference, December 1998.

[284] R.L. Prentice. A log-gamma model and its maximum likelihood estimation.

Biometrika, 61:539–544, 1974.

[285] W.H. Press, B.P. Flannery, S.A. Teukolsky, andW.T. Vetterling. Numerical Recipes:

The Art of Scientific Computing. Cambridge University Press, Cambridge, 1986.

288 BIBLIOGRAPHY

[286] V. Puente, J.A. Gregorio, and R. Beivide. SICOSYS: An integrated framework

for studying interconnection networks in multiprocessor systems. In Proceedings of

the 10th Euromicro Workshop on Parallel and Distributed Processing, pages 15–22,

2002.

[287] V. Puente, J.M. Prellezo, C. Izu, J.A. Gregorio, and R. Beivide. A case study

of trace-driven simulation for analyzing interconnection networks: cc-NUMAs with

ILP processors. In Proceedings of the 8th Euromicro Workshop on Parallel and

Distributed Processing, January 2000.

[288] B. Qin, H.A. Sholl, and R.A. Ammar. Micro time cost analysis of parallel compu-

tations. IEEE Transactions on Computers, 40:613–628, May 1991.

[289] Xiaohan Qin and Jean-Loup Baer. A performance evaluation of cluster architec-

tures. ACM SIGMETRICS Performance Evaluation Review, 25(1):237–247, June

1997.

[290] Jacek Radajewski. Beowulf supercomputer HOWTO draft, January 1998.

[291] G.M. Reed and A.W. Roscoe. A timed model for CSP. In Proccedings of ICALP

(LNCS 226), pages 314–323, 1996.

[292] Jeff S. Reeve. A performance estimator for parallel programs. In Proceedings of the

International Euro-Par Conference, pages 193–202, 1999.

[293] S.K. Reinhardt, M.D. Hill, J.R. Larus, A.R. Lebeck, J.C. Lewis, and D.A. Wood.

The wisconsin wind tunnel: Virtual prototyping of parallel computers. In Pro-

ceedings of the ACM SIGMETRICS Conference on Measurement and Modeling of

Computer Systems, pages 48–60, May 1993.

[294] M. Reiser and S.S. Lavenberg. Mean value analysis of closed multichain queueing

networks. Journal of the ACM, 27:313–322, April 1980.

[295] Chance Reschke, Thomas Sterling, Daniel Ridge, Daniel Saverese, Donald Becker,

and Phillip Merkey. A design study of alternative network topologies for the Beowulf

parallel workstation. In Proceedings of the 5th International Symposium on High

Performance Distributed Computing, 1996.

[296] Ralf Reussner, Peter Sanders, and Jesper Larsson Träff. SKaMPI: A comprehensive

benchmark for public benchmarking of MPI. Scientific Computing, 10, 2001.

[297] Ralf H. Reussner, Peter Sanders, Lutz Prechelt, and Matthias Müller. SKaMPI: A

detailed, accurate MPI benchmark. In Proceedings of the 5th European PVM/MPI

Users’ Group Meeting (LNCS 1497), pages 52–59, September 1998.

BIBLIOGRAPHY 289

[298] Daniel Ridge, Donald Becker, Phillip Merkey, and Tomas Sterling. Beowulf: Har-

nessing the power of parallelism in a Pile-of-PCs. In Proceedings of IEEE Aerospace,

1997.

[299] Graham D. Riley. Techniques for improving the performance of parallel computa-

tions. Master’s thesis, University of Manchester, 1996.

[300] Christian P. Robert and George Casella. Monte Carlo Statistical Methods. Springer-

Verlag, New York, 2000.

[301] A.W. Roscoe. The Theory and Practice of Concurrency. Prentice-Hall, Englewood

Cliffs, New Jersey, 1997.

[302] Rsim Research Group. Rsim home page. Available from

http://rsim.cs.uiuc.edu/rsim/.

[303] R. Saavedra and A. Smith. Analysis of benchmark characteristics and benchmark

performance prediction. Technical Report USC-CS-92-524, University of Southern

California Los Angeles, Computer Science Division, September 1992.

[304] R. Saavedra and A. Smith. Analysis of benchmark characteristics and benchmark

performance prediction. ACM Transactions on Computer Systems, 14(4):344–384,

November 1996.

[305] S. Salza. Approximating response time distributions in closed queueing network

models of computer performance. In Proceedings of Performance, pages 133–145,

1981.

[306] V. Sarkar. Determining average program execution times and their variance. In

Proceedings of the SIGPLAN Notices Conference on Programming Language Design

and Implementation, pages 298–312, 1989.

[307] Pasi Sarolahti and Alexey Kuznetsov. Congestion control in Linux TCP. In Pro-

ceedings of the USENIX Annual Technical Conference, pages 49–62, June 2002.

[308] Bryan Scattergood. The Semantics and Implementation of Machine-Readable CSP.

PhD thesis, Trinity College, Oxford University, 1998.

[309] Christian Schaubschläger. Automatic testing of nondeterministic programs in mes-

sage passing systems. Master’s thesis, Johannes Kepler University Linz, Department

for Computer Graphics and Parallel Processing, 2000.

[310] S. Schneider. An operational semantics for timed CSP. Information and Computa-

tion, 116(2):193–213, February 1995.

http://rsim.cs.uiuc.edu/rsim/

290 BIBLIOGRAPHY

[311] S. Schneider. Concurrent and Real-time Systems: The CSP Approach. Wiley, New

York, 2000.

[312] J.M. Schopf. Performance Prediction and Scheduling for Parallel Applications on

Multi-user Clusters. PhD thesis, University of California San Diego, Department of

Computer Science, December 1998.

[313] J.M. Schopf and F. Berman. Performance prediction in production environments.

In Proceedings of the 12th IEEE International Parallel Processing Symposium and

9th Symposium on Parallel and Distributed Processing, March 1998.

[314] H.T. Schwartz. Ultracomputers. ACM Transactions on Programming Language

Systems, 2(4):484–521, 1980.

[315] A.C. Shaw. Deterministic timing schema for parallel programs. In Proceedings of the

5th IEEE International Parallel Processing Symposium, pages 56–63, April 1991.

[316] Niranjan G. Shivaratri, Phillip Krueger, and Mukesh Singhal. Load distributing for

locally distributed systems. IEEE Computer, 25(12):33–44, 1992.

[317] Jaswinder Pal Singh, Edward Rothberg, and Anoop Gupta. Modeling communica-

tion in parallel algorithms: A fruitful interaction between theory and systems? In

Proceedings of the 6th Annual ACM Symposium on Parallel Algorithms and Archi-

tectures, pages 189–199, 1993.

[318] Steve Sistare, Rolf vande Vaart, and Eugene Log. Optimization of MPI collectives

on clusters of large-scale SMP’s. In Proceedings of Supercomputing, 1999.

[319] David Skillicorn. Foundations of Parallel Programming, chapter 8, pages 123–169.

Cambridge University Press, Cambridge, 1994.

[320] David B. Skillicorn and Domenico Talia. Models and languages for parallel compu-

tation. ACM Computing Surveys, 30(2), June 1998.

[321] D.B. Skillicorn. A taxonomy for computer architectures. IEEE Computer,

21(11):46–57, November 1988.

[322] D.B. Skillicorn. Parallelism and the Bird-Meertens Formalism. Technical report,

Queen’s University, Computing and Information Science, April 1992.

[323] D.B. Skillicorn. Questions and answers about categorical data types. Technical

report, Queen’s University, Computing and Information Science, May 1994.

BIBLIOGRAPHY 291

[324] D.B. Skillicorn. Abstract machine models for parallel and distributed computing. In

M. Kara, J.R. Davy, D. Goodeve, and J. Nash, editors, Communication Skeletons.

IOS Press, Amsterdam, 1996.

[325] D.B. Skillicorn and W. Cai. A cost calculus for parallel functional programming.

Journal of Parallel and Distributed Computing, 28(1):65–83, July 1995.

[326] D.B. Skillicorn, Jonathon M.D. Hill, and W.F. McColl. Questions and answers

about BSP. Scientific Programming, 6(3):249–274, 199.

[327] J.E. Smith and W.R. Taylor. Accurate modeling of interconnection networks in

vector supercomputers. In Proceedings of the 5th ACM International Conference on

Supercomputing, pages 264–272, 1991.

[328] Quinn Snell, Glenn Judd, and Mark Clement. Load balancing in a heterogeneous

supercomputing environment. In Proceedings of the International Conference on

Parallel and Distributed Processing Techniques and Applications, volume 2, pages

951–957, 1998.

[329] Quinn Snell, Armin Mikler, and John Gustafson. Netpipe: A network protocol

independent performace evaluator. In Proceedings of the IASTED International

Conference on Intelligent Information Management and Systems, June 1996.

[330] L. Snyder. Type architectures, shared memory, and the corollary of modest poten-

tial. Annual Review of Computer Science, pages 289–317, 1986.

[331] F. Sötz. A method for performance prediction of parallel programs. In Proceedings

of CON-PAR 90-VAPP IV (LNCS 457), pages 98–107, 1990.

[332] Standard Performance Evaluation Corporation. The SPEC benchmark suite. SPEC

Newsletter, 2(1), 1990.

[333] M. Steed and M. Clement. Performance prediction of PVM programs. In Proceedings

of the 10th IEEE International Parallel Processing Symposium, pages 803–807, April

1996.

[334] Thomas Sterling, Donald J. Becker, Michael R. Berry, Daniel Savarese, and Chance

Reschke. Achieving a balanced low-cost architecture for mass storage management

through multiple fast Ethernet channels on the Beowulf parallel workstation. In

Proceedings of the 10th IEEE International Parallel Processing Symposium, 1996.

[335] Thomas Sterling, Donald J. Becker, and Daniel Savarese. Beowulf: A parallel work-

station for scientific computation. In Proceedings of the International Conference

on Parallel Processing, 1995.

292 BIBLIOGRAPHY

[336] Thomas Sterling, Donald J. Becker, Daniel Savarese, Bruce Fryxell, and Kevin

Olson. Communication overhead for space science applications on the Beowulf

parallel workstation. In Proceedings of the 4th International Symposium on High

Performance Distributed Computing, 1995.

[337] W. Richard Stevens. TCP/IP Illustrated, Volume 1. Addison-Wesley, Reading,

Massachusetts, 1994.

[338] W. Richard Stevens (ed.). TCP slow start, congestion avoidance, fast retransmit,

and fast recovery algorithms. Technical Report RFC 2001, National Optical As-

tronomy Observatory, USA, January 1997.

[339] B. Stramm and F. Berman. Predicting the performance of large programs on scal-

able multicomputers. In Proceedings of the Scalable High Performance Computing

Conference, pages 22–29, April 1992.

[340] Theodore B. Tabe, Janis Hardwick, and Quentin F. Stout. Statistical analysis of

communication time on the IBM SP2. Computing Science and Statistics, 27:347–

351, 1995.

[341] Anthony Tam Tat Chun. Performance Studies of High-Speed Communication on

Commodity Cluster. PhD thesis, University of Hong Kong, December 2001.

[342] Anthony Tam Tat Chun and Cho-Li Wang. Realistic communication model for

parallel computing on cluster. In Proceedings of the International Workshop on

Cluster Computing, pages 92–101, 1999.

[343] Wi Bing Tan and Peter Strazdins. The analysis and optimization of collective

communications on a Beowulf cluster. In Proceedings of the International Conference

on Parallel and Distributed Systems, December 2002.

[344] Athar B. Tayyab and Jon G. Kuhl. Stochastic performance models of parallel task

systems. In Proceedings of the ACM SIGMETRICS Conference on Measurement

and Modeling of Computer Systems, pages 284–285, 1994.

[345] The LAM Team. LAM MPI 6.1. Available from http://www.lam-mpi.org/.

[346] D.R Thoman, L.J. Bain, and C.E. Antle. Inferences on the parameters of the Weibull

distribution. Technometrics, 11(5):445–460, 1969.

[347] P. de la Torre and C.P. Kruskal. Submachine locality in the bulk synchronous

setting. In Proceedings of the 2nd International Euro-Par Conference (LNCS 1124),

1996.

http://www.lam-mpi.org/

BIBLIOGRAPHY 293

[348] D. Towsley, G. Rommel, and A. Stankovic. Analysis of fork-join program response

times. IEEE Transactions on Parallel and Distributed Systems, 1(3):286–303, July

1990.

[349] T. Tsuei and M.K. Vernon. Diagnosing parallel program speedup limitations us-

ing resource contention models. In Proceedings of the International Conference on

Parallel Processing, volume 2, pages 185–189, 1990.

[350] A.M. Turing. On computable numbers, with an application to the Entschei-

dungsproblem. Proceedings of the London Mathematical Society (series 2), 42:230–

265, 1936-7.

[351] Keith Underwood, Ron R. Sass, and Walter B. Lignon III. Acceleration of a 2D-

FFT on an adaptable computing cluster. In Proceedings of the IEEE Symposium

on Field-Programmable Custom Computing Machines, April 2001.

[352] United States Department of Defense and AdaTEC and SIGPLAN Technical Com-

mittee on Ada. Reference manual for the Ada programming language, 1982.

[353] Sathish S. Vadhiyar, Graham E. Fagg, and Jack Dongarra. Automatically tuned

collective communications. In Proceedings of Supercomputing, pages 46–57, 2000.

[354] L.G. Valiant. A bridging model for parallel computation. Communications of the

ACM, 33(8):103–111, August 1990.

[355] A.J.C. van Gemund. Performance Modeling of Parallel Systems. PhD thesis, Delft

University of Technology, Information Technology and Systems, April 1996.

[356] Kees van Reeuwijk, Arjan J.C. van Gemund, and Henk J. Sips. Spar: A program-

ming language for semi-automatic compilation of parallel programs. Concurrency:

Practice and Experience, 9(11):1193–1205, 1997.

[357] F.A. Vaughan, D.A. Grove, and P.D. Coddington. Network performance issues in

two high performance cluster computers. In Proceedings of the Australian Computer

Science Conference, February 2003.

[358] B. Veltman, B.J. Lageweg, and J.K. Lenstra. Multiprocessor scheduling with com-

munication delays. Parallel Computing, 16:173–182, 1990.

[359] Virtutech. Simics home page. Available from http://www.simics.com/.

[360] D.F. Vrsalovic, D.P. Siewiorek, Z.Z. Segall, and E.F. Gehringer. Performance predic-

tion and calibration for a class of multiprocessors. IEEE Transactions on Computers,

37(11):1353–1365, November 1988.

http://www.simics.com/

294 BIBLIOGRAPHY

[361] H. Wabnig and G. Haring. PAPS - the parallel program performance prediction

toolset. In Proceedings of Computer Performance Evaluation: Modelling Techniques

and Tools (LNCS 794), May 1994.

[362] Michael S. Warren, Donald J. Becker, M. Patrick Goda, John K. Salmon, and

Thomas Sterling. Parallel supercomputing with commodity components. In Proceed-

ings of the International Conference on Parallel and Distributed Processing Tech-

niques and Applications, pages 1372–1381, 1997.

[363] B. Wegbreit. Mechanical program analysis. Communications of the ACM, 18:528–

539, September 1975.

[364] Wallodi Weibull. A statistical distribution function of wide applicability. Journal

of Applied Mechanics, 18:293–297, 1951.

[365] Waloddi Weibull. A statistical representation of fatigue failure in solids. Transact-

ions on the Royal Institute of Technology, 27, 1949.

[366] P.J. Weinberger. Cheap dynamic instruction counting. Bell Systems Technical

Journal, 63:1815–1826, October 1984.

[367] Yuhon Wen and Geoffrey C. Fox. A performance estimator for parallel hierarchical

memory systems - PetaSIM. In Proceedings of Parallel and Distributed Systems,

pages 205–210, August 1999.

[368] R. Clint Whaley. Installing and testing the BLACSv1.1, May 1997.

[369] Shirley A. Williams. Programming Models for Parallel Systems. Wiley, New York,

1990.

[370] Joel Williamson. Convex Computer Corporation.

[371] W. Willinger, M.S. Taqqu, W.E. Leland, and D.V. Wilson. Self-similarity in high-

speed packet traffic: Analysis and modelling of Ethernet traffic measurements. Stat-

istical Science, 10:67–85, 1995.

[372] W. Willinger, M.S. Taqqu, R. Sherman, and D.V. Wilson. Self-similarity through

high-variability: Statistical analysis of Ethernet LAN traffic at the source level.

IEEE/ACM Transactions on Networking, 5:71–85, 1997.

[373] Frederick Wong, Richard Martin, Rmezi Arpaci-Dusseau, and David Culler. Archi-

tectural requirements and scalability of the NAS parallel benchmarks. In Proceed-

ings of the Conference on High Performance Networking and Computing, November

1999.

BIBLIOGRAPHY 295

[374] J. Worlton. Towards a taxonomy of performance metrics. Parallel Computing,

17:1073–1092, 1991.

[375] Y. Yang, X. Zhang, and Y. Song. An effective and practical performance prediction

model for parallel computing on non-dedicated heterogeneous NOW. Journal of

Parallel and Distributed Computing, 38(1):63–80, October 1996.

[376] N. Yazici-Pekergin and J.M. Vincent. Stochastic bounds on execution times of par-

allel programs. IEEE Transactions on Software Engineering, 17:1005–1012, October

1991.

[377] H. Zima, H. Bast, and M. Gerndt. SUPERB: A tool for semi-automatic

MIMD/SIMD parallelization. Parallel Computing, 6:1–18, 1988.

[378] Albertus P. Zwart. Queueing Systems with Heavy Tails. PhD thesis, Eindhoven

University of Technology, September 2001.

	Abstract
	Declaration
	Acknowledgements
	Parallel Computing
	Introduction
	Parallel Computers
	Parallel Programs
	Performance Modelling
	Thesis Outline

	Performance Modelling Techniques
	Introduction
	Amdahl
	Fortune and Wylie
	Hoare; Milner; Alur and Dill
	Valiant
	Hockney
	Saavedra and Smith
	Culler et al.
	Grama et al.
	Adve
	Singh et al.
	Mehra et al.
	Parashar and Hariri
	Skillicorn
	Crovella and LeBlanc
	Mraz; Tabe et al.
	Clement, Quinn and Steed
	Islam
	Jonkers
	van Gemund
	Labarta and Girona et al.
	Dunlop and Hey et al.
	Becker et al.
	Gautama
	Tam and Wang
	Kranzlmüller and Schaubschläger
	Magnusson et al.; Hughes et al.
	An Overview of the Approaches

	The PEVPM Performance Model
	Introduction
	Key Features of Performance Models
	Scope
	Modelling Message-Passing Codes
	Modelling Local Processing
	Modelling Communication Events
	Combining Processing and Communication Models
	The Modelling Formalisms
	Building a PEVPM Model

	Automatic Performance Evaluation
	Advantages of the PEVPM Approach
	Implications for Other Parallel Methodologies
	Summary

	Benchmarking Point-to-Point Communication
	Introduction
	Existing Message-Passing Benchmarks
	Genesis/PARKBENCH
	NetPIPE
	Pallas MPI Benchmarks
	MPBench
	Mpptest
	SKaMPI
	Profiling Tools
	Limitations of Existing Techniques

	Design and Implementation of MPIBench
	Constructing a Timing Harness
	An Accurate Global Clock
	Communication Patterns
	Generation of Results

	Benchmarking Experiments
	Machines Used
	Tests Performed

	Results for MPI_Isend
	Inter-node, end-to-end completion time
	Intra-node, end-to-end completion time
	Inter-node, local completion time

	Results for MPI_Sendrecv
	Analytical Models
	Stability and Interference
	Summary

	Benchmarking Collective Communication
	Introduction
	Results for MPI_Bcast
	Results for MPI_Barrier
	Results for MPI_Scatter and MPI_Gather
	Results for MPI_Alltoall
	Discussion of Collective Computation
	Summary

	Case Studies
	Introduction
	Jacobi Iteration
	Bag of Tasks
	Fast Fourier Transform
	Summary

	Conclusions and Further Work
	PEVPM Definitions
	Using MPIBench
	Running MPIBench
	Customising MPIBench

	Bibliography

