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Abstract

Electronically displayed images are becoming increasingly important as an interface between
man and information systems. Lengthy periods of intense observation are no longer unusual.
There is a growing awareness that specific demands should be made on displayed images in
order to achieve an optimum match with the perceptual properties of the human visual system.
These demands may vary greatly, depending on the task for which the displayed image is to be
used and the ambient conditions. Optimal image specifications are clearly not the same for a
home TV, a radar signal monitor or an infra-red targeting image display. There is, therefore,
a growing need for means of objective measurement of image quality, where “image quality”
is used in a very broad sense and is defined in the thesis, but includes any impact of image
properties on human performance in relation to specified visual tasks.

The aim of this thesis is to consolidate and comment on the image measure literatures, and
to find through experiment the salient properties of electronically displayed real world complex
imagery that impacts on human performance. These experiments were carried out for well
specified visual tasks (of real relevance), and the appropriate application of image measures to
this imagery, to predict human performance, was considered.

An introduction to certain aspects of image quality measures is given, and clutter metrics
are integrated into this concept. A very brief and basic introduction to the human visual system
(HVS) is given, with some basic models. The literature on image measures is analysed, with a
resulting classification of image measures, according to which features they were attempting to
quantify.

A series of experiments were performed to evaluate the effects of image properties on human
performance, using appropriate measures of performance. The concept of image similarity was
explored, by objectively measuring the subjective perception of imagery of the same scene, as
obtained through different sensors, and which underwent different luminance transformations.
Controlled degradations were introduced, by using image compression. Both still and video
compression were used to investigate both spatial and temporal aspects of HVS processing. The
effects of various compression schemes on human target acquisition performance were quantified.
A study was carried out to determine the “local” extent, to which the clutter around a target,
affects its detectability. It was found in this case, that the excepted wisdom, of setting the local
domain (support of the metric) to twice the expected target size, was incorrect. The local extent
of clutter was found to be much greater, with this having implications for the application of
clutter metrics. An image quality metric called the gradient energy measure (GEM), for quan-
tifying the affect of filtering on Nuclear Medicine derived images, was developed and evaluated.
This proved to be a reliable measure of image smoothing and noise level, which in preliminary
studies agreed with human perception The final study discussed in this thesis determined the
performance of human image analysts, in terms of their receiver operating characteristic, when
using Synthetic Aperture Radar (SAR) derived images in the surveillance context. In partic-
ular, the effects of target contrast and background clutter on human analyst target detection
performance were quantified. In the final chapter, suggestions to extend the work of this thesis
are made, and in this context a system to predict human visual performance, based on input
imagery, is proposed. This system intelligently uses image metrics based on the particular visual
task and human expectations and human visual system performance parameters.
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Part 1
BACKGROUND

Summary: Part one of this thesis covers background material which will be useful as
a foundation for further discussion of the research discussed in parts 2 & 3. This includes
a brief introduction to the human visual system, basic models and psychophysics. A
comprehensive survey of the literature on image measures is given, including the place
of image quality and clutter measures in this context. An outline of the psychophysical
experimental methods and analysis techniques, used in this thesis, is given in the last

chapter of this section.



Chapter 1

Introduction

Summary: This chapter provides an overview of the work described by this thesis
and an introduction to certain aspects of image quality measures, where quality
is defined in the context of this thesis and clutter metrics are integrated into this
concept. A very brief and basic introduction to the human visual system is given
with some basic models. The final section highlights the sections of work in this

thesis that are original contributions.

1.1 Overview

Electronically displayed images are becoming increasingly important as an interface between
man and information systems. Lengthy periods of intense observation are no longer unusual.
There is a growing awareness that electronic displays should be designed, so that an optimal
match between the displayed image and the perceptual properties of the human visual system
(HVS) can be achieved. The resulting demands placed on the display characteristics may vary
greatly, depending on the task for which the displayed image is to be used and the ambient
conditions. Image specifications that are optimal for achieving such a match are clearly not the
same for a home TV, a radar signal monitor or an infra-red targeting image display. There is
therefore a growing need for means of objective measurement of image quality, where “image

7

quality” is used in a very broad sense and will be defined later, but includes any impact of image

properties on human performance in relation to specified visual tasks.

The aim of this thesis is to consolidate and comment on the image measure literatures,
to find through experiment the salient properties of electronically displayed real world complex
imagery that impact on human performance for well specified visual tasks (of relevance to real-
world issues), and from the data collected consider the appropriate application of image measures

to this imagery to predict human performance.
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1.1.1 Overview of Image Metrics

We are living in the digital age, with the widespread presence of digital technology. Imaging
technology is also rapidly becoming digital, in all areas including medical, military and even
television broadcasting is going digital. This introduces advantages, such as high quality repro-
duction and the possibility of image processing by computer. However, the quantity of data

generated gives rise to associated problems of transmission and storage.

Image processing techniques, such as enhancement and restoration, are used to improve
the quality of degraded images or maintain their quality despite degrading processes such as
compression. However, when these image processing techniques are employed, the question
arises as to how to evaluate the image processing algorithms. This implies that a method is
needed to quantify the quality of the processed image. Therefore measures are required which
characterise the salient properties of an image in a quantitative manner; i.e. the particular

qualities of the image need to be measured.

In the literature, the term “image quality measure” or “metric”! defines the term “quality”
ultimately with reference to the subjective judgement of an human observer 2. Frequently,this
judgement is applied to images only in an aesthetic sense, as for example in the viewing of televi-
sion images (Van Dijk and Martens, 1997; Malo et al., 1997). In this thesis however, the research
is more concerned with the usefulness or utility of an image for practiced interpreters, than with
its aesthetic appeal for naive observers. This position was really adopted as a consequence of
the psychophysical experiments described in this thesis, in particular Chapter 4, which showed
that image quality is only meaningful in the context of a specific visual task. The term “quality”
is also used in a different way, referring to particular characteristics of an image such as edge,
texture or clutter® properties. Obviously the image measures must be defined with reference to

the human observer to be useful in a practical way.

The image measures applied to clutter (clutter measures) have a literature (see section 2.6
in Chapter 2.) which is separate from the image quality measure literature, but is viewed in
this thesis as a specific application of the same type of image measure as that defined for image
quality. However, the definition of clutter measures usually requires an additional condition,
in that they are normally specified with reference to a visual target.*. This may not always
be apparent, since some clutter measures are used in effect to define texture in much the same
way as image quality measures (see Chapter 2). Nevertheless, as will be shown later, the term
“clutter” in practice refers to the difficulty in seeing a target, so it makes little sense to talk
about clutter without reference to a target or target class. A good illustration of this point is

the Waldman clutter metric used in Chapter 9.

!The difference between measure and metric will be discussed in Chapter 2.

2Even though image quality is sometimes measured in a purely objective way, if the image of interest is to be
viewed by a human observer, then the image quality (and its measure) are referenced to the human observer’s
assessment

3Clutter is here defined as any structure in the image apart from the target, which masks the target or confuses
the observer as to the location and/or class of the target. This is a major subject of investigation in chapters 2
and 7.

4Visual target acquisition is discussed in Part 2 of this thesis.
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A review of the literature shows a modest effort (based on the number of publications)
over the previous 20 or so years to develop quantitative image quality criteria. There was little
effort until the mid 1970’s, before advances in image processing technology. By the end of that
decade, this effort began to wane. A short spurt of activity occurred in the mid eighties and
then decayed to a low level. However, these efforts have met with only limited success. In many
cases, the objective measure of image quality does not correlate with its subjective evaluation.

Two major reasons contributing to this result are:

(i) No allowance has been made in the quality model for the response of the human visual

system (or there is a lack of understanding of the same);

(ii) Misinformation or incomplete knowledge on the part of the person designing or selecting

the metric, concerning the purposes for which the human observer is using the image(s).

With reference to item (i), it is known that subjective judgements of image quality depend on
the purpose for which the image is to be used (Biberman, 1973; Briggs, 1980; Loo et al., 1984).
For example, it may be expected therefore that the relative importance of the various physical
image parameters should reflect this when assessing subjective image quality. Further, one may
expect that the combination of physical image parameters that are optimal for an applied task,
should depend on the task considered.

These matters make it questionable as to whether image quality could ever be expressed
in a single general measure. For example, as a result, most authors have attempted to define a
measure of a single aspect or a small number of aspects of image quality, often in the context
of some specific tasks. However, there have been some attempts to quantify image quality in a
single measure or metric, with limited success (these will be discussed in Chapter 2). Metz (Metz,

1977) classifies image quality measures into three basic types:

(i) Physically measurable functions that describe a single aspect of the imaging properties of
the imaging system, such as resolution (point spread function [PSF], line spread function
[LSF], optical transfer function [OTF], modulation transfer function [MTF] (see Chapter 2)

or noise (autocovariance function [acvf] or Wiener spectrum);

(ii) Numbers or functions that attempt to provide a correlate with image quality by combining
some of the above descriptors or their derivatives, and, in some cases, by attempting to
take into account the object to be imaged, e.g., information capacity, various signal to

noise ratios (S/Ns), expected squared difference between object and image etc, and

(iii) measures of performance of a human observer who employs the visual data provided by
a series of images to make decisions. These empirical measures may be functions, such
as detection curves or receiver operating characteristic (ROC) curves (see Chapter 3), or

numbers derived from these.

According to Metz, if one defines high quality images as ones that are wuseful, then these are

appropriately characterised by type (iii) descriptors. Only type (i) measures are immediately
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available to characterise an imaging system. Although type (ii) measures attempt to relate
type (i) and (iii) measures, as discussed in Chapter 2 and shown in this thesis, they are unreliable

and often disagree due to the dependence of the measure upon the application.

A useful tool to bridge between the physical measures and the human observer performance
is signal detection theory (see Chapter 3). Firstly, it can be used to compute type (iii) measures
of the performance of a hypothetical “ideal” decision maker, operating on physical image data
which are similar to those available to a human observer (Green and Swets, 1966b; Barrett
et al., 1993; Burgess, 1995); these image data are obtained through the application of the
type (i) measures of the system as well as information about the imaged object. By using the
ideal observer as a first order model of the human observer, it is possible to predict the effects
of various object and imaging system properties on decision performance. It is also possible to
attack the problem from the other direction, by inferring type (i) image attributes from empirical
type (iii) measures of human observer performance, combined with a knowledge of the visual
properties of the human observer. This latter approach is adopted in this thesis, where both a
knowledge of the performance, and the visual properties, of the human observer were obtained

through experiment.

1.2 The Human Visual System (HVS)

The following is a brief function description of the HVS. This description gives a basic account
of the structure, function and psychophysics of the HV'S. Some basic models of the HV'S are also

presented.

1.2.1 Functional Description of the HVS

Shown in figure 1.1 is a diagram of the cross-section of the eye, with the major components
labelled. Light enters the eye through the cornea and lens which together focus this light as an
image on to the retina, at the back of the eye. The amount of refraction of the light is controlled
by the thickness of the lens, which in turn is controlled by the Ciliary muscles attached to it,
thus allowing focusing of the image. The eye optics are not perfect and have a spread function
that degrades the image. Further image degradation is caused by involuntary eye movements.
These consist of slow drifts from the point of fixation, that occur at intervals of about 0.3 to
0.7 seconds, as well as high frequency tremors. Though these movements degrade the image,
they are important in maintaining continuous visibility of the visual field, since an image that
is stationary on the retina fades and eventually disappears. These eye movements are distinct
from rapid eye movements known as saccades which direct the gaze to a point of fixation in a

scene.

The retina itself is a complex structure, where a considerable amount of image pre-processing
occurs. The retina is shown diagrammatically in figure 1.2. The retina consists of several dif-
ferent layers of different cells. The light-sensitive layer of the retina consists of photoreceptors,

which are at a point of the layer farthest from the centre of the eye. Therefore, light must pass
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Figure 1.1: Cross-Section of the eye, showing gross anatomy. (From “Digital Pictures - Repre-
sentation and Compression” by A. N. Netrauali and B. G. Haskell, 1988, Plenum Press.)

through all the layers of nerve cells before reaching the receptors.

The photoreceptors, which contain photosensitive pigments, are of two kinds: rods and
cones. In the region surrounding the fovea, only densely packed cones are found. As the
distance from the fovea is increased however, the density of cones decreases while the rod density
increases. Cones are primarily responsible for spatial acuity and colour vision at normal daylight
levels (photopic vision), while rods facilitate low light monochromatic (scotopic) vision. There
is a light level range between the photopic and scotopic ranges known as the mesopic region
where both rods and cones provide vision. These photoreceptors become less sensitive as the
ambient light level increases, that is they adapt to different light levels. This is achieved by the
light bleaching the light sensitive pigment in the photoreceptors, thereby reducing their light

sensitivity. A new dynamic equilibrium is set up for each light level.

Shown in figure 1.2 is the simplified diagram of the interconnection of the various cells in
the retina. As can be seen, the photoreceptors synapse (chemical connection) with the bipolar
cells that populate layers of the retina closer to the lens. These bipolar cells in turn synapse
with the ganglion cells, whose axons form the fibres of the optic nerve, along which the image
data is transmitted (in the form of electrical impulses) to the brain. A small area, around where

the optic nerve leaves the eye, is devoid of photoreceptors, resulting in a “blind spot”.

Numerous lateral connections exist between the neurons in the retina, such as horizontal
and amacrine cells. These are responsible for amplitude companding® and spatial frequency
pre-emphasis of the visual signal by mediating the sensitivity of the ganglion cells to light. This
lateral inhibition results in a reduction of signal from a cell when the neighbouring cells are also

producing a signal. Lateral inhibition is mediated by the lateral connections of the horizontal and

% Companding is short for compressing and expanding. This is used in engineering systems to improve dynamic
range, where the compression is usually a log-like function and expansion is via the inverse function.
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Figure 1.2: Structure of the Retina. Representation of the interconnections between recep-
tors and bipolar, ganglion, horizontal and amacrine cells. (From “Organization of the Primate
Retina: Electron Microscopy”, by J. E. Dowling and B. B. Boycott, Proc. Royal Soc. B, 166,
pp. 80-111)

amacrine cells. This results in a receptive field for each ganglion cell that exhibits an excitory
region in the centre surrounded by an inhibitory region; i.e. light stimulating a ganglion cell
raises its response, but light stimulating surrounding ganglion cells inhibits its response (the
total response being the sum). Thus a stimulating pattern with “centre on surround off” will

elicit the greatest response. These receptive fields are generally circularly symmetric.

The nature of transmission of visual information is by electrical impulses (action potentials).
At synapses these signals are transmitted via chemical agents, over a small gap, which modify
the potential at the target cell membrane. The signal is encoded by the “firing rate” of the

transmitting cell.

Shown in figure 1.3 is a plot of firing rate versus stimulus intensity, for various levels of
light adaptation. The active response region is shifted with different background illumination
levels. In the active region the firing rate is almost linearly related to the log of the intensity

and virtually independent of background illumination.

Figure 1.4 shows a schematic diagram of the visual pathway beyond the retina. Most of
the visual processing takes place at this stage, but is not completely understood and beyond the
scope of this thesis; however, a basic description of the visual pathway follows. At the Optic

Chiasma the fibres of the optic nerve split in a way that depends upon which half of each retina
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Figure 1.3: Light Level Adaptation: Firing rate as a function of stimulus intensity for several
background intensity levels. (From “Digital Pictures - Representation and Compression” by A.
N. Netrauali and B. G. Haskell, 1988, Plenum Press.)

they originate in. Fibres from the right half of each retina go to the Lateral Geniculate Nucleus
(LGN) on the right side of the brain and fibres from each left half retina reach the LGN on the
left side of the brain. At the LGN each half of the visual field is mapped to the appropriate part

of the visual cortex, where significant visual processing and visual perception occurs.

1.2.2 Visual Psychophysics

)

In visual psychophysics the “black box” approach is taken, where visual stimuli are the inputs
and prescribed sensations are the output. The “transfer function” of the black box describes the
system. In the context of image quality, the consideration of just noticeable differences (JNDs)
is important. In relation to this, an important parameter is the visibility threshold of a stimulus.
This is defined as the magnitude of a stimulus that becomes just noticeably different; i.e. the
probability of detection for a human observer is 50%. There has been considerable work done
in the past on this subject, which will be briefly discussed. However, there are fewer data on
suprathreshold psychophysics, probably due to this being a much more difficult and less precisely

defined problem.

1.2.3 Models of the Human Visual System

During the past few decades it has become common to model the HVS. This is probably due
to the recent increase in physiological and psychophysical data, coupled with technological ad-
vances. With the advent of digital image processing and analysis, and more recently computer

vision, impetus has been given to visual modelling.

In earlier times, the aim of visual models was to explain the functioning of biological systems
without regard to applications. However, recent models are frequently intended to be integrated

into hardware and software systems and have thus become more mathematical in nature.

Here only monochrome models are discussed, but colour models are usually a straight
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Figure 1.4: Visual Pathway: Diagram of the visual pathways from each eye to the visual cortex,
via the Optic Chiasma and the Lateral Geniculate Nucleus (LGN). (From “Digital Pictures -
Representation and Compression” by A. N. Netrauali and B. G. Haskell, 1988, Plenum Press.)

forward extension involving three spectrally dependent versions of the monochrome model. De-
scribed here are some of the early and basic mathematical models which address the salient
properties of the HVS. There are many more complicated and complete models which are cov-
ered quite well in a book edited by Peli (Peli, 1995).

Shown in figure 1.5(a) is a simple achromatic model of the HVS. This model was found
to have a high frequency roll-off that was a function of contrast. In particular, the system
sensitivity to high spatial frequencies was found to decrease with increase in contrast (Hall and
Hall, 1977). However, this model can be simplified, as shown in figure 1.5(b), and does not
exhibit the above properties (Hall, 1981). Tt is assumed in this simplified model that the input
intensity range is in a linear portion of the logarithmic curve. This allows the low-pass spatial
filter to be combined with the high-pass filter to produce a band-pass filter. Hall (1977) used

filters depicted in figure 1.5(a) with the following transfer functions:

0.14

Hirl) =529 502

(1.1)
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Figure 1.5: A simple achromatic model of the HVS produced by Hall (1981). Here the non-linear
intensity response of the HVS is modelled by the logarithmic (log) function, while the spatial
frequency response of the HVS is modelled by simple filters.

This corresponds to 3mm diameter pupil and has its 3dB cutoff at 6.6 cycles/degree.

1074 + w?
H = 1.2
1) = 1105 4 0.807 (12
1.2.4 Contrast Sensitivity Model
Consider an intensity pattern u(z,y) of a grating at an angle 0 to the horizontal, so that
u(z,y) =U + ap(x cosf — ysinh), (1.3)

where U is the background level and p(-) is a periodic function (quite often a sinusoid).

For many variations of p and U researchers have measured the contrast sensitivity; i.e. the
ratio % at which the subject can just detect the grating with a uniform background. Manos and
Sakrison (1974) state, based on the work of others, that the contrast sensitivity model has the

form

_f
(g> ~ cie fo (1.4)
@ / threshold f(]

The value of fj, the peak of the curve (figure 1.6), falls between 3 and 5 cycles/degree of viewing

angle. In this model the HVS is assumed to be isotropic, even though this is not true. After
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the initial nonlinearity, the HVS response can be considered linear over a moderate range of
intensities. The nonlinear component is described as a monotone increasing convex function of

the form

b
flu) =, (1.5)
where u is the pixel intensity and b is a positive real number.

The best value for b, according to subjective evaluation, was reported as being 0.33 (Mannos
and Sakrison, 1974). Shown in figure 1.7 is the nonlinear intensity mapping function defined in
(1.5), while figure 1.6 shows a plot of the linear part of the HVS model and is defined by

k1 7/‘77,]62

A =l +adt e (1.6)
0

The parameters ¢y, co, k1, ko and fy are chosen experimentally for best results. Typical values
for the HVS are: ¢; = 0.2, ¢; = 0.081, k; = 1.0, ks = 1.0 and fy = 5.55 (Nill, 1985). The
plot of (1.6) with the parameter values just listed, is shown in figure 1.6. Since (1.6) is assumed
isotropic, the radial frequency is defined as f, = ,/f2+ f2, where f, and f, are the spatial
frequencies in the z and y directions respectively. The input to the linear component is the

output of the nonlinear portion of the model. The type of models just discussed are useful

Af) A
1.0

0.5

0 15 30 45 60
Spatial Frequency (cycles/deg)

Figure 1.6: Model of HVS Spatial Response.

in describing the general behaviour of the HVS, but they are not adaptive to different types
of image scenes being presented, nor do they reflect any “higher level” input. For example, in
the context of a specific visual task, such as searching a scene for a specific target, the HVS
“parameters” are modified by higher level input. The HVS is tuned to recognise the specific

target, so knowledge about likely areas in the scene to search are included as input to the HVS.
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HVS Intensity Response
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Figure 1.7: Model of HVS nonlinear Intensity Response.
1.3 Categories of Image Measures

Different approaches have been taken by researchers in categorising image measures, and one
possible partition has been already discussed in section 1.1. Other authors have taken differ-
ent approaches in categorising image measures, based on their mode of application, which are
discussed in the remainder of this section and in Chapter 2. In terms of application, image mea-
sures have been divided into two main groups of either similarity measures or interpretability
measures. Each of these can be evaluated by objective or subjective means at a global or local
level (figure 1.8). It should be noted that these classification schemes are not mutually exclusive;

i.e. they are not competing schemes.

1.3.1 Image Similarity and Image Interpretability

It has been stated in the literature that an important property of an image quality measure is
that it correlates with image interpretability (or utility) (Briggs, 1980; Todd-Pokropek, 1976;
Metz et al., 1976). However, image similarity (or fidelity) is important when the aesthetics of
the imagery is paramount, such as in images for entertainment; e.g., television viewing. In this

thesis more consideration is being given to the former class of image metrics.

1.3.2 Global vs Local Image Measures

The application of image measures can be at the global or local level. Of course the definition of
some measures may preclude the application of the measure at a particular level. In the case of
a global measure the support for the measure is the entire image(s), whereas for a local measure

the region of support is confined to some local area of interest.
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QUALITY
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Fidelity or Intelligibility or
Similarity Interpretibility
APPLICATION
Objective Subjective
Global Local

Figure 1.8: Categorisation of Image Measures.

In some instances (maybe most) a global measure may not correlate with an evaluation of
the quality of an image by a user as he/she will tend to pay attention to those features in the
image of relevance to his/her application. It has also been suggested that such a user will assess
the image quality by judging the areas of most degradation; in fact it has been suggested that
the user rates the image by a weighted average of the worst two or three regions (Limb, 1979;
Ohtsuka et al., 1988).

Image measures that have been designed as global measures can sometimes be applied in
a local sense. For example, they can be applied to the local neighbourhood of each pixel, in a
moving window fashion, or to adjacent blocks (which is cheaper computationally). Following
the suggestion of Limb cited above, the (2 or 3) neighbourhoods/blocks with the worst quality
can be averaged to produce a measure of global image quality. It is interesting to observe that,
if the image distortion is additive, then a local measure should be similar to the global measure
and should approach it as the size of the region of support increases to include that of the whole

image.

In the case where the interpreter/user is interested in some feature(s) in the image an-
other approach is required. Here the local image measures must characterise the local feature.

Examples of such features are edges and texture.
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1.4 Contributions of this Thesis.

This section briefly outlines each chapter and identifies the parts I believe to be original contri-

butions.

Chapters 1 and 2 provide an introduction to certain aspects of image quality measures,
where “quality” is defined in the context of this thesis and clutter metrics are integrated into this
concept. An analysis of image measures that have been classified according to the features they
are attempting to quantify is provided. The relevant literature is reviewed and image measures
are categorised according to their underlying principles and the intended mode of application.
This provides new insights into the various image quality metrics - including clutter metrics -

and their interrelationships.

Chapter 4 describes a study which investigates how humans relate to the same scene in-
formation presented both as infra-red (IR) imagery and optical imagery. Also a subjective
methodology to produce an interval scale as a metric of image similarity was investigated, and
some basic image quality metrics were implemented to get a feel for their application. Though

this study was only preliminary, some new results were reported.

In the context of the interpretation of image similarity, it was found that the usual statistical
type of image measure was inadequate. It was found that, in order to capture the complexity of
the images, measures of local (region-based) image properties are required. In order to analyse
the relationships between image objects, syntactic/semantic® (Gonzalez and Wintz, 1987a) type

of measures are also required.

The aims of Chapter 5 include that of analysing human visual performance under a well-
defined visual task, with imagery that has undergone degradation. Image compression was
chosen as the means of degradation because it is controllable and image compression has practical
application. Two methods of static image compression - JPEG and a fractal-based method - were
compared in terms of the detectability of simple targets following compression and decompression

of the images containing such targets.

This work presents new results on the comparative performance of JPEG and Fractal image
compression. This is also novel in that compression algorithms, such as JPEG have traditionally
only been tested by using subjective panels to rate the aesthetic image quality of the compressed
images. In contrast, this study introduces the idea of image quality measures that are task
oriented. The results of this work also give some useful rules of thumb for the use of image
compression in the surveillance context. Further insights into human perception which have

general application are also given.

Chapter 6 describes work on the effects of video compression on visual tasks. This work
continues the still image compression experiments on target detection on in a similar vein,
but examines the effects of video compression on target recognition. A set of video compression
experiments were performed which required observers to recognise targets in randomly presented

video sequences. The sequences had controlled levels of contrast and multiplicative noise, and

SThat is, structural and relational aspects of the objects within the image scene itself.
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were compressed and de-compressed at a variety of compression levels using MPEG-2 encoding

under standard settings.

Again, as for still compression, the usual protocol for testing video compression, particularly
by MPEG working groups, was to do subjective rating of aesthetic video quality. This study took
a new approach in analysing the effects of MPEG compression on human visual performance.
This would be important if, as is likely, compression is used in a surveillance or similar context.
The effects of MPEG-2 compression in this context were quantified and it was found that large
compression ratios were required to significantly degrade human performance. The experiment
indicated that this was largely due to temporal integration in the HVS. Learning effects were

examined and quantified and comments made on individual differences in perceptual cognition.

Chapter 7 deals with the effects of clutter on human target acquisition. In theory, properties
of clutter can be defined globally or locally. However, in the literature, the distinction between
local and global clutter is arbitrary, and the standard approach of setting the local domain
(support of the metric) to twice the expected target size is adopted without any justification.
This work addresses this issue and considers the implications for the application of clutter

metrics.

Although this study is largely exploratory, it has shown that the accepted practice in
applying clutter metrics is incorrect. The local extent to which clutter effects target detection
was shown to be, in this instance, much greater than twice the target size, for targets smaller
than 0.8° radius. A model was presented explaining these phenomena, indicating that the auto-
covariance function characterising the clutter is the main determinant of the size of the region

of local clutter, and that this region is reduced for larger targets.

Chapter 8 considers the effects of image processing parameters on the clinical value of
Single Photon Emission Computed Tomography (SPECT) images. The overall long-term aim

is to develop an automatic system for optimal image filter parameter adjustment.

A new measure, called the gradient energy measure (GEM), for quantifying the effect of
filtering on SPECT images was developed and evaluated. This proved to be a reliable measure of
image smoothing and noise level, which, in preliminary studies, agreed with human perception.
There is a model of HVS function that appears to be modelled to a first order by the GEM.
This model is known as the “energy integrator” model (Green and Swets, 1966¢c; Moulden et al.,
1990).

Chapter 9 describes a study which determined the performance of human image analysts
in the surveillance context, using Synthetic Aperture Radar (SAR) derived images, in terms of
the analyst’s receiver operating characteristic. The experiment was designed to correspond as
closely as possible to the expected real world mode of operation of the analysts using similar

imagery.

The effects of target contrast and background clutter on human analyst target detection
performance were quantified and the Waldman (Waldman et al., 1988) clutter metric was val-
idated with real imagery. The findings in Chapter 7 were also re-enforced with real data in a

pseudo-operational context. The signal-detection-theory paradigm was extended by using the
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ROC in a non-classical way, and parametric versus non-parametric ROC development was ex-
plored, showing the latter to be more robust in this application. Many issues in regard to setting

up and performing a complex real world experiment were explored and discussed.

Chapter 10 contains a summary of the results of the thesis. In addition, the section on
further longer term work presents a proposal, based on the research in this thesis, for a new
system for performing image quality assessment; i.e. a system for predicting, given an actual

digital image, the human evaluation of image quality and utility.
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Chapter 2

Objective Measures of Image
Properties

Summary: This chapter contains an analysis of image measures that have been
classified according to those features they are attempting to quantify. The relevant
literature was reviewed and image measures were categorised according to their un-
derlying principles and their intended mode of application. Many of these measures
can be applied locally or globally, but some, such as edge measures, are local in
nature. These measures can also be classified as either similarity (fidelity) or inter-
pretability (intelligibility) measures. Clutter measures are regarded as a form of the

latter. Note that these classification schemes are mutually inclusive.

2.1 Introduction

The introductory chapter gave an overview of image measures and some broad classification
of these measures based on their purpose and mode of application; e.g., to be applied locally
or globally, and/or to measure image similarity or image information (interpretability). This
chapter contains an analysis of image measures which have been classified according to the
features they are attempting to quantify. In scrutinising the literature I have found five basic
classes of image measures to present themselves. They are listed here and will be discussed in

detail in the rest of this chapter.

(i) Distance measures, the most common being the mean square error (MSE);

(ii) Modulation transfer function (MTF') type measures. These are commonly used in assessing

imaging systems but can be used in assessing images directly;
(iii) Information theoretic measures;
(iv) Decision theoretic measures;

(v) Signal detection theoretic measures.
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The above listed measures are usually applied in a global sense, but could be applied with
local support; i.e. calculated over a localised area of the image. There exist another two classes
of measures that are usually applied to local features. These are “edge quality measures” and
“texture measures”, which are discussed in section 2.3, where often texture measures are in the

class of the entropy based measures; i.e. they are often an information theoretic measure (iii).

Loo, Doi and Metz (1984) classified image quality measures into two broad categories:

(i) displayed models: these treat the human visual system (HVS) as a perfect transfer device;
and

(ii) perceived models: these include the image transfer characteristics of the eye-brain system.

2.2 Global Objective Measures

As outlined in Chapter 1, the application of image measures can be at the global or local level.
Of course, the definition of some measures may preclude the application of the measure at
a particular level. In the case of a global measure the support for the measure is the entire
image(s), whereas for a local measure the region of support is confined to some local area of
interest. This section addresses the application of measures in a global sense, some of which

may also be applied in a local context. The next section addresses specifically local measures.

2.2.1 Distance and Related Measures

Measures aimed at rating image similarity are necessarily bivariate in nature; ¢.e. they require
two images to compute the measure. Here an image, of which the quality is to be judged,
is compared to some reference image. A typical application of this idea is where an image is
compressed and sent down a communications channel and then reconstituted, with the pre-

compressed image as the reference image to which the transmitted image is compared.

Now the quality of the image in question is determined by how closely it matches the
reference image, which can be obtained by measuring the difference or “distance”, in some
space, between the object image and the reference image. In the literature several approaches
have been adopted to measure these differences, but the main technique has been the use of the

p-norm distance measure, which is now defined.

Let X be an image that is to be compared to an image X so as to ascertain its quality. Let
both X and X consist of pixels with position co-ordinates (i,7) with 4,7 € {1,..., N}. Further,
let the intensity values of the pixels of X and X be given respectively by x;; and Z;;, where it

is assumed Vi, j : ;5,25 € {0,...,a — 1}, with a the number of intensity levels.

Definition 2.2.1
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The p-norm distance measure for the difference between X and X is

N N 1/p
dp(X,X) = ZZ |xij — .'f?z'j|p (21)

i=1 j=1

where p > 1. From the previous definition the following properties for dP (X, X ) can be derived.

Corollary 2.2.1

P(X,X)=0iff X = X, (2.2
dP(X,X)=dP(X,X), (2.3
(X, X)<dP(X,X)+d (X, X). (2.4)

The properties listed above define what is called a “metric” (Rosenfeld and Kak, 1982). Obvi-
ously from property 2.2, the distance measure must achieve its minimum when the object image
is the least distorted. Property 2.3 is trivial and self explanatory. Property 2.4 is a result of the
Minkowsky inequality (Mitrinovic, 1970).

There exists some commonly used special cases of the class of distance measure shown in
definition 2.2.1. These include the following:

NN
AN X, X) =30 i — gl (2.5)

i=1 j=1

This is the total absolute difference or error. Another measure is the peak-error (Rosenfeld and
Kak, 1982) which is defined as

lim d”(X, X) = max |z;; — ;5| = d°(X, X), (2.6)
ij

p—oQ

where the Euclidean distance is defined as

N N 1/2
P(X,X) = DD (i — #y5)° : (2.7)
i=1

% j=1

One shared failing of these measures is that they are dependent on the number of pixels in
the region of support. To overcome this difficulty, these measures can be modified to reflect the
expected value per pixel. Thus, for example, the distance measure expressed in equation 2.7 can
be modified as follows to express a very commonly used measure, the mean square error (MSE);

V2.

MSE = (w5 — #45)?) fori,j=1,... ,N (2.8)
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where (-) is the mean or expectation operator.
A somewhat less used measure, more closely related to equation 2.7, is the root mean square

(RMS) measure; viz.
RMS = {{((wij — i55))}'/* fori,j=1,... N (2.9)

The MSE is more sensitive than the RMS to large but localised deviations between X and X,
since this applies in general for p > ¢ with d?(X, X) and d?(X, X) analogous to MSE and RMS

respectively.

Definition 2.2.2

The MSE measure can be generalised as follows:
& (X, X) = {(|zij — &5 |P) P fori,j=1,... N (2.10)

for p > 1.

Note: db, is equivalent to the exponential mean (Korovkin, 1961).

The selection of a particular measure depends upon the particular emphasis that is required
for the situation in which it is being used; e.g., (2.6) would be used if the peak error was of most
interest etc. It can be shown that the influence of large differences between X and X becomes
greater for increasing values of p. With p = 1, all differences are weighted equally, but as p — oo
larger differences are weighted progressively more until only the maximal difference of the entire
image is effectively measured (2.6). As shown in section 1.2 of Chapter 1, large values of p
give a measure that corresponds more with a property of the HVS, in that the overall perceived
image quality is less affected by small differences than by larger ones. The previous discussion
on the effects of increasing p are further supported by an interesting corollary (Beckenbach and
Bellman, 1971).

Corollary 2.2.2
If p1 > p2 > 1 then

dP (X, X) < d?(X, X) (2.11)

This corollary shows that d?(X, X) is a decreasing function of p, whereas db,(X, X) can
be shown (Korovkin, 1961) to be an increasing function of p (corollary 2.2.3). Notwithstanding
this it is easily shown that d?,(X, X) (definition 2.2.2) is a metric as defined in corollary 2.2.1.
There is however a difference in the behaviour of db, (X, X ), as p increases, compared to that of
(X, X).

Corollary 2.2.3
If p1 > p2 > 1 then

dPH(X, X) > dP2(X, X) (2.12)
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The bounds of the %, (X, X) measures are set by the following:

Corollary 2.2.4

Let the images X and X be digitised into a maximum of @ levels; i.e. let z;;,Z;; € {0,... ,a—1},
then:
ij
max d?, (X, X) = (a —1). (2.14)

L

The absolute maximum shown in (2.14) is only achieved if the reference image and the object
image contain pixels with values of 0 and a — 1. In fact to achieve this absolute maximum each
pair of corresponding pixels would have to have a difference of (a — 1), since dp, (X, X ) measures

the distance per pixel. Therefore in practice only sub-maximal values are achieved.

2.2.2 Measures Incorporating Decision Theory

In order to address the problem of finding an image measure that allows for the characteristics
of each individual image under consideration, a decision theoretical based measure was intro-
duced by Spaulding (Spaulding and Engeldrum, 1985). Decision theoretical concepts will be
introduced as needed in this section. The work described here is in the context of monochro-
matic photographic tone reproduction, which has been classically characterised by the “D-log-E”
curve. This curve relates the optical density® of the photographic image to the logarithm of the
exposure. It is asserted that the optimum photographic system will produce an image that re-
produces exactly the relative luminances in the original scene, where relative luminance means
the luminance? of interest referred to the scene reference white luminance. This implies that

the “D-log-E” curve is linear for an optimum system.

Spaulding’s paper explores the quality of tone reproduction in photographic images. This
paper gives a brief historical review of the work done in this area, which includes a discussion
of the effects of surround illuminance on the perceived brightness. Included in this discussion

is a measure for tone reproduction quality introduced by Bartleson (Bartleson, 1975), which is
defined to be

A=/ (Bo—By)?, (2.15)

where A is defined as the deviation from optimum quality, B; is the original image or scene
brightness relative to original image or scene white, and By is the reproduction brightness,
relative to the reproduction white reference. The gradient of the brightness, relative to the
reference white, versus log luminance of the reproduction system varies with surround brightness,
so as to produce the same perceived gradient as that of the original image. Bartleson weighted

the data to obtain a high degree of correlation; this is almost certainly due to the psychophysical

!See Appendix A for a definition.
2See appendix A for a definition.
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response of the human visual system. Bartleson (Bartleson and Breneman, 1967) developed a

simplified function to describe the subjective response to brightness, which is
kok R o
L™ = A(IOOR— + B)* — 16, (2.16)
0

where L**is the lightness (renamed to avoid confusion with earlier terminology), R is the re-
flectance, Ry is reference white, and A, B and « are constants which depend on surround
luminance. These tones for the original image and a reproduction image are determined with
respect to a reference white. Dom (1981) applied this equation and found the expected linear
relationship between the relative brightness of the scene and original images for optimum repro-
duction. He states that this result does not necessarily apply to scenes outside the scope of the
(typical) set he used. However, Spaulding suggests that these scenes did cover a wide range of

brightness distributions.

The main thrust of this approach is to apply concepts of decision theory to image measures,
to allow for the brightness distributions that are found in different scenes. Now, some of these
decision theoretical concepts will be introduced. The discrepancy between the scene and the

reproduced image is defined in terms of the “expected loss” as
R[0,d(z)] = E{L[0, d(2)]}, (2.17)

where RJ[-| is the the “risk” or expected loss, L[] is the loss function or the actual metric to
determine the degree of variation from optimal, 0 is the “state of nature” or the actual reproduced
relative brightnesses, and d(z) is the “decision function”. He associates By with the reproduced
relative brightness and lets d(B;) = B;; i.e. it is “decided” that the scene relative brightness
be equal to the reproduced original relative brightness, which was shown earlier to produce the

optimum result. Then
L[9,d(2)] = L[By, Bi] = (Bo — B;)*. (2.18)

Assuming B; to be a random variable, Spaulding asserts that, for a given image I, the distribution
of B; can be characterised by the conditional probability p(B;|I). The expected loss for the

reproduction system is defined as

100
RIB,, BiI] = / L{Bo, Bilp(Bil1)dB;. (2.19)
0

The value of p(B;|I) is determined from its approximation, the pixel histogram. Equa-
tion 2.16 was used as a measure of the relative brightness of a series of images, with suitable
values substituted for the parameters. The limits of the integral in (2.19) reflect the range used
for relative luminance or brightness in practice. Subjective responses for reproduction quality
were obtained using a “magnitude estimation” method (see chapter 3). The measure used did
not exhibit a linear relationship with subjective responses as expected, so a more general power

function was incorporated into the loss function, yielding the following definition

L[By, Bi] = |Bo — Bi| ™. (2.20)
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The value of N was tested for values from 0.1 to 5.0., with N=3 giving the best correlation of
0.73, using a log-log plot. (The model was asserted to be: Y = AXPe®, which transforms to
logY = log A + plog X + ¢ in the log domain). The authors admit the inadequacy of these
measures, suggesting that the subjective process has not been modelled appropriately. They
suggest that the assumption that all areas of the scene have equal importance is incorrect. This
seems to me to be likely, not only at the early visual level, but also the higher levels which are

driven by task related goals.

2.2.3 Measures Incorporating Signal Detection Theory

The approach to image evaluation described here is predicated upon measuring the effects of
image properties on the decisions made by an observer using an imaging technique in a given

situation. The approach is divided into two parts:

(i) Measurement of the relationships among the relative frequencies of the various types of

correct and incorrect decisions made by an observer; and

(ii) evaluation of the benefit to be gained from those possible combinations of decision fre-

quencies.

Principles of signal detection theory are used to guide the approach, to predict the relationships
among descriptors of decision performance in various situations and to suggest optimal decision

making strategies.

The basic principles of the receiver operating characteristic (ROC), which is under-pinned

by signal detection theory, are discussed in chapter 3 on page 61.

2.2.4 MTF Based Measures

The optical transfer function (OTF), which will be defined shortly, was developed earlier this
century to define optical system performance. The OTF, used with an appropriate measure
of gross scene contrast, specifies completely an optical image. However, there is no direct

relationship between OTF and visual performance.

Spatial Frequency Response

If the optical system is linear, then its characteristics can be determined from its spatial frequency
response. This is a 2-D concept, but it is usually tested and analysed in terms of two orthogonal

1-D bar patterns; i.e.
Br, = By, + Bcos2nf,x, (2.21)

where By is the local luminance, B, is the mean luminance, B is the maximum deviation from

the mean, f; is the spatial frequency and z is the distance from the origin. Then, applying
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(2.21) to the input of a general linear system will result in the output
B}, = By, + vy cos(2mfsw + ¢), (2.22)

where « is the relative amplitude and ¢ is the phase angle. Then ~(f) is called the Modula-
tion Transfer Function (MTF), while ¢(fs) is called the Phase Transfer Function (PTF). The
combination of MTF and PTF is called the Optical Transfer Function; i.e.

OTF = F(jw) = ve/*?, (2.23)

where w = 27 fs. The OTF is related to the point spread function via the Fourier transform

F(jw) = /OO G(z)e 7% dz, (2.24)

oo

where G(x) = line spread function.

Point Spread Function
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Figure 2.1: A simple representation of the effect of a PSF on image formation.

Definition 2.2.3
Let f(x,y) be the input to an optical system with system function h(x,y,u,v) which gives output

g(u,v). If the PSF is invariant under translation then h(x,y,u,v) has the form h(u-x,v-y); i.e.

o) = [ [ Flaghta = a0 = y)dudy (2.25)

x )y
The PSF is obviously the 2-D transfer function; i.e. the output is the convolution of the input
and the PSF.

The OTF characterises the system (or frequency) response of the optical system which
determines the final image quality, but does not give a measure of the human subjective visual
response. To try to overcome this, other measures based on OTF, but incorporating knowledge

of the human visual system, have been developed.
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Modulation Transfer Function Area

Of the MTF-based measures, the Modulation Transfer Function Area (MTFA) is the most
commonly used in practice. As illustrated in figure 2.2, the MTFA is defined as the area between
the MTF curve of the optical system under consideration and the detection resolution threshold
curve for the HVS, which is also known as the spatial contrast sensitivity function (CSF). The
latter is usually measured under the optimal viewing of a standard resolution test object such
as the American 3-bar test target. The MTFA is formally defined as

MTFA = / “IMTF (W) — CSF()]dv, (2.26)
0

where v is the spatial frequency in cycles/degree. By definition, the “crossover” frequency vy,
is the frequency at which MTF(v) = CSF(v); i.e. where the curves (a) and (b) in figure 2.2
intersect. The CSF is the approximate inverse of the retinal MTF for observer and viewing sys-
tem combination. Thus the MTFA is approximately representative of the area under the system
MTF referred to the retina. In 1973 Snyder found strong correlation between subjective ranking
of goodness and MTFA for photographs. Later, Higgins (1977) found a stronger correlation us-
ing the square of the area under the resultant curve by multiplying the instrumental MTF and
that of the eye refractive optics. Feng et al. (1990) found the MFTA to be a suitable measure
of image quality on visual display units, primarily in the context of text displays. The MFTA
was adopted as a standard by the USA in 1988 (ANSI/HFS, 1988; Snyder, 1989), However,
Infante (1991) points out that the method for calculating the MFTA, given in this standard, is

incorrect and describes what he argues is the correct procedure.

MTF-Area

Response

Spatial Frequency

(a) HVS Threshold detectivity curve.

(b) MTF of display system.
Figure 2.2: This figure illustrates the calculation of the Modulation Transfer Function Area
(MFTA). The MFTA is determined by calculating the area between curves (a) and (b) as shown
by the shaded area.

Acutance Measures

These were developed to attempt to predict subjective “sharpness” of images (photographs).

After some evolution, the Contrast Modulation Transfer (CMT) Acutance was conceived by
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Gendron (Gendron, 1973). He defined the CMT as

Definition 2.2.4

200 2
CMT acutance = 125 — 20 log <—> 2.27
M TCarea(syst) ( )

This is a measure of the sharpness that can be produced by the whole optical system, including
the observer’s eye optics, where MT Cypen is the area under the MTF curve for a specified

component of the system (units mm ™). The MTCaea is calculated as follows
o0
MTCoreasyst) = / MTPF. (i) x MTF(p') x -+ x MTFo(p')dpd', (2.28)
0

where ;' = spatial frequency and MTF,, MTFy ... are MTF’s referred to the observer’s retina.
Equation 2.27 was transformed by Overington (1974) to become:

CMT acutance = 4010g(6.67MTCyreq(syst)) (2.29)

CMT acutance as expressed in equation 2.29 is closely related to MTFA.

MTFA Variants

The Subjective Quality Factor (SQF) was developed by Granger & Cupery (1972). It is based
on eye physiology and specifies MTF data in terms of the retinal image, with a bandpass centred
on the peak response of the visual system being applied. The function has a high correlation
with subjective response. However, Overington asserts that it fails under some combinations of

adjacency effects and halation.

Overington (1974) proposes an empirically derived measure of image quality, based on a
physical model of the visual system, which he calls visual efficiency. He suggests that using
resolution as a quality measure is not appropriate, as its value depends on the conditions of the
test environment (e.g., illumination, contrast, shape, etc). The definition of visual efficiency is
more nebulous than the other MTF-based measures and is defined, in words, as the ratio between
the maximum illumination gradient in the retinal image, produced by the combination of the
optical and human visual systems and that produced by the “perfect” eye, the maxima being as
estimated by the matrix of retinal receptors. The perfect eye has no optical degradation, except

for diffraction effects due to diffraction at the pupil and related to its diameter.
In 1987 Barten introduced a new measure, related to the MFTA, which he called the Square
Root Integral (SQRI) method. This he defined as

1 U™ M (u) du
~ 1In2 J, My(u) v’

(2.30)

where u is the angular spatial frequency, Umax is the maximum angular spatial frequency
displayed, M (u) is the MTF of the system under test (which is the same as MTF in MFTA).
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The function M;(u) is the modulation threshold of the HVS (which is same as CSF in MFTA).
This measure is expressed in terms of just-noticeable-differences (jnds), where 1 jnd is defined
as giving a 75% correct response in a two-alternative forced choice experiment (see Chapter 3).
Barten argues that the MFTA is very dependent on the visual context. He also points out that
the HVS has a linear response to luminance level, whereas a more realistic assumption is that
the response of the HVS is non-linear. He claims the SQRI measure largely overcomes these

weaknesses.

2.2.5 Entropy Based Measures

The concept of entropy is borrowed from information theory and applied to image measures.
Entropy can be considered as the amount of detail or “busy-ness” of an image. Consider a
discrete random variable X, with a sample space X = {z;}, and z; occurring with a probability

of Di-

Definition 2.2.5
In a communications channel, the self information of any element x; may be defined for a receiver

by

I(z;) = —log(pi)- (2.31)

Definition 2.2.6

Entropy is defined as the average self information by
N
H(X) ==Y pilogpi. (2.32)
i=1

Note,
(i) H > 0;
(ii) If for some i, p; = 1, then H = 0, and

(iii) Entropy reaches a maximum when all p; are equal; let i=1 ... a, then the maximum entropy

is achieved iff p; = 1/a ¥V ; € X. The maximum entropy is then max H(X) = log{a}

If X is continuous then

7= [ pu(x)logpa(X)as. (2.33)

—0o0

where p,(X) is a probability density function and the integral exists.
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Independent Pixel Case

Now consider entropy in the context of image analysis. Let p(z;) be the probability that a pixel
assumes an intensity value of x; in an image X, where there are “a” discrete levels of intensity
values, where z; € {0,...a — 1}, and we assume that each pixel is independent. Consider an
image where all the pixels have the same intensity level, say x;, then P(x;) = 1. Thus, the
image has minimum entropy, which is equal to zero; i.e. there is certainty in the value of each
pixel, so that the image carries no information. On the other hand, if the occurrence of each

the “a” intensity levels is equally likely, then the entropy of the image is at a maximum.

Markovian Related Pixels Case

In general, the pixels in real images are not independent but correlated. To allow for en-
tropy determinations in this context, assume that pixels have a Markovian relationship (Rosen-
feld and Kak, 1982). An image can be considered to be a one dimensional (1-D) sequence

of pixels as shown in figure 2.3. Here, the probability that a pixel j will have an intensity
]

! L
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Figure 2.3: An Image Considered as a Markov Chain.

xj, will depend (under the Markovian assumption) on the intensities of the previous k pixels;

1.€. p(xj|xj_1, e ,.’,L‘j,k).

Definition 2.2.7
The conditional entropy is now defined (Hamming, 1980) as

H(.’Ej|.’17j_1, e ,.’,L‘j,k) = — Zp(xj|xj_1, e ,.’,L‘j,k) log{p(xj|xj_1, e ,.’,L‘j,k)}, (234)
Xj

where the summation is carried out over all possible realisations of X ;. This gives the uncertainty

associated with the intensity of pixel j. Now if the conditional entropy is averaged over all
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possible realisations of (X;_1,...,X;_;), the total entropy for the Markov chain obtained is

H(X) = Z p(xj_l,... ,xj,k)H(xj|xj_1,... ,.’Ej,k) (235)

L1500y Tj—k

= Z p(xj—la"' ,.’Ej,k) :

Xj—17-"7Xj—k
- Zp(xﬂxj*la e 7$j—k) 10g{p($j|$j71, e 7$j—k)} (2.36)
Xj

= — Z Zp(xj_l,... ,xj,k)p(xj|xj_1,... ,.’I?j,k) .

Xjfl,... ,Xj,k X]‘
log{p(zjlzj 1, .. 2j-1)} (2.37)

Since (from the definition of conditional probability distributions)

P(Tj—1y- s B)P(T4] 251, T k) = P(Tj,Tj—1 T g)

(2.37) can be written as

H(X) = — Z p(xj,xj_l... ,.’,Ej,k) log{p(xj|xj_1,... ,xj,k)} (238)
Xj,...,Xj,k

In computing the entropy of images according to equation 2.38, the higher order statistics of
the image(s) must be known up to order k. Here, k determines to what order the entropies are
computed. In finding the entropies to order k, it is necessary to determine the k** order grey-
level histogram for the £ neighbouring pixels. Entropy can be applied as a similarity measure.
Consider a reference image X, with entropy H(X), and an object image X, with entropy H(X ).
Now the entropy change, given by

AH(X,X)=H(X) - H(X), (2.39)

can be used as a measure of similarity.

2.3 Local Image Measures

As already discussed in section 1.3.2 on page 12, in many cases global measurements do not reflect
the way in which an interpreter appears to evaluate the quality of an image. The particular
elements of the image, upon which the user judges the quality of that image, depend upon
the application. (For example, in the case of a cartographic application, edge quality is of
paramount importance.) Another important local characteristic of an image is that of texture.
Texture analysis can be applied fruitfully to the segmentation and classification in many imaging

applications, such as remote sensing.

In the remainder of this section is a summary of the measures used in the literature for

firstly, edge quality and secondly, texture analysis.
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2.3.1 Edge Quality Measures

It is well known that the HVS is particularly sensitive to the degradation of edge quality, and
such degradation has effects on the evaluation of perceived global image quality (Ohtsuka et al.,
1988; Ohtsuka and Makoto, 1991).

An edge can be considered as a demarcation line between regions in an image which have
different statistical properties associated with their grey-level distributions. Thus, edge quality
is important in the context of image segmentation and subsequent interpretation. It has been
shown experimentally that errors, produced by low pass filtering of images with high contrast
edges, are in fact first detected around the edges in the image (Algazi and Ford, 1980). There are
many ways in which the quality of edges can be degraded. Some of these degradations include:
edge blur, offset, discontinuities in edge, non- registration of edge points and false registration

of edge points.

There has been some effort in the literature to define edge measures, although this has been
mainly in the context of image enhancement and the evaluation of edge registration schemes,
rather than as quality measures per se. However, these measures can also be applied productively

to the task of image quality measurement.

Edge Sharpness

Here mainly non-binary (more than two intensity levels) edge quality is being discussed, as this
thesis is addressing image measures for multi-tonal (grey-level) images. Now the characterisation
of intensity related edge phenomena will be discussed. The following discussion and development
builds upon the work of Panda and Kak (1976) who introduced a measure of edge sharpness

which they used to measure the efficacy of edge enhancement in linearly filtered images.

Consider an n X n image X, which is assumed to consist of a 1-D sequence of pixels as
shown in figure 2.3 on page 28. Let the intensity values of each pixel at position i € {1,... ,n?}
be denoted by x;. Now consider a contiguous subset of the 1-D array, call it chain T, such that
the first and last pixels of T are from a vertical edge. Now edge sharpness is determined by

three factors:

(i) The maximal difference in intensity or intensity jump:

J(T) = (2.40)

max r; — min ;
z, €T x, €T

(ii) The local mean intensity, which is the mean intensity of all the edge pixels

M(T) =Y ;T (2.41)
z, €T

where Nt is the number of edge pixels in chain 7.
(iii) The boundary width:

W(T)=e. (2.42)
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Consider these factors in relation to figure 2.4. The factors listed are important in deter-
mining whether an edge is perceived as sharp or otherwise. It is noted here that there is a
distinction between the sharpness of an edge and the thinness of an edge. In the case of the
former, the intensity plays a role, while, in the latter case, it is only important to consider
whether pixels belong to the edge or not. That is, if the pixels belong to chain T they are edge
pixels, and contribute to the edge width if appropriately aligned. In figure 2.4 and item (iii),

boundary width corresponds to the property “thinness” just mentioned.

boundary width
| I

Intensity

intensity |
jump

local mean intensity

Edge pixel location

Figure 2.4: Intensity Related Effects and Edge Sharpness.

An intensity jump, as defined in (2.40) and shown in figure 2.4, does not guarantee in itself
the presence of an edge. It is always necessary that there exists in a specific direction a sequence

of such jumps. This is known as continuity, and is an important edge feature.

Taking in to account the factors just discussed in relation to edge sharpness, a reasonable

definition of the latter may be expressed as

J(T)

—M(T) W) (2.43)

Esh =

The ratio A‘Z((:;)) in (2.43) is a measure of edge contrast (Panda and Kak, 1976). Thus the contrast

varies as the intensity jump and varies inversely as the mean intensity of the edge. Panda and

Kak performed smoothing operations on images and found that in general the intensity jump
decreases, while the the width increases and the mean intensity level tends to remain constant.
This is reflected in (2.43) by a decrease in edge sharpness. By substituting (2.40) to (2.42), in

to (2.43), it is possible to express edge sharpness in these more basic terms as shown in (2.44).

Definition 2.3.1
Edge sharpness may be defined within the region of support of chain 7" as follows:

|ma,xxieT T; — ming, 7 $z| (2.44)

Es, = Nt ;
€ ZMGT Ty

where z; is the intensity value of pixel ¢, ¢ is the boundary width and N7 is the number of pixels
of chain T.
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Edge Location Accuracy

Pratt (Pratt, 1978) introduced a measure of edge location accuracy called the “figure-of-merit”
which is applied to binary edge maps. This is a relative measure, in that it presupposes a

knowledge of a reference edge map. It is also assumed these edges are one pixel wide.

Definition 2.3.2

Ne

S _

— 1+ pA}

Q="—"—— (2.45)
max|[Ne, Ne]

where N, and N, are the number of pixels in the test and reference images respectively, p
is a scaling factor while A; is the distance between edge pixel ¢ in the test image and the
corresponding pixel in the reference image. The term in the summation expresses possible shifts
of the edge, with the scaling factor p providing a relative weighting between blurred edges and
sharp or thin but offset edges. If the edge is fragmented or smeared, the value of () will be lower,
since N, > N,, and therefore the denominator term max[Ne, N,] will be larger. Clearly, Q =1
for a perfect edge.

From the previous paragraph it can be concluded that the “figure-of-merit” gives an overall
impression of edge quality by taking into account the various smearing and offset effects. A
limitation of this measure is the assumption that the reference edge is only one pixel wide,
which will cause difficulties for the assessment of quality in some real images. This problem may

be overcome by redefining the “figure-of-merit”, with a slight modification, as follows.

Definition 2.3.3

Nz NJ

Zzzl—i—,oA

i=1 j=1
max|N,, N,]

Q' = ; (2.46)

where ij is the edge pixel location (image co-ordinates) and A;; is the distance between the
i7" pixel of the test and reference images. In the case of a vertical edge, for example, Ay is
calculated by relating the first and last pixel of the test image to that of the first and last pixels
of the reference image on the i*® row. Next the second test edge pixel is related to the second
last reference edge pixel, and so on. When the edges are of different widths, the distances for
the excess pixels are obtained by relating them to the inter-positions as shown in figure 2.5. By
this means, an average distance or midway interpolation between adjacent pixels to the excess
ones is obtained.
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_ 2'5*
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2

Figure 2.5: Distances for Edges of Different Widths.

Edge Raggedness

In the previous section a measure of the deviation of an edge from its ideal was introduced.
However, this measure was not developed to take into account any psychophysical effects that
edge dislocations may exhibit to a human observer, who may attach qualities to these effects.
One such quality is that of edge raggedness. Hamerly (1981) investigated the effect of edge
raggedness on perceived image quality. Assuming the spatial-frequency channel model of the
HVS, he found that the phase information was not important and he produced a curve of edge
profile threshold resolution for the HVS.

Based on Hamerly’s work Gur (1985) developed an objective measure of edge raggedness
which was univariate; i.e. does not need a reference image. The suggested procedure is as follows.
Assume that the image has been binarised and the edge object under consideration (Gur used

alphabetical characters) is scanned at right angles to its major axis (see figure 2.6 (a)).

(i) Count the pixels which are internal to the object boundary as a function of scan line to pro-
duce the tangential edge profile, B(n) which contains edge and low frequency information
(the trend of B(n)) about the object;

(ii) determine the low frequency component by cubic spline fitting, to obtain a smooth function
s(n);

(iii) find the edge raggedness function FE(n) such that
E(n) = B(n) —/ S(z)dx; (2.47)
n—1

(iv) perform a Fast Fourier Transform (FFT) on E(n) and find amplitudes A,, where A, =
Va2, + b2, and a,, and by, are the amplitudes of the m'™ harmonics of the sine and cosine

(real and imaginary) terms of the FFT respectively;

(v) evaluate the measure of raggedness perception P,

fmax
P :/(; Ae(f)dflfIZAema (2'48)
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where fpax is the upper bound of the HVS’s spatial frequency response (= 40 cyc/deg),
f1 is the frequency of the first harmonic (m = 1) and

W An—Tn it A>T,
0 otherwise

where T),, is the threshold for the m™ harmonic.

P is the shaded area above the T' curve in figure 2.6 (b). This perceptual measure of raggedness
(P) was not verified by psychophysical studies, but was based upon Hamerly’s experimentally
derived threshold curve (T') for raggedness perception. Thus it is analogous to the MFTA
measure of resolution, which correlates well with human perceptual performance. It is therefore

likely that P will correlate well with human perception. However, these studies need to be done.

An assumption that has been made, or ignored, in developing this measure is that the
raggedness of the object edges is isotropic. There are probably some processes that produce
directionally dependent levels of raggedness. Thus the direction of scanning in the production
of B(n) is important. To overcome this limitation, one could determine the E(n)’s in various
directions and average them, or choose the one with the highest variance. Another factor to
consider is the scan rate for digitising the image. It is important that the scanning frequency is
above the Nyquist rate for the particular degree of raggedness. For, even if the high frequency
components of the raggedness are beyond human perception, the aliasing effects could be per-
ceptible. This requires that some estimate of the high frequency component of the raggedness

be made, or - more practically - that some explicit band limiting be applied.

2.3.2 Texture Measures

In considering the development of image texture measures, it is necessary to consider the meaning
of texture. Texture conveys information about the spatial distributions of tonal variations within
an image region (Haralick et al., 1973). The concept of tone is based on the varying shades of
grey of the resolution cells in photographic imagery, which, in a digital image correspond to the
intensity® levels of the pixels. Texture and tone bear an inextricable relationship to each other

and both are present in an image, although one property may dominate the other.

Textures can be characterised by either a structural approach or a statistical approach. A
statistical approach is considered in the next section. In a structural analysis, texture can be
considered to consist of elements whose shapes, sizes and placement characterise the texture
types. These elements or “primitives” as they are called are connected regions satisfying certain
properties (Wang et al., 1981). Therefore, to describe texture, both the primitives and the

placement rules need to be specified.

3Intensity here means luminance, in case of active display devices, or illuminance, in the case of hard copy
types of reflective image. See Appendix A.
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The Grey Level Co-occurrence Matrix

The Grey Level Co-occurrence Matrix (GLCM) plays an important role in statistical texture
measures and is thus described here. The GLCM describes the spatial relationships between
grey-levels, by calculating the second order statistics of the pixel grey-levels of an image or
sub-image. The prominence of second order statistics in current research may be motivated
by Julesz’s conjecture, that the human eye uses such statistics as a discriminator between tex-
tures (Gotlieb and Kreyszig, 1990). Consider an image X, of (n x n) pixels which exhibit a
homogeneous texture. Where each pixel x;; has an intensity in a discrete set G, such that
G =H{0,... ,a— 1}, with a € J (the set of positive integers).

Consider a pair of neighbouring pixels, each with value x;; € G, where one pixel with
respect to the other pixel may have an orientation that is horizontal, vertical or diagonal with
respect to the image as a whole. The distance between the pixels can be represented by the
distance vector d = [, 8], with o = |d| cos 6 and 8 = |d|sin 6, where 6 is the angle between the
line joining the pair of pixels with reference to the horizontal line joining the pixels in the row
of the pixel under consideration. Clearly, & and [ are integer. For example consider the usual
case with |cf| = 1. Here the eight neighbours of a pixel starting with the right hand neighbour
(f = 0)and travelling anti-clockwise are designated: [1,0],[1,1],[0,1],[-1,-1],[-1,0],]-1,-1],][0,-1] and
[1,-1].

Definition 2.3.4

Let X; = {xpg : 2pg = i} and X; = {2,5 : 2, = j}; with p—r| = o, |¢ — s| =  and
i,7,0,q,7,8 € G. Let the number of pixel pairs be denoted by A. It can be shown that, for
horizontal and vertical pixel pairs, A = m(m — «), whereas, for diagonal pairs, A = (m — a)?,

for an m x m image and with a = 8 or 0 and = « or 0. The GLCM Aa, /3] is given by

Aijlon B = [[Xi N XG]] (2.49)

a’ﬁ ’

where | | denotes the size of the set.

The matrix A is shown in figure 2.7. The distance between the pairs of pixels used in forming
the GLCM are limited only by the size of the array. However, in practice, due to computational
cost, a distance of one is commonly used. That is, the eight adjacent neighbours of each pixel

are used to form the pairs.

Examples

Shown in figure 2.8 are some generalised examples of GLCMs and the associated characterisa-
tions of texture images, where d = [1,0]. In the case where the GLCM has only one non-zero
element on the main diagonal, then all the pixels of the sub-image have the same intensity value.
However, if there are more significant values on the main diagonal, say three, then a course tex-
ture is implied in the image, with the contrast of the image being increased as a function of the

spread of the diagonal elements. If the GLCM is a triangular matrix, say with the elements
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above the main diagonal, the pixel intensities in the image will increase from left to right. In
the case where the GLCM is symmetric, a “chess board” pattern is implied in the image, with
the contrast being a function of the distance of the elements from the main diagonal. A pure
“chess board” pattern is only implied when the GLCM has all elements equal to zero excepting
two elements, which are necessarily at transpose positions to each other and each is equal to N

for an N x N image.

In summarising, some general characteristics of images can be deduced from their GLCMs.

(i) The more the elements are dispersed with reference to the main diagonal of the GLCM,

the finer the texture in the image;

(ii) Contrast in the image is greater when the elements in the GLCM are greater distances

from the main diagonal;

(iii) Triangular GLCMs imply images where the intensities of the pixels increase or decrease

monotonically in the direction of d|a, 3]. Whether the intensities increase or decrease de-

pends upon whether the triangular matrix in question is in the top or bottom, respectively,
of the GLCM.

(iv) Symmetrical GLCMs imply “chess board” like structures within the image.

Consider the matrix shown below:

4 0 40 41

030413
X = 414130 (2.50)
04030 3

If the top adjacent (12 O’clock) pixel is considered for the computation of the GLCM; i.e. d=
[, B] = [0, 1] then the following matrix is obtained:

Af0,1] = (2.51)

W o oo
_w o o O
OO O OO
OO O =N
OO O W

From the GLCM various histogram descriptions of texture can be derived. The most direct

form is as follows
where m is the number of pixel pairs.

Texture Measures Based on the GLCM

The GLCM are not usually used directly, but texture features are derived from them by applying

certain measures. These measures are designed to reveal some salient characteristics of textures
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that correlate with visual percepts. However, Haralick [op. cit.], went beyond this in suggesting
14 textual features (f1,... , f14), some of which have no visual meaning. These 14 features can

be put into four broad groups:-

(i) measures that express visual textual properties: second angular momentum (homogeneity)

f1, contrast fo, correlation (grey tone linear dependencies) fs;

(ii) measures that are based on statistics: variance f4, inverse difference moment f5, sum

average fg, sum variance fr, difference variance fig;

(iii) measures based on information theory ( usually entropy): sum entropy fs, entropy fo.

difference entropy fi1;

(iv) measures based on information measures of correlation: f12, f13, maximal correlation

coefficient f14.

Notation

P j(a, B) is the i'" and j*" entry in a normalised GLCM = A; j(a, 8)/m, where m is the number
of pixel pairs. P;(a, 3) is the 't entry in the marginal probability matrix obtained by summing
the rows of P; j(«a, 5); i.e

a,f)=> Pj(ep), (2.53)
7j=1
Pj(aaﬁ) = Z]DZ,J(aaﬁ) and (254)
P (a,p) = ZZPJ ), i+j=k=23...2a; (2.55)
i=1 j=1

i.e. the relative frequencies of pairs of pixels with intensities 7 and j, of which the sum of the
intensity values is equal to 1 + j = k.

C(@.B8) =" Pij(ep). li-jl=k=0,1...a-1; (2.56)

i=1 j=1
i.e. the set of relative frequencies of pairs of pixels with intensities ¢ and ], such that the absolute

difference of the intensity values is equal to |i — j| = k, where Z Z and Z Z
@ =1 J j=1

Summary of Textural Measures
The following is a summary of the texture measures proposed by Haralick.

(i) Angular Second Moment:

=23 Pyla, p)% (2.57)
(]
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A 4

B(n) scan direction

S(n)
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(a) S(n) is the low frequency information.

100

Amplitude - microns

Frequency - cycles/deg

Figure 2.6: (b) Fourier periodogram of E(n), thresholded by the HVS’s raggedness resolution
curve 7'
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Figure 2.7: The Grey-Level Co-occurrence Matrix.
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Figure 2.8: Characterisation of Texture from the GLCM (d = [1,0]).
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(ii) Contrast:

a—1
=Y KDY Pyl p)|, li—il =k
k=0 i J

(iii) Correlation:

Z Z(ij)Pﬁ(a, B) = Hatty

? J
f3 = )
020y

(2.58)

(2.59)

where fi,, f1,, and o,, 0, are the means and standard deviations of Pj(c, §) and Pj(a, 3)

respectively;

(iv) Sum of Squares: Variance
fa=>Y (i — p)?Pyj(e, B);
(]
(v) Inverse Difference Moment:

f5 ZZl+ 2 'Lj(a ﬁ)

(vi) Sum Mean:

2a
fo=>_iP (o B);
=2
(vii) Sum Variance:

2a

fr=> (i = fo)? P (. B);

=2

(viii) Sum Entropy:
ZP* B) log[ Py (e, B)];

(ix) Entropy:
i

(x) Difference Variance:

2a

fro=">_ (i — p)* Py (e, B);

=2
2a

where: u_ = Zipl;(%ﬁ);

=2

(2.60)

(2.61)

(2.62)

(2.63)

(2.64)

(2.65)

(2.66)
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(xi) Difference Entropy:

a—1
fin == Py (e, B) log[Py (o, B (2.67)

k=0

(xii) Information Measures of Correlation:
Let H; = entropy of Pj(«a, 3) and H; = entropy of Pj(c, (), and

Hij =YY" Pij(a, B)log[P;j(a, B), (2.68)
(]
(]
H; =32 >  Piler, B)P; (e B) log[Pi(ev, )Py (e, B)], (2.70)
T g
_ M- Hj
fiz = max[H,, H]' (2.71)
frs = /1 — exp[-2(HE — Hyj)]: (2.72)

(xiii) Maximal Correlation Coefficient:

fia = \/(next to largest eigenvalue of Q), (2.73)

where

Properties of Texture Measures

It is important to relate the underlying textural processes in an image to the values of the texture
measures in order to use them as image quality measures. The following is a brief discussion of

some of the properties of the texture measures.

A class of measures, based directly on the GLCM histograms, is that of the mean and
variance measures. The variance (fy) gives information about the contrast within the image
or sub-image in which it is applied and the contrast increases with its value. Obviously, if all
pixels within the image have the same value, the variance will be zero. Alternatively, the sum
(f7) and difference (f19) variances achieve their minima when all pairs of pixels have identical
sum and difference intensities, while large sum and difference variances are obtained if there are

relatively many pixel pairs with large grey scale sums and differences respectively.

The sum mean (fg) will have a minimum when the pixels in the pairs in the orientation of
cf[ozﬂ] are identical. However, the greater the number of pixel pairs with large intensity sums
of the pixels, the larger will be the sum mean. There is an obvious analogous argument for the

difference mean.
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A closely related measure to the variance and mean is the correlation (fs). This measure
expresses the connection of one value in a pixel pair to the other. There exist in the litera-
ture, correlation measures based on information theoretical approaches (fi2,f13,/f14), which also

express the relation between the pixels, but they are more computationally expensive.

There are measures which express the degree of spread of GLCM values (moments of inertia)
around the main diagonal. These include the contrast (f2) and the inverse difference moment
(f5)- The following theorem proved by van der Lubbe, Boxma & Boeker (1984) gives the

minimum and maximum values of (fs).

(i) min (f5) = (a® — 2a + 2)~!, where the minimum is achieved iff:
(a) Xiseven: A1 — Ay =0, Ajj = 0 elsewhere,
(b) Xis odd: [Ag1 — Aia| =1, Ajj = 0 elsewhere.
(11) max f5 = 1, iff )\ij = 0, v (l —j)
Clearly, the minimum of f5 is achieved only when the absolute difference between each pair of

pixel intensities, |i — j| = a —1. In the case of the maximum of f5, the fact that \;; =0, V (i —j)

implies that all pixel pairs are located on the main diagonal of the GLCM.

The minimum and maximum values for the contrast measure fo can be derived analogously

to that of the inverse difference moment. It is found that:

(i) max fo = (a —1)? and

(ii) min fo =0, iff \;j; = 0, V (i — j).

Corollary 2.3.1
Transform the pixel intensities such that i’ = xi + ¢, with 2, ¢ € R and = > 1, then it holds that

fé2f2

and
fé < fs.

It follows that, as the intensity range is increased, the value of the contrast is increased, while
the value of the inverse difference moment is decreased. This is useful as it is consistent with
the response of the HVS. The properties of f» and f5 indicate that they are the opposite of each
other and it has been shown in the literature that this is generally true. Therefore in most cases,

it is enough to apply only one of these measures.

The final group of measures to be discussed here consist of the entropy (f9) and the angular
second moment (f1). The entropy (see section 2.2.5) measures the “busy-ness” of the texture
in the image or equivalently expresses how the GLCM elements are dispersed over the matrix.

(Recall that the more dispersed the matrix elements are from the the main diagonal, the finer
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[busier| the texture.) In the cases of the sum and difference entropy measures, the diversity of

pixel pairs with regards to the intensity sums and differences respectively, are reflected.

While the entropy measures the “diversity” of distributions (entropy is at a maximum when
the distribution is the most random), the angular second moment measures the “concentration”
of distributions; i.e. the homogeneity of the image. In a homogeneous image there are few pixel
intensity transitions ( P;;(«, 5) will be concentrated at certain intensities). Hence, the associated
GLCM will have fewer entries of large magnitude and f; will be relatively large. However, if the
image is heterogeneous in intensity values, the GLCM will have a large number of small-valued

elements resulting in a relatively smaller value for fi.

In the literature, there are alternatives to entropy and the angular second moment for
measuring diversity and concentration. These have been unified and generalised by van der
Lubbe et al. (1984), but these will not be discussed here.

2.4 The Application of Image Measures

Generally, image measures can be applied to the evaluation of image processing algorithms,
but can also be used as goal functions for image compression, enhancement and restoration
techniques. For example, edge quality measures can be applied to measure the performance
of edge detection schemes, but may also be used as a goal function from which to develop an
optimal edge detector. Hord (1982) mentions how image measures can be used as goal functions

in enhancing images for maximal interpretability.

In applying image quality measures for the assessment of image processing algorithms,
(i.e. the impact of the technique on the image), it is generally advisable to select measures
of all aspects of image quality. This will include measures of image similarity (fidelity) and
image interpretability (intelligibility), at the global and local levels, with due consideration of

the subjective aspects.

The assessment of image quality can be done on a univariate or bivariate (or possibly a
multivariate) basis. In the case of the former, the assessment is absolute and based on a single
image, while, in the latter situation, a relative measure is obtained from two images, a reference
(X) and a test image (X). In almost all cases, image quality measures are based on some
reference, which leads naturally to bivariate measures (e.g., MSE), but univariate measures can
be employed if the measurement scale is calibrated by the departure of the test image (measure)

from a reference image.

At the moment a growing area of application of image quality criteria is that of image com-
pression. Image compression is becoming increasingly important due to the greater integration
of computers and telecommunications (distributed processing), with the growing development
of hypermedia, which includes images and their accompanying data storage and processing
overheads. In evaluating image (de-)compression techniques many factors come into play, in-
cluding implementation complexity, real-time processing considerations, compression ratio and

the quality of the reconstructed image. Here the concern is the evaluation of image compression
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algorithms on a basis of degradation of image quality. In this context the mean square error
(MSE) is very commonly used as a measure of quality and MSE is plotted as a function of
compression ratio. However, the MSE measures only one aspect of image quality and, as has
been shown in this thesis, does not correlate well with human perception. Recently however,
researchers have been investigating quality measures that include some of the properties of the
HVS (Nill, 1985; Marmolin, 1986; Eggerton and Srinath, 1986; Watson, 1993; Fuhrmann et al.,
1995; Avadhanam and Algazi, 1996). Even so, it is necessary to gain the whole ‘picture’ of image

quality by applying a montage of measures which incorporate all (relevant) aspects of quality.

Ultimately the selection of the quality measures depends on the intended application(s)
for the image in question and upon consideration of the computational costs of applying the

measures.

2.4.1 Global Image Similarity

An impression of the difference between a reference image and a distorted version of it can be
obtained by the use of distance measures. An appropriate distance measure to do this is the
p-norm which is defined in section 2.2.1. To give a good impression of how similar the distorted
image is to the reference image, it is often useful to normalise the distance measure with respect

to the reference image, so that the upper value of the measure is bounded to unity.

As mentioned earlier, workers have attempted to obtain a closer agreement between sub-
jective and objective evaluations of image quality by incorporating in the measure (implicitly
or explicitly) some form of a model of the HVS. This can result in closer correlation between
human and objective assessment of image quality, but one such measure is not consistent over
the whole (or even a large part) of the range of image degradations. A disadvantage of this
approach is a great increase in computational load; it is likely the extra cost would have to
be weighed against the increased agreement with subjective assessment in each particular case.
One could apply a normalised cross-correlation measure to gauge similarity. However, due to
the complementary properties of distance and closeness, this is not necessary. In implementing
such measures, it may be advantageous to use a cross-correlation measure employing the Fast

Fourier Transform.

The application of distance measures can be global or piecewise global. That is, such
measures can be applied to image blocks, which is appropriate for block image compression
schemes. An effective global image measure may be obtained by applying distance measures to
sub-regions of the image and combining them in some way. An analysis of the distribution of
errors can be facilitated by computing the histogram of the differences between the pixels in the
reference and distorted images and by obtaining the values for the errors in individual image

blocks, if that approach is used.

Entropy computations give information about the loss of detail in a distorted image. Fur-
ther, in the context of image compression, entropy measures can be used to determine the
maximum possible compression ratio obtainable for lossless compression (via the rate distortion

function). As was shown in section 2.2.5, the computation of entropy is done at a large com-
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putational cost, due to the higher order probabilities required when using the Markovian image
model. However, if entropy is used only as a measure of detail quality, then statistics only up
to the second order need to be considered (Caelli and Julesz, 1979).

Edge Quality

The quality of edges is a very important factor in the human evaluation of image quality. Edge
quality measures can evaluate the effect of image processing algorithms on the quality of edges.
These measures can be based on either binary or non-binary images. In the case of the former,
only the pixel position with respect to the edge is evaluated, whereas, in the latter case, the

edge pixel intensities are also considered, as discussed in section 2.3.1 on page 30.

All of the edge quality measures discussed in section 2.3.1 emphasise a particular aspect
of edge quality. In the practical situation, several of these measures should be applied, but
one should be cognisant of the fact that each measure has certain limitations to its application.
For example, some edge measures, such as measures of edge sharpness and the ‘figure-of-merit’
(see 2.3.1 on page 32), are preferentially applied to horizontal and vertical edges. Theoretically,

the other edge measures can be applied to edges of any orientation.

All of the edge measures excepting the ‘figure-of-merit’ are a priori univariate measures.
However, they can also be used in a relative sense, where the quality of the edges in the reference
image X can be assessed and compared with the quality of edges in the test image X. Application
of these measures assumes a priori that the true locations of the edges are known and that the
edges detected in X and X are compatible or structurally similar. This presupposes that the
edges in X and X have undergone the same edge detection processes; for, if different edge
detection algorithms are used (including human edge detection), the results will incorporate
information about the performance of the different edge detection procedures, as well as about

edge quality.

The two major measures of non-binary edge quality were defined in section 2.3.1; i.e. the
edge sharpness measure and the local coherence measure. Of these, the former is preferentially

applied to vertical or horizontal edges, while the latter can be applied to edges of any orientation.

For binary edges the measures of quality are much simpler than for the non-binary case,
making them more attractive to use. The edge properties such as sharpness, mis-location and
continuation can be easily measured for both reference and the test images. An exception to this
is the ‘figure-of-merit’, which requires not only the comparison of corresponding edges, but also
knowledge about the corresponding edge pixels, making this measure less tractable. However,
combinations of other easily applied measures can be substituted for the ‘figure-of-merit’ to

obtain similar information.

Texture Quality

In section 2.3.2, various texture measures were introduced, which were based on the co-occurrence

matrix. Because the different measures each address a different aspect of texture quality, it is
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necessary in practice to apply various combinations of these measures in order to gain an overall
impression of texture quality. For cost effectiveness, it is advisable to take one measure from
each class of measures that quantify each particular aspect of texture quality. As examples,
one would use either the ‘inverse difference moment’ or the ‘contrast’ measure to assess con-
trast and either the ‘diversity’ or ‘concentration’ to measure the homogeneity of the texture etc.
Many of these measures are directional and should therefore be applied in (say) the four main

orientations, to gain an overall idea of the texture quality.

The approach just discussed has been to apply texture measures in an univariate manner,
but they can also be applied in a relative sense by comparing regions from a reference image
to the corresponding region in a test image. Usually this is done by taking differences between
the texture measures obtained for the reference and the test image. Other functions, which

incorporate different distance metrics?, may be used.

2.5 Image Information Measures

Image interpretability, that is the amount of useful information that can be extracted from an
image, has already been briefly discussed in section 1.3.1. This is a different aspect of image
quality than image similarity (or fidelity), but the two aspects can be related. There are many

aspects of image fidelity that correlate with image interpretability. Hord (1982) suggests:-

(i) Minimum noise;
(ii) edge gradient;
(iii) relative structural content;
(iv) fidelity defect;
(v) correlation quality;
(vi) sharpness;
(vii) acutance;
(viii) contrast;
(ix) entropy;
(x) maximum likelihood and

(xi) mean square error.

Image interpretability can be determined objectively, or by subjective testing, and can be applied

at either the global or local level, in the same way as similarity measures.

4An example of such a distance metric is the Haussdorf measure.
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The interpretation of imagery requires the identification and classification of objects and
areas within the image under scrutiny. Therefore, the classification accuracy of an image is
one measure of image interpretability. This measure is especially useful in the remote sensing

context.

2.5.1 Computation of Classifiability Measures

In order to find a classifiability measure, it is necessary to have a reference image, where each

pixel for all regions or objects is known. Counsider a classifier with input X, which is the

TEAINING AREA X
X o» w SELECTOR

CLASABLITY | pig 1 x)

¥

w  SUFERVISED X
CLASSIFIER

X!

o)
Y

Figure 2.9: Measure of Classifiability

reference image, while input X is the test image, for which the quality is to be evaluated. Using
this approach, the measure of the quality of X is the percentage of correctly classified pixels.
However, a “correct” classification is relative to the classified pixels of X, which does not give
any relevant information, since these pixels have not been verified. This approach is known in the
remote sensing literature as unsupervised classification (Richards, 1986). Further, if the pixels
of X have been classified by an interpreter, then the information obtained is relatively biased
by the classification technique or algorithm rather than by the quality information contained in
X.

These problems can be overcome by applying the method shown in figure 2.9 (after van der
Lubbe 1984a), which shows a perfect classifier; i.e. one that classifies all pixels of the reference
image correctly. Here X is the reference image. A ground-truthed version, X, is produced by
labelling regions or objects in X. The supervised classifier has as inputs the reference image
X, the test image X and the labelled image X. This classifier has two outputs, X’ which is
the result of an automatic classification of the reference image X and X', the result of the

classification of the test image X.

The image quality (interpretability) of X is found by comparing how much information
can be extracted from the test image compared to the reference image. In general, the mea-
sure of classifiability (interpretability) will be a function of X, X’ and X'; i.e. F(X, X', X").

Classification, in the usual context of remote sensing, relates to pixels found in land use areas.
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Here, however, classification is considered in the wider sense, including, for example, detection

of edges, textural areas, objects etc.

A device often used in evaluating classification is the error or confusion matrix. (See the
appendix section B on page 228 for a description.) The confusion matrix gives a description of
how well a test image has been classified, compared to a reference image. Different test images
can be differentially evaluated against a common reference, provided that the number of classes

or objects is identical and the same set of pixels is used.

Classification Accuracy

The device of the confusion matrix can be used as a basis for the definition of classification
accuracy measures. It is noted here that the choice and number of pixels for the construction
of the confusion matrix is important (see Appendix B on page 228). Let the confusion matrix
consist of elements a;;, which represent the number of pixels of class A; that have been classified

as class A;.

A simple measure of classification accuracy is ratio of the number of correctly classified

pixels to the total number of pixels.

5 Ajj
i

co(X,X') = (2.74)
>
Z’7j
similarly,
s
ca( X, X') = (2.75)
1,J
with
Z a;; = Z a;;, as stated earlier.
Y] Y]
From (2.74) and (2.75), a simple measure of classifiability can be defined as:
FX, X', X") = co(X,X") = co(X,X") (2.76)
Z Qi — Qi
= 1+ (2.77)

-
E az-j
Z.hj

This is a normalised measure and will range in value from 0, where every pixel in the image

X is correctly classified while the entire image X is incorrectly classified, to 1, where each

corresponding pixel in both the images X and X are classified identically.
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Other related measures have been proposed, such as Jaccard’s coefficient (Piper, 1983).
This is a special case of (2.77), where the interest is only in pixels of one class, say Ay, being

mis-classified as belonging to a second class, say As. That is,

FX, X', X") = co(X,X") = co(X,X") (2.78)
a11 ail
R T3 2 (2.79)
SN aj—an YD a;—ax
i=1 j=1 i=1 j=1

This measure can be demonstrated more easily by reducing the confusion matrix down to a
single class problem; i.e. a pixel is either classified as belonging or not belonging to a specific
class. It has a range from -1 to +1. Shown in table 2.1 is such a matrix, which has been derived

from the five class matrix shown in the appendix on page 228. Here class A; has been chosen

Reference classes

Ay As | Total | Correct | % Commission
A |35 5 40 88 12
Test As | 8 302 | 310 97 3
image total | 43 307 | 350
% Omission | 19 2

Table 2.1: A Confusion Matrix for a Single Classes.

as the particular class of interest.

The confusion matrices are produced from a limited set of pixels that have been randomly
sampled. Thus, the reliability of the previously mentioned measures depends upon the statistical
accuracy of the estimated elements of the confusion matrix. Systematic methods exist to produce

confusion matrices with specified reliability (Piper, 1983).

The measures discussed are based on the diagonal elements of the confusion matrix. It
seems that not much work has been done with measures that use the whole matrix. More

research is needed in this area.

2.5.2 Class Separability Measures

It is arguable that the quality (interpretability) of an image is affected by the statistics of the
pixels of the various classes, as these statistics will determine the separability of the classes and

hence the interpretability. Methods are therefore required to assess the separability of classes.

Probabilistic Measures

In the current context, each pixel has assigned to it a set of features. These usually consist of the

set (vector) of pixel intensity values in some multidimensional space, usually a multi- spectral®

"Consider a series of sensors which are co-located and ‘take’ an image of the same area, but each sensor has
different spectral sensitivities. The result is a multi-spectral image and each spatial pixel is represented by a
vector of intensity values.
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space, but can include properties obtained from the neighbourhood (however that is defined)
of the pixel under consideration; e.g., textural measures. These feature sets, which have to be
analysed in a statistical sense, provide the basis for the differentiation of the various classes
or objects. It is reasonable to assume that, the larger the overlap in the underlying feature
probability distributions, the higher the chance of mis-classification. Therefore, it is important
to introduce rigorous measures of the separability of these distributions, to give some measure
of likelihood of mis-classification error. One such measure is known as divergence (Richards,
1986). The divergence is defined in terms of the likelihood ratio

Lij(%) = p(fM), (2.80)
p(7|w))

where p(Z|w;) and p(F|w;) are the conditional probability distributions for the i and j classes

respectively. These are shown in figure 2.5.2. Clearly L;;(%) is a measure of overlap, with

L;;(Z) = 0 or oo when there is total separation. The divergence of a pair of class distributions

Figure 2.10: Ratio of Probabilities

is defined as
dij =< Lij(#|wi) > + < Ly(#lws) >, (2.81)

where L;j(a_:') = Inp(Z|w;) —Inp(Z|w;) and < - > is the expectation operator; i.e. < L;j(f|w,~) >=
Iz L;j(x)p(f |w;i)dZ, the average value of the likelihood ratio with respect to all feature vectors

(possible patterns) in the i class.

Properties
(i) dij > 0;
(ii) dij = dji;

(iii) if p(Z|w;) = p(Flw;), dij = 0;

N
(iv) if 1,29, ... ,xy (features) are independent, i.e. p(ZFlw;) = TN p(z|w;) = dij = Z dij(xn);

n=1
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(V) dl'j(l’l,... ,J,’N,J}N+1) > dij(a:h... ,J,’N).

There is a significant problem with this measure. The probability of correct classification
as a function of separation of classes, asymptotes towards one, whereas the divergence increases

quadratically. This can give very misleading results.

This problem is overcome with the so called Jeffries-Matusita Distance (JMD), also called
the Bhattacharrya Distance. The JMD between a pair of probability distributions is defined as:

75 = [ | Voo - \/p<f|wj>]2df (25)

which can be interpreted as a measure of the average distance between the class density functions.
As a function of separation, this measure shows similar behaviour to that of the probability of
correct classification. In the case of normal distributions this function asymptotes towards
two (Richards, 1986).

Another separability measure, based on canonical analysis, is the ratio of inter-class to the

intra-class generalised variances; viz.

A= (2.83)

To maximise the separability of classes in feature space, the axes are rotated to produce the

X1 4 \

~Q

o

Figure 2.11: Two dimensional example of rotation of axis to maximise separation.

greatest separation of the class means (07), when projected on the axis (see figure 2.5.2) and

simultaneously showing the minimum spread within the classes (01201_).

A major problem with the previously mentioned separability measures is that of their
computability, as they require a knowledge of the class conditional density functions. More
detailed information concerning the pairwise separability between classes can be obtained by

employing distance measures, such as described in section 2.2.1 of this thesis. These metrics
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are applied to measure the distance between pixels. The distance between two classes can be
computed by averaging the distance between all pixels of one class to all pixels of the other class,
or by finding the distance between the class means. The main advantage of these measures is

that they are easy to compute.

2.6 Image Clutter Measures

The term “clutter” as used is a general term to describe spatial and, sometimes, spatiotemporal
variations in imagery that reduce the availability of target information to a specific sensor.
Although other researchers in the area of clutter are interested in man-made electro-optical

sensors, this thesis is concerned with the HVS as the sensor.

While the literatures concerned with image quality and clutter measures appear to be
largely distinct, it is my assertion that clutter measures are not different to the image measures
already discussed in this chapter, except they include a meta-metric to characterise target as
distinct from background; i.e. the clutter metric has explicitly built into it the concept of target

from non-target (background).

The definition given in the first paragraph, implies that the level of clutter has an effect
on human visual performance. This is confirmed by numerous studies, including those in this

thesis, and particularly the study in Chapter 9, in relation to objective clutter metrics.

2.6.1 Clutter Metrics and Visual Perception

The definition of image clutter explicitly identifies it as a perceptual effect. It is therefore logical
to address the problem of deriving clutter measures in the context of models of visual perception.
Perception can be defined as the task which governs the transformation of signals into symbols.
This signal-in, symbol-out description of the process, is most often considered as a model-based

process.

Research in Psychophysics supports viewing perception as a two-stage process (Julesz,
1991). Shown in figure 2.12 is a two-stage model of the visual system from Trivedi and Shir-
vaikar (1993). The two stages are:

(i) Pre-attentive Processes, and

(ii) Attentive Processes.

The pre-attentive processes take inputs from the sensing mechanisms and generate a set of pre-
attentive cues. Examples of these cues are, grey-level discontinuities, texture, depth or motion
features. Pre-attention is recognised as primarily a bottom-up process. The processing involved
is parallel in nature and does not invoke any models of the scene. Types of tasks which can be
considered as typical pre-attentive tasks include feature extraction and figure-ground separation

(“segmentation”). The HVS can spontaneously segment regions of an image using a variety of
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Figure 2.12: A model for visual processing.

image properties, including luminance differences, colour differences, and textural differences;
more specifically, differences in the second order statistics (Caelli and Julesz, 1979). This impacts
on visual search in the target acquisition process, as it is well established that eye movements
during search are guided by scene structure (Yarbus, 1967), and to establish structure requires

the achievement of some sort of image segmentation.

The presence of clutter may also induce effects which suppress the visual cues of a potential
target. For example, it is well established that there is a suppression of visual sensitivity in
the neighbourhood of an edge. Hence edges may be one form of visual clutter. It is also well
established that sensitivity to luminance differences depends closely on the level of luminance
to which the visual system is adapted (Fechner, 1966; Biberman, 1973; Overington, 1976a; Hall,
1977; Levine, 1985; Falmagne, 1986; Horn, 1986; Buffett, 1986; Moulden et al., 1990) and,
further, that the visual system shows strong local adaptation capabilities (Burr et al., 1979).
Thus, not only the presence of edges, but their strength, and perhaps their polarity in a local

region, could be components of a clutter measure for low level clutter effects.

For the attentive processes, inputs are a set of pre-attentive cues. As opposed to the pre-
attentive stage, the attentive stage is classified as a top-down process. It makes use of models
of the objects which, it is expected, will be observed. These models are stored in memory and
the recognition of objects is carried out by a serial process, in which the memorised models
are sequentially compared with objects suggested by the pre-attentive cues. Effects operating
through attentive processes are increased confusability of target and non- target shapes, and
knowledge-based guidance of search patterns. Objects in a search field are discriminated on
the basis of several image properties, of which colour, size, and shape are perhaps the strongest
cues (Overington, 1976a). Thus, objects having similar colour, shape and size are highly con-
fusable, whereas those which differ markedly on one or several of these characteristics can be
rapidly discriminated. On this view, clutter has a subjective component, in that it requires

reference to those characteristics of the target which allow the HVS to discriminate it from the
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background. Finally, it should be noted that there exists some “feed-back” from the attentive
to the pre- attentive stages. This is important for providing guidance for where to look in the

input image.

The above visual system model derives its support from perceptual psychology. It is inter-
esting to note that the model utilised in computer vision also has a very similar layout (Trivedi
and Rosenfeld, 1989). A three-level, hierarchical processing framework for model-based vision
is generally accepted. Roughly speaking the low-level and intermediate-levels correspond to the

pre-attentive stage and the high-level processing corresponds to the attentive stage.

The above models from psychophysics and from computational vision are attempts to de-
scribe how signal-level information is eventually transformed into symbolic form by either a
human or a machine. There is one very important observation which can be made from these
models. There exist at least three different abstraction levels which are encountered in percep-
tion. The lowest level is characterised by signals, the highest by the symbols and in-between are
the pre-attentive cues. Clutter characterisation studies of the past have primarily focused on
the signal level. These studies are influenced by the classical works of Green and Swets (Green
and Swets, 1966b), where target detection is modelled as a matched filter design problem. The
idea is to use the statistical parameters associated with assumed signal and noise models for

developing an “optimum” decision rule for signal detection®

. The models are based upon the
signal-level (lowest) characterisation and are therefore limited with respect to their potential for

the quantitative characterisation of perceptual effects.

Instead of the above signal-level solution to the clutter quantification problem, the higher,
pre-attentive cue-based solution has been used for characterisation. The specific cue which seems
to be quite useful is that of texture. Texture is recognised as an important pre-attentive cue in
human and machine perception. It is known that tasks, such as segmentation, are accomplished
by using pre-attentive texture-based cues. Indeed many clutter measures are based on texture
characterisation, which has already been discussed in section 2.3.2, and some of these measures

are discussed later in this section.

We see, then, that the clutter concept is multi-dimensional and to use it effectively for
the modelling and prediction of human performance, it must be constrained to apply to those
dimensions of prime relevance both to the HVS and to the task addressed. In the remainder of

this section, the various classes of clutter metrics and their application are discussed.

2.6.2 Classes of Clutter Metrics

It is not my aim in this thesis to give an exhaustive survey of the literature of clutter metrics,
(except in the sense that this has been covered by my survey of image quality metrics), but to

give a “flavour” of the types in general use and, in particular, those used in this thesis.

There are many definitions of clutter currently used in the literature of image processing and
target acquisition modelling (Schmieder and Weathersby, 1983; Cathcart et al., 1989; Reynolds,

5See Chapter 3 for details on signal detection theory.
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1990; Doll and Schmieder, 1993; Meitzler et al., 1993; Trivedi and Shirvaiker, 1993; Hilgers
et al., 1997), but there is presently no definition known by the author which is clearly the
best in all cases or for all images. It is interesting that, while some researchers claim that
clutter and noise are different (Schmieder and Weathersby, 1983; Trivedi and Shirvaiker, 1993),
others basically equate clutter to noise (Meitzler, 1995; Hilgers et al., 1997). In the case of the
former it is asserted “Noise is recognised as a temporally dependent effect which affects the signal
detectability. Clutter, on the other hand, is [a] temporally, independent effect.” (Trivedi and
Shirvaiker, 1993). This seems to be making assumptions about the image under consideration.
For example, if the image is static, no temporal effects exist, but the image may contain a target
embedded in clutter and noise.”. Consider an image from a moving sensor, Surely, changes
in distance and field-of-view could cause apparent changes in clutter characteristics, due to

“... [clutter]is typically neither stationary,

changes in scale®. Schmieder and Weathersby state
ergodic, nor Gaussian, while noise is usually all of these.” (Schmieder and Weathersby, 1983).
Nevertheless, it is the common experience of image processors that noise does not always obey
this edict. There may be times, of course, when the clutter and noise luminance spatial and/or

temporal distributions may be quite distinct and well characterised.

As part of the review of the phenomenology associated with clutter metrics, a few of these

metrics will be described below. Current commonly used clutter metrics include the following;:

(i) Der metric;
(i) POE metric;
(iii) Schmieder Weathersby metric;

(iv) Texture based clutter.

Der Clutter Metric

Originally the Der metric was devised as a method that could be used to predict the false alarm
rate of a given algorithm. The approach taken was as follows: a double window was convolved
one pixel at a time over the image. The maximum size of the inner window was set to the
expected largest target size. The minimum size of the outer window was set to some value
larger than the maximum inner window size. These two features, minimum and maximum, were
chosen arbitrarily. At each pixel location, the algorithm decides whether the new pixel is in the
same intensity space as the one previously examined and then also whether it fits into the inner
window. When an intense region of the image of the approximate target size is found, that
region is catalogued. The principle behind the Der method is to multiply the distribution of the
target-like areas by the probability of detection distribution. The result should then give the
predicted false alarm rate for an algorithm with a given probability of detection distribution.

Now, if one simply counts the number of Der objects in the image, that number should indicate

"This may have to be ascertained purely from a human subjective viewpoint.
8Unless the clutter was of a purely fractal nature, more on this in Chapter 7.
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the number of target-like objects in the scene, and, hence, a measure of clutter (O’Kane et al.,
1993).

POE Metric

The Probability of Edge (POE) metric is meant to determine the relationship between the human
visual detection system and the statistics of the colour or black and white images. First, the
image under consideration is processed with Difference-of-Offset-Gaussian (DOOG) filters and
is thresholded. This procedure is intended to emulate the early vision part of the HVS (Burt
and Adelson, 1983; Peli, 1995). Then the number of edge points is counted and is used as the
raw metric. The procedure for calculation is as follows. Firstly, the image is divided into blocks
twice the apparent size of the target in each dimension. Then, a DOOG filter as described in
(Burt and Adelson, 1983) is applied to each block to emulate one of the channels in pre-attentive
vision, with the net effect being to enhance the edges. As discussed in (Rotman et al., 1991),
the histogram of the of the processed image is normalised and then a threshold, 7', is chosen
based on the histogram. The number of points that exceed the threshold in the i*" block are
computed as POE; 7. The POE metric is then computed in a manner similar to the statistical

variance technique,

N
1
POE = — 2; POE?;. (2.84)
1=
As Rotman et al. (1991) point out, Marr (1982) and other vision researchers have recognised

that pre-attentive vision is highly sensitive to edges.

Schmieder and Weathersby (SW) metric

Schmieder & Weathersby (1983) have proposed the concept of a root-mean-square (RMS) clutter
metric of the spatial-intensity properties of the background. To date it is the most commonly
used clutter measure. The Schmieder and Weathersby (SW) clutter metric is computed by

averaging the variance of contiguous square cells over the whole scene:

1
— f— 2
SW ,N ZE:I No2, (2.85)

where o2 is the variance of pixels within the i*® cell, and N is the number of cells or blocks into
which the image has been divided. Typically N is defined to be twice the length of the largest
target dimension. This is a common, though unproved, practice in the clutter metric literature,
but is put to the test experimentally in Chapter 7. The signal-to-clutter ratio (SCR) of the
image is then given by the average contrast of the target divided by the clutter computed in
(2.85).

The variance in (2.85) has been shown by Reynolds (1990) to be equivalent to,
1 L& 1 & 1 Mk
Nk Z Z(x'ij — )= N Z(mi — 1) + N Z(xz'j — i), (2.86)

i=1 j=1 =1 i=1 j=1
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where N is the number of cells, £ is the number of pixels per cell, z;; is the radiance of the
4§ pixel in the i*® cell, and y; is the ™ cell mean radiance. Equation (2.86) was compared by
Doll & Weathersby (1993a) with experimental detection times for observers looking at computer
generated images of rural scenes with embedded targets. A good correlation between the average
detection time and signal-to-clutter ratio (SCR) value was found. One of the fundamental
problems of computer-based vision is that the contrast metrics are valid for only a limited group

of images.

Texture-based clutter

As mentioned previously, the purpose of defining and quantifying clutter is to aid the devel-
opment of more realistic human detection models, and texture is an extremely important pre-
attentive cue. Clutter is sometimes defined in the sense that areas of similar texture contribute
to the distractive capability or clutter of a scene. Texture measures of a scene are potentially
very powerful metrics for extracting fine level contrast differences in an image (Meitzler et al.,
1993; Doll et al., 1993; Trivedi and Shirvaiker, 1993) and play a crucial role in the modelling of

human visual detection.

Texture-based clutter metrics are sometimes called “complexity” metrics in the context of
automatic target detection (ATD) and recognition (ATR) systems. The only detailed example
of such a metric, to be given here, is the metric by Waldman et al. (1988), as this metric was

utilised in Chapter 9 with radar derived imagery.

“... in accord with human

Waldman et al. attempt to create an image clutter measure
intuitive estimates of clutter, being based on the similarity of the background texture to the target
in size, shape, and orientation.”. They use the grey-level co-occurrence matrix Q;;(s, A). (This
is defined as A[e, 3] in section 2.3.2 on page 35, which describes the grey level co-occurrence
matrix in detail.) Using their nomenclature, step size is given by s in angular direction A. A
probability matrix, P;;, is formed by by dividing each entry of Q;;(s, A) with Q(s, A), “the total
number of possible steps of size s along the direction A.”. That is,

P(s, 4) = L5 4) (287)

Q(s, A)

The sum over all the elements of P;; is 1.

For a constant image with grey-level g, P;; has only one non-zero value on the main diagonal
at 1 = 7 — ¢g. The authors claim that, if an image consists entirely of large texture elements,
values of P;; are large for ¢ near j since “a given step is ... more likely to leave one in the same
texture element.”. In fact this is true only if the step size of F;; is smaller than the texture
element size and if individual texture elements have a small range of grey levels. They claim
that the matrix “must be decreasing ... for i much different than j7.” This is untrue in many
situations. In particular, in the case of large texture elements, there will be an increase in P;;

when 7 and j are grey-levels of adjacent texture elements.

The authors claim that “some measure of the spread of the co-occurrence matriz about its
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main diagonal could serve as [an indicator of] the amount of background texture ...”. They

suggest the absolute value measure B(s, A) (Pratt, 1978), given by

)
-
)
-

B(SvA) = |Z _j|Pij(37A)’ (2'88)

i

I
=)
o
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as a good choice. The authors claim that B is large for images with many small texture elements
and that B is small for images with a few large texture elements. They point out that B is zero

for constant images and for any image when the step size is zero.

The authors claim without proof that B(s, A) increases over s until it equals the average
texture size and then flattens out with only small random fluctuations. If this is true, and if
texture size is the only image characteristic that will cause this behaviour, then finding the knee
on the curve will show the average texture size. The authors claim, again without proof, that
this is indeed true. They propose an algorithm for finding the knee on the curve. They define

a clutter measure by

Ca= (%A)B(s?A), (2.89)

where T4 is the known target cross-section at angle A, s is the location of the knee on the curve
and B is given by (2.88).

The authors state, without proof, that C'4 has a number of properties:

(i) C4 is maximum when the typical texture size is equal to the target size in any direction;
(ii) C4 = 0 for a uniform background;

(iii) Cj4 is invariant under image magnification (scaling).

The second and third properties are undoubtedly true. The first is true whenever B(s, A)
increases linearly from zero to a breaking point (the knee) and is then flat. In general, B(s, A)
will behave in this manner only in the case of images with a completely uniform, textured
background.

The authors tested their hypothesis on an unspecified number of synthetic images, consisting
of 60 x 60 pixels. These images were composed of grids (from 1 to 5 pixels square), with 9 grey
levels assigned randomly with a uniform distribution. They show that these images support
their hypothesis. They then suggest how to normalise the measurement, given certain theoretical

maximum values.

They also claim that their clutter measure is in accord with human intuitive estimates of
clutter. They make this claim, based on an application of their measure to a single, highly

limited experiment on human perception, using only three subjects.

Finally, they test their metric on a large number (1120) of simple, regular, synthetic images
and compare the result to the output of a contrast box ATR. They claim there is a good

correlation between the results.
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The authors claim that their metric

“... is not just another metric but one of the more fundamental metrics .... We submit this

normalised measure of clutter as a very significant clutter metric. It meets all the requirements
of a valid metric and should be ranked third in the order of image metrics behind object size and

contrast”

Despite their assertions, it appears to this author that Waldman et al., have shown only
that their metric is a good measure of clutter when the texture is uniform in size, grey-level, and
spatial distribution and there is either a single target or multiple copies of two identical targets
that are regularly spaced throughout an image. They did not indicate that they had tested their
metric on any real images nor did they compare the result to any ATR in actual use. Images

similar to their test cases do not often occur in reality.

Notwithstanding these reservations, this metric was put to the test with real imagery in
Chapter 9 and was found to be useful in predicting human visual response in clutter. However,
the images used were derived from a radar sensor, which may produce clutter which to some

degree matches the description given in the above paragraph.
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Chapter 3

Subjective Methods in Visual
Psychophysics

Summary: This chapter provides an overview of psychophysical and experimental
psychological methods of analysing subjective visual performance. In particular, the
methods used in this thesis are discussed in more detail. Included in the discussion
are psychophysical experimental paradigm, rating scale types and methods, analysis-
of-variance and signal detection theory. Reference is made to the relevant literature

where appropriate.

3.1 Subjective Methods in the Assessment of Image Quality

Subjective rating by human observers has been commonly used in image quality assessment.
The main questions addressed have been: how much does a processed image differ from an
original and what is the aesthetic quality impact on the viewer? The latter is important in the
entertainment industry, such as television, where the information content of the images is not as
important as the overall impression of “niceness” of the picture (Hidaka and Ozawa, 1993). These
tests are often performed using “naive” observers. However, trials are often performed using
“expert” observers, where the rating of image quality is concerned more with image information

and interpretability than aesthetics, such as in military or medical applications.

These approaches to the assessment of image quality or utility are based on an underlying
theory of visual psychophysics, which has a long history and a large literature. The rest of the
chapter gives a brief overview of applicable psychophysical methods, with some more detail on

the procedures used in this thesis.

3.1.1 Psychometric Functions

In any work on assessing human visual performance, the human perceptual response function,
known as the psychometric function, is obtained either implicitly or explicitly. The following is

a very brief description of this function.
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1.0

0.0 b
Intensity, a (in physical units)

Figure 3.1: Idealised psychometric function.

Consider, for a fixed stimulus b, the probability py(a) that stimulus a is judged as exceeding
b, where both b and a are in some real interval representing a physical scale (see next section 3.1.3)
and where b is a standard of constant magnitude. A somewhat idealised graph of a function py(a)
which is consistent in its main features with many data, is displayed in figure 3.1. This function
is regarded as a function of two variables, where paired values of the stimuli, a and b, map to
pp(a) as shown in (3.3). Such a function py(a) is traditionally referred to as a psychometric
function. This term is also used in a different situation, when p,(a) may be used to denote the
probability of detecting a stimulus a embedded in some “noisy” background b. This is the usual
situation encountered in this thesis as described in later chapters. More generally, values of both

b and a may vary within the same experimental condition.

A central issue is whether the data support the assumption that two or more psychometric
functions are “parallel,” that is, can be made to coincide by rigid shifts along the horizontal axis
(see Falmagne for a full discussion (Falmagne, 1986)). The rationale for this question is that

parallelism is a criterion for an important class of model represented by the equation

po(a) = Fla —g(b)], (3.1)

in which the functions F' and g depend on the particular model considered. In other words, any
model satisfying this equation must predict parallel psychometric functions. A more general

situation can be described by the equation

po(a) = Flu(a) — g(b)]; (3.2)

where 4 is some unknown sensory scale; i.e. a probable measure of “sensation”. In this case, the
psychometric functions are not (necessarily) parallel but may be rendered so by some appropriate
transformation u of the physical scale. Obviously, (3.2) generalises to the so called Fechnerian

equation

pp(a) = Flu(a) — u(b)], (3.3)
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so named as the form was originally proposed by Fechner in 1860 (Fechner, 1966). The under-
standing of the issue of parallelism in psychophysical theory is paramount. Parallel psychometric
functions indicate that the discrimination (or detection) acuity is uniform on the entire stimulus
scale, a fact which may lead to adopting this scale as a measure of sensation magnitude. For in-
stance, in the so-called two-alternative forced-choice design(2AFC, see section 3.1.4 on page 67),
the probability py(a) is often estimated by averaging the frequencies of the responses in the two

alternatives.

The following sections comprise a discussion of the methods used in psychophysics, which

are based on an understanding of the issues just discussed.

3.1.2 Experimental Paradigms

There are three main traditional methods used in performing psychophysical experiments. These

are:

(i) Method of adjustment;
(ii) Method of limits; and

(iii) Method of constant stimuli.

In (i) the subject manipulates a continuous variable stimulus (e.g., by turning a dial),
until it is just noticeable in a detection task. Repeated applications of this procedure yield an
empirical distribution of stimulus values, the variability of which is used to compute or estimate

the just-noticeable-difference (jnd).

In case (ii) the subject’s threshold is elicited by their response to ascending and descending
stimulus magnitude sequences, which are controlled by the experimenter. The experimenter
varies the value of the stimulus in small ascending or descending steps. At each step the subject
reports whether the stimulus appears smaller than, equal to, or larger than the background. The
experimenter records the values of the stimulus at which the subject’s response shifts from one
category to another. This method is used in applied situations, such as audiology, to provide a
quick estimate of the point of subjective equality. As pointed out by Levitt (1970), this method
has serious defects from the viewpoint of efficiency. The observations may be poorly placed, the

estimates may be substantially biased (Falmagne, 1986).

In the method of constant stimuli, case (iii), the stimuli are presented in random or semi-
random order, the method is designed to estimate experimentally a number of suitably located
points of some psychometric function py(a). If a particular mathematical expression is assumed
for the psychometric functions (derived, for instance, from a mathematical model), then this
expression is fitted to the experimental points. Typically, the mathematical expression of p,(a)

is only specified up to the values of some parameters, which have to be estimated from the data.

If no specific mathematical model is assumed, but the psychometric function appears to

be approximately linear, say, between the values .20 and .80, then a straight line can be fitted
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to the experimental points in that interval, replacing the mathematical form used above. This
has been found to be at least approximately true for the experimental work carried out for this
thesis, and, in fact, underlies most of the statistical work that was done. In particular, this is the
basis for the analysis-of-variance (Peatman, 1964a; Hines and Montgomery, 1980a) (ANOVA)

which assumes linear! relationships between independent and dependent variables (factors).

Adaptive Methods

Each of the three methods, (i), (ii) and (iii) just described, suffers from one or more of the

following defects:

(1) Absence of control on the criterion [(i) and (ii)];
(2) No theoretical justification for important aspects of the procedure [(i) and (ii)];
(3) The estimates may be biased [(i) and (ii)];

(4) Costs; a large amount of data is often wasted (all three methods).

To try and overcome these difficulties, researchers have devised so called adaptive schemes that
differ from the methods described previously in that the course of the experiment depends
critically on the data: the stimulus presented on trial n depends on the subject’s responses
on one or more of the preceding trials. At present, none of these methods taken by itself is
completely free of defects. However, a suitable combination of methods provides an estimation

procedure which seems to be reasonable for empirical applications.

Nevertheless, there is some difference in intent in the use adaptive of methods compared to
those methods discussed in sub-section 3.1.2. Adaptive methods are usually employed to find,
for a given probability level, a stimulus threshold. Also, adaptive methods often assume some
particular shape of the psychometric function. Since this thesis is mainly concerned with the
probability of detection versus levels of stimulus properties, adaptive methods were not chosen

as an experimental paradigm.

The work carried out in this thesis uses the method of constant stimuli. Some of the reasons
for this have already been discussed. Another main reason for using this method is its ability
to capture information on the subject’s internal criterion when used in a signal detection theory

context (see section 3.2.2).

In the following chapters of this thesis, experiments are discussed where observers are asked
to rate the quality of images according to some scale. These scaling methods will be basically

reviewed in the following subsection.

LOf course, the relationships between independent and dependent variable do not have to be linear for ANOVA
to work, but its underlying model is linear.
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3.1.3 Scaling

The concept of scaling may be defined as the measuring of the psychological response to a
physical visual stimulus (image), according to some measurement scale. This definition includes
the models, methods and empirical analyses of these response processes. For a full discussion of

these issues see Falmagne (1986).

Most measurement involves the assignment of numbers to aspects of objects or events ac-
cording to some rule or convention. A scale is defined by a group of transformations under which
the scale form remains invariant (invariance criterion) (Stevens, 1968). The most commonly used

scales include those shown in table 3.1. The foregoing scales represent those in common use,

Scale Type Allowable Transformations Examples
Absolute (nominal) | Identity: X — ¢(z) = Numbering of
football players.

Ordinal X = ¢(z) = (), Hardness scale.
where () is increasing monotonic

Interval Similarity: X — ¢(z) = ax, Length, mass
with o > 0

Ratio Affine: X — ¢(z) = azx + 3, Temperature
with o > 0

Log-interval X = ¢(z) = az’, Density
with a > 06 > 0

Table 3.1: Common Scale Types. X is a set of values (which simply may be labels) which are
mapped on to a scale via the transformation ¢(x), where x is a particular member of the set; «
and (3 are constants.

with other types possible. Each scale is defined by permissible transformations, that is, those
which keep intact the empirical information depicted by the scale. If the scale form has been
preserved, the scale form is said to be invariant. The following is a basic description of the
commonly used scaling methods, but this does not include the methods of analysis. For this see
Falmagne (1986) and Stevens (1968).

Absolute Identification.

During a preliminary period the subject is trained to associate a label (say a number 1,...n)
with each stimulus. For the main phase of the experiment, the subject is required on each trial
to identify each stimulus as it is presented; 7.e. produce the appropriate label for each stimulus.

Typically, the stimuli are presented randomly and without immediate repetitions.

Category Rating.

This is related to the absolute identification method as each subject is required to assign each
stimulus to one of m-ordered categories. These categories are assumed to be have equal separa-

tion in a perceptual space; i.e. the subjective distance between categories is equal. The number
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m of categories is often smaller than the number of stimuli. There exist variations of this method

where subjects are instructed to rate pairs of stimuli as to their differences or ratios.

It appears that this method produces very regular data in that the average rating values
appear to vary smoothly with an increase in stimulus intensity. This may result in a Fechnerian

type relation, which has the form
Dy = Flu(z) — u(y)], (3.4)

where D,, is the average rating associated with physical intensities x and y, while F' and u are

monotonically increasing functions.

Magnitude Estimation*.

Magnitude estimation is a very commonly used method of subjective analysis in psychophysics.
In the context of subjective image quality assessment it is prevalent in the literature. Here the
subject is required to produce “direct” numerical estimates of the magnitude of the sensation
caused by the stimulus. According to Falmagne, two variants of the method have been used as

follows, with apparently similar results.

(i) The subject is initially presented with a reference stimulus to which the sensory magnitude
is assigned some value (modulus), say 100. Other stimuli are then randomly presented, and
the subject is given the task of assigning magnitude values such that ratios are preserved;
e.g., if a stimulus is perceived to have a magnitude of half the reference stimulus, it is
assigned the value of 50. Typically, only a few observations are taken from each subject.

These are subsequently combined by computing the geometric mean or median.

(ii) A reference is not provided. The subject is required to assign, to any stimulus presented,

a number that seems appropriate as a measure of the stimulus magnitude.

In reading the image quality literature, however, a third variant is evident which is a
combination of the elements of methods in items (i) & (ii). In this case, a modulus is given, but
no reference, and the subject is required to assign a number, within a predetermined scale, that

reflects the quality of the presented image.

Production & Matching Methods.

There is a class of commonly used procedures that come under this heading. In these procedures
the subject is required to rate a stimulus by “producing” a value of the sensory variable, by

(say) turning a dial. Some examples include the following.

The magnitude production method reverses the procedure used for magnitude estimation;
that is, the subject is given a number and asked to match this with the appropriate sensory

magnitude.
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In applying the ratio production or fractionation method, the subject is required to adjust
the magnitude of the stimulus so that it is perceived to be a particular multiple or fraction of a

reference stimulus.

The results of applying the methods outlined in section 3.1 can be formalised and sum-

marised in the axioms of the Krantz-Shepard Theory which is elucidated by Falmagne (1986).

3.1.4 Methods of Obtaining Subjective Responses

There are three basic methods used in perceptual detection experiments to record observer

responses. These are:

(i) The Yes-No procedure;
(ii) The Forced Choice procedure; and

(iii) The Rating procedure.

In a yes-no task, the observer is presented with one of two possible, mutually exclusive
stimuli per trial. The observer is asked to select one of the two alternatives. There may be
either an image containing a target or an image consisting of only “noise”. Because the yes-no
procedure forces the observer to make a decision based upon a single stimulus in isolation, the
observer is in effect making a comparison against an internal model of the stimuli. Therefore, this
procedure can be used to probe the observer’s internal criterion (bias) when making a decision.
The forced choice task differs from the yes-no and rating task in that more than one stimulus,
usually two (2AFC), is presented within the same interval (temporal or spatial) to the observer,
who is required to select only one (target) stimulus per trial . This procedure is useful when the

sensory aspects of the task are the focus of interest rather than the observer’s criterion.

If one wants to consider the effect of the observer’s criterion on decision making, then the
yes-no method can be used. However, this is often impractical as it requires many presentations
of the stimulus set; at each stimulus set presentation the observers are instructed to adopt a
different particular level of confidence. The third method, the rating method, can be used to give
similar information to the yes-no procedure but only requires a single viewing of the stimulus
set. Using this method the observer is required to subjectively rate each stimulus by selecting a

value on an ordinal or categorical scale (Metz, 1978; De Ridder and Majoor, 1990).

3.2 Methods of Analysis

Given a set of observer responses taken using a method of the previous section, the next step is
to convert these into statistical statements about the observer’s discrimination ability. If only
the sensory processes are of interest then a forced choice experiment combined with a method

of analysis such as ANOVA or multiple regression is appropriate.
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Both ANOVA, and a method called receiver operating characteristic (ROC) analysis, may
be used with yes-no or rating experiments, assuming the experiment is designed to allow for the
requirements of both types of analysis (e.g., sections 9.2.3 and 9.2.4 of this thesis). A major
difference between the two analysis techniques is that ANOVA focuses on obtaining purely
sensory information, which in contrast to the ROC analysis, does not give any information
about the observer’s internal criterion. In contrast, the ROC analysis retains this information.
The next sections give a basic overview of the ANOVA and ROC methods.

3.2.1 Analysis of Variance

A brief description of the ANOVA statistical technique is now given for the sake of completeness.

First we need to define a few necessary concepts.

factor An experimental factor is an independent variable, the effect of which we are trying
to determine; e.g., background clutter level and target contrast level may be factors in a

study.

factor level The factor level is the actual level or value of the particular factor; e.g., clutter

level at value “high”.

treatment The treatment is a particular combination of factor levels; e.g., clutter level “low”

and contrast level “high”.

treatment mean The treatment mean is the average value of the dependent variable obtained
for a particular treatment; e.g., the mean hit rate obtained over all the subjects for low
clutter level with high contrast.

treatment effect The treatment effect, or just “effect”, is the difference between a particular
treatment mean and the average response score for all the treatments; e.g., the mean hit
rate obtained over all the subjects for low clutter level with high contrast minus the mean

score over all the treatments.

ANOVA is used in testing the equality of several treatment means. In a typical experiment
it would be used to test for any “real” difference in the treatment means for the different
treatments. ANOVA does this by dissecting the total variability in the data into its component
parts. This variability is due to differences between treatment means for each treatment (between
groups) and that due to differences in subjective response scores at each particular treatment
(within groups). The aim of the analysis is to determine whether any of the variability in the

data is due to real effects or is just due to “noise”; i.e. to error in the data.

Consider the case where the treatment means are in fact equal; i.e. we know that the factors
in the experiment have no effect on the subjective responses. In statistical terms, it is said that

the null hypothesis® is true. In this case, any variability in the data is due to noise. The within

2See Appendix C for more discussion on hypothesis testing.
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groups variability (éy) and the between groups variability (é;,) are both estimates of the error.
Then the ratio

— =~ 1. (3.5)

However, if in fact the treatment means are not equal, the between groups variability will include
two components; an error term as before and a component due to the real effect. In statistical

terms it is said that the alternative hypothesis is true. Then (3.5) becomes

Te + €

Ew

> 1, (3.6)

where 7. is the treatment effect.

The problem is that even though we have found that the ratio defined in (3.6) is greater
than unity, how much larger does it have to be to signify a real effect? This question will be

answered shortly, but first some more definitions.

The analysis-of-variance is so named since it analyses the sources of variability defined in

terms of variance. The sample variance (5) is defined in general as

i (31)

where 4 is the sample mean and N is the sample size. The variance in ANOVA is also called

the mean square and is usually defined by:

. SS

6= (3.8)
where SS is the sum of squares and df is the number of degrees of freedom. The numerator and
denominator in (3.7) are here equivalent to those in (3.8), but (3.8) is slightly more general. The
SS is just the sum of the squares of the differences between two discrete variables or a variable
and a constant. Usually the constant is a mean as in (3.7) above. The number of degrees of
freedom (df) associated with a variance (or equivalently mean square) corresponds to the number
of scores with independent information that enter into the calculation of that variance. As an
example, consider the use of a sample mean to estimate a population mean, where the sample
is taken from the much larger population. If we want to estimate the population variance as
well, we must take into account the fact that we have already used up some of the independent
information in estimating the population mean. That is why the df in (3.7) is N — 1 and not N,
as the mean is used in the calculation of the variance and once the mean is defined, only N — 1

sample values can have any value. Once they are fixed, the remaining value is also fixed.

In the analysis-of-variance, the ratio in (3.6) is usually expressed as:

MSy,
3.9

MS,, (3.9)

where MSy, is the between groups mean square and MSy, is the within groups mean square. Now

we get back to the question, how large does this ratio (3.9) need to be to signify a real effect? This
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‘ Summary of all Effects for ANOVA

Effect Degrees of Freedom | Mean Square | F' Ratio p-level
(df) (MS)
Clutter a — ]_ = 2 M MSClut

clut err

Probability that

contrast b—1=3 SScont MS.on ratio is due
cont err
to chance.
interaction | (a—1)(b—1) =6 —%?e" —Mgi“t
error ab(N — 1) %?e“ - -

Table 3.2: Derivation of the ANOVA summary table

problem is solved by referring to the statistical distribution known as the F' distribution (Hines
and Montgomery, 1980b), of which a theoretical discussion is beyond the scope of this chapter.
The ratio in (3.9) is termed the F ratio. In basic terms, the F' distribution defines the probability
of finding any given F' ratio when the treatment means are equal; i.e. no real effect. From
this, given a specific F' ratio we can determine the probability that any apparent effect has
arisen purely by chance. Theoretically any F' ratio can arise purely by chance, but from the F'
distribution, we can obtain the confidence to any required level, usually 95%, that a real effect
exists; i.e. if the F' ratio is above the threshold for 95% confidence we say that a significant
(real) effect has been found.

Table 3.2 gives an example of how the contents of an ANOVA summary table are quanti-
tatively derived. The exact format of the table depends on the particular design, but table 3.2
gives the derivation for the ANOVA table associated with the design used in Chapter 9, which is
the simplest design used in this thesis. In the degrees of freedom (df) column, the three clutter
levels are symbolically represented by a, and the four contrast levels by b, with n samples in the
overall analysis. The number of degrees of freedom for clutter and contrast are a — 1 and b— 1
respectively (and not a and b for reasons discussed in section 3.2.1). For the clutter x contrast
interaction the number of degrees of freedom is the product of the df’s associated with each
factor involved; i.e. (a —1)(b—1). The error term arises from the within-groups variability (3.5)
and the number of degrees of freedom is found by pooling the number of degrees of freedom for
each group; i.e. at each treatment. There are ab treatments each with N — 1 degrees of freedom

each, therefore, the error mean square term has ab(N — 1) degrees of freedom.

This technique has many advantages. An important one is that it is well understood and
there exist techniques for estimation of the necessary sample sizes (see Appendix C for analysis).
There are many good texts available that explain the technique in detail, e.g., (Peatman, 1964a;
Hines and Montgomery, 1980a).
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3.2.2 Signal Detection Theory and ROC Analysis

The quality of observers’ decisions will vary in some manner with their perception of the decision
making environment. To be able to measure these effects we need to quantify the types of
decisions made by observers as the circumstances change. The approach used for this is divided

into two parts:

(i) measurement of the relative frequencies of the observers’ decisions against the types of

stimuli, and

(ii) based on the pay-offs that result, an evaluation of the benefits that can be gained from

the different decision strategies.

Principles of signal detection theory are used to guide the approach, to predict the relationship
between the decision performance in various situations and to suggest optimal decision making
strategies. In the following section, the basic principles of the ROC will be outlined and refer-
enced by the work of major contributors to the literature (Green and Swets, 1966¢; Falmagne,
1986; Goodenough, 1976; Metz et al., 1976; Metz, 1986).

Receiver Operating Characteristics and Methods

Consider a task where an observer is required to determine whether or not a target is present
in a noisy image. According to Metz (Metz, 1978; Metz et al., 1976; Metz, 1986), this is done
by comparing one’s impression of the image with some “confidence threshold” and stating that
the target is present only if one’s confidence exceeds that threshold. Training and experience
would seem to be important factors in determining the proficiency with which the observer can

interpret the image data. We will comment later on this issue (section 9.2.6).

Underlying the formulation of the confidence threshold on the part of the observer in a
particular situation is a consideration of the costs and benefits associated with each decision.
For instance, if the false detection of a target resulted in heavy penalties, then it seems plausible
that an observer would consciously or unconsciously raise the confidence threshold. These
cost /benefit considerations can be summarised in what is commonly called a pay-off matriz (or

utility matrix). In the detection task, two types of errors can be made:

Type I the observer may report a target is present when in fact only noise is present (a false

alarm or false positive), or

Type II the observer may fail to report a target that is present (a miss).

A correct detection is called a hit. The remaining case is a correct rejection. The cost/benefit

associated with these decisions may be represented as shown in table 3.3.

Let S and N represent positive decisions for the target (signal) and noise respectively.

Similarly, s and n denote whether the target is present or absent. Then p(S|s) represents the
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Stimulus Response
target noise
S N
present hit miss
S a b
absent | false alarm | correct rejection
n c d

Table 3.3: Cost/benefit (payoff) matrix.

conditional probability of the observer deciding that a target is present when a target is in
fact present (a hit) and p(IN|n) represents the conditional probability of the observer deciding
correctly that only noise is present (a correct rejection). The probability of a false alarm is
represented as p(S|n) and the probability of a miss is denoted by p(N|s). The expected utility is
a measure of the yield of a particular decision strategy, and is defined using the quantities a, b, ¢
and d of the payoff matrix in table 3.3 by (Sperling and Dosher, 1986):

U = aplap(Sls) +bp(N|s)] + (1 — ap)[ep(S|n) + dp(N|n)] (3.10)

where the true positive fraction a, is the ratio of the actual number of true targets to the total

number of observations.

The ROC curve shows the various trade-offs that are possible among the probabilities of the
four types of correct and incorrect decisions as the values of a, b, ¢ and d of the pay-off matrix are
varied. This in turn induces the observer to adopt different values of the confidence threshold.
Specifically the ROC graph is a plot of p(S|s) versus p(S|n). In the military surveillance context,
p(S|s) is called hit rate (HR) while p(S|n) is called the false alarm rate (FAR). An estimate
of p(S|s) is the ratio of the number of true positive decisions to the number of actual targets
and an estimate of p(S|n) is the ratio of the number of false positive decisions to the number of

objects deemed as false targets.

To explain this further, suppose that three pay-off matrices have been used and are de-
noted by ¢1, 2, g3 indicating three different confidence thresholds. Let p(S|s, ¢;) and p(S|n, ¢;),
i = 1,2.3, be respectively the hit and false alarm probabilities. As an example consider the

hypothetical data shown in table 3.4.

FAR HR
p(SIn,gi) | p(Sls, )

T 0.10 0.35

¢ | 0.40 0.75

g5 | 0.60 0.90

Table 3.4: Example ROC data.

The accuracy A of, say, an image analysis procedure, is defined as the ratio of the number
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of correct decisions to the number of observations. This is equivalent to

A =p(Sls)ap + (1 = p(S|n))on

where the true negative fraction ay, is given by the ratio of the actual number of false targets to

the total number of observations.

noise distribution p(n)

signal distribution p(s)

lower 1 higher
confidence threshold
. Correct Rejection E False Alarm Rate p(S |n)

D Hit Rate p(S|s) M Miss Rate

Figure 3.2: A schematic example of the model that underlies ROC analysis. The horizontal axis
represents the perceptual response to the quantity upon which decisions are made, while the vertical axis
represents probability values. A confidence threshold, represented by the vertical line, separates “positve”
decisions from “negative” decisions. The conditional probability of each kind of decision is equal to the
area under a distribution on either side of the threshold.

Hit Rate

ooL~ . . 0y

0.0 0.2 0.4 0.6 0.8 1.0
False Alarm Rate

Figure 3.3: The example data with a smooth ROC curve fitted. The dotted line represents a
hypothetical ROC curve with no better than chance performance.

These decisions are assumed to be under-pinned by probability distributions as shown in

figure 3.2 (Swets, 1973). Strictly, it is not necessary to assume the form of these distributions
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in order to carry out an ROC analysis. However, in practice, normality is often assumed to
facilitate hypothesis testing and in order to fit smooth curves (using maximum likelihood) to the
plotted points on the ROC graph (figure 3.3) (Metz, 1978; Metz, 1986; Green and Swets, 1966a;
Burgess, 1989; Hanley and McNeil, 1982; Herrmann et al., 1993). Some useful non-parametric
methods have also been used in ROC hypothesis testing and sample size evaluation (Hanley and
McNeil, 1982; Rockette et al., 1991). In figure 3.2, p(s) represents the distribution of perceptual
responses for image stimuli which contain a target with constant signal-to-noise ratio (SNR),
while p(n) represents the distribution for image stimuli which do not contain any true targets
(noise only). The threshold, represented by the vertical line, is variable and depends on the
observer’s estimation of the (prior) probability that the result is positive. This is based on
other information such as that derived from information reports and the observer’s previous

experience.

3.2.3 Calculation of ROC Curve Using the Rating Method

As discussed in section 3.1.4 on page 67, the rating method is often preferred to the yes-no
method as it is more economical, yet is conceptually equivalent. In performing an ROC analysis

of a visual detection experiment a rating scale such as the following might be used:

Rating Interpretation

0 Definitely a target is not present.
Unsure if a target is present.
Maybe a target is present present.
Likely a target is present.

More than likely a target is present.
Definitely a target is present.

U W N~

This would result in 6 points on the ROC curve which are computed as follows. The point
on the curve associated with the strictest decision threshold is calculated by considering only
responses at rating 5 as positive and all the rest as negative. For the next point, in the direction
of less strictness of the decision threshold, only responses from rating 4 and 5 are considered as
positive while the rest are considered negative. This process is continued until any response is
considered as positive. This will yield a point at (1.0,1.0) in the top right hand corner of the
graph.

The hit probabilities are computed by dividing the cumulative number of positive responses
at each rating level, starting at the most strict, by the total number of stimuli containing
targets. Similarly the false alarm probabilities are computed by dividing the cumulative number
of negative responses at each rating level by the total number of stimuli without targets. The
actual numbers of positive and negative responses at each rating level are determined after the
experiment; e.g., the actual number of positive responses at rating 4 will be determined by noting
all the stimuli that were given a rating 4 by the observers and determining the total number of

stimuli that contained actual targets. An example of the calculations is given in table 3.5.
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Rating Total
0 1 2 3 4 5
Number of hits 3 4 2 2 11 33 55
Cumulative number of hits 55 | 52 48 46 44 33 55
Number of misses 33 10 6 6 11 2 68
Cumulative number of misses 68 | 35 25 19 13 2 68
Number of responses at each rating | 36 | 14 8 8 22 35 123
Hit rate 1.0 | 0.95 | 0.87 | 0.84 | 0.80 | 0.60
False Alarm Rate 1.0 | 0.51 | 0.38 | 0.28 | 0.19 | 0.03

Table 3.5: An example of the rating calculations.

3.2.4 Curve Fitting

In order to visualise the ROC curve, fitting to the points can be achieved by eye or by applying an
interpolation technique such as cubic splines. However, this is not satisfactory if determination
of statistical parameters are required, such as in the case where standard error estimates are
required or it is necessary to compute the area under the curve as a measure for comparison of

ROC curves.

Usually, the distributions underpinning the ROC analysis are assumed to be normal. In
this case a maximum likelihood algorithm can be used to fit a curve to the data points, and
this will allow statistical evaluations to be made (Metz, 1986). In effect, this algorithm finds
the pair of normal distributions most likely to have produced the given set of data point pairs

on the ROC curve (5 in our case).

Similar statistical inferences can be made, including the calculation of the area under the
ROC curve, by using non-parametric methods (Hanley and McNeil, 1982). This requires no
assumptions as to the underlying distributions for the resulting ROC curve and, in this case,
the points on the ROC are joined by straight line segments. If the underlying distributions are

Gaussian or near Gaussian, the parametric method is more powerful.

3.2.5 The Area Under the ROC Curve

There have been numerous attempts to produce a single quantitative index from an ROC
curve (Hanley and McNeil, 1982), but most of these assume underlying Gaussian distributions as
the basis for the observed ROC curve. One of these measures, which is very popular, is the area
under the ROC curve, usually denoted by A(z), due to the usual assumption of normally dis-
tributed variates. This index varies from 0.5 (no greater than chance) to 1.0 (perfect accuracy)
and is usually calculated using an iterative maximum likelihood curve fitting algorithm. This
program finds the pair of model parameters, usually expressed as the difference in means and
the ratio of variances of the two underlying (assumed Gaussian) distributions, corresponding to
the most likely observed ROC curve.

The actual meaning of the area under the ROC curve was first fully addressed by Green &
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Swets (1966b), who showed that A(z) was equivalent to the percentage correct in a 2-alternative
forced choice task. It was pointed out by later authors (Hanley and McNeil, 1982) that A(z)
applied equally well to ROC curves obtained by either yes-no or rating methods, and it was
shown that A(z) measures the probability that the perceived differences in randomly paired
target present and absent images will allow them to be correctly identified. Most importantly,
this probability was shown to be equivalent to the Wilcoxon statistic (Peatman, 1964b), which
measures the probability that randomly chosen stimuli in target /non-target stimuli pairs will be
correctly ranked. This also means that the area under the ROC curve can be estimated non-
parametrically; ¢.e. without making assumptions as to the underlying probability distributions.
By using this connection, means were developed by Hanley & Mc Neil for assigning error bars
to ROC curves (finding the standard error) and for determining required sample sizes. However,
they also showed that an estimate for the expected A(z) was required in order to get an estimate

of the required sample size that would yield a test of specific statistical power.



Part 2

STUDIES IN HUMAN VISUAL TARGET
AQUISITION

Summary: This part of the thesis comprises four chapters detailing experimental
work exploring the relationship between image characteristics and human visual per-
formance. It begins by describing an initial experiment which was performed to explore
psychophysical approaches to investigating the effectiveness of image metrics for the pre-
diction of subjective responses to image properties. Later experiments are then described,
which investigated the effects of controlled degradation on human visual performance
in target acquisition and the salient image properties involved. Both static and video
images were considered in these experiments. The final chapter, in this part of the thesis,
explores the extent to which the size of the clutter area around a target, has a major
effect on human visual target detection performance; i.e. the “localness” of clutter. This
has implications for the application of clutter metrics. In these studies, it was found, in
evaluating image quality, that a task-oriented visual performance approach is appropri-
ate, using the probability of detection or response time, rather than the subjective rating

of image quality.
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Chapter 4

A Study in the Perception of Image
Similarity

Summary: This chapter describes a study which investigates, in a preliminary
way, how human observers perceive the same scene information presented either as an
infra-red (IR) image or as an optical image. As this was my first visual psychophysical
experiment, I also investigated a subjective methodology for producing an interval
scale, as a metric of image similarity, and the application of some basic image quality

metrics.

4.1 Introduction

This chapter describes some initial research investigating the application of image metrics to
real images. One aim was to explore subjective methodologies, which have the potential to elicit
responses from observers, in order to appreciate their perception of image quality. A further
aim was to investigate the appropriateness of using common image metrics for real images in a
surveillance context, in particular, for measuring the perceived similarity of images. Valuable
insights were gained from the study described in this chapter, and these insights assisted in the
design of the experiments, which are desribed in later chapters. The results of this study also
highlighted some weaknesses in traditional image quality metrics, and showed that a new class

of metrics are required in some circumstances.

This study was not conceived solely to meet the research aims just discussed. There was
also a driving requirement to satisfy a real world practical need — to be able to cheaply synthesise
infra-red (IR) images. Because the production of synthetic imagery based on a full IR physical
model is costly and often impractical, an immediate motivation for this study was to gain data
that would facilitate the synthesis of IR imagery; i.e. produce approximate simulations of TR
imagery based on optical imagery of the same scenes. A scene, viewed in both the visible
(optical) and IR spectra, contains the same physical objects, but these objects are represented
by different distributions of radiant energy (which is visible via an appropriate sensor system)

in each spectral range. For example the visual information obtained by shape-from-shading
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appears quite different in the visible spectrum to visual information obtained in the thermal
IR spectrum. In the case of the former, objects are illuminated by reflective light whereas in
the latter case objects are visible (via a sensor) due to emission of IR energy. Nevertheless,
the potential information available by both the visible and IR spectrums should be similar.
Therefore, it is feasible that IR imagery could be simulated by applying a transformation to the
visible imagery; i.e. by mapping each IR pixel value to the corresponding visible pixel value.
A corollary of this situation, if proven correct, is that humans potentially could obtain similar

information from both IR and visible imagery.

In order to obtain an appropriate synthesis of IR imagery, trade-offs have to be made
between image “quality” or realism and cost. However, the question arises of how these trade-
offs are to be determined. This study, in achieving the stated aims, was intended to make a
first step towards answering this question by exploring the efficacy of objective image quality

measures for predicting subjective responses to displayed imagery.

In terms of the literature, there appears nothing directly relevant with which to compare
this study. The only paper that seems in any way relevant to the study in this chapter is a paper
by Toet, Ijspeert, Waxman and Aguilar (1997). Here Toet et al. tested whether the fusion of
visible and infrared imagery improved observer situational awareness. They found that this was
the case. However, there was no attempt to systematically investigate how observers perceive
information gained by viewing visible as compared to IR imagery, and thus no direct comparison

between this chapter and that paper can be made.

4.1.1 Interval Scale Development by Paired Comparison

This section gives a brief discussion of a method for producing ordinal and interval scales (see
section 3.1.3) from a ranking of a set of stimuli, with respect to some quality. This ranking is
obtained by presenting pairs of stimuli to a subject and eliciting a response as to which stimulus,

in each pair currently presented, has the desired quality.

In the application of this “paired comparison” method, observers are presented with every
possible pair of stimuli (images) from the stimulus set and asked to select the one stimulus of
each pair that most nearly meets the criterion specified by the experimenter. The procedure
is repeated over a sufficient number of observers. No stimulus should be presented more than
once within each presented pair, and each stimulus should appear the same number of times in
each of the two positions. (In my experiment, three images were presented. However, one was
the reference image for comparison with the other two, as shown in figure 4.1.) A matrix is
developed from the data, indicating the proportion of times that each stimulus is selected over
the other stimulus of the set. Well established assumptions are made about the distribution of

the responses of the observers, so that an interval scale can then be developed from the matrix.

The method of data reduction requires the following assumptions:

(i) Observers do not always respond in the same way to each stimulus, but the magnitude of

their responses to each stimulus follows a normal probability distribution;
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(ii) An observer’s response to a particular stimulus is not affected by his response to the

alternative stimulus;

(iii) An observer’s ability to discriminate the magnitude of the attribute being scaled is equal

for each stimulus; i.e. stimuli are equally easy to place on the scale.

Example

Ten observers are individually presented with every possible pair of 5 images and asked to
select one image from each pair that has the better image quality in some given context. The
hypothetical results are tabulated in the form of a proportion matrix as shown in table 4.1.
For example, consider the entry “0.30” in row 1 and column 2 which indicates that 30% of the
observers rated image 2 to be of better quality than image 1. The column sums indicate the
order of the images on an ordinal scale. (Ordinal scales can be more efficiently achieved using

rank order methods.)

To develop an interval scale, the proportions must be transformed into Z deviates of the
normal distribution as indicated in table 4.2. Under the assumption that that each proportion
in the proportion matrix indicates the area under the standardised normal distribution from

—o0 to the Z value, the table 4.1 has been transformed to table 4.2. If all assumptions are met,

Image Numbers
1 2 3 4 5

0.50 0.30 0.20 0.40 0.10

0.70 0.50 0.30 0.60 0.20

0.80 0.70 0.50 0.80 0.30

0.60 0.40 0.20 0.50 0.20
5 0.90 0.80 0.70 0.80 0.50

Col sums | 3.50 2.70 1.90 3.10 1.30

N N

Table 4.1: Proportion Matrix. The elements of the matrix are the proportion of times that
observers chose the image indicated by the column number over the image indicated by the row
number.

the column sums or means of the Z-deviate matrix are the relative positions of the images along
an image quality interval scale. Mosteller (1951) developed a method for determining if a scale
developed by pair comparison meets the assumptions imposed by the data reduction technique.
As the scaling method is based upon changes in the responses of the observers, the differences

between the stimuli must be small enough to produce these changes with each pair of stimuli.

Using the above method, the proportions must lie between zero and one. More precisely,
a rule of thumb appears to be that the proportions should be between 0.023 and 0.977, so that
the Z deviates will range between -2.00 and +2.00. The number of pairs, (INV,), generated by a

stimulus set of n stimuli is

N, = w (4.1)
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Image Numbers
1 2 3 4 5
0.00 -0.53 -0.84 -0.26 -1.28
0.53 0.00 -0.53 0.26 -0.84
0.84 0.53 0.00 0.84 -0.53
0.26 -0.26 -0.84 0.00 -0.84
5 1.28 0.84 053 0.84 0.00
Colsums | 291 58 -1.68 1.68 -3.49
Col means | 0.58 1.16 -0.34 0.34 -0.70

N N

Table 4.2: Matrix of Z-Deviates from pair comparison data. Elements of the proportion matrix
(probabilities) are converted into Z-deviates of the standardised normal distribution.

4.2 Experimental Protocol

A panel of 15 observers was selected opportunistically, all of whom had normal 6-6 vision (with
optical corrective devices, if required). The observers had different degrees of experience in
judging image quality. The stimuli were presented in such a manner as was outlined earlier
under the paired comparison method (section 4.1.1), but in addition, a third reference image
was presented with which to compare both images under test. Each viewer sat in front of a
Lex 90 display running from a pu Vax computer, and was asked to choose which of two images
was more similar to a simultaneously displayed reference image. A typical display is shown
in figure 4.1. A series of pairs of images was presented under the control of the observer;
1.e. the observer indicated his choice by pressing either the right or left arrow key, which in turn
initiated the presentation of the next pair of images. The time taken to make each decision
was also recorded. Stimuli were viewed with normal room lighting conditions, which were held

constant. The viewer was permitted to adjust the viewing distance as he wished.

The rank order data that was obtained from the observers was reduced to obtain an interval
scale of relative similarity, following the procedure explained in section 4.1.1. This gave a
measure of the relative similarity of the images. It was assumed that the image stimuli were
distributed normally along the attribute being scaled. The timing data gave an extra dimension

of information which was compared to the ranking data.

4.2.1 The Test Image Set

The images used in this pilot study, were selected from a set of optical and 8-12u TR images
of the same 21 locations. The images were of medium complexity scenes, containing buildings,
trees and sometimes cars. The reference image was an IR image of a particular scene, while the
pair of images for comparison were both optical images of the same scene, that had undergone

some form of intensity transformation.

A subset of 4 of the 21 optical/IR pairs in the original data-set of images was selected.
The aim of this selection was to have the image subset contain a cross-section of natural objects

and artifacts. This was impossible to fully achieve with only 4 images, but this preliminary
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Figure 4.1: Lex90 Display.

study would have soon become unwieldy, with an increase in the subset size, according to
equation (4.1). Figure 4.2 shows the four scenes in the subset of 4 images, as obtained through
the IR imager. Of this subset, each IR image served as a reference, while each optical image
was subjected to an intensity transformation. This yielded 4 images for comparison (including
the original optical image). According to equation (4.1), there were 6 pairs for each reference

image, and there were 4 reference images, yielding 24 pairs in total for the stimulus set.

4.2.2 Intensity Transformations

The intensity transformations, on the optical images, that were used for this study were:

(i) No transformation (natural);
(ii) Pixel grey-level inversion (inversion);
(iii) Exponential transformation after inversion (exponentiation);
(iv) Logarithmic transformation after inversion.
4.2.3 Application of Image Measures

Four easily implemented measures of image similarity were used. These included:

(i) Mean square error (defined in section 2.2.1 on page 18);
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scene 1  scene 2
scene 3 scene 4

Figure 4.2: The four scenes in infrared images.
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(ii) E-mean measure (Marmolin, 1986):

1
1 <& P
E mean = [— § M, — M, |P] 7 (4.2)
n
=1

where M,, and M,, = mean grey-level in a 2 x 2 sliding window “surrounding” a corre-
sponding pixel in the reference and processed images respectively. This attempted to allow

to some degree for the low pass filtering in the HVS (see section 1.2.3 in Chapter 1);

(iii) Difference in entropy (H) where:
1
H=Y p 10%(;), (4.3)
. 7
2

with p;, the probability of the pixel occurring. H gives a measure of the amount of
information the distribution contains. For a discussion on entropy based measures see

section 2.2.5 in Chapter 2.

(iv) Difference in grey-level variance.

These measures were all normalised to yield values between 0.0 and 1.0 .

4.3 Results and Discussion

An ordinal scale of image similarity was obtained by arranging in descending order the sums of
the columns of the proportion matrices, which are shown in table 4.3. The indices along the

matrices represent the image transformations as shown in table 4.4.

4.3.1 Paired Comparison Rankings

Table 4.5 summarises the rankings of the images obtained by the paired comparison method. As
can be seen from the table, the ranking of the images for each scene is different. However, there
are some consistencies. For each scene, the images subjected to the inversion-plus-logarithm
transformation were ranked the least like the IR image. This is not surprising, since the HVS
has a log-like response (see section 1.2.3). Huang (1965) found that image quality was a function
of both the number of pixels in an image and the number of quantisation levels for the pixels.
For a given size and image resolution then the quality depends on the perceived number of
quantisation levels. Since the HVS has a logarithmic response, it will compress further the
already logarithmically transformed image, and thus reduce the perceived number of grey-levels
even further. However, the other images will be perceived as having relatively more quantisation

levels and thus be seen as more similar.

Surprisingly, based on the rankings shown in table 4.5 on the next page, in scene 1 and scene
2 the natural images were considered closest to the IR images, while, in scene 3, the natural

image was ranked second only to the inverted image. Scrutinising the four scenes shows that



CHAPTER 4. A STUDY IN THE PERCEPTION OF IMAGE SIMILARITY

85

Image Numbers

1 2 3 4 1 2 3 4

Scene 1 Scene 2

1 0.50 0.60 0.13 0.70 || 0.50 0.33 0.13 0.77

2 0.40 0.50 0.20 0.70 || 0.67 0.50 0.27 0.67

3 0.87 0.80 0.50 0.83 | 0.87 0.73 0.50 0.80

4 0.30 0.30 0.17 0.50 || 0.23 0.33 0.20 0.50

Col sums | 2.07 2.20 1.00 2.73 || 2.27 190 1.10 2.73
Scene 3 Scene 4

1 0.50 0.27 0.27 0.57 || 0.50 0.57 0.10 0.23

2 0.73 0.50 0.50 0.53 || 0.43 0.50 0.10 0.20

3 0.73 0.50 0.50 0.63 || 0.90 0.90 0.50 0.80

4 0.43 0.47 0.37 0.50 || 0.77 0.80 0.20 0.50

Col sums | 240 1.73 1.63 2.23 | 2.60 2.77 0.90 1.73

Table 4.3: Proportion Matrices. Indices: 1,2,3,4 represent the image transformations. 1: grey-level

inversion (inv), 2: inv + exponentiation, 3: inv + logarithm, 4: natural

grey level inversion;

inversion & exponentiation;

inversion & logarithm;

natural.

Table 4.4: Table defining the code (indices) used to represent the image transformations.

scenel

scene 2

scene 3 | scene 4

4213

4123

1423

2143

Table 4.5: Subjective rankings of perceived similarity between a transformed visible image and
the reference IR image, which were obtained from the pair comparison data. Indices: 1,2,3,4
represent the image transformations. 1: grey-level inversion (inv), 2: inv + exponentiation, 3: inv +

logarithm, 4: natural

MEASURE | scenel | scene 2 | scene 3 | scene 4
MSE 2143 | 1234 2143 2413
EMEAN 2143 | 1234 2143 2413
ENTROPY 2341 | 1324 2341 3241
VAR 2341 | 1432 3214 2341

Table 4.6: Objective rankings obtained from the values "measured” by the image metrics of
the similarity between a transformed visible image and the reference IR image. Indices: 1,2,3,4
represent the image transformations. 1: grey-level inversion (inv), 2: inv + exponentiation, 3: inv +

logarithm, 4: natural
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they all have different contents. In addition, scenes 1 and 2 are heavily shadowed, scene 3 less
so and scene 4 not at all. It seems likely that shadows had a marked effect on the perceived
similarity of the images for each scene. This may be due to the fact that, when IR images
contain sun and shadow, the intensity gradients in these areas are in the same direction as in
natural visible images, whereas the inverted image intensity gradients in these areas are in the
opposite direction.

The results for the objective image measures are tabulated in table 4.6 on the preceding
page. None of these rankings seemed to correspond with the subjective rankings. This indicates

that the HVS does not use global statistics as the major means of deciding on image similarity.

4.3.2 Latency and Pair Similarity

Table 4.7 shows the response time for each set of image pairs that correspond to each reference
image. Based on the hypothesis that the latency will increase with increased similarity of the
two test images presented, these data provide information on the degree of perceived similarity of
images with different intensity transformations. Under the hypothesis just mentioned, a ranking
of perceived similarity of image pairs was set up accordingly for each image set; i.e. the 6 pairs
of stimuli obtained per reference image according to equation (4.1) on page 80. Each of the 6
pairs of numbers in a set represents a pair of images that were compared for perceived similarity.
The actual numbers in each pair are codes which represent the image transformations according
to table 4.4 on the page before.

image set (for scene) 1: 1,2; 2,4; 2.3; 3.4; 1,4; 1,3.
image set (for scene) 2: 1,4; 1,2; 2,4; 3.4; 2,3; 1,3.
image set (for scene) 3: 1,2; 1,4; 1,3; 2,4; 2,3; 3.4.
image set (for scene) 4: 1,2; 2,3; 1,4; 1,3; 3,4; 2.4.
Image Numbers
1 2 3 4 1 2 3 4
Scene 1 Scene 2
11 0.00 0.00
2| 11.49 0.00 5.64 0.00
3| 633 7.56 0.00 3.34 3.58 0.00
41 6.95 1099 7.36 0.00 || 6.62 5.33 4.18 0.00
Scene 3 Scene 4
1 0.00 0.00
2| 6.94 0.00 6.28 0.00
3| 5.92 5.22  0.00 4.05 5.45 0.00
41 6.59 5.65 507 0.00 | 5.12 3.86 3.95 0.00

Table 4.7: Pair Latencies in seconds. Indices: 1,2,3,4 represent the image transformations. 1: grey-
level inversion (inv), 2: inv 4+ exponentiation, 3: inv + logarithm, 4: natural

This ranking of similarity between image pairs was also obtained from the z-deviate matri-
ces as shown in table 4.8. The sums of the columns of these matrices represent the values on an

interval scale. Thus similarity between pairs was obtained by subtraction. The rankings thus
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obtained were as follows:

image set (for scene) 1: 1,2; 2,4; 1,4; 1,3; 2,3; 3.4.
image set (for scene) 2: 1,2; 1.4; 3,4; 2,4; 1,3; 2,3.
image set (for scene) 3: 2,3; 1,4; 2,4; 3.4; 1,2; 1,3.
image set (for scene) 4: 1,2; 1,4; 2.3; 2,4; 1,3; 3.4.
Image Numbers
1 2 3 4 1 2 3 4
Scene 1 Scene 2
1 0.0 0.26 -1.12 0.53 0.0 0.18 -1.28 -0.74
2 -0.26 0.0 -0.84 0.53 | -0.18 0.0 -1.28 -0.84
3 1.12  0.84 0.0 0.96 1.28 1.28 0.0 0.84
4 -0.53 -0.53 -0.96 0.0 0.74 084 -0.84 0.0
Col sums | 0.33 0.57 -292 202 | 1.84 230 -3.40 -0.74
Scene 3 Scene 4
1 0.0 -0.61 -0.61 0.18 00 -044 -1.12 0.74
2 0.61 0.0 0.0 0.08| 044 0.0 -0.61 0.44
3 0.61 0.0 0.0 033 | 1.12 0.61 0.0 0.84
4 -0.18 -0.08 -0.33 0.0 || -0.74 -0.44 -0.84 0.0
Col sums | 1.04 -0.69 -0.94 0.59 || 0.82 -0.27 -2.57 2.02

Table 4.8: Z-deviate Matrices. Indices: 1,2,3,4 represent the image transformations. 1: grey-level
inversion (inv), 2: inv + exponentiation, 3: inv + logarithm, 4: natural

These rankings agreed reasonably well for the first few pairs with the timing data. This gave
some support for the hypothesis that the timing gives information on the similarity/confusion
between images, but is probably not a good measure overall of image similarity in this context.
The task employed here involved a reasonably high level of cognitive involvement, in that the
visual task required interpretation on the part of the subject. That is, they had to make
judgement about image similarity, which requires cognitive input rather than just low level
visual processing. Because of the high level of task complexity, it may be that response time
is not an appropriate measure for this type of task. As will be shown in later chapters, using
lower level (early vision) detection tasks, response time turns out to be generally a very accurate

measure of performance, but with some caveats (which are discussed in Chapter 5).

4.4 Conclusions and Implications for Further Work

From the results of this experiment it is apparent that the content of the image scenes is impor-
tant in how the image is perceived. It has been shown that relationships of the regions within
the scene can be very important, as was illustrated with the regions of shadow and sunlight.
These relationships could not be measured by means of global' statistical measures, as shown by

the results of this study. That is, the common global image metrics of image similarity that were

!See Chapter 1 section 1.3.2 on page 12.
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used in this study, did not correspond to human subjective perceptions of image similarity. This
strongly suggests that these metrics are inappropriate for use in the surveillance context, since

the stimuli that were used here are real world images that are typical of surveillance imagery.

To capture the complexity of the images, measures of local (region based) image properties
are required and to “measure” the relationships between image objects, syntactic? or seman-
tic (Gonzalez and Wintz, 1987a) type of measures may be useful. The latter type of measures
are beyond the scope of this thesis. However, a proposed system for image quality assessment,
which uses this type of measure, is discussed in the final chapter, (Chapter 10) in the context

of further work.

Because of the reasons outlined in the foregoing discussion, the measures applied here are
not able to address the following complexities possible in the synthesis of IR imagery from visual

imagery.

(i) Incorrect grey-level of regions or objects;

(ii) Unexpected irregular regions of high or low intensity, due, for example to areas unexpect-

edly covered in water or shadows;
(iii) Incorrect shape and type of natural vegetation;

(iv) Incorrect shape of artificial structures; e.g., rectangular prism generic shape for building

of different shape or which has added structures.

Therefore it is highly unlikely that a mapping can be made from pixel values of a visible image
to the equivalent TR image, except in a contrived situation. The consequence of this statement
is that the synthesis of IR imagery will require physical modelling; i.e. it is unlikely that a

tractable algorithm exists to convert visible images to synthesised IR images of the same scene.

The results obtained in this study were not definitive. However, the study gave me some
valuable insights into the use of appropriate subjective methodologies for visual psychophysical
experiments. Keeping in mind that this study was only preliminary, the limitations may be to
be partly due to the complex nature of the visual task, and partly due to the constraints of
the experiment itself. In the case of the former, the subjects were required make a judgement
(rating) about image similarity, which requires a high level of cognitive input, while in the latter
case the experimental complexity did not match the subjective task complexity. That is, only
4 scenes with only 4 image transformations were used, and only simple global image metrics
were used for comparison with the subjective responses. Each of the 15 subjects viewed each
stimulus (treatment) only once. This did not allow for inter-subject variability, which may have

been large for such a complex task.

Because of the reasons just given, this study convinced me that further experiments should
be based on well-defined visual tasks, such as detection or recognition, in order to determine

directly the effects of image properties on performance; i.e. to determine the image quality in

2That is structural and relational aspects of the objects within the image scene itself.
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terms of utility rather than nebulous qualities such as aesthetics (see Chapter 1 section 1.1.1 and
Chapter 3 section 3.1 which discusses the issue of image utility versus image aesthetics). The
use of experiments based on visual task performance also facilitates the design of experiments to
allow for both within-subject and between-subject variablity. This is the case when employing
visual task based experiments, such as target detection, because the time to present each stimuli
and gain a response is short, which allows the presentation of many stimuli, including repetitions,

to each subject.
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Chapter 5

The Effects of Image Compression
on Human Target Detection

Summary:

The aims of this chapter include analysing human visual performance under a well
defined visual task, with imagery that has undergone degradation. Image compres-
sion was chosen as the means of degradation because it is precisely controllable and

image compression has practical application.

Two methods of static image compression - JPEG and a fractal-based method were
compared in terms of the detectability of simple targets following compression and
decompression of the images containing such targets. Targets consisted of rectangles
of various sizes and contrasts, which were embedded in images of natural terrain.
Using compression ratios of from zero to thirty five, it was found that the loss in
detectability of targets in images compressed using the fractal technique was signif-

icantly greater than the loss for the JPEG-compressed images.

5.1 Introduction

In Chapter 1 it was stated that image quality can be viewed from a purely aesthetic point of view
or it can be analysed in the context of specific visual tasks. In the latter case, this has implications
for the image measures used and the method of subjective evaluation. This chapter considers
the analysis of human visual performance under a well defined visual task, with imagery that has
undergone degradation. It explores methods for the evaluation of human visual performance,
including probability of detection, response time and subjective rating. Image compression was
chosen as the means of degradation because it can be controlled precisely and has practical

application arising from the current explosion in digital imagery.

Image compression is becoming increasingly important due to the greater integration of
computers and telecommunications, with their increasing demands on digital storage and trans-

mission systems. In many cases, the overriding concern is the quality of the reconstructed image.



CHAPTER 5. THE EFFECTS OF IMAGE COMPRESSION ON HUMAN TARGET DETECTION 91

Therefore, there is a need to answer the question of how much compression can be achieved (what
is the minimum image quality required) to achieve a certain task, in the context of constraints
upon image storage and/or transmission. Consequently, when considering an imaging system
for a well defined visual task, such as target detection, it is important to first assess to what
extent the compression module is likely to affect user performance on the given tasks. If possible,
compression schemes ought to be tuned to the specific task(s) which will be carried out with

the images in question.

Lossless image compression can be attained, but this achieves relatively low compression
ratios (er); i.e. about 2 - 5 :1. If higher ¢r are needed, then lossy compression is required. The
human visual response is sometimes considered in lossy compression, in that an emphasis is put
on removing the information that is less visible to the human observer. However, this usually
still results in reduced image quality, especially at high compression ratios. (See section 5.1.1
for a discussion of compression methods.) The effect of this loss in image quality will depend

upon the task for which the image is used.

There are several well known methods for compression of still image frames - including the
JPEG standard (Wallace, 1992; Leger et al., 1991), which is based on partial representation of
the Fourier coefficients in local regions of the image, and the method developed by Barnsley,
based on the theory of iterated functions (“fractal” technique) (Fisher, 1993; Jaquin, 1993; Lu,
1993). The evaluation of much image compression, in terms of image quality, has been based
on subjective evaluation techniques (Van Dijk and Martens, 1997; Kaukoranta and Nevalainen,
1996; Fuhrmann et al., 1995; De Ridder and Majoor, 1990), with criteria attuned more to the
psychological constructs of Gestalt theory, rather than to the suitability for specific tasks.

There are good reasons to believe that the relative effectiveness of various compression
schemes would be task dependent. For instance, if a task involves the detection of only small
features in an image, then it may not be necessary to retain the low frequency components
in a compression scheme, since typical point target detection algorithms for automatic target

detection eliminate all low frequency components.

A common surveillance requirement is the visual acquisition of human targets in infrared
imagery of natural terrain. This is particularly a requirement for the Military, Customs, and Law
Enforcement agencies, and there is a growing realisation that imagery from such surveillance may
need to be compressed for transmission and storage. It is therefore appropriate that compression
procedures be examined in terms of the intended use of the data being compressed. This
chapter describes psychophysical experiments designed to assess the degree to which two different

compression schemes affect such a task.

5.1.1 Compression Methods

There exist two basic schemes to perform compression. The first general approach is to exploit
redundancy in the data in its original domain, while the second approach transforms the data

to a new domain (space) which reduces the correlation in the data.
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In the first method, statistical redundancy, which is associated with the amount of pre-
dictability in the data, is removed. For example, if it is known that an image consists of pixels,
all of the same grey level, then every pixel after the first contains redundant information; that
is, the information in every pixel is predictable, or the image has a low entropy®. If, on the other
hand, the image consisted of pixels of totally random grey level, the information gained from
any one pixel will not give any information about any other; in other words, the entropy will
be high (at a maximum for a random field). This approach often leads to lossless compression,
where all information is retained, as the result of such methods as entropy or run length coding.

Unfortunately, lossless methods do not achieve very high compression ratios.

The second general approach is to transform the original data in such a way that a max-
imum amount of information is compacted into a minimum number of samples. Usually, after
transformation, the number of bits of information, which are allocated to each datum sample,
is related to how much of the original information (energy) is contained in that sample; i.e. the
samples are quantised. It is the quantisation step that allows compression, with the transforma-
tion step being lossless and thus completely reversible. The result of this is lossy compression,
since some information is lost. However, often the selection of the information to discard is
performed with the response of the HVS in mind, so as the minimise its impact for human ob-
servers. In this regard, usually only the contrast sensitivity function of the HVS is considered.
This is the case in JPEG compression for example (Wallace, 1992). With lossy compression,

very high compression ratios can be achieved.

There are many schemes for image and video compression which take either or both of the
two general approaches just discussed. Figure 5.1 displays a hierarchical diagram of the main
types of compression schemes in use. Some of the most commonly used of these are briefly

described below.

Prediction

In this method, data values are predicted from the values of previously gained ones. Only
the difference between the predicted and the actual value is transmitted to the receiver, which
can construct the true value from the previous values it has already received. This method is

commonly used for motion compensation in video compression; e.g., MPEG2.

Frequency based compression

These methods exploit the spatial and temporal attributes of images with regard to the sensitivi-
ties of the HVS. In sub-band video coding the different spatial-temporal frequency combinations
are separated and coded according to their HVS sensitivities. Transform coding, which usually
works in the spatial frequency domain employs energy compaction as described earlier. The
most common transformation used is that of the Discrete Cosine Transform (DCT) (Ahmed
et al., 1974).

1See section 2.2.5 in Chapter 2
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Feature based compression

Feature based compression centres on image features that are important for human image inter-
pretation, such as edges, and considers the HVS response. This approach may be functionally
similar to some frequency based methods, but performs them in the spatial domain. In filtering
for example, details of an image beyond the discrimination of humans, may be removed. Bit al-
location may be employed to allow more information to be encoded for important features, such
as edges, and less to areas carrying less visual information, thus reducing the overall amount of
data. An obvious form of compression can be achieved by removing every N data point from
the image. This is called sub-sampling. Another form of compression in this category is that
of quantisation, which is differentiated into scalar quantisation and vector quantisation. The

former has already been briefly discussed simply as quantisation.

Compression is achieved using vector quantisation by breaking the original image into
blocks, say 4x4, and mapping them to a set of code symbols (code book). A small number of
bits representing the code book entry is transmitted. For a tutorial review see (Nasrabadi and
King, 1988).

Fractal coding

In simple terms, a fractal is a geometric form which has self-similar, irregular details. Fractal
image compression is closely related to vector quantisation coding, except that the image itself
provides the codebook. Figure 5.2 shows a simplified diagram of the process used in the fractal
compression algorithm used in this study. The image to be compressed, is first partitioned
into non-overlapping sub-images (8 x 8 pixels in our case) called range blocks (R;). The aim
is then to find another sub-image which matches (by application of a similarity metric) this
range block. This is achieved by dividing the image into sub-images called domain blocks (D;),
which are searched to find the best match, after a transformation, for each range block. This

transformation (W;) is defined by

wi [ =[5 B+ ] )

where x and y are points in an Fuclidean plane, which are linearly transformed by the matrix

a; b; €;
|:Ci di:|, and are translated by the vector [f'

i.e. an object in the image plane undergoes any or all of rotation, scaling or translation?.

]. This is called an (2-D) affine transformation;

Unlike the range blocks, the domain blocks can overlap. Even though the D; can be of
fixed size, the algorithm used here uses a quad-tree®> (Brown and Ballard, 1982) method to
partition the image, with a maximum domain block size of 16 x 16. This allows more flexibility

in obtaining a good match between the R; and D;, and thus a better quality compressed image.

The compression comes about as only the parameters a;, b;, ¢;, d;, ¢; and f; in (5.1) (plus 2

others) have to be saved rather than every pixel value, for each range block. This process is very

*In the case of fractal image compression, W;, must also be contractive (see ref (Fisher, 1993))
3 A square in the image is broken up into 4 sub-squares, when it is not matched well enough by a larger domain.
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Figure 5.2: The encoding, with affine transformation, of the image blocks to form auto-codebook.

asymmetrical in that the time to compress an image is much longer than the time to de-compress
an image. This is because the compression stage requires large searches to be carried out in

order to match range and domain blocks. For further details see (Jaquin, 1993; Fisher, 1993).

Compression standards

With the greater integration of the world’s telecommunications and computing resources it is
necessary to lay down compression standards. As has just been discussed, there are numerous
compression techniques in existence, but for the sake of standardisation, common usage of
schemes must be decided upon. Standards need to be produced, but to be successful they also
need to be generally adopted. The main contenders for grey scale or colour images and video
compression standards are the ISO*/IEC® JPEG® (for still image) and MPEG (for video).
These have been briefly mentioned earlier, and MPEG is discussed in Chapter 6, while an

overview of JPEG is given here.

JPEG is a hybrid method, which combines DCT coding with scalar quantisation and en-
tropy coding, and can work in several modes. These include both lossy and lossless compression
schemes. In this study, JPEG was used in the DCT based (lossy) mode. Shown in figure 5.3 is
a basic block diagram of the JPEG coding method. The input image is partitioned into non-
overlapping contiguous 8 x 8 pixel blocks. These image blocks are then processed as follows.
The 64 image samples in each block are transformed, using the DCT, which is a near optimum?®
de-correlation and compaction step. As stated earlier, this transformation does not provide
any compression; this is achieved in the next step - quantisation. Quantisation is achieved
by dividing the DCT coefficients by the elements of the quantisation tables. Default tables
are defined, but these can be specified by the user. The default tables take into account the
HVS spatial frequency response in discarding information. Next the quantised data is further

compressed by entropy encoding, and, unlike quantisation, this is achieved losslessly. As stated

*International Organisation for Standardisation

®International Electro-technical Commission

5Joint Photographic Experts Group

"Motion Picture Experts Group

8The Hotelling transform is the optimum method, but is much more expensive in computing time.
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earlier, this method achieves compression by removing statistical redundancies in the data. This
uses either of two schemes, Hoffman or Arithmetic encoding, with the former method requiring

user-supplied tables.

Now the image has been compressed. To achieve de-compression, the reverse procedure is
employed, as shown in the lower arm of figure 5.3. Unlike fractal compression, this process is
symmetric, with the compression and de-compression times being equal. For a good description
of the JPEG standard and its underlying principles see, Pennebaker and Mitchell (1993).

Input Entro
| > > PY
Image—*| DCT coding

TABLES
¥ v
Reconst Entropy
Image IDCT ‘ decoding -

Figure 5.3: Block diagram of the JPEG compression & decompression scheme.

5.2 Methodology

The experiment required subjects to locate single targets quasi-randomly located in a number
of different images, with variation in the target size and in the contrast between target and
background. The images used had been compressed and then decompressed at a variety of
compression ratios using two different compression methods. The compression methods used
were implementations of the JPEG algorithm and the fractal transform. Response times, pro-
portion of targets acquired, and observer confidence levels were collected for each trial. These
were analysed against target size, contrast, compression ratio and compression scheme using an

analysis-of-variance (ANOVA) (Hines and Montgomery, 1980a) approach.

5.2.1 Estimation of Sample Size

It is necessary to determine the number of observations required to guarantee a specified level
of significance and the power of a statistical test used in an experimental design. In these
experiments we are comparing the means for various treatments (combinations of parameter

values). The null hypothesis is

Hy : pi1 = puo;
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while the alternative hypothesis is

Hg :piy # po.

The methodology used for estimating statistical power is outlined in Appendix C. Using an esti-
mate of the variance from a related experiment, carried out on the effects of zooming (Woodruff

and Newsam, 1994), the estimate for sample size for each compression method was calculated
as 353.

5.2.2 Pre-experiment

In order for an experiment of this type to be run efficiently, the stimulus characteristics have
to lie within the perceptual range of the HVS. They must also lie within a range such that
a change in stimulus properties invokes a change in response; i.e. the stimuli should be on
the approximately linear portion of the psychometric function. As an extreme example, if
the contrast of the targets were all too high, then little discrimination on the effects of target
detection would be achieved, as the hit-rate would remain constant and high. Conversely, if the

contrast was too low (below threshold) the hit-rate would be zero.

In order to estimate these limits for the target stimuli, I carried out a pilot experiment.
Since the luminance threshold is a function of target area (Blackwell, 1946; Lukis and Budrikis,
1982), when viewing small or low contrast targets, the size-contrast product (ca;) was used as
an independent variable in this pilot study.

A : suitable range i
for stimuli |

g 100 - : , e wma ®
o 80 - | . = . |
p! " =" g= :
£ 60 - I . |
g | |
g 40 | :
o 20 - : |
|

0 ! T T t T T >

0.0 0.5 1.0 1.5 20 25
size-contrast product

Figure 5.4: Finding the range for the size-contrast product of the targets. The lower red line
indicates the threshold, below which, no detections were obtained. The upper red line indicates the
threshold, above which, 100 % detection was obtained.

The software that I wrote to perform the main experiment had several test modes. One of
these restricted the compression ratios to maximum and zero (no compression) and allowed the
operator to choose the compression scheme. Under this mode, I ran the pilot experiment and

viewed 600 stimuli over a few sessions. The maximum difficulty trials (with high compression)

9See Chapter 3 section 3.1.1
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determined the lower bound for the stimuli, while the lower difficulty trials (with no compression)
determined the upper bound for the stimuli. T chose fractal compression as my experience
suggested it interfered with target detection at maximum compression more than JPEG. (This
was borne out by the experimental results.) The results are summarised in figure 5.4, where the
appropriate range for cay; is indicated. The actual values determined for the stimuli parameters

in the main experiments are given in Appendix D.

5.2.3 Stimuli

Images from a rural Australian dry temperate area were obtained with a thermal imager operat-
ing in the 8-12 micron band. Noise reduction by frame integration over 256 frames was used to
improve the grey level resolution of the imagery. These images were 512 x 512 pixels in size, each
pixel being represented by a single byte. Four different scenes, as shown in figure 5.5, were used
as backgrounds. Each scene was a ground-to-ground view from a moderately elevated position,

resulting in frames consisting of little or no sky.

The pixel values of the background images were linearly transformed so as to have the same
mean and standard deviation. The mean grey-level was set to 100. The basis for the selection of
the mean grey-level was my perception of the optimal luminance dynamic range for the displayed
scenes, given the monitor calibration status as described in section 5.2.4 on the next page. Test
images were characterised by vectors of the form [compression method (¢m) compression ratio
(cr), target size (s¢), target contrast (c), background, region, location], which were generated as

follows:

(1) For each background, a rectangular region for target insertion was specified;
(2) Next a target centre was randomly selected from within the chosen region;

(3) A random pair (s¢, ¢) from within the allowed domain of target size and target contrast

was chosen and a target with these characteristics inserted at the chosen centre;

(4) A compression ratio cr € 0,5, 10, 15, 20,25, 30,35 was then selected randomly, subject to
the constraint that each background be used equally often at each compression ratio. The
test image was then compressed to this degree by both the fractal and JPEG algorithms.
Finally, the resulting two files were decompressed back to the original 512 x 512 size and
saved as test images. Example test images are shown in figure 5.6 for the same image for

both JPEG and fractally compressed images.

The regions described in item (1) were of size 20 x 5 pixels, and some of these were located
in improbable areas (e.g., sky) so as to encourage a full search at each trial. In order to reduce
any learning affects, 15 such regions were manually pre-selected for each background image. This
was done so that the spatial distribution within each background image, and the distribution
of background types within each region were similar for all the background images. Twelve
of the 15 regions were then randomly selected by the software, during processing of the test

images. Within the subset of test images with a given background, targets were systematically
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and uniformly allocated across regions. Once the region had been selected, a centre for the
target was randomly chosen within the region, using continuous coordinates, so that the target

could arbitrarily overlap pixel boundaries. This is shown graphically in figure 5.7.

Targets of selected size and contrast were embedded in these scenes, using an insertion
procedure described in Woodruff and Newsam (1994), which is detailed in Appendix E. Details
of the choice of size and contrast are given in Appendix D. Briefly, a base target size of 4
pixels wide and 9 pixels high was specified, where 1 pixel subtended a visual angle of 7.22 x 10~2
degrees. Based on a pilot study, upper and lower bounds were placed on target area and contrast,
while the product of contrast and area was constrained, since the simultaneous combination of
minimal contrast and minimal area gave too low a detection rate, with converse effects for
maximal values (see section 5.2.2). Within the allowed range of contrast and size values, these

variables were distributed as uniform random variables.

To achieve ideal target insertion, the background images should be deconvolved to remove
the effects of the point spread function!® (PSF) of the imaging sensor system. Then the tar-
get could be inserted and the whole image re-convolved with the original psf. However, since
deconvolution is notoriously fraught with problems, this approach was avoided. Instead, the
following approximate approach was adopted. The method detailed in Appendix E was used
with the following smooth zooming modification. A 32 x 32 pixel region co-centred with the
target location was “cut out” from the background image and smooth-zoomed (Newsam, 1993)
by a factor of 4. The target was then inserted in the centre of the region and convolved with a
PSF which was consistent with the sensor that produced the background image. A sub-region of
64 x 64 pixels co-centred with the existing region, was then removed and pixel averaged down by
a factor of 4 (dezoomed) and re-inserted in the background image. This smooth zooming pro-
cedure is equivalent to performing a bi-cubic spline interpolation between pixels in the excised

image region. This was done to obtain PSF blurring at the sub-pixel level.

5.2.4 Apparatus

The experiment was controlled by a 486 33 Mhz DX personal computer. Images were presented
on an Electrohome 1719X high quality monochrome television monitor from a Matrox PIP-1024
image digitising and display card. The relation between screen luminance, L, in candelas per
square metre (cd/m?), and pixel grey-level value, g, was closely approximated by the quadratic
function L = 0.00243¢2 4 0.10745g + 0.59044, with g € {0,--- ,255}, (R2 = 0.999). A hood was

placed over the screen to constrain the viewing distance to 500 mm and block out ambient light.

5.2.5 Subjects

Subjects were all volunteers from within the age group 23 - 38 years, having at least 6/6 vision.
One subject was female. Ten subjects were used in Experiment 1 and six in Experiment 2.

Three of the subjects from Experiment 1 also served as subjects for Experiment 2. None of the

10See section 2.2.4 in Chapter 2 for a definition of PSF.
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subjects had previously served as subjects for similar psychophysical experiments. However, all

subjects were professional engineers or scientists with familiarity with imaging systems.

5.2.6 Procedure

Experimentation consisted of three phases: first a pilot study to determine appropriate ranges
for size and contrast values (which has already been discussed); secondly, experiment 1, in which
the test-retest reliability of the procedure was determined; and, finally, experiment 2, which was
the actual compression study. In Experiment 1, half of the stimuli - equally distributed between
JPEG compressed and fractal compressed - were presented twice to each subject in random
order. In Experiment 2 each stimulus was presented exactly once to each observer in random

order. In all cases the orders of presentations for subjects were uncorrelated.

The presentation procedure - which was the same in both experiments - was as follows:-

(i) Both experiments consisted of 768 presentations, referred to here as trials. The entire
set of trials was completed over several sessions, which were of a duration of about 30
minutes. The order of presentation of stimuli to each observer was pre-calculated at the
commencement of that observer’s first session, and was random. To minimise learning
affects, the initial session for each subject was treated as a training period. That is, the
results of this session were deleted and the experiment was re-initialised in the following
session. This then became the real start of the experiment. All stimuli were presented
exactly twice in Experiment 1 (i.e. half the set was used), and exactly once in Experiment
2. Data for each experiment were collected over a period of approximately 5 - 7 days for
each observer, with subjects typically being able to complete the full set of trials for an

experiment in 3 - 4 sessions.
(ii) Each trial consisted of the following sequence:-

(a) stimulus presentation,

(b) observer search for a maximum of 9 seconds (with search normally being terminated

by the observer depressing the spacebar of a standard computer keyboard),

(c) computer presentation of a centrally-located cursor which the observer then moved
via a mouse to the putative target position (or to a random location if no target was

found) and clicked the mouse button,

(d) entry of a confidence level in one of three categories (certain, not sure but about 50%

confident, pure guess/no idea).

The screen was then blanked with a uniform grey at the mean grey level of all images,
and a new search scene loaded into the framestore. The subject could pause the experimental
session or terminate the session on completion of any trial in which they were sure of the target

location.
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Experiment 1

Each subject was presented with two identical sets of 384 images, but the order of presentation
of each image was random and different for each subject and each run. Each image in a set
represented a unique stimulus treatment; i.e. each image represented a unique combination of:
the 4 background images, the 12 target size-contrast levels, and the 8 compression ratios. For
each subject, a target hit (detection) or miss was recorded, along with the search time in case
of a hit. After each image presentation, the subject entered a confidence rating. This was used

to verify that a hit had occurred (discussed in section 5.3 on page 105).

The subject’s responses were averaged over subjects to produce a mean search time (MST)
and a mean hit-rate (MHR) for each test image displayed. In order to determine if any significant
learning effect had occurred, a paired t-test was applied to each pair of response data (1st and
2nd attempts), for both mean hit-rate and mean search time. A pair-wise correlation analysis

was applied to the 1st and 2nd run data for both mean search time and mean hit-rate results.

Experiment 2

As mentioned previously, this experiment was performed to assess the effects of both compres-
sion method and ratio on target detection. Experiment 2 conformed to a mixed random and
fixed effects design with blocking (Hines and Montgomery, 1980b). The blocking variables were
Subject, background and within-image location. Compression method (cm) and compression
ratio (cr) were fixed effects - i.e. they had selected discrete values, while Subjects were treated

as a block variable, with each subject seeing all of the test images.

In this second experiment, six subjects participated, of whom three had participated in
experiment 1. Again, 768 images was presented to each subject in a different random order.
However, this time, each image represented a unique treatment, with the extra factor of com-
pression method being included in the factor combinations; i.e. each image represented a unique
combination of: the 4 background images, the 12 target size-contrast levels, the 8 compression
ratios, and the 2 compression methods. As in Experiment 1, a hit or miss was recorded for
each subject at each image presentation, with the search time also being recorded for a hit. A

confidence level was also recorded by the software.

A statistical analysis of the experiment was obtained by performing a two-way classification
(cm, cr) ANOVA.
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Figure 5.5: The four original Infrared background images.



CHAPTER 5. THE EFFECTS OF IMAGE COMPRESSION ON HUMAN TARGET DETECTION 103

(a) JPEG at 10:1 compression ratio. (b) JPEG at 35:1 compression ratio.

(c) Fractal at 10:1 compression ratio. (d) Fractal at 35:1 compression ratio.

Figure 5.6: Examples of Compressed and then decompressed images.
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5.3 Results & Discussion

The performance measures obtained on each trial were search time and acquisition (hit or miss).
Since the mean acquisition level at different compression ratios varied from near 100%, down to
approximately 50%, the use of search time as a measure of target detectability is unsound, for
reasons which are discussed by Woodruff & Newsam (1994) and by Ewing & Woodruff (1996).
However, a brief explanation is now given. The hit-rate indicates the degree of difficulty involved
in target detection for the experimental subjects. At different hit-rates, say 60% compared to
50%, different populations of targets are involved, and the target population found with the
lower hit-rate is harder to detect than the target population found with the higher hit-rate.
Therefore, at the different hit-rates, different biases are introduced into the search time data.
Another way of stating the above is to say that the subjects are operating at different points on

their receiver operating characteristic curves!! for different hit-rates.

The confidence level was used to verify whether a target had been truly acquired. For
example, if a hypothetical target had been correctly located, but the confidence level indicated
the subject had no confidence in this detection, then a “miss” would have been recorded. The

confidence level was not explicitly used in the analysis.

The following probability of detection measure (mean hit-rate) was used:

0 miss

1
i = 3 ZWU, where W;; = { 1 hit (5.2)
j
for the it" treatment and j™ subject; where N = number of subjects.

5.3.1 Experiment 1 - Reliability Analysis

From Experiment 1 only reliability data were sought. For each subject, an ordered pair is avail-
able for each of the 384 stimuli - not found (0) or found (1) on the first and second presentations
of that stimulus. The pairwise correlation between first and second presentations over the com-
plete set of response data was calculated and is presented in table 5.1. Collapsing data over
the set of subjects to give the number of targets correctly located (hits), and then computing
the correlation, gave a group test-retest reliability, which is also given in table 5.1. The high
correlations obtained establish that the procedure is highly reliable - particularly when group
means are used. In addition, using the number of hits for each stimulus on first and second pre-
sentations, a t-test of the difference in the mean hit-rate was computed. However, no significant
difference was obtained between first and second presentations (see table 5.2). This suggests

that there was no significant learning effect operating.

Nevertheless, since the hit-rate from the first trial was very highly correlated with that
from the second trial, it was valid to use search time as a performance measure for test-retest

reliability assessment. We have therefore done this and obtained the following results:-

"Refer to section 3.2.2 in Chapter 3.



CHAPTER 5. THE EFFECTS OF IMAGE COMPRESSION ON HUMAN TARGET DETECTION

Measure | Corr | 95% Lower | 95% Upper | P-Value
MHR | 0.971 0.965 0.977 < 0.0001
MST 0.968 0.961 0.974 < 0.0001

Table 5.1: Correlation analysis between 1st and 2nd attempts in experiment 1, for both the
mean hit-rate (MHR) and the mean search time (MST).

Measure | Mean Diff | DF | t-Value | P-Value
MHR 0.003 383 | 0.882 0.3782
MST 0.154 383 | 5.181 < 0.0001

Table 5.2: Paired t-test between 1st and 2nd attempts in experiment 1. The Mean Difference
for MHR is in probability units and for MST it is in seconds. The mean hit-rate was a stable
measure of detection performance for data obtained for 1st and 2nd sets of trials of the same
stimuli, while mean search time was not.

(i) Test-retest reliability is 96.8%, p < 0.0001;

(ii) Difference in mean search rate for items acquired in both attempts was 0.154 seconds,
p < 0.0001.

This again indicates that the procedure is highly reliable. A small, but statistically significant,
decrease in mean search time was obtained for the second presentation of the stimulus set when
compared to that of the first presentation. Coupled with the fact that hit-rate (or task accuracy)
did not improve, this suggests that the small decrease in search time was due to the subject’s

familiarisation with the experimental procedure, rather than learning in the actual visual task.

5.3.2 Experiment 2 - Effects of Compression

The results of experiment 2 are graphically presented in figure 5.8 for both dependent vari-
ables;i.e. MST (figure 5.8(a)) and MHR (figure 5.8(b)). Figure 5.8 indicates that better overall
observer performance was obtained when viewing JPEG compressed images rather than frac-
tally compressed images, and that there is little effect on performance for compression ratios
less than 10:1. This is confirmed by the ANOVA, which is discussed in the remainder of this

section.

The results of the ANOVA using MHR as the dependent variable are shown in table 5.3.

Source | DF | Sum of Squares | Mean Square | F-Ratio | P-Value
CM 1 1.524 1.524 18.233 | < 0.0001
CR 7.894 1.128 13.493 | < 0.0001

CM*CR | 7 1.068 0.153 1.826 0.0794

Error | 752 62.851 0.084 - -

Table 5.3: ANOVA table for mean hit-rate (MHR) as the dependent variable. The p-values
calculated for an « level of 0.05.

Perusal of table 5.3 with MHR as the dependent variable shows that the main factors
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gave highly significant effects (em: p < 0.0001, cr: p < 0.0001), but the interaction between

compression method and compression ratio failed to reach significance (p = 0.0794).

In order to investigate this last point further, a post-hoc analysis of the em*er interaction

varJPEG

was done by applying the F-test to the variance ratios _7ri¢ at each compression ratio with

the results shown in table 5.4.

Comp Ratio | Num DF | Den DF | F-Ratio | P-Value
Total 383 383 0.515 0.0001

0 47 47 0.920 0.7774

5 47 47 1.015 0.9599

10 47 47 0.934 0.8147

15 47 47 0.390 0.0016*

20 47 47 0.442 0.0060*

25 47 47 0.580 0.0652

30 47 47 0.622 0.1068

35 47 47 0.519 0.0265*

Table 5.4: Post hoc analysis of interaction em*er for mean hit-rate.

From table 5.4, it can be seen that the p-values for all the data (total) agrees with the p-
values obtained for the effect of compression method in the ANOVA tables. Table 5.4 indicates

that significant em™er interactions exist for er € {15,20,35}.

Effect means for em are shown in table 5.5 for MHR.

CM Count | Mean | Std. Dev. | Std. Err.
Frac 384 0.811 0.352 0.018
JPEG 384 0.900 0.252 0.013

Table 5.5: Mean effects due to compression method for MHR.

It was found that the mean hit-rate when viewing JPEG compressed images was an average
of 11% (8.0% - 12.8%) higher (over the whole range of cr), than that obtained when displaying

fractal compressed images.
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To test for the significance of the difference in the cell means for JPEG versus fractal
compression at the various compression ratios, paired t-tests were performed. These are depicted
in table 5.6 for MHR as dependent variable. These data indicate that, for ¢r > 10, there were
significant differences in the mean subjective responses associated with the compression method
used. Using MST, a just significant difference was detected at cr = 10, which was not significant
using MHR, but the latter has detected differences at greater significance levels for all higher

compression ratios.

Comp Ratio | Mean diff | DF | t-Value | P-Value
Total 0.089 383 | 7.077 0.0001
0 0.007 47 0.984 0.3299
5 -0.004 47 | -0.443 | 0.6595
10 0.014 47 1.671 0.1013
15 0.101 47 2.780 | 0.0078*
20 0.108 47 2.969 | 0.0047*
25 0.108 47 3.017 | 0.0041*
30 0.153 47 3.165 | 0.0027*
35 0.225 47 | 4.156 | 0.0001*

Table 5.6: Paired t-test of mean hit-rate scores for JPEG - fractal.

5.4 Conclusions

The results from the reliability analysis show that the technique used is highly reliable, partic-
ularly when group rather than individual data is used. A learning effect was noted, but of such
a size that it did not show up in the less sensitive (but, more robust) “hit-rate” performance

measure used in the analysis of the main experimental data.

The targets used in this study occupied from 0.01 to 0.04% of the total image, and were of
moderate contrast (0.2 - 0.6). They therefore constitute only a very small component of the total
energy of any image. The results of experiment 2 clearly show that acquisition of such targets,
following compression by compression ratios of 15 or greater and subsequent decompression,
is significantly better if JPEG compression is used rather than fractal compression. At low

compression ratios (cr < 10) there is no significant difference in performance.

There is not any other comparable work in the literature with which to compare the results
of this chapter. There is a gap in the literature on the effects of image compression on target
acquisition in humans. There has been reported some work on the effects of image compression on
subjective image quality, but of the two compression methods used here, there appears to be only
limited work on JPEG compression and image quality (Malo et al., 1997; Fuhrmann et al., 1995;
Kostas et al., 1993; Watson, 1993). However, this work on the effects of JPEG compression only
considers subjective ratings of aesthetic image quality. An exception is the work done by Kostas,
Sullivan & Ansari (1993), which considers the effects of (JPEG) compression on (medical) visual
task performance, but even here only the subjective ratings of expert users (radiologists) are
used.
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Chapter 6

Studies on the Effects of Video
Compression on Target Recognition

Summary: Earlier work studied the effect of still image compression on target
detection. This chapter continues in a similar vein, but examines the effects of video
compression on target recognition. A set of video compression experiments were per-
formed, which required each of 10 observers to recognise ships in 512 randomly pre-
sented video sequences. The sequences, which lasted for five seconds, had controlled
levels of contrast and multiplicative noise, and were compressed and de-compressed
at a variety of compression levels using MPEG-2 encoding under standard settings.
Response timesand recognition accuracy were collected for each trial. These were

analysed using analysis-of-variance (ANOVA) techniques.

6.1 Introduction

The expected proliferation of digital imaging systems in the near future will be accompanied
by the widespread use of image compression to reduce transmission and storage requirements.
Lossless! image compression can be attained, but this achieves only the relatively low compres-
sion ratios of about 5:1 or less. If higher compression ratios are needed, then lossy compression is
required. Much military and protective surveillance is concerned with the detection and recog-
nition of relatively small, low contrast targets. If surveillance imagery is to be transmitted from
point to point, or if it is to be stored for later analysis, then lossy compression schemes may be
required. Therefore, when considering an imaging system for a well defined visual task, such as
surveillance, it is important to first assess to what extent image compression is likely to affect
user performance on the given tasks. If possible, compression schemes ought to be tuned to the

specific task(s) which will be carried out with these images.

In evaluating image compression techniques, many factors come into play, including imple-
mentation complexity, real-time processing considerations, compression ratio, etc. Nevertheless

the over-riding concern is the quality of the reconstructed image. Hence there is a great need to

!See section 5.1.1 in Chapter 5
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systematically evaluate image compression algorithms with respect to their degradation of image
quality. However, the literature remains silent on the issue of evaluating human visual task per-
formance using MPEG compressed video. Of the work evaluating MPEG (including MPEG-2)
video compression, only a subjective rating method has been used (Hidaka and Ozawa, 1993).
In fact only the sunbjective rating of image quality is specified in the MPEG standards, which

are discussed in section 6.2.

This work assessed the affects of video compression on target recognition and identification
by observers. In particular, the main aim was to quantify the degradation in target acquisition
performance when viewing short sequences of video imagery which had been compressed under

the new, MPEG-2 standard, which is discussed in the next section.

6.2 MPEG Video Coding

As this chapter is concerned with the effects of MPEG-2 compression on human visual perfor-
mance, an overview, with some background information on MPEG compression, is now given.
MPEG compression was briefly discussed in Chapter 5 in the context of compression meth-
ods. For more details, see the actual standard specification (ISO/IEC 13818-2), though this is
hard going, or see a text, such as that by Tekalp (1995), which covers the theory and various
video coding standards, or the paper by Chen (1995) for a review of digital video compression

standards.

Commercial television is undergoing a transition to digital processing and transmission,
but currently is analogue. Analogue video standards define the number of frames per second
(29.97 for NTSC? and 25 for PAL?) and the number of lines per frame (525 for NTSC and 625
for PAL). Video signals also contain a blanked portion that is used for synchronisation but not
displayed, so not all lines nor all parts of each line contain active video. To convert to digital,
the analogue video signal is sampled along each of the active video lines (486 for NTSC and 576
for PAL). A common rate is 13.5 MHz, defined in CCIR- 601% and used for D-1° and the new
Video-CD format for compressed video. The MPEG standards, which are defined for digital

video, are now discussed.

MPEG, which stands for Moving Pictures Experts Group, is a joint committee of the In-
ternational Standardisation Organisation (ISO) and International Electro-technical Commission
(IEC). It has been responsible for the MPEG-1 and MPEG-2 standards in the past and has just
released the final draft on the MPEG-4 (ISO/IEC, 1998) standard, which is due to be formally
ratified in January 1999 as ISO/IEC 14496. MPEG standards are generic and universal in the
sense that they merely specify a compressed bitstream syntax. This, in effect, unambiguously
defines the de-compression process. However, the standard does leave room for smart implemen-

tations of the encoder, compression algorithm, and the decoder. There are three main parts of

2The North American television standard.

3The European and Australian (in slightly modified form) standard.

“Digital television standard promulgated previously by the CCITT and now the International Telecommuni-
cations Union (ITU).

A digital video format standard for very high quality (studio) recording and play-back.
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the MPEG-1 and MPEG-2 specifications, namely, Systems, Video and Audio. The Video part
defines the syntax and semantics of the compressed video bitstream. The Audio part defines the
same for the audio bitstream, while the Systems part addresses the problem of multiplexing the
audio and video streams into a single system stream with all the necessary timing information.
The timing information is necessary to synchronise the playback of the stream by the decoder,
without any overflow and underflow of the decoder buffers. Additionally, the MPEG-2 specifi-
cation consists of a fourth part, called DSMCC, which defines a set of protocols for the retrieval

and storage of MPEG data from and to a digital storage medium.

MPEG-1 and MPEG-2 have different feature sets, targeting different applications. The
MPEG-1 standard addresses desktop multimedia applications such as storage and retrieval of
data from CD-ROMS at bit-rates close to 1.5 megabits-per-second (Mbps). The quality of
MPEG-1 video is usually better than VHS quality video (see figure 6.1). Other applications
include video-conferencing, electronic publishing, games, video-mail and video-phone. At low
bit-rates, before compression, video is usually decimated® to MPEG “standard input format”
(SIF) resolution, 360 x 243. The reason for this is shown in figure 6.1, which depicts two curves:
the CCIR-601 curve corresponds to compressing video at full input resolution (720 x 486); the
other corresponds to compressing video at SIF input resolution. Figure 6.1, indicates that
better quality, relative to standard play-back technologies, is achieved using SIF input for lower

bit-rates, but this advantage is soon lost for higher bit-rates (>~ 3Mbps).

Video Quality
D-1
et CCIR-001 ...
D-2 MPEG-2 (601)
_________________________ —
SVHS SIF
—— MPEG-1 or
VHS MPEG-2 ?
1.2 3.0 50 10.0

Bit Rate (Mbits/sec)

Figure 6.1: Video quality for MPEG

MPEG-2 compresses full resolution CCIR 601 video at bit-rates between 4-15 Mbps for a
whole range of telecommunication applications that need broadcast quality video. Its applica-
tions include among others cable television, and high definition television (HDTV). MPEG-2
was designed for the higher quality, high bit-rate applications and MPEG-1 for lower bit-rates.

6That is, every n*® pixel is dropped. In this case n = 2.
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However, there are no firm constraints in either algorithm, and it is possible to run MPEG-1

video at a very high rate, or MPEG-2 video at a very low rate.

As the technology is improving rapidly, there is a continuing demand to achieve higher
compression without seriously compromising the quality. That has been a major focus for the
MPEG video experts as they currently develop the MPEG-4 standard for low bit-rate, content

based coding solutions for interactive audio-video applications.

6.2.1 MPEG-2

MPEG-2 video is a generic method for compressed representation of video sequences, using a
common coding syntax, defined in the document ISO/IEC 13818 Part 2 by the ISO and the
IEC. This standard was developed in collaboration with the International Telecommunications

Union (ITU) who promulgate it as Recommendation H.262.

The MPEG-2 concept is similar to MPEG-1, but includes extensions to cover a wider range
of applications, with the essential difference between them being the incorporation in MPEG-2 of

field”, rather than frame-based processing, in a technique called “field-based motion prediction”.

Several other more subtle enhancements (e.g., 10-bit DCT DC precision, non-linear quan-
tisation, improved mismatch control) are included, which have a noticeable improvement on
coding efficiency, even for progressive video. Other key features of MPEG-2 are the scalable
extensions. These permit the division of a continuous video signal into two or more coded bit
streams representing the video at different resolutions, picture quality (i.e. signal-to-noise ratio),

or picture rates.

6.2.2 MPEG Algorithms

The basic idea behind MPEG video compression is to remove spatial redundancy within a
video frame and temporal redundancy between video frames. As in JPEGS, the standard for
still image compression, DCT-based (Discrete Cosine Transform) compression is used to reduce
spatial redundancy. Motion-compensation is used to exploit temporal redundancy. The images
in a video stream usually do not change much within small time intervals. The idea of motion-

compensation is to encode a video frame based on other video frames temporally close to it.

At the highest level of the hierarchy, the video bitstream consists of video sequences;i.e. se-
quences of pictures. MPEG-1 allows for only progressive sequences, while MPEG-2 allows for
both progressive and interlaced sequences. Each video sequence consists of a variable number

of groups of pictures (GOP), where a GOP contains a variable number of pictures.

A picture can either be a frame picture or a field picture. In a frame picture, the two fields
are coded together to form a frame, while field picture is a coded version of an individual field.

Pictures can be either of frame type or field type in MPEG-2, while MPEG-1 allows only frame

"Each frame consists of two interlaced fields, so the field rate is twice the frame rate.
8See section 5.1.1 in Chapter 5
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pictures. Pictures can be categorised into three main types, based on their compression schemes.

e I or Intra pictures;
e P or Predicted pictures;

e B or Bi-directional pictures.

I pictures are coded by themselves (hence the name, Intra). The coding technique for
these pictures falls in the category of transform coding. Each picture is divided into 8 x 8 non-
overlapping pixel blocks. Four of these blocks are additionally arranged into a bigger block of
size 16 x 16, called a macroblock. The Discrete Cosine Transform is applied to each 8 x 8 block
individually. The transform exploits the spatial correlation of the pixels by converting them
to a set of independent coefficients. The low frequency coefficients contain more energy than
the high frequency ones. These coefficients are quantised, employing a quantisation matrix, as
discussed in Chapter 5 for the JPEG algorithm. Quantisation is the only lossy part of the whole
compression algorithm other than sub-sampling. The quantisation process also helps in rate

control, i.e. allowing the encoder to output bit-streams at a specified bit-rate.

The DCT coefficients are coded employing a combination of two special coding schemes:
Run Length and Huffman (entropy) coding. Each block of coefficients is scanned in a zigzag
pattern to create a 1-D sequence. MPEG-2 can additionally provide a different scan pattern
as an alternative. The resulting 1-D sequence usually contains a large number of zeros, due
to the lowpass nature of the DCT spectrum and the quantisation process. The non-zero DCT
coefficients are allotted a variable length code from a lookup table. This is done in such a
manner that a highly probable combination gets a code with fewer bits, while the unlikely ones
get longer codes. Adopting this lossless coding technique, the total number of bits is kept down.
However, since spatial redundancy is limited, the I pictures provide only moderate compression.
These pictures provide important hooks for random access into the digital bitstream for editing

purposes. The frequency of I pictures is normally once every 12 to 15 frames.

The P and B pictures are where MPEG derives its maximum compression efficiency. It
does that by a technique called motion compensation (MC) based prediction, which exploits
temporal redundancy. Since frames are closely related, it is assumed that a current picture can
be modelled as a translation of the picture at a previous time. It is possible then to accurately
represent or “predict” the data of one frame based on the data of a previous frame, provided
the translation is estimated. The process of prediction helps in the reduction of bits by a huge
amount. In P pictures, each 16 x 16 pixel sized macroblock is predicted from a macroblock of
a previously encoded I picture. Since, frames are snapshots in time of a moving object, the
macroblocks in the two frames may not be co-sited,i.e. correspond to the same spatial location.
Hence, a search is conducted in the I frame to find the macroblock which closely matches the
macroblock under consideration in the P frame. The difference between the two macroblocks is
the prediction error. This error can be coded before, or after DCT transformation. The DCT of
the error results in few high frequency coefficients, which after the quantisation process require

a small number of bits for representation.
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The quantisation matrices for the prediction error blocks are different from those used in
intra blocks, due to the distinct nature of their frequency spectra. The displacements in the
horizontal and vertical directions of the best match macroblock from the co-sited macroblock
are called motion vectors. The motion vectors represent the translation of the picture blocks
between frames. These vectors are obviously needed for reconstruction and are differentially
coded in the bitstream. Differential coding is used because it reduces the total bit requirement by
transmitting the difference between the motion vectors of consecutive frames. The compression
efficiency and the quality of the reconstructed video depends on the accuracy of the motion
estimation. The methodology for the computation of the motion vectors is not specified by the
standard and is left open as an design issue. There is of course a tradeoff between the accuracy

of the motion estimation versus the complexity of the MC technique.

For B pictures, MC prediction and interpolation is performed using reference frames present
on either side of it, where reference pictures include both I and P pictures. The prediction is
non-causal, since it uses frames from the past and the future. Compared to I and P, B pictures
provide the maximum compression. Some other advantages of B pictures include the reduction of
noise due to the averaging process, and the use of future pictures for coding. This is particularly
useful when coding “uncovered areas”. B pictures are themselves never used for predictions and
hence do not propagate errors. MPEG-1 allows for only frame based MC, while MPEG-2 allows
for both frame and field-based MC. Field-based MC is specially useful when the video signal

includes fast motion.

Pictures do not need to follow a static IPB pattern. Each individual picture can be of any
type. However, for simplicity, a fixed IPB sequence is often used throughout the entire video

stream. This is the procedure used in the study discussed in this chapter.

Image quality

Although MPEG-1 can be run at high bit rates and at full CCIR-601 resolution, it processes
frames, not fields. That fact limits the attainable quality (even at data rates > 5.0 Mbps) and
was responsible for motivating development of the MPEG-2 algorithm that can handle individual
fields in the first place.

MPEG defines the syntax for storing and transmitting compressed data; decoding is fully
defined. However, encoding is not defined! That fact notwithstanding, all conforming encoders
must produce valid MPEG bit-streams that are de-compressible by any MPEG decoder. This
is the key strength behind MPEG. By allowing encoders to effect proprietary, but compliant,
algorithms, different mechanisms are plausible. If two encoders are each fed an identical video
signal and equivalent output rates are maintained, there is no guarantee - nor even an expectation

- that the compressed streams, or the de-compressed video quality, will be the same.

A robust MPEG compressor obtains its results, in part, by dynamically allocating band-
width resources so that they are balanced among the details of each image. Some video features
(an actor’s facial nuances, for instance) are more valuable from the viewer’s perception of quality

than are others (such as the texture of the wall against which the actor is leaning). Encoding
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details that do not add much (or even detract) to quality normally consume vast amounts of

available bits that could otherwise be used to more faithfully represent the important attributes.

6.3 Experimental Methods

An assessment was made of the effects of MPEG-2 compression on the ability of human observers
to recognise the class of a ship on viewing video sequences of the broadside view of vessels at

sea.

6.3.1 Apparatus

The experimental setup consisted of a 486 66 Mhz DX personal computer (PC) with a Matrox
PIP- 1024 image digitising and display card as the display driver and experiment controller. The
image display device was an Electrohome 1719X high quality monochrome television monitor
with a hood placed over the screen to constrain the viewing distance to 500 mm and to block
out ambient light, though the room was darkened to maintain light adaptation. The video
sequences were displayed via a PC MPEG-2 ? board, which played the bit streams directly from
disk running under the control of the experimental software that was developed for this purpose.
There were many technical problems encountered in setting up the experimental system. These

are outlined in Appendix F.

6.3.2 Procedure

During the experiment, ten observers each saw 512 five second long video sequences. These were
presented in a different random order for each subject. The observer had to respond by pressing
a computer keyboard key, then registering a class symbol and a confidence rating on a 5 point
scale. Response time was also recorded. In addition to response time and confidence rating, the
probability of recognition or hit-rate (as defined in equation 6.1), was used as a performance

measure.

1 .
Pri = Z Wij, where Wi; = { (1) EFS for the i*® treatment and j** observer; (6.1)
J

where N = number of observers.

The experiment was performed in sessions with a maximum length of 30 minutes, to reduce
fatigue or boredom effects. Prior to the main experiment, the observers underwent training to

reduce practice effects.

Training

Prior to the main experiment, every observer underwent training sessions. This training was

carried out using the experimental set up, but with uncompressed versions of the video sequences,

9Videoplex MPEG-2 board manufactured by Optibase.
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to learn the ship classes and get used to the experimental procedure. Once they had achieved
100% hit-rate, they were considered suitable for the real experiment. This training was intended
to reduce the learning affect, not associated with compression, during the experiment; i.e. to

remove learning, not correlated with compression level, as a factor in the statistical analysis.

6.3.3 Stimuli

The original source of video sequences were taken from an airborne infrared sensor!®. The
experimental sequences were derived from 16 original sequences that contained 4 classes of naval
vessel (see figure 6.2), which were compressed by different amounts and then de-compressed.
Figure 6.3, shows frames for each class, which have been compressed and then de-compressed
at 2.0 Megabits-per-second (Mbps).

6.3.4 Experimental Design

The experiment was a full factorial repeated measures design with fixed effects and block-
ing (Hines and Montgomery, 1980b), with the stimuli randomised within these blocks. The
observers were treated as blocking variables, i.e. they were not included in the analysis and so
the data was collapsed across them.

The fixed effect variables were the two discrete independent variables: target class (one
of four ship class categories) and the compression ratio or bit stream rate (BSR) used on each
sequence. The BSR was measured in Mbps and was restricted to the set 2.0, 4.0, 6.0, 8.0. Note
an uncompressed video stream contains about 160 Mbps of information. This means in effect

that the compression ratio set of 80, 40, 26.6, 20 to one was used.

Given that only 16 original sequences were available, the total number of compressed and
de-compressed sequences generated by a full factorial design was equal to the number of original
sequences times the number of compression levels times the number of target categories, i.e. 4 X
4 x 4 = 64. This number of presentations was not sufficient to obtain a 95% confidence in the

ANOVA analysis, which requires about 5000 presentations of stimuli spread over all the subjects.

As already stated, each subject observed 512 video sequences over the experiment. Ideally
these should have been 512 separate compressed and de-compressed similar sequences of the
targets under consideration. This would have reduced the possibility of observers learning par-
ticular video sequences, but would have been a logistical nightmare'!. Therefore the additional

stimuli were synthesised from the 16 available sequences by the following procedure.

The 64 original 704 x 576 frame-sized video sequences were compressed via MPEG-2 soft-
ware!2. During the experiment, under software control, the video sequences were de- compressed
via the MPEG-2 decoder board and played on the video monitor. During a full experiment each

video sequence was duplicated 8 times for each subject. In order to reduce learning affects,

YA UK Common Module TR imager (TICM TI, 8-14(m) was mounted in the hatchway of an C-47 aircraft.
1See Appendix F for technico-logistical difficulties encountered.
12Bach sequence took about 24 hrs to compress on a Sparc 10 workstation.
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each 704 x 576 frame of video was windowed to 256 x 256 with the centre of the window being
randomly placed within the larger frame. The placing of the window was constrained so that

the target remained in view throughout the whole sequence.

Observer performance was assessed by analysis against the independent variables using
Analysis-of-Variance (ANOVA) (Hines and Montgomery, 1980a).

6.3.5 Informal Study on Temporal Processing Gains

A quantitative study to determine the gains in target acquisition through the temporal dimen-
sion, was considered to be useful, but was not undertaken due to time and resource constraints.
However, T undertook an informal study comparing the detectability of still and moving target
sequences, and presented the same stimuli to 5 of the subjects, after the main experiment. The
data was only qualitative, but gave some insight on the gain in target detectability achieved by

the HVS through temporal processing.

6.3.6 Degradation to Failure

Good experimental design requires that the stimuli cover the full perceptual range: the compression-
induced degradations must produce a range of effects so that target recognition ranges from
extremely difficult all the way to relatively easy. Certainly degradation must be sufficiently bad

that some observers will fail to recognise some sequences.

However when running the MPEG-2 encoding software with the parameters in default
mode, it turned out to be impossible to produce bit streams below 2.0 Mbps without getting
buffer overflow errors. At this level of compression there was not enough apparent degradation
in the video. Therefore, it was deemed necessary to first degrade the video before compression.
This was first done by adding white noise and lowering the contrast. Although, the original
video (from an infrared sensor) was of high quality, real surveillance imagery can be severely
degraded due to atmospheric and other effects, so this degrading process was acceptable. Since
this still did not produce absolute failure in the recognition task, the next approach taken was
to artificially double the field of view (i.e. to halve the angle subtended by the target), and then
degrade. Pilot studies indicated that failure to recognise was achieved, at least for the lower bit

rates.
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(a) River class frigate. (b) Patrol Boat
(c) Perth class frigate. (d) Destroyer Tender.

Figure 6.2: Examples of 18.5° x 18.5° (256 x 256 pixel) regions from from original video frames.
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(a) River class frigate at 2.0 Mbps. (b) Patrol Boat at 2.0 Mbps.
(c) Perth class frigate at 2.0 Mbps. (d) Destroyer Tender at 2.0 Mbps.

Figure 6.3: Examples of 18.5° x 18.5° (256 x 256 pixel) regions from de-compressed frames.
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6.4 Results

Figure 6.4 shows a graphical summary of the results of the experiment, excepting trend analysis,
which is shown in figures 6.5 and 6.6 in section 6.4.4. The probability of acquisition at different
compression ratios varied only over a small range ( 96% - 100%, as shown in figure 6.4(a)) and,
as expected, showed no statistical significance (p > 0.69) for any class, which indicates that
hit-rate was not useful as a measure of target acquisition in this experiment; i.e. hit-rate was
too insensitive. However, the near constant high level of the hit-rate suggests that response time
was a valid measure of observer performance (for reasons discussed in section 5.3 in Chapter 5),

and it showed as statistically significant the effects on observer performance.

The confidence rating was not used in this analysis. This was collected to develop some
form of recognition receiver operating characteristic, but it was decided not to proceed with this

approach.

6.4.1 Interactions

Figure 6.4(d) shows the interaction of class with compression level, which was shown by the
ANOVA to be statistically significant. However, perusal of figure 6.4(d) indicates that this can
mainly be accounted for by the interactions between class at values of 'patrol’ and 'perth’ at
compression levels 2 MB/s and 8 MB/s. This may explain the apparent change in the trend of
decreasing response time with increase in compression level (this is discussed in section 6.4.2),
as shown in figure 6.4(b), for a compression level of 8 MB/s. This will not effect the main
observation gained from the inspection of figure 6.4(c), which is that the latency in response

time is longer for the river class ship target than any of the other classes.

6.4.2 Performance versus Compression Level

Figure 6.4(b) shows the plot of mean response time versus compression level in Megabits per
second (Mbps). The observer performance at the 2.0 Mbps level was significantly slower than
at the other levels of compression. However, the post-hoc analysis, which is shown in table 6.1,
revealed that the other apparent differences in performance at the compression levels of 4.0
Mbps - 8.0 Mbps were not statistically significant; i.e. the other differences shown here most

likely occurred by chance and are not due to any real affect.

6.4.3 Performance versus Target Class

Figure 6.4(c) depicts the main effect for the independent variable of target class with response
time as the dependent variable. It was found that there was an overall statistically significant
effect of ship class upon observer performance. Post-hoc analysis (shown in table 6.2) indicated
that this effect was predominantly due to the observer having more difficulty in distinguishing
the “River” class frigate from the other ship classes. This finding agrees with the reports of

the observers, gained during informal debriefings after completing the experiment. Everybody
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Matrix of pairwise comparison probabilities

Bitstream Rate 2.0 4.0 6.0 8.0
2.0 1.0000
4.0 0.0038 | 1.0000
6.0 0.0001 | 0.9615 | 1.0000
8.0 0.0150 | 0.9863 | 0.4306 | 1.0000

Table 6.1: Table shows post-hoc comparisons (Bonferroni) of response time for the 4 compression
levels (MB/s), where the elements of the table are p-values.
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commented that they had most difficulty discriminating between the River class and one of the

other class of ships.

Matrix of pairwise comparison probabilities

Bitstream Rate | patrol | perth | river | tender
patrol 1.0000
perth 1.0000 | 1.0000
river 0.0000 | 0.0000 | 1.0000
tender 1.0000 | 1.0000 | 0.0000 | 1.0000

Table 6.2: Table shows post-hoc comparisons (Bonferroni) of response time for the 4 target
classes, where the elements of the table are p-values.

6.4.4 Learning Effects

Despite the training regime that all subjects underwent prior to the experiment, it was found
that there was still a significant learning effect evidenced. This can be seen in figure 6.5(a),
which is a graph of response time (¢,) versus the repeated presentation (r,) of the same stimulus
set!3. It is obvious that the non-linear trend in the graph is a progressive reduction in response
time; i.e. learning is taking place. A regression analysis shows this curve to be a quadratic
(t, = 3.2707 — 0.00097, — 0.00087"%), with an extremely good fit (R? = 0.993), as shown in
figure 6.5(b).This seems to go against conventional wisdom, which espouses the power law of
practice (Newell, 1990) for general learning affects. However, in normal practice, reaction time is
plotted against trial number, and using logarithmic axes. This procedure was performed, and the
results are shown in figure 6.6, which indicates that the power law of practice is approximately
obeyed. These data represent the mean response time over subjects in order of presentation of
stimuli. Note, the order of stimuli for each subject was randomised. Therefore, the actual stimuli
seen by different subjects at a particular trial were probably different. Usually, in experiments
determining the power law of practice, the difficulty of each trial has been about the same.
However, here the difficulty of each stimulus was not equal (as borne out by the ANOVA). This

may explain some deviation from the expected power law of practice.

The full within-subjects (repeated measures) ANOVA table for this experiment is shown in
table 6.3.

13That is the full set of video sequences of the 4 ship classes each at the 4 compression levels.
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Summary of all Effects for ANOVA

Effect Degrees of Freedom | Sum of Squares | Mean Square | F' Ratio | p-level
sub stratum 9 42.3879 4.7098 - -
sub.trial stratum
trial 31 39.3771 1.2702 2.14 <.001
Lin 1 1.5547 1.5547 2.61 0.107
Quad 1 20.1546 20.1546 33.88 <.001
Cub 1 0.0609 0.0609 0.10 0.749
Deviations 28 17.6068 0.6288 1.06 0.391
Residual 279 165.9520 0.5948 - -
sub.compress stratum
compress 3 48.6398 16.2133 46.28 <.001
Residual 27 9.4585 0.3503 - -
sub.class stratum
class 3 1831.7893 610.5964 460.37 | <.001
Residual 27 35.8102 1.3263 - -
sub.trial.compress stratum
trial.compress 93 128.9504 1.3866 3.24 <.001
Lin.compress 3 6.9096 2.3032 5.38 0.001
Quad.compress 3 39.6247 13.2082 30.85 <.001
Cub.compress 3 16.7426 5.5809 13.04 <.001
Deviations 84 65.6735 0.7818 1.83 <.001
Residual 837 358.3451 0.4281 1.19 -
sub.trial.class stratum
trial.class 93 91.8116 0.9872 2.60 <.001
Lin.class 3 14.4259 4.8086 12.66 <.001
Quad.class 3 19.4425 6.4808 17.07 <.001
Cub.class 3 5.6424 1.8808 4.95 0.002
Deviations 84 52.3008 0.6226 1.64 <.001
Residual 837 317.7938 0.3797 1.06 -
sub.compress.class stratum
compress.class 9 451.1267 50.1252 82.96 <.001
Residual 81 48.9410 0.6042 1.68 -
sub.trial.compress.class stratum
trial.compress.class 279 853.3746 3.0587 8.53 <.001
Lin.compress.class 9 476.6599 52.9622 147.64 | <.001
Quad.compress.class 9 142.4159 15.8240 44.11 <.001
Deviations 261 234.2988 0.8977 2.50 <.001
Residual 2511 900.7607 0.3587 - -
Total 5119 5324.5185 - - -

Table 6.3: ANOVA table with response time as the dependent variable.
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6.5 Discussion and Conclusions

The data from this study demonstrate an obvious effect of video compression on observer per-
formance in target recognition. However, this effect was not large enough to cause serious
misclassification of targets and was largely due to the degradation caused at the maximum
video compression (2.0 Mbps). The degradation caused by compression did increase the time
required for target recognition, particularly at the highest compression level. In a real world
setting, depending on the application, this may introduce an intolerable degradation in observer

performance.

Ship classes were chosen so as to introduce a range of difficulties in discriminability between
target classes. However, this was limited by the range of suitable video footage available, so
that four classes was considered a minimum sized set. Under these constraints, the set of four
ship classes, as described earlier, was chosen subjectively by the author. After performing the
experiment, it became evident that similarity or otherwise of targets was very subjective. This
information was mainly gleaned from the post-experimental debriefing of the observers, but it
was also evident in the data. In either case, from both anecdotal and statistical evidence, all
observers found the River class vessel the hardest to discriminate from each of the other vessels.
This suggests that the features of the River class ship overlap with the features of the other
three classes in perceptual space, and further exploration of this would require techniques such

as Multi-Dimensional Scaling (Evans and Attaya, 1978).

There was a significant learning effect, even after the initial training sessions. In other
words, the observer’s performance kept improving with practice. This means that the human
visual system (HVS) was learning the distortions introduced by compression and either com-
pensating for them or modifying the internal model of the target. This has serious implications
for training of personnel using systems which require compressed imagery, as it shows that oper-
ator efficiency can be greatly improved by training in performing surveillance related tasks. Of
course, there would be a point after which further training would give only minimal improvement

in performance. This point was not indicated in the study described here.

As described in section 6.3, the upper limit for compression, allowed by the MPEG-2 soft-
ware, was at 2.0 Mbps (approximately 80:1), and this level accounted for most of the degradation.
There is an emerging standard for low bit rate video compression called MPEG-4, which would
allow much lower bit rates to be obtained. This standard is being designed for many applica-
tions including surveillance systems. The experiments should have been based on, or at least
included, MPEG-4 compression. However, at the time this experiment was carried out, there

were no MPEG-4 software or hardware encoding systems available.

Some of the sequences produced were extremely degraded after compression and with added
noise and contrast reduction (prior to compression). As a result, individual still frames were quite
difficult if not impossible to interpret on their own. This suggests that the temporal processing
of the human visual system is a powerful aid in detection and recognition, and provides further
motivation for pursuing this research. To illustrate this, figure 6.2 shows typical frames from

de-compressed sequences. Although obviously degraded, temporal integration still allows an
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observer to recognise the ship from the associated sequence.

6.5.1 Implications for Task Related Video Quality Metrics

This work has some general implications for video quality metrics'*, and has particular relevance
to video compression. In such applications, the temporal dimension has to be considered first.
Even though this aspect of the work was only touched on, it was clear that temporal processing
in the HVS made a significant difference to the ability of observers to classify targets. Therefore,
any video quality metric must be applied over several video frames, and be applied both spatially
and temporally. How many frames need be “sampled” and the relative weighting of spatial and
temporal properties to be included in a metric, are factors which are probably dependent on the

visual task and application, and, as such, are subjects for further research.

In considering a metric which will predict human performance, cognisance has to be taken
of the learning effect demonstrated here. Since vastly different performances can be achieved for
the same video stimuli at different points in the learning curve, this means that an appropriate
metric will allow for the type of visual task and the level of observer experience. This may mean

that basic metrics work under a “meta” metric. (Such a system is discussed in the final chapter.)

This study has shown that when dealing with higher level visual tasks, such as target recog-
nition, as against simple detection, variability between individuals increases. However, though
individual differences in subjective response were apparent, it was noted that, every subject
found one particular class of target equally the most difficult to classify. These commonalities
and differences in individual subjective perception, were discussed in section 6.4.3 and may im-
pact on the design and application of an image metric, when applied to higher level visual tasks.
As an example consider a metric, that is required to measure the degree of difficulty a human
would encounter in classifying targets in various video sequences. This metric would attempt
to measure the degree of separation of targets in subjective perceptual space. It may achieve
this by transformimg appropriate physical video image characteristics, by means of a suitable
mathematical construct, into a map of the target’s features in a space, analogous to the human
perceptual space. However, there appears to be some variability in how humans map the target

features into perceptual space and these need to be considered in the metric design.

“The term “metric” is not being applied here in the strict sense defined in Chapter 2.
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Chapter 7

Effects of “Local” Clutter on Human
Target Detection

Summary: This chapter deals with the effects of clutter on human target acqui-
sition. In theory, properties of clutter can be defined globally or locally. However,
in the literature, the distinction between local and global clutter is arbitrary. If the
image contains different clutter types, global clutter metrics may be inappropriate
and are expensive to compute. It is also likely that, in terms of detection, rather
than search, local clutter is more important. The problem is to determine how local
is local? In the literature, the standard approach of setting the local domain to twice
the expected target size is adopted without any justification. This chapter addresses

this problem and considers the implications for the application of clutter metrics.

7.1 Introduction

This chapter deals with the effects of the extent of the clutter around a target on the human’s
ability to detect that target. Here, clutter is defined as any structure in the image, which masks
the target or confuses the observer as to the location and/or class of the target. In theory,
properties of clutter can be defined globally or locally (Rotman et al., 1994), and it has been
shown that the HVS processes information at both the global and local levels (Caelli and Julesz,
1979; Burr et al., 1979). Whether or not the HVS uses mainly local or global pre-attentive!
cues to focus attention is determined by the properties of the particular image being viewed.
Apparently, the HVS can integrate global features, such as texture statistical properties (Caelli
and Julesz, 1979), or underlying spatial spectral distributions (Burr et al., 1979), which in turn
tune the HVS to local properties.

These interactions between global and local properties in visual processing must depend on
the clutter and target types in the detection context. This study cannot claim to explore all these
possibilities, but is intended as a preliminary investigation of the effect of clutter localisation

on human target detection and of its implications for the application of local clutter metrics.

!See Chapter 2 section 2.6.1.
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This is important, since it is conventional wisdom to set the local domain to twice the expected
target size, without any justification. It is also important because it is likely that, in terms
of detection, rather than search, local clutter has a greater effect than global clutter on visual
performance (Overington, 1976b; Doll et al., 1993).

The research described in this chapter is expected to facilitate the following aims by provid-
ing some information on the extent and functional form of the effects of local clutter on human

target detection.

e To give more accurate prediction of human target detection, by using clutter metrics which

will be more representative of human visual response;

e To increase the efficiency of the computation of clutter metrics, as images with near ho-
mogeneous clutter level were expected to require only local extent to be computed. Other
images were expected to require computation for only a few instances in regions of homo-

geneous clutter level;

e To gain a better understanding of human vision.

7.2 Experimental Methods

The stimuli presented to the experimental subjects consisted of circular regions of simulated
background clutter, at the centre of which existed a circular region (target), with an incremental
increase in luminance? (AL;) over the rest of the clutter region. The surround consisted of a

uniform luminance (L), equal to the average simulated clutter luminance ().

For each given background luminance and target radius (), the relationships were explored
between background disc radius (r.,¢), target to background contrast (c), a single parameter

(0) controlling the clutter statistics and the probability of detection (pg) of the target.

Circular targets and clutter background regions were used in this study because many stud-
ies in the visual detection literature have used circular stimuli. However, previous studies have
used uniform luminance targets and/or uniform luminance backgrounds/surrounds. A classic
example is that of Blackwell (1946), who defined human visual contrast thresholds using uni-
form disc targets on uniform backgrounds. Most of these studies do not address the interaction
between size of the background and visual performance, although Overington does cite some
studies in his book (Overington, 1976a), which addressed this issue with uniform luminance
stimuli. On the basis of these studies, he stated that size of the surround has little effect if this
is less than 1 to 2 orders of magnitude less bright than the target (Overington, 1976¢) (positive
target contrast) and the local surround is greater than about 6 milli-radians (~ 0.3°). However,
if the surround is much brighter than the target (negative target contrast), the detection thresh-
old drops markedly. For local target surrounds of a size range of about 1 to 2 milli-radians, a

decrease in detection threshold has been reported (Overington, 1976d). These results provided

*Each pixel in the target region had a constant luminance increment applied.
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a base-line for this study, and show that any effects related to the (clutter) background size are

related to the clutter effects and not purely luminance-surround size interaction effects.

Now that a basic description of the experiment has been given, the experimental design

and other details are explained in the remainder of this section.

7.2.1 Experimental Design

The experiment was a full factorial, fixed effects repeated measures (within-subjects) design.
There were four factors in the design, namely - clutter property § (see section 7.2.2), clutter

background radius 7., target radius r; and target contrast c.

There were 2304 treatments, presented to each subject in a different random order. These
consisted of all the combinations of the four factor levels; i.e. 4 levels of dx 12 levels of re: X
6 levels of r;x 4 levels of ¢ = 1152. There was also an implicit fifth factor, target presence
with levels 0 or 1; i.e. for each stimulus containing a target there was a stimulus with identical
clutter properties and background radius, but no target. Thus total number of stimuli was
1152 x 2 = 2304.

7.2.2 Image Stimuli

As explained in the previous section, each of the 2304 treatments presented to each subject
represented a different combination of the levels of the four factors §, 7.z, 7+, ¢, with and without
a target. Obviously r; = ¢ = 0 for no target in the image. Each of these treatments corresponds
to a unique visual stimulus when a target is present. For the stimuli without a target present

there is uniqueness only in the factor combinations of clutter radius and clutter property (9).

As previously, the (Weber) contrast was defined as

ALt _ =
s b

CcC =

(7.1)

where i is the mean target luminance and py, is the mean local background luminance. For

reasons given in section 7.2, only positive target contrasts were considered in this experiment.

Figure 7.1 shows some examples of the visual stimuli presented to the subjects, for the
different clutter types. As mentioned earlier, these stimuli consisted of circular regions of sim-
ulated background clutter, with variable radius, co-centred with a circular region of smaller
radius, generated by an incremental increase in luminance. The surround with luminance equal
to the average simulated clutter luminance. Table 7.1 gives the values of the stimuli variables

that were used in the experiment.

The target to background luminance contrast was calculated “on the fly” during each trial.
This was done by using the screen grey-level to luminance data that was measured prior to
the experiment, and is represented by the the regression formula in equation 7.4. However, it
was found that using equation 7.4 to determine luminances sometimes resulted in large errors.

This was overcome by linearly interpolating between the actually measured points on the video
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‘ Stimulus Factors and Levels ‘

Factors
Background Radius | Target Radius | Contrast | Clutter Parameter (6)
Levels
1.4 0.3 2.0 -0.050
2.1 0.5 3.3 -0.300
2.8 0.7 4.7 -0.550
3.5 0.9 6.0 -0.925
4.2 1.1
4.9 1.3
5.6
6.4
7.0
7.7
8.4
9.2

Table 7.1: Table shows level values for the independent factors, which are the stimulus variables.
The radii are given in degrees.

monitor luminance calibration curve, which bounded the error on the screen luminance contrast

presented to the subjects.

The images as shown in the figures are not photometrically correct, as they indicate grey-
levels and not luminance. These clutter types are represented by the parameter ¢, which in

effect determines the granularity or “clumpiness” of the images.

Simulated Clutter

A compromise was required in setting up the visual stimuli. On the one hand, the background
clutter needed to represent real clutter. On the other, there was a need to have control over the
image statistics. As it happened, colleagues were working on simulating natural vegetation from
a knowledge of the statistics of natural imagery. They were doing this by generating simulated
images with the same statistics as their real image counterparts, in particular by ensuring that
the simulated and real images had a similar auto-covariance function (Bertilone et al., 1997;
Bertilone et al., 1998). Bertilone and colleagues showed that imagery in the visible spectrum
have a Gaussian distribution of grey-levels over an ensemble of images. However, in order to
control the statistics of the simulated image, several parameters were required to be manipulated.
In light of some work done by my supervisor (Newsam and Woodruff, 1991), who suggested that
fractal image stimuli would simplify experimental design and setup (this is fully discussed in
section 7.2.4 on page 136), I thought it appropriate to consider a modification to the work of
my colleagues, to produce a simulation of clutter imagery which had random Gaussian statistics

but was fractal in nature.

The background clutter in the stimuli were derived from a fractal statistical process. This
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was done for two major reasons:

e Natural scenes can be described well with a fractal model (Pentland, 1984; Knill et al.,
1990; Rotman et al., 1994; van der Schaaf and van Hateran, 1996);

e To allow control of the process by a single parameter. This was to minimise the size of

the experimental design;

e To simplify the physical design of the experimental setup?.

Figure 7.2 shows examples of images with the four values of ¢ used in the experiment.

Fractal Simulated Clutter Algorithm

The following is a brief background to the generation of the fractal image stimuli and the
meaning of the ¢ parameter. This is also an introduction to the full mathematical derivation for

the fractal image generation algorithm which is given in Appendix G.

Consider an image, from a family consisting of N images (an ensemble), which are isotropic?,
stationary®, Gaussian random fields (GRF) (Yaglom, 1987), with L;(#) denoting the luminance
function of the i™® image (i.e. i € {1,2,... ,N}) in the spatial region R = {% = (z,y) : 0 <
z < X,0 <y <Y} This family of images will form a realisation of a Gaussian random field
if, the N sized set of luminance values L;(Z) for each point Z in the field, is a sample from a
Gaussian distribution with mean (%) and variance 0?(2). With this condition met, every pair
of luminance values L;(z) and L;() at two different spatial locations Z and ¢, form a bivariate
Gaussian distribution®. A Gaussian random field image L(Z), is completely characterised by its

mean and its covariance function C(Z,7), which is defined as

C(&,9) = ((L(Z) = p(2))(L(G) = p(9))) , (7.2)

where < - > is the expectation operator. Since the GRF is isotropic and stationary, r = ||z —7||;

i.e. C(z,y) = C(r). For the GRF to be fractal, i.e. invariant under scaling, it is required that

C(r) = kr?, (7.3)

where § = %ﬁ—z, with s # 1, a scaling factor on the region size, and t a scaling factor on the

luminance values within the region (Newsam and Woodruff, 1991). Note, § must lie in the range
—1 < § < 0, and is the single parameter which controls the “roughness” of the texture of the
fractal image (as shown in figure 7.2). The fractal GRF thus defined, which has y = 0 and
infinite variance, can only exist notionally, but can be realised by convolving (i.e. smoothing) it

with some sensor function (e.g., the eye).

3This proved not to be as simple as first thought, see section 7.2.4.

4The statistics are independent of direction;s.e. invariant under rotation.

®The statistics are the same at all regions within the image; i.e. invariant under translation.
SWhere j = (z,y), # &.
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(b) § = —0.300

(c) § = —0.550 (d) 6 = —0.925

Figure 7.1: Hlustrations of stimuli seen by the experimental subjects. The clutter properties are
controlled by J the clutter parameter.
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(c) § = —0.550 (d) § = —0.925

Figure 7.2: Background clutter images for different values of clutter parameter §.
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Pilot Study on Simulated Clutter Perceptual Scaling

As discussed above, the clutter was controlled by a single parameter, §. In order to test how
this parameter is related to the subjective perception of clutter properties, a pilot study was
carried out prior to the main experiment. A series of hard-copy images was produced, similar
to those shown in figure 7.2, with ¢ incremented from -0.5 to -0.95, in steps of -0.5. These were
presented to seven subjects”, who were asked to order the images and then place them on a
bench, such that the physical distance between the images represented the perceived distance
between the “clumpiness” or roughness of their texture. Each subject participated in isolation

from the others, and the image stimuli set was newly shuffled for each subject.

Of the seven subjects, two failed to completely order the images perfectly with respect to
0. However, even these two subjects ordered the images in a manner that was correct overall,
with “mistakes” taking the form of the reversal of pairs of adjacent images (with respect to
d). Figure 7.3 depicts the scatter-plot of the normalised mean subjective rating (measured
distances between photographs) versus 0, with the linear regression line overlaid. It is evident
from figure 7.3 that the parameter § corresponds to a subjective linear mapping of the simulated
clutter property of clumpiness. This then indicated that 0 was appropriate as a factor in the

experimental design, particularly for analysis-of-variance, which is based on a linear model.
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Figure 7.3: The subjective rating of clutter “clumpiness” (R? = 0.996).

7.2.3 Experimental Procedure

The subjects were all volunteers from within the age group 28 - 50 years, and had at least 6/6

vision. They were instructed as to how to conduct the experiment by the following means.

"Only two of these subjects participated in the main experiment.
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e Written instructions detailing the use of the software and the experimental procedure.
(See Appendix H).

e Verbal instructions, with the same information and an opportunity for clarifying any un-

clear points.

e A demonstration and trial period with a training version of the software that gave feedback,

after each trial, on target presence and size.

The software presented the stimuli and logged response times in conjunction with the
observer’s confidence rating for each trial. The observers were required to find targets which
had been placed into imagery according to the principles discussed in chapter 3. Observers were

then prompted to enter their confidence rating according to a 5-point scale.

Each session was arranged for the same time every day for each observer and was limited to
a maximum duration of one half-hour. After an initial training session, each observer typically
sat through 4-6 experimental sessions. The complete instructions given to the subjects are given

in Appendix H.

7.2.4 Apparatus

A 486 66 MHz DX personal computer, which controlled a video monitor, that had its photometric
output to grey-level input recorded, ran experimental software especially written (in Borland
C) to control the experiment. Images were presented on an Electrohome 1719X high quality
monochrome television monitor from a Matrox PIP-1024 image digitising and display card. A
hood was placed over the screen to constrain the viewing distance to 500 mm and block out
ambient light, which was held to a constant low level as the experiment was performed in a light

controlled room.

Implications of Fractal Images on Setup

As outlined in section 7.2.2, there were two main reasons for selecting fractal images for the
stimuli in this study. Firstly, with large factorial experiments, it is easy for the size of the
experiment to become unwieldy. In order to reduce the number of variables in this study, the
control of clutter properties by a single parameter, as shown in equation 7.3 of section 7.2.2, was

attractive.

Secondly, Newsam and Woodruff (1991) argue that using fractal GRFs as stimuli rather
than standard GRFs, simplifies the experimental setup. They present a hypothetical scenario,
where an ideal® observer is able to perceive directly a fractal GRF which is characterised by
equation (7.3). They argued that, in this case, the perceived image statistics would be inde-
pendent of the viewing distance and thus pixel size; i.e. the perceived image would be scale

invariant. In contrast, they showed that for a standard (non-fractal) GRF image, the perceived

81deal in the sense, that the observer’s vision does not undergo blurring; i.e. the eye PSF is a § function.
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correlation between the pixels depended on the perceived pixel size; i.e. the image statistics
changed with viewing distance.

At the same time, as Newsam and Woodruff pointed out, a GRF characterised by equa-
tion (7.3) cannot be physically realised. Even if it could, once it is converted to a digital image
format, its properties change. In fact, the algorithm (see Appendix G), used to generate the
fractal clutter image here, produces each pixel of a digital image by integrating the conceptual
fractal GRF over a defined region. It is to this region which becomes a pixel in the produced
digital image, that Newsam and Woodruff’s arguments apply, in the sense that, whatever the
size of this region of integration, the resultant image statistics will remain constant. This is
in contrast to a continuous, standard GRF, which, if digitised by integrating over regions of
specified size to obtain pixels, would have statistics in the digital image that depend on the
scale of the region of integration.

Once the ‘fractal’ digital image has been displayed on a monitor, with its fixed pixel size,
a correlation length is imposed and the image is no longer scale invariant; i.e. a correlation
function is defined. The effect of the parameter é on the correlation function is shown graphically
in figure 7.4. As the viewing distance increases, the angle subtended by a display pixel on the
retina of the viewer decreases and thus the angle subtended by a distance equivalent on screen
to the correlation length decreases. The perceived correlation between the pixels will decrease
as the ratio of the angle subtended by the correlation length and the angular separation of the

photoreceptors in the retina falls. As this ratio falls below unity, the image will rapidly look like
white noise.
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Figure 7.4: The effect of the clutter parameter (9) on inter-pixel correlation. This figure shows the
autocorrelation function for each of the four values of 4. The abscissa indicates the lag in pixels, while

the ordinate is the amplitude of the autocorrelation function, which has dimensionless values between 0
and 1.
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Therefore, I believe that the assertion of Newsam and Woodruff that a fractal GRF image,
when used as a stimulus in a visual experiment is scale invariant, is incorrect, even though their
mathematical development appears correct; i.e. their argument is correct. However, it applies
at the stage where the realisation of a digital image is formed (by the fractal image generation

algorithm), not at the display of that image.

The reasons for using fractal images as stimuli were discussed in section 7.2.2. The following

advantages were expected to be gained from using fractal imagery:

(i) A realistic simulation of natural scenes;
(ii) The control of image statistics by a single parameter; and

(iii) The simplification of the experimental setup, due to the insenstivity of perceived image

statistics to viewing distance.

From the point of view of this chapter, the advantages listed in points (i) and (ii) are the most
important, and were gained by use of the fractal image generation algorithm. However, the
expected advantage mentioned in point (iii) was not achieved for reasons discussed above. This
became inconsequential, since the experimental apparatus included a viewing hood to fix the

viewing geometry of the observers.

Measuring screen luminance

The screen luminance for each possible grey-level was measured using a photometer. This
ensured that the results could be meaningfully compared with others in the literature. To
achieve this, a full screen for each grey-level was displayed and a luminance measurement taken,
with the photometer focused at the centre of the screen. Samples were also taken in each of
the four corners of the screen to test for uniformity in luminance across the screen. The results
of these screen luminance measurements were used in equation (7.1) to calculate the target
contrast. The relation between screen luminance, L, in cd/m? and pixel grey-level value, g, was

closely approximated by the quadratic function

L = 0.001189¢% — 0.29243¢ + 17.949, with g € {0...255}, (R? = 0.999). (7.4)

7.2.5 Data Analysis

The statistical relationships among the experimental variables were analysed using an analysis-
of-variance (ANOVA). An estimation of the number of image stimuli was made, in order to obtain

the required degree of statistical power and sensitivity by the method discussed in Appendix C.

7.3 Results

This section discusses the results obtained from the experiments described in section 7.2.1. The

data were explored by graphical means, and analysed by a within-subjects ANOVA to ascertain
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statistical significance of the treatment effects. These effects are categorised as either main
effects or higher order or interaction effects. The ANOVA tables are presented in section 7.3.4

on page 147. In some instances specific regression analyses were performed.

The main result of interest was the effect of the clutter radius on the subject’s ability
to detect targets. However, there were also other interesting and relevant effects that will be

discussed and explored in differing degrees of detail.

7.3.1 Main Effects

The performance measure used for the analysis was the probability of detection, or hit-rate,
which is defined, as elsewhere in this thesis, by equation (7.5). The probability of detection

measure (hit-rate) was defined as:
1
Pdi = Z Wi; (7.5)
j

where W;; is 0 for a miss and 1 for a hit for treatment ¢ and subject 7 and N is the number of
subjects. During the experimental sessions the observer’s response time and confidence rating
were also recorded as a potential performance measures. These procedures were described in

section 7.2.3.

Response time proved not to be a very robust measure of performance in this experiment.
With ¢, as the dependent variable, the main effects for contrast and clutter parameter (J) were
highly significant, while the main effects for target radius and clutter radius were not significant
(at the 0.05« level). From an analysis of individual subject response, it appeared that 60% of
the subjects showed a causal relationship between the four factors and ¢,, while the remaining
subjects showed no effect. In contrast, all the main effects, for hit-rate (probability of detection,
pq) were highly significant; there existed a strong relationship between all factors and hit-rate
in all subjects, which is summarised in figure 7.5. Hit-rate appears to be the most reliable and
robust measure of performance in target detection (Ewing and Woodruff, 1996), see chapter 5.
Response time appears to be valid only when the variation in the hit-rate is not large. Therefore,

since the hit-rate varied over a considerable range, only hit-rate will be discussed further.

Figure 7.5 provides a graphical representation, including standard error bars, of the main
effects for the independent variables. Figure 7.5(a) shows the main effect for hit-rate versus
clutter radius. This curve is complex, but has a slight downward trend, with a possible levelling
off after a clutter radius of about 5 degrees. Interaction effects may be coming into play here,
adding to the complexity of the curve. To explore the trend of this effect, further ANOVA
were performed, which included trend analysis; i.e. polynomial contrasts (Keppel, 1991a) were

analysed. This will be discussed shortly.

Figure 7.5(b) shows the plot of hit-rate versus target radius. This graph indicates a strong
effect of target radius on hit-rate for targets with a radius less than about 0.8 degrees of angle,

where the effect for these small targets appears to be linear. As this plot indicates a dichotomy

9This was discussed in section 5.3 in Chapter 5
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(c) Effect of Clutter Parameter, p < 0.001. (d) Effect of Target Contrast, p < 0.001.

Figure 7.5: The effects that the independent variables have directly on the hit-rate.
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of effects for small and large targets, further ANOVA were carried out separately for small and
large targets (see tables 7.4 & 7.5). A graph of clutter radius versus hit-rate was produced,
with separate plots for the targets that were classified as either small or large. This is shown in

figure 7.6(a), and is discussed further in section 7.3.2.

The effect of the clutter parameter on the hit-rate is presented in figure 7.5(c), with the four
values of the clutter parameter (§). The parameter § has a range of -1 to 0 (see section 7.2.2),
with § near -1 indicating low correlation between pixels (i.e. the clutter approaches white noise in
appearance), while a value for 0 near 0, indicates a high correlation over a longer range between
the pixels. A perusal of figure 7.5(c) shows that hit-rate drops for the intermediate values of 4,

particularly at the value -0.3. This is discussed in section 7.3.2.
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Figure 7.6: Interaction of clutter background size and target size.
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Figure 7.5(d) shows the effect of target luminance contrast on hit-rate. As expected, there
is an increase in hit-rate with increase in contrast, with the functional form of the relationship
being almost linear. This indicates that, as intended, we are operating on or near the linear

portion of the psychometric function.

7.3.2 Interactions

This being a 4 factor full factorial experiment, there were possible interactions up to 34 order.
This was done to allow the possibilty of exploring the higher order interactions, which was done.
The ANOVA showed that higher order interactions were indeed statistically significant. These
were explored graphically, and interactions above 1% order were found to be too complex to
interpret; i.e. the graphs were extremely convoluted, and it is hard to interpret data which
requires up to 5 dimensions to represent. The 1! order interactions may hide the details in
higher order interactions, but represent them on average, and are much simpler to interpret.

Therefore, only the 1*? order interactions are discussed here.

Target Size and Clutter Size

As indicated previously, further analyses of variance were performed for small and large targets,
with the threshold between them being set at 0.8 degrees. These analyses are shown in tables 7.4
and 7.5 for small and large targets respectively, and are concerned with the interaction between
target radius (small and large) and clutter radius. As mentioned earlier, these analyses included
polynomial contrasts for trend analysis. Comparing the two analyses, we find that the main
effect for target radius is significant in both cases, but much less so for large targets. The linear
trend of clutter radius is also significant in both cases. However, a quadratic trend is evident
for small targets, but not large targets. Cubic trends are not evident for either case, but it
is noted that the contributions to the mean square (variance) for “Deviations” is significant.
Therefore, although neither linear nor quadratic functions fully describe the plots, the trends

are adequately described by these functions.

Figure 7.6 shows graphical representations of the interactions between clutter and target
size. Because of considerable fluctuation in the data when referenced to clutter radius, as seen in
the clutter radius main effect (figure 7.5(a)), the data plotted in figure 7.6 have been smoothed
by an 11 point moving average filter'®. The curves for the individual target sizes are included
to show qualitative effects. However, due to there being insufficient data, these curves are not
supported by statistical analysis, except that a significant interaction between clutter and target

radius was demonstrated (table 7.3).

As can be seen in figure 7.6(a), there is no trend in the hit-rate for large targets, while there
is a definite smooth trend downward with clutter radius for small targets (which is supported
by the ANOVA just mentioned). This trend appears to level off at about 3.5° to 5.5° of clutter
radius. Though figure 7.6(b) can be discussed in a qualitative way only, it indicates that the

0An N point moving average filter replaces the datum at its current output with the average of its N inputs.
It then moves forward one place in the input data etc.
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effect of clutter radius on hit-rate depends on target size. The gradient of the curve and the
spatial extent of the clutter which affects hit-rate (and thus the amplitude) appears to depend
on target size. This dependence would account for the significant interaction found between

target radius and clutter radius.

Bearing in mind that these curves have been smoothed somewhat, figure 7.6(c) shows a
pseudo 3-D plot of the actual raw data points. Here, the axes are clutter radius, target radius
and hit-rate, which is coded (Z-modulated) by colour as shown in the legend. This is called a
mosaic plot in Systat, which was used to produce it. On viewing this figure, there is an obvious
structure, which appears, to use a geological metaphor, as a cliff-face above a green valley. The
apparent contour formed from this “cliff-face” represents the interaction effects of clutter and
target radius. According to this, there seems to be an interaction effect for clutter radii less
than about 2.5° with target radii less than about 7°. For larger clutter and target radii, the

effect on hit-rate seems fairly constant.

Target Size and Clutter Parameter

It was shown earlier in this section that the clutter parameter § exhibited a main effect as shown
graphically in figure 7.5(c). As was shown in Chapter 2, clutter must be referenced to a target.
Therefore, the interaction between the clutter parameter and target radius should show some
interesting properties. These interactions are shown graphically in figures 7.7(a) and 7.7(c). The
curves in figure 7.7(a) exhibit the same shape as the § main effect curve in figure 7.5(c), except
for the smallest target radius of 0.3°. For this smallest target size tested, the range of §, for
effect on hit- rate, seems to have been extended. This same effect is evident in the 3-D plot in

figure 7.7(c), with the extra dimension of target radius explicitly shown.

Contrast and Clutter Parameter

The interactions of contrast and the clutter parameter are represented in figures 7.7(b) & 7.7(d),
with a standard 2-D plot in figure 7.7(b) and a 3-D plot in figure 7.7(d). The shapes of these
curves are very similar to those for the target size * clutter parameter interaction, discussed in

the last subsection. The implications of this are discussed in section 7.4.

Contrast and Target Size

As discussed in Chapter 5 and section 5.2.2, the effect of contrast and target size on detection

performance are inter-related; viz. the product of
c¢-r? =k, where k is a constant, (7.6)

for small targets. This is a form of Ricco’s Law (Barlow, 1958), which is often stated as

% xal, (7.7)
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Figure 7.7: Clutter, contrast and clutter, target size interaction effects on hit-rate.

where AL is the incremental increase in luminance at threshold, of a disc of area a, over the

background luminance L. Therefore a significant interaction is quite expected. Figures 7.8 and

7.9 illustrate these interaction effects. The graphs in figure 7.8 represent the effects of contrast

on hit-rate for each target size. As expected, the hit-rate increases for increases in both contrast

and target size, with target size “biasing” the hit-rate-versus-contrast curves to different levels

(on the psychometric function). Although the curve for the smallest target radius of 0.3° looks

perfectly linear, these curves become more non-linear with increases in target size. These effects

are discussed in section 7.4. Figure 7.9 depicts the pseudo 3-D mosaic plot of hit-rate versus

target radius and contrast. The plot is divided nicely into distinct constant hit-rate regions,

bounded by hyperboloid curves. This illustrates that equation (7.6) is at least approximately

true.
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Figure 7.8: Target radius and contrast interaction effect on hit-rate expressed as line graphs.
Each curve is a plot of hit-rate versus contrast for a given target angular radius.

7.3.3 Confidence Rating and Performance

As indicated in section 7.2, all subjects were required to record their confidence cy in their
decision as to whether they thought the stimulus in each trial contained a target. Confidence
ratings were originally designed into the experimental software, in order to facilitate the pro-
duction of receiver operating characteristic!! (ROC) curves, but were not thought to add any
appropriate information in this study. However, it is perhaps of interest to consider how the
subject’s confidence in their decision as to the existence of a target related to the objective
reality, as indicated by the hit-rate pg. This relationship is plotted in figure 7.10, with the data
represented as points. The straight line is the line of best fit (linear regression), and provides an
excellent fit (R? = 0.955). The regression equation is pg = 0.24c; — 0.16, or cf = 4.2pg + 0.16.
This indicated that in this experiment, the subjective rating was a very good predictor of actual
performance, but from the regression equation the subjects tended to under-estimate slightly

their ability to detect targets.

" These are discussed in Chapters 3 and 9.
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Figure 7.9: Target radius and contrast interaction effect on hit-rate expressed as a pseudo-3D
plot. Hit-rate (value shown by colour) is plotted simultaneously against contrast and target

angular radius.
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Figure 7.10: Regression of actual performance on to perceived performance (R? = 0.955).
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7.3.4 ANOVA Tables

Four separate ANOVA tables are shown. Table 7.2 presents the results for the full analysis using
response time (¢,) as the dependent variable. Table 7.3 presents the full analysis, using hit-rate
as the dependent variable. Tables 7.4 and 7.5 show an analysis for targets < 0.8° and targets
> (.8° respectively.

Table 7.3 shows all the effects, including main effects and interactions, to be highly statisti-
cally significant (p < 0.001). This implies that the situation is very complex, and shows that the

four main factors all contribute to visual task performance; i.e. none of the factors is redundant.

Table 7.2: Response time as the dependent variable.

‘ Summary of all Effects for ANOVA - Response Time

Effect DF!? Ssts MS™ | F Ratio | p-level
sub stratum 9 807.4878 | 89.7209 - -
sub.contrast stratum
contrast 3 62.6049 | 20.8683 8.82 <.001
Residual 27 63.9060 2.3669 - -
sub.targ rad stratum
targ_rad 5 11.1332 2.2266 2.14 0.078
Residual 45 46.8690 1.0415 - -
sub.clut_rad stratum
clut_rad 11 5.9986 0.5453 1.84 0.056
Residual 99 29.2618 0.2956 - -
sub.delta stratum
delta 3 28.2729 9.4243 6.69 0.002
Residual 27 38.0205 1.4082 - -
sub.contrast.targ_rad stratum
contrast.targ_rad 15 16.7036 1.1136 3.67 <.001
Residual 135 41.0141 0.3038 - -
sub.contrast.clut_rad stratum
contrast.clut_rad 33 7.0693 0.2142 1.37 0.091
Residual 297 46.4128 0.1563 - -
sub.targ rad.clut_rad stratum
targ_rad.clut_rad 55 19.7211 0.3586 1.77 <.001
Residual 495 100.2663 | 0.2026 - -
sub.contrast.delta stratum
contrast.delta 9 10.4418 1.1602 4.39 <.001
Residual 81 21.4000 0.2642 - -
sub.targ rad.delta stratum
targ_rad.delta 15 9.4210 0.6281 3.90 <.001
Residual 135 21.7622 0.1612 - -
sub.clut_rad.delta stratum
clut_rad.delta 33 22.3555 0.6774 2.47 <.001
Residual 297 81.3782 0.2740 - -
sub.contrast.targ_rad.clut_rad stratum
contrast.targ_rad.clut_rad ‘ 165 ‘ 30.0960 ‘ 0.1824 ‘ 1.04 ‘ 0.361
continued on next page
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Effect DF SS MS F Ratio | p-level
Residual 1485 | 260.8983 | 0.1757 1.07 -
sub.contrast.targ_rad.delta stratum
contrast.targ_rad.delta 45 12.0620 0.2680 1.45 0.035
Residual 405 74.8021 0.1847 1.12 -
sub.contrast.clut_rad.delta stratum
contrast.clut_rad.delta 99 20.5623 0.2077 1.22 0.077
Residual 891 151.1871 | 0.1697 1.03 -
sub.targ rad.clut_rad.delta stratum
targ_rad.clut_rad.delta 165 38.6534 0.2343 1.31 0.007
Residual 1485 | 265.0813 | 0.1785 1.09 -
sub.contrast.targ_rad.clut_rad.delta stratum
contrast.targ_rad.clut_rad.delta | 495 92.3190 0.1865 1.13 0.026
Residual 4455 | 732.1806 | 0.1644 - -
Total 11519 | 3169.3427 - - -
Table 7.3: Hit-rate as the dependent variable.
Summary of all Effects for ANOVA - Hit-rate ‘
Effect DF SS MS F Ratio | p-level
sub stratum 9 2962.0118 329.1124 - -
sub.contrast stratum
contrast 3 5721.1028 | 1907.0343 | 235.65 | <.001
Residual 27 218.4979 8.0925 - -
sub.targ_rad stratum
targ_rad 5 3193.6184 | 638.7237 98.74 <.001
Residual 45 291.0934 6.4687 - -
sub.clut_rad stratum
clut_rad 11 431.6444 39.2404 15.21 <.001
Residual 99 255.4007 2.5798 - -
sub.delta stratum
delta 3 2627.0937 | 875.6979 102.26 | <.001
Residual 27 231.2222 8.5638 - -
sub.contrast.targ_rad stratum
contrast.targ_rad 5 95.5774 6.3718 3.58 <.001
Residual 135 239.9885 17707 - -
sub.contrast.clut_rad stratum
contrast.clut_rad 33 104.5181 3.1672 4.16 <.001
Residual 297 226.0062 0.7610 - -
sub.targ_rad.clut_rad stratum
targ_rad.clut_rad 55 581.2316 10.5678 10.56 <.001
Residual 495 495.4316 1.0009 - -
sub.contrast.delta stratum
contrast.delta 9 254.6382 28.2931 10.36 <.001
Residual 81 221.1431 2.7302 - -
sub.targ_rad.delta stratum
targ_rad.delta | 15 | 2264281 | 15.0952 | 11.98 | <.001

continued on next page
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Effect DF SS MS F Ratio | p-level
Residual 135 170.0476 1.2596 - -
sub.clut_rad.delta stratum
clut_rad.delta 33 1144.7437 34.6892 21.65 <.001
Residual 297 475.9819 1.6026 - -
sub.contrast.targ_rad.clut_rad stratum
contrast.targ_rad.clut_rad 165 26'7.3392 1.6202 1.90 <.001
Residual 1485 | 1266.4698 0.8528 1.09 -
sub.contrast.targ_rad.delta stratum
contrast.targ_rad.delta 45 343.5399 7.6342 7.06 <.001
Residual 405 437.9288 1.0813 1.38 -
sub.contrast.clut_rad.delta stratum
contrast.clut_rad.delta 99 321.3576 3.2460 3.45 <.001
Residual 891 837.5694 0.9400 1.20 -
sub.targ rad.clut_rad.delta stratum
targ_rad.clut_rad.delta 165 1142.0719 6.9216 8.34 <.001
Residual 1485 | 1232.4108 0.8299 1.06 -
sub.contrast.targ_rad.clut_rad.delta stratum
contrast.targ_rad.clut_rad.delta | 495 721.2267 1.4570 1.86 <.001
Residual 4455 | 3487.5962 0.7828 - -
Total 11519 | 30224.9319 - - -
Table 7.4: ANOVA Table for small targets.
‘ Summary of Effects for ANOVA (target < 0.8°)
Effect DF SS MS F Ratio | p-level
sub stratum 9 136.8342 | 15.2038 - -
sub.contrast stratum
contrast 3 181.8339 | 60.6113 | 12241 | <.001
Residual 27 13.3693 0.4952 - -
sub.targ rad stratum
targ_rad 2 101.8792 | 50.9396 60.24 <.001
Residual 18 15.2215 0.8456 - -
sub.clut_rad stratum
clut_rad 11 31.3130 2.8466 16.22 <.001
Lin 1 13.2304 | 13.2304 75.38 <.001
Quad 1 7.6891 7.6891 43.81 <.001
Cub 1 0.0408 0.0408 0.23 0.631
Quart 1 0.0192 0.0192 0.11 0.742
Deviations 7 10.3335 1.4762 8.41 <.001
Residual 99 17.3762 0.1755 - -
sub.delta stratum
delta 3 79.2019 | 26.4006 42.24 <.001
Residual 27 16.8762 0.6250 - -
sub.contrast.targ_rad stratum
contrast.targ_rad ‘ 6 ‘ 4.4417 ‘ 0.7403 ‘ 2.87 ‘ 0.017
continued on next page
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Effect DF SS MS F Ratio | p-level
Residual 54 13.9437 0.2582 - -
sub.contrast.clut_rad stratum
contrast.clut_rad 33 4.2974 0.1302 1.28 0.147
contrast.Lin 3 0.7153 0.2384 2.34 0.073
contrast.Quad 3 0.9727 0.3242 3.19 0.024
contrast.Cub 3 0.0584 0.0195 0.19 0.902
Deviations 24 2.5509 0.1063 1.04 0.409
Residual 297 30.2286 0.1018 - -
sub.targ_rad.clut_rad stratum
targ rad.clut_rad 22 16.8625 0.7665 6.73 <.001
targ_rad.Lin 2 2.4306 1.2153 10.68 <.001
targ_rad.Quad 2 1.1300 0.5650 4.96 0.008
targ_rad.Cub 2 0.3024 0.1512 1.33 0.267
Deviations 16 12.9994 0.8125 7.14 <.001
Residual 198 22.5368 0.1138 - -
sub.contrast.delta stratum
contrast.delta 9 10.8641 1.2071 8.94 <.001
Residual 81 10.9398 0.1351 - -
sub.targ_rad.delta stratum
targ_rad.delta 6 6.0403 1.0067 7.71 <.001
Residual 54 7.0535 0.1306 - -
sub.clut_rad.delta stratum
clut_rad.delta 33 55.3127 1.6761 13.16 <.001
Lin.delta 3 17.5995 5.8665 46.05 <.001
Quad.delta 3 6.8769 2.2923 17.99 <.001
Cub.delta 3 1.6700 0.5567 4.37 0.005
Deviations 24 29.1662 1.2153 9.54 <.001
Residual 297 37.8384 0.1274 -
sub.contrast.targ_rad.clut_rad stratum
contrast.targ rad.clut_rad | 66 7.6333 0.1157 1.17 0.181
contrast.targ_rad.Lin 6 0.6799 0.1133 1.14 0.335
contrast.targ_rad.Quad 6 0.7492 0.1249 1.26 0.273
Deviations 54 6.2042 0.1149 1.16 0.209
Residual 594 58.8146 0.0990 0.96 -
sub.contrast.targ_rad.delta stratum
contrast.targ_rad.delta 18 5.4333 0.3019 3.30 <.001
Residual 162 14.8201 0.0915 0.89 -
sub.contrast.clut_rad.delta stratum
contrast.clut_rad.delta 99 19.3130 0.1951 1.97 <.001
contrast.Lin.delta 9 3.6266 0.4030 4.07 <.001
contrast.Quad.delta 9 0.9123 0.1014 1.02 0.419
Deviations 81 14.7739 0.1824 1.84 <.001
Residual 891 88.2373 0.0990 0.96 -
sub.targ rad.clut_rad.delta stratum
targ_rad.clut_rad.delta 66 49.5514 0.7508 7.47 <.001
targ_rad.Lin.delta 6 7.8419 1.3070 13.01 <.001

continued on next page
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Effect DF SS MS F Ratio | p-level
targ_rad.Quad.delta 6 11.0524 1.8421 18.33 <.001
Deviations 54 30.6571 0.5677 5.65 <.001
Residual 594 59.6882 0.1005 0.97 -
sub.contrast.targ_rad.clut_rad.delta stratum
1980 | 204.0799 | 0.1031 - -
Total 5759 | 1321.8359 - - -
Table 7.5: ANOVA Table for large targets.
Summary of Effects for ANOVA (target > 0.8°)
Effect DF SS MS F Ratio | p-level
sub stratum 9 32.70069 3.63341 - -
sub.contrast stratum
contrast 3 151.58403 | 50.52801 54.83 <.001
Residual 27 24.88125 0.92153 - -
sub.targ rad stratum
targ_rad 2 1.04410 0.52205 5.00 0.019
Residual 18 1.87951 0.10442 - -
sub.clut_rad stratum
clut_rad 11 10.50347 0.95486 8.46 <.001
Lin 1 1.30679 1.30679 11.58 <.001
Quad 1 0.00223 0.00223 0.02 0.889
Cub 1 0.00161 0.00161 0.01 0.905
Deviations 8 9.19284 1.14910 10.18 <.001
Residual 99 11.17014 0.11283 - -
sub.delta stratum
delta 3 71.15764 | 23.71921 47.97 <.001
Residual 27 13.34931 0.49442 - -
sub.contrast.targ_rad stratum
contrast.targ_rad 6 0.87118 0.14520 2.62 0.027
Residual 54 2.99688 0.05550 - -
sub.contrast.clut_rad stratum
contrast.clut_rad 33 13.09514 0.39682 5.95 <.001
contrast.Lin 3 1.87534 0.62511 9.37 <.001
contrast.Quad 3 1.50353 0.50118 7.51 <.001
contrast.Cub 3 0.52202 0.17401 2.61 0.052
Deviations 24 9.19425 0.38309 5.74 <.001
Residual 297 | 19.81458 0.06672 - -
sub.targ_rad.clut_rad stratum
targ rad.clut_rad 22 7.74757 0.35216 4.18 <.001
targ_rad.Lin 2 0.98327 0.49163 5.84 0.003
targ_rad.Quad 2 1.00945 0.50473 6.00 0.003
targ_rad.Cub 2 0.15406 0.07703 0.92 0.402
Deviations 16 5.60079 0.35005 4.16 <.001
Residual 198 | 16.66215 0.08415 - -

continued on next page
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Effect ‘ DF ‘ SS ‘ MS ‘ F' Ratio ‘ p-level
sub.contrast.delta stratum

contrast.delta 9 33.62986 | 3.73665 1 8.22 <.001

Residual 81 16.61319 0.20510 - -
sub.targ_rad.delta stratum

targ_rad.delta 6 1.63090 0.27182 4.59 <.001

Residual 54 3.19549 0.05918 - -
sub.clut_rad.delta stratum

clut_rad.delta 33 55.3127 1.6761 13.16 <.001

Lin.delta 3 17.5995 5.8665 46.05 <.001

Quad.delta 3 6.8769 2.2923 17.99 <.001

Cub.delta 3 1.6700 0.5567 4.37 0.005

Deviations 24 29.1662 1.2153 9.54 <.001

Residual 297 37.8384 0.1274 -

sub.contrast.targ_rad.clut_rad stratum
contrast.targ rad.clut_rad | 66 6.98715 0.10587 1.57 0.004

contrast.targ_rad.Lin 6 0.42869 0.07145 1.06 0.387
contrast.targ rad.Quad 6 0.96879 0.16147 .39 0.027
Deviations 54 5.58967 0.10351 1.53 0.011
Residual 594 | 40.14479 0.06758 1.01 -
sub.contrast.targ_rad.delta stratum
contrast.targ_rad.delta 18 4.89826 0.27213 3.58 <.001
Residual 162 | 12.31701 0.07603 1.13 -
sub.contrast.clut_rad.delta stratum
contrast.clut_rad.delta 99 22.79097 0.23021 3.18 <.001
contrast.Lin.delta 9 9.85023 1.09447 15.14 <.001
contrast.Quad.delta 9 3.18443 0.35383 4.89 <.001
Deviations 81 9.75631 0.12045 1.67 <.001
Residual 891 | 64.42431 0.07231 1.08 -
sub.targ_rad.clut_rad.delta stratum
targ rad.clut_rad.delta 66 15.46076 0.23425 3.49 <.001
targ_rad.Lin.delta 6 0.69141 0.11524 1.72 0.115
targ_rad.Quad.delta 6 0.56937 0.09490 1.41 0.207
Deviations 54 14.19998 0.26296 3.92 <.001
Residual 594 | 39.87951 0.06714 1.00 -

sub.contrast.targ_rad.clut_rad.delta stratum
1980 | 132.95139 | 0.06715 - -
Total 5759 | 838.08264 - - -
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7.4 Discussion

The graphs as shown in figure 7.7(a) are most interesting. Why does the relative hit-rate drop
for all target sizes at § = —0.3, and for a target radius of 0.3° at 0 = —0.557 It might be thought
that the correlation length, imposed on the stimuli by a value for § = —0.3, was probably most
similar to the range of target sizes used, thereby producing a confounding effect due to clutter
granularity being about the same size as the targets. But consider figure 7.4, which shows the
2-D profiles of the circularly symmetric correlation function (equation (7.3)) for the displayed
images. If we compare the range of target radii of 4 - 18 pixels, with the full-width-half-maximum
(FWHM) value for the correlation length, we would expect that the hit-rate would decrease for
increasing (i.e. more positive) d, as the mean target radius approached the correlation length.
This is not observed, as shown in figure 7.7(a), and therefore does not offer an explanation for

the experimental curves.

It seems more likely that, since the ¢ § interaction curves (figure 7.7(b)) produced a very
similar set of curves to those for the ¢, x  interaction, this phenomenon must be related to a
generalised virtual contrast or signal-to-noise ratio. That is, there are visual parameters that
are not directly contrast related, but impact on perception as contrast effects. This approach is

explored in the remainder of this section.

Consider an image's, L(z,y) which is a GRF, as defined in section 7.2.2, with co-variance

function
Clap) = | h / T + ) — @)y + B) — ()] dedy, (7.8)

where p is a mean, and L(z, y) is assumed to be stationary and ergodic (Yaglom, 1987). This can
be considered, without loss of generality, in one dimension, especially in our case with isotropic

image statistics. If we also assume zero mean, then (7.8) becomes

o0
Cla) = / Lz + a) (@) da. (7.9)
—00
This is in fact the auto-covariance function, since this describes the correlation between points
within a single image. By substituting « = —z, (7.9) becomes
o0
fla) = / L(a — z)L(z) dz, (7.10)
— 00

which is the convolution integral (Gonzalez and Wintz, 1987b). In general, convolution is defined

f@) o) = [ " fla— o)gle) da. (7.11)

where x is the convolution operator. This is often used in the engineering analysis of linear
shift-invariant systems (Karbowiak, 1969a), as (7.11) represents a filtering operation. It will
also be used in a model of the HVS to be discussed shortly.

!5The image is considered in the continuous domain, even though it is at this stage digital.
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To facilitate further discussion, a simplified diagram, representing a one dimensional map-
ping of the displayed image on the viewer’s retina, is shown in figure 7.11, where z is a unit-less

distance variable.
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Figure 7.11: Mapping of viewed image to retina in 1-D.

For vision out to about 30° of periphery, the HVS has been modelled as a linear, shift-
invariant system (Laming, 1986; Thibos, 1989), which is a useful model for development here.
Thibos (1989) showed that the output from a foveal or near-foveal receptive field (Overington,
1982) is given by

r(u) = w(x) * L,(x) = / w(u — x) Ly (z) dz, (7.12)

rf
where w(z) is a weighting function over the spatial response of the receptive field and L,(z) =
p(x) * L(z) is the luminance function at the retina, where p(z) is the point-spread-function!® of

the eye.

Now consider the present experiment, with a displayed image consisting of a background

clutter image L(xz), characterised in general terms, with the co-variance function defined in (7.8)

16See Chapter 2 section 2.2.4.
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and which is determined by the value of §, the clutter parameter. The target L;(z) was a disc
produced by a adding a luminance increment AL; to the background; i.e. the input image to

the eye was
L"(z) = L'(x) * fs(x) + L¢(x), (7.13)

where L(z) = L'(x) * fs(x) and f5(z) is the filtering function defined by (7.10) and is applied
to a conceptual, uncorrelated image L'(z), to produce the actual observed background image
L(x). Combine (7.12 ) and (7.13) to obtain

(z) * p(2) * (L'(z) * f5(2) + Le(2)), (7.14)

r(u) = w(x) *
= w(z) * p(x) * L' (2) * f5(2) +w(x) * p(z) * Li(z), (7.15)

since convolution is a linear operation. The effects of f5(x) will “swamp” the effects of w(x)*p(x).
Anyway, w(z) * p(z) is relatively fixed, since viewing geometry and conditions are constant.
Therefore,

r(u) = L(z) * f5(x)' + Li(x), (7.16)

where f5(z) is the equivalent function which, when convolved with a given L(z), yields the same
effect as L'(z) * f5(z).

Now, this is related to the effects represented in figure 7.7(a). In the case where the clut-
ter parameter § approaches -1, the clutter image becomes less correlated; i.e. approaches white
noise. Then the auto-correlation function of the image approaches a delta-function (6(z)'") (Kar-
bowiak, 1969b), where the convolution of a §-function with another function produces this same

function; i.e.

f@) = [ gwlita— ) do = gle. (7.17)

—00

Therefore, for the clutter parameter 6 = —0.925, (7.16) becomes
r(u) = L(z) + Li(x), (7.18)

thereby maintaining the input image signal-to-noise ratio or contrast; ¢.e. the virtual contrast
is approximately the physical contrast. This situation is diagrammatically represented in fig-
ure 7.12 (a). At the other end of the scale, for § — 0, the function f5(x) spreads out the energy
in L(z), also producing a relatively high virtual contrast (figure 7.12 (c)). However, for inter-
mediate values of §, fs(z) * L(x) is less spread out and of higher amplitude, thereby reducing
the virtual contrast between target and background (figure 7.12 (b)).

The region for full spatial integration of the retinal luminance function L,(x) extends out
(off axis) to about 0.5° of visual angle according to Marlow and Laming (Marlow, 1958; Laming,

1986); i.e. the region for which Ricco’s Law (7.7) is obeyed. Apparently, outside this region, a

"This § is not to be confused with the clutter parameter.
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Figure 7.12: Virtual contrast at retina (1-D). Here L,(x) is the luminance function of the
stimulus as ’seen’ by the retina, and z is a dimensionless measure of distance perpendicular to
the incoming light (see figure 7.11).

form of square law summation occurs (Laming, 1986), where, for stimuli persisting longer than

0.93 seconds, Ricco’s Law is modified to

AL 1

This would explain the flattening of the curve (in figure 7.7(a)) for 0.3° radius targets, since
up till 0.5°, the background luminance would contribute equally to r(u) for equivalent levels of
the target luminance. However, targets larger than 0.5° radius have the background luminance
contribution falling off according to equation (7.19). Therefore, the 0.3° target has a relatively

lower virtual contrast and an associated loss in sensitivity to § value.

The model just discussed can be viewed from a spatial frequency point of view, since it is
known that the convolution of two functions, say f(z) * g(z), in the 2z domain is equivalent to
F(v) - G(v) in the frequency (v) domain, where F(r) and G(v) are the Fourier transforms of
f(x) and g(x) respectively'® (Yaglom, 1987; Karbowiak, 1969a). Also the Fourier transform of
the auto-covariance function C'(z) is the spectral density S(x), which is the equivalent spectral
characterisation of the function. These apply equally in the general 2-D case for images (Gonzalez
and Wintz, 1987b). This is an appropriate way to analyse vision since it is well known that the
HVS incorporates spatial frequency channels (Wilson, 1995).

Now the phenomena discussed are re-presented in the spectral context, although only briefly
and qualitatively. If we consider figure 7.7(a), as 0 goes from -1 to 0, the image is effectively

low pass filtered, with the frequency content becoming lower in frequency. Consider now the

'8See Appendix I for a mathematical development of digital filtering theory.
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clutter image with 6 = —0.925, where the image is dominated by high frequencies, due to sharp
transitions between the relatively uncorrelated pixels. The insertion of a target introduces lower
frequency components, cueing the HVS to the target area, though local high frequency (edge)
effects probably localise the target (Burr et al., 1979), so that here the virtual contrast is high.
At the other end of the range, where ¢ is near 0, the background image is highly correlated,
and therefore dominated by low frequencies. The insertion of a target, which is small compared
to the correlation length, introduces relatively high spatial frequencies, again producing high
virtual contrast. However, at intermediate values of J, the frequency content of the background
image must overlap the frequency range introduced by the targets, causing lower virtual contrast

and resulting in lower hit-rates.

Under this hypothesis, when applied to the main effect of clutter radius on hit-rate, we
would expect to see little or no fall-off for § near -1 and the largest fall-off in hit-rate with J near
0. To test this, another plot was produced of hit-rate versus clutter radius, but with separate
plots for each § value. This is shown in figure 7.13, where the data has been moving-average-
filtered as before. This graph shows hit-rate to be independent of clutter radius for § = —0.925
and the greatest fall-off with § = —0.05, as expected. At the intermediate values of §, the

situation is slightly more complex, but an intermediate fall-off in hit-rate with clutter radius is

evident.
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Figure 7.13: Clutter radius interaction with ¢ value.

A plausible explanation can now be given as to why the hit-rate for larger targets is less
affected by clutter radius than that for small targets. It seems that the size of the region of
stimulus integration is determined by the correlation function of the clutter. However, given this,
the virtual contrast is then determined by the target size. For targets smaller than the area for
full integration (about 0.5°), part of the clutter stimulus also falls within this region. Therefore,
the rate of fall-off in hit-rate for small targets, with increasing clutter radius, is greater compared

to larger targets, which force the clutter background luminance into a region, that is integrated
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at a lower rate. This, in turn, reduces the sensitivity of subjective hit-rate to clutter radius with

larger targets.

7.5 Conclusions

It was found that the size of the local clutter region around a target has a strong effect on the
probability of detection of that target and that this is affected by regions much larger than twice
the target size, as routinely used in the literature for setting clutter metric regions of support.
It was also discovered that this effect was much stronger for targets subtending less than 0.8
degrees of visual angle than for larger targets. In the case of the former, the fall-off in human
visual performance with clutter region size was approximately quadratic compared to a slight

linear fall-off for larger targets.

A simple model was presented explaining these phenomena, indicating that the auto-
covariance function characterising the clutter is the main determinant of the size of the region
of local clutter, but is reduced for larger targets. The large regions for stimulus integration
assumed in this model are much larger than the areas for single receptive fields, but have been
shown to exist by other researchers, as discussed in section 7.4. The work reported here did
not elucidate the detailed stimulus interactions across multiple receptive fields and further work

needs to be done in order to fully understand the mechanisms.

This work considered only a narrow class of clutter and simple target type. Even for this

situation, more work needs to be done in order to fully understand the mechanisms involved.
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Summary: This final part of the thesis describes two studies investigating the
application of image quality and clutter metrics to real'® world imagery. An image metric,
for measuring the properties of images, to optimise the processing applied to them, was
developed and tested. This metric was found to be quite effective and it appeared
to agree with subjective judgement, though this was not comprehensively tested. A
further, very large study, investigated the effects of clutter on human target detection
performance. A well cited clutter metric was put to its first rigorous test on real imagery
and using knowledge gained from Part 2 of this thesis. With the class of imagery used,
this proved to be a good metric for predicting human visual performance in clutter, and
it validated other findings of this thesis. Finally, the conclusions reached from the work

described in this thesis are summarised, and suggestions are made for further work.

19 Almost every study described in this thesis used real images, but here the application had real practical
outcomes.
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Chapter 8

The Gradient Energy Measure

Summary: This chapter is a summary of part of my work carried out at the
Department of Nuclear Medicine at the Queen Elizabeth Hospital, Adelaide. This
work was motivated by my interest in image quality measures, which led me to
consider the effects of image processing parameters on the clinical value of Single
Photon Emission Computed Tomography (SPECT) images. The overall aim was to

develop an automatic system for optimal image filter parameter adjustment.

A measure, called the gradient energy measure (GEM), for quantifying the effect
of filtering on SPECT images was developed and evaluated. This proved to be a
reliable measure of image smoothing, and noise level, which in preliminary studies

agreed with human perception.

8.1 Introduction

Image processing techniques are used in medical imaging to enhance, restore and code images in
such a way that the quality of the processed images is maintained or improved. However, when
these techniques are employed, the question arises as to how they may be evaluated. This in turn,
implies that a method is needed to quantify the quality of the processed image. In this context,
the mean square error (MSE) is very commonly used as a measure of quality. However, the
MSE measures only one aspect of image quality and, as has been shown, both in the literature!
and experimentally in Chapter 4, it does not correlate well with human perception. Theoretical
issues concerning such measures were discussed, both in Chapter 1 and Chapter 2. In contrast,

here we are concerned with the practical application of such a measure to a real problem.

The work described in this chapter was the initial phase of a program of research to improve
the diagnostic quality or utility of brain images, by optimising image processing parameters with
respect to expert human observers (Nuclear Medicine Physicians). This was done by developing
an image measure, which was sensitive to appropriate filtering parameters, and (though not the

main aim) which correlated with human subjective? evaluation of these filtering operations. The

!See Chapter 2 for a discussion on this literature.
*Interval scale ratings obtained from 4 expert observers.
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remainder of this chapter describes the development and evaluation of this measure. However,

we begin with some background discussion on its application.

8.1.1 Emission Computed Tomography

Several medical imaging modalities use a technique known as tomography. This is the cross-
sectional imaging of a patient from either transmission, emission or reflection data, collected
from many viewing angles around the patient; i.e. a 3-D image of the patient’s body is built up

from many (1-D) views.

In conventional x-ray tomography, physicians use the attenuation coefficient of tissue to
infer diagnostic information about the patient. Emission computed tomography (ECT), on the
other hand, uses the decay of radioactive isotopes to image the distribution of the isotope as
a function of time. These isotopes may be administered to the patient, in the form of radio-
pharmaceuticals, either by injection or by inhalation. Thus, for example, by administering a
radioactive isotope by inhalation, ECT can be used to trace the path of the isotope through the
lungs and the rest of the body.

Radioactive isotopes are characterised by the emission of gamma-ray photons or positrons,
both products of nuclear decay. The concentration of such an isotope in any cross-section changes
with time due to radioactive decay, flow, and biochemical kinetics within the body. This implies
that all the data for one cross-sectional image must be collected in a time interval that is short
compared to the time constant associated with the changing concentration. However, this aspect
also provides ECT with its greatest potential and utility in diagnostic medicine: by analysing
the images taken at different times for the same cross section, we can determine the functional

state of various organs in a patient’s body.

ECT is of two types: Single Photon Emission Computed Tomography (SPECT) and
Positron Emission Tomography (PET). The word single in the former refers to the product
of the radioactive decay, a single photon, while in PET, the decay produces a single positron.
After travelling a short distance, the positron comes to rest and combines with an electron. The
annihilation of the emitted positron results in two gamma-ray photons travelling in opposite
directions. Only SPECT is discussed here.

8.1.2 Single Photon Emission Tomography

Figure 8.1 shows a cross-section of a patient with a distributed source emitting gamma-ray
photons. For the purpose of imaging, any element of this source that is very small, compared
with the whole field of view, may be considered to be an isotropic source of gamma-rays. The
number of gamma-ray photons emitted per second by such an element is proportional to the
concentration of the source at that point. If we assume that the collimator in front of the detector

has infinite collimation?®, it will accept only those photons that travel toward it in the parallel

3Infinite collimation, in practice, would imply an infinitely long time to make a statistically meaningful obser-
vation.
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ray-bundle Ry Rs. The total number of photons recorded by the detector in a “statistically
meaningful” time interval is then proportional to the total concentration of the emitter along
the line defined by Rj Ry. This summation of photon counts along this line is known as a “ray
integral”*. By moving the detector-collimator assembly to an adjacent position laterally, one
may determine this integral for another ray parallel to Ry Ro. After one such scan is completed,
generating one projection, one may either rotate the patient or the detector-collimator assembly
and generate other projections. Under ideal conditions, it should be possible to generate the
projection data required for the usual reconstruction algorithms. It is beyond the scope of this
thesis to discuss these algorithms here, but the book by Kak and Slaney (Kak and Slaney,
1988) gives a readable, though necessarily mathematical, description of the commonly used

reconstruction techniques.
B/ detector

X | <= collimator

A distributed source of
gamma-ray emission

\ A cross-section of
\ the patient

Figure 8.1: Single photon emission tomographic imaging.

A serious difficulty with tomographic imaging of a gamma-ray emitting source is caused by
the attenuation that photons suffer during their travel from the emitting nuclei to the detector.
The extent of this attenuation depends upon both the photon energy and the nature of the
tissue. Consider two elemental sources of equal strength at points A and B in figure 8.1: because
of attenuation the detector will find the source at A stronger than the one at B. A number of
different approaches for attenuation compensation have been developed, but will not be discussed

here.

8.1.3 Digital Filtering in SPECT

Filtered back-projection tomography (Kak and Slaney, 1988) (FBT) is commonly used for image

reconstruction and was used in this study. Back-projection alone (without filtering) results in

4Strictly, this is the line integral of the photon flux along this path.
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undesirable image smoothing and the presence of star-like artifacts in the reconstructed image.
The degree to which back-projection artifacts can be removed must be balanced by the degree
to which image noise can be tolerated. Frequency refers to the change in number of counts
from pixel to pixel. True image signal falls off rapidly with increasing frequency, while the noise
content remains constant. Background noise is considered to be of a high frequency because
there is marked variability in the number of counts from pixel to pixel. Image sharpness (edges

and fine detail) are also high frequency, while the target is low frequency.

Ramp filters (high pass filters) are used to boost high frequencies in order to sharpen the
spatial details (edges) of the image. Unfortunately, this also increases the noise, because the
filter linearly enhances higher frequencies (hence the term “ramp”). Thus, although ramp filters
produce the highest resolution possible in a reconstruction, the images are often uninterpretable
due to the propagation of noise associated with low count statistics. To limit this effect (i.e. to
decrease the noise) a second roll-off or low pass (smoothing) filter is applied. A low pass frequency
filter is employed to reduce noise. Low pass filters increase the signal to noise ratio, but at the

expense of image contrast and resolution.

When selecting a processing filter there is always a trade-off between image contrast and
image uniformity. The cut-off frequency is the frequency above which all data is removed. The
lower the cut-off frequency employed, the smoother (more uniform) the reconstructed image and
the greater the loss of contrast and resolution due to the loss of image sharpness contained in the
higher frequency data. High count statistics are crucial, as the higher the number of counts in
the projected data, the higher the cut-off frequency can be. A filter with a high cut-off produces
images with a lot of contrast which can result in a high sensitivity (detectability of target), but
low specificity (classifiability of the target). The filter order refers to the steepness of the slope
of the filter curve. High order implies a steep slope. This produces a sharper image, but also

creates more image distortions.

As just discussed, digital filtering of the data is an integral part of the reconstruction process
in tomography. Although the choice of filter parameters has a dramatic effect on both visual
quality and spatial accuracy of the data, the decision depends on many parameters and there is
no easy, or even unique, answer. In non-quantitative SPECT, subjective tests, such as viewer
preference, may be used to determine an “optimal” cutoff frequency which makes a trade-off
between resolution and noise. For quantitative studies, it is important to have an objective

algorithm to calculate the appropriate filter parameters. This takes us into the next section.

8.2 Development of a Measure of the Effects of Image Filtering

As mentioned in the last section, the quality of the final SPECT image depends on the values
of parameters in the chain of transformations from patient to observer. This chain begins with
the physical properties of the patient and isotope combination, and ends with the perceptual
response of the observer. This chain has been referred to as the object to observer pipeline
(OTOP) (Klymenko et al., 1990). Many of the parameters of the OTOP are relatively fixed,
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except for the image processing stages, such as restoration filtering. There exists some freedom
here to vary the filtering parameters, and these impact greatly on the final image quality. In
order to optimise these parameters in terms of the final subjective quality of the SPECT image,
it is necessary to define a metric that produces a satisfactory measure of the effects of the
variations in the parameters of the filtering process on the image undergoing transformation.
Therefore the main aim of the work described in this chapter was to develop an image metric
that predicts the effects of different filtering functions and parameters when used on SPECT

images.

8.2.1 A Gradient Measure

A measure of the effects of filtering on ECT and reconstructed® (TV) SPECT images was
developed. This measure was based on an image quality measure developed for evaluating
compressed video quality (Quincy, 1990), where the measure is derived from the square of the
number of pixels which are the output of an edge detection filter and have values above a
grey-level threshold. Quincy obtained this threshold by a tedious method of subjective scoring
of image quality. The measure to be described in this chapter was developed to quantify the
amount of blurring and noise in the SPECT images after filtering, and differs from Quincy’s
measure by introducing an objective way of obtaining the threshold. This then facilitates the
optimisation of the filtering parameters in terms of image quality, as discussed elsewhere in this

chapter.

The measure, which is derived in this chapter, is called the gradient energy measure (GEM)
and is based upon the Laplacian and Sobel edge detecting convolutional filters (Gonzalez and
Wintz, 1987b). These tend to emphasise the edges; the Sobel tends to operate on line edges,
while the Laplacian tends to operate on point intensity discontinuities. A brief description of

these filters is now given.

Gradient Operators

The filters used here are edge or gradient enhancers and are applied under the operation of

convolution®. The convolution of a digital image f, with a filter function h, results in the

filtered image ¢ and is defined by

N—-1N-1
gl,y) =Y hlz—iy—k)f(i k), (8.1)
=0 k=0

where x =0,1,2,... ,N—1landy=0,1,2,... ,N — 1, for an N x N array of filter coefficients
h, called a spatial convolutional mask or just “mask”. An example of a 3 x 3 mask is shown in

figure 8.2, where N is usually odd.

®The reconstructed images used here are transverse sections (slices) of the brain and hence are called TV
images.
SConvolution is discussed, in the context of point spread functions, in section 2.2.4 of Chapter 2.
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Figure 8.2: A 3 x 3 spatial convolution mask.

The convolution defined in (8.1) for N = 3, is achieved conceptually by superimposing the
array h over the input image f and then taking the average of the product of each term in the
mask with its associated image pixel from f and replacing the pixel “under” wi; with this new

2
value; i.e. the new pixel value p = %Z Zw,kfz, k, for N = 3.
=0 j=0
This mask is then displaced by one pixel and a new value for this central pixel is calculated.

This is continued until the each of the input image pixels has been recalculated”; i.e. has been

the pixel “under” the mask central pixel.

We will now briefly consider the Laplacian and Sobel filters and their implementation as

convolutional masks.

Sobel Operators

Consider an image f(z,y), the gradient at the point (z,y) is defined as
- G af
Gl = 7] = | % (5.2
Y Jy

It is well known from vector analysis that the vector G points in the direction of maximum rate
of change of f at (x,y). For edge detection, we are usually only interested in the magnitude of

this vector, which is known as the gradient and is defined as

Glf (z.y)] = G2+ G}, (8:3)
For ease of implementation, this equation is usually approximated by

Glf (2, y)] = [|Ge| +[Gyll- (8.4)

The gradient defined in (8.2) can be implemented in a digital fashion in various ways. It is
well known that derivatives can be approximated numerically by taking differences. This is
commonly done in approximating (8.2), by taking a 3 x 3 mask, centred at (z,y), as follows.
Consider the sub-image shown in figure 8.3(a), where x11 represents the grey-level location at
(x,y), with the other z;; representing its 8 neighbours. Then the component of the gradient in

the z direction is defined as

Gy = (w20 + 221 + 22) — (Too + To1 + To2), (8.5)

T Actually, the pixels around the perimeter of the input image, to a depth of (next highest integer of %) -1,
are untouched; e.g., depth equals 2 pixels for N =3
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Figure 8.3: The Sobel operators: (a) 3 x 3 image region, (b) Mask for G, (c¢) Mask for G.

and in the y direction as

Gy = (w02 + 212 + 222) — (w00 + 10 + T20)- (8.6)

The masks shown in figure 8.3(b) and in figure 8.3(c), which are known as Sobel operators,
perform the operations in (8.5) and (8.6) respectively. The outputs of these two masks are

combined, using (8.4) to obtain the gradient at (z,y).

Laplacian Operator

The Laplacian is a second-order derivative operator defined as

2f  0%f
L =—5 4+ —=. 8.7
P = 55 + 5 (57)
Using differences again to approximate differentials in digital images, the mask shown in fig-
ure 8.4 implements (8.7) digitally at the point (x,y) with reference to the region of the input
image f, shown in figure 8.3(a), as defined before. When convolved with the image, this mask

computes the digital Laplacian, L,,, by performing the operation
Lyy = x10 + 221 + 212 + To1 — 4711. (8.8)

This functions as a second-order derivative, in that the output of the operation is zero in constant
image areas or when the region of support of the mask is on the ramp of an edge. Being a second-

order derivative, the Laplacian is quite sensitive to noise, as will be demonstrated later.

01110
1141
071110

Figure 8.4: Mask used to apply the Laplacian.

Now that the basic underpinnings of the GEM have been discussed, the development of

this measure will now be detailed.
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8.2.2 Development of the GEM

The combination of an edge filter with a threshold gives a measure of the amount of blurring in
an image. This blurring is the result of the convolution of the image with an imaging system
point-spread-function, which increases the amount of correlation between neighbouring pixels.
Therefore, the level of the intensity discontinuities in the image are reduced, resulting in a lower
number of pixels above a specified threshold in the edge filtered image. Another reason for using
these filters is that the human visual system is very sensitive to edges and the Laplacian has
been used as an approximate model of ganglion retinal cell effects (Young, 1986; Kingdom and
Moulden, 1989). A measure M was applied to the images transformed by the Laplacian and
Sobel filters. The measure M; for the 7™ image of an image set is:

1 L G>T
A@Z;Xﬁimz{% Ji (8.9)
’L’ b

otherwise

where g; is the value of the i*® pixel above the threshold 7' and n is the number of pixels

in the image with a value above T

The measure M for an image set or subset is then just the mean value for M; over the set:
L N

M:NZMj (8.10)
J

Thus M is a measure analogous to the average pixel energy, since it represents the average
squared value of the pixels greater than the threshold 7', and has units of grey-level squared per

pixel, but since grey-level and pixel are unitless, so is M.

The measure defined in equation (8.9) was chosen as it was expected to have certain prop-
erties. For a fixed threshold, the GEM was expected to increase monotonically with image noise
power and decrease monotonically with increase in image blurring. Also, the GEM was expected,
as a function of threshold, to have a single maximum; i.e. coincident local and global maxima.
This behaviour is demonstrated in figure 8.5, with the underlying components of the measure,
which sum to give the expected behaviour. Thus, the threshold value would be obtainable

automatically from the data.

8.3 Experimental Evaluation of the Measure

This section provides the combined methods and results for a series of experiments evaluating
the efficacy of the GEM in measuring the effects of various kinds of filtering on SPECT images.
The filtering types that are considered are: Butterworth low pass (LP) filtering, filtering by
convolution of an image with Gaussian point spread functions (PSF), Weiner filtering, and the
addition of Poisson noise. Images were produced using each of the listed filtering processes in
separate sets. The GEM was calculated for each image set using equations (8.9) and (8.10),
where IV in the latter was equal to 10; i.e. each set consisted of 10 images. Note, each set of

images were gathered from a single acquisition from the same patient.
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Figure 8.5: Expected behaviour of gradient measure as a function of threshold.

The experiments were performed by plotting the GEM output for each filtering type at
various levels of the respective filtering parameters for each filtering type. These plots also
summarise the experimental configurations that were explored, including the filtering operations
and the levels of the filter parameters that were used. Plotting was found to be sufficient for
analysis since the GEM output level was not stochastic with respect to the filter parameter
level; i.e. for a given set of images, there was no variation in optimum threshold value or GEM
output for a given filtering operation. However, limited subjective experiments were done, which

required simple statistical analysis.

8.3.1 Subjective Analysis

Some limited experiments on the subjective quality of filtered images were done to compare with
the GEM performance, to give an indication as to its suitability as a predictor of subjective image

quality.

In these subjective studies 4 expert users (nuclear medicine physicians) were used. They
were required to rate, on a scale from 1 to 10, the effect of filtering on each image to which the
GEM was applied. They were told to rate: sharpness of the image for low pass and PSF filtering,
noise level for images with added noise, and both sharpness and noise level for Weiner filtered
images. The images were presented on Sun workstations under their usual working conditions;
i.e. standard office conditions.

8.3.2 Measurement of Low Pass filtering Effects

As detailed later many experiments were performed to evaluate the behaviour of the measure.
Initially, highly controlled data, from the digitised Hoffman phantom?® data set, were used. These
data were low pass filtered, using a Butterworth filter, with cutoffs (c/o) in the range 0.4 - 0.8

8This is a brain phantom, or test object, with construction based on an accurate imaging of a human (Hoff-
man’s) brain.
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cyc/cm, producing several images. The GEM was applied to these images, with the threshold
being varied from 0% to 80% of the maximum pixel value for each image. The results are shown
in figure 8.6(a), for the Laplacian, and in figure 8.6(b), for the Sobel . It was found that the
optimum threshold value, which obtained the peak output of the GEM, was robust with respect
to the amount of LP filtering, although the actual curve became flatter as the blur increased;
i.e. the higher the amount of blur, the more insensitive the GEM was to the threshold value.

This behaviour was consistent with expectations.
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Figure 8.6: Output of the GEM for Hoffman digital data versus the threshold (7) value, and
for different cutoff (c/o) frequencies of the low pass Butterworth filter.

Examples of actually acquired? and Butterworth filtered Hoffman phantom images are
shown in figure 8.7, for ECT images, and in figure 8.8, for TV images. To test the GEM, as a
measure of smoothing (the cutoff frequency) due to low pass filtering, the GEM amplitude was
plotted against the Butterworth filter cutoff frequency for both digitised and acquired Hoffman
image sets. This was done with the threshold set to the optimum value; i.e. where the gradient of
the GEM versus % threshold curve is equal to zero. Also plotted on the same graph is a subjective
score given to the images in terms of perceived smoothness. This is shown in figures 8.9(e) and
8.9(f), where it can be seen that the GEM behaves as a monotonically increasing function of the
cutoff frequency with all the image sets. All the curves, including the subjective graph, appear
to be strongly correlated. This is demonstrated in table 8.1 which lists a correlation analysis
for the data plotted in figures 8.9(e) and 8.9(f), and shows very high correlation between the

curves.

8.3.3 Measurement of Noise and Point Spread Function Effects

The GEM has been shown to be useful for measuring blur due to LP filtering. However, a
question arises concerning blurring due to PSF effects and the effects of noise. Accordingly, a

series of experiments were performed to determine these effects. Initially, a reconstructed (TV)

®Tmages produced by scanning of a Hoffman phantom filled with radio-isotope, usually Technetium 99.
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(a) Raw ECT image - Lateral view (b) Raw ECT image - posterior view

(c) Butterworth filtered (0.5 cyc/cm) ECT image - (d) Butterworth filtered (0.7 cyc/cm) ECT image -
Lateral view posterior view

Figure 8.7: Low pass filtered and unfiltered emission (ECT) images.

Pearson Product-Moment Correlation
lap ect | lap tv | sob ect | sob tv | lap dm | sob dm | subjective
lap ect 1.000
lap tv 0.996 | 1.000
sob ect 0.963 | 0.981 1.000
sob tv 0.992 | 0.979 0.924 1.000
lap dm 0.993 | 0.983 0.934 0.992 1.000
sob dm 0.992 | 0.999 0.987 0.970 0.978 1.000
subjective | 0.998 | 0.997 | 0.973 0.986 0.983 0.993 1.000

Table 8.1: Correlation of GEM for Hoffman digitised, ECT & TV and subjective scores.



CHAPTER 8. THE GRADIENT ENERGY MEASURE 171

(a) Raw TV image - Lateral view (b) Raw TV image - posterior view

(c) Butterworth filtered (0.5 cyc/cm) TV image - (d) Butterworth filtered (0.7 cyc/cm) TV image -
Lateral view posterior view

Figure 8.8: Low pass filtered and unfiltered reconstructed transverse (TV) images.
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Figure 8.9: GEM as a measure of low pass (LP) cutoff (c/o) frequency. Sub-figures (a) to (d)
plot GEM output vs threshold for various LP c¢/o frequencies, while sub-figures (e) & (f) plot
GEM output as a function of c/o frequency with the threshold constant at the optimum value.
ECT = emision computed tomography, TV = Trans Verse (reconstructed)



CHAPTER 8. THE GRADIENT ENERGY MEASURE

173

4
AR
}V N\
3
i hY
2
3
: / \
: \
o
! 0 20 40 60 80 100
% Max Threshold
(a) Noise, Laplacian operator.
80
60 /’_—o_(
[}
E
s
6 . / ,,gfu——i—n\“\ .
JRNEERN
o S AN
0

(c) PSF FWHM, Laplacian operator.

40

60

% Max Threshold

80

5db

10db
15db
20db

10mm
8mm
6mm
4mm

GEM amplitude

GEM Amplitude

—a— 5db

—— 10db
—=a— 15db
—o——  20db

inf

20 40 60 80 100

% Max Threshold

(b) Noise, the Sobel operator.

40

30

—o— 10mm

8mm

20

—a&—  6mm

4mm

et TN
e

/4

20 40 60 80 100

% Max Threshold

(d) PSF FWHM, Sobel operator.

Figure 8.10: GEM threshold robustness. Shown is GEM output vs threshold for various levels
of noise and PSF full-width-half-maximum (FWHM) in millimetres (mm).
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(a) Raw TV image - Lateral view (b) Raw TV image - posterior view

(c) Convolved with PSF (60mm FWHM) TV image (d) Convolved with PSF (60mm FWHM) TV image
- Lateral view - posterior view

Figure 8.11: Reconstructed images convolved with Gaussian PSF.
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acquired Hoffman image set was convolved with a PSF from a constructed database of Gaussian
PSF convolutional kernels. Different versions of this image set were then created by adding a
different level of Poisson noise to each set. The noise level was defined in terms of the signal-
to-noise ratio (SNR), specified in decibels!? (db). It was found that the value for the optimum
threshold value for the GEM was insensitive to noise (see figures 8.10(a) and 8.10(b)). However,
even though the GEM threshold value was robust with respect to noise, the actual output of
the measure was a monotonic function of the noise (see 8.12(a)), showing it was also a noise
measure. As with LP blur, experiments were performed to ascertain the effects of Gaussian PSFs
with varying full width half mazimum!' (FWHM)s on the stability of the optimum threshold.
Figure 8.11 shows an example of blurring due to convolution of a reconstructed image with a
Gaussian PSF. The behaviour of the GEM was found to be similar to that of low pass filtering,
and is shown in figures 8.10(c) and 8.10(d).

The value of the GEM, at optimum the threshold of 25% (as seen in figures 8.10(c) &
8.10(d)), was plotted against FWHM (see figure 8.12(b)), and was found to behave well as a
measure of PSF-induced blur. The Laplacian produced a larger dynamic range than the Sobel
based measure. Also plotted is a subjective score of perceived image blurring. This correlated
well (see table 8.2) with both versions of the GEM, but showed slightly better agreement with

the Sobel based measure.

Pearson Product-Moment Correlation
sob x 10® | lap x 107 | subjective
sob x 103 1.000
lap x 107 0.982 1.000
subjective 0.999 0.972 1.000

Table 8.2: Correlation of GEM for Laplacian and Sobel measure with a subjective score for
Gaussian blur.

Further analysis was carried out to investigate the combined effects of noise and convo-
lutional blurring. The results are summarised in figures 8.12(c) and 8.12(d), which show the
logarithm of the GEM amplitude versus the noise level in db (down from the signal level), for
various widths of the PSF. These graphs show that the GEM amplitude is a monotonic function
of noise level at a particular PSF width, and for any given abscissa value (within the domain
of all the functions plotted) the ordinate values for plots at decreasing PSF widths, are mono-
tonically increasing. There is also evident an interaction between noise level and PSF width, as
the gradient of each curve becomes steeper as the PSF width decreases. This is consistent with
commonly known facts about smoothing operations (convolution of image and PSF) and noise

levels in images.

This indicates that the GEM is also a potentially useful measure of PSF induced blurring
and noise level, where both these processes are occurring simultaneously in the images under

consideration.

'0SNR in decibels SNRa, = 10log %, where S is the image data and N is the noise level.
NEWHM is the width of the PSF where the amplitude has dropped to half its peak value.
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Figure 8.12: GEM as a measure of noise and/or PSF blurring.
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8.3.4 Measurement of Weiner Filtering Effects

An important aspect of SPECT image processing is that of restoration filtering, which is an
attempt to gain an optimum tradeoff between noise and blurring in the final image. A filter
that is commonly employed in this function is the Wiener filter (Gonzalez and Wintz, 1987c).
An example of a Wiener filtered emission image is shown in figure 8.13. A version of this filter

(a parametric Wiener filter) is characterised by the following equation for its power spectrum:

mtf(f)2

W (f) =mep(f) TR
Y m%f(f)+’711\3f2—gffg

(8.11)

Where myy is (ideally) the equivalent modulation transfer function of the imaging system;
N2 is the noise power spectrum; B? is the power spectrum of the object of interest, while + is

the free parameter which varies the tradeoff between noise and blurring.

The spectrum of a degraded image can be modelled by equation 8.12, where P, is the
degraded spectrum and Py is the undegraded image power spectrum. In image restoration, the

aim is to obtain Py from P,.

Py(u,v) = N(u,v) + mff(ujv) - Pf(u,v) (8.12)

Experiments were performed to evaluate the GEM as a measure of the effects of the free
parameter v. A Wiener filter was applied to the acquired Hoffman ECT image set, with v varying
between 0.5 and 5.0 in 0.5 steps. The GEM was applied to both the ECT and the resultant
reconstructed image sets. The results are summarised in figures 8.14 and 8.15. Figure 8.14
shows monotonically decreasing curves for increasing gamma, using both Laplacian and Sobel

filters. Thus the GEM appears to be a good measure of the effects of gamma.

Figure 8.15 shows a scattergram, produced from the values of the GEM obtained for the
ECT image set, versus the GEM values obtained for the image set reconstructed from this
ECT image set. The regression line produced an R? value of 0.995, which suggests a very high
correlation of the two sets of GEM values. This implies that there exists a linear relationship

between the blurring in the ECT images and the blurring in the final reconstructed images.
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(a) Raw ECT image - Lateral view (b) Raw ECT image - posterior view

(c) Wiener filtered ECT image - Lateral view (d) Wiener filtered ECT image - posterior view

Figure 8.13: Wiener filtered emission images.
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Figure 8.14: GEM as a measure of v in Weiner filtering.
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8.4 Conclusions and Further Work

The gradient energy measure was demonstrated to be a useful measure of the effects of several
commonly used filtering operations on SPECT images, and was sensitive to the filtering param-
eter settings. It was also found to agree well with preliminary subjective ratings. Laplacian
and Sobel versions worked well, though the former correlated slightly better with subjective
data. The Sobel filter was more insensitive to noise, which may make it more suitable in some

situations.

The fact that the GEM correlates well with subjective ratings means that it could possibly
be used as a stand-alone measure, though this is not necessary for its intended use in optimising

SPECT image quality using full-blown subjective experiments.

There is a model of HV'S function that appears to be modelled to a first order by the GEM.
This model is known as the “energy integrator” model (Green and Swets, 1966¢; Moulden et al.,

1990). To determine if this is an edequate model, more work needs to be done.

It is appropriate that this measure be used in conjunction with subjective analysis of SPECT
images in order to find the optimum filter parameters in terms of clinical image quality. This
will require a large subjective study to ascertain the optimum set of processing parameters and
to calibrate the GEM. Methods of subjective image quality analysis are discussed in chapter 3
and it is recommended that the receiver operating characteristic (ROC) method is the most
appropriate, though some insight, where subjective confidence is not a concern, could be obtained

from using an analysis-of-variance (ANOVA).
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Chapter 9

The Effects of Clutter on Human
Target Detection Performance

Summary: This chapter describes a study which determined the performance of
human image analysts in the surveillance context, using Synthetic Aperture Radar
(SAR) derived images, in terms of the analyst’s receiver operating characteristic.
The experiment was designed to correspond as closely as possible to the expected
real world mode of operation of the analysts using similar imagery. In particular, the
effects of target contrast and background clutter on human analyst target detection

performance were quantified.

9.1 Introduction

This chapter contains a description of a major study to determine the performance of human
image analysts, using a synthetic aperture radar (SAR) (Fitzsimons, 1998; Oliver and Quegan,
1998) imaging system, which is currently under development. The study was designed to obtain
practical baseline data on human analyst performance, and to investigate the issues of clutter

and contrast measurement.

It is likely that a synthetic aperture radar system will be used to detect possible targets of
interest in remote regions of Australia’s north. This may be of significance to customs, police,

search and rescue or military operations.

There are three main requirements for operational effectiveness of a SAR system in this type
of context. Firstly, the information it gathers must be near real-time. Secondly, the probability
of detection for any target of interest in the region of operation must be high. Thirdly, the false
alarm rate of the SAR system must be low enough to ensure that the limited resources used to

follow up each SAR detection are not wasted.

The issues of timeliness and the probability of detection and false alarm rate (FAR) for
the entire SAR system will not be addressed here. This study concentrates on measuring the

performance, in terms of probability of detection and false alarm rate (called the receiver oper-
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ating characteristic (ROC)), of one component of the SAR system — the human analyst. In the
operational system, a number of analysts will be employed to examine the SAR imagery in order
to detect and report any possible targets of interest. As a result, the overall performance of the
SAR system depends initially upon the performance of human analysts in this visual detection
task.

The study presented here determined the unassisted performance of human analysts in
the SAR context in terms of the analyst’s ROC. The experiment was designed to correspond
as closely as possible to the expected (fully manual) search-mode of operation of SAR analysts
using similar SAR imagery. In this mode, the analysts manually scanned through all the imagery
looking for the possible targets of interest; i.e. no automatic target detection algorithms or other
cueing methods were employed. Therefore, the tools used to view the image in the experiment
closely matched the analyst’s expected method of manipulation and display. In this way, the
external validity of the experiment was made as high as possible (although for the sake of
internal consistency, and to keep the size of the experiment down to a manageable level, certain

limitations — specified later — were placed upon the analysts).

This experiment was designed to determine the search-mode analyst performance in order
to arrive at a base-line, against which to measure the impact of automatic target detection on
the whole system. When automatic target detection is employed, the analysts are only cued
with cut-outs! of small regions from the imagery that the automatic target detection algorithms
identify as possibly containing targets, thereby eliminating any search component from the
analyst’s work. This is termed the cueing mode. This change in methodology will impact
significantly upon the performance of analysts (both in terms of their coverage rate and ROC)

and is expected to improve it over the performance determined here.

This search-mode analyst ROC experiment was performed with targets inserted in imagery
across a wide range of visual clutter and contrast levels. This does not reflect statistically the
operational distribution of targets and clutter, and it was not meant to do so. It is important to
emphasise that additional information is required to interpret these results in terms of the ROC
performance of the SAR system with fully manual analysis in an operational scenario. In fact,
several different types of information are required. They include: the distribution of foliage and
terrain types across a region of operation, the distribution of targets, the imaging characteristics
(including imaging geometry) of the radar, and the target-to-background contrast that occurs,
given the target type, foliage, and imaging characteristics. This work is currently being done by
others, and is beyond the scope of this thesis. However, these crucial pieces of information must
be added to the results of this study to determine the ROC performance of the SAR system

with fully manual analysis.

Ideally, this experiment should have been performed using imagery that had been exhaus-
tively ground-truthed. However, no such imagery was available. Consequently, certain com-
promises were necessary in the experimental design. As a result, it was difficult to relate the

analyst’s performance to the SAR system’s false alarm rate. In other words, ground-truthed

!Excised regions.
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imagery would have allowed the quantification of the analyst’s (search-mode) false alarm rate
for actual targets of interest on the ground. Instead, what is reported here is their false alarm
rate for target-like configurations of pixels, whether or not these were due to targets of interest.

These issues are discussed in more detail in section 9.2.7.

9.1.1 The Visual Task

In the literature, ROC analysis is usually applied to a pure detection task; i.e. the signal is
either present or it is not. In general, the stimuli are either noise or noise plus signal. In this

case, the task is slightly more complicated. The experiment could have been set up as either:

(i) A discriminatory detection task, where a target has to be distinguished from the back-

ground or clutter;

(ii) A classification task, where potential targets have to be distinguished from non-targets

that are similar in terms of radar cross section; e.g., vehicles versus power poles.

In the classical discriminatory detection problem, the target may or may not be present in
the clutter. In contrast, the classical classification problem presents the observers with one
object from a number of classes of objects, and the observers have to indicate which class they
think it is from. The experiment was designed for task (i) because it most closely matches the
SAR analysis task. However, there is a classification component to the SAR analysis task in
that once an analyst has detected a target-like object in the imagery they would normally try
to distinguish it from cultural clutter, such as farm sheds and power poles, using contextual
information. I have not measured these aspects of the problem. Because of the widely varying
approaches of the observers (see Appendix K) no attempt was made to investigate these aspects
of the problem, as a result, the experimental task is a purely discriminatory detection one. This

trade-off is discussed in more detail in section 9.2.7.

9.2 Experimental Methods

This section details the experimental design. In this study, both analysis of variance (ANOVA)
and ROC methods have been used (see chapter 3). The ROC analysis employed the rating
method (section 3.2.3 on page 74).

The difference between the two analysis techniques is that ANOVA focuses on obtaining
purely sensory information, which in contrast to the ROC analysis, does not give any information
about the observer’s internal criterion. ANOVA also gives much more information about the
relationships between the factors and their effects, including, for example, interaction analysis.
However, in the case of discriminatory detection that is used here, it is necessary to take into
consideration the observer’s criterion. Therefore ROC analysis, which gives a summary measure

of both sensory and subjective criterion information, is also required.
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9.2.1 Experimental Design

The experiment was designed to have fixed effects, with blocking, resulting in nine treatments.

The power and significance estimation was based on a two-way analysis-of-variance.

The nine treatments, that constituted a 3 x 3 cell, were a combination of three levels of
clutter and three levels of contrast (c¢) times target area product cay, which were found to be

within the approximate perceptual range of ¢ for a target of approximately 5 x 5 pixels.

I have followed the usual practice, in visual perception studies, of defining the (Weber)
contrast as
c= Pt T Hb (9.1)
Mo
where p¢ is the mean target luminance and yy, is the mean local background luminance.

The target contrast and the value of local clutter metrics were calculated over a 64 x 64 pixel
region with the target at its centre. This value of background region was chosen to correspond
to about 3° field-of-view when the observer is fixated on the target, at a viewing distance of
50 cm. From the studies performed in Chapter 7 (see summary information in figure 7.6) this

seems to be an appropriate size of region around the target to define a region of “local” clutter.

It is also important to note that, for small or low contrast targets, such as are typically
found in SAR imagery, the luminance threshold is a function of target area (a;) (Blackwell, 1946;
Lukis and Budrikis, 1982). To keep the experiment a manageable size, rather than use ¢ as an
independent variable, the ca; product was used to control the detectability of the target. In this
way, two physical target parameters (target contrast and target area) were being manipulated,
but only their product was considered an independent variable in the experiment. This allowed
a more representative set of targets in the experiment. On the other hand, as the responses
were collapsed across target area and target contrast for each level of cat product, no specific

information was available about the effect of target area or target contrast alone.

For this study the clutter levels were determined by applying a clutter metric due to Wald-
man et al. (1988). This metric has not been rigorously evaluated in the literature with respect to
its correlation with subjective response, but which showed great promise in pilot studies. This

clutter metric is discussed in detail in section 2.6 of Chapter 2.

9.2.2 Experimental Parameters

The statistical parameters for this experiment, which are defined in Appendix C, are now given.
The significance was set at the 95% level (o = 0.05) and the desired power was set at 90%
(6 =0.1). The effect size that can be detected by the experiment is quantified by the parameter
d; for this experimental design d = 0.25. This choice of parameters means that a small to
medium effect should be detectable by the experiment. By use of a set of power tables (Cohen,
1977) this value of d corresponds to f = 0.1, under the assumption that the effects of the
treatments are distributed uniformly along the range of spread; this statistic is tested in the
F-test.
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For this parameter set, the number of observations required was 240 per treatment. These
observations were spread across each of 10 observers who saw the same set of (blocked) stimuli.
This corresponds to each observer viewing 24 stimuli at each treatment level. For the sake of
estimating the number of targets to insert, it was assumed that half the stimuli would contain
targets (See the next sub-section 9.2.3 for further discussion). This corresponded to 12 inserted
targets per observer at each treatment. All observers viewed the same imagery. Given that
there were 9 treatments, the 12 inserted targets per observer per treatment level corresponded

to a requirement for 108 targets to be inserted in total.

Ideally, each observer should be presented with the same set of stimuli, but in a different
random order. However, for the sake of external validity, this was not possible in this experiment
for two reasons. Firstly, observer’s had complete control of the order in which they searched
through the imagery. Secondly, there was a spatial relationship between the stimuli because
they were embedded into a swath. Accordingly, all observers viewed the swaths in the same

order.

9.2.3 Preparation for the ROC Analysis

In the literature on ROC curve studies, it is usual to set the a priori probability of detection
to about 0.5; ¢.e. half the stimuli contain targets. Usually in ROC experiments, stimuli are
presented to observers one after the other, or together, in a controlled way. This approach
makes it easy to set up the required a priori detection probability. In the case of the SAR image
analysis, the practice is more complicated. Here, image analysts examine large swaths of image
data, which can be viewed by scrolling and panning, or by stepping through a screen-ful at a
time. For the sake of external validity it was important that this operating procedure also be

employed in the experiment.

To stay as close as possible to the normal operating procedures of analysts, yet at the same
time accommodate the requirements of ROC analysis, the observers were required to examine a
swath (or portion of a swath) one screen-ful (a frame) at a time, panning across the swath in a
non-overlapping manner. In order to set up the ideal a priori detection probability of 0.5, the
chance of a frame containing a target must equal the chance of a frame not having a target. This
could have been obtained by dividing the swath into frames, with half of the frames containing
a target. However, this was not possible in this experiment because it would have resulted in an
atypically high target density. It is expected that the high target density would have modified
observer behaviour in an undesirable way; i.e. the observers would have most likely learnt the
probability of finding a target and thus anticipated a target detection, thereby distorting the

results.

To circumvent this problem, a method known as the free-response ROC (FROC) (Bunch
et al., 1978) was used. The FROC is applicable to situations that involve any number of reported
locations and any number of actual targets in each image. Usually in the FROC, the abscissa

represents the average number of false alarms per image presentation, whereas the ordinate is
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Image | Resolution Pixel Equivalent | Target
(m) count Area® (km?) | count
01 2 90947584 91 0
02 2 90947584 91 4
03 2 146857984 147 7
04 2 146857984 147 7
05 2 161021952 161 6
06 2 161021952 161 7
07 2 161021952 161 5
08 2 160276480 160 4
09 2 160276480 160 4
10 2 160276480 160 1
11 2 158785536 159 5
12 2 158785536 159 2
13 2 158785536 159 5
14 2 158040064 158 4
15 2 158040064 158 4
16 2 158040064 158 4
17 1 133218304 133 6
18 1 160145408 160 2
19 1 163688448 163 10
20 1 132509696 132 2
21 1 132509696 132 8
22 1 132509696 132 4
23 1 160145408 160 4
24 1 156602368 156 3
25 1 156602368 156 0

Table 9.1: Pixel counts and resolutions of the test imagery, along with the number of targets
inserted into each image. Note that for the purposes of the experiment, all 2 metre resolution
imagery was treated as if it was 1 metre resolution, albeit with a different range of clutter values.

“Assuming 1 metre resolution.

the same as a standard ROC?. In this case, the abscissa represents the average false alarm rate
per unit area (km?); i.e. for a given area, it represents the average false alarm rate. To convert
to false alarms per unit area at each clutter level, the value on the abscissa should be multiplied

by the number of targets that are classified at that clutter level.

The targets were randomly inserted at a rate chosen to match reasonable operational con-
ditions of 1 target per 40 km? of imagery. Thus, about 108 x 40 = 4,320 km? of imagery was
required for the experiment. Table 9.1 shows the number of targets that were contained in each

of the 25 test images, along with their area.

Care was taken in the process of randomly placing the targets into the imagery. The human
eye is particularly sensitive to edge effects. As a consequence, if the targets are not realistically

inserted so as to avoid edge effects, then this will bias the experimental results. Furthermore,

2Strictly, the fraction of targets detected with sufficiently accurate localisation, as defined in the Localisation
ROC.
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all the target placements were checked to ensure that they did not occur in totally unreasonable

situations, e.g., on a cliff face. These details are more fully explained in subsection 9.2.9.

9.2.4 Preparation for the analysis-of-variance

As indicated in section 9.2.1, the experiment was originally designed to be a 3 x 3 factorial fixed
effects design resulting in nine treatments. Upon this basis targets were inserted into the SAR
imagery. However, the actual design used in the ANOVA was a 3 x 4 factorial fixed effects

design, resulting in twelve treatments.

The reasons behind this are fully discussed in sections 9.2.7 to 9.2.9, later in this chapter,
but a brief explanation will now be given. The twelve treatments were a combination of three
levels of clutter and four levels of contrast® times target area product. It became necessary to
introduce a fourth level of contrast (post experiment) because the experimental observers found
targets in the imagery which could not be perceptually differentiated from the inserted targets,
some of which were in a higher contrast range to that of the ranges set (low, medium, high) for
the inserted targets. As the observers were not given any extra information which allowed them
to differentiate these “extra” targets from the inserted ones, they were classified as real targets.
Other non-inserted targets were discovered which were classified appropriately, as described in

section 9.2.7.

As a result of the issues mentioned in the last paragraph, the data became non-ideal for
the ANOVA approach, though they were accommodated in the ROC analysis by the FROC
approach (section 9.2.3). The problem was that the amount of data at each combination of
factors (treatments) was not equally distributed. This may cause problems in that each treat-
ment condition is not guaranteed to contribute equally to the analysis, and this situation is
likely to exacerbate the degree to which the assumptions underlying analysis-of-variance are
violated (Keppel, 1991b).

There are approaches for dealing with this situation, such as the method of unweighted
means or the method of weighted means, but these methods are flawed (Keppel, 1991¢). The
best approach, if sufficient data are available, is to randomly select the same number of samples
for each treatment as exists for the smallest treatment sample. This approach was adopted in
analysing the data shown in table 9.2. As shown in table 9.3, this resulted in a data set of
greatly reduced size. However, an analysis-of-variance was carried out for both sets of data,

with the analysis based on the second set acting as a check on the first analysis.

9.2.5 Experimental Procedure

A workstation, with a photometrically calibrated screen (i.e. that had its photometric output to
grey-level input recorded) running the in-house analyst display software displaytool was used
for the study. Changes were made to the software to log response times in conjunction with

the observer’s confidence rating for each detection. The observers were required to find targets

3Contrast and contrast ratio, are used synonymously in this chapter
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Contrast Level
Clutter Level | low medium high highest | row sum

low 455 174 10 10 649
medium 601 708 79 ol 1439
high 174 640 199 201 1214
col sum 1230 1522 288 262 3302

Table 9.2: The number of targets at each combination of factors (treatment) for the experiment.

Contrast Level
Clutter Level | low medium high highest | row sum

low 10 10 10 10 40
medium 10 10 10 10 40

high 10 10 10 10 40
col sum 30 30 30 30 120

Table 9.3: The number of targets at each treatment for the confirming ANOVA.

which had been pseudo-randomly placed into imagery according to the principles discussed in

section 9.2.3.

The observers were instructed to search the swath by stepping through the image a screen
at a time using non-overlapping image screens. During target logging, the observer placed the
cursor over the selected target and hit a button causing the target coordinates to be recorded.
Observers were then prompted to enter their confidence rating according to the 5-point scale
outlined earlier (with an implied sixth rating of zero). No information on expected incidence or

location of targets was given.

Each session was arranged for the same time every day for each particular observer and was
limited to a maximum duration of one half-hour. Each observer was required to scan through
one entire image per session in the order given in table 9.1. Thus, each observer typically sat
through 25 sessions after an initial training session. (Some observers were quick enough to scan
through multiple images in a single session.) The instructions given to the analysts can be found

in Appendix L.

Some difficulties were experienced with observers interpreting instructions differently from
my intention (see also section 9.2.7). While this emphasises the need to write instructions as
clearly and unambiguously as possible, a component of the problem was the preconceived notions

some observers had from previous SAR image analysis in an operational environment.

A full discussion of the experimental setup and its running can be found in sections 9.2.9—
9.2.11.
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9.2.6 Analyst Experience

Another issue is the experience level of the observers. If determining the effectiveness of expert
analysts is the experimental aim, then only experts should be used in the experiments. However,
ten experts were not available. These requirements could have been reduced with a corresponding
increase in the amount of imagery each must search. However, this would have made the
experiment even more onerous for each observer to carry out and would have reduced the
willingness of observers to participate given their other commitments. Alternatively, if we wished
to determine the effect of training on effectiveness, then observers with mixed experience would
have been required, but more viewing would have been necessary to obtain statistical significance
for the extra variable in the experiment. For example, if there were two levels of expertise, then

the cost of the experiment would have been doubled over that indicated above.

Therefore, because of the increased cost that this question introduces into the experiment,
I have not dealt definitively with it. The study used observers with mixed levels of experience
and the results are dealt with as an average measure. As a result, these experiments indicate
the performance level of analysts with skills that are somewhat below the level that could be
expected with trained image analysts. In support of this pragmatic choice, the belief has been
expressed by some that the detection task could be satisfactorily performed operationally by
people who are not expert image analysts and who perform this task on a part-time basis only,
along with their other responsibilities. However, this question cannot be answered with any
confidence using the results of this experiment because the number of observers in each category
would not produce statistically significant results. A further experiment designed to specifically
answer this question would need to be run that fixed a number of the parameters that were
varied in this experiment. However, this experiment addresses more fundamental questions
regarding the “average” ability of observers to detect target-like objects in SAR imagery at
varying contrast and clutter levels. In general, expertise is expected to have a multiplicative

effect on the performance measured in this experiment.

9.2.7 Ground Truthing

Often, in visual detection task experiments, synthetic imagery is used that is well-defined and
has some of the statistical character of real imagery, but none of its complexities. It differs from
real imagery, which has cultural features that are distinct from the normal background texture
and contains a variety of natural textures (synthetic imagery usually contains a limited variety
of textures). This approach has not been possible in this experiment because of the need to
make the experiment as close in character to an operational situation as is possible. Therefore

I have used real imagery in my experiment.

Ideally, as mentioned in the introduction, I would have at my disposal imagery that was
exhaustively ground-truthed. That is, every object in the scene of the image has been identified
and logged, so that the cause of every target-like configuration of pixels in the image is known.
If such imagery were available, it would have been possible in this experiment to test the ability

of not just the analyst but of the whole SAR system to detect targets of military interest and
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distinguish them from cultural clutter. I did not have such ground-truthing, and it was not

feasible to collect it for the large amount of imagery used in this experiment.

The next best alternative to exhaustive ground-truthed imagery would be to scan through
the imagery looking for every incidence of pre-existing target-like objects and then to send
someone out into the field to determine whether or not the analysts are justified in calling it
a target, or whether it should be classified as a miss or false alarm. Of course, any target on
the ground that does not show up in the imagery would be missed. So with this approach, the
performance of the SAR sensor to detect objects of interest would not be tested. However, the
system’s ability to distinguish target-like objects in the image from genuine targets of interest
could still be determined by the experiment because we would know the cause of these pixel
configurations. This would introduce a bias into the analysis in that the canonical list of pre-
existing targets and false alarms would be prepared only from those found by the observers. It
is conceivable that there would be pre-existing targets in the imagery that none of the observers
detected, and, as a result, the reported probability of detection would be higher than it should

be objectively. However, with a sufficient number of observers, it is a reasonable approach.

The approach just outlined of checking in the field was not feasible because of the cost
and elapsed time since the imagery was collected. Therefore, the next compromise that had to
be made was to consider visually ground-truthing the imagery. That is, visually compare all
target-like objects detected by the observers (that was not artificially inserted there) and assess
their similarity to the genuine targets that were inserted. If they were visually indistinguishable
from genuine targets, then they were added to the list of inserted targets and not considered as
false alarms. In reality, of course, some cultural clutter could fall within this category, e.g., a
fence post, but without ground truth it is impossible to take any other approach. This problem
was minimised by selecting imagery with as little in the way of cultural features as possible,
and this is consistent with the operational scenario anyway. Any small region of high cultural
content, such as towns in the imagery, were marked out for observers to ignore, both to reduce

the effective cultural clutter content and because the SAR role is to monitor remote areas.

In summary, it is important to understand the distinction between what should ideally be
measured — the ability of analysts to detect targets of interest in a region using SAR imagery,
and what was actually measured in this experiment because of the unavoidable compromises just
discussed. This experiment measures the ability of analysts to detect target-like configurations
of pixels in SAR imagery, and some of these objects will be due to genuine targets of interest and
some will not be. As a consequence, it is not clear how to relate the false alarm rate reported here
to that of the SAR system. Probability of detection is not so problematic, because experiments
have been performed in the field to determine how known targets appear in imagery, and it is

easy to measure how well you see an object in the imagery with a known location on the ground.

The assessment of the similarity of pre-existing objects found in the imagery by the ob-
servers to genuine targets should ideally be performed as a second experiment with a different
set of observers. Again, time constraints and resource limitations have not allowed this, so a
compromise was made by using a single expert (a colleague of the author), who divided all the

detections made by the observers into 4 categories. These categories were: target of interest, a
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permanent man-made installation (e.g., building or power pole), a natural object (e.g., a tree),

or unknown.

The sensitivity of this vetting process to the categorisation was tested by assigning the
unknowns to two different categories and running the analysis twice. The unknowns were those
detections made by the observers that the expert could not clearly determine visually were either
targets, installations or natural objects. Firstly, the unknowns were assigned to the target class,
so in effect achieving the best-case false alarm rate. Secondly, the analysis was performed with

the unknowns assigned to the class of natural objects (so that their detection is a false alarm).

Originally, it was planned to measure the classification component of the SAR analysis task,
as outlined in section 9.1.1. However, the observers’ responses to the questions in Appendix K
indicate that very few observers did precisely what was wanted in this regard. This is due to
two factors. Firstly, experienced observers tended to interpret what was wanted in terms of
what their experience indicated. Secondly, because of the large number of instructions that
were necessarily given to observers during initial training some details were forgotten. As a
consequence, in the analysis of the results, anything that was identified as an installation was

deleted from consideration, i.e. it was treated as neither a target nor a false alarm.

9.2.8 Compromises

This experiment measures the baseline performance for analysts using a SAR system in a search-
mode of operation. It is only a baseline because of a number of compromises that had to be made
to keep this experiment to a manageable size. The performance in an operational environment

maybe expected to be better for a number of reasons, as discussed below.

Firstly, the 10 observers that were used had widely ranging levels of skill in the exploitation
of SAR imagery for target detection. The level of skill varied from that of complete novice up
to one observer who had been a professional image analyst at an earlier time in his career. As
a consequence, the skill level of the observers as a whole was on average around the amateur

image analyst level, so it maybe expected that suitable training would boost their performance.

Secondly, familiarity with a region would improve an analyst’s ability to find targets.However,
in this experiment, the learning factor was kept to a minimum by never using the same image
twice. This was to ensure that the learning factor would not confound the results or cause
an increase in the number of treatments investigated in the experiment. In this manner, this
experiment purely measures target detection. It is expected that the learning factor will be

investigated in a separate experiment.

Thirdly, analysts would normally have at their disposal more tools to examine the imagery
than was allowed in this experiment. In particular, observers were not allowed to zoom in on a
region of an image to examine it in closer detail. This would normally be used by analysts to
increase their likelihood of making a correct decision by allowing them to examine carefully the
edges of potential targets. Observers were denied the use of these tools for the simple reason

that each level of option available to them is a multiplier on the size of the experiment, e.g., if
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there are 3 levels of zoom, then 30 observers would be needed instead of 10, or each of the 10
observers would have needed to sit through 75 images instead of 25. Despite these limitations,
I believe that these issues are better examined in a small controlled experiment, designed to
examine the improvements that result from each tool in isolation. These results then can be

compared with the results of the base-line study described in this chapter.

Fourthly, analysts would normally have digital map information for the geographic region
contained in the imagery.This was not provided to the observers in this experiment for the
same reasons as above. This type of information would have the effect of enhancing an analyst’s
familiarity with a region and allow them to better distinguish existing infrastructure from targets.
Previous imagery of a region would also normally be available to analysts to assist them in this

process, this was not made available to them here.

Finally, the targets that were inserted in the imagery for this experiment were not inserted at
realistic contrast levels. This was because it was necessary to test the full range of performance of
the human visual system in the target detection context, covering every conceivable situation. It
is necessary to interpret these results in the light of the operational target-background contrasts

which have yet to be completely determined in further, operationally based, studies.

9.2.9 Preparing the Imagery

Ideally, in order to achieve a sufficient characterisation of an analyst’s performance, a set of
imagery with a range of clutters, containing known targets with a range of contrasts, is needed,
but for the large amount of imagery required for this experiment, that was impractical. The
approach taken was to choose swaths of existing imagery which were apparently largely free from
targets (as per section 9.2.7) and artificially insert targets at randomly determined locations.
This also allowed precise control of contrast, thus ensuring that a range of targets was present,

varying from indistinguishable to obvious.

9.2.9.1 Extracting targets

A realistic set of candidate targets was obtained by extraction from existing images. A suitable
data set was collected during a previous field trial. Two 4WD vehicles were positioned on
a square of tarmac at the end of a runway at the Edinburgh RAAF base. The openness of
the situation, with poor radar return from the tarmac, provided good target contrast. It was
therefore simpler and more reliable to extract targets from this imagery than from images with
targets in a more typical environment. The radar imaged the vehicles in spotlight mode on

many runs from different directions. This provided a large number of images of suitable targets.

These swaths were processed with a program designed for processing strip SAR images.
This does not properly account for the geometry of a spot SAR image. However, the distortion

is not great and the appearance of targets is unlikely to be affected.

There were several stages in the process of producing a set of targets from the spot SAR

images. Firstly, forty sections of the imagery, corresponding to separate images of the tarmac
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Figure 9.1: The set of targets used for insertion into the background images. The brightness is
scaled to provide the desired contrast during target insertion.

region, were manually extracted. Although this introduces an undesirable manual process, which

cannot be trivially reproduced, it would have been too much effort to do this stage automatically.

The position of the targets on the tarmac area was found by simple thresholding. A
threshold was chosen that found many of the targets with no false positives. A small region

around each target was then thresholded and cleaned with a simple neighbourhood filter.

The result of this process was forty five masked images of targets (see figure 9.1).

9.2.9.2 Choosing background imagery

Ideally, 1 m resolution background imagery was required. It was desirable that the imagery be of

typical northern Australian regions containing few existing targets or other man-made features.

Unfortunately, neither of these requirements could be met. Most of the data available was
at 2 m resolution (as wider swaths can be acquired at lower resolution), and there was insufficient
1 m data available. Also, while many swaths included remote regions, all had some man-made

features present.

The data finally chosen were a mix of 1 and 2 m resolution imagery. Note that it is the
image resolution that is being referred to here. The raw SAR data were collected with 1.5 or
3 m resolution complex samples. This was re-sampled to 1 or 2 m resolution when the image

was formed.

The presence of existing man-made objects was accounted for in two ways. Firstly, all
the data were viewed using displaytool, a locally written user interface program. Obvious,
isolated targets and extended regions containing many radar brights  (such as towns) were

logged. Secondly, a post screening was done on the analysts’ detections (see section 9.2.11.1).

It would have been an onerous requirement for the analysts to log all the brights in a town.

It would also have been inappropriate because the SAR system’s requirement is to monitor

“The word “bright” is a jargon term for a group of pixels which stand out against the image background.



CHAPTER 9. THE EFFECTS OF CLUTTER ON HUMAN TARGET DETECTION PERFORMANCE 194

remote areas. Therefore, towns and other extended regions containing brights were marked on
the imagery with a cross-hatch pattern. The analysts were specifically instructed to ignore these
areas. Because displaytool has no facility for logging rectangular areas, an unusual method
was used to log towns. The top left and bottom right hand corners were each logged twice. A

program was then written that included a state machine to distinguish points from areas.

The displaytool program usually shows two versions of an image: one at full resolution
and a “summary” image that is small enough to fit the entire region of the image on the screen.
The summary image is usually constructed by dividing the image into blocks and averaging
each block to produce a single pixel. To assist in finding radar brights, summary images were
constructed, using the maximum of each block. With this change, displaytool’s threshold
operation directly highlights radar brights of any size.

Several other options for dealing with existing radar brights were considered and rejected.
Smoothing them out or pasting over them would be difficult without leaving obvious artifacts.
Using very small sections of swaths or constraining the analyst’s movement through the swath

would make the analysts’ procedure too artificial.

The images chosen were divided into approximately equal-sized chunks. The size of each
chunk was chosen so than an analyst could reasonably be expected to complete finding targets

in it in a half-hour.

9.2.9.3 Classification

To ensure that the targets were inserted evenly across different levels of background clutter, it
was necessary to classify the background imagery according to clutter. As stated earlier, the
measure selected for clutter is due to Waldman et al. (1988). The measure provides a clutter
value for an image with a given step size in a given direction®. For the problem of distinguishing
a target from background it is appropriate to choose a step size of the order of the target size.

TT 3T at a “standard” target width

I used the average of the measures for the directions (0, §, 5, <F

of 5 pixels.

As stated by Waldman et al., a measure of clutter needs to be more specific than a measure
of texture of the image around the target — the amount of texture at the scale of the targets
of interest is the critical factor. The standard target dimension is less than the texture scale
typically observed in SAR images. As a consequence, the Waldman et al. clutter measure
reduces to a normalised weighting of the elements of the co-occurrence matrix, where the matrix

is computed at the standard target size in each of the four directions (Waldman et al., 1988).

An efficient implementation of the Waldman et al. clutter measure was devised that avoids
explicitly building the co-occurrence matrix. This is useful only because a small block size
(64 x 64) surrounding each detection was used to compute the clutter level (section 9.2.1).
Consequently, because the co-occurrence matrix is larger than this (256 x 256), it is sparsely

filled. The matrix elements are usually weighted and summed; weighting and summing into

5See section 2.6.2 on page 58 of Chapter 2 for details.
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Clutter | Area (km?)
low 1121

medium 1180
high 1173

Table 9.4: The amount of area in each of the clutter regimes.

a single accumulator, as image values were examined, avoided building and looping over the
matrix. With this and other coding efficiencies, the time to measure all the images was reduced

from 15 days to 3 hours.

The background imagery was divided into small squares and the clutter and average power
measured for each. A histogram of the clutter values shows a distribution with a small peak
at low clutter, corresponding to shadow and water regions on the imagery, and a wide peak,
corresponding to the remaining features. The wide peak was divided into three equal areas to set
boundaries for different clutter regimes. Shadow and water were excluded from consideration,
using thresholds on both clutter and power. The power threshold was —20 dB and the clutter
thresholds were 0.121, 0.175 and 0.211. The amount of area (assuming one metre pixels) classified

at each of the clutter levels was approximately equal and is shown in table 9.4.

Not unexpectedly, the clutter metric value varied with the image resolution. It was assumed
that differences in visibility would be adequately reflected in the clutter metric values, so no

further account was taken of resolution differences.

The screen luminance values (section 9.2.11.2) were not available when the targets were
inserted. Instead, the approximate value of the contrast was found. The actual contrast was
determined later and used in the analysis as discussed in section 9.2.11.3. The approximate
contrast estimate corresponded well with visually perceived contrast in different background

brightnesses and clutter levels.

A source of confusion is that there are four different “brightness” scales: the radiomet-
rically corrected radar power, the contrast stretch, the screen pixel grey scale and the screen
luminance. Here the screen pixel grey scale, which is linearly related to power, was used. Later

(section 9.2.11.3), the actual luminance was used.

9.2.9.4 Target insertion

An interactive program was written to place the targets in the background imagery. For each
required placement, a target was chosen at random and an image location was chosen at random
from those of the correct clutter level. An image, showing the chosen location in context, was
presented to the experimenter for confirmation and the details logged to a file. This required

about ten minutes of interaction by the experimenter to place 108 targets.

Subsequently the actual insertion was done. The target pixels were scaled to the correct
power to produce the desired contrast and the pixels inserted into the background imagery. The

edge of the target was smoothed with the background to avoid an obvious step in brightness.
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9.2.10 Running the Experiment

9.2.10.1 Displaytool

The program being developed as a model for the main user interface for the image analyst is
called displaytool. Its main purpose is to allow the analyst to interactively view portions of

an image, pan and zoom, mark manual detections and view and vet automatic detections.

Several enhancements were necessary for the program to be used in this experiment. The
most important of these was a logging facility that recorded what part of the image the analyst
was looking at and recorded the manual detections. Response times were also recorded, although

they have not yet been used in the analysis.

Some further minor changes were made to enhance the usability of the tool for this task

and to disable functions (such as contrast stretching and zooming) that were inappropriate.

9.2.10.2 Bookkeeping

To simplify the setting up required by each analyst during the running of the experiment, a
point-and-click interface (figure 9.2) was provided. The analysts had simply to choose their name
from the list and the tool determined which image they were up to and invoked displaytool
appropriately. Details, such as ensuring detections were logged separately for each analyst, were

taken care of automatically.

ROC experiment "1 1 717

Tim Miller
Nick Stacy
Terry Moon
Graeme Mash
John Chisholm
Dan Keenan
Ken Wood
Mark Preiss
Ismaan Ameer
Peter Hoffensetz
stephen Baker
test

. G ol S T O ol S O,

Figure 9.2: Front end program to prepare for analysts.
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9.2.10.3 Instructions for analysts

The analysts received instructions on how to conduct the experiment by the following means.

o Written instructions detailing the use of displaytool, the desired method of scanning

through the images and rating detections (see Appendix L).

e Verbal instructions with the same information and an opportunity for clarifying any unclear

points.

e A demonstration and trial period with a specially prepared small image that included

targets inserted at various contrast levels at known locations.

9.2.11 Preparing the Data for Analysis

9.2.11.1 Vetting

As discussed in section 9.2.7 it was necessary to visually ground-truth the imagery by vetting
all the detections made by the observers. The approach taken was to view each detection (see
figure 9.3) made by the analysts and manually classify it as a target of interest (e.g., a 4WD),
a permanent man made installation (e.g., a building or pole), a natural object (e.g., a tree) or
unknown. Some obviously spurious detections were also deleted during this process (e.g., one
analyst placed a number of spurious detections in the corner of an image; presumably he wanted

to see if we were awake).

Firstly, it was necessary to compare all of the ten analysts’ detections and produce a list
with all repeated detections elided. Of the 7360 detections, there were 3291 unique detections

that were each classified in this way.

9.2.11.2 Measuring screen luminance

So that the analysts results’ were meaningfully comparable, some care was taken that they were
seeing the same thing. All of the analysts used the same machine; the monitor controls were set
and then disabled to prevent changes during the experiment. The windows of the room were
papered over and the lights left on to mitigate variations in lighting. The feature in displaytool

that allows the mapping from image pixels to screen colour to be altered was disabled.

The screen luminance for each possible grey level was measured using a photometer. This
ensures our results are meaningfully comparable with others in the literature. To achieve this,
a full screen for each grey level was displayed and a luminance measurement taken with the
photometer focussed at the centre of the screen. The results of these screen measurements,

which were used in equation 9.1 to calculate the target contrast, can be found in table 9.5.
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r |vet Detections (01)

4f37F  2671,485

Unknown | Installation | Object | pTree | Zap | {crosshair) |

Figure 9.3: A screen shot of the vetting program. The user can categorise the target in the
centre of the abbreviated cross-hair cursor, according to the buttons above the image.



CHAPTER 9. THE EFFECTS OF CLUTTER ON HUMAN TARGET DETECTION PERFORMANCE 199

350

300 m b

250 b

200 b

Count
[

150 b

100 b

50 b

0 1 1 Il 1 1 i
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
Clutter metric

Figure 9.4: A histogram of the value of the Waldman et al. clutter metric centered on each of
the detections made by the observers.

The division of the clutter values into the low, medium and high categories, according to equal
areas under the histogram, is indicated by the dashed lines.

9.2.11.3 Measuring Target Contrast and Clutter

To construct the receiver operator curves the parameters required for each detection are: a
measure of the contrast of the supposed target, a measure of the clutter of the region around

the target and a classification of the detection as target or false alarm.

When the inserted targets were placed in the imagery the extent of the targets was known.
The contrast, which depends on the extent of the target, could therefore be measured without
difficulty. However, for measuring contrast at the detections, which in most cases, did not corre-
spond with an inserted target, the extent of the supposed target was not known. Additionally,

the measures used during insertion included the pixels “underneath” the targets.

These problems resulted in poor correspondence between the post-experiment measure and
the pre-experiment classification for the inserted targets. However, all that was required for
useful insertion of targets was for a sufficient spread of targets across different clutter and
contrast regimes. Therefore, the numbers used during target insertion were abandoned and a

classification based on measurements at detections were used.

A simple method was found to be sufficient for finding the target pixels. A 10 x 10 area,
centred at the detection, was cut out. The brightest point in the area was found and the area
was thresholded relative to the maximum grey-level (with a threshold of 0.9). Then those pixels

remaining, which were contiguous with the brightest point, were deemed to constitute the target.

A histogram of the clutter surrounding each of the detections made by the observers is
depicted in figure 9.4. Figure 9.5 displays a histogram of the target contrast-area product cat

for each of the observers’ detections.

What is required for the ROC is a determination of whether each detection is a target
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Figure 9.5: A histogram of the value of the target contrast-area product ca; for each of the
detections made by the observers. The division of the contrast-area product values into the low,
medium, high and highest categories is indicated by the dashed lines. All the inserted targets fell
into the lower three categories. A fourth category was necessary to account for the pre-existing
objects in the imagery detected by the observers that were much brighter than the range used
for the inserted targets.

or false alarm. For instance, it might be reasonable to treat permanent man-made objects as
either targets or false alarms or to remove them from the analysis altogether. To allow the ROC
analysis to treat these classifications flexibly, a filter was written to provide arbitrary mapping
from the vetting classifications to “target”, “false alarm” or “removed”. In addition, individual
images could be removed and the mapping could be controlled separately for different analysts

to compensate for individual idiosyncrasies. See section 9.2.7 for the treatment used.

The analyst’s detections for images 01 and 02 were discarded from the analysis because the
observers were still rapidly changing in their performance, so these images were deemed to be

part of training.

9.3 Results

The times recorded for each observer to search through all of the test images are given in
table 9.6. This data possibly gives some comparative information on observer performance and
differences in target distributions between images, but this information is too vague to add

anything of value to the study. Therefore table 9.6 is not discussed further.

9.3.1 ROC Analysis

In ROC analysis the area under the curve, A(z), provides a summary of the inherent discrimina-

tion performance obtained for the system of interest. This area can be interpreted as the average
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value of detection probability on the corresponding ROC if the system’s false alarm probability
is selected randomly to be between zero and one. Equivalently, it can be considered as the
average value of false alarm probability on the corresponding ROC if the system’s detection

probability is selected randomly to be between zero and one.

The results obtained for the ROC study are summarised in tables 9.7 and 9.8 which show
the areas under the ROC’s in figure 9.6. The ROC graphs have all been scaled to the same

abscissa to facilitate visual comparison.

Four sets of ROC data were produced. Firstly two sets of analyst’s response data were
generated under different false alarm assumptions. In the first instance, any unknown targets
that were detected by the analysts were recorded as a hit (best false alarm rate), while in the
latter instance, any unknown targets detected were recorded as false alarms (worst false alarm
rate). Then the sets of data were analysed in two ways to produce ROCs, and associated
area under each curve, by using both a parametric (Gaussian) approach, (figure 9.6) and a
non-parametric (with no form assumed for underlying distributions) approach (figure 9.7). As
mentioned in section 9.2.3, in our case the abscissa represents the average false alarm rate per
unit area (km?); i.e. for a given area it represents the average false alarm rate. To convert to
false alarms per unit area at each clutter level, the abscissa may be multiplied by the actual
number of false targets that exist at that clutter level. The number of false targets in each

clutter-contrast regime is depicted in table 9.9.

These analyses were performed on all four contrast and three clutter regimes. The four
categories arise from the division of the range of contrast levels of the detections. Three levels
were necessary to cover the treatment levels of the inserted targets, and an additional level was

used to account for the pre-existing objects in the imagery that were deemed to be targets.

The areas obtained for both the parametric and non-parametric methods were similar, with
a slightly higher estimation for A(z) in the case of the former. This is usually the case since
the non-parametric method fits straight line segments to the ROC graph while the parametric

methods fits a smooth curve.

As expected, in all tables, the values of A(z) increased with increase in target contrast.
Also evident is a decrease in A(z) with increase in clutter level, as determined by the Waldman
et al. clutter metric. This was very apparent for the higher contrast levels. For the lowest
range of contrast used, the A(z) values obtained indicate performance only at chance; i.e. no
discrimination was shown. This is because the lower target contrast level was deliberately chosen

to be just beyond the perceptual range so as to ensure that the range was covered.

An apparent exception to this trend in A(z) with clutter level is shown in the parametric
tables (table 9.8), in the cells for medium and high clutter with contrast level at high. Here, the
trend seems to be reversed, but it should be noticed that values are within the standard errors,
rendering this apparent difference as unlikely. Moreover, perusal of their corresponding plots
shows that the curves for medium clutter cross the curves for high clutter. These are examples
of improper ROC curves (Egan, 1975a). In the standard ROC, the gradient of the curve at a
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Figure 9.6: Parametric ROC curves. From top to bottom the plots are for low, medium, high
and highest contrast. The left column is for best case false alarm rate (FAR); the right column
is for worst case FAR. The legend labels: “low”,“mid” and “high” refer to low medium and high

clutter levels respectively.
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Figure 9.7: Nonparametric ROC curves. From top to bottom the plots are for low, medium,
high and highest contrast. The left column is for best case false alarm rate (FAR); the right
column is for worst case FAR.
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point is equal to the likelihood ratio,

f(els)
f(eln)’

where f(e|s) is the probability density of the evidence (e) for target present (signal), while f(e|n)

lle) =

(9.2)

is the probability density of the evidence for target absent (noise). Therefore, the gradient of
the ROC curve must be monotonically decreasing; i.e. no part of the ROC must ever be concave
upward. However, this behaviour is evident in the curves just mentioned as well as the curves

for the low contrast level. For further discussion see section 9.4.

9.3.2 Analysis of Variance

The aim of the experimental design used in the analysis-of-variance was to gain extra insights
into the purely perceptual aspects of target detection in clutter. To this end, the approach
outlined in section 9.2.4 was carried out, with no differentiation made between the detection of

true or false targets.

The performance measure used for the analysis-of-variance was the probability of detection,
or hit-rate, which is defined in equation (9.3). During the experimental sessions the observer’s
search time was also recorded as a potential performance measure. However, since the hit-
rate varied from above 80% down to approximately 10%, T considered the use of search time
as a measure of target detectability as invalid. The reasons for this are discussed in detail
elsewhere (Woodruff and Newsam, 1994). However, in a nutshell, the search time is valid only

when the variation in the hit-rate is not large.

The following probability of detection measure (hit-rate) was used:
1
Pai = 57 Z Wi; (9.3)
j

where W;; is zero for a miss, and one for a hit, for treatment i and subject j, and N is the

number of subjects.

These data are shown graphically in figure 9.8 and figure 9.9. The former figure depicts the
main effects in the analysis. As can be seen in figure 9.8(b), an increase in target contrast results
in a concomitant increase in hit-rate with a statistical significance greater than the 99.999% level;
i.e. less than a 0.0001% probability that this is purely a chance effect. Furthermore, an increase
in the value of the clutter metric resulted in a concomitant reduction in hit-rate with a statistical
significance at the 99.999% level.

The main effects only clearly indicate the relationship between the dependent and the
independent variables in the absence of interactions. In this case they still provide summary
information, but can hide more subtle effects. The next consideration is of the extent to which
clutter and contrast levels interact. If no interaction exists, then the plot of hit-rate versus

clutter level for each level of contrast, or vice-versa, will produce a family of parallel graphs.

6See figure 3.2 on page 73 in Chapter 3, which represents the assumed underlying probability distributions.
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Figure 9.8: The effects that the independent variables have directly on the hit rate.
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Figure 9.9: The interaction between the independent variables.
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These plots are shown in figure 9.9. As can be seen, the plots are not all parallel, which indicates
an interaction occurred between clutter and contrast levels. This is confirmed by the ANOVA
table which gives a significance level greater than 99.999% for the interaction between these

factors; i.e. there is virtually no chance this is not a real effect.

Scrutiny of figure 9.9(b) reveals that there is little or no interaction at the low and medium
levels of contrast, but there is obvious interaction at higher levels of contrast. At the highest
level of contrast, the gradient of the approximately linear curve is steeper, indicating a stronger
effect of clutter level on target detection, at this level. Interestingly, for a high contrast level,
the curve departs from the linearly decreasing pattern that is exhibited for the other contrast
levels. Here the hit-rate value for the medium clutter level is higher than that for the low level

of clutter, going against the trend.

This interaction of clutter at the medium level with contrast was explored further by ap-
plying a finer scale to this clutter level, producing the levels: medium-low, medium-medium and
medium-high. Figure 9.10 shows a plot of the interaction of medium clutter with contrast. The
pattern shown earlier continues, with hit-rate increasing from medium-low to medium-medium
at high contrast level, though the range has been narrowed to clutter metric values of 0.155~
0.181. The plot for highest contrast and the three medium clutter ranges also shows a decrease

in hit-rate at medium-medium clutter.

As indicated in section 9.2.4, these data were not ideal for analysis-of-variance, and a further
analysis was performed on an optimised subset of the data. The results of this are summarised
in table 9.11, as indicated earlier in this section. This table confirms the results obtained for
the whole data set, showing both the contrast main effect and the clutter-contrast interaction

as highly significant, even with this much smaller subset of data.

9.3.3 ANOVA Tables

A summary of the results for the analysis-of-variance is shown in tables 9.10 and 9.11, which
are in the usual summary form of ANOVA results. Table 9.10 represents the results, using all
the data that was also used for the ROC analysis, while table 9.11 presents the results obtained
by the smaller subset of data optimised for ANOVA and designed to be used as a check on the

results of analysis of the full set.

9.4 Discussion

It was demonstrated that that the degree of background clutter and target contrast had a (sta-
tistically significant) measurable effect on the detection performance of human observers. The
problem is to define metrics to describe these factors quantitatively in a way that correlates
with human performance. In the case of contrast, the Weber contrast metric (9.1) is usually em-
ployed. This however, is defined for simple plain targets, contrasted against plain backgrounds,
and over a large but limited luminance range. In the absence of any obviously better alternative,

however, the ca; product was employed as described earlier in section 9.2.1, with ¢ being the
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Index Power Luminance | Index Power Luminance
(dB) (cd/m?) (dB) (ed/m?)

0 -30.00 2.96 130 2.50 15.06

5 -28.75 3.07 134 3.50 16.01

9 -27.75 3.14 138 4.50 17.07
13 -26.75 3.19 142 5.50 18.26
17 -25.75 3.20 146 6.50 19.49
21 -24.75 3.21 150 7.50 20.74
25 -23.75 3.24 154 8.50 21.93
29 -22.75 3.27 158 9.50 23.25
33 -21.75 3.33 162 10.50 24.83
37 -20.75 3.41 166  11.50 26.18
41 -19.75 3.45 170 12.50 28.08
45 -18.75 3.71 175 13.75 29.52
49 -17.75 3.79 179  14.75 31.46
53 -16.75 3.94 183  15.75 33.16
57 -15.75 4.33 187  16.75 34.76
61 -14.75 4.48 191 17.75 36.68
65 -13.75 4.65 195  18.75 38.52
69 -12.75 5.04 199  19.75 40.44
73 -11.75 5.47 203  20.75 42.49
77 -10.75 5.85 207  21.75 44.43
81  -9.75 6.29 211 22.75 46.63
85  -8.75 6.77 215 23.75 48.47
90  -7.50 7.32 219  24.75 50.93
94  -6.50 7.83 223 25.75 53.01
98  -5.50 8.48 227  26.75 55.41
102 -4.50 9.12 231 27.75 57.62
106 -3.50 9.82 235  28.75 59.98
110  -2.50 10.64 239  29.75 62.48
114  -1.50 11.42 243  30.75 65.20
118  -0.50 12.25 247 31.75 67.46
122 0.50 13.09 251  32.75 70.38
126 1.50 13.98 255 33.75 73.85

Table 9.5: The grey levels, radiometrically corrected received radar power, and measured screen
luminance of the experimental setup. The measurements were recorded with normal operating
conditions with standard office lighting.
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Observer
Image 1 2 3 4 5 6 7 8 9 10 | Total
01 19 40 27 18 31 44 34 50 32 49 | 5:43
02 18 35 26 12 22 41 28 23 17 25 4:08
03 16 38 37 19 25 50 34 24 21 30 | 4:54
04 21 39 21 17 21 55 24 18 14 16 4:07
05 19 34 23 12 17 68 23 16 12 16 | 3:59
06 17 32 33 19 19 45 26 19 18 20 | 4:08
07 26 29 18 13 16 49 21 19 13 15| 3:39
08 13 30 21 11 16 49 21 14 18 11| 3:23
09 12 34 21 14 17 43 29 12 16 14 3:33
10 16 25 14 10 15 29 20 15 15 12 | 2:50
11 16 29 18 10 14 41 20 19 18 11 3:16
12 16 20 18 12 17 37 16 18 17 25 | 3:16
13 14 21 34 11 16 30 21 16 13 17 3:12
14 14 23 13 10 16 37 16 17 13 12 | 2:51
15 18 19 13 8 12 29 16 15 15 18 2:43
16 17 21 17 8 13 35 16 17 13 12 | 2:48
17 19 17 25 15 20 32 13 13 15 19 | 3:07
18 22 28 20 10 17 35 13 22 14 14 3:14
19 13 30 17 11 17 47 15 17 13 21 | 3:21
20 10 20 17 9 16 31 6 17 11 17 | 2:33
21 14 21 16 8 15 16 13 12 17 20 | 2:32
22 16 19 14 7 11 22 11 16 12 15 2:24
23 18 20 16 12 15 35 14 16 17 16 | 2:59
24 19 21 13 10 15 26 13 19 10 17 2:43
25 10 19 17 9 15 28 11 18 10 14 | 2:30
Total | 6:55 11:04 8:28 4:57 7:05 15:53 7:52 744 6:25 7:35 | 83:55

Table 9.6: The rightmost column gives the sum of the times taken by all the observers to search
through each particular image. The bottom row gives the sum of the times taken by each
observer to search through all the images. The time is given in in hours and minutes. Note,
the times in the main body have been rounded to the nearest second, while the total row and
column each give sums of times to the nearest second,then rounded.
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Clutter level

Contrast-Size product

low

medium

high

highest

low

0.5128 £ 0.0098

0.5578 £ 0.0139

0.6716 £ 0.0427*

med

0.5117 £ 0.0097

0.5547 £ 0.0082

0.6352 £ 0.0185*

0.7424 £ 0.0396

high

0.5135 £ 0.0170

0.5410 £ 0.0099

0.5784 +0.0142*

0.7694 £+ 0.0162

(a) Best FAR

Clutter level

Contrast-Size product

low

medium

high

highest

low

0.5156 £ 0.0099

0.5673 £ 0.0129

0.6931 £0.0317*

0.8700 £ 0.5130*

med

0.5117 £ 0.0097

0.5629 £+ 0.0079

0.6751 £0.0162*

0.7781 £+ 0.0310*

high

0.5090 £ 0.0191

0.5602 £+ 0.0099

0.6032 £ 0.0123*

0.7610 £ 0.0157

(b) Worst FAR

Table 9.7: Areas under the ROC curves (non-parametric analysis). A statistically significant
difference (at the 95% level) in area for different clutter ranges with the same contrast range is
denoted by an asterisk. The significance in difference in area was determined by the method of
Hanley & Mcneil, 1982, which is equivalent to the Wilcoxon test.

Clutter level

Contrast-Size product

low

medium

high

highest

low

0.5533 £ 0.0351

0.6408 £ 0.0908

0.7218 £ 0.1076

med

0.5345 £ 0.0369

0.5453 £ 0.0641

0.5460 £ 0.0726

0.7525 £ 0.0565

high

0.5135 £ 0.1262

0.5313 £ 0.0857

0.5858 £ 0.0785

0.7730 £ 0.0471

(a) Best FAR

Contrast-Size product

Clutter level low medium high highest
low 0.5684 £ 0.0331 | 0.6194 £+ 0.0748 | 0.8362 £+ 0.1172 | 0.8750 + 0.0953
med 0.5096 £ 0.0377 | 0.5957 £ 0.0415 | 0.6750 + 0.0488 | 0.8102 + 0.0342
high 0.4935 £ 0.0737 | 0.5313 £ 0.0857 | 0.7060 £ 0.0360 | 0.7730 + 0.0471

(b) Worst FAR

Table 9.8: Areas under the ROC curves (Gaussian analysis).
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Contrast-Size product

Clutter level | low | medium | high | highest
low 1400 540 30 -
medium 1670 1650 230 40
high 510 1100 430 160

(a) Best FAR

Contrast-Size product

Clutter level | low | medium | high | highest
low 2230 820 70 20
medium 2440 2940 470 60
high 850 2580 1290 300

(b) Worst FAR

Table 9.9: Numbers of false targets in each of the clutter and contrast regimes.

‘ Summary of all Effects for ANOVA ‘

Effect Degrees of Freedom | Mean Square | F' Ratio | p-level
(df (MS)
clutter 2 0.7329 22.9924 | 0.00001
contrast 3 5.8903 184.7874 | 0.00001
interaction 6 0.1864 5.8471 | 0.00001
error 3290 0.0319 - -

Table 9.10: ANOVA table for all the data.

‘ Summary of all Effects for ANOVA ‘

Effect Degrees of Freedom | Mean Square | F' Ratio | p-level
(df (MS)
clutter 2 0.4533 5.6117 | 0.0048
contrast 3 1.7781 22.0146 | 0.00001
interaction 6 0.1799 2.2276 0.0458
error 108 0.0808 - -

Table 9.11: ANOVA table for subset of the data with equal number of samples in each cell.
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Weber contrast. Clutter, on the other hand, is a more complicated concept, and depends on
target characteristics; 7.e. what is clutter to one target is not to another. There exist many
clutter metrics in the literature. However, as indicated in section 9.2.9.3, I chose the clutter
metric of Waldman et al., which showed promise during pilot studies with SAR imagery. The
already large and complex experiment did not allow further clutter metrics to be explored in
detail.

The results from the ROC and the ANOVA analyses showed that the contrast and clutter
metrics used did indeed agree well with human performance as measured by the probability of
detection. The metrics used have proven capable of describing the imagery in a quantitative
way that allows the discrimination of certain salient image properties that apparently are also

used by the human visual system.

It was learnt from the ROC analysis that the subjects were capable of a high degree of target
discrimination under some circumstances. However, as expected, their performance, was very
dependent on the target contrast and background clutter conditions, with the contrast being
the dominant factor. As discussed earlier, the problem is that we do not have ground truth
information, or enough information on the distribution of real target contrast levels, to relate
our study to an operational setting. The levels of contrast required for good analyst performance
were shown in this study to be quite high. However, this means little with respect to predictions
of analyst performance in the operational setting in the absence of a typical contrast distribution
in this context. This does, nevertheless, give some insight into human visual performance on

target detection in clutter.

In regard to human visual performance, I discovered an interesting and unexpected phe-
nomenon, as discussed in section 9.3. In general, analyst performance decreased with increase in
clutter level. However, at the high contrast range, performance improved with targets embedded
in high clutter backgrounds compared with targets in low background regions. This effect was
shown to be highly significant in a statistical sense, but for this to be a real effect the clutter
metric used must have behaved analogously to the human visual system. From the analyst’s
point of view, the apparent clutter at the point where performance improved must have been
lower than that measured by the clutter metric used. This phenomenon requires further anal-
ysis and is beyond the scope of this study. I believe that this phenomenon may be due to the
discrepancy between the assumed target size of 5 x 5 pixels and the actual size, which does vary

around this ideal.

As discussed in section 9.3, for the ROC to be proper, the analyst must behave as a
maximum likelihood observer. With the effect described in the last paragraph, however, this
criterion would not have been met in all situations. The observer is in effect setting the value of
the likelihood function (9.2) based on the evidence available when determining whether a target
exists in the image at a particular location. This evidence is really based on a subjective metric
set up in the perceptual space in the observer’s mind. However, it is also based on the physical
evidence for a target in the image itself, which includes its clutter characteristics. Therefore,
if the clutter metric was measuring a value for clutter that is inappropriate for the human

observer, then in the context of the ROC analysis, this would appear as an irrational decision
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rule on the part of the observer at this point. This would result in an improper ROC. As has
already been observed, this appears to be the case. It is most evident in the parametric ROC
curves at the high contrast level, as would be expected. The non-parametric analysis seems to
be more robust to departures by the subject from the performance expected from a maximum

likelihood observer.

Notwithstanding this possibility, it seems more likely that the improper ROC curves derived
from the parametric analysis at the lower contrast levels occurred for other reasons. At these lev-
els of contrast, the observer performance was only at about chance level. That is, the probability
distributions underlying the ROC curves are best described as Bernoulli distributions (Egan,
1975b). However, the parametric method inappropriately fits a binormal distribution (via a
maximum likelihood fit) to the data. This, I conjecture, is the cause of these poorly fitted
curves. This situation was probably exacerbated by the unequal counts in each rating category
for detections versus those for false alarms.

9.5 Conclusions

This study has shown how difficult it is to set up an experiment to reach a good compromise
between internal and external validity considerations; i.e. to reach a usable tradeoff between
laboratory control and real world applicability. Some problems here resulted in non-optimal
data sets, which caused some ROC curve fitting problems, particularly for the parametric curve
fitting algorithm. Both the non-parametric and parametric methods agreed well in all cases
when proper ROCs were obtained. This indicates that in complex experimental regimes, as

used here, the non-parametric approach is the more robust.

The experimental data indicate that SAR image analysts performed well only with relatively
high contrast targets in the context of clutter, and at this level they obtained a 76% to 87%
chance of a correct decision at highest typical target contrasts. The analysts’ performance
depended on the clutter level, as measured by the Waldman et al. clutter metric. This metric
has been demonstrated to correlate well with human perception of clutter, as observed in SAR
imagery, in a rigorous way. This also adds weight to the findings on the “localness” of clutter

as determined in the experiment described in Chapter 7.

Due to the lack of appropriate data, the relationship between the contrast distribution of
real targets of interest and that of our experimental regime has not been investigated here. In
addition to the results presented here, this crucial piece of information is needed in order to
relate this study to the performance of image analysts using a SAR system in an operational

context.
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Chapter 10

Conclusion and Summary

The aim of this thesis was to consolidate and comment on the image measure literatures, to
find, through experiment, the salient properties of electronically displayed real world complex
imagery that influence human performance in well specified visual tasks (of real relevance), and
from the data collected consider the most effective application of image measures to this imagery

for the prediction of human performance.

10.1 Summary of Results.

An introduction to certain aspects of image quality measures was provided. Image quality was
defined in the context of this thesis and clutter metrics were related into this concept. A very

brief and basic introduction to the human visual system was given with some basic models.

10.1.1 Image Measures

An analysis was given of image measures which were classified according to those features they
were designed to quantify. The relevant literature was reviewed and image measures were cat-
egorised according to their underlying principles and the intended mode of application. They
were also classified according to the spatial extent of application; i.e. as local or global mea-
sures, and some measures, such as edge measures, were found to be intrinsically local in nature.
These measures were also classified as either similarity (fidelity) or interpretability (intelligibil-
ity) measures. Clutter measures were regarded as a form of the latter. It was noted that these

classification schemes were mutually inclusive.

The analysis of the image quality measure literature found a natural classification of image
metrics according to the image features they are attempting to quantify. Five basic classes of

image measures emerged. They are listed here and were discussed in detail in Chapter 2.

(i) LP norm type measures, of which the most common is the mean square error [L?] (MSE);

(ii) Modulation transfer function (MTF') type measures. These are commonly used in assessing

imaging systems, but can be used in assessing images directly;
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(iii) Information measures;
(iv) Decision theoretic measures;

(v) Signal detection measures.

The above listed measures are usually applied in a global sense, but could be applied with
local support; i.e. calculated over a localised area of the image. The definition of “local”, in the
application of image measures, was explored experimentally in Chapter 7, and is summarised
later in this section. There exist another two classes of measures, which are usually applied
to local features. These are “edge quality measures” and “texture measures”, where texture
measures are frequently in the class of the entropy based measures; i.e. they are often an

information measure.

In the area of image analysis, there appeared to be two main avenues of attack on the

application of measures to images.

(i) a statistical or feature based approach and

(ii) a syntactic (or structural) approach.

The literature on image quality measures is pervaded with the former type of measures, but
very little if any has been done, using the latter approach, in this context. This is developed in

the section 10.2 on further work in this chapter.

The term “clutter” was introduced and is used as a general term to describe spatial and,
sometimes, spatiotemporal variations in imagery which reduce the availability of target infor-
mation to a specific sensor. Although other researchers in the area of clutter are interested in

man-made electro-optical sensors, this thesis was concerned with the HVS as the sensor.

The image quality measure and clutter measure literatures appear as largely distinct.However,
this thesis argues that clutter measures are in fact not different to the image measures, except
they include a meta metric to characterise target as distinct from background; i.e. the clutter
metric has explicitly built into it the concept of distinguishing target from non-target (back-
ground). It was shown that clutter metrics are in fact a form of interpretability or intelligibility

metric, as found in the image quality literature, except for the extra condition just discussed.

10.1.2 Image Similarity

A study was described which investigated how humans related to the same scene information
presented both as infra-red (IR) imagery and optical imagery. As this was my first psychovisual
experiment, I investigated the applicability of a subjective methodology for producing an interval
scale as a metric of image similarity, and applied some basic image quality metrics to get a feel

for their application.

From this experiment it was apparent that the content of the image scenes was important

in how an image was perceived. It has been indicated that relationships of the regions within the
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scene were very important, as was seen with the regions of shadow and sunlight. These relation-
ships could not be measured by means of global statistical measures alone. It became apparent
that, to capture the complexity of the images, measures of local (region-based) image properties
are required and to “measure” the relationships between image objects, syntactic! (Gonzalez
and Wintz, 1987a) types of measure were probably required. The latter type of measure is be-
yond the scope of this thesis. However, a proposed system for image quality assessment, which

uses this type of measure, is discussed later in this chapter in the context of further work.

This study convinced me that further experiments should be based on well defined visual
tasks, such as detection or recognition, in order to determine directly the effects of image prop-
erties on performance; i.e. to determine the image quality in terms of wtility rather than in terms

of nebulous qualities such as aesthetics.

10.1.3 Still Image Compression

With the greater integration of computers and telecommunications, and with their increasing
demands on digital storage and transmission systems, image compression is becoming increas-
ingly important. In many cases the overriding concern is the quality of the reconstructed image.
Therefore there is a need to answer the question of how much compression can be achieved (what
is the minimum image quality required) to achieve a certain task, in the context of constraints
upon image storage and/or transmission. Consequently, when considering an imaging system
for a well defined visual task, such as surveillance, it is important to first assess to what extent

the compression module is likely to affect user performance on the given tasks.

To this end, my next psychophysical experiment was based on a very well controlled, though
applicable, visual task using a variety of potential performance measures. The aims of this
experiment included that of analysing human visual performance under a well defined visual
task, with imagery that has undergone degradation. Image compression was chosen as the
means of degradation because it can be precisely controlled and image compression has practical

application.

Two methods of static image compression — JPEG and a fractal-based method — were
compared in terms of the detectability of simple targets following compression and decompression
of the images containing such targets. Targets consisted of rectangles of various sizes and
contrasts, which were embedded in images of natural terrain. Using compression ratios of from
zero to thirty five, it was found that the loss in detectability of targets in images compressed using
the fractal technique was significantly greater than the loss for the JPEG-compressed images.
In contrast to this finding, at the time of the experiment, fractal compression was generally
considered to be superior to other methods in the achievement of higher compression ratios. It
was found that, for compression ratios < 10, there is no significant difference in performance
between the compression schemes, as overall visual performance at these compression levels is
little degraded.

!That is structural and relational aspects of the objects within the image scene itself.
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The results from a reliability analysis showed that the experimental technique used was
highly reliable, particularly when group rather than individual data was used. The same basic
techniques were then applied with confidence in later experiments. The “hit-rate”, or probability
of detection, was found to be more robust, though less sensitive, than response time as a measure

of performance.

10.1.4 Video Compression

A study on the effects of video compression on visual tasks was performed. The work described
in the last sub-section studied the effect of still image compression on target detection. This work
continued in a similar vein, with an examination of the effects of video compression on target
recognition. A set of video compression experiments was performed which required observers
to recognise ships in randomly presented video sequences. The sequences had controlled levels
of contrast and multiplicative noise, and were compressed and de-compressed at a variety of

compression levels using MPEG-2 encoding under standard settings.

The data demonstrated a clear effect of video compression on observer performance in
target recognition. However, this effect was not large enough to cause serious misclassification
of targets and was largely due to the degradation caused at the maximum video compression
(2.0 Mbps). The degradation caused by compression did increase the time required for target
recognition, particularly at the highest compression level. In a real world setting, depending on

the application, this may introduce an intolerable degradation in observer performance.

This experiment highlighted some aspects of individual differences in perception, at this
slightly higher (than detection) task level. It became clear that similarity or otherwise of targets
was very subjective. This information was mainly gleaned from the post experimental debriefing
of the observers, but it was also evident in the data. Despite this, from both anecdotal and
statistical evidence, all observers found one class of target the hardest to discriminate from each
of the other targets. This suggested that the features of this target overlapped with the features
of the other three classes of target in perceptual space. Further exploration of this would require

techniques such as Multi-Dimensional Scaling (Evans and Attaya, 1978).

There was a significant learning effect discovered, even after the initial training sessions.
In other words, the observer’s performance kept improving with practice. This meant that the
HVS was learning the distortions introduced by compression and either compensating for them
or modifying the internal model of the target. This has serious implications for the training of
personnel using systems which require compressed imagery, as it shows that operator efficiency

can be greatly improved by training in performing surveillance type tasks.

The upper limit for MPEG-2 compression obtainable was at 2.0 Mbps (approximately 80:1)
and this was the level accounting for most of the degradation. A new standard for low bit rate
video compression called MPEG-4 (ISO/IEC, 1998) has just emerged. This standard allows
much lower bit rates to be obtained, and has been designed for many applications, including
surveillance systems. When software and/or hardware to enable MPEG-4 encoding is available,

further similar experiments need to be performed to evaluate this new standard, in a visual
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task mode, since unlike MPEG-1 and MPEG-2, it is most likely to be used in this way; i.e. for

surveillance, remote medicine etc.

Some of the sequences produced were extremely degraded after compression and had added
noise and contrast reduction (prior to compression), so that individual still frames were quite
difficult, if not impossible, to interpret on their own. This suggested that the temporal process-
ing of the human visual system is a powerful aid in detection and recognition, and is further

motivation for pursuing this research.

Implications for Task Related Video Quality Metrics

This work has some general implications for video quality metrics, with particular reference to
video compression. Firstly the temporal dimension has to be considered. Even though this
aspect of the work was only indicative here, it was clear that temporal processing in the HVS
made a significant difference in the ability of observers to classify targets. Therefore, any video
quality or utility metric must be applied over several video frames, and be applied both spatially
and temporally. The number of frames that need to be “sampled”, and the relative weighting
of spatial and temporal properties to be included in a metric, probably depends on the visual

task and application, and are important subjects for further research.

In considering a metric which will predict human performance, cognisance has to be taken
of the learning effect demonstrated here. Since vastly different performances can be achieved
for the same video stimuli at different points in the learning curve, an appropriate metric must
allow both for the type of visual task and the level of observer experience. This may mean that
basic metrics work under a “meta” metric. (See section 10.2 in this chapter, which discusses

such a system.)

This study has shown that, when dealing with higher level visual tasks such as target clas-
sification and recognition, as compared with simple detection, individual variability is greater.
Though this is not unexpected, it was interesting here how each individual observer rated the
similarity between the test targets. Depending on the particular “quality” being measured, the
subjective variability in the perception of similarity may impact on the design and application
of the quality metric. As an example, consider a metric which is required to produce a classi-
fiability index of various video sequences. This metric would produce this index by measuring
appropriate physical video image characteristics and applying a suitable mathematical construct
to map the target’s features into a space, analogous to the human perceptual space, in which
the targets are separated. However, there appears to be some variability in how humans map

the target features into perceptual space and these need to be considered in the metric design.

Possible Future Directions.

The type and amount of information required for various visual tasks itself varies. Therefore, it
makes sense to consider optimising the compression scheme for specific tasks or classes of task

(i.e. to produce the minimum information needed for a specified level of task performance). In
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the case of JPEG and MPEG, this may be achieved by adapting the entropy coding and/or the
quantisation tables in the standards; existing implementations usually come with default tables

which have been optimised for viewing natural scenery.

Other authors (Lohscheller, 1984; Watson, 1993) have considered this aspect to some ex-
tent by optimising the JPEG quantisation matrix for specific images. They do this by varying
separately each of the discrete cosine transform basis functions to determine when a subjective
just-noticeable-difference is obtained. This seems to minimise the apparent compression arte-
facts. The main interest of those authors, however, was in aesthetic image quality, which often

has little relation to image quality in a task-oriented sense.

One useful avenue for development would be to consider adjusting the JPEG quantisation
tables in a systematic way in order to ascertain the effect on well-defined visual tasks such as
target detection. A similar approach has been proposed in medical imaging (Kostas et al., 1993),
but the quantisation adjustment was not well defined in this small study. If this approach turns
out to be useful with JPEG it could also be applied to MPEG, including MPEG-4, but with
some qualifications. Firstly, the extra temporal dimension and the use the human visual system
makes of it, will come into play; this may for instance, require different quantisation tables
from those used for still images. Secondly, there are more free parameters to be considered
and optimised in the MPEG protocols, such as the effects of varying the motion compensation

regime.

10.1.5 Localisation of Clutter

In theory, properties of clutter can be defined globally or locally. However, in the literature,
the distinction between local and global clutter is arbitrary. If the image contains different
clutter types, global clutter metrics may be inappropriate and are expensive to compute. In the
literature, the standard approach of setting the local domain of the clutter metric to twice the
expected target size is adopted without any justification. However, it was found that the size
of the local clutter region around a target has a strong effect on the probability of detection of
that target, and that this was affected by regions much larger than twice the target size. It was
also discovered that this effect was much stronger for targets subtending less than 0.8 degrees
of visual angle than for larger targets. In the case of the former, the fall-off in human visual
performance with clutter region size was approximately quadratic compared to a slight linear
fall-off for larger targets.

A model was presented explaining these phenomena, indicating that the auto-covariance
function characterising the clutter is the main determinant of the size of the region of local

clutter, but is reduced for larger targets.

Further Work

The research reported here did not elucidate the detailed stimulus interactions across multiple

receptive fields and further work needs to be done to clarify the mechanisms involved.
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This study considered only a narrow class of clutter and simple target type. Alhough more
work needs to be done, even for this situation, in order to fully understand the mechanisms
involved, other clutter and target scenarios need to be considered in order to arrive at appropriate

clutter measures for practical application.

10.1.6 A New Image Metric (GEM)

This work was aimed at producing an image metric capable of measuring the effects of image
processing parameters on the clinical value of Single Photon Emission Computed Tomography
(SPECT) images, which are used in the Nuclear Medicine departments of hospitals. The overall
long-term aim was to develop an automatic system for optimal image filter parameter adjust-

ment.

A measure, called the gradient energy measure (GEM), for quantifying the effect of filtering
on SPECT images, was developed and evaluated. This proved to be a reliable measure of image
smoothing and noise level, which, in preliminary studies, agreed with human perception. Both
the Laplacian and Sobel versions worked well, though the former correlated slightly better with
subjective data. The Sobel filter was more insensitive to noise, which may make it more suitable
in some situations. The fact that the GEM correlated well with subjective ratings means that
it could possibly be used as a stand-alone measure, though this is not necessary for its intended

use in optimising SPECT image quality using full-blown subjective experiments.

Further Work

There is a model of HVS function that appears to be modelled to a first order by the GEM.
This model is known as the “energy integrator” model (Green and Swets, 1966¢; Moulden et al.,
1990). More work needs to be done to determine if this is an adequate model, and this may be

an interesting area for further research.

This measure was designed to be used in conjunction with subjective analysis of SPECT
images in order to find the optimum filter parameters in terms of clinical image quality. This will
require a large subjective study in order to to ascertain the optimum set of processing parameters
and to calibrate the GEM. It is recommended that the receiver operating characteristic (ROC)
method is the most appropriate, as trade-offs between hit-rate and false-alarm-rate are important
in the clinical setting, though some insight, with less subjective data, could be obtained from

using an analysis-of-variance (ANOVA).

10.1.7 Human Target Detection Performance in Clutter

The effect of clutter, in Synthetic Aperture Radar (SAR) derived images, on the performance of
human image analysts in the surveillance context, was determined in terms of the analyst’s re-
ceiver operating characteristic (ROC). The experiment was designed to correspond as closely as

possible to the expected real world operational mode of analysts using similar imagery. In par-
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ticular, the effects of target contrast and background clutter on human analyst target detection

performance were quantified.

This study has shown how difficult it is to set up an experiment to reach a good compromise
between internal and external validity considerations; i.e. to reach a usable tradeoff between
laboratory control and real world applicability. Some problems here resulted in non-optimal
data sets, which caused some ROC curve fitting problems, particularly for the parametric curve
fitting algorithm. Both the non-parametric and parametric methods agreed well in all cases
when proper ROCs were obtained. This indicates that, in the complex experimental regimes

used here, the non-parametric approach is the more robust.

The experimental data indicated that SAR image analysts performed well only with rela-
tively high contrast targets in the context of clutter, but at this level they performed quite well;
e.g., they performed with a 76% to 87% chance of a correct decision at highest typical target
contrasts. The analysts’ performance was dependent on the clutter level as measured by the
Waldman et al. clutter metric. This metric has been demonstrated in a rigorous way to correlate
well with human perception of clutter, as observed in SAR imagery. This was not applied in
the usual way of setting its region of support to twice the expected target size. Based upon the

work described in Chapter 7, the local area was defined to be about 3° around the target.

Further Work

Further work needs to be done to test various clutter metric types on imagery from different
sensors. A controlled study should be done using these metrics with the conventional setup,
i.e. with the local region set to twice the target size, and comparing the ability to predict
human performance with the metrics that have the local region extended as determined in this
thesis.

10.2 Longer Term Further Work

Further work that needs to be done in the context of the actual studies performed for this thesis
has been articulated in the previous section. This section goes on to propose some additional
work. Although based on the research as described in this thesis, this future work is more

visionary in nature and will require considerable effort and time to fulfil.

The research that has been done in the area of image quality measurement is very multidis-
ciplinary in nature. Not only has this work been published in the journals of diverse disciplines,
but performing the research also requires knowledge across a broad range of disciplines and
sub-disciplines; e.g., pure and applied mathematics, statistics, physics, engineering, computer
sciences (including AT), psychophysics, psychology and physiology. Therefore, the problem of im-
age quality evaluation is very daunting indeed, not only because of its multidisciplinary nature,
but because image quality is a ubiquitous concept in any domain requiring human interpretation

of images, which makes a general definition of image quality an elusive goal.
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To recapitulate the discussion in the introductory chapter, there was little effort in image
quality research until the mid 1970’s. This effort waned by the end of that decade, and remained
at a low level until the mid eighties. There was then a short spurt of activity, followed by
further decay to a low level. Due to developments in image compression and communications
technologies, there has been renewed interest in image quality measures in recent years. However,
there has been only limited success, and in many studies, the quality figure-of-merit used does
not correlate well with the subjective evaluation of image quality. Two major reasons for this

are:

(i) No allowance in the quality model for the response of the human visual system (or a lack
of understanding of the HVS);

(ii) Ignorance of the purpose for which the human observer is using the image(s).

With respect to item (ii), it is known that subjective judgements of image quality depend on the
purpose of the image. It may be expected, therefore, that the relative importance of the various
physical image parameters in determining subjective assessment of image quality should depend
on the task in which the image is used. Further, one may expect that the combination of physical

image parameters that are optimal for an applied task, will depend on the task considered.

These matters make it questionable as to whether image quality can be expressed in a single
general measure. Thus, most authors have attempted to define a measure of some aspect or
aspects of image quality, quite often in the context of some specific tasks. However, there have
been some attempts to quantify image quality in a single measure or metric, and these have met

with limited success (as discussed in Part I of this thesis).

These attempts to develop image quality measures have been ad hoc, applying measures to
address specific aspects. There has not been any attempt, as was the aim of this thesis, to develop
a systematic approach to measuring image quality by applying a suite of measures appropriate
to the situation. Notably absent in the image quality literature is any mention of syntactic
based measures® rather than purely statistically based measures. Part of the motivation for
using these measures comes from the experience gained from the experiments in Part II of this

thesis.

10.2.1 A System for Image Quality Estimation

From these experiments, it is apparent that the content of the image scene is important in how
the image is perceived. Relationships of the regions within the scene are very important. These

relationships could not be measured by statistical means alone.

Therefore, a system is proposed, which includes the various types of information needed
to predict the quality (utility) of an image for human use. Figure 10.1 shows the proposed
functional block diagram of a system to perform image quality evaluations. This system is

complex, and it would be impractical to attempt to develop all the system requirements in the

*measures concerned with the spatial relationship of objects within images.



CHAPTER 10. CONCLUSION AND SUMMARY 222

short to medium term. The main problem area is the syntactic analysis, with the requirement
for automatic image segmentation and object recognition, which is an entire research field in
itself. A system, with a less ambitious design, and which requires a human to perform the image
segmentation, is presented later. However, the fully automatic system would be suitable as a
long term research goal for a team of researchers.
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Figure 10.1: Ideal System for Image Quality Evaluation.

System Components

A basic description of the system components is as follows:

¢ HVS model: Simple HVS models were discussed in section 1.2.3 in Chapter 1. Here,
the raw image data is operated on by the HVS model to emphasise and de-emphasise

appropriately the raw image data to conform to human perception.

e Object extraction: Here, the image is broken up into its constituent objects. The objects
themselves can be characterised by their features. These features can be statistical or
structural in character. This is the most difficult task within the system and requires image

segmentation, object detection, object recognition and feature selection and extraction. All



CHAPTER 10. CONCLUSION AND SUMMARY 223

these areas have not been achieved successfully in practical systems and are under intense

research worldwide.

e Syntactic analysis: In the syntactic approach to image analysis the image is decomposed
into simpler sub-images. By recursively continuing the process, the image is finally broken
up into a set of primitives. Objects in the image are represented by these primitives and
the relationships between them. These primitives are represented by a set of symbols and

their relationships described by a syntaz, such as connectivity rules.

e Object-based image measures: These are measures based on the syntactic analysis of
the image. The spatial and contextual relationships between the images are considered in
order to define measures on the image which relate to human perception and evaluation

of the image.

e Statistical image measures: These are measures which are evaluated at the pixel level.
All image quality measures in the literature seem to be of this type. Some of these measures
already have a model of the HVS built into them.

e Human decision model: In order to simulate the human decision process a model, based

on psychovisual experiments is required, to process the low-level image input data.

e A priori knowledge: This includes contextual and other knowledge that an experienced

observer would have about objects in scenes.

e Task objectives: This is another part of the knowledge base, but could include interactive
input. Specific knowledge, about the type of objects and particular contexts, would be

included here.

In this system the subset of measures used for a specific task would be automatically selected

from the set of measures implemented.

10.2.2 A Realisable System

To reduce the complexity in the development of the system to a realistic level, the following

modifications will be made (see figure 10.2):

e The object extraction will be performed interactively by a human operator;

o A relatively small set of image measures will be selected and then be fixed;

The human decision model will be implemented by a neural network (NN), and will probably
be trained using back-propagation. The training input will consist of subjective ratings and/or
measures of human task performance, such as response latency or results of Receiver Operating
Characteristic (ROC) analysis.
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Figure 10.2: Realisable System for Image Quality Evaluation.

Anticipated Use of the System

An image, say a synthesised scene, will be input to the system. Following this, a set of global

statistical measures will be performed on the image.

With the aid of (say) a mouse, the operator will then interactively segment the image,
defining objects of interest semantically. Using this new data, the system will perform a syn-
tactic analysis and compute measures, including statistical measures on selected objects and/or
features. The system will then interact with the operator about the specific tasks for which the

image will be used. An output in terms of a quantitative scale will be presented, along with a

qualitative description of the reasons for the image quality rating on this scale.
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Appendix A

Radiometric & Photometric
Quantities.

Radiometry and photometry are concerned with describing the origination and transfer of elec-
tromagnetic (EM) energy from the scene to a sensor system. There is a one-to-one correspon-
dence between radiometric and photometric quantities, but the latter evaluates the effectiveness

of EM radiation in stimulating the human eye.

Figure A.1 shows a sphere of 1 metre (m) radius. The area (A) of the sphere = 47 R?; at

R = 1m, A = 4nm? By definition, a sphere subtends a solid angle of 47 steradians (sr).

Therefore, the area on the surface of the 1m sphere, covered by the intersection of the solid
4

angle of 1 steradian = 3~ m? = 1m?2.

unit solid angle (steradian)

Figure A.1: The cone of unit solid angle, subtends an area of 1 m? at the surface of a 1 metre
sphere.
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Photometry

Photometry, as distinct from radiometry, allows for the spectral sensitivities of the human visual
system; ¢.e. it considers light that is visible to the human eye. For light, a point source has an
intensity of 1 candela (600,000 int candles), if at a distance of 1m from the source, the amount of
flux through an area of 1 m? = 1 lumen. The flux (f) through the solid angle () is 6 = [, Idw.

The luminous intensity, I = %, where I has of units watts/steradian (W /sr).

Luminance

Equivalent to spectral radiance in radiometric units. Units = candelas/m? or W /st m?.

Transmittance

T= Z;—; where: ¢; = transmitted flux and ¢; = incident flux.

Reflectance

R= ﬁ—f where: ¢ = reflected flux. Note: Only for Lambertian reflectors.

Optical density

dy =log1/T = —logT (transmitted light)
d, = —log R ( reflected light)

INluminance (E)

Icos@
E = “RZ ;

i.e. with 1 candela intensity source, the illumination at 1m over an area of 1m? (by 1 lumen of

flux) at normal incidence.

Radiometry

(VA),

D (N) the spectral radiant fluz, total flux

o, = /@e(k)d)\, watts. (A.1)
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spectral Radiant Flux

1(n) = %) (A.2)

dw,

Unit = W/sr. For an isotropic source ¢(A\) = 4nl.(\) and for an extended source area dA, the

emittance M, (\) = %f({\). Allow for viewing angle and intensity of dA.

Spectral Radiance (L.()))

dl.(\) _ d*¢e(N)
cosf.dA  cos p.dAdw,’

L)) = (A.3)

If the emitter is Lambertian, then Lo(\) = 1/7M.(\) W /st m?.

Spectral Irradiance (FE.()\))

The flux falling on an external surface is given by E.(\).

area
R2

Solid angle =

cosAdA
R2

cos 0.dA,
dw,

cos 0,.dA,

dw,

= dw =

= R?> =

from A.2

cos OcdAcIo(N)
dee(N)

cos 0,.dA, I.(\)
dge(N)

cos 6, 1.()\)

Ee(X)

R? =
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Confusion Matrices
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In order to determine any measure of classifiability, it is necessary to assess the accuracy of the

classification procedure. This will allow a degree of confidence to be given to those results.

A confusion matriz, as shown in table B.1, indicates the number of pixels classified incor-

rectly; i.e. indicates to which class the pixels are classified and shows erroneous results. It is

Test Ao
image As
Ay

As

total

% Omission

Reference classes

Ay Ay A3 Ay As | Total | % Correct | % Commission
35 2 0 3 0 40 88 12
1 42 6 0 3 52 81 19
2 0 16 0 6 24 67 33
5 12 4 112 0 133 84 16
0 0 2 3 96 101 95 5
43 56 28 118 105 350
19 25 43 5 8

Table B.1: A Confusion Matrix for Five Classes.

common to average the percentage of correct classifications as a measure of the overall classifica-

tion accuracy van der Lubbe (1984a) In this case it is 83%. However, a more appropriate measure

may be to weight the % correct classifications in each class according to areas represented on

the ground-truth map (or some a priori probabilities).

Let the confusion matrix consist of elements a;; which represent the number of pixels of class

Aj; that have been classified as class A;. Three types of (mis)classification may be distinguished:-

(i) Correctly classified pixels, which are found along the diagonal of the confusion matrix and

are denoted by a;;

(i) The pixels that have erroneously been excluded from the ;' class (omissions). For the

reference class A; this is

S

i,i#]
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(iii) The pixels that have been assigned to the wrong class (commissions). For m class A; of

the test image that is:-
>
Jii#j

Clearly, in the case of perfect classification, the confusion matrix is non-zero only on the principal

diagonal.
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Appendix C

Pre-Experiment Statistical Analysis
for ANOVA

In this appendix we present the steps that are necessary to determine the number of observations
required to guarantee a specified level of significance and power of the statistical test used in
the experimental design. In our experiment the means for the various treatments (determined
by particular combinations of parameter values) are compared to decide whether they are sig-
nificantly different statistically. For testing the equality of two means (o and p1), the null and
alternative hypotheses are Hy : u1 = po and Hy, : 1 # g, respectively, while the two types of

decision errors that can be made in hypothesis testing are:

Type I error Rejection of the null hypothesis when it is in fact true. The probability of making

this error is usually denoted by the symbol «.

Type II error Acceptance of the null hypothesis when it is in fact false. The probability of

making this error when a specific alternative is true is usually denoted by the symbol 3.

Making a type I error results in accepting the alternative hypothesis when it is false and
thus making inflated claims, while making a type II error will lead to reporting no significant
results when in fact they exist. A conservative approach is to make the probability, «, of a type
I error smaller than the probability, 3, of a type II error. The power of the experiment is defined
as 1 — 3; e.g., if f= 0.1, then power is 0.9, and this means that if there is an effect, it will be
detected 90% of the time.

Effect Size An important consideration is the effect size that is required to be detected. The
effect size is the degree of change in response produced by a change in the level of a factor.
This can be specified in the same units as the factor, and is designated by d; e.g., in a sound
level discrimination test, this could be measured in dB. It is often advantageous to have a
dimensionless measure of effect size. In the case of testing the effects of two treatments this is

usually defined by a parameter d, viz.:

g = Ima=mel (C.1)

g
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where m, and my are the mean responses for the two factor levels, § = |m, — my|, o is the
standard deviation of the responses (assumed equal for both levels) and is in the same units as
my and myp. Thus d can be thought of as a measure of the distance between or the amount
of overlap in the two response distributions. This parameter is employed in ¢-test tables for

comparing the means of two sample sets.

When more than two sample means (say k) are compared as in an ANOVA, d can no longer
be used (except to give an upper estimation of sample size, see below), so another measure of
effect size is defined;

j=m (C2)

where o, is the standard deviation of the response means and o is the common standard
deviation as before. This parameter is the effect size index tabulated in F-test tables. Further
information is needed to specify f; since there are more than two means, their relative positions
on the f line (f — [0,00)) can be distributed in various patterns. This pattern must also be
specified. Here it is assumed that the k means are distributed evenly over the range of the

responses. Then f is defined (in terms of d) as:

d E+1

f= 2\ 301 (C.3)

Typical vales for the parameters are as follows: a = 0.05, which means that the significance
level is set at 95%; and 3 = 0.1, that is, the power is 90%; and finally the estimation error is set
at § = 0.2502.

To get an initial estimate of the number of observations required (IV), we use the expression
N =2(Zoa+Z3)" = (C.4)

where Z, is the 200a% point of the standard normal distribution and is Zg the 2003% point of
the standard normal distribution. The number of degrees of freedom (df) are then calculated,
df = 2N — 2, and N recalculated by using the Student’s ¢-distribution.

The following table indicates the number of samples or observations required per treatment
for different values of the sensitivity index and experimental power. These values are for com-
paring two means only and form an upper limit on the number of observations required per
treatment when comparing more than two means; i.e. when the number of means is greater
than two, the requirements for the number of samples is reduced. The significance is set at 95%

level.

Sensitivity index (d)
Power | 0.2 03 04 0.5
0.9 524 230 142 84
0.8 392 172 106 63
0.7 308 135 83 50
0.6 244 107 66 40
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It is obvious that power and sensitivity are inter-dependent. We have designed the experi-
ment to pick up the smallest possible effect within the limitations of our resources. The actual

level of the effects in the experiments determines the power.

The sample size requirements obviously impact on the costs in setting up, running and

analysing the experiment. The impact on analysis is relatively minor.
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Appendix D

Target Parameters in Chapter 5

This appendix describes the procedure used to select values for target variables. The variables

of interest are target area (=size) and target contrast. Target contrast was defined by:

c=HL—HB (D.1)

1B
where pr was the mean target luminance and up was the mean local background luminance.
Target area was manipulated through a variation of a linear scaling factor, the target size factor,
s¢. The target was a rectangle with a fixed aspect ratio, so that when normalised (s; = 1), the
target was 9 pixels high by 4 pixels wide. These dimensions were scaled by a factor of \/(st);

i.e. target area was equal to the nearest integer value of 36 x s; pixels.

Target size and target contrast were random variables, uniformly distributed within pre-
determined ranges (items (i) and (ii) respectively), which were subject to a constraint on the
product of target contrast and target area, which is defined by the inequality in (D.2). A pilot
experiment was designed to estimate the maximum and minimum values to most efficiently cover
the perceptual space for the full compression experiment, and from this, ranges of values for

each variable were obtained.

(i) Target size factor (oc area) 0.7 < s < 2.75;

(ii) Target contrast 0.2 < ¢ < 0.6

The size-contrast constraint was:
0.4 <s xe<1.T. (D.2)

Note that, having chosen a value for tc, luminance values were converted to greylevels.
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Appendix E

Target Insertion Procedure

The main difficulty in inserting artificial targets into real imagery is in making the correct ad-
justments to pixels on sides of the edges of the target. These adjustments are needed to simulate
the sensor blurring that would have occurred around the edges of a real target. When imaged by
a system having a point spread function (PSF) S(u,v)!, a background with radiance B(z,y) will
produce an image I(z,y) where I is the convolution S * B. If a target with luminance T'(x,y),
covering a region R (with zero luminance outside R), is inserted into the original background,

then the system will produce the modified image

I'=S«(B-Br+T). (E.1)

Here Bpr denotes the function obtained by windowing B to R. That is, Br has radiance B
in the region R and zero radiance outside R. The blur introduced by the PSF means that pixels
in I’ that are close to, but not in, R will be affected by the change in the background over R,
and so differ from the corresponding pixels in I. Likewise, pixels in I’ that are in R cannot be
automatically set to have radiance values T'(x,y) due to the contribution by blurring from that
part of the background radiance field not obscured by the target. If the original image I could
be deconvolved to recover the true background B, then the new image I’ could be calculated by
(E.1). Deconvolution is well known to be a difficult problem, so this approach was not followed
here. Instead, the following simpler approximate procedure was adopted. The detectors are
assumed to be square, have a 100% fill factor, and have a sensitivity that is uniform throughout.
It is also assumed that S(u,v) is normalised to have unit volume, so that the total intensity of
a blurred image is the same as the original radiance field. We replace each of the continuous
quantities I, B, and S by the discrete quantities ¢, b, and s corresponding to the values of the

continuous field at each pixel centre, so that we have to deal with digital images only.

Finally, given the region R (which may or may not have boundaries that coincide exactly
with the edges of pixels), we define the windowed digital image br by setting [br], = a(n)[b]n,
where a(n) is the proportion of the n*® pixel lying in R. Next consider the constant image e, in
which every pixel has a value of one, and window it to give the uniform target. Let f = s*xep be

the convolution of this digitised target with the digitised PSF; i.e. f is the image of a uniform

!See section 2.2.4 in Chapter 2 for a definition of PSF
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target against a black background. The algorithm for inserting a uniform target with brightness

1 into the image ¢ now proceeds as follows:

(i) Calculate the mean grey level pg of the background within the target region R, and form
the windowed image i’ = (1 — purf) — (i — urf)g. This excises that part of the background
that would be obscured by the target and attempts to remove, from pixels lying outside

the target region, the contribution from the (approximately known) obscured background.

(ii) Calculate the convolution s * i and window it to the region R, to give the approximate
contribution (s x ') to image pixels within the target from the background outside the

target.

(iii) Finally calculate the image i, =i’ + (s*i')gp + pf.

This procedure has been applied here to generate images of rectangular targets of uniform

radiance and linear dimensions

Finally the following procedure was used to set target contrast to a specific value C.

(i) Compute the mean grey level Lp in the background in the region corresponding to the
target region R plus all pixels whose distance from R is less than half the diameter of the
support of the PSF.

(ii) Determine the mean grey level L over the region R of the image i, where p = L + 100.

The contrast in this image is:

_Lr—1Lp

C(p) .

, the Weber contrast.

(iii) Now to produce an image with a given contrast C, set

100C
C)=Lp+ 6L, where L = ——.
1(C) B Cln)

Target insertion repeated with this value of x(C) will give an image I,) in which the

contrast between the target and its background will be C' as required.
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Appendix F

Technical Problems in Setting up the
Experiment in Chapter 6

Setting up this experiment required considerable effort and some hard lessons were learnt. A
major problem was the logistics of the experiment, in particular the requirement to compress,
decompress, load onto tape and then display in the order of 5000 video sequences (512 for each of
the 10 observers in a different random order). Initially, it was intended to perform the experiment
by playing the sequences from a Panasonic AJ-D350 D3 format digital video cassette recorder.
The initial analog video was converted to digital, then processed on computer with the plan to
lay the sequences down on the D3 tape. The MPEG2 encoding was done using software and this
was first thought likely to be the major bottleneck. However, migrating the software from a PC
to various UNIX workstations brought the estimated processing time down to a reasonable 50
hours of CPU time (although disk space storage was a problem at times). The major problem
turned out to be the laying down of the processed sequences onto D3 tape. This was done by
existing special purpose software which loaded digitised sequences from a PC disk onto the D3
via its RS232 communications port. Due to mechanical constraints, this process turned out to
take approximately 20 secs per frame independent of the number of frames to be down-loaded
at any one time, making it impossible to load all 512 sequences in any reasonable time. (The
method was sufficient, however, to set up a small pilot experiment to test experimental design.)
Therefore another, previously unavailable, solution was sought in the form of one of the recently
released MPEG2 PC boards, which allow direct playing of MPEG1 & 2 bit streams from hard
disk. This not only removed the need to lay down sequences on tape, it also greatly reduced
the storage problem and allowed much greater software control of the experiment. There were
however, considerable difficulties in sorting out “teething” problems with the software for driving
the MPEG2 board.
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Appendix G

Derivation of the Fractal Image
Simulation Algorithm for Chapter 7

Consider a fractal Gaussian random field (as defined on page 132 of Chapter 7) within a square
domain h, defined by vertices at [(0,0),(0,1),(1,1),(1,0)], which is our pixel size. Since fractal

GRF statistics are scale invariant, this does not lose any generality.

We are given that
C(r) = kr?, (G.1)

while in general
1,1 1 1
v) = </ / L(:z:jy)da:dy/ / Lz + p,y + 1/)d:z:'dy'>7 (G.2)
0o Jo 0o Jo
where 7 = \/p? + 12 and < - > is the expectation operator and 2/ =z +0,, o' =y+4,.
Substitute (G.1) into (
= Cp(p,v / / / / [/ 4 p—xP + [y + v —y]?)’duda’ dydy’, (G.3)
= Chlpr) = b / / (I = 12 + ry = V2L = 1) (L= [y )y, (G.4)

since fo fo z —2')dx'dx = fo (rz)(1 = |rz|)dr, (Chapple, 1997).

(G.5)
It was shown by Chappel [ibid], that (G.3) becomes
Ch(p,v) =k /1 (In|ry — g+ (re = p)* + (ry = v)* |}, —_1dry
B e Wy = o1 (G0
T I JTCI

140/, o=
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and that the integrals can be evaluted from -1/2 to + 1/2 since

b !
/_ £ — o)’ dz = /_1 Fu)(1 = Jul)du. (G.7)

1 /_1
2 2
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Appendix H

Instructions to Observers in Study
Detailed in Chapter 7

Introduction

The proposed work deals with the effects of clutter on human target acquisition. If we consider
an image of a scene containing a target, clutter is here defined as any structure(s) in the image
apart from the target, which masks the target or confuses the observer as to the location and/or
class of the target. Properties of clutter can be defined globally or locally. If the image contains
different clutter types, global clutter metrics may be inappropriate and are expensive to compute.
It is also likely that, in terms of detection, rather than search, local clutter is more important.
The problem is to determine how local is “local”? In the literature, a standard approach of
setting the local domain to twice the expected target size is adopted without any justification.

This work addresses this issue.

Aims

The aims of this research are to achieve the following listed items by gaining knowledge of the

extent and functional form of the effects of local clutter on human target detection.

e Give more accurate prediction of human target detection, since clutter metrics will be

more representative of human visual responses;

e Increase the efficiency of the computation of clutter metrics, as images with near homo-
geneous clutter level will require only local extent to be computed. Other images may

require computation for a few instances only in regions of homogeneous clutter level;

e Gain a better understanding of human vision.

Experimental Procedure

The basic procedure in the experiment is as follows:
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e Once started, the experimental program will prompt you for a 3 letter identifier and, once
entered, will prompt for a ‘0’ or ‘1. A ‘0’ is entered for the first session, (creates your

files) and a ‘1’ for each subsequent session (updates your files).

e A monochrome visual stimulus will now be displayed on the video monitor. This consists
of two regions, a constant grey level background with a circular textured region in the
centre of the background. On 50% of the time, there will be a circular target at the centre

of the textured region.

e Your task is to decide if there is in fact a target, which varies in size and contrast, at
the centre of the display. Once you have decided hit any key (space bar is convenient)
and a prompt menu will appear, which will require you to enter an integer between 1 & 5
indicating a confidence rating in your decision. This will be explained during the training

session.

e This will continue until you quit or the last stimulus has occurred. To quit the session hit

the ‘q’ key instead of a number when the prompt screen appears.

Note, the time taken for you to respond to the stimulus will be recorded; i.e. the time from

when the image appears until you hit the space-bar (or any key).

Training Session(s)

e Type “sizes” and hit the enter key to start a program which displays sequentially the
targets in order of size. They are high contrast to enable you to become familiar with the
range of target sizes. Each target is displayed for 5 seconds unless a key is hit, which will

display the next target. This will continue cycling until you hit the ‘q’ key.

e To start an actual training session type “training” and hit the enter key. This is similar to
the actual experiment, except that feedback is given as to whether a target exists in the
image and the clutter background is a constant size (it varies in the real experiment). The
program will prompt you for a three letter identifier and, once entered, will prompt for a
‘0’ or ‘1’. In this training mode it does not really matter, but a ‘0’ is entered for the first

session and a ‘1’ for each subsequent session. In the real experiment this is important.

Experimental sessions

o To start the experiment type “go” and hit the enter key. This will present the same
prompts as in the training session, but make sure you type ‘0’ for the first session (after

the training session) and ‘1’ thereafter.
e Keep the maximum time of each session to 30 minutes, less if tired etc.

e To end a session type ‘q’ instead of a number after an image presentation. This will
save your current status and if you type a ‘1’ at the start of the next session start, the

experiment will continue from where you left off.
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e If you need to pause, you can wait as long as you like once the prompt screen appears,

before you enter your confidence rating.

Note, sessions are done at the same time of the day for each subject, but they do not have to
be done on consecutive days; i.e. A day can be missed here and there, but this will prolong the

experiment.
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Appendix I

Linear Digital Filtering

Consider a time sequence of length N, {z1,x9,...2zx}. Apply this to a linear filter with impulse

response {hy, ha,...has}, having output {y1, vy, ... ynsr—1}-
Yn 18 given by a convolution sum. i.e.

M
o= Zhrl?fr = hy
r=1

M
yo = Y hpas_y = hy
r=1

M
Yys = Zhwx4—w = hs3 (I.1)
r=1
M
yu = > heTargior =hu
r=1

i.e. h, is the “impulse response”. It can be shown that

N M N+M-1 M
anzfn . Z hpmz ™ = Z (Z hmTn+1-m)z " (1.2)
n=1 m=1 r=1 m=1
which is the z-transform form of the convolution theorem. If we define
M
X(z) = Z Tpz "
n=1
M

and H(z) = Z hmz™ ™ (1.3)

m=1

N+M-1
and Y(z) = Z yrz

r=1

Y(2) = H(z) - X(2). (L.4)
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Suppose that a system to be considered has bounded inputs and bounded outputs. i.e.

> |h] < 0 (15)

= H(z) has all its poles inside |z| = 1 i.e. the unit circle. Suppose the input is 2, = /27" for

—o0 < n < 0o, then

o0
Yp = Z hre—j27rf(n+1—r) (1.6)
r=—oo
i .
= Tpi1 Z e 2T (I.7)
r=-—00
= 2 H(e ) (1.8)

where H(e=/27/) is the frequency response of the system. Define Ry, (k) = Ely,y’ &) as the

auto-covariance function (acvf) of the output of the filter, and the spectral density Sy, (f) =

oo
T Z Ry, (k)e 72™kTs where Ty is the sampling interval.

k=—o00
Now
M M
Ryy(k) = E[(Z hr$n+lfr)(z Pony1-s)] (1.9)
r=1 s=1
M M
= Y BT ks (1.10)
r=1 s=1
M M
= > Y hiRea(k+1—5) (1.11)
r=1 s=1
Then
M M s _
Syy(f) = DY hehi > Rua(k+r—s)e 27 (1.12)
r=1 s=1 k=—o00
M . M
— Z hweﬁﬂﬂ'frTS Z h:ej%rfsTs (113)
r=1 s=1
—  H(2)H*()S,u(f) (114)

= Su(f)H(2)? (L15)
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Appendix J

Summary of Experimental
Procedure for Chapter 9

The following is a guide to carrying out the preparation for this experiment. Each step is briefly

described. Steps that are optional (that provide auxiliary information) are marked thus: f.

e Preparing the imagery.

(i) Extract targets from spot images.
(a) Extract tarmac areas manually.
(b) Extract targets.
(¢) 1 Make montage images of the extracted targets.
(ii) Prepare background images.
(a) Choose sufficient imagery in gips cell format with radiometric correction
applied.

(b) Chop it into approximately 150 megapixel pieces, rounded to block size
(64 x 64).

(c) Classify each block according to clutter.
i. Measure clutter and average brightness of each block.
ii. Histogram the clutter and brightness for all blocks.
iii. Manually set a clutter and brightness threshold to remove shadow regions.
iv. Divide remainder of clutter histogram into three equal areas.
v. Make lists of image blocks belonging to different clutter regimes.
(d) Find existing targets in the images.
(iii) Insert targets into background images.
(a) Mark extended regions the analysts should ignore.
(b) Choose positions for targets with manual confirmation.

(c) Insert the targets into the imagery at chosen locations and contrast.

¢ Running the experiment.



APPENDIX J. SUMMARY OF EXPERIMENTAL PROCEDURE FOR CHAPTER 9 245

(i) Construct directory structure to contain results and programs for running the

experiment.
(ii) Prepare named directories and edit the list of analysts in roc-choose.

(iii) Prepare account for running the experiment with X and roc-choose started on
login.
(iv) Prepare timetable of daily session times for analysts.
(v) Instruct each analyst with the training image.
(vi) Analysts perform the task.
(vii) 1 Check how much each analyst has done.
)

(viii) T Show basic statistics on each analyst’s detections.
e Preparing data for analysis.
(i) Extract all potential detections from displaytool’s bizarre log format into a list of
unique detections.
T Make montage image of the detections.
Measure clutter and contrast of all detections.

)
)
(iv) Manually classify each unique detection.
) Collate the measurements on detections into one table.
)

Produce data in format suitable for producing ROC.
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Appendix K

Questionnaire Used in Study
Detailed in Chapter 9

The text of the questionnaire is included here, followed by the analysts’ lightly edited responses.

Questionnaire for Analyst Observers

Installation: Man-made object that is a permanent piece of infrastructure. Determined
from other associated or adjacent infrastructure i.e. road signs occurring at intersections, power

poles occurring at regular intervals.

1. What did you do when you encountered installations?
a. Ignored it.
b. Logged it with a particular confidence (what value of confidence?).
c. Logged it with a confidence in proportion to its brightness.

d. Other. (please explain)

Responses:

Subject 1 c.

Subject 2 If it was an obvious installation with no 4WD sized objects then a. Otherwise I
tended to log 4WD like installations (e.g., poles, etc.) as an “unsure”.

Subject 3 c.

Subject 4 c.

Subject 5 b. I usually logged it with a high confidence knowing that it was probably a man-
made object (although possibly not a 4WD).

Subject 6 c.

Subject 7 If the installation wasn’t “boxed” T logged the obvious bright targets with confi-
dence 4 (I think), less bright targets with 3 (I think). Sometimes installations were
“boxed”. However, the box didn’t encompass all targets within the broad vicinity.

I generally logged such brights lying outside the “boxed” area as targets as well. 1
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Subject 8
Subject 9
Subject 10

only ignored targets inside a boxed area and targets just outside the boxed area (if
there were any).

Installations were useful brightness calibrators. After looking at dozens of screens
you start seeing “ghosts”. Seeing an installation allows you to identify what a bright
target actually is. In my first attempt (i.e. first ROC experiment) I logged lots of
targets to start off with as I really didn’t know what a target looked like.

c. I generally gave low confidences to these
I ignored all objects that I thought were power poles or street signs.

a.

2. What did you do when you encountered an object that was not an installation (in your

estimation) but was also not a 4WD?

a. Ignored it.

b. Logged it with a particular confidence (what value of confidence?).

c. Logged it with a confidence in proportion to its brightness.

d. Other. (please explain)

Responses:
Subject 1
Subject 2

Subject 3
Subject 4
Subject 5
Subject 6
Subject 7

Subject 8
Subject 9

c.
If it was something that could potentially be a 4WD, (e.g., a radar bright in a
clearing that didn’t clearly look like a tree), then it usually got a “unsure”. A lot
of these “unsure” detections were features that in an operational scenario I would
“follow up on” in terms of looking at a zoomed version, different stretch, previous
data sets, other geographical information, etc. Prior to the change in the detection
guidelines I would “unsure” any feature I would want to examine in more detail,
including wanting only to do a zoom or stretch.

Features that appeared more 4WD like received a higher rating. Some features
would sometimes get the higher rating by mistake if I forgot to change the confi-
dence. In several cases I would add a second detection to the same point with a
lower confidence.

c.

c.

b. (as above).

a. (or b. with confidence 1).

As T have no experience in distinguishing target types I generally logged targets on
a brightness scale. Assuming a bright targets were 4WD I generally logged them
as confidence 3. Generally less bright targets were 2. Targets of low brightness and
difficult to see but which looked out of place were a 1.

a.

I logged all non-installation objects with a confidence proportional to their bright-
ness. I have absolutely no idea what a 4WD looks like and I also had no idea what

the pixel sizes represented in terms of scale.
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Subject 10 a.

3. What clues did you use in detecting a target? Please explain in your own words.

Responses:

Subject 1 General background and context (i.e. trees, grass, near road, near other brights,
size, brightness).

Subject 2 Radar brightness, size, presence of a clear radar shadow and this shadow’s shape,
difference to nearby objects/trees.

Subject 3 For the first part (almost half) of this experiment I looked for objects that appeared
artificial. I thus looked at an object’s brightness, size and its relationship to its
surroundings. In effect I was detecting man-made objects, not trying to determine
if a suspected man-made object was a 4WD.

Subject 4 If it was unusually bright compared to the adjacent background.

Subject 5 Brightness and location/context, although since we knew that the targets had been
inserted relatively randomly then location was something I generally tried to ignore.
The biggest problem was the “unsures”, as I know that if [ was reporting to someone
(a la K95) then T wouldn’t have reported these.

Subject 6 Brightness with respect to the average background was my major criterion. If there
was a lot of clutter, my subjective brightness threshold would go up, and vice versa.
I discriminated against brights on ridge lines, especially if there was an arc of brights
from rock lines. In doubtful cases the presence of a road or track influenced my
decision (positively).

Subject 7 As mentioned above, installations helped me calibrate for brightness. Also would
generally look harder in the vicinity of installation or roads for targets as one might
expect more targets to be around these areas.

Also tried to identify things which looked out of place against the background
imagery.

In areas with lots of trees or very patchy one could either see lots of targets or
see none at all depending on how thorough you wanted to be and how many targets
you expected to see in any given ROC experiment.

Subject 8 T looked to see if there were any obvious areas that were brighter than the surround-
ing landscape. I also considered the size and shape of the suspect area to determine
if I thought it was a target. Looked for shadows, trees should have longer shadows
than 4WD since they are taller.

Subject 9 Unusually bright objects with respect to their immediate surroundings.

Subject 10 Isolated brights, not too large, not near a large number of similar bright spots, not

on water, not regularly spaced.

4. What search strategy did you use?

Responses:
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Subject 1
Subject 2

Subject 3

Subject 4

Subject 5

Subject 6

Subject 7

Subject 8

Subject 9

Subject 10

Across and down the image one screenful at a time.

Quick overview of the screen, focus on the radar bright /high contrast features, then
look for features different to the natural clutter, final check of the image near the
screen edges because I found myself occasionally focusing more on the centre.

I scanned each “screen view” from left to right working from top to bottom.
Generally I zig-zagged across the image one screen at a time, but occasionally I
stepped back one screen to recheck something.

I generally used a raster scan. However, I also on occasion used a circular scan
i.e. top left to top right to bottom right to bottom left. T found that you had to be
careful to make sure that you viewed all the screen equally.

First a rough, quick scan over the image, to note anything that was bright and could
be a 4WD, with a special look in corners and near the boundaries and along tracks.
I then looked more thoroughly at what I had mentally noted to make a decision. 1
did not agonise over uncertain ones, especially in high clutter images.

Principally looked for bright targets, especially near roads or installations. Or
looked for targets that seemed out of place.

I started looking in the top left corner of the screen and just scanned across and
down each and across and down etc. each screen.

I usually spent about 10 seconds per screen. Generally 1 would break the screen up
into about 5 horizontal regions and search from left to right, drop down to the next
region, go from right to left and so on.

Frame to frame as suggested, within a frame quick scan over whole image. If many
bright spots or no spots over whole frame then quickly move on. If isolated spots

seen then more detailed examination of likely looking points.

5. Is it possible that the room lights were not on at some time?

Responses:
Subject 1
Subject 2
Subject 3
Subject 4
Subject 5
Subject 6
Subject 7
Subject 8

Subject 9
Subject 10

No.

No.

Yes.

The lights were on each time.

No.

The lights were definitely on at all times.

I'm pretty sure the lights were on all the time.

Yes, on one occasion at least I remember someone working in the room too, and as
such the lights were on.

No.

Sometimes lights not on at start but I'm fairly sure I remembered to turn them on.
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Appendix L

Instructions to Observers in Study
Detailed in Chapter 9

Startup

e Login as ingara on basil if necessary. You should be automatically using the “openwin-

dows” display manager.
e Select your name from the menu and click “OK”.
e “DISPLAYTOOL” will appear slowly with your next image preloaded.

¢ You can check your progress on the “overview” window at any time by toggling the full-
screen zoom using “Open” key on the left of your keyboard. Remember though that the

clock is recording all your time, and this will be important in the analysis.

Searching

o Carefully examine the image before you for targets.
e If you spot one (or more), then make a detection using the steps described below.

e When you have finished examining the image before you, move to the right using the cursor
keys. (Don’t use half-pan.) Proceed through the image in a zig-zag fashion, i.e. when you
can’t move any further to the right move down one step and proceed along to the left, and

SO On.

¢ You will find targets in the imagery that have been placed there artificially as well as
man-made objects present in the scene. Some will obviously be cultural features that are
not targets, e.g., a regular line of brights next to a road would indicate electricity poles,
and you don’t need to log these, but log everything else that you think might be, along

with your confidence.
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e Towns and other extended areas in the original images contain lots of cultural features that
are not of interest and should therefore be ignored. To help you know where these locations
are precisely, the areas have been bounded by a bright rectangular outline, sometimes with

cross-hatching,.

Making a Detection

e Detections are made by pressing ctrl-left-mouse with the cursor placed over the target.

e A dialog pops up with three fields. Only the confidence field is important. By default,
this field will be highlighted so all you need to do is hit a key 1-5 and then press “return”.
The dialog will disappear.

e The confidence values range from 1 (unsure), 2 (maybe), 3 (likely), 4 (more than likely)
and 5 (sure).

e Please try and use all confidence values in a systematic way. They correspond to points
on the ROC curve.

Exiting

e Don’t stop in the middle of a session, only when you have completed an image. Half an
hour should be plenty of time for this. The clock starts when the image is presented and

stops when you quit.
e Ignore all interruptions — your time is being recorded as a measure of target detectability.

e When finished, exit a session by clicking on the “File” menu, “Close” item at the top-left
of the zoom window. This ensures that the detection data is written out to file and stops
the clock.

General Procedures and Restrictions

e Please don’t change the brightness of the image either by fiddling with the monitor controls

or DisplayTool’s contrast stretch. They have been set to particular calibrated values.
e Don’t use the amplitude threshold either.
e Keep the lights on.
e Don’t use level 2 zoom.

e Don’t change the zoom factor from “1” on the zoom window, as this will bias the results

and cause the detections to be logged incorrectly.
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e Don’t change the size of the zoom window except by iconizing it using the “open” key for

quick looks at the “overview” window.
e Log all targets separately. Don’t just log the middle of a group.

e Leave the mouse up the top when you're scanning the image so you don’t obscure part of
it.

Scenario

Imagine that you are an NCO whose task is to search through all the imagery in an efficient
but thorough manner to find all targets of military interest that they might contain, except in
the hatched regions. These targets of military interest are vehicles, because we are looking for
evidence of small mobile forces in the area. Remember, it will be your assessment of the situation
that will determine if a helicopter, or some smaller response, should be sent out to investigate.
The confidence values range from 1 (unsure), 2 (maybe), 3 (likely), 4 (more than likely) and
5 (sure). When you make a detection of 1, “unsure”, the cost of this detection in terms of
reconnaissance assets is low — a couple of rookies will be sent out with a pair of binoculars.
However, if you make a “certain” detection of 5, the helicopter gunship will investigate and it
will be prepared for trouble. If they only find an old oil drum, then they won’t be too upset,
and everyone will chalk it up to local knowledge. However, if they only find a particularly tall

gum tree, then your name will be mud round the base.

You are not interested in noting buildings and power poles, so if you can tell them apart to
some degree, then indicate this using the confidence measure. For example, you note a bright
object close to a runway. It seems to be bigger than what you would expect for a 4WD, and
its co-location with the runway indicates to you that it is a building. If you are confident of
this you do not make a detection and you move on. Or, you might not be totally sure of this

assessment, so you make it an “unsure” detection with a detection confidence of 1.

Later, you notice a line of brights regularly spaced next to a road — you are confident that
these are power poles, so you ignore them and move on. You notice a bright not far away, near
a track on flat ground — it looks suspicious. Is it a bright tree? No, you don’t think so, because
it doesn’t have any shadow on the same side as all the other similar textures in the region. It’s
the right shape and size — you think all these things together give you a reasonable degree of

confidence that it is a target of military interest, so make a confidence 4 detection.

Detections

In the images 17, 18 and 19 you will find some regions of high activity. We want you to log
all the points in there that you think are not permanent installations, i.e. vehicles, along with
how confident you are. We will be examining every detection that everyone makes and we are

including in our analysis targets that we didn’t place in the image as well as those that we did.



APPENDIX L. INSTRUCTIONS TO OBSERVERS IN STUDY DETAILED IN CHAPTER 9 253

The moral? Log everything suspicious in the image along with your confidence outside the

no-go regions, even if you think we didn’t put it there.

Please note that you cannot change the confidence of a detection once you hit the “ok”
button. If you have made a mistake, then as a last resort you can make a second detection at

the same spot with the correct confidence. We would discourage too much of this though.

Environment

Please leave the lights on during the experiment. We will be measuring the luminance of the
room and of the screen at all grey levels, so if you turn the lights out you will bias your results

and possibly ruin them.

Also, please refrain from peeking at the results. This also could bias the results. Don’t
worry how others are doing — it is not a competition and in the end we will be averaging them
across all observers. Work at a speed that is comfortable for you. It doesn’t matter if you need

longer, as long as you get through all the images in the end.

General

e Just a point of clarification for everyone: when you are practised, if you wish, you are
entitled to do more than one image in a session, as long as you do not sit in front of the
machine for more than roughly half an hour. Please take the experiment seriously and we

won’t have to do it again.

e We will be making the data anonymous, in case anyone is concerned about confidentiality.

The results will be used to compute an average measure.

e Once you begin the experiment, it is vital that you complete the whole series, or your hard

work will not be useful to us.
e You will be timed, so please ignore any interruptions during this time.

e We want people to stick as closely as possible to the time slot allotted.
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