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NOVEL METHODS OF TRANSDUCTION FOR ACTIVE

CONTROL OF HARMONIC SOUND RADIATED BY VIBRATING

SURFACES

ABSTRACT

Large electric transformers such as those used in high voltage substations radiate an annoying

low frequency hum into nearby communities.  Attempts have been made to actively control the

noise by placing a large number of loudspeakers as control sources around noisy transformers

to cancel the hum.  These cancellation systems require a large number of loudspeakers to be

successful due to the imposing size of the transformer structures.  Thus such systems are very

expensive if global noise reduction is to be achieved.

The aim of this thesis is to investigate theoretically and experimentally the use of thin perforated

panels closely placed to a heavy structure (eg. a transformer) to reduce the radiation of unwanted

harmonic noise.  These panels can themselves be vibrated to form a control source radiating over

a large surface surrounding the primary source.  The problem of the equipment overheating inside

the enclosure is alleviated because the holes in the panels still allow natural cooling.

An initial study is carried out to determine the resonance frequencies of perforated panels.  The

use of previously determined "effective" elastic properties of the panels and Finite Element
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Analysis to theoretically calculate their resonance frequencies is examined.

Secondly the attenuation provided by active noise control using perforated panels as control

sources is explored by use of a coupled analysis, where the primary source is assumed to

influence the radiation of the perforated control panel.  This analysis was found to predict poorly

the amount of attenuation that could be achieved, so an uncoupled analysis is undertaken, where

both the primary and control sources are assumed to radiate independently of each other.  Not

only does this greatly simplify the theoretical analysis but it also enables prediction of attenuation

levels which are comparable to those determined experimentally.  The theoretical model is

reformulated to enable comparison of the sound power attenuation provided by perforated panel

control sources with that of traditional acoustic and structural control sources.

Finally, the use of modal filtering of traditional acoustic error sensor signals to give transformed

mode (or "power mode") sensors is examined. The independently radiating acoustic transformed

modes of the panel are determined by an eigenanalysis and a theoretical analysis is presented for

a farfield acoustic power sensor system to provide a direct measurement of the total radiated

acoustic power.  The frequency dependence of the sensor system, and the amount of global sound

power attenuation that can be achieved is examined.  Experimental measurements are made to

verify the theoretical model and show that a sound power sensor implemented with acoustic

sensors can be used in a practical active noise control system to increase the amount of

attenuation that can be achieved.  Alternatively the sound power sensor can be used to reduce the

number of error channels required by a control system to obtain a given level of attenuation when
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compared to traditional error criteria.   The power mode sensor analysis is then applied to the

perforated panel control system, with similar results.
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Chapter 1

INTRODUCTION AND LITERATURE REVIEW

1.1 INTRODUCTION

In this thesis, two novel methods of transduction are examined for use in active noise control

systems for reducing sound radiated by heavy structures.  The first is a control source; a

perforated panel, which has been chosen for study because of possible application to control of

harmonic noise radiated by large heavy structures (such as electric transformer tanks) where

direct vibration control of the sound radiating surface is difficult.  The second transducer system

investigated is modal filtering of vibration and in particular, the use of traditional acoustic error

sensor signals to provide transformed mode (or "power mode") sensors.  The minimisation of the

signals from these sensors results in direct minimisation of the total radiated acoustic power.

This type of error sensor is examined for the case of radiation from a single simply supported

rectangular panel controlled directly by vibration actuators on its surface and finally applied to

radiation from the perforated panel control source.

As a precursor to examining perforated panels as control sources, a study of their simply

supported modal response is undertaken in Chapter 2.  Parameters defining the geometry of the

holes in a perforation array are introduced, as well as the ratio of the modal resonance frequencies

of a perforate to those of a corresponding solid panel, termed the effective resonance frequency.
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Figure 1.1 Control source arrangement; a perforated control panel closely mounted in front

of a solid radiating source.

Two theoretical analyses, a Finite Element analysis (F.E.A) and an experimental study are

compared, where applicable, for thirteen perforates to determine the most accurate method for

calculating the effective resonance frequency.  A cubic function is derived to fit the F.E. analysis

results, and so provide a convenient way of determining the effective resonance frequency of

panels with a wide range of perforation geometries.  This is a prerequisite for the following work,

as an estimate of the resonance frequencies is necessary for calculation of both the on and off

resonance sound radiation characteristics of perforated panels.

A coupled analysis of a simply supported rectangular perforated control panel vibrating in front

of a solid primary radiating panel is performed in Chapter 3.  A previous analysis for a simple,

single hole - single mode system is extended to account for multiple holes in a perforation array

and many modes of vibration.  The air in the holes of the perforate is modelled as an array of air

pistons individually coupled, together with the vibration response of the perforated control panel,

to the vibration of the primary panel via the acoustic pressure in the air cavity between them.  The

total farfield acoustic pressure is calculated by adding the sum of the farfield contribution of all
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of the individual air pistons to the farfield response from the solid part of the perforated control

panel.  An optimum control force is calculated using traditional quadratic optimisation theory to

minimise the acoustic pressure at a single error sensor in the farfield.  The theoretical analysis

is computationally cumbersome due to the coupling between the panels and experimental

validation of the model fails to attain the very high levels of sound attenuation that are predicted.

The reasons for this overprediction and methods to simplify the model are suggested.

These simplifications are applied in Chapter 4, where an uncoupled analysis of the panel system

is considered.  Both the solid primary panel and the perforated control panel are assumed to

radiate independently of each other, greatly simplifying the theoretical analysis.  This analysis

has been generalised to allow for any number of primary point forces, control point forces and

error sensors in the farfield.  Quadratic optimisation is again used to determine the optimum

control point forces to minimise the sum of the mean square pressures at the error sensors.  The

problem is reformulated so that the error criterion to be minimised is the total acoustic power

output in the farfield of the panel system.

Experimental verification of the uncoupled analysis is given for two perforated panels, the first

only lightly perforated with a small open area and the second with many perforations and a

relatively large open area.

The uncoupled analysis is used to compare the control force magnitude required to provide

reasonable attenuation using the perforated control panel with the control force required for
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active structural acoustic control (ASAC) of the panel.  The effect of the perforation density (in

particular, the open area) on the achievable attenuation is examined.  Finally a comparison is

made between the attenuation provided by minimising the sum of the mean square pressures and

minimising the system acoustic power.

Practical methods for measuring the total system acoustic power radiated by a single simply

supported solid panel are discussed in Chapter 5.  The independently radiating acoustic "power

modes" of the panel are determined by an eigenanalysis and a theoretical analysis is presented

for a farfield acoustic power sensor system (using microphones) to provide a direct measurement

of the total acoustic power radiated.  The frequency dependence of the sensor system, and the

amount of global sound power attenuation is examined.  Finally the acoustic power mode sensor

analysis is applied to the perforated panel control system.
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1.2 RELEVANCE AND MOTIVATION

Active control of noise radiated by heavy structures (such as electrical transformers) with

acoustic control sources has been attempted by a number of researchers (Leitch and Tokhi, 1987;

Yannucci, 1979; Hesselmann, 1978; Berge et al., 1987/88; Angevine, 1981/90/91/92/94).

However global noise reduction (Hesselmann, 1978; Angevine, 1991/92; Craig and Angevine,

1993) has only been achieved when the structure has been surrounded by a large number of

acoustic sources or by a complex multipole source (Bolton et al., 1995).  In other work, (Berge

et al., 1988) where only one or a few loudspeakers were used, noise levels were reduced at some

locations at the expense of increased levels at other locations, with no demonstrated overall

reduction in radiated sound power.  The reason that many acoustic sources are needed to achieve

global sound reduction lies in the physical mechanisms responsible for the active control of

sound radiation using acoustic sources.  To achieve global noise control, it is necessary to

acoustically "unload" the radiating structure by changing the radiation impedance it "sees".

Clearly, when using acoustic control sources, this can only be done for a large heavy structure

by using enough sources to completely surround the structure and have a total area of the same

order of magnitude as the radiating surfaces of the structure.

As it is often inconvenient or impractical to use a large number of acoustic control sources

surrounding the structure, vibration actuators can be used to modify the structural vibration and

hence its sound radiation.  Although this technique has been used in the past by a number of

researchers to control sound radiation from thin structures (Snyder and Hansen, 1990; Meirovitch

and Thangjitham, 1990) and sound transmission through thin structures (Fuller and Jones, 1987;
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Eatwell, 1989; Thomas et al., 1993a), the control of vibration of heavy structures with a large

internal impedance is much more difficult because of the large forces required and requires a

correspondingly large number of control sources (M Loughlin et al., 1994).  It is generallyc

inconvenient and expensive to enclose electrical transformers completely, because of the

requirement to provide a cooling system to dissipate the heat generated by the transformer.

However, an alternative is to enclose the radiating structure in a lightweight enclosure made of

perforated sheet metal to which vibration actuators are attached.  The holes in the sheet metal still

allow cooling by natural convection.  This type of control arrangement has not been examined

elsewhere and is considered in the first section of this thesis.

The performance of any control transducer used for active noise or vibration control will depend

greatly upon the accuracy of the control signal and the error criterion to be minimised.  The

accuracy of the control signal is generally bound by the mathematical precision of the signal

processing electronics that make up the control system; however the type and method of

measurement of the error criterion is the choice of the system designer.  For active noise control

a microphone (Conover, 1956; Angevine, 1981; Berge et al., 1988; Pan et al., 1992b; Baumann

and Greiner, 1992) or an array of microphones (Silcox et al., 1987/89/90; Simpson et al.,

1989/91; Zander and Hansen, 1993) has traditionally served as an acoustic error sensor system.

 These have been used in the simplest case to measure (as an error criterion) the acoustic pressure

at the sensor location (Fuller et al., 1991a/b; David and Elliott, 1994).  More complicated error

criteria, such as transmitted power have been measured in the case of active vibration control of

a beam (J. Pan and Hansen, 1990) and a plate (Tanaka et al., 1992; X. Pan and Hansen, 1995).
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For active noise control in ducts and enclosures, error criteria such as energy density (Bullmore

et al., 1986; Nashif and Sommerfeldt, 1992; Sommerfeldt and Nashif, 1994; Sommerfeldt and

Parkins, 1994; Sommerfeldt et al., 1995) or acoustic potential energy (Tohyama and Suzuki,

1987; Curtis et al., 1987; Thomas et al., 1993b; Zander, 1994) have been used.  For controlling

structural radiation into semi-infinite space employing ASAC, measurement of various error

criteria has been attempted using structural sensors (Clark and Fuller, 1991/92; Rex and Elliott,

1992; Naghshineh and Koopmann, 1993; Naghshineh et al., 1995; Charette et al., 1995; Snyder

and Tanaka, 1993b; Snyder et al., 1995b).  Although these sensors can be applied to a single

radiating source with ASAC, they are not suitable when a second acoustic control source (such

as a loudspeaker or the perforated panel discussed above) is introduced, as they are no longer able

to measure the total power output of the system.  In the second section of this thesis (from

Chapter 5), transformed modal radiation from a panel is examined in a new way, using the

decomposition of the acoustic field rather than the structural vibration field as a measure of the

efficiently radiating modes and hence the power radiated from the panel - control source system.
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1.3 LITERATURE REVIEW

1.3.1 HISTORICAL OVERVIEW OF ACTIVE CONTROL

The origins of active noise control are attributed to the German inventor and physician Paul Lueg

(Guicking, 1990), whose U.S. patent was filed in 1932.  However the concepts it detailed were

impossible to implement with the technology available at that time.  Olson (1953, 1956)

resurrected the idea and proposed its use in enclosures, ducts and active headsets, but the

electronics technology was still insufficiently advanced to take his laboratory tests and turn them

into a practical reality.  At around the same time, Conover (1956) applied an active noise control

system to a large 15MVA transformer using loudspeakers arranged around the tank, but achieved

only local control at the error microphone located over 30m away.  His system was non-adaptive

and relied on an operator to continually adjust the noise cancelling signal.

After another two decades of disinterest, the advent of digital electronics in the early 1980's (and

its rapid advances thereafter) prompted a resurgence in attempts at active noise control, with

relatively simple control systems in ducts (Chaplin, 1980; La Fontaine and Shepherd, 1983) and

then more difficult applications such as transformers (see Section 1.3.2) and aircraft fuselages

(Fuller and Jones, 1987; Silcox et al., 1987; Simpson et al., 1989).

1.3.2 NOISE CONTROL OF ELECTRIC TRANSFORMERS

Electric transformers, particularly those used in large electric substations - which can have

capacities of the order of 25-750 MVA, have long been identified as important contributors to

environmental noise.  With recent trends in housing development necessitating dwellings being
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much closer to substations, electricity utilities have identified the noise produced by transformers

as a great concern, particularly considering the tightening of Acts concerning environmental

noise (for example the German Noise Nuisance Act (1979)).

Schuller (1982) identifies the magnetostrictive forces within the laminated core of the

transformers as the well accepted source of noise.  It is suggested that the manufacturers of the

transformers are making continual improvement to their products through use of innovative

materials and construction methods, which is resulting in a reduction in noise output of their

products of about 1 dB(A) each year.  A large number of possible methods for reducing the noise

emission from transformers are given including: vibration isolation of the core in the transformer

tank; decreasing the induction used; vibration isolated covering of the tank; and double tank

construction, all of which contribute to approximately 5 dB(A) reduction in far field noise levels.

The possibilities for reducing the transmission of the emitted noise rely on surrounding the

transformer with a large, heavy structure - often a dedicated building or barrier.  The cost of these

is estimated at between $150,000AUD to $230,000AUD (Yannucci, 1979).  Craig and Angevine

(1993) also note that as a way of reducing complaints the utility may need to buy the

complainant's property.

Yannucci (1979), in his report to the United States Department of Energy - Environmental

Control Technology Division, studied the feasibility of an active noise control (ANC) system to

reduce the transmission of noise from electrical transformers.  He estimated that United States
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electrical utilities at that time spent over $100US Million each year in transformer noise

abatement.  A cost analysis by Yannucci put the cost of active control systems for transformers

at about half that of conventional methods.  His work also reports transformer noise levels as low

as 36dB(A) causing complaints.  Yannucci's experiments on a two dimensional transformer

model produced over 20dB of noise reduction in narrow angular locations, which he claimed to

be sufficient to considerably reduce the number of complaints.  This was achieved using a

primitive feedback-only control system, with no adaptive component.  Further, Yannucci stated

that "the amplitude and phase adjustments of the control system may be predetermined before

applying the system to a full-scale transformer".  Clearly with environmental conditions being

so critical to the performance of active control systems this could not be the case.

The current methods of measurement and prediction of transformer noise by major Canadian

utilities were discussed by Gosselin et al. (1992/93), Laroche et al. (1992), Sakuta et al. (1992),

Kowalewski et al. (1992) and Savard (1992), and by U.S. utilities in work by Craig and Angevine

(1993) and Angevine (1994).  It is established that transformer noise is a cause of community

complaint, and acceptable noise level criteria are discussed.  They of course identified the

fundamental frequency at twice the power supply frequency, and its harmonics, as comprising

the main spectral content of transformer noise.  A new IEEE test code for transformer noise

evaluation is reviewed positively by Teplitzky (1995).

One of the earliest researchers in active noise control, Conover (1956), saw its potential

application to the control of electric transformer noise, and carried out field trials to test its
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effectiveness.  He placed a loudspeaker near a 15 MVA transformer and adjusted the phase and

amplitude of a 120Hz, 240Hz and 360Hz combined tone to produce attenuation of the

transformer's noise.  He achieved over 15dB reduction in narrow regions away from the

transformer which he called "Beams of Silence", but recognised the limitations of the system in

achieving global noise control.  Conover also recognised the need for an adaptive controller to

account for the 'drift' in achievable control caused by changes in ambient conditions.

Ross (1978) took a purely experimental approach to the control of transformer noise, in an

attempt to assess its practicality.  Using only a single loudspeaker and a crude electronic control

system to control the noise from two transformers, Ross achieved at least 10dB reduction in a

nearby office space where a disturbance was reported.  A local noise level reduction of 28dB was

attained and it was stated that better control could be achieved by using more control sources.

Unfortunately the noise control system also increased levels in other areas.  Hesselmann (1978)

also carried out experimental work on a single 100kVA transformer approximately 1.2m wide

and 0.8m high using two control sources which when coupled with the dipole-like radiation of

the transformer itself created a longitudinal quadrupole radiator, to reduce the efficiency of the

transformer noise radiation.  Large noise reductions were achieved, though the small physical

size of the transformer made it easier than could be expected using a larger substation

transformer.

In further field measurements conducted by Berge et al. (1987,1988) on 20MVA transformers,

only very narrow cancelling zones were achieved, again attributed to the random fluctuations in
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environmental conditions and the large physical size of the transformer relative to the control

sound sources.

A concentrated effort has been made by Angevine (1981/90/91/92/94) to actively control

transformer hum.  Angevine implemented an array containing as many as 26 tripole control

sources arranged around a model transformer, and using the "suck and see" method to adjust the

system achieved a reasonable global attenuation of between 10 and 20dB at a single frequency.

Tests were not performed with multiple frequencies that could be expected to be present from

an actual transformer, and little theoretical treatment of the system was presented.  Recent work

by Craig and Angevine (1993) on actual substation transformers controlling the first four

harmonically related tones has produced better results, however attenuation has still only been

limited to angles of 30 to 60 degrees away from the transformer because of the limited number

of control sources that were implemented.

Cheuk et al. (1994) also used a large number of loudspeakers (8) surrounding an already

passively controlled 66KV transformer.  Both the control sources and a single error sensor were

placed inside the transformer enclosure, with the resulting external sound pressure measured at

a single point close to the front of the enclosure.  The work demonstrated up to 20dB attenuation

at 100Hz at the measurement position, with no demonstrated global or farfield reduction.

The most recent variation of the loudspeaker control source concept was by Sugiki et al. (1995),

who put them in ducts terminating at the top edge of a conventional passive acoustic barrier, in
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an attempt to improve the overall control attenuation that they provide.  Experimental work

carried out in an anechoic chamber with an single point source as the primary source achieved

large levels of control (15dB) in localised areas, close to the barrier with no demonstrated control

on a global basis.

The first departure from traditional acoustic control sources to ASAC of a transformer is that

reported by M Loughlin et al. (1994).  Thirty two piezoceramic control actuators were locatedc

directly on the transformer tank (a comparatively large number of sources), and 64 closely spaced

microphones used as error sensors.  Though not reported in this work, it has been suggested that

this system may also have used tuned radiators placed close to the surface of the transformer.

A global tonal noise reduction of 10-15dB was demonstrated in the farfield, but the expense and

large size of the control system for such a small transformer make application of this control

solution unattractive.

It is apparent from this body of work that traditional acoustic sources (loudspeakers) are difficult

to apply to large structures, such as transformers, due to the large number required to be effective.

ASAC has only been attempted once, with surprising effectiveness, though the dimensionality

of the electronic controller was large.  The control methodology outlined in this thesis aims to

fill the gap between traditional acoustic sources and application of ASAC.
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Figure 1.2 Diagonal and Rectangular array geometries.

1.3.3 THE EFFECT OF PERFORATIONS ON MATERIAL PROPERTIES

With the construction of many large nuclear power plants in the late 1950s came the need for

accurate stress analysis of the stress-bearing perforated panels (tubesheets) used to support the

tubes in the heat exchangers in both the boiler and condenser (Horvay, 1952; O'Donnell and

Langer, 1962; Duncan and Upfold, 1963; Soler and Hill, 1977) or the reactor core itself (Bailey

and Hicks, 1960).  The most convenient way, adopted by most of the  authors, is to calculate

"effective" material properties for an "equivalent" solid panel.  In this way the effective properties

of Young's Modulus (E ), Poisson's ratio (� ) and density (' ) can be used simply in standard* * *

procedures to design the panels required for the load application.  Two types of penetration

pattern are generally considered because of the application to heat exchanger design.  These are

the diagonal (sometimes called triangular) and rectangular arrays as shown in Figure 1.2.  These

regular arrays are characterised by their ligament efficiency, �, which is defined as � = l/p.



Chapter 1  Introduction and literature review

15

Bailey and Hicks (1960) presented a detailed theoretical stress analysis of circular holes in both

regular diagonal and rectangular arrays, which was supported not only by their own experimental

work, but also the subsequent work of Duncan and Upfold (1963), where it was shown to be in

much better agreement with experimental results than the earlier work by Horvay (1952).

Other work (O'Donnell and Langer, 1962) noted the inaccuracies of Horvay's theoretical

formulation of effective elastic constants, and instead relied solely on experimental results

(Sampson, 1960) to provide a basis for perforated panel design practice.  Further work

(O'Donnell, 1973) provided experimental results from a limited number of perforated  aluminium

samples, and investigated the effect of the panel thickness on the effective material properties.

This was favourably compared to the theoretical analysis of very thin panels conducted by

Meijers (1967).

In an attempt to simplify what had become a very complicated stress analysis problem, Soler and

Hill (1977) defined the deflection efficiency of a panel as the ratio of effective bending stiffness

to the actual bending stiffness.  A function describing deflection efficiency based on the

perforation dimensions and panel thickness was obtained by curve fitting experimental results

of Meijers (1967), O'Donnell (1973) and others.  This work can only be used in the case where

circular perforations are in a regular array.

In the most recent work (Forskitt et al., 1991), a finite element analysis of a simple perforated

element was used to determine the effective Young's modulus and Poisson's ratio.  Results from
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this work are useful because the concept of a perpendicular and parallel ligament efficiency was

introduced to allow for different spacing between layers of holes in the array, and it also

examined elliptical holes as a general case.  The effective material properties determined by

Forskitt et al. (1991) for the case when the perforation is circular are in close agreement with

those calculated by Meijers (1967), though it will be shown in Chapter 2 that these effective

material properties do not allow accurate calculation of the resonance frequencies of the

perforates.

1.3.4 MODAL FILTERING

The concept of modal filtering was first introduced for vibration control by Meirovitch and Baruh

(1982).  An eigenanalysis was applied to the modes of vibration of a generalised structure, to

determine the set of transformed modes (sometimes called basis functions) that contributed

independently to the structural velocity distribution.  A practical demonstration of controlling

these transformed modes on a beam (Meirovitch and Baruh, 1985) used discretised

measurements at a finite number of sensors, and compared the use of several interpolation

techniques to estimate the continuous displacement.  It was shown that observation and control

spillover were negligible, confirming the usefulness of the modal filters.  The technique was

further applied theoretically to travelling waves in a string and beam (Meirovitch and Bennighof,

1986).

Studies by Borgiotti (1990) and Photiadis (1990) involved the application of modal filtering to

determine the transformed modes that contributed independently to the farfield acoustic power
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radiated by a structure, in particular, by application of the singular value decomposition (SVD)

of the radiation transfer function matrix.  An important result was that the eigenvalues

corresponding to the orthonormal basis functions (ie. the transformed mode) are indicators of the

radiation efficiency of the transformed mode, and as a corollary, that the majority of the acoustic

power is radiated by only the first few transformed modes, thus making it possible to limit the

number considered with little loss of accuracy in the calculated acoustic power.  A numerical

study of transformed modal surface velocity and corresponding 2-dimensional radiation patterns

of a cylinder with end caps was presented (Borgiotti, 1990).

By exploiting the transformed mode shapes that exhibited poor radiation efficiency, Cunefare

(1991) and Naghshineh et al. (1992) were able to specify the physical design of beam structures

which would passively feature low acoustic power radiation.  

The application of modal filters to active control was first demonstrated by minimising the modal

vibration power to actively control vibration of a beam (Morgan, 1991).  It was noted that the

importance of modal filtering to active control would be in the reduction of the numbers of

sensors, actuators and hence the controller dimensionality, due to a reduced set of important

modes.

Realising that the previous work on control of sound radiation where structural velocity was

minimised could actually result in an increase in radiated acoustic power, Snyder et al. (1993)

then applied modal filtering to structural sensors to determine the transformed modes that
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contributed orthogonally to the acoustic power radiated from a simply supported panel.

Practically, two important steps were made: the first was the use of shaped Polyvinylidene

Fluoride (PVDF) film to directly sense the transformed modes, without the need for other

prefiltering (see Section 1.3.5); the second was the eigenvalue weighting of these shaped sensor

error signals, to account for the frequency dependence of the radiation efficiency (and of the

transformed modes themselves).  At around the same time, Naghshineh and Koopmann (1993)

theoretically studied a discretised model of a beam, demonstrating numerically the small

variation of the transformed mode shapes (basis functions) as a function of frequency and their

use for optimising placement of discrete sensors.  As an alternative to using discrete sensors,

which required this optimisation of their placement to give an accurate measure of the

transformed modes, Naghshineh and Koopmann conceived that PVDF might be used to create

shaped sensors to give a distributed measure of the transformed modes.  Similarly, Elliott and

Johnson (1993) theoretically studied discrete models of the so called power radiation modes of

beam and plate structures, and identified the minimum number of discrete structural sensors and

power radiation modes required to accurately estimate the sound power output.

Continuous models of the orthogonally contributing transformed modes corresponding either to

structural kinetic energy or radiated acoustic power for a simply supported panel and acoustic

potential energy in an enclosure were developed by Snyder and Tanaka (1993b).  It was shown

that in the case of the simply supported rectangular panel, minimisation of the structural kinetic

energy is equivalent to minimising the untransformed structural modal velocities.
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Burdisso and Fuller (1994) addressed the problem with frequency dependence of the radiation

efficiency (the eigenvalues) corresponding to the transformed modes by solving for a frequency

independent transformed mode shape to give the minimum of the weighted radiation efficiency

over some limited design frequency range.  Though less difficult to implement than the system

proposed by Snyder et al., it would only work optimally over the limited design frequency range.

Only control of the odd-odd grouping of modes was attempted using a single input/single output

(SISO) controller.  Although significant noise reductions were obtained at resonances, there were

increased sound pressure levels at other frequencies, probably as a result of the presence of higher

order uncontrolled transformed modes.

The sensitivity of transformed modes (now called acoustic modes) to the degrees of freedom

(DOF) in the acoustic model (that is, the number of elements in the beam model for a discrete

approach, which is equivalent to the number of normal modes considered in a continuous model)

was studied for a beam by Cunefare and Currey (1994).  It was shown that the transformed modes

with high radiation efficiency (large eigenvalues) converged quickly to their final shape (ie.

contained their complete contributions from the normal structural modes) compared to those with

low radiation efficiency for increasing model DOF.  For active control, this is a good result, as

it is the first few high radiation efficiency transformed modes that are subject to minimisation.
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1.3.5 MODAL SENSORS

The first discrete sensor systems (Meirovitch and Baruh, 1982/85; Morgan, 1991) required some

form of sensor prefiltering to give the required modal output.  This prompted Lee and Moon

(1990) to adopt shaped PVDF film as a distributed modal sensor, with no requirement for

explicit modal filtering.  In this and in further work (Lee et al., 1991; Collins et al., 1992;

Charette et al., 1994; Guigou et al., 1994) shaped PVDF film sensors were designed and

implemented on beams to detect normal structural modes, with good results.  Shaped PVDF

sensors have also been implemented to measure normal modal velocity of cylindrical shells

(Tzou et al., 1991) and more recently, to measure acoustic properties in pipes (Royston, 1995;

Fuller and Brevart, 1995; Brennan et al., 1995).  The only real problem reported with the use of

the film was the difficulty of manufacture, resulting in shorting out and subsequent loss of signal

(Collins et al., 1992).

Modal sensors have not been proposed exclusively constructed from PVDF film.  Rex and Elliott

(1992) suggested a weighting scheme to allow the use of piezoelectric cables or optical fibre

sensors, yet it appears that the difficulties in implementing these outweigh any difficulties of

using PVDF film, leaving them only a theoretical consideration.

Distributed PVDF film sensors were used to control sound radiation (specifically via ASAC)

from a simply supported rectangular panel by Clark and Fuller (1991).  Minimising the signal

from a pair of PVDF strips placed on the panel so as to detect a collective of odd-odd modes of

vibration was shown to provide a similar, yet slightly less optimum, result to minimising the



Chapter 1  Introduction and literature review

21

pressure at an array of three microphones in the farfield.  Continuing this same work, Clark and

Fuller (1992) applied a wave-number analysis to the controlled and uncontrolled structural mode

shapes to show that modal restructuring was occurring when control was applied using

microphones as the error sensors.  Implementing the modal restructuring control paradigm

implies that the modal amplitudes are rearranged to produce an overall vibration field with a

lower radiation efficiency without explicitly reducing all of the individual modal amplitudes.

However as the PVDF film sensors did not exhibit the inherent radiation efficiency weighting

of the microphone error sensors, they were not facilitating this control phenomenon but instead

contributed mainly to the latter form, termed modal suppression.  This problem was addressed

by Snyder et al. (1993b) and Clark et al. (1993) by considering modal filtering techniques (see

Section 1.3.4) when devising the shapes of the PVDF film sensors.  Instead of sensing and

minimising the structural modes, the transformed modes that contribute orthogonally to some

farfield error criterion were controlled.

Clark et al. (1993) chose to implement the transformed modal sensors on a beam, with the error

criterion simply the pressure at some point in the farfield (the same error criterion traditionally

measured by a microphone; hence the sensor is metaphorically referred to as a PVDF

microphone).  Although theoretical predictions of attenuation did not closely match those

observed experimentally due to nearfield effects (in particular the "notch" of increased

attenuation at the error sensor elevation angle), the transformed modal sensors were shown to

perform much better than the previous type that only sensed and allowed minimisation of normal

structural modes.  A theoretical study of ASAC on a simply supported panel again showed that
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the transformed modal sensors could perform the same function as microphones in the farfield,

but no experimental study was conducted because a two-dimensional transformed modal sensor

was not believed to be practically realisable.

Snyder et al. (1993b) also theoretically examined the case of ASAC on a simply supported panel,

though in this case the transformed mode sensors considered total acoustic power radiated from

the panel as the error criterion.  The importance of eigenvalue weighting the transformed mode

sensors and the frequency dependence of the transformed mode shapes was also examined, with

a view to practical implementation of the sensors.  Experimental results with an ad hoc

implementation of the transformed mode sensors showed much better power attenuation than that

achieved with the normal structural mode sensors.  A more detailed examination is presented in

Snyder et al. (1995b) and a practical implementation of full two-dimensional PVDF film sensors

in Snyder et al. (1995a).

Johnson and Elliott (1995) investigated the minimisation of volume velocity of a panel and

compared that to minimisation of radiated acoustic power.  It was shown numerically that at low

frequencies minimising the volume velocity would provide levels of attenuation similar to those

achievable when minimising radiated acoustic power, however regions existed where minimising

this criterion would greatly increase the radiated acoustic power.  The trade off for this lack of

generality was a simplification to the sensing system, in particular that it would only require one

distributed structural sensor independent from the material properties and excitation frequency.

However, work by Snyder et al. (1993b) along with subsequent investigations (Snyder et. al.,
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1995b) showed that measuring the radiated acoustic power with structural sensors was almost

as straightforward without the disadvantage of increases at particular frequencies.

Charette et al. (1995) implemented a similar two dimensional structural sensor using orthogonal

PVDF film strips on a clamped panel, shaped to sense the volume displacement.  As such, it too

could never provide as good a result as the acoustic power sensor implemented by Snyder et al.

(1995a).

The PVDF film transformed mode power sensor appears to be almost ideal as a sensor design

for ASAC, sensibly measuring the acoustic power radiation directly from the vibration levels of

the source.  However in the rush to develop ASAC systems coupled with the belief that

measuring sound power would require large numbers of acoustic sensors (Johnson and Elliott,

1995), the application of the transformed modes of vibration and the corresponding sound

radiation characteristics have been overlooked in cases where ASAC cannot readily be applied.

The second part of this thesis will return to examine the use of traditional discrete acoustic

sensors and appropriate modal filtering, such that acoustic power radiation can be accurately

measured by a few acoustic sensors.
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Chapter 2

CALCULATING RESONANCE FREQUENCIES OF PERFORATED

PANELS

2.1 INTRODUCTION

To accurately calculate the sound pressure level radiated by a simply supported panel it is

necessary to be able to accurately model the resonance frequencies.  For a solid panel, these can

be determined by solving the panel displacement equation with appropriate edge conditions,

panel density, Young's Modulus and Poisson's Ratio.  For a perforated panel, an analytical

solution for the resonance frequencies has not been attempted, however as discussed in Section

1.3.3 many authors have determined ratios of the so called effective material properties of a

perforate to the actual material properties of a corresponding solid material. The aim of this

chapter is to determine whether these effective material properties, in particular the effective

Young's Modulus (E ), Poisson's Ratio (� ) and panel density (' ), can be used in the place of* * *

the actual material properties in the classical solution for resonance frequencies of a solid panel,

and so determine with sufficient accuracy the resonance frequencies of a perforated material.

In this chapter, Finite Element Analysis (F.E.A.) is used to computationally model the modal

response of a range of panels with varying perforation geometries.  These data are fit to a cubic

expression to allow calculation of resonance frequencies of panels of any perforation geometry.
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Secondly the effect of perforations in the panel on the density, Young's modulus' and Poisson's

ratio are examined using past experimental measurements and F.E.A. of perforate material

properties, with a view to being able to determine the resonance frequencies of perforates using

classical analysis of solid panels with values of these material properties modified to account for

the perforations.

Data from the classical analysis with effective material properties and F.E. analysis are compared

to an experimental modal analysis of two simply supported perforated panels.

Few panel geometries fall into the range of applicability of all of the methods, and so it is

necessary to estimate the accuracy of the cubic function model based on the error between the

cubic function, the ANSYS analysis and measured data for different panel geometries.
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(2.1)

(2.2)

2.2 DEFINITION OF PANEL GEOMETRY PARAMETERS

As discussed in Section 1.3.3, the pitch between holes in a perforated material and the diameter

of the holes, are important panel geometry parameters.  These are useful only when the

perforation array is regular; that is, that the distance between holes in each direction is the same.

When this is not the case, two panel geometry parameters must be used, one for each axis of the

perforation array.  Forskitt et al. (1991) introduced the concept of a perpendicular and parallel

ligament efficiency, XLE and YLE respectively, to allow for different spacing between layers of

holes in an array of perforations.  For a diagonal array of circular holes of diameter d,

perpendicular pitch p  and parallel pitch p , as shown in Figure 2.1, the perpendicular and parallelx y

ligament efficiencies, XLE and YLE are defined as

It should be noted that the position of point B in Figure 2 of Forskitt et al. is placed incorrectly

and should be located at the lower right hand corner of the rectangular element, and not in the

centre as shown.
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Figure 2.1 Perforated panel dimensions.
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2.3 FINITE ELEMENT MODEL

A number of simply supported steel panels of dimensions L =0.38m by L =0.3m and thicknessx y

h=0.002m were modelled using 8-node shell elements in the ANSYS finite element analysis

software on a DEC5000/240 workstation.  Each panel was modelled as being perforated with a

non-regular diagonal array of 8x5, 5x5, 8x3 and 5x3 holes.  Three perforation sizes were used,

d=6, 15 and 25mm, to give a range of 12 panels that were finely perforated, moderately

perforated and highly perforated respectively.  A further panel was considered with 5x3 holes and

a perforation size of 40mm.  The model used the material properties of mild steel, namely

E=207GPa, �=0.31 and '=7800kg m .  Figure 2.2 shows a scale diagram of the perforates, to-1

give an indication of the density of the panels considered.

The 13 panels modelled using ANSYS were chosen so as to give panels with a spread of values

of perpendicular and parallel ligament efficiencies.  This spread is shown in Figure 2.3.

The Finite Element mesh density of the ANSYS models was constrained by the wavefront limit

of the available software installation (500).  The model parameters shown above were chosen

such that a high number of perforations were considered, in an effort to ensure the homogeneity

of their effect on the stiffness of the panel, while still being able to use a high enough mesh

density to ensure good accuracy and convergence of the ANSYS model under the wavefront limit.

Some ANSYS models, showing element shape and density for the 8x5 perforation geometry are

shown in Figure 2.4.  The computation was performed using the subspace iteration method for

greater accuracy, and the resonance frequencies of the first 20 modes were determined.
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Figure 2.2 Perforated panels modelled using ANSYS.
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Figure 2.3 Spread of panels over the range of ligament efficiencies, XLE and YLE.
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Figure 2.4 ANSYS models of perforated panels with 8×5 hole geometry and holes of
diameter (a) 6mm, (b) 15mm and (c) 25mm.
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(2.3)

(2.4)

The individual modal resonance frequencies were compared to the modal resonance frequencies

of a solid panel of the same overall dimensions to determine the effective modal resonance

frequency ratio , for each mode (m, n).

For a simply supported rectangular solid panel of dimensions L , L  and thickness h thex y

resonance frequency of the (m, n) mode, f , is given by (Junger and Feit, 1986)m,n

The form of the classical resonance frequency function suggests that the ratio  should be

independent of the mode order (m, n) for varying Young's modulus, Poisson's ratio and density,

so that the individual effective modal resonance frequency ratios can be averaged over all of the

modes to determine the overall resonance frequency ratio, .

The data representing the overall resonance frequency ratio as a function of XLE and YLE, were

curve fit in two dimensions using a cubic expression of the form 

The coefficients a,b,c,d,e,f and the constant g were determined using MATLAB  to solve the

overdetermined system of equations for the 13 panels that were modelled.  This function can be

used to find the resonance frequency ratio for a large range of perforated panel geometries.
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2.4 CLASSICAL ANALYSIS WITH EFFECTIVE MATERIAL PROPERTIES

The generality of the analysis of Forskitt et al. (1991) over a range of regular array geometries;

that is where the ratio of ligament efficiency , makes it useful as a basis for the

calculation of the effective material properties.  Forskitt et al.'s analysis compares well with other

results (Soler and Hill, 1977) when the array is regular, ie. .  Although the method to

determine the effective Young's modulus and Poisson's ratio can be applied to elliptical

perforations in either diagonal or rectangular arrays, results are only considered here for the case

of a perforated panel with a diagonal array of circular holes.

2.4.1 EFFECTIVE MATERIAL CONSTANTS AFTER FORSKITT et al.

Using ligament efficiencies it is possible to determine the ratio of effective Young's modulus to

actual Young's modulus, E*/E, and the ratio of effective Poisson's ratio to actual Poisson's ratio,

� /� for panel geometries of arbitrary XLE and YLE by interpolating in two dimensions between*

the data recorded by Forskitt et al.  Further data were obtained from the authors of that paper to

give a sufficient number of data points spread over a wide range of XLE and YLE.

An attempt was made to fit the data provided by Forskitt et al. to a polynomial function using

multivariate interpolation; however, it was found that this method did not provide a suitably

accurate polynomial approximation to Forskitt et al's data, even when fifteen terms were

employed.  To determine these effective material property ratios accurately, a bivariate quintic

interpolation was performed on the data (Akima, 1978) for each panel's ligament efficiency by

implementing the IMSL Math Library SURF function in FORTRAN (IMSL, 1990), the results of

which are shown in Section 2.6.2 below.
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(2.5)

(2.6)

According to Forskitt et al. the calculation of the effective density '  is based on the solid area*

fraction of the panel, and can be expressed by a function of XLE and YLE as

For a simply supported rectangular perforated panel, with material properties the same as that of

the solid panel it is proposed that the effective resonance frequency of the m,n mode will be given

by

2.4.2 EFFECTIVE MATERIAL CONSTANTS AFTER SOLER AND HILL

Soler and Hill (1977) introduced a nondimensional thickness parameter 1, to account for the

thickness of the material relative to the perforation geometry.  The work expressed the effective

bending stiffness ratio, D /D (which they referred to as the deflection efficiency),  as a function*

of the thickness parameter 1 and the perforation geometry, where the bending stiffness

D=Eh /12(1-� ).3 2

In the case of a regular diagonal array of circular perforations in a very thin panel (ie. h<<p )x

then 1 = -1 and  Soler and Hill's analysis can be used. The effective resonance frequency of the

m, n mode, f , can be expressed as*
m,n
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(2.7)

Results from this formulation are compared to those from Forskitt et al.'s analysis in Section

2.6.4.
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2.5 MODAL ANALYSIS

Two perforated panels were constructed with the same overall dimensions as those modelled

using ANSYS, with the exception of the thickness which was h=0.00205m.  Spring steel shims

were attached using set screws and epoxy resin adhesive to the edge of the panels to simulate

simply supported edge conditions (Figure 2.5).  The panels were securely mounted in a heavy

steel frame.  A Brüel and Kjær type 8202 Impact Hammer and type 2034 Dual Channel Signal

Analyser were used to record frequency response data at various locations on the panels.  These

data were transferred to a PC running PC-MODAL analysis software (see Figure 2.6), where the

resonant modes of vibration were determined and visualised, and their resonance frequencies

recorded.
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Figure 2.5 Spring steel shims secured by set screws, simulating simply supported edge
conditions.

Figure 2.6 Experimental arrangement for the modal analysis of the perforates.
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Table 2.1
Coefficients of the effective resonance frequency function, f /f  (Eqn. 2.4)*

Coefficient Value

a 0.0399

b -0.0727

c 0.1161

d -0.1295

e 0.1013

f 0.1096

g 0.8395

2.6 RESULTS AND DISCUSSION

2.6.1 FINITE ELEMENT ANALYSIS RESULTS

The first 20 modal resonance frequencies of each panel were compared to those of the

corresponding solid panel, and averaged to give an overall effective frequency ratio independent

of the modal indices, m and n.  The effective resonance frequency value so calculated for all 13

panels modelled was used to calculate the values of the coefficients a,b,c,d,e,f and the constant

g as shown in Table 2.1.

The function described by Equation 2.4 represents a surface, as shown in Figure 2.7, and is

considered valid over a large range of 0 < XLE < 0.9 and 0 < YLE < 0.9.  The validity of the

function cannot, however, be assumed in the regions of 0.75 < XLE < 0.9, 0 <YLE < 0.25 and 0

< XLE < 0.25, 0.75 < YLE < 0.9, though panels with this physical geometry would be biased to

having many holes in lines across the panel, possibly reducing the homogeneity of their effect,

and would be rarely encountered in practice.  The accuracy of this function is difficult to assess,

and is discussed further in Section 2.6.4.  It is interesting to note that this function is almost
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linear, and can in fact almost be represented adequately by a plane.

2.6.2 RESULTS AFTER FORSKITT et al.

Data derived from the work of Forskitt et al. were interpolated for XLE and YLE with the region

of validity limited by the availability of that data to the range 0.1 < XLE < 0.9, 0.1 < YLE < 0.9.

The surfaces representing E /E and � /� are shown in Figures 2.8 and 2.9 respectively, and can* *

be seen to be generally smooth over the regions shown.  The effective Young's modulus ratio is

observed to vary between 0.2 for dense arrays to 1.0, as expected for sparse arrays.  There are

small regions where there is a predicted small increase in effective Young's modulus occurring

outside of the range of validity.  The effective Poisson's ratio varies in a manner opposite to that

of the effective Young's modulus, with dense arrays experiencing an increase over that of a solid

panel.  In sparsely populated arrays there is only a small change in the Poisson's ratio.

Introducing the effective density allows calculation of the effective resonance frequency ratio as

shown by the surface in Figure 2.10.  It is clearly non-linear, as may be expected because it is

derived from the non-linear functions for effective Young's modulus and Poisson's ratio.

Comparing Figure 2.7 with 2.10 shows that the effective resonance frequencies determined using

ANSYS or effective material properties determined by Forskitt et al. will be quite different, more

so with small values of XLE and YLE (ie. larger holes in denser arrays) and where the values of

XLE and YLE differ from each other greatly (this will be confirmed in Section 2.6.4).  The former

region is where the effective Poisson's ratio increases sharply and is greater than 1, and effective

Young's modulus is small, increasing the effect of small errors in these values.  Furthermore it

is possible that the effective Young's modulus and Poisson's ratio determined by Forskitt et al.
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for an element in tension does not correspond to the actual material properties of the plate

undergoing bending.

2.6.3 MODAL ANALYSIS RESULTS

Two panels were chosen to validate the methods of calculation of the effective resonance

frequency ratios outlined above.  Modal resonance frequencies for panel 3 and panel 6, as

determined from PC-MODAL and ANSYS  are shown in Figures 2.11 and 2.12.  Resonance

frequencies determined by the analysis of Forskitt et al. are only shown in Figure 2.12 as the hole

geometry of panel 3 is out of the range of the data contained therein.  It can be observed that

ANSYS predicts modal resonance frequencies that agree very closely (within 2%) with those

determined with the experimental models.  The Analysis of Forskitt et al., however, does not

allow accurate prediction of the resonance frequencies.
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Figure 2.7 Ratio of effective resonance frequency of a perforated panel to resonance
frequency of a solid determined by fitting ANSYS results (Eqn 2.4).

Figure 2.8 Ratio of effective Young's modulus of a perforated panel to actual Young's
modulus of a solid panel. (from Forskitt et al. data)
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Figure 2.9 Ratio of effective Poisson's ratio of a perforated panel to actual Poisson's ratio
of a solid panel. (from Forskitt et al. data)

Figure 2.10 Ratio of effective resonance frequencies of a perforate to actual resonances
of a solid panel. (from Forskitt et al. data)
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Figure 2.11 Comparison between measured modal resonance frequencies and those
modelled using ANSYS for panel 3.  Calculated resonance frequencies for
a solid panel are shown for comparison.

Figure 2.12 Comparison between measured modal resonance frequencies and those
modelled using ANSYS for panel 6.  Calculated resonance frequencies using
the analysis of Forskitt et al. and for a solid panel are shown for
comparison.
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Table 2.2
Summary of results of theoretical and experimental analysis.

Perf.
No.

Panel
Geom.

Hole
Size
(m)

XLE YLE Forskitt
et al.

f /f*

Soler
&

Hill
f /f*

ANSYS

f /f*

Cubic

f /f*

Modal
Analysis

f /f*

1

8×5

0.006 0.747 0.800 0.957 0.974 0.990 0.989

2 0.015 0.368 0.500 0.795 0.932 0.938

3 0.025 -0.052 0.166 0.846 0.853 0.838

4

5×5

0.006 0.842 0.800 0.983 0.983 0.994 0.996

5 0.015 0.605 0.5 0.847 0.958 0.956

6 0.025 0.342 0.166 0.678 0.898 0.892 0.885

7

8×3

0.006 0.747 0.880 0.972 0.987 0.989

8 0.015 0.368 0.700 0.872 0.959 0.956

9 0.025 -0.052 0.500 0.901 0.897

10

5×3

0.006 0.842 0.880 0.993 0.990 0.998 0.996

11 0.0015 0.605 0.700 0.918 0.944 0.973 0.974

12 0.025 0.342 0.500 0.788 0.935 0.936

13 0.040 -0.052 0.200 0.861 0.858

2.6.4 SUMMARY OF RESULTS

Table 2.2 summarises the results of the four analysis methods outlined above, comparing the ratio

of effective resonance frequency to resonance frequency of a solid panel, f /f.*

Gaps in the table correspond to where the hole geometry puts the values of XLE and YLE outside

the range of validity for each method.  In particular, in the case of the data provided by Forskitt

et al., XLE cannot be negative and Soler and Hill's analysis can only be applied when XLE �

YLE.  It is observed that the experimental results validate the ANSYS model of the resonance

frequencies of a perforate.  The ANSYS model, in turn, does not agree with classical theory when

combined with modified material properties determined using Forskitt et al.'s results, except for

very lightly perforated materials (perforates 4,7 and 10), where, as expected, the modification is



Chapter 2  Calculating resonance frequencies of perforated panels

45

only very small anyway.  Both the moderately and highly perforated panels show a significant

decrease in the frequency of their resonant modes because of their reduced effective stiffness.

The cubic function fit to the ANSYS data is a convenient method for determining the effective

resonance frequency ratio and has an error of less than ±1% of that predicted using ANSYS.

Determining the accuracy of the results from ANSYS compared to those measured experimentally

is perhaps a little ambitious; only two panels were tested in an attempt merely to verify the

modelling methods; and the faithfulness of the panel supports in reproducing theoretical simply

supported edge conditions, though considered excellent, is difficult to quantify.  Nonetheless, as

the ANSYS model was run with the most accurate (and hence time consuming) FEA method and

large mesh density, it is reasonable to conclude that the error between these models will be less

than ±2%.  This implies that the error when using the cubic function (Equation 2.4) to determine

the effective resonance frequencies of a perforate is less than ±3%.

The effective resonance frequency ratios determined using ANSYS for panels of similar geometry,

namely panels 2 and 12 and panels 3 and 13, are similar.  This is consistent with a large enough

number of perforations being considered such that their effect does not appear macroscopically

but rather is homogenous over the panel structure.
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2.7 CONCLUSION

It has been shown that effective material constants cannot be used in classical equations to

accurately predict the resonance frequencies of a simply supported perforated panel.  Instead, it

is much more accurate to fit the results from ANSYS over a range of XLE and YLE to a simple

cubic function.  This function can be used to determine the effective resonance frequency ratio

for a large range of panel geometries in the range -0.1 < XLE < 1.0, -0.1 < YLE < 1.0 with an

error of less than ±3%.

It does not appear intuitive that using effective material constants in classical analysis should

produce such unacceptable results, particularly when it is observed that only these material

constants and the overall panel geometry appear in Equation 2.3.  Still, this points to the fact that

the effective Young's modulus and Poisson's ratio determined by Forskitt et al. for a single

perforated element in tension does not correspond to the actual material properties of the plate

undergoing bending.  It is plausible that in cases where the panel geometry is irregular, the holes

in the perforation array may appear in somewhat linear groups across the panel and hence a

different Young's Modulus may apply in different directions.
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Chapter 3

COUPLED ANALYSIS OF A PERFORATED PANEL AS AN ACTIVE

CONTROL SOURCE

3.1 INTRODUCTION

A previous paper (Pan et al., 1992a) investigated analytically the feasibility of controlling low

frequency sound radiated from a solid, simply supported rectangular panel with a second

rectangular control panel containing a single large hole.  Theoretical analysis of the system relied

on the derivation of the equations of motion for the perforated front panel and for the air in the

holes.  These equations were derived by taking into account excitation by the internal pressure

between the primary and control panel and by the point control force f , in the case of thec

perforated control panel, and by the internal pressure alone, in the case of the air in the holes.

These equations were coupled to the displacement of the solid primary panel, due to its influence

on the pressure in the cavity between the two panels.  The control force required on the

perforated control panel to optimally minimise the sound radiation for a particular harmonic

excitation of the primary solid panel was then calculated.

As the theoretical work was limited to only one panel mode of vibration (the 1,1 mode) and one

hole, the resultant coupled system of equations could be solved readily; however, for panels with

many perforations the solution becomes more complex as additional equations are required to

describe the motion of the air in each hole.  In this chapter the work of Pan et al. is expanded to
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a multi-mode, multi-hole analysis.  It is shown that the analytical predictions so produced, do not

agree well with the experimental data, and suggestions are provided for improving the theoretical

model.
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(3.1)

3.2 THEORETICAL ANALYSIS

The equations of motion for a perforated front control panel mounted in front of a solid radiating

primary panel and a model describing the motion of the air in the holes of the perforate are

derived for excitation by the sound field between the two panels and also by the point control

force f .  The resultant equations are coupled to the displacement of the primary panel via thec

pressure in the cavity between them, which is assumed to be constant throughout the cavity

volume.  An optimum control force is then derived to minimise the resulting sound radiation

from the perforated control panel and the array of holes for a particular harmonic excitation of

the primary solid panel.  Using this optimum control force as well as the primary force, the

resulting minimised sound field can be calculated and compared to the primary sound field,

which is calculated with only the primary force acting on the panel.

3.2.1 PHYSICAL ARRANGEMENT

A vibrating rectangular panel (primary panel) of dimensions L , L , thickness h and pointx y

excitation f  at ) = (x ,y ) is located on the z= - L  plane.  In front of the primary panel, a secondp p p p z

simply supported perforated panel (the control panel) is installed on the z = 0 plane and is

surrounded by an infinite rigid baffle.  In the front panel there is an H ×H  array of rectangularx y

holes, each of which has dimensions L  and L , and the centre for the p, q  hole is atxh yh
th

A point force f  is applied at ) = (x ,y ) on the perforated panel surface to control the soundc c c c

radiation into semi-infinite space (Figure 3.1).
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Figure 3.1 Perforated panel dimensions and coordinate system.

(3.2)

(3.3)

3.2.2 PERFORATED CONTROL PANEL RESPONSE

The displacement w of a thin panel containing an array of holes, numbering H  in the x directionx

and H  in the y direction, can be described using the same mode shapes as for a solid panely

(Morse and Ingard, 1968) which (in the case of a solid panel) satisfies the following differential

equation of motion

where E, ' and � are Young's modulus, density and Poisson's ratio respectively.  The quantity

p  is the total distributed sound pressure on both control panel surfaces given bytot

where p  and p  are the internal (on the side closest to the solid primary panel) and externalint ext
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(3.4)

(3.5)

(3.6)

sound pressures evaluated on the control panel surfaces.  () - ) ) is the Dirac delta function andc

f  is a point control force applied at location ) = (x ,y )  on the control panel.  The vector ) =c c c c

(x,y) represents the coordinates of any location on the control panel surface.

Equations for the shape of the modes of a solid panel with no holes can be used to estimate the

displacement of a panel with an array of small holes.  In this case, the control panel displacement

due to the (m,n) mode is given by

where   is the control panel modal displacement amplitude for mode (m,n).  With the origin

of the coordinate system at the centre of the panel, the normal mode shape function 5 ()) ism,n

given by

The resonance frequency for the (m,n) panel mode can be approximated by using:

Where  is the effective resonance frequency ratio, as defined in Chapter 2.

Substituting Equations (3.3), (3.4) and (3.6) into Equation (3.2), multiplying both sides of the

resulting equation by sin(%x/L +%/2)sin(%y/L +%/2), integrating over both sides of the front panelx y

surface, and introducing panel modal damping, the system of equations describing the control
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(3.7)

(3.8)

(3.9)

(3.10)

panel modal displacement as a function of the driving forces on the panel is obtained;

The control panel modal displacement amplitude matrix w  is an n ×1 matrix, where n  is thec m m

total number of panel modes considered, defined by

The panel modal admittance matrix Y  is an n ×n  diagonal matrix and the diagonal elementc m m

corresponding to mode (m,n) is given by

where 7 is the angular frequency (rad/s) of excitation,  is the angular resonance

frequency of the (m,n) panel mode, �  is the loss factor for the (m,n) mode, the quantitym,n

is the modal mass of the control panel and A  is the control panel area, excluding the area of thec

holes.
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(3.11)

(3.12)

(3.13)

(3.14)

(3.15)

The quantity P  is an n ×1 matrix represented as followsc m

where the element corresponding to the (m,n) mode is the product of the total pressure p  andtot

the mode shape function of the (m,n) panel mode, integrated over the panel surface

As it is assumed that the internal and external pressure fields acting on the control panel surface

are uniform over the panel surface, the modal sound pressures  and  can be expressed

as the products of the pressures acting on the surfaces and a modal correction factor � .  Form,n

the control panel this is given by

Thus,

and

where
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(3.16)

(3.17)

(3.18)

(3.19)

(3.20)

3.2.3 PRIMARY PANEL RESPONSE

Similarly the panel modal displacement amplitude matrix for the solid primary panel is

which can be calculated (given the primary driving force vector f ) asp

The primary panel modal admittance matrix, Y , is an n ×1 diagonal matrix with the diagonalp m

element corresponding to the mode (m,n) given by

and modal force matrix is

where f  is the amplitude of the primary excitation force.p
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(3.21)

(3.22)

3.2.4 AIR PISTON RESPONSE

The air motion in the p, q  hole in the front panel can be modelled as the motion of an air pistonth

and is described by the following differential equation

where  is the displacement of the fluid in the p,q  hole,  is the mass reactance andth

 is the radiative and viscous resistance to the p, q  air piston's motion.  The quantity A  =th
a

L  L  is the opening area of each hole in the perforated front panel.xh yh

The total impedance `seen' by the p, q  air piston has components from self impedance andth

mutual impedance from the array of pistons surrounding it.  The interaction between the control

panel and the air piston array will also modify the mass reactance and radiation resistance

(Caldersmith, 1978).  However, in calculating the overall levels of noise attenuation that can be

achieved by active control of the noise it makes little difference and so will be ignored with a

view to making the problem tractable.

The mass reactance , and the acoustic resistance  of the p , q  air piston can be� � th

approximated as (Morse and Ingard, 1968; Pritchard, 1960)

and
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(3.23)

(3.24)

(3.25)

(3.26)

where d is the distance between radiating pistons given by:

3.2.5 INTERNAL SOUND PRESSURE  pint

The low frequency internal sound pressure, p , between the front and back panels can beint

described by the volume compression relation in the cavity between the two panels as

where P  is the atmospheric pressure, � is the specific heat ratio and . Theo

quantities ,  and  are the space averaged displacements of the perforated control panel,

solid primary panel and air pistons respectively.

The space averaged displacement of the control panel is given by

which by substituting Equation (3.13), reduces to 
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(3.27)

(3.28)

(3.29)

(3.30)

(3.31)

where  is the modal displacement amplitude of the (m,n) mode.

Similarly then

where

The average displacement, , of the air pistons is given by

3.2.6 EXTERNAL SOUND PRESSURE  pext

The external sound pressure p  on the front control panel surface is determined by the equationext

of motion

M  is the mass loading of the near acoustic field above the panel, and R  is the acoustic resistancec c

that the air provides to the panel motion, given by (Caldersmith, 1978)
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(3.32)

(3.33)

(3.34)

(3.35)

(3.36)

and

Again the interaction between the air piston array and the perforated control panel has been

ignored for the sake of simplicity (see Section 3.2.4) with no loss of generality.

3.2.7 COUPLED SYSTEM RESPONSE

Using Equation (3.12) in Equation (3.7) for the (m , n) mode gives� �

which upon substitution of Equations (3.14) and (3.15) yields

Introducing Equation (3.25) for p  and Equation (3.31) for p  yields int ext
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(3.38)

(3.39)

(3.40)

Rearranging, substituting for  and  (Equations (3.27), (3.28) & (3.30)) and introducing

the acoustical capacitance C  (see Equation 3.44);a

(3.37)

Coupling the internal pressure, by equating the internal pressure given in Equation (3.25) with

Equation (3.21) for the hole p , q  gives� �

Rearranging and substituting for the space averaged displacements, ,  and ;

Using Equations (3.37) and (3.39), the coupled equations describing the overall displacements

w of the perforated control panel and air pistons as a function of the displacement w  of thep

primary panel can be obtained as follows

where the overall displacement coefficient matrix A is a (n +H ×H )×(n +H ×H ) matrix withm x y m x y

the elements
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(3.41)

where
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(3.42)

(3.43)

(3.44)

(3.45)

and the acoustical capacitance, C  of the volume V is given bya

The overall system displacement amplitude matrix is

The (n +H ×H )×n  matrix B  ism x y m 1
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(3.46)

(3.47)

(3.48)

The (n +H ×H )×1 force coefficient matrix B  ism x y 2

By inverting the coefficient matrix A of the system displacement amplitude matrix in Equation

(3.40), the vector w containing the modal displacement amplitudes of the front panel and the air

piston displacement amplitudes is obtained in terms of the modal displacement of the primary

panel and the control force, as follows

With vibration control sources only, the overall farfield sound pressure is generated entirely by
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(3.49)

(3.50)

(3.51)

the vibration response of the control panel and the air pistons, as their response also accounts for

radiation from the solid primary panel. Thus the radiated sound pressure at angular frequency 7

and location vector r  in the far field may be described by the Rayleigh Integral (Morse, 1986);

where  is the distance from the centre of the panel to the observation location r .

If it is assumed that the size of the air pistons are small compared to the observation distance,

Equation (3.49) can be simplified to

where r  is the distance from the element d) on the panel surface to the observation point andc

r  is the distance from the element d) on the p, q  air piston to the observation point in the casea
th

of Equation (3.49) or the distance from the centre of the p, q  air piston to the observation pointth

in the case of Equation (3.50).  These can be approximated as (Wallace, 1972)

and
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(3.52)

(3.53)

(3.54)

(3.55)

(3.56)

where

and

As shown in Figure 3.1, � and 1 are the elevation and azimuth angles of the observation vector

r .

As

the acoustic radiation transfer matrix Z can be defined such that
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(3.57)

(3.58)

(3.59)

(3.60)

(3.61)

(3.62)

(3.63)

and so the radiated sound pressure will be

or

where

and

The sound pressure at location r  due to the back panel alone may also be calculated for

comparison as,

where r  is the distance from the element d) on the primary panel surface to the observationp

point and can be approximated as

The magnitude of the sound pressure calculated using Equation (3.57) can be re-expressed as a

quadratic function of the complex control force fc

where  represents the complex conjugate,*
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(3.64)

(3.65)

(3.66)

(3.67)

(3.68)

and

The Hermitian transpose of the matrix (the complex conjugate and transpose of a matrix) is

represented by .  This quadratic equation has a unique (global) minimum, which is the optimumH

control force required to produce a minimum sound pressure at an error microphone located at

some observation point r .  The optimum value of the control force obtained by differentiating

Equation (3.63) with respect to f  isc

The resulting minimum sound pressure (Nelson et al., 1987) is
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3.2.8 COMPUTATION METHOD

The computation of the theoretical model outlined above is straightforward, but nonetheless

demanding, due to the excessive size of the matrix A, and the computationally expensive action

of calculating it's inverse for any practically sized perforated panel (say with two thousand holes).

Hence it was necessary to perform the calculations on a 32 Node CM-5 Massively Parallel

Processor, which reduced the processing time by two orders of magnitude.  The system of

equations was programmed in CM-FORTRAN (A subset of FORTRAN 90), and computations

performed in approximately 40 CPU hours for each physical arrangement.
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Figure 3.2 Panel dimensions for the panel considered by Pan et al.

3.3 EXPERIMENTAL VERIFICATION

3.3.1 PROCEDURE

A rectangular steel panel (primary panel) of dimensions 380mm x 300mm, and thickness

1.98mm was mounted in a heavy steel frame using spring steel shims to approximate simply

supported boundary conditions.  The panel was placed in the centre of a large wooden baffle and

excited using a Brüel & Kjær 4809 electrodynamic shaker at its centre.  In front of the primary

panel, a second simply supported panel (control panel) of the same dimensions (as the primary

panel) was installed.  Three different control panels were tested, positioned 30mm in front of the

primary panel (ie. L  = -30mm).  The first panel was constructed to match the panel used by Panz

et al. in their theoretical analysis (1992).  It had one 47.5mm square hole, offset 95mm from the

centre of the panel.  It's vibration was controlled by using a pair of thin piezoceramic actuators,

one on each side of the panel, offset 70mm from the centre of the panel, as shown in Figure 3.2.
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The remaining two panels were uniformly perforated with arrays of 22x10, 6mm diameter holes

and 56x41, 3.25mm diameter holes.  Both were controlled using a pair of piezoceramic actuators,

one on each side of the panel, at it's centre.  These panels were mounted in a frame with spring

steel edges to approximate simply supported boundary conditions (see Figure 2.5).

The radiated sound field was measured in an anechoic chamber using a Brüel & Kjær type 4131

one inch microphone connected to Brüel & Kjær type 2604 Microphone Amplifier and filter set.

The microphone was mounted on a Brüel & Kjær type 3921 turntable which rotated through

180( so that the microphone traversed a horizontal arc of radius 1.8m around the panel centre,

perpendicular to the plane of the panel (see Figure 3.3).  A Brüel & Kjær type 2307 level recorder

was used to record the measurements on a polar plot.

Control was achieved using an adaptive multichannel controller based on INMOS Transputer

digital signal processing hardware, using a filtered-x LMS algorithm.  The traversing microphone

was set to either of the two control angles considered, and the output used as the error criterion

for the control system to minimise.  Once minimisation had occurred, the controller adaptation

was stopped, and a constant optimised control output was used to drive the control source while

the polar plots were recorded.
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Figure 3.3 Experimental arrangement for Active Noise Control experiments.

3.3.2 RESULTS AND DISCUSSION

A comparison between the radiated sound fields calculated using Equation (3.58), to the

measured radiated sound field for the case of the panel with a single offset hole is shown in

Figures 3.4 to 3.7.  The polar plots show the relative sound pressure level for a given elevation

angle, �, an azimuth of 1 = 0° at a radius of r =  1.8m.  The measurements were taken at 335Hz

(Figures 3.4 and 3.5) and 365Hz (Figures 3.6 and 3.7), which are slightly above and slightly

below the resonance frequency of the primary radiating mode (the 3,1) of the primary panel
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respectively.  The error sensor location is at � = 40° and � = 90° so that the symmetry of the

experimental setup can be properly appraised.  The predicted and measured sound fields for the

primary panel without the perforated control panel in place is also shown for comparison, and

were used to normalise the results for the case of the controlled sound fields.

The theoretical results presented have been limited in the amount of control that is achievable

by introducing a control efficiency factor �.  The calculated optimum control force was

multiplied by this factor so that it more closely models the physical system where the controller

is unlikely to converge to the exact value of the optimum control output.  An efficiency factor

of � = 0.99 was used, which limited the theoretical achievable attenuation to about 40dB.

All figures indicate that prediction of the sound field from the primary panel alone is in good

agreement with that measured.  Small perturbations are evident, more so at 365Hz, and are due

to diffraction around the edges of the baffle.  This effect is more pronounced near the baffle (ie.

� � 0° and � � 180°).  The predicted attenuation however is vastly more than that achieved in

practice in all cases.

The errors between the measured and calculated resonance frequencies were small enough to

ensure that the effect on the calculated sound pressure levels off resonance, was negligible.



Chapter 3  Coupled analysis of a perforated control source

72

Figure 3.4 Comparison between the theoretical and measured data at 335Hz, with the error

sensor at 40°. (calculated using Equation 3.49)

Figure 3.5 Comparison between the theoretical and measured data at 335Hz, with the error

sensor at 90°. (calculated using Equation 3.49)
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Figure 3.6 Comparison between the theoretical and measured data at 365Hz, with the error

sensor at 40°. (calculated using Equation 3.49)

Figure 3.7 Comparison between the theoretical and measured data at 365Hz, with the error

sensor at 90°. (calculated using Equation 3.49)
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Figure 3.8 The effect of an uncontrolled panel with a single 47.5mm square hole on the

sound radiation from a solid panel mounted behind it.

The reason for this overprediction is clear, when the amount of noise control achievable by

placing the control panels in front of the primary panel without applying any control force, is

considered.  This passive control is shown for the single offset hole panel, the 22x10 perforate

and the 56x41 perforate in Figures 3.8 to 3.10 respectively, over a frequency range from 0Hz to

800Hz .  The microphone was placed directly in front of the panels (ie. � = 0° and 1 = 0°) and

the frequency response between the sound pressure and a 1N primary force measured.
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Figure 3.9 The effect of an uncontrolled panel with an array of 22 × 10, 1 = 6mm holes on

the sound radiation from a solid panel mounted behind it.

Figure 3.10 The effect of an uncontrolled panel with an array of 22 × 10, 1 = 6mm

holes on the sound radiation from a solid panel mounted behind it.
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It can be seen that the theory generally massively overpredicts the passive control that is

achieved.  At some frequencies system resonances are predicted to increase the sound radiated

by the overall panel system.

In an attempt to explain the large discrepancy between the theory and experimental work, it was

decided to investigate the assumption that the acoustic pressure in the air cavity between the solid

primary panel and the perforated control panel is constant.  Measurement of the pressure between

the two panels using a Brüel and Kjær microphone with a probe attachment, directed through the

holes in the perforated panel, confirmed that the acoustic pressure (with the solid primary panel

excited by a low frequency pure tone (335Hz)) was definitely non-uniform.  As this pressure is

not uniform, the driving force on the perforated control panel cannot be calculated by the

distributed force that this pressure is assumed to exert on the perforated panel (Section 3.2.2).

Instead, the pressure field varies significantly over the panel area.  The lack of uniformity of the

measured acoustic pressure in the space between the two panels is probably a result of the space

being in the near field of the radiating panel or that the lateral dimensions of the panels are not

really small, relative to the wavelength.  This property of the sound field incident on the

perforated panel has to be taken into account if the theoretical analysis is to be useful.  This may

be possible by reformulating the nearfield radiation of the primary panel in terms of evanescent

duct modes in the cavity.  This type of model would be extremely complex, and is not considered

further in this thesis.  Fortunately however, the analysis is not as complex as it might be because

Figures 3.8, 3.9 and 3.10 show that the vibration of the perforated panel forced by the acoustic

field contributes little to the far field sound radiation when compared to the radiation from the
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primary panel transmitted through the holes in the perforated panel.  This is because the part of

the sound field reflected by the perforated panel back towards the solid panel eventually escapes

to the far field.  The only significant effect of the perforated panel is to change the phase of the

radiated field with no corresponding change in amplitude.  Thus, it would seem valid to assume,

that in the absence of control forces acting on the perforated panel, the radiated sound field may

be approximated by the sound field radiated by the solid primary panel alone.  This is the

assumption made in the next chapter when calculating the contribution of the solid panel to the

radiated field when the perforated panel is driven by active control forces.  This result is in

agreement with investigations which show that below 1000Hz, thin perforated sheets provide

negligible transmission loss (Schultz, 1986). 

Because the theoretical model described here was clearly inadequate (for the reasons given),

theoretical and experimental results for the array of perforated control sources have not been

shown.  Theoretical active control was in general 15-30dB greater than that afforded passively

by the perforated panels alone, and amounted to some 80-100dB total attenuation globally.

Physically, this could be considered absolute control, and not surprisingly, was not observed in

practice.
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3.4 CONCLUSIONS

A coupled system of equations have been developed to predict the level of active noise

attenuation achievable using a perforated control source.  The model overpredicts the amount of

passive attenuation that the perforate provides when no control force is applied to it because the

assumption of a uniform pressure in the cavity between them does not appear to be valid.  This

contributes to the vast overprediction that the model calculates when an optimised control force

is also applied.  Measurements show that the passive attenuation is in fact, very small, and can

probably be neglected, to simplify the analysis.
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Chapter 4

DISTRIBUTED SOURCE ANALYSIS OF A PERFORATED PANEL

AS AN ACTIVE CONTROL SOURCE

4.1 INTRODUCTION

Experimental results presented in Chapter 3 suggest that the coupled analysis of the solid primary

- perforated control panel system is inadequate for describing the passive effects that the control

panel has on the radiation from the primary.  It is therefore also inadequate for predicting the

amount of active attenuation that may be achieved.

In this chapter the assumption of a constant pressure in the cavity between the solid primary panel

and the perforated control panel is examined with a view to simplifying the theoretical analysis

of the primary-control panel system.  

Instead of coupling the motion of the two panels motion via the internal pressure, a distributed

source model is examined where the radiation from each panel is considered separately, and the

panels are considered to be uncoupled acoustically.  Though a similar analysis to that in Chapter

3 is undertaken, here any number of primary forces, control forces and error sensors are

considered.  The theoretical study is extended to consider minimising the total acoustic power

output of the two panel system.
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The model is used to predict the maximum noise reduction which is achievable when actively

minmising the sound pressure at a single error sensor by controlling the vibration of a perforated

control panel placed in front of a primary radiating panel.  The analytical results are supported

by experimental data for a solid rectangular primary panel and a perforated control panel of

similar size.



fci

Chapter 4  Distributed source analysis of a perforated control source

81

4.2 THEORETICAL ANALYSIS

As demonstrated in the previous chapter, the assumption used in the model, that the sound field

between the two panels is uniform is not valid.  Based on the experimental results shown in

Figures 3.8, 3.9 and 3.10, it may be assumed that the effect of the front perforated panel on the

sound radiation at the solid panel is negligible, allowing for significant simplification of the

theory.  Instead of some complex coupling between each panels' radiation, it can be assumed that

the panels radiate independently of each other.  That is, the sound field generated by the solid

panel does not affect the response of the solid part of the perforated panel and the sound field

radiated by the perforated panel does not affect the response of the solid panel.  Hence a simple

addition of the far field sound pressure levels resulting from each source (including sound from

the rear of the perforated panel reflected from the solid panel and back through perforated panel)

can be made.

The equations of motion for the perforated front panel are derived for excitation by a number of

point control forces, .  As no coupling between the primary panel and the control panel is

considered, optimum control forces are derived for each control position to minimise the sum of

the primary and control panel sound radiation at some point in the radiated field, or to minimise

the total acoustic power output of the system.

4.2.1 PHYSICAL ARRANGEMENT

The physical model to be analysed is similar to that given in Section 3.2.1, however here the

analysis is generalised to consider n  primary forces and n  control sources, minimised at n  errorp c e

sensors.  It consists of a vibrating rectangular panel of dimensions L , L , thickness h and pointx y
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(4.1)

excitations  at , located on the z = -L  plane.  In front of the primary panel, az

second simply supported panel (the control panel) is installed on the z = 0 plane and is

surrounded by an infinite rigid baffle.  In the control panel there is an H ×H  array of rectangularx y

holes, each  of which has dimensions L  by L .  The location of the centre of the p, q  hole isxh yh
th

given by Equation 3.1.

A number of point control forces, , are applied at locations  on the perforated

panel surface to minimise the sound radiated into a semi-infinite space.

4.2.2 PERFORATED CONTROL PANEL RESPONSE

The displacement w  of the control panel is described by the differential equation of motion inc

Equation (3.2); however, in this case for n  control forces, the quantity p  is given byc tot

where p  and p  are the internal and external sound pressures evaluated on the front perforatedint ext

panel surfaces.  Based on the results described in Section 3.3.2, they are assumed to be negligible

compared to the control force.  The quantity  is the Dirac delta function and  is the

i  point control force applied at the i  control force location  on the perforated control panel.th th

The quantity ) = (x,y) represents the coordinates of any location on the front panel surface.

Solving the differential equation of motion (Equation (3.2)) by substituting in Equations (4.1),

(3.4) and (3.6) and integrating over the control panel surface the following system of equations

is obtained;
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(4.2)

(4.3)

(4.4)

(4.5)

(4.6)

The control panel modal displacement amplitude matrix w  is an n ×1 matrix defined byc m

Equation (3.8), the panel modal admittance matrix Y  is an n ×n  diagonal matrix given byc m m

Equation (3.9)

The quantity P  is an n ×1 matrix represented as shown in Equation (3.11), however here thec m

element corresponding to the m,n mode is

so that

4  is a n ×n  matrix of the formc m c

and f  is the column vector representing the n  control forces.c c

4.2.3 PRIMARY PANEL RESPONSE

Similarly the primary panel modal displacement amplitude w  (Equation (3.17)) may bep

calculated as
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(4.7)

(4.8)

The panel modal admittance matrix Y  is an n ×n  diagonal matrix with the diagonal elementp m m

corresponding to the mode m,n given by Equation (3.19) and the n ×1 modal force vector ism

where 4  is a n ×n  matrix of the formp m p

and f  is the column vector representing the n  primary forces.p p

4.2.4 FARFIELD SOUND PRESSURE

The farfield sound pressure is generated by superposition of the fields radiated by the solid

primary panel and the perforated control panel.  Reflections of the field radiated by the control

panel from the primary panel are incorporated by calculating the pressure from a virtual control

panel located behind the primary panel.

It is appreciated that the sound field radiated by the solid panel and that radiated by the back of

the perforated panel will suffer multiple reflections between the two panels before finally

escaping to the far field.  However, at each reflection from the perforated panel, some of the

sound will escape through the holes.  It can be shown easily that for a single frequency source,

the sound emanating from the perforated panel as a result of all the reflections can be represented

as a single harmonic wave.  Thus the assumption made in this analysis that all of the energy from

the primary panel and the back side of the control panel escapes through the perforated panel

with no reflection results only in an error in the phase of the resulting calculated control force for
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(4.9)

(4.10)

(4.11)

maximum noise reduction.  However, the amount of sound level reduction calculated is not

affected.

Making the previously discussed assumption that the perforated panel has a negligible effect on

the sound field radiated by the solid panel, the acoustic pressure in the farfield at the i  errorth

sensor as a result of mode m,n on the primary solid panel may be calculated as follows;

where  is the distance from the element d) on the primary panel surface to the i  error sensor,th

defined later in Equation (4.15a), and  is the distance from the centre of the control panel to

the i  error sensor.th

Because

the n ×1 column vector representing the contribution of the primary panel to the acoustice

pressure at the n  error sensors due to all modes is given bye

where Z  is the n ×n  modal radiation transfer function matrix given byp e m
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(4.12)

(4.13)

Similarly, for the perforated control panel

where Z  is the n ×n  modal radiation transfer function matrix, given byc e m

(4.14)

It may be observed here that any computational implementation of this analysis requires the

evaluation of the Rayleigh integral for a large number of cases, particularly when integrating over

the surface of the control panel, A .  Computationally this is not difficult, but it is extremely timec

consuming due to the iterative procedures that must be used.  As an alternative Appendix A

suggests some of the practical methods of calculation of the radiation transfer function matrices.

The distances  and  are the distances to the i  error sensor from the elements d) on theth

control panel surface and a virtual control panel surface (corresponding to the radiation from the

rear of the control panel, reflected by the primary panel) respectively.
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(4.15a)

(4.15b)

(4.15c)

(4.16a,b,c)

(4.17a,b)

(4.17c,d)

The distances  ,  and  from the corresponding panels to the i  error sensor at elevationth

�  and azimuth 1 , may be approximated byi i

and

Here

and
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(4.18)

(4.19)

(4.20)

(4.21)

(4.22)

(4.23)

(4.24)

So the total farfield sound pressure is

and therefore the pressure amplitude squared is:

where  represents the Hermitian transpose of the matrix (the complex conjugate and transposeH

of a matrix).

From Equations (4.6) and (4.11);

and similarly from Equations (4.2) and (4.13)

4.2.5 QUADRATIC OPTIMISATION OF THE FARFIELD SOUND PRESSURE

The magnitude of the sound pressure calculated using Equation (4.19) can be re-expressed as a

quadratic function of the complex control forces f ;c

where

and
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(4.25)

(4.26)

(4.27)

Equation (4.22) has a unique (global) minimum, which is the optimum control force required to

produce a minimum mean square sound pressure averaged over n  error microphones located ate

some observation points r .  The optimum value of the control force vector is (Nelson et. al.,i

1987)

The resulting minimum mean square sound pressure is (Nelson et. al., 1987)

4.2.6 QUADRATIC OPTIMISATION OF THE TOTAL ACOUSTIC POWER

Alternatively, it is advantageous to express the error criteria as the total acoustic power output

of the system, and to minimise this.  The total acoustic power output W  is the sum of both thetot

primary source power output W  and the control source power output W  where these may bep c

determined either by a near field measure, integrating over the surface of each panel (Snyder and

Tanaka, 1993a) of the form

(4.28)

or by a far field measure, integrating over a hemisphere enclosing the radiating surfaces as
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(4.29)

(4.30)

(4.31)

(4.32)

(4.33)

(4.34)

In this case it is much more convenient to consider the latter case which can be re-expressed as

Expressing the total pressure in the farfield as the sum of contributions from the primary and

control panels the following is obtained

The acoustic pressure p(r ) at the observer location r  can be written in terms of the Rayleigh

integral (Equation (4.9)) so that the primary and control pressures can be expressed as the product

of the modal radiation transfer function z(r ) and the modal displacement vectors as

and

where

and



zc(r ) 
 	
'72

2% P
Ac

51
e
	 jkrcr

rr

dA� P
Ac

51
e
	 jkrvr

rr

dA à P
Ac

5nm

e
	 jkrcr

rr

dA� P
Ac

5nm

e
	 jkrvr

rr

dA .

Wtot 


w p

w c

H
$pp $ cp

H

$cp $ cc

wp

w c

,

$pp 

r 2

2'c P
2%

0
P
% /2

0

zH
p(r ) zp(r ) sin� d� d1 ,

$cp 

r 2

2'c P
2%

0
P
% /2

0

zH
c(r ) zp(r ) sin� d� d1

$ cc 

r 2

2'c P
2%

0
P
% /2

0

zH
c(r ) zc(r ) sin� d� d1 .

Chapter 4  Distributed source analysis of a perforated control source

91

(4.36)

(4.37)

(4.38)

(4.39)

(4.35)

Again, appendix A, offers a practical method for the implementation of the Rayleigh integral for

the efficient computational evaluation of the radiation transfer function matrices.

Using Equations (4.32) and (4.33), Equation (4.31) can be re-written in terms of the primary and

control panel modal displacement vectors as

where

and

In this case the error criterion W can also be expressed as a quadratic function of the complex

control forces f ;c
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(4.40)

(4.41)

(4.42)

(4.43)

(4.44)

(4.45)

where

and

Again, the optimum control forces are given by an equation of the form

The resulting minimum sound power is (Nelson et. al., 1987)
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4.3 NUMERICAL RESULTS

Both the quadratic optimisation of the farfield sound pressure and the total system sound power

output were programmed in double precision FORTRAN and run on a SUNSPARC10 computer.

For the experimental results shown in Section 4.4 below, the farfield sound pressure at a single

point was used as the error criterion, and the resulting radiation pattern calculated, as it was

uncomplicated to measure experimentally.  The numerical results presented in this section

however, concentrate on minimising the radiated sound power, a global measurement of

controllability, although a measure beyond the scope of the experimental work presented in this

chapter (instead see Chapter 5).

The primary numerical difficulty arises when implementing Equations (4.37)-(4.39) to determine

the submatrices $ , $  and $  for the sound power weighting matrix.  The primary panel self-pp cp cc

weighting matrix, $ , is clearly necessarily real and symmetric, as is $ , the control panel self-pp cc

weighting matrix.  Both these matrices contain diagonal terms representing the self-impedance

of the structural mode and off-diagonal terms representing the modifications in radiation

efficiency due to the co-existence of the other structural modes.  It has been shown that for a

simply supported panel, only modes with like index pairs (ie. pairs of (odd,odd) and (even,even)

modes and the combinations of (odd,even) (odd,even) and  (even,odd) (even,odd) modes) will

exert a mutual influence on each other (Snyder and Tanaka, 1993b).  The cross-weighting matrix

$ , is dense, complex and hermitian, such that the overall weighting matrix is also hermitian.cp
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Secondly the evaluation of the weighting submatrices $  and $  is numerically demanding duecp cc

to the huge number of sub-calculations to account for the holes in the control panel required

inside the numerical integration used to evaluate Equations (4.38) & (4.39).

The sound power radiation submatrix calculations required over 100CPU hours for the variations

undertaken here.   Due to the large number of calculations required, the numerical results

presented in this chapter consider only the first 20 modes of vibration.  

To observe the effect of varying the solid area of the panel on the maximum attenuation

achievable, four perforated panels with a 22x10 array of holes were modelled and mounted a

distance L =0.03m in front of the primary panel.  The perforation diameters of the control panelsz

were d = 6, 10, 12 and 15mm, such that the panels had perforation geometry factors and solid

areas as shown in Table 4.1.  Note that the ligament efficiencies for the panels with the largest

holes fall out of the range of applicability of the theory developed in Chapter 2.  Though a

concern, the results for the modal resonance frequencies of these perforates (Table 4.2) are

considered to be of sufficient accuracy to enable at least a qualitative comparison between the

control performance of the perforates.  The theoretical resonance frequency of the first 14

significant modes of perforated panels (up to 1000Hz) are shown in Table 4.2.

Additionally the effect of the spacing between the solid primary panel and the perforated control

panel is assessed by performing theoretical calculations with L =0.01, 0.03 and 0.05m for a singlez

perforation diameter of d=10mm.
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Table 4.1

Perforated control panel geometry parameters.

Perforation

Diameter

(mm)

XLE YLE Solid Area

6 0.305 0.560 88%

10 -0.158 0.267 67%

12 -0.389 0.120 52%

15 -0.736 -0.100 25%

In all cases a single point primary force was located on the solid panel at (35mm,103.3mm) and

one control force at (35mm,0mm) on the perforated panel.  This arrangement resulted in matrices

that were close to singular and consideration of further primary or control sources would require

a quad-precision FORTRAN implementation to maintain accuracy.

Finally the amount of noise control provided by perforated control panels is compared to that

achievable by application of a secondary point control force applied directly to the primary panel

(commonly called Active Structural Acoustic Control (ASAC)) with the control source located

at (35mm,0mm) on the primary panel.
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Table 4.2

Theoretical panel resonance frequencies of perforated panels

with varying perforation diameter

Mode

Resonance

Frequency

(Hz)

Solid

Resonance

Frequency

(Hz)

d=6mm

Resonance

Frequency

(Hz)

d=10mm

Resonance

Frequency

(Hz)

d=12mm

Resonance

Frequency

(Hz)

d=15mm

1,1 88.3 83.0 75.36 70.3 60.8

2,1 190.1 178.6 162.2 151.2 130.9

1,2 251.6 236.4 214.6 200.1 173.3

2,2 353.3 332.0 301.5 281.0 243.3

3,1 359.7 338.0 306.9 286.0 247.7

3,2 522.9 491.4 446.1 415.9 360.1

1,3 523.7 492.1 446.8 416.5 360.7

4,1 597.1 561.1 509.4 474.9 411.2

2,3 625.4 587.7 533.6 497.4 430.7

4,2 760.3 714.5 648.7 604.7 523.6

3,3 795.0 747.1 678.3 632.3 547.5

5,1 902.3 847.9 769.8 717.6 621.4

1,4 901.6 850.0 771.8 719.4 623.0

2,4 1006 945 859 800 693
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4.3.1 EFFECT OF PERFORATE OPEN AREA

The effect of the open area of the perforated control panels on the controlled radiation levels and

corresponding attenuation and relative control force is shown in Figures 4.1-4.4.  It can be

observed in Figures 4.1 & 4.2 that all of the perforated panels provide a similar level of

attenuation, except near their second resonance.  Here the location of the control source enables

the (2,1) mode to be driven easily, shown by a drop in the relative control force magnitude at the

resonance frequencies associated with this mode in Figure 4.3.  In general the levels of sound

power attenuation below the second resonant mode are well over 15dB, however they soon drop

to between 0-4dB over a wide range.  The next (even,odd) mode is the (4,1) which also shows

some (slight) increase in the achievable attenuation.

The control force magnitudes (shown in Figure 4.3) show that in general the perforates with a

very low solid area require a much higher control force, as may be expected given the relative

area of their radiating surfaces.  The (1,1) resonance of the primary panel at around 90Hz requires

a large control force on all of the perforated control panels, of which the small (perforation

induced) drop in corresponding resonance frequency leaves them deficient in power radiation

ability.

An interesting effect occurs at around 360Hz, where the second (odd,odd) radiation mode of the

primary panel conveniently has a resonance frequency similar to that of the third (odd,odd)

radiation mode of the perforate with d=15mm.  The control force required on this control panel

is therefore much lower than that demanded by the other perforates.  Thus it appears that if the
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perforated panel is properly tuned to resonate at the frequencies at which sound is radiated by the

primary source, it may be an effective control source.

4.3.2 EFFECT OF PANEL SPACING

The effect of the spacing (for d = 10mm) between the primary panel and the perforated control

panels on the controlled levels and corresponding attenuation is shown in Figures 4.5 & 4.6.  It

is shown that there is little discernible difference between the amount of attenuation that can be

achieved.  This is not surprising, since the spacing between the two panels is very much less than

the wavelength in all cases.

As may be expected given these results, the corresponding relative control force magnitude and

phase are also so close to each other as to be indistinguishable when graphed, and have therefore

not been shown.
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Figure 4.1 Primary and controlled radiated sound power using perforated control panels

with perforation diameters d=6, 10, 12 and 15mm and L =0.03m.z

Figure 4.2 Attenuation using perforated control panels with perforation diameters d=6, 10,

12 and 15mm and L =0.03m.z
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Figure 4.3 Optimum control force magnitude relative to a 1N input force using perforated

control panels with perforation diameters d=6, 10, 12 and 15mm.

Figure 4.4 Optimum control force phase (unwrapped) relative to a 1N input force using

perforated control panels with perforation diameters d=6, 10, 12 and 15mm.
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Figure 4.5 Primary and controlled radiated sound power using a perforated control panel

with d=10mm and spacing L =0.01, 0.03 and 0.05m.z

Figure 4.6 Attenuation using a perforated control panel with d=10mm and spacing L =0.01,z

0.03 and 0.05m.
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4.3.3 PERFORATED CONTROL SOURCE COMPARED TO ASAC

The controlled radiated sound power and corresponding attenuation and relative control force for

control by a secondary perforated panel is compared to control by direct Active Structural

Acoustic Control (ASAC) in Figures 4.7-4.10.

The low frequency attenuation is clearly much better with ASAC (Figure 4.7 & 4.8), particularly

at the first resonance of the primary panel.  Note that in regions where control is difficult (or

impossible) such as around 250Hz and 410Hz both control methods fail to provide any

attenuation.  This is due to the poor coupling of the control source on the panels to the modes

operating at these frequencies.

The control force acting on the perforated panel is generally lower than that required for ASAC

(Figure 4.9).  There are however several large peaks in the perforated panel control force, due to

the matching (and mismatching) of its resonance frequency with those of the solid primary panel.

These large, sudden changes in control force are not apparent when applying ASAC, as the

resonances of the control source, of course, exactly match those of the primary source.  Given

that in this analysis the thickness of the primary and perforated control panels is the same

(h=0.002m), it appears that if the primary structure were much thicker, requiring a

correspondingly higher control force, then the control force on a perforated control panel could

be very much less than that required for ASAC.
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Figure 4.7 Primary and controlled radiated sound power using a perforated control panel

(d=10mm, L =0.03) compared to ASAC. z

Figure 4.8 Attenuation using a perforated control panel (d=10mm, L =0.03) compared toz

ASAC. 
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Figure 4.9 Optimum control force magnitude relative to a 1N input force using a perforated

control panel (d=6mm, L =0.03m) compared to ASAC.z

Figure 4.10 Optimum control force phase relative to a 1N input force using a perforated

control panel (d=6mm, L =0.03m) compared to ASAC.z
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4.4 EXPERIMENTAL VERIFICATION

4.4.1 PROCEDURE

The same experimental arrangement as used in Section 3.3.1 was used.  Two different control

panels were tested, located a distance of 20mm from the primary panel.  The first control panel

was perforated with a diagonal array of 22x10, 6mm diameter holes and the second with an array

of 56x41, 3.25mm diameter holes.  Both were controlled using a pair of piezoceramic actuators,

one on each side of the panel, at its centre.  These panels were mounted in a frame with spring

steel edges to approximate simply supported boundary conditions.

The radiated sound field was measured in an anechoic chamber using a Brüel & Kjær one inch

microphone mounted on a turntable.  The turntable rotated through 180° so that the microphone

traversed a horizontal arc of radius 1.8m around the panel centre, perpendicular to the plane of

the panel (see Figure 3.3).  A Brüel & Kjær level recorder was used to record the measurements

on a polar plot.

4.4.2 RESULTS AND DISCUSSION

Theoretical and measured levels of active noise control achieved by the perforated panels can be

seen in Figures 4.11 to 4.16.  The theoretical results were calculated by minimising the sound

pressure level at the error sensor location, in this case at r = 1.7m, 1 = 0° and � = 90° or 40°.

In Figures 4.11 and 4.12 it can be seen that the theory closely predicts the level of noise control

that can be achieved at 335Hz using the 22x10 perforated control.  High levels of attenuation

over relatively wide azimuthal angles can be observed with the error sensor at both � = 40° and

90°.  Close to the baffle, at � = 0° and 180°, both the primary and controlled levels differ from
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that predicted by the theory due to diffraction around the baffle edges.  In Figures 4.13 & 4.14,

results are presented for a primary driving force at 365Hz, and again the levels of noise control

predicted by the theory show a strong resemblance to the experimental results; however, the

measured level of control at � = 40° (with the error sensor at � = 40°, Figure 4.13) is clearly not

sufficiently close to the theoretical optimum to give good measured control at � = 140° as well.

In Figure 4.14 it can be seen that the error sensor was misaligned by approximately 5°, with the

symmetry of the experimental setup leading to two minimisations at � = 85° and 95°.

Theoretical and experimental results using a 56x41 perforated panel are shown in Figures 4.15

& 4.16, and agreement between the two is generally good.  Again diffraction around the edges

of the baffle has produced spurious results near � = 0° and 180° in both the primary and

controlled sound field.  Even though the 56x41 perforate has a far smaller solid surface area than

the 22x10 perforate, high levels of control are predicted and measured at the error sensor.

In each case, reductions of the order of 25-35dB were achieved at the error sensor, and in the case

with the error sensor at � = 40°, a second minimisation generally occurred at � = 140° as

predicted by the theory, and as would be expected due to the symmetry of the experimental setup.

Generally the theory overpredicted the amount of control that can be achieved, and given the

limitations on the accuracy of phase and amplitude of the signal output from the electronic

controller it is understandable that these predicted levels were not reached in practice.

Unfortunately, even though the levels of attenuation are high at the error sensor, noise levels are

often increased in other regions (generally closer to the baffle), thus reducing the global
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effectiveness of the control.  Employing more error sensors and control actuators on the

perforate, or implementing a sound power sensor, would produce better overall control and thus

would be necessary in an implementation to control noise radiated by electric power

transformers.
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Figure 4.11 Comparison between theory for a 22x10 perforate and measured data at
335Hz with the error sensor at 40°.

Figure 4.12 Comparison between theory for a 22x10 perforate and measured data at
335Hz with the error sensor at 90°.
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Figure 4.13 Comparison between theory for a 22x10 perforate and measured data at
365Hz with the error sensor at 40°.

Figure 4.14 Comparison between theory for a 22x10 perforate and measured data at
365Hz with the error sensor at 90°.
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Figure 4.15 Comparison between theory for a 56x41 perforate and measured data at
335Hz with the error sensor at 90°.

Figure 4.16 Comparison between theory for a 56x41 perforate and measured data at
365Hz with the error sensor at 90°.
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4.5 CONCLUSIONS

A new model for predicting the level of active control achievable by placing a perforated control

panel in front of a solid noise radiating panel has been presented.  This model is more accurate

and easier to implement computationally than previous models.  It has been applied not only to

the prediction of the sound pressure level reductions but to sound power level reductions

achievable using a number of perforated control panels driven by a single centrally located

actuator.

Numerical results, calculated when minimising the radiated sound power, showed that panels

with a low solid area required a higher relative control force than those with a high solid area.

The overall levels of control that could be achieved, however, were similar.  The attenuation

levels were shown to be independent of the spacing of the perforated control panel from the

primary panel provided that this was much less than an acoustic wavelength.

It was shown that using perforated control panels would not produce global attenuation levels

as high as could be expected using ASAC, but that the control force required to drive the

perforated control panel could often be much less than the control force required for ASAC.

Experimental results verified the numerical model when the sound pressure level at a point in the

farfield was minimised.  It was found that in general, the model over-predicted the experimental

data, and noise reductions in the vicinity of the error sensor were often achieved at the expense

of increased noise levels elsewhere.  Better global levels of noise control could be expected if

more error sensors and control actuators were used, or if the overall acoustic power level were
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minimised rather than the acoustic pressure at one point in the farfield.
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Chapter 5

ACOUSTIC SENSING OF GLOBAL ERROR CRITERIA

5.1 INTRODUCTION

The total sound power radiating from a vibrating structure is often preferred to acoustic pressure

at a point (or points) as an error function for an active noise control system (Borgiotti, 1990;

Elliott et al., 1991; Snyder et al., 1993a).  It provides a measure that, when minimised,

guarantees the best global result, however it should be noted that radiation or acoustic intensity

may still increase in some directions (Cunefare and Koopmann, 1991).  One way of achieving

a measure of sound power for the control system to minimise is to use a combination of modal

filtering and distributed structural vibration sensors (Snyder et al. 1995a).  This is acceptable

when the control source is a secondary vibration source on the structure as used in applications

of ASAC.  However on some structures it is inconvenient to apply ASAC due to factors such as

their physical size, large internal impedances presented to the vibration control actuators or

susceptibility to stress related failure.  For these structures, acoustic control sources may provide

the only option; either traditional loudspeakers, or some distributed perforated control structure

as detailed in the first part of this thesis.  In this case, the structural measure of acoustic power

provided by distributed PVDF film sensors no longer represents the total farfield sound power.

This chapter examines the use of appropriately pre-filtered microphone signals to provide a

simple and instantaneous acoustic measure of the farfield sound power for use as the error

criterion for active control of radiated noise.
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5.2 THEORETICAL ANALYSIS

The sound power radiated from a single simply supported rectangular panel is considered as the

error criterion.  Note that this case does not restrict the application of structural sensors to provide

a measure of the radiated sound power; however it will provide a useful theoretical base onto

which a multiple source model can be constructed.  This will be done in the  following chapter

which will expand the theoretical analysis presented here to consider the case when the primary

and control source are two separate radiating entities.

Here, an appropriate weighting matrix is calculated so that the farfield power can be determined

from the normal modal displacement.  This matrix contains off diagonal terms representing

coupling between the various structural vibration modes.  Applying an orthonormal

transformation to this weighting matrix results in a matrix of eigenvectors representing structural

transformed modes that contribute independently to the radiated sound power.  It is the

amplitudes of these transformed modes that have been sensed directly on the structure in previous

work (Snyder et al., 1995a/b).  Here however, the farfield acoustic pressure associated with each

transformed mode is related to the normal modal amplitudes via the inverse of the normal mode

radiation transfer function matrix, thus allowing acoustic sensors to be used to sense the

transformed mode contributions to the radiated sound power.  In other words, a modal filter is

defined, which decomposes a measure of the transformed modal amplitudes from the measured

acoustic field.  The frequency dependence of both the radiation efficiency and the shape of the

transformed modes is examined.  Further reductions are applied to the model to simplify the

practical implementation of the modal filters, while only slightly compromising the effective
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Figure 5.1 Theoretical arrangement.

(5.1)

bandwidth of the transformed mode acoustic power sensors.

5.2.1 PHYSICAL ARRANGEMENT

A vibrating rectangular panel of dimensions L  × L , thickness h and with n  point excitationsx y p

f  is located on the z = 0 plane as shown in Figure 5.1.  In this analysis direct vibration controlp

of the panel by n  point control forces, given by the vector f , is considered.c c

5.2.2 GLOBAL ERROR CRITERION

The general form of the error criterion is

where J is the global error criterion, w is the modal displacement amplitude vector and $ is a nm

× n  weighting matrix.  Again, the Hermitian transpose is represented by .m
H
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(5.2)

(5.3)

(5.4)

(5.5)

If the radiated sound power is used as the error criterion then, for a single radiating panel, the

weighting matrix is similar to Equation (4.37) and can be expressed

where the modal radiation transfer function vector z(r ) is the same as z (r ) given in Equationp

(4.34).  The weighting matrix so produced is real and symmetric, with the diagonal terms

representing the self impedance of the structural mode and the off-diagonal terms representing

the modifications in radiation efficiency due to the co-existence of the other structural modes.

The matrix is also sparse, with only the modes with like index pairs exerting a mutual influence

on each other (see Section 4.3).  

As the weighting matrix is real and symmetric it can be diagonalised by the orthonormal

transformation;

where Q is the orthonormal transformation matrix with columns representing the eigenvectors

of the weighting matrix.  This matrix has the property

� is the diagonal matrix of the n  associated eigenvalues, �  of $;m i
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(5.6)

(5.7)

(5.8)

Substituting the transformation of the weighting matrix (Equation (5.3)) into Equation (5.1)

shows that the total system sound power can be expressed as (Snyder et al., 1993b)

where u is the transformed modal displacement amplitude vector defined by

Equation (5.7) shows that each transformed mode is made up of some combination of the normal

structural modes, the proportion defined by the associated eigenvector contained in Q.

Each transformed mode is an orthogonal contributor to the error criterion, in this case the total

sound power, and so can be added linearly as

Two important properties of the transformed modes can be exploited.  The first is that the

eigenvalues (representing the radiation efficiency of the transformed modes) quickly become very

small, so in practice it is only necessary to include the first few transformed modes to account

for most of the power radiated from the panel (Borgiotti, 1990; Elliott and Johnson, 1993).  The

second is that the low order transformed modes (with the highest radiation efficiency) also

converge very quickly to their correct shape by considering a limited number of structural modes

(Cunefare and Currey, 1994).  In practice then, it is possible to use the n  × n  submatrix of them tm

n  × n  orthonormal transformation Q where n  is the number of transformed modesm m tm
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(5.9)

(5.10)

considered analytically.  Similarly the n  × n  submatrix of the eigenvalue matrix � can betm tm

used with no appreciable loss of accuracy in calculating the sound power.

5.2.3 ACOUSTIC SENSING OF TRANSFORMED MODES

PVDF film sensors have been implemented to detect the transformed modal displacement

amplitudes, u, directly on the structure (Snyder et al., 1993b/95a/95b).  The farfield sound

pressure radiation patterns can also be decomposed to determine the contributions from the

transformed modes.  

The farfield sound pressure at n  microphone error sensors resulting from all of the normale

structural modes is given by the n  × 1 vectore

where Z  is the n  × n  normal mode radiation transfer function matrix given byn e m

In this case the distance r  is similar to that for  given in Equation (4.15b).i

Rearranging Equation (5.9) to decompose the normal modal displacement amplitude, w, from

the pressure field and substituting into Equation (5.6) gives
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(5.11)

(5.12)

(5.13)

(5.14)

(5.15)

(5.16)

or

where Z  is the n  × n  transformed mode radiation transfer function matrix (or modal filtert tm e

matrix) which relates the pressure in the far field to each transformed modal amplitude, given by

The elements of each row of this modal filter matrix represent a weighting value that, when

applied to the signal from the corresponding pressure sensor and the result summed over all of

the sensors, will give a measure of the transformed modal amplitude.  In practice the number of

error sensors (n ) will be much less than the number of normal modes considered (n ) and so thee m

normal mode radiation transfer function matrix, Z , will be rectangular and underdetermined.n

It is therefore necessary to apply the Moore-Penrose pseudoinverse of a matrix to determine .

The error criterion can then be expressed as a quadratic function of the complex control forces

f  asc

where

and
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(5.17)

Here 4 is the mode shape matrix, similar in form to 4  (given by Equation (4.8)), and Y is thep

panel modal admittance matrix, similar to Y  and given by Equation (3.19).  The optimump

control force is given by Equation (4.44).

The eigenvalue matrix � is highly frequency dependent, and frequency weighting each

transformed mode sensor output to account for the different radiation efficiency of the

transformed modes has been suggested using appropriately shaped eigenvalue filters (Snyder et

al., 1993b).  The transformed mode radiation transfer function matrix, Z , is a direct function oft

the transformed mode shapes which, although dependent on frequency, have been shown to

change by only a small amount over small ranges for a simply supported rectangular panel

(Snyder et al., 1993b; Naghshineh and Koopmann, 1993).  This is fortunate as in a practical

frequency correct modal filter system such as that shown in Figure 5.2, it may not be practical

to store filters representing the matrix for a wide range of frequencies.  Even so, for broadband

control over a wide frequency range it would be much better to incorporate the frequency

dependence of the radiation transfer function matrix into a single meta-filter representing the

frequency dependence of both the transformed mode radiation efficiency (eigenvalues), �, and

the radiation transfer function matrix Z .t
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Figure 5.2 Modal filter and eigenvalue filter arrangement.

(5.18)

(5.19)

This can be achieved by normalising the radiation transfer function matrix to that at some fixed

frequency 7   such thatf

to give the n  × n  correction matrixtm tm

If 7  is chosen such that the transformed mode shapes at that frequency are representative of thef

mode shapes over the frequency range of interest then the off diagonal terms in K  can be ignored

with little loss in accuracy.  All of the frequency dependence of both the eigenvalue and

transformed mode radiation transfer function matrices can then be grouped into one real n  ×tm



3i j 

k�

i j �i j ki j , i 
 j

0, i g j
.

W 
 p n
H ZH

t7f
2 Zt7f

p .

Zt7f

Chapter 5  Acoustic sensing of global error criteria

122

(5.20)

(5.21)

n  diagonal frequency weighting matrix 2 with elementstm

Practically, this corrected fixed frequency modal filter system can be implemented by a simpler

system such as that shown in Figure 5.3, where the modal filter Z , isn't implemented explicitly,t

but is replaced by a single frequency independent weighting value , for each transformed

mode.  It is also possible to implement an uncorrected fixed frequency filter system by not

correcting the eigenvalue filter to account for the frequency dependence of the transformed mode

radiation transfer function matrix (ie. X = � rather than X = K �K), but still replacing the modalH

filter with a single weighting value from a fixed frequency 7 .  In practice this would appear tof

be an unnecessary complication, considering the eigenvalue filter would still need to be

implemented (in fact it will be shown later that in this case, because the frequency weighting

factor X is so flat, it can be more complicated than the accurate filter).

If these modifications are required to enable wideband control then Equation (5.12) becomes

Note that the only difference between this approach and the exact solution of Equation (5.12) is

the small loss of accuracy introduced by ignoring the off diagonal terms of the correction matrix

K .
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Figure 5.3 Modal filter and frequency weighting filter arrangement.

(5.22)

(5.23)

(5.24)

The quadratic function of the control force given by Equation (5.14) can be applied to minimise

the error criterion with

and
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Table 5.1
Theoretical panel resonance frequencies.

Mode
Theoretical Resonance

Frequency (Hz)

1,1 88

2,1 190

1,2 252

2,2 353

3,1 360

3,2 523

1,3 524

4,1 597

2,3 625

4,2 760

3,3 795

5,1 902

1,4 905

5.2.4 TRANSFORMED MODE ACOUSTIC RADIATION PATTERNS

It is of interest to examine the radiation patterns of the transformed modes contributing to the

farfield sound power of a simply supported rectangular steel panel.  For the purpose of this

discussion the dimensions will be set to L  = 0.38m, L  = 0.30m and thickness h = 0.002m.x y

Below 1000Hz there are 13 panel resonances as shown in Table 5.1.

The transformed modes (contributing to the farfield sound power) can then be found using the

method outlined above operating on the first 100 structural modes.  The constituents of the first
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Table 5.2
Structural mode constituents of the first five transformed modes at 100Hz.

Transformed Mode
No. 1

Transformed Mode
No. 2

Transformed Mode
No. 3

Transformed Mode
No. 4

Transformed Mode
No. 5

Struct.
Mode

Value
Struct.
Mode

Value
Struct.
Mode

Value
Struct.
Mode

Value
Struct.
Mode

Value 

(1,1) 0.8435 (2,1) 0.7554 (1,2) 0.7587 (2,2) 0.6810 (3,1) 0.6033

(1,3) 0.2786 (4,1) 0.3756 (1,4) 0.3781 (2,4) 0.3397 (5,1) 0.3930

(3,1) 0.2771 (2,3) 0.2505 (1,6) 0.2519 (4,2) 0.3392 (1,3) -0.3457

(1,5) 0.1671 (6,1) 0.2502 (3,2) 0.2507 (2,6) 0.2264 (7,1) 0.2868

(5,1) 0.1661 (8,1) 0.1876 (1,8) 0.1889 (6,2) 0.2260 (9,1) 0.2250

(1,7) 0.1193 (2,5) 0.1502 (1,10) 0.1511 (2,8) 0.1697 (1,5) -0.2204

(7,1) 0.1186 (10,1) 0.1500 (5,2) 0.1503 (8,2) 0.1694 (1,1) -0.2093

(1,9) 0.0928 (12,1) 0.1250 (3,4) 0.1249 (4,4) 0.1692 (11,1) 0.1845

(9,1) 0.0922 (4,3) 0.1245 (7,2) 0.1074 (2,10) 0.1358 (1,7) -0.1599

(3,3) 0.0915 (2,7) 0.1073 (2,3) 0.0835 (10,2) 0.1355 (13,1) 0.1568

five transformed modes are defined by the eigenvectors of the weighting matrix $, as contained

in the columns of Q.  These eigenvectors are frequency dependent and representative values are

shown in Table 5.2 evaluated at 100Hz.

It can be observed that the first five transformed modes consist of orthogonal groupings of

(odd,odd), (even,odd), (odd,even), (even,even) and a second (odd,odd) grouping of structural

modes respectively.  The three dimensional acoustic pressure fields of each of these transformed

modes, measured at a distance of r = 2.0m and frequency f = 100Hz and 500Hz are shown in

Figures 5.4 and 5.5 respectively.  In each case the farfield pressure magnitude has been

normalised to the largest acoustic response so that the overall shape can be examined.
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Figure 5.4 Normalised acoustic response of the first five transformed modes at r = 2.0m,

100Hz.
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Figure 5.5 Normalised acoustic response of the first five transformed modes at r = 2.0m,

500Hz.
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It is not surprising that the first transformed acoustic mode shape, corresponding to the (odd,odd)

structural mode grouping, is comparable to the radiation pattern of a monopole source.  Similarly

the second and third transformed acoustic mode shapes are comparable to the radiation patterns

of two orthogonal dipole radiators respectively.  The fourth transformed acoustic mode shape is

comparable to that of a quadrupole radiator, while the fifth is some more complex shape based

on another orthogonal grouping of (odd,odd) modes.  These acoustic radiation patterns may be

decomposed from a microphone array sensor by the modal filter specified by Z .  It is alsot

interesting to note the small change in shape between the acoustic response at 100Hz and 500Hz.

The shapes are generally very similar, with the higher order acoustic responses having slightly

plumper lobes at 500Hz than at 100Hz.  The main difference is evident when comparing the

relative magnitude of the modes at each frequency, with all modes being of much greater

amplitude at 500Hz.  It is because of this small change in overall shape that the frequency

dependence of the amplitude of each transformed mode apparent in these figures can be

incorporated into the meta-filter described by Equation (5.20).

The transformed modes do not contribute equally to the overall sound power; instead the

eigenvalues � , defined in the diagonal matrix �, are representative of the acoustic radiationi

efficiency of these transformed modes.  The variation of the eigenvalues as a function of

frequency is shown in Figure 5.6.  It can be observed that at low frequencies only the first

transformed mode contributes significantly to the overall sound power, at higher frequencies the

second and third transformed modes catch up and also contribute significantly, while the fourth

and fifth transformed modes continue to be trivial.  Higher order transformed modes contribute
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Figure 5.6 Eigenvalues of the first five transformed (power radiation) modes of a simply

supported rectangular plate as a function of frequency.

insignificantly and have not been shown.
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Table 5.3
Error sensor locations.

Error Sensor
Location No.

� 1 r (m)

1 60° 40° 2.0

2 60° 130° 2.0

3 30° 220° 2.0

4 80° 300° 2.0

5 45° 90° 2.0

5.3 NUMERICAL RESULTS

A simply supported panel of the dimensions specified in Section 5.2.4 is assumed.  The form of

the transformed mode radiation transfer function matrix is dependent on the position of the error

sensors in the farfield.  The symmetrical nature of the transformed mode radiation patterns shown

in Figures 5.4 and 5.5 imply that symmetrical positioning of these error sensors can result in

some degree of duplication within the modal filter.  While this could be capitalised on to simplify

a practical system, the more general case of a non-symmetrical sensor array is considered here.

The three dimensional locations of five farfield error sensors used for both the following

numerical and experimental (Section 5.4) results are given in Table 5.3.  In cases considering less

than five error sensors, the lowest order error sensor locations are used (eg. when three error

sensor locations are considered, they are locations 1-3).

A single point primary source is located at (35mm,103.3mm) and one control source at

(35mm,0mm).

The theoretical model discussed above was programmed in double precision FORTRAN using
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IMSL Eigenanalysis, matrix inverse and singular value decomposition mathematical routines.

Implementing Equation (5.2) to calculate the sound power weighting matrix over a frequency

range between 0 and 750Hz proved to be most time consuming requiring approximately 10 hours

CPU time on a DEC5000/240 server when the first 100 modes of vibration were considered.

Fortunately this calculation is independent of the error sensor, primary and control source

locations and so was performed once and saved to a file which was subsequently read when

examining different control system arrangements.

5.3.1 CONTROLLING T RANSFORMED MODES COMPARED TO TRADITIONAL

ERROR CRITERIA

Figures 5.7-5.12 compare the radiated sound power and sound power attenuation achieved by

minimising the least mean square pressure at some error sensors, to that achieved by minimising

the first (Figures 5.7 & 5.8) and both first and second transformed modes (Figures 5.9-5.12)

using a single point primary and control force acting on the panel.  Note that these radiated power

and attenuation levels are those achievable given the error sensor locations listed in Table 5.3

above.  Using different error sensor locations could lead to controlled levels better or worse than

those shown here, though these levels will be indicative of those that may be obtained in practice

(particularly as a greater number of error sensors are used).  In Figures 5.7 & 5.8, only one error

signal is minimised to provide control.  In the case of the least mean square pressure it is simply

the pressure at a single farfield sensor.  As only one error signal is considered, only the first

transformed mode is minimised, however it is decomposed from three sensors in the farfield.

Below 300 Hz, minimising the first transformed mode amplitude is shown to provide the

maximum possible sound power attenuation, given the control force location.  Minimising the
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pressure at a single point provides surprisingly good global control, only about 3-4dB below the

maximum achievable attenuation.  At frequencies where the control force position is not

conducive to good global control (250Hz and 400Hz) minimising the sound pressure is observed

to increase the overall sound power radiation by as much as 5dB.

Around 360Hz, minimising the sound pressure also leads to poor global control compared to that

achievable when minimising the transformed mode amplitude.  At this frequency the radiation

from the dominant (3,1) and (2,2) normal modes of vibration may combine such that a large

minimisation of LMS pressure occurs at the single error sensor, however the analysis above

shows that these two (odd,odd) and (even,even) modes cannot affect the power radiation from

each other. The first transformed mode does not have any contribution from the (2,2) mode, and

so minimising it, though not producing as large a minimisation at the first error sensor, does

provide a much better global result.  This is not to say that controlling the first transformed mode

is always ideal, as demonstrated at frequencies just below 400Hz and around 600Hz where

controlling the transformed mode greatly increases the overall sound power radiation.  In these

regions it is apparent that the sound power radiation is dominated by higher order transformed

modes.

Introducing a second error signal input; that is, two pressure sensor inputs in the case of

minimising the LMS pressure and the first and second transformed modes for the case of

minimising power, the problems of poor global attenuation when minimising LMS pressure at

360Hz and when minimising power at frequencies above 550Hz is observed to be arrested

(Figures 5.9 & 5.10).  As might be expected, the global attenuation achievable by minimising the
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LMS pressure at two sensors rather than just one is generally better, especially around 350Hz;

however, minimising amplitudes of just two transformed modes is seen to produce overall levels

comparable to the maximum achievable attenuation.  It appears that deficiencies in the error

sensor locations make detection of the transformed modes difficult around 350Hz, though

without increasing the controller dimensionality it is possible to produce the result shown in

Figures 5.11 & 5.12, where five sensors are decomposed into just two transformed modes to

provide near-optimal control over a wide frequency range.  It is evident from Figures 5.13 & 5.14

that minimising the least mean square pressure at three or five distributed error sensors in the

farfield will result in sound power attenuation becoming progressively more optimal, and that

no advantage would be gained by decomposing this many power modes from an even larger

number of error sensors for this arrangement.  However, the advantage of using the transformed

modes is that fewer controller error inputs are needed, although a similar number of sensors is

needed to obtain similar results as obtained using minimisation of LMS pressure.
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Figure 5.7 Primary and controlled radiated sound power, minimising pressure at 1 sensor and
by minimising the 1st transformed mode decomposed from 3 sensors.

Figure 5.8 Maximum attenuation, attenuation achieved by minimising pressure at 1 sensor
and by minimising the 1st transformed mode decomposed from 3 sensors.
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Figure 5.9 Primary and controlled radiated sound power, minimising pressure at 2 sensors and
minimising the 1st & 2nd transformed modes decomposed from 3 sensors.

Figure 5.10 Maximum attenuation, attenuation achieved by minimising pressure at 2
sensors and minimising the 1st & 2nd transformed modes decomposed
from 3 sensors.
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Figure 5.11 Primary and controlled radiated sound power, minimising pressure at 2 sensors
and minimising the 1st & 2nd transformed mode decomposed from 5 sensors.

Figure 5.12 Maximum attenuation, attenuation achieved by minimising pressure at 2
sensors and by minimising the 1st & 2nd transformed modes decomposed
from 5 sensors.
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Figure 5.13 Primary and controlled sound power radiation, minimising the LMS pressure at
3 & 5 farfield sensors.

Figure 5.14 Maximum attenuation and attenuation achieved by minimising the LMS
pressure at 3 & 5 farfield sensors.
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5.3.2 MODAL FILTER RESPONSE

The complex elements of the transformed mode radiation transfer function matrix, Z , make upt

the modal filters (which is coupled with the eigenvalue filter to make up the complete modal

filter system).  In particular, each row of the matrix represents the overall filter required for each

transformed mode, and each column within that row the filter for the corresponding sensors

contribution to that mode.  For the case considered above where three error sensors are

decomposed into the first and second transformed modes the transformed mode radiation transfer

function is a 2 x 3 matrix, with the phase and amplitude response of each element of the first row

corresponding to the filters for the first transformed mode and shown in Figures 5.15 and 5.16

respectively.  The filter set for the second transformed mode is shown in Figures 5.17 and 5.18.

Again, it should be recognised that the form of these filters depends entirely on the position of

the error sensors and as such the results presented here show only what may be expected for a

typical arrangement.  In particular the form of the amplitude filters shown in Figure 5.16 indicate

that the second error sensor contributes very little to the detection of the first transformed mode.

Similarly in Figure 5.18 it can be seen that the first two error sensors contribute similarly to the

detection of the second transformed mode.  In this case it is apparent that these sensors are almost

symmetrically located when compared to the acoustic radiation pattern of the second transformed

mode shown in Figure 5.4.

The phase response of the filters would be implemented in practice by introducing a group delay

(corresponding to the slope of the phase response) between the signal paths of the individual

sensors.  What is not immediately evident is that the required group delay is the same for a

particular sensor for both transformed modes.  In the case of the second transformed mode it
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Table 5.4
Error sensor group delay.

Error Location Group Delay

1 6.423ms

2 5.796ms

3 5.462ms

would also be necessary to introduce a 180° phase shift to the signal from the first error sensor

as shown in Figure 5.17.  The group delay for each error sensor location determined from Figures

5.15 & 5.17 is shown in Table 5.4

In practice it would only be necessary to implement the relative (net) delay of 0.334ms between

sensors 3 and 2, and 0.961ms between sensors 3 and 1.  The electronic control system would

compensate for the gross delay (and corresponding phase shift).
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Figure 5.15 Phase response of the modal filter required to decompose the 1st
transformed mode from 3 farfield sensors.

Figure 5.16 Amplitude response of the modal filter required to decompose the 1st
transformed mode from 3 farfield sensors.
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Figure 5.17 Phase response of the modal filter required to decompose the 2nd
transformed mode from 3 farfield sensors.

Figure 5.18 Amplitude response of the modal filter required to decompose the 2nd
transformed mode from 3 farfield sensors.
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5.3.3 TRANSFORMED MODE FREQUENCY CORRECTION

Further simplifications can be made in the physical realisation of the modal filter by fixing the

transfer function to that at a single frequency and then lumping the frequency dependence

together with the eigenvalue filter as defined in Equation (5.20) above (see Figure 5.3), to create

a corrected fixed frequency filter system, where the modal filter is not frequency dependant at

all, and is replaced by a frequency independent weighting value.  The meta-filter response for

each transformed mode, as contained in the diagonal of X, is shown in Figure 5.19 for a transfer

function fixed at 100Hz.  The sound power attenuation achieved by minimising two transformed

modes determined from a frequency correct modal filter system (which varies optimally with

frequency) is compared to that from a corrected fixed frequency filter system and an uncorrected

fixed frequency filter system in Figures 5.20 and 5.21 (see Section 5.2.3).  It is observed that the

corrected fixed frequency filter performs as well as the frequency correct filter over a wide

frequency range, with a few slight deviations of both better and worse control.  The uncorrected

fixed frequency modal filter causes severe lapses in control at some frequencies, particularly

above 350Hz, though below this it performs as well as the frequency correct filter.  This suggests

that a fixed frequency modal filter could be used without correction, if control were limited to

a small frequency range around that of the filter.

Moreover, it is of interest that the magnitude of the correction filter, X, is itself relatively

constant over a large frequency range (Figure 5.19).  This indicates that it should be possible to

select a single correction factor, say the value of the correction filter at 100Hz, which when

combined with the frequency independent weighting values of the modal filter at some fixed

frequency, will produce a single weighting value for each sensor that will perform as well as a
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Figure 5.19 Amplitude response of the correction filter, X, for the 1st and 2nd
transformed modes decomposed from 3 sensors.

fully implemented frequency correct filter system up to between 500 and 600Hz.  In other words

the corrected fixed frequency filter value and correction factor could be combined to give a single

gain factor to be applied to each sensor input (see Equation (5.21)), independent of the operating

frequency.  In this way a "modal filter" implementation, albeit with somewhat limited

performance, could be constructed by simply delaying and weighting each sensor input, without

the need for any explicit "filtering" at all.
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Figure 5.20 Primary and controlled radiated sound power, minimising the 1st & 2nd
transformed modes decomposed with corrected and fixed frequency (100Hz)
modal filters.

Figure 5.21 Attenuation by minimising the 1st and 2nd transformed modes decomposed
with corrected and fixed frequency (100Hz) modal filters.
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5.4 EXPERIMENTAL VERIFICATION

5.4.1 PROCEDURE

A rectangular steel panel of dimensions 380mm x 300mm, and thickness h=1.942mm was

mounted in a heavy steel frame using spring steel shims to approximate simply supported

boundary conditions.  The panel was placed in the centre of a large wooden baffle in an anechoic

chamber (see Figure 5.22).  A Brüel and Kjær 4810 electrodynamic minishaker was used to

excite the panel at (35mm,103.3mm) through a thin spring steel stinger and ball joint to eliminate

any bending moment that may have been present due to misalignment.  A Brüel and Kjær 8200

force transducer was attached to the panel between the stinger and the panel and connected to a

Brüel and Kjær 2635 charge amplifier and a Brüel and Kjær 2034 signal analyser to measure the

input force.  A pair of 25mm square piezoceramic crystals were placed one on each side of the

panel at (35mm,0mm) and connected with opposite phases so as to provide a control moment

onto the panel.  Both the primary and control sources were driven from a pair of power

amplifiers, with the piezoceramic crystals requiring a small step up transformer to supply the high

voltage required for their operation.

The acoustic intensity at a distance of 70mm away from the panel was measured using a Brüel

and Kjær 3519 intensity probe powered by a Brüel and Kjær 2804 microphone power supply and

connected to a second Brüel and Kjær 2034 signal analyser.  The intensity probe was mounted

in an X-Y traverse such that it could be remotely positioned at any location in front of the panel

with an accuracy of approximately ±0.5mm.  Custom software was written in TURBOPASCAL 5

to control the X-Y traverse via a PCL Traverse Controller.  The input force and acoustic intensity
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data were recorded via a GPIB interface to the pair of Brüel and Kjær spectrum analysers.  The

software also controlled the signal generator on the second analyser to provide the primary and

reference signals.  The software performed the necessary calculations to determine the sound

power radiated by the panel by measuring the acoustic intensity at a large number of points in

front of the panel.  The primary force magnitude was used to normalise the measured sound

power radiation to that produced by 1N.  A number of preliminary power measurements were

performed to determine the optimum density of intensity measurements that were required to

perform the radiated power calculation accurately, while not requiring obscene amounts of time

to conduct the experiment.  It was determined that seventy intensity measurement points (an array

of ten points in the x direction and seven points in the y direction) provided sufficient

repeatability (±0.5 dB) with an associated measurement time of approximately ten minutes per

single frequency tone.

An array of five inexpensive electret microphones were used as error sensors and mounted at a

radius of 2.0m from the centre of the panel in the positions shown in Table 5.3 above.  The

microphones were powered by a proprietary electret microphone amplifier and power supply, and

adjusted with the use of in-line attenuators to a consistent sensitivity.

The modal filter was implemented with custom software on a modified CAUSAL SYSTEMS EZ-

ANC digital signal processing board (see Section 5.4.1.1 below).  In the cases where direct

acoustic pressure signals were used as the error criterion this board was bypassed (not shown).
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At each measurement frequency the measurement software paused to allow control to be

achieved and optimised using a CAUSAL SYSTEMS EZ-ANC Active Noise Control System.  A

pair of Hewlett Packard four channel digital oscilloscopes (not shown) and a further dual channel

spectrum analyser (not shown) were used to monitor the error signals both before and after the

modal filter to provide some visual evidence that the control parameters had in fact been set to

allow the controller to reach an optimum level of attenuation.  Once minimisation of the error

signals had occurred the controller adaptation was stopped.  The measurement software was

restarted to measure the resulting controlled sound power radiation while a constant output was

used to drive the control source.

Four different control scenarios were tested; control of one, two or five pressure signals (with the

modal filter bypassed) and control of the first and second transformed mode decomposed from

three pressure signals using the modal filter.
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Figure 5.22 Experimental arrangement to measure and actively control radiated sound power.
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Figure 5.23 Modal filter implementation.

5.4.1.1 Modal filter implementation

The modal filters were implemented on a modified CAUSAL SYSTEMS EZ-ANC digital signal

processing board.  In this case a corrected fixed frequency filter was implemented with the

transfer function frequency fixed at 100Hz.  The correction factor was also assumed to be a

constant, using the value at 100Hz, and multiplied by the modal filter magnitudes to give a single

overall gain for each sensor input as discussed in Section 5.3.3 above.

Custom software was written to provide the group delay, appropriate relative gains and signal

summation to produce output signals representing the magnitude of the first and second

transformed modes as shown in Figure 5.23.  The group delay was implemented by using short

FIFO buffers on the first and second input signal channels, sampled at a rate of 6.25kHz.
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(5.24)

5.4.1.2 Panel loss factors

To enable the accurate theoretical calculation of the primary (and hence controlled) radiated

sound power of the simply supported panel, the loss factors of the first nine modes of vibration

of the panels were measured with only the primary electrodynamic minishaker attached and used

to excite the structure.  An accelerometer was fastened at five random locations on the panel with

a lightweight high field strength magnet and the transfer function between the input force

(measured with the force transducer) and the acceleration at the measurement location was

recorded using a Brüel and Kjær 2034 dual channel signal analyser.  Each resonant peak was

examined with a high resolution Zoom FFT analysis over a range of 12.5Hz, such that the 3dB

bandwidth of the peaks could be accurately measured and the loss factor calculated by use of the

relation

The average of the modal loss factors are presented in Table 5.6 below.  The loss factor for

modes above the ninth were assumed to be � =0.01.

5.4.1.3 A comparison of control sources

Initially it was envisioned that a second Brüel and Kjær 4810 electrodynamic minishaker would

be used as the control source as it would closely approximate a point source on the panel and

could produce comparable input levels to the primary source.  An initial assessment of the

primary radiated power was conducted with a second minishaker attached to the structure at

(35mm,0mm) but not operating.  This is compared to the theoretically calculated primary radiated
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Table 5.6

Panel loss factors

Mode
Measured panel

loss factor

1,1 0.0296

2,1 0.0137

1,2 0.0062

2,2 0.0094

3,1 0.0058

3,2 0.0038

1,3 0.0044

4,1 0.0086

2,3 0.0102

power in Figure 5.24.  It can be seen that the measured radiated power corresponds poorly with

that predicted theoretically, particularly between 400 and 500Hz, where a large increase in

radiated power was observed.

A modal analysis was carried out on the panel using the same procedure as that described in

Section 2.5 for two cases; with only the primary minishaker attached, and with both the primary

and control minishakers attached.  The theoretical and measured resonance frequencies of the

modes of vibration of the panel are shown in Table 5.7 below.  With only the primary source and

no control sources attached, the measured resonance frequencies agree closely with those

predicted theoretically, as may be expected given the low additional mass and stiffness of the
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Figure 5.24 Theoretical and measured primary radiated power from a panel with a mini-

shaker control source or a piezoelectric crystal control patch attached.

shaker armature.  However, when a control minishaker was attached, it was observed that the

(3,1) mode of vibration underwent a massive shift in its resonance frequency to 480Hz,

corresponding to the increase in power radiation observed at that frequency.  In this case the (1,3)

mode of vibration could not be identified by the modal analysis.  It is believed that a system

resonance was produced at this frequency either due to the additional mass and stiffness of the

control shaker mechanism or corresponding to a resonance of the aluminium stinger connecting

it to the panel.  Both minishakers were hung by rubber strips in an effort to alleviate this problem,

but negligible change in the resonance frequencies or primary radiated power was observed.
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Table 5.7

Panel resonance frequencies

with and without control sources attached

Mode

Theoretical

resonance

frequency

(Hz)

h = 1.942mm

Measured

resonance

frequency

without control

sources

(Hz)

Measured

resonance

frequency with

minishaker

control source

(Hz)

Measured

resonance

frequency with

piezocrystal

control patch

(Hz)

1,1 86 88 86 89

2,1 185 186 184 188

1,2 244 247 248 246

2,2 343 343 345 343

3,1 349 354 480 354

3,2 507 503 505 503

1,3 508 510 509

4,1 580 584 565 584

2,3 607 602 600 601

4,2 738 746 747 745

3,3 772 772 769 767

As an alternative a pair of 25mm square piezoelectric crystals were bonded with epoxy, one to

each side of the panel centred at (35mm, 0mm).  The piezoelectric crystals were connected with

opposite phases to provide a control moment onto the panel.  Again a modal analysis was

performed to assess the influence of the control source on the resonance properties of the panel,

and as shown in Table 5.7, the piezoelectric crystals had little measurable effect on the resonance

frequencies of the structure.  Furthermore the measured primary sound power radiation now
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closely matched that predicted theoretically, as shown in Figure 5.24.  Although using the

piezoceramic crystals avoided problems with altering the dynamics of the vibrating structure, a

number of associated complications were introduced.  Primarily, the control source was now

distributed over a finite area, rather than a point force, although the size of the crystals was kept

small to curb this effect.  Secondly, the primary input levels to the panel may have been

compromised (ie. reduced to such an extent as to put the maximum achievable attenuation below

the noise floor of the instruments)  to allow for the lower control force possible with the

piezoceramic crystals.  Fortunately these concerns caused no observable effect throughout the

experimental work, and it was left for the third and most unexpected complication, discussed in

the following section, to reduce the preliminary experimental results to nonsense.

5.4.1.4 Piezoelectric crystal electro-magnetic radiation effects

As demonstrated in the previous section, the use of piezoceramic crystals as the control source

(albeit inoperational) allowed excellent agreement between theoretical and measured primary

sound power radiation levels.  When the crystals were first used to control the sound radiation

from the panel however, the resulting measured net intensity always proved to be negative.  A

surface plot of the raw intensity levels measured over the panel during active control is shown

in Figure 5.25.  It can be seen in this figure that the intensity has the greatest negative magnitude

in the region of the piezoceramic crystal actuator, and drops off sharply on every side.  This was

calculated by the Brüel and Kjær 2034 signal analyser by measuring the gradient of the pressure

between two closely spaced microphones on the intensity probe.  The probe was positioned only

70mm from the surface of the panel so that radiation from the edges of the panel would not
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"leak" past the intensity probe.  The close proximity of the microphone pair, in particular the

front microphone, to the high voltages driving the  piezoelectric crystal indicated that

electromagnetic interference from the crystal was producing spurious electric signals from the

probe.  The problem was solved by screening the entire panel with a fine wiremesh screen placed

15mm away from the panel and connected to ground, similar in effect to a Faraday Cage.  The

screen had no effect on the primary sound power radiation from the panel.  Figure 5.26 shows

the raw intensity field in front of the shielded panel, where it is observed that the intensity field

is now relatively even across the surface of the panel with no apparent interference effect near

the piezoelectric crystal.
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Figure 5.25 Intensity at 100Hz over the panel surface without shielding mesh.

Figure 5.26 Intensity at 100Hz over the panel surface with shielding mesh.
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5.4.2 RESULTS AND DISCUSSION

Figures 5.27-5.34 show theoretical and measured power radiation paired with the corresponding

sound power attenuation when active control was applied for cases where the least mean square

pressure was minimised using one, two and five error sensors and the 1st and 2nd transformed

mode.  The theoretical predictions are made in 5Hz increments from 5Hz to 750Hz while the

experimental measurements were recorded in 20Hz increments from 100Hz to 700Hz.  Extra

experimental measurements were taken at points of interest, namely; 190Hz, 350Hz, 510Hz and

590Hz, corresponding to the (2,1), (3,1), (1,3) and (4,1) modal resonances respectively.

Below 100Hz the amount of control achieved in each case was so large, and consequently the

controlled level so small, so as to make their measurement unreliable due to the noise floor of

the instruments.  Between 100Hz and 200Hz controlled levels were still relatively low and

reduced the repeatability of the experiment to approximately ±3dB.  Above 200Hz the

repeatability of the experiment was as low as ±0.5dB, assuming that the electronic controller had

converged to a "similarly" optimum control output.  Therein lay a major difficulty: ensuring that

the convergence, gain, filter length, sample rate and other parameters governing the adaptation

of the control filter were set to produce the optimum control output to minimise the error signals.

Small changes in the setup of the control algorithm could produce as much as 10dB difference

in the amount of attenuation provided at the error sensors, though fortunately measuring the

sound power radiated by the panel effectively diluted the effect of having a particularly low

radiation in the direction of the error sensor, as levels remained (relatively) stable elsewhere.
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Figures 5.27 and 5.28 show the theoretical and measured power radiation and corresponding

sound power attenuation with only one error sensor in the farfield.  Agreement between the two

is generally very good, with the measured power attenuation slightly lower than that predicted

theoretically, due to the finite precision of the controller.  The measured resonance of the (1,3)

mode at 509Hz allows a very large attenuation which is not shown by the theoretical predictions

because they are made at 505Hz and 510Hz with the theoretical resonance frequency lying

between them at 507Hz.  This large attenuation at 510Hz is evident for all of the error criteria.

Figures 5.29 and 5.30 show the theoretical and measured power radiation and corresponding

sound power attenuation with two error sensors in the farfield.  Again the agreement is good,

however at 120Hz and 140Hz it proved difficult to achieve good control.  Similarly with five

error sensors (Figures 5.31 and 5.32) control at 120Hz was difficult to optimise and measure,

whilst elsewhere agreement is good.

When minimising the 1st and 2nd transformed modes (Figures 5.33 and 5.34) there is good

agreement between theoretical predictions and measured data.  Spurious results occur here at

480Hz, where applying even a small control force resulted in a large change of input impedance

seen by the primary source.  In practice this produced large changes of input force and

correspondingly large changes in the observed sound field, which often led to overloading of the

inputs of the modal filter, the EZ-ANC and even overdriving of the primary minishaker.  This

led to difficulties in achieving either stable or optimum control at this frequency.
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Before comparing between error criteria a few general observations need to be made.  In general

it was aimed to achieve between 35-40dB attenuation at the sensor for the single error sensor,

10-20dB attenuation at each sensor with two or five sensors and 15-25dB attenuation when

minimising the transformed modes.  In particular with the single sensor, the amount of control

achieved at the error sensor was always high and did not correspond well to the overall power

attenuation.  With two or five error sensors it was more apparent that good control could not be

achieved at some frequencies, and when minimising the transformed modes it was clear that at

some frequencies no control could be achieved at all, with no corresponding reduction of the

error signals.  Furthermore with fewer sensors it was easier to ensure that the controller

parameters were set to allow the optimum control output to be reached, by observing the

reduction in error signal levels on the oscilloscopes and signal analyser.  When five sensors were

implemented it proved to be very difficult task to visually assess the "optimality" of one set of

parameters as compared to another.  As an adjunct to this it should be noted that having more

error sensors acted to increase the stability of the system, and in some small way compensated

for this problem.

A theoretical comparison between minimising one and five pressure sensors and the 1st and 2nd

transformed modes are shown in Figures 5.35 and 5.36.  There it can be seen that minimising

pressure at five sensors and the transformed modes guarantees that the maximum attenuation

capable with the given control source location is achieved.  Minimising only one pressure sensor

in the farfield is between 3dB and 5dB worse.  Above 650Hz all error criteria afford little overall

control, and one sensor performs comparably with the "better" error criterion.  It is also clear that
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no control is achievable with any error criterion at 245Hz, as the control source lies on a node

of the (1,2) modal resonance.  Corresponding experimental results are shown in Figures 5.37 and

5.38 and, though cluttered due to the small differences in levels expected between error criteria,

a number of trends are clearly evident.  Except for a few spurious results discussed previously

the sound power attenuation achievable when using five sensors or the transformed modes is

clearly greater than using a single sensor.  At frequencies above 550Hz controlling the

transformed modes does not perform well, as expected.  Additionally, the attenuation levels

achieved by controlling five sensors and the transformed modes are of a similar level.  This is

of interest because although the levels are comparable, the latter were achieved using only two

channels on the electronic controller.

With this in mind Figures 5.39 and 5.40 show theoretical results for the two cases where only two

error channels are minimised by the control system, specifically either two farfield pressure

signals or the first and second transformed modes.  These results show that an increase in

attenuation of between 3dB and 4dB can be expected when minimising the transformed modes

at frequencies less than 500Hz.   Corresponding experimental results are shown in Figures 5.41

and 5.42, and show that the expected gains in attenuation are achievable.
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Figure 5.27 Theoretical and measured controlled radiated sound power, minimising pressure

at 1 sensor.

Figure 5.28 Theoretical and measured radiated sound power attenuation, minimising pressure

at 1 sensor.
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Figure 5.29 Theoretical and measured controlled radiated sound power, minimising pressure

at 2 sensors.

Figure 5.30 Theoretical and measured radiated sound power attenuation, minimising pressure

at 2 sensors.
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Figure 5.31 Theoretical and measured controlled radiated sound power, minimising pressure

at 5 sensors.

Figure 5.32 Theoretical and measured radiated sound power attenuation, minimising pressure

at 5 sensors.



0

10

20

30

40

50

60

70

80

90

100

0 100 200 300 400 500 600 700

Frequency (Hz)

S
ou

nd
 P

ow
er

 R
ad

ia
tio

n 
(d

B
)

Theoretical - Primary Radiated Power

Theoretical - 1st & 2nd Transformed Mode Minimised (3 Sensors)

Measured - 1st & 2nd Transformed Mode Minimised (3 Sensors)

-20

-10

0

10

20

30

40

50

60

0 100 200 300 400 500 600 700

Frequency (Hz)

S
ou

nd
 P

ow
er

 A
tte

nu
at

io
n 

(d
B

)

Theoretical - 1st & 2nd Transformed Mode Minimised (3 Sensors)

Measured - 1st & 2nd Transformed Mode Minimised (3 Sensors)

Chapter 5  Acoustic sensing of global error criteria

164

Figure 5.33 Theoretical and measured controlled radiated sound power, minimising the 1st

& 2nd transformed modes decomposed from 3 sensors.

Figure 5.34 Theoretical and measured radiated sound power attenuation, minimising the 1st

and 2nd transformed mode decomposed from 3 sensors.
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Figure 5.35 Theoretical controlled radiated sound power, minimising pressure at 1 and 5

sensors and minimising the 1st and 2nd transformed modes.

Figure 5.36 Theoretical radiated sound power attenuation, minimising pressure at 1 and 5

sensors and minimising the 1st and 2nd transformed modes.
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Figure 5.37 Experimental controlled radiated sound power, minimising pressure at 1 and 5

sensors and minimising the 1st and 2nd transformed modes.

Figure 5.38 Experimental radiated sound power attenuation, minimising pressure at 1 and 5

sensors and minimising the 1st and 2nd transformed modes.
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Figure 5.39 Theoretical controlled radiated sound power, minimising pressure at 2 sensors

and minimising the 1st and 2nd transformed modes.

Figure 5.40 Theoretical radiated sound power attenuation, minimising pressure at 2 sensors

and minimising the 1st and 2nd transformed modes.
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Figure 5.41 Experimental controlled radiated sound power, minimising pressure at 2 sensors

and minimising the 1st and 2nd transformed modes.

Figure 5.42 Experimental radiated sound power attenuation, minimising pressure at 2 sensors

and minimising the 1st and 2nd transformed modes.
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5.5 CONCLUSIONS

The concept of the transformed modes of vibration which contribute independently to radiated

sound power have been introduced.  Their relation to normal structural modes of vibration and

their acoustic radiation patterns have been examined.  Theoretical definitions of modal filters

were developed such that the transformed modal amplitudes (and indirectly the radiated sound

power) could be measured by using a small number of acoustic sensors in the farfield.  Due to

the consistency of the acoustic radiation patterns of the transformed modes over a wide range of

frequencies, the model was extended to enable simpler implementation of the filters.

Theoretical results indicated that, by using a measure of the transformed modes as error criteria

for an active noise control system and by minimising only a small number of the transformed

modes, maximum achievable power reduction could be realised over a wide frequency range.

It was found that if the modal filters were constructed simply by a constant weighting and time

delay applied to the error sensor outputs, rather than by a full frequency dependent

implementation, then good control could be maintained with only a small reduction in effective

bandwidth.

Experimental measurements of actively controlled radiated sound power were performed for four

different error criteria.  The results of the experimental work validated the predictions made

theoretically, and showed that construction of an acoustic sensor to measure sound power

radiation using a small number of filtered pressure sensors is practical.
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For the physical system that was modelled, gains in attenuation of the overall sound power

radiation were not significant when minimising the transformed modes as compared to

minimising five pressure signals.  For this system both were close to the maximum achievable

attenuation given the primary and control actuator locations.  What was achieved however was

a marked reduction in the number of error channels required on the control system to produce

similar levels of attenuation.

The accuracy of the detection of the transformed modes was very good and is primarily governed

by the accuracy of the calculation of the inverse of the normal mode transfer function  (used

in Equation 5.13).  Generally the number of error sensors n  is less than the number of normale

modes considered n , in which case the inverse of the normal mode transfer function matrix ism

underdetermined and needs to be found by a pseudoinverse technique.  The accuracy of this

procedure depends not only on the ratio of the number of error sensors to the number of

contributing normal modes, but on the linear independence of the contributions from the error

sensors.  Mathematically this corresponds to the measurement of the linear independence of the

rows in matrix , commonly called the condition number of the matrix.  Physically this will

depend on the locations of the microphone sensors in the farfield.  As such it does not seem

practical to generalise a criterion for the minimum number of microphones for the accurate

detection of the transformed modes.
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Chapter 6

TRANSFORMED MODES OF MULTIPLE SOURCE SYSTEMS

6.1 INTRODUCTION

In the previous chapter theory was developed to model the acoustic sensing of transformed

modes of vibration, which could be used as an error function to actively minimise the sound

power radiation from a single vibrating panel.  In that case distributed PVDF structural sensors

have been implemented previously to sense the transformed modes (Snyder et al., 1995a),

although it is not apparent that these structural sensors are any more easily constructed (for use

on a 2D structure) than sensors implemented acoustically.  Furthermore the analysis of Chapter

5 allows a fundamental understanding to be obtained of the mechanisms of the acoustic sensing

system and allows a more direct physical comparison of the results obtained with the structural

transformed modes.

In this chapter the theoretical work presented previously is extended to account for cases where

the control source is physically separate from the primary radiating structure (ie. a loudspeaker

or perforated control panel).  A number of modifications are introduced to the theory to account

for the changes to the physical system.
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6.2 THEORETICAL ANALYSIS

The theoretical analysis developed here closely follows that presented in Chapter 5.  The overall

sound power radiated from a multiple panel system is considered as the error criterion.  A

weighting matrix is calculated so that the farfield power can be determined as a function of the

displacement of each normal structural mode contributing to the vibration response of each panel.

The radiated sound power weighting matrix is constructed from the self and cross-weighting

functions of the two panels.  This matrix contains off diagonal terms representing coupling

between the various normal modes.  An orthonormal transformation is applied to the weighting

matrix to diagonalise it so that the resulting matrix can be used to calculate the power

contribution of each transformed mode, which is independent of the contribution of all other

transformed modes.  The measured acoustic field is decomposed by a modal filter to give an

acoustic measure of each of the transformed modes.

6.2.1 PHYSICAL ARRANGEMENT

A vibrating rectangular panel (primary panel) of dimensions L  × L , thickness h and with nx y p

point excitations f  is located on the z = -L  plane.  In front of the primary panel, a second simplyp z

supported perforated panel (the control panel) is installed on the z = 0 plane and is surrounded

by an infinite rigid baffle.  This is identical to the arrangement described in Section 3.2.1 and

shown in Figure 3.1.

6.2.2 GLOBAL ERROR CRITERION

The radiated sound power given by Equation (4.36) can be re-expressed for this multiple source
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(6.1)

(6.2)

(6.3)

(6.4)

system as

where w  is the total modal displacement amplitude vector incorporating both the primary andt

control panels given by

In this case the (n +n ) × (n +n ) multiple source sound power weighting matrix ism m m m

where the  n  × n  submatrices $ , $  and $  are given by Equations (4.37-4.39).  Note thatm m pp cp cc

$ , the primary panel self-weighting matrix is identical to $ defined by Equation (5.2), and ispp

therefore necessarily real and symmetric, as is $  the control panel self-weighting matrix.  Bothcc

these matrices are also sparse, with only the modes with like index pairs exerting a mutual

influence on each other.  The cross-weighting matrix $ , however is dense, complex andcp

hermitian, such that the multiple source weighting matrix is also hermitian.

Diagonalising this hermitian weighting matrix by the orthonormal transformation;

produces the complex orthonormal transformation matrix, Q , with columns representing them

complex eigenvectors of the weighting matrix.  The diagonal matrix of associated eigenvalues,
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(6.5)

(6.6)

(6.7)

(6.8)

� , remains totally real.  Alternatively, it can be determined from the form of Equation (6.1),m

where W is real, and noting that $  is a hermitian matrix that the imaginary components of $m m

can be ignored with no loss of generality, and in this case that the orthonormal transformation

matrix, Q , also remains completely real.m

The farfield sound pressure at n  microphone error sensors positioned at e  (i = 1, n ), resultinge i e

from all of the normal structural modes on both the primary and control panels is given by the

n  × 1 vectore

where  is the n  × (n  + n ) normal mode radiation transfer function matrix given bye m m

The modal radiation transfer functions z  and z  are defined in Equations (4.34) and (4.35)p c

respectively.

Rearranging Equation (6.5) and substituting with Equation (6.4) into Equation (6.1) gives

or

If Q  is truncated as discussed in Section 5.2.2, then  is the n  × n  multiple sourcem tm e

transformed mode radiation transfer function matrix given by
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(6.9)

(6.10)

(6.11)

(6.12)

The error criterion can then be expressed as a quadratic function of the complex control forces

f  as shown in Equation (5.14), with corresponding coefficients;c

and
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6.3 NUMERICAL RESULTS

The numerical analysis undertaken here considers a perforated control panel with a 22x10 array

of holes of diameter d=10mm and spaced a distance L =0.03m away from the primary panel.  Az

single point primary source is located at (35mm,103.3mm) on the primary panel and one control

source is located at (35mm,0mm) on the perforated control panel.  Three error sensors are

positioned in three dimensions as given by Error Sensor Locations No. 1-3 in Table 5.3.

Changing the solid area of the perforates can be expected to have a marked effect on the form of

the modal filters due to their differing radiation properties, making an examination of the

differences here, mostly worthless.  The spacing of the control panel from the primary panel has

been shown in Section 4.3.2 to have a negligible effect on the attenuation levels; however it is

not clear what effect, if any, this may have on the form of the modal filters.  Therefore an analysis

is also undertaken with the control panel spacing set at L =0.01 and 0.05m, to observe the effectz

of the panel spacing on the form of the modal filters.

The theoretical work outlined above was programmed in double precision FORTRAN and run on

a SUNSPARC10 computer.  As mentioned in Section 4.3, the calculation of the weighting

submatrices $ , $  and $  was computationally intensive, and so because of computationalpp cp cc

restraints only the first 20 modes of vibration are considered here.  Theoretical modal resonance

frequencies below 1000Hz of the primary panel and the perforated control panel are shown in

Table 4.2.
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Figure 6.1 Eigenvalues of the first five transformed modes of a multiple source arrangement

radiating into free space as a function of frequency.

6.3.1 TRANSFORMED MODE RADIATION EFFICIENCY

Of primary interest is the relative magnitude of the eigenvalues of the transformed modes, which

represent their corresponding radiation efficiency.  These are shown, for the first five transformed

modes, in Figure 6.1.  When compared to the eigenvalues of the transformed modes of a single

radiating panel (Figure 5.6) it is observed that the 4th and 5th transformed modes of the two

panel system have a much larger influence on the overall radiation levels.  Whereas with a single

panel the high power radiating normal modes (generally the (odd,odd) modes) were limited

exclusively to the 1st or 2nd transformed modes (see Table 5.2), due to the cross-weighting

functions inherent with multiple panels, they now make small contributions to these higher order

transformed modes, increasing their relative radiation efficiency.
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6.3.2 CONTROLLING T RANSFORMED MODES COMPARED TO TRADITIONAL

ERROR CRITERIA

Figures 6.2 & 6.3 show the controlled sound radiation levels and corresponding attenuation levels

when the radiated sound power and the 1st and 2nd Transformed Modes (decomposed from three

farfield error sensors) are minimised.  As was evident in the previous chapter, controlling the

transformed modes is highly effective at low frequencies and produces attenuation within 1dB

of the maximum that can be expected given the control force location.  At higher frequencies

however, there are a few lapses in control, until at about 500Hz and beyond it can be seen that

minimising the transformed modes mostly serves to increase the overall radiated power.

Given the increased importance of the 4th and 5th transformed modes demonstrated in Section

6.3.1, it appears that more transformed modes need to be considered to allow the minimisation

of radiated sound power from multiple sources over a wide frequency range.
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Figure 6.2 Primary and controlled radiated sound power by minimising the 1st and 2nd

transformed modes decomposed from 3 sensors.

Figure 6.3 Maximum attenuation and attenuation achieved by minimising the 1st and 2nd

transformed modes decomposed from 3 sensors.
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6.3.3 MULTIPLE SOURCE MODAL FILTER RESPONSE

The response of the modal filter required to decompose the 1st and 2nd transformed mode from

three farfield error sensors is shown in Figures 6.4-6.7.  There are a number of important

differences between these modal filters and those of a single radiating panel (shown in Figures

5.15-5.18) discussed below.  These are caused by the addition of the cross coupling between the

two panels.

For the 1st transformed mode there is a much increased contribution from the second error sensor

(Figure 6.5).  Coupled with this is a marked variation in the relative amplitudes at higher

frequencies that was not apparent with only a single panel.  The relative phase shift between the

three sensors is also no longer linear, but incorporates a slight nonlinearity.  Moreover, the

relative phase shift is not the same for both transformed modes, and would require separate time

delays to be implemented for each transformed mode.

The 2nd transformed modal filter magnitude is also clearly a nonlinear function of frequency,

with the second sensor contributing very little to the detection of the mode at around 250Hz.

This has been caused by changes in positions of the nodes in the radiation patterns of the

transformed modes, and has also resulted in a sudden change in importance of the contribution

of the 1st and 3rd sensors to the detection of the transformed mode at that frequency.
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Figure 6.4 Phase response of the modal filter required to decompose the 1st transformed mode

from 3 farfield sensors.

Figure 6.5 Amplitude response of the modal filter required to decompose the 1st transformed

mode from 3 farfield sensors.
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Figure 6.6 Phase response of the modal filter required to decompose the 2nd transformed mode

from 3 farfield sensors.

Figure 6.7 Amplitude response of the modal filter required to decompose the 2nd  transformed

mode from 3 farfield sensors.



1.0E+0

1.0E+1

1.0E+2

1.0E+3

1.0E+4

1.0E+5

1.0E+6

1 10 100 1000

Frequency (Hz)

F
ilt

er
 M

ag
ni

tu
de

1st Transformed Mode

2nd Transformed Mode

Chapter 6  Transformed modes of multiple source systems

183

Figure 6.8 Amplitude response of the correction filter, X , for the 1st and 2nd transformedm

modes decomposed from 3 farfield sensors.

6.3.4 MULTIPLE SOURCE TRANSFORMED MODE FREQUENCY CORRECTION

It is also possible, in the case of multiple sources, to implement a corrected fixed frequency

modal filter by applying a correction filter, X , following the analysis of Section 5.2.3.  In thism

case the correction filters for each transformed mode are of the form shown in Figure 6.8.

Although both are nearly linear up to 250Hz, the 2nd transformed mode's filter is not nearly as

well behaved above 250Hz as the correction filter for a single panel (shown in Figure 5.19),

though this may limit its effective bandwidth, it is worthwhile recognising that the second

transformed mode's contribution to the radiated sound power here is shown to be nearly two

orders of magnitude lower than that by the 1st transformed mode.
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6.3.5 EFFECT OF PANEL SPACING ON THE MODAL FILTER RESPONSE

The effect of the spacing, L , between the perforated control source and the primary panel on thez

modal filters is shown in Figures 6.9-6.12.  The effect at low frequency is observed to be

negligible, however at frequencies above 300Hz large deviations in the both the phase and

magnitude of the filters can occur.  In particular, the position of the sharp drop in influence of

the 2nd sensor on the detection of the 2nd transformed mode changes by about 30Hz, shown in

Figure 6.12.  This is likely due to small changes in the position of the nodes in the acoustic

radiation pattern of the 2nd transformed mode.
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Figure 6.9 Phase response of the modal filter (to decompose the 1st transformed mode) with

perforated control panels spaced at L =0.01 and 0.05m.z

Figure 6.10 Amplitude response of the modal filter (to decompose the 1st transformed mode)

with perforated control panels spaced at L =0.01 and 0.05m.z
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Figure 6.11 Phase response of the modal filter (to decompose the 2nd transformed mode)

with perforated control panels spaced at L =0.01 and 0.05m.z

Figure 6.12 Amplitude response of the modal filter (to decompose the 2nd transformed

mode) with perforated control panels spaced at L =0.01 and 0.05m.z
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6.4 CONCLUSIONS

The transformed modes of vibration of a multiple source system that contribute orthogonally to

the overall radiated sound power have been examined for the case of a pair of closely placed

rectangular panels.  Modal filters were developed to enable the measurement of the transformed

modes, and therefore the radiated sound power, by using a small number of acoustic sensors in

the farfield.

A number of important differences were observed between the transformed modes and hence the

modal filters used for a multi-source system as compared to radiation from a single source system

(analysed in Chapter 5).  In particular, a larger number of transformed modes were identified as

being significant contributors to the radiated sound power, manifest by a larger number of

important eigenvalues of the transformed modes.  This had implications upon the amount of

attenuation that could be achieved by minimising only the first two transformed modes, which

while excellent at low frequencies, proved non-optimal at higher frequencies, when more higher

order transformed modes needed to be considered.

The form of the modal filter's amplitude and phase response was more nonlinear than those for

a single radiating panel.  In particular the phase response of the filters were not only nonlinear,

but different for each of the transformed modes.

A corrected fixed filter implementation was also shown to be viable, over a reduced frequency

range compared with that for a single radiating panel.
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Finally, the spacing between the control panel and the primary radiating panel was observed to

have a significant effect on the form of the modal filter at higher frequencies.



Chapter 7  Conclusions

189

Chapter 7

CONCLUSIONS

7.1 CONCLUSIONS

The application of a perforated panel as an acoustic control source for use in actively controlling

the noise radiated by structures has been examined.  Initially the relationship between the

resonance frequencies of a perforate and a solid panel of corresponding thickness and size were

determined.  This provided an effective resonance frequency ratio so that the acoustic radiation

properties of the perforate could be modelled accurately.

A number of modified classical analyses were applied to calculate effective material properties

for perforates that fell within certain geometric bounds, and then to predict their resonance

frequencies.  A F.E.A. was also used to theoretically predict resonance frequencies.  It was found

that these two different methods did not agree well, except when the panel perforation geometry

was regular, and the size and number of perforations was small.  An experimental modal analysis

on a small number of panels validated the numerical results of the F.E. Analysis rather than either

of the modified classical analyses.  A two dimensional cubic function was fit to the F.E.A. results

so that the effective resonance frequency ratio of a perforate could be calculated for a wide range

of perforation geometries.  The effective resonance frequency function so determined was only

slightly non-linear, as opposed to that predicted by modified classical analyses which were clearly
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nonlinear.

A theoretical model was developed to investigate the feasibility of controlling low frequency

sound radiated from a vibrating panel with a perforated control panel placed closely in front of

it.  Each hole in the perforate was assumed to radiate as an air-piston, driven by the pressure in

the cavity behind it and therefore coupled to the displacement of the primary panel.  This work

was complex, computationally demanding and did not prove to model the achievable sound

pressure reductions at all well.  This was believed to be because the assumption that a constant

pressure was acting throughout the cavity between the two panels did not hold, a view supported

by experimental measurements.

In view of the poor performance of this coupled model, a simpler analysis was undertaken, where

it was assumed that the primary and control panel's radiation were acoustically uncoupled.  This

proved to be much more satisfactory in predicting attenuation levels that could be attained

experimentally.  Theory was developed to predict the resulting pressure field when the least mean

square pressure was minimised in the farfield, and to predict the overall radiated sound power

when it was used as an error function.

This analysis was used to show numerically that perforates could provide good levels of global

noise attenuation at low frequencies, though they were not as effective as Active Structural

Acoustic Control applied directly to the radiating panel's surface.  The spacing of the control

panel (provided that it was much less than a wavelength) from the primary panel was shown have
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negligible effect on the amount of control that could be achieved or the magnitude of the control

forces required.  

The fact that the perforated panel has proved effective at controlling the radiation of the primary

panel is partly attributable to the fact that the modal densities of the primary and perforated

control panels are roughly comparable.  If the modal densities of the primary structure and the

control panel were very different it would require much more careful thought as to the design of

the control panel (in terms of its thickness, hole density and size) so that the resonance

frequencies were in some respect aligned with the primary radiating modes of the primary

structure.

The control forces required to attain the attenuation were in general, much lower than required

for direct structural control, and for large heavy structures controlled by (relatively) lightweight

control panels, the difference in control force magnitude would be considerable.  The precise

control force magnitude is difficult to quantify and is highly dependent on the physical design

of the perforate, and its corresponding acoustic radiation properties.  It is clear that perforates

with a high solid area in general require a much lower control effort than low solid area

perforates.  The control effort is however, also closely related to the perforates resonance

properties, which can be somewhat controlled by the size, thickness and perforation geometry.

This leads to interesting situations where highly perforated (low solid area) panels may require

a smaller control effort than lightly perforated (high solid area) panels, due to the matching of

different modal resonance frequencies between the control and primary panel, coupled with a
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corresponding mismatching of resonance frequencies between the lightly perforated control panel

and primary panel.

In designing perforated control panels then, it will be necessary to optimise the physical structure

to provide a high level response and radiation efficiency at the frequencies of interest, whilst still

allowing ventilation of the controlled structure.

An added advantage of the perforated panel control sources is that they are environmentally

robust, compared to traditional loudspeaker sources, which in most cases require regular attention

to prevent mould growth, weather damage or other deterioration.

The level of attenuation that may be achieved is often limited, not by the control source, but by

the measure of the error criterion.  The use of modal filtering of traditional acoustic signals to

provide a direct measurement of the total radiated acoustic power, for use as the error criterion

for the control system to minimise, was investigated for a single radiating panel with direct

structural control.  The transformed modes of vibration of the structure were defined, and shown

to represent a set of independent contributors to the radiated sound power.  Decomposing the

sound field radiated by these transformed modes allowed the construction of a modal filter that

could be used to measure the transformed modes directly from the acoustic field.  Due to the high

radiation efficiency of the first few transformed modes, their measurement could be used directly

as an estimate of the radiated sound power with little error.
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It was shown numerically that minimising the first transformed mode was identical to minimising

the radiated sound power at low frequencies.  To achieve similar levels of control above 300Hz,

both the first and second transformed mode needed to be minimised.  For the physical

arrangement described, there was little advantage in decomposing the transformed modes from

five, rather than three error sensors.

Notwithstanding this, there are still advantages to be gained using more sensors in the farfield,

as the estimate of the transformed modal amplitude, and hence the radiated sound power, will

be improved.  This points to what has appeared as the main advantage of minimising the

transformed modes rather than the LMS minimisation of pressure; a reduction in the number of

error channels required by the control systems signal processing hardware.  Apart from reducing

the cost of the control system, this reduction in the number of control channels leads to gains in

the speed and stability of convergence to an optimum control signal.

Furthermore, it may be possible that there is a reduced sensitivity of the controlled sound power

levels to the position of the error sensors in the farfield when compared to the minimisation of

LMS pressure.  This could lead to an advantage of this type of error sensing scheme whereby the

sensors could be positioned in convenient locations with little degradation of performance, rather

than those demanded by the requirements of the control system to achieve acceptable control.

The advantages of controlling the radiated sound power rather minimising the LMS pressure

were disappointingly meagre, particularly for the cases of between three and five error sensors
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for which minimising the two different error functions produced a similar result.  It is expected

however, that for the case of radiated sound power minimisation the controlled sound field would

be much more uniform, without the large local minima at the positions of the error sensors which

is a characteristic of pressure squared minimisation.

The form of the modal filter for sound power minimisation by way of transformed modes was

such that it could be implemented over a wide frequency range without any explicit frequency

dependent filtering at all.  By taking the values of the filter at single frequency and then applying

a correction factor, a single weighting and time delay were determined for each error sensor

signal.  The error signals were then summed together to give a measure of each transformed

mode.  This produced attenuation levels that were as good as a fully implemented modal filter

system around the selected frequency and deviated by only a few dB at other frequencies.

Experimental results were obtained by implementing a modal filter system and measuring the

primary and controlled sound power radiation levels from a single rectangular panel using an

intensity probe.  These results showed excellent agreement between the controlled levels

predicted by the theory and attained by controlling the panel with ASAC while minimising the

LMS pressure at a number of sensors, and minimising the radiated sound power (by minimising

the 1st and 2nd transformed modes).

The theoretical work was then extended to define the transformed modes of a multiple radiator

arrangement consisting of a solid panel primary source and a perforated panel control source.
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Modal filters were derived to decompose the amplitude of the transformed modes from acoustic

measurements in the farfield.  While similar in form to the modal filters required for a single

radiating panel a number of differences were apparent.  The number of transformed modes that

needed to be considered to accurately measure the radiated sound power was increased.  An

increased nonlinearity in both the magnitude and phase response of the filters was observed,

particularly at higher frequencies.  The spacing between the control panel and the primary panel

was shown to have significant effects on the magnitude response of the modal filters.  This was

somewhat unexpected as the spacing had little effect on the overall levels of control that could

be achieved, or the magnitude of the optimum control force.

To calculate the transformed modes of vibration of a structure the normal structural mode shape

functions must be known.  For structures used in practice, where these cannot be determined

analytically, methods such as Finite Element Analysis can used.

The two techniques described in this thesis have been independently shown to allow

improvement of the performance of active noise control systems, compared to using traditional

acoustic sources or error criteria.  Practically, the improvements offered would manifest

themselves not only by greater levels of control, but by better global control and a greater

robustness of both the physical and signal processing components of the control system.
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7.2 RECOMMENDATIONS FOR FUTURE WORK

It appears that the magnitude of the modal filter (used to decompose the acoustic radiation pattern

of the transformed modes of vibration) may be exploited in such a way to provide a measure of

the ability of any particular error sensor location to represent a measure of the sound power

radiation from a structure.  This may lead to a method for optimising the positions of farfield

error sensors, such that little or no explicit filtering is required to determine an acceptable

measure of radiated sound power.  For example, the second transformed mode of a rectangular

panel may be adequately measured by a small number of symmetrically placed sensors, with no

relative gain shift and a simple 180° phase shift.  Alternatively, an analysis of the sensitivity of

the amount of control achievable to the error sensor locations could indicate that minimising the

transformed modes allows for a system where sensors could be located in 'convenient' locations

with little degradation of the performance of the system.

The ongoing problem of an acoustical sensing systems' susceptibility to environmental

conditions, in particular with outdoor applications like substation transformers which are subject

to wind and traffic noise, remains here.  It is not apparent, however, that an acoustic power mode

sensor would be affected more adversely than a traditional pressure sensor.  Practical applications

may require that the acoustic sensor be used in conjunction with appropriately weighted structural

sensor measurements, though it has yet to be shown that even PVDF film sensors themselves are

suitably robust for field applications (particularly on very hot or cold surfaces).  Clearly more

work is required on this.
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While considering a practical implementation of sound power measurement and control systems

it is recognised that there will be situations when minimising the radiated sound power may not

be desired.  This may occur when it is desired to provide high levels of noise reduction in a single

direction, namely a particular complainant's location, without regard for increased overall

radiation.  The use of a different type of transformed mode may prove useful in this case.
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(A.1)

(A.2)

(A.3)

(A.4)

(A.5)

APPENDIX  A

For a solid rectangular panel of dimensions L  × L  and displacement w, the farfield pressure atx y

angular frequency 7 is described by the Rayleigh integral

Equation (A.1) can be rewritten as

where z is the pressure transfer function matrix given by

where 4(x,y) is the mode shape function of the panel evaluated at position ) = (x,y) on the panel

surface and r  is the distance of element dy dx to the observer location r  = (r,�,1) with elevationp

�, and azimuth 1.  The distance r  is given byp

where
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(A.6)

(A.7)

(A.8)

(A.9)

and

Replacing r  in the denominator of Equation (A.3) by  gives negligible error in the result andp

enables evaluation of this transfer function over the total area of the panel as (Wallace, 1972;

Snyder and Tanaka, 1993b)

In the case of the perforated panel, in order to perform the integration over the area of the solid

part of the panel the transfer function needs to be evaluated over the total area of the panel and

then have the contributions corresponding to each hole subtracted.  Wallace's result (Equation

(A.7)) cannot be used to determine these hole contributions; instead, it is necessary to evaluate

the integral numerically over the range of values of x and y which describe the position of the

holes on the panel.  Thus, if the radiation transfer function vector for a small region of the panel

x  � x � x , y  � y � y  is re-expressed as1 2 1 2

then z(r) can be found analytically as
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(A.10)

(A.11)

(A.12)

(A.13)

with the coefficients;

and
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