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Abstract
Batch processing is a means of improving the efficiency of transaction processing systems.

Despite the marurity of this field, there is no rigorous theory that can assist in the design of
batch systems. This thesis proposes such a theory, and shows that it is practical to use it to
automate system design. This has important consequences; the main impediment to the wider
use of batch systems is the high cost of their development and maintenance. The theory is

developed twice: informally, in a way that can be used by a systems analyst, and formally, as a

result of which a computer program has been developed to prove the feasibility of automated

design.

Two important concepts are identified, which can aid in the decomposition of any system:

'separability', and'independence'. Separability is the property that allows processes to be

joined together by pipelines or similar topologies. Independence is the property that allows

elements of a large set to be accessed and updated independently of one another. Traditional

batch processing technology exploits independence when it uses sequential access in preference

to random access. It is shown how the same property allows parallel access, resulting in speed

gains limited only by the number of processors. This is a useful development that should assist

in the design of very high throughput transaction processing systems.

Systems are specified procedurally by describing an ideal system, which generates output and

updates its internal state immediately following each input event. The derived systems have the

same external behaviour as the ideal system except that their outputs and internal states lag those

of theideal system arbitrarily. Indeed, their state variables may have different delays, and the

systems as whole may never be in consistent state.

A'state dependency graph' is derived from a static analysis of a specification. The reduced

graph of its strongly-connected components defines a canonical process network from which ali
possible implementations of the system can be derived by composition. From these it is
possible to choose the one that minimises any imposed cost function. Although, in general,

choosing the optimum design proves to be an NP-complete problem, it is shown that heuristics

can find it quickly in practical cases.
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L. Introduction

1.1 The Aim of the Thesis

Consider the process graph of Figure 1.1.1, in which the rectangles represent processes, and

the edges represent data-flows connecting them. Data flows in the direction of the arro\rys.

DataflowsbetweenAandB in both directions; they are said to be 'strongly connected'. Data

flows between B and C in one direction only; they are said to be 'separable'. Data doesn't flow
between C and D at all; they are said to be 'independent'. A and D are separable, not
independênt. There is a directed path from A to D via B.

FrcuRs 1.1.1: A PRocESs GRepH

Under certain general assumptions, these simple distinctions turn out to be all-important in the

design of systems, for the following reasons: Process B can be linked to process C by a queue,

allowing flexible scheduling of the two processes. One option is for B and C to execute

concurrently, with the queue implemented as a buffer, smoothing fluctuations in demand.

Another is to aÌlow C to execute on a different day of the week from B, with the queue

implemented as a sequential file. Processes C and D can be scheduled even more flexibly, with
C before D, C after D, or both executing in parallel. However, A and B can only execute in
close synchronisation, no queues can be used, and little useful parallelism can be achieved.

These distinctions are useful in the design of systems of many kinds. They certainly prove

important for the design of information systems. Chapter 3 shows how the parallelism obtained

by exploiting separability and independence allows massive speed-up. High throughput is

needed in major banks and clearing houses, which may process of the order of 10 to 100

million transactions overnight. Ttris demands a throughput of up to 3,000 transactions per

second. Given that current technology allows less than 100 updates to a hard disk per second,

one must clearly exploit parallelism - or some equivalent technique - for such systems to

succeed. It turns out that an equivalent technique indeed exists, and has existed for a very long
time. The technique is known as batch processing.

Because of their efficiency, batch systems are the heavy production lines of the information
processing industry. They are costly to design and implement, yet there is no existing formal

theory underlying their construction. The aim of this thesis is to provide that foundation, and to

show that it is feasible to develop tools to generate complete batch systems from specifications.

Such tools would revolutionise a major programming activity by making batch processing

1
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Introduction

systems cheap to write. This in turn would make the high efficiency of batch systems
affordable to a wider class of users.

It has been estimated that ove¡ 150 billion lines of Cobol code are in current use today, and
about 5 billion lines a¡e added each year [Saade & Wallace 1995]. Cobol accounts for over
50Vo of the application code being written. Since interactive database applications are handled
so much more easily by database management systems, it is fair to assume that most Cobol
code implements batch processing systems.

This thesis makes two main contributions to the study of batch processing: it describes a
formal technique that can be used to design batch systems from specifications, and it shows
how its basic ideas can be adapted to implement massively parallel contention-free database
systems. Here, a 'design' means a network of processes, similar to Figure 1. 1. 1.
Collectively, the processes implement the requirements of the specification. The thesis goes on
to describe a program that can design systems automatically, automating a task that presently
requires the skills of an experienced systems analyst. (The remaining claims of the thesis are
listed in Section 1i.4.)

System design is currently a black art. To anyone with experience of designing batch inform-
ation systems, an ability to design them automatically may seem a rema¡kable claim. This is not
to deny that there a¡e useful design methodologies that can assist a designer, but it is also
accepted that they need the designer to have a good measure of intuition or experience. The
better ones, [DeMarco 1978, Jackson 1983] for example, present the design process as a series
of transformations, from problem 1o soh¡tion. The designer has merely to choose the correct
series. Unfortunately, there are many design choices, so the design problem is combinatorially
complex. Design must proceed with a sense of direction and purpose, which curently only an
experienced human designer can provide.

Existing methodologies consider design basically as a process of decomposing the specificat-
ion into component processes. No tractable algorithm is known that can design a batch system
by decomposition. In contrast, the thesis treats design as a process of composition from
'primitive processes'. Every specification has a canonical decomposition into primitive
processes. All feasible designs may be derived from this canonicai form by pair-wise
compositions. One way to express the difference is to say that the new approach is 'bottom-up'
rather than'top-down'.

It is admitted that choosing the best of these designs is also, mathematically speaking, an
intractable problem, but the thesis demonstrates that simple heuristics can usuaily determine the
best solution in a reasonable time. Some specifications can lead to highly efficient designs,
some can only lead to inefficient ones. The thesis shows that this is an inevitable consequence
of the specification, not a question of the designer,s ingenuity.

Given a tool that can derive system designs from specifications, what becomes of the role of
the systems analyst or designer?

2



Inuoduction

It turns out that the canonical decomposition of a batch system depends on small details of its
specification. These details may have a major impact on the performance of the resulting
system. It becomes the designer's role to understand how these details affect effìciency and to
choose the specif,rcation accordingly. In one case the designer might adjust the details of an

algorithm, in another the designer might change the way facts are represented in the database, in
a third case the designer, taking the role of systems analyst, might have to negotiate with the

client to change a system requirement.

In fact, there is nothing new here; system designers already do these things. However, at the

present time, they have no theory to back them up. There are two practical consequences of this

lack: One is that errors creep into system designs, which only become appa-rent during
programming or debugging, and which are sometimes impossible to conect without completely
redesigning the system. The second is that although individual transactions are processed

correctly, subtle processing errors arise involving interacting sels of transactions, so that, for
example, a query may observe the database in an inconsistent state. Sometimes these errors are

latent for long periods, only being discovered after many months or years of operation. In
contrast, the methods of this thesis are based on a strict notion of correctness, referred to as

'real-time equivalence', which gua-rantees that the design is error-free - or at least, no more

erroneous than its specification.

1,.2 Transaction Processing Systems

The two key elements of a transaction processing system are a database, which stores

information, and transactions, which update the state of the database. A third element is that the

database usually models some real-world situation. Questions about the real world can then be

answered by inspecting the model. It is typically cheaper to inspect the model than it would be

to observe the real-world system itself. For example, a bank can check its financial situation
simply by consulting its books - it does not have to count all the money in its vaults. Indeed,
if it were not for modelling cash by entries in ledgers, a bank would have to keep every

customer's money in separate boxes. In this case, the model actually replaces an aspect of the

real world. There are some situations where only a model will do; for example, an airline
reservation system is concerned with predicting which passengers will occupy aircraft seats in
the future - the future cannot be observed any other way than by modelling it.

Transaction processing systems have long been responsible for driving the development of
information processing technology. Indeed, it appears that the Sumerians invented writing
precisely to keep track of business transactions [Friberg 1984]. Transaction processing

systems were quick to exploit the invention of the Hollerith punched card machine in the

1890's, and drove its subsequent development - which became integrated with that of early

computers - until the late 1970's. More recently, through bank teller machines, EFTPOS,
airline reservation systems, and so o[, transaction processing systems have become

geographically dispersed, and have fuelled a demand for faster data communications.

3
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Transaction processing systems should guarantee the four so-called ACID properties [Haerder
& Reuter 1983, Krishnamurthy & Murrhy 1991, Gray & Reuter 19921:

Atomicity: Failed transactions do not produce side-effects: either a transaction completes its
action on the database, or it has no effect.

Consistency: A transaction moves the database from one consistent state to another.

Isolation: A transaction depends on other transactions only through the changes they make to
the database.

Durability: After a transaction completes, the changes it made to the system state persist
indefinitely.

Even if a system lets many transactions be processed concurrently, these properties ensure
that its current state may always be derived from its initial state by applying transactions one by
one. This property is called 'serialisability'. Serialisability greatly simplifies the semantics of
transaction processing by guaranteeing that the effect of a transaction depends only on the state
of the database, and not on any concurrent transactions. Of course, transactions may still
interact. Ifone person books the last seat on an aeroplane, a second person cannot also book it.
However, the interaction occurs purely because the first transaction makes the number of free
seats in the database become zero, so, to a first approximation, neither transaction needs to be
aware of the other. But it is only to a first approximation, because, if the two transactions are
concurrent, they must actively avoid interaction in some way. Typically, the hrst transaction
will lock part of the database, the second transaction will detect the lock, and back off.

1.3 Batch Systems

There are broadly two kinds of transaction processing system, onJine and batch. In an on-
line system, transactions update the database as the real-world changes that they model actually
occur. In some cases they may record a change soon after it has taken place; in others they may
even be a contractual part of the change - you can't book a seat on a piane or at the theatre
unless a computer model shows that it is free. A batch system is one where the database is
updated less often; the transactions are recorded as they occur, but the database is not changed
until late¡. But when it is changed, a whole batch of recorded transactions is processed at one
time. In batch systems, it is typically unnecessary to inspect the database to satisfy the
contractual requirements. Either the update can proceed without regard to the state, or more
usually, there is physical evidence that the transaction is valid. For example, if you want to buy
a loaf of bread at the supermarket, it is enough to present the loaf at the checkout; the checkout
operator does not have to consult an up-to-date inventory database to authorise the sale. The
eventual motive for updating a batch system is usually that someone wants to inspect the current
state of the system. For example, a supermarket may update its inventory database from its
sales transactions when it wants to determine what new supplies it needs.
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V/hy should we ever prefer to be lazy? Why not use on-line updating in every situation?

If one wants to make just one thing, it is best to bring the tools to the work. But if one wants

to make a great many motor cars, radios or wrist-watches, it pays to bring the work to the tools.

Activity centres around a line of workstations that perform single tasks, and the construction of
any given product becomes fragmented, with jobs in progress sometimes waiting for long

periods between stations. It is characteristic of production lines that work is not always carried

out in the most 'logical' order, but in an order dictated by optimising the efficiency of the line.

Indeed, it is often the case that the design of the product is influenced by the means of its
production, so that it can be produced in the fewest steps.

In information systems, a few transactions are most efficiently processed by bringing the data

to the transactions, but if there are many transactions, they are best processed by bringing the

transactions to the data. As a simple illustration, suppose one needs to check a list of words

against a dictionary. If the list is short, it is adequate to find each word at random; but if the list
is long enough, it pays to soft it into alphabetical order, then scan the dictionary systematically

from A to Z. This basic idea was exploited before the computer era, and early computer

systems relied on it heavily. Sequential access media, such as card files and tapes, were once

all that were available, so files had to be scanned in sequential order. Since the 1960's, random

access storage devices, typically magnetic disks, have continued to decrease in price and

improve in performance, and sequential access is no longer a necessity. Indeed, processing

transactions one at a time using random access is usually the method of choice, because it gives

immediate feedback and 'instant' results. Despite this, because of its superior efficiency,
processing large batches oftransactions using sequential access still has a place.

A system may be said to be interactive if its user does not switch to other activities while it is
in use. To be considered interactive, a system should have a response time of less than 5
seconds. Traditionally, batch processing has been non-interactive; eff,rcient batches typically

contain a day's or a week's transactions. Generally speaking, the more transactions there are in

a batch, the greater the efficiency. However, as Chapter 3 will show, when the throughput of a
system is very high, efficient batches can be processed at least once per second.

I.4 The Macrotopian Reference Library

Consider the evolution of the (fictitious) Macrotopian Reference Library's ioans system as it
grows to meet increasing demands. The library does not lend to patrons directly, but only to its
branch libraries. Loans are requested by telephone, by post, or by electronic mail. The loans

system records the numbers of copies of books remaining on the shelves, and the number

borrowed by each user library. Because there is an inevitable delay in delivering the books

themseives, the system does not need to respond interactively.

Each book and each user is associated with an index card. When a user library borrows a

book, the book record must be adjusted to decrement the number of copies on the shelves, and

the user record must be adjusted to increment the number of books borrowed. The library has a
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rule that the last copy of a book must always remain on the shelves, so that it can be consulted
by visitors to the library. However, such visitors cannot themselves borrow books.

In the simplest possible implementation of the system, one library clerk receives the orders,
and adjusts both sets of records as each loan is made. The clerk must f,rrst check that the book
being borrowed is not the last, then increment the number of books borrowed by the user and
decrement the number of copies of the book remaining on the sherves.

Suppose that, as the demand for the library's services increases, the clerk cannot cope with
the work load. During busy periods, the clerk may then merely record the identifiers of the
books and users, and later, during quiet periods, update the file cards from the batches of loan
records. Of course, with such an arrangement, the clerk must be careful not to issue a book
before checking that one will still remain on the shelves. The clerk will soon find that it is more
efficient to sort the loans into card file order, first by title to update the book ca¡d index, then by
the user identifier to update the branch tibrary cards, rather than to search the book and branch
library files at random. The clerk wiil then be using batch processing.

Suppose the library becomes busier still, and it becomes necessary to employ two loan clerks.
They may return to the direct method of recording loans, but since they share the use of the
same index catds, they will need to cooperate in using them, and will sometimes even contend
for the same book or user record. Given enough work, they will again find it easier to record
loans and update the files separately. There are several ways they can do this. One option is
for one clerk to control the book file, and the second clerk to control the branch library file.
This division of work ensures that they will never have to contend for access to record cards.

At this stage, we may represent the library system using the data-flow diagram of Figure
1.4.1. Fromlefttoright,Figure 1.4.1 shows anexternalentity,thelibraryusers, whocreate
'loan requests'; a process that checks and updates the book records, creating a stream of
'approved loans'; and a process that updates the user records. Such data-flow diagrams have
long been used by systems analysts to describe system designs and explore alternatives

[DeMarco 1978]. The diagram is a 'logical' one; it makes no reference to its physical
implementation. The form in which records are stored could be file cards or a computer
database, and the processes could be enacted by humans, by computer, or a mixture of both.
Data-flow diagrams leave these choices open. Figure 1.4.1 also allows the two processes to be
carried out by two different clerks, or by the same clerk. For that matter, it does not specify
whether the system is batch or on-line. However, the data-flow diagram records one important
fact: neither set of records can be updated until the number of books in stock has been checked.

Loar
Requesß

Approved
Loa¡s
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Suppose that the library becomes so busy that more than two clerks are needed. How can

they be used most efficiently?

One option is for the new clerks to record loans, while the existing clerks update the book file

and branch library file. But what if the clerk updating the books f,rle cannot cope? If two clerks

a¡e allocated to updating it, they will need to share its use, and it may prove that two clerks can

work no more quickly than one. But suppose that the books file is split, A-N, O-2. Then the

two clerks can work independently, at double the speed. The same trick can be used to speed

up access to the branch library file, and by splitting the files into more and more parts, the

speed-up can be increased as much as needed.

There is an important principle at work here: as far as the information system is concerned,

the actions on each branch library card are independent of those on every other branch library
card, and the actions on each book card are independent of those on every other book ca¡d. It is
this property of independence that allows the card files to be split into parts that can be

processed in parallel - the same condition that allowed the files to be processed in A to Z
order. However, the independence property could only be exploited after the system was

decomposed into two steps, which relied on the property of separability. This example

illustrates the importance of the two propefies in system design.

The reader might think that it is impossible to design such a simple system badly. However,

consider the data-flow diagram of Figure I.4.2, in which updating the book records has been

separated from checking them. The resulting system will work correctly only for certain

implementations. For example, it will work as planned if each loan is processed completely

before the next loan is started on. It wili also work correctly if loans are processed in parallel,

provided that no two loans can be in progress for the same book. However, it cannot work
correctly as a batch system. Because all updates to 'Stock' take place after all inspections of
'Stock', if there are several requests to borrow the same book, and only two copies remain in

stock, all the loans will erroneously receive approval. In the update process, the number of
copies of the book may become zero or negative. The model would not correspond to a valid

real-world situation.

Loan
Reqwsts

Stock
Updates
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Currently, the design of such batch systems relies on insight and experience. The dominant
methodologies, SASS [DeMarco L978] and JSD fJackson 1983], borh use the dara-flow
diagram as a tool. SASS (Structured Anaiysis and System Specification) begins by analysing
the existing system. Thus, SASS might discover Figure L.4.I by examining a system in which
there were already two clerks in operation. JSD (Jackson System Development) begins by
considering the communications needed between the objects modelled by the system, which it
calls 'entities'. It is essentially an object-oriented design method. Both approaches recognise
that system design is a matter of transforming a simple but inefficient design into an efficient but
more complex one, but they offer little advice about which transformations should be chosen,
other than by appeal to experience and common sense.

In contrast, the objective of this thesis is to show that both the architecture and detailed design
of an efficient batch system can be derived rigorously from its specification. Not only that, but
the central design problem is computationally tractable. This design process yields a canonical
decomposition of a proposed system into its smallest possible processes. The canonical decom-
position is usually close to the optimum. In the case of the Macrotopian Reference Library,
Figure 1.4.1 represents the canonical decomposition.

A design may be optimised with respect to a suitable cost function by combining pairs of
processes derived in the canonical decomposition. The nature of the cost function will depend
on external factors, for example, whether it is important to optimise throughput or response
time' In theory, the optimisation problem is computationally intractable. In practice, it is small
in scale and quickly solved by heuristics. For the Macrotopian Reference L1brary, assuming
that it does not have to deal with users interactively, Figure 1.4.1 is the design that optimises
throughput. The only alternative design is to combine its two processes into one, which will
usually optimise response time.

In what follows, we refer to the method presented here as the 'Canonical Decomposition
Method', or 'CDM' for short. The method was first outlined in an earlier report fDwyer Igg2],
and a more up-to-date version appeared in [Dwyer 1998].

1..5 Modelling the Library

From now on, this thesis will use the word 'event' in preference to 'transaction'. In database
theory, 'transactions' are categorised as updates, insertions or deletions. Updates change the
value of an existing record, insertions create new records, and deletions remove records.
Queries, which merely inspect the database, are not usually calied'transactions'. Here, an
'event' is any action on the database: an update, insertion, deletion or query, or a complex
procedure that is any mixture of them. In a database context, 'transaction' has a second
meaning: it is the unit of work that can be committed or rolled back, and again, this is not
always appropriate here. In a business context, a 'transaction' often has the meaning of an
exchange or contract, but this connotation is not always appropriate either. The word 'event,
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reminds the reader that it models a real-world occurrence. The word 'transaction' will be

reserved for the unit of work committed in a database, or for the business sense.

Consider the Ada program fragment of Example 1.5.1. (It is assumed that the reader is

reasonably familia¡ with Ada [Barnes 1989]. Chapter 2 describes a system specification
language whose syntax is based on Ada.) Each iteration of its loop models an event 'e' in
which some user 'u' attempts to borrow a copy of book with title 't' from the library. 'A(e)'
and 'B(e)' supply the values of 't' and 'u' for event 'e'. The number of books drawn by the

user 'D(u)' is increased by one for each book borrowed, and the number of copies available in
the library is decreased by one. The algorithm checks that the number of copies of the book
held in the library 'C(t)' is initially two or more, but there is no limit on the number of books a
user may borrow.

for e in min .. max loop
t:= A(e);
u := B(e);
ifc(Ð>1then

D(u) := D(u) + 1;
C(t) := C(t) - 1;

end if;
end loop;

Ex¡,tr¿plp 1.5.1: A PRocRau FRRcI¿pNr

This algorithm may be implemented as it stands, but it can also be implemented indirectly by
three separate processes connected by two streams of data, as shown in Figure 1.5.1. The first
process models the actions of the library's branches. It loops through the values of 'e' and, by
reference to'A'and'B', generates a stream of (t,u) pairs, which it passes to the second

process. The second process models the stock update operation. For each (t,u) pair in its input
stream, it checks the value of 'C(t)' and conditionally decrements it, passing the value of 'u' to
the third process. The thi¡d process models the user library loans update operation. For each

'u' in its input stream, it increments 'D(u)' once.

t,u

FICURE I.5.1: A PRocEss PIPELINE

A merit of this indirect approach to implementing the program fragment is its flexibility in
scheduling the three processes. First, the processes could be executed by different physical
processors, perhaps remote from each other, the data streams passing through a communication

network. Second, the processes could run on the same processor on th¡ee different days of the

week, with the data streams being stored in intermediate files. Third, they could run as

concurrent tasks on a single processor, communicating by some kind of rendezvous. Fourth,
they could be three procedures of a single program, with the data streams comprising the

parameters passed at successive calls. These four options certainly do not exhaust the poss-

ibilities. A similar flexibility was described by Conway in connection with the use of

t,

u
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coroutines [Conway 1963]. Following Conway's terminology, we call the three processes
'separable'.

As will be shown later, although it is permitted for one process to pass another a copy of an
attribute, a database attribute may never be accessed, direcþ by more than one process.
Consequently, we may name a process by the set of attributes it accesses. For example, a
process that accesses atffibutes 'A' and 'B' will typicaily be called ' {A, B } ' .

Separating the algorithm into these three processes allows further decompositions. In the
second process, the values of each element'C(t)' of 'C' depend on .4, and ,B', but are
independentof eachother, so that the'{C}' process of Figure 1.5.1 actually decomposes into
many smaller processes, one for each of its elements. If the domain of 'C' is large, this allows
massive parallelism. Similarly, each element of 'D' can be assigned to a separate process. The
resulting set of processes is suggested by Figure 1.5.2.

FICUn¡ T,5 .2: ExpToITING PARALLEL CoNcuRn¡Ncy

To accurately model the real world situation, the order of the loan events must be respectecl.
With the suggested interpretation, if two users try to borrow the last available copy of a book,
the earlier event should succeed, but the later one should fail. Consequently, although many
'{C}' and'{D}'processes can operate concurrently, the system must preserve the order of the
messages that reach them.

Apartfromallits processes being independent of one another, Figure 1.5.2 shows a second
condition that must be satisfied to exploit concurrency - the sending process must know which
process of the receiving set should be sent its results. For example, because the '{A,B}'
process knows the value of 't', it can di¡ect a message (containing 'u') to the correct '{C}'
process' The'{C}'process can then use the value of 'u' it received to direct a message to the
correct ' { D } ' process.

Figure 1.5.2 shows the decomposition of the Macrotopian Reference Library system into its
greatest possible number of parts. AII the scena¡ios that were described for organising the work
ofthe library clerks can be derived from this one diagram by grouping its processes together in
different ways.

Figure 1.5.2 also suggests why the algorithm of Example i.5.1 cannot be executed in parallel
without first decomposing it. If concurrency were attempted with respect to the eiements of
'C', the proposed set of parallel '{C}' processes would contend in their accesses to shared
elements of 'D'. Equally, aproposed set of parallel '{D}' processes would contend in their
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accesses to sha¡ed elements of 'C'. A third altemative is possible when messages arrive from
many sources, when each source can be associated with its own parallel process. A fourth is
for events to be allocated to processes on a landom, or a round-robin basis, Sây. These latter

two alternatives would contend in the accesses to both 'C' and 'D'.

Consider again the system involving clerks and file cards. If work was divided between the

clerks purely on the basis of titles, they would contend for access to user cards. If it was

divided on the basis of user libraries, they would contend for access to title cards. If it was

divided on the basis of source, or at random, they would contend for both sets of cards.

Such contention is resolved in database management systems by locking records whiie they

are in use. When a transaction completes, it frees the records it has locked. A transaction that

needs a record locked by another must wait until it is free again. In general, this approach has

several attendant difficulties, one of which is that two transactions may deadlock: each may be

waiting for the other to unlock the records it needs; neither is able to complete and release its
records. Although this can happen in general, deadlock cannot happen in the library system,

for the same reasons that batch processing is possible. First, because of separability, each

transaction first locks a 'C' record, then a 'D' record, so that there cannot be a case where one

has locked a 'D' tecord and is waiting for a 'C' record. Second, because of independence, each

transaction locks at most one 'C' record and one 'D' record, so that there cannot be a deadlock

involving two or more 'C' ¡ecords or two or more 'D' records.

The ' { A,B }' process cannot be executed in parallel, and must remain as a single thread. The

order of its successive iterations criticaily affects the outcome of the algorithm and the final
values of 'C' and 'D', specifically because of the control condition using 'C(t)' - and in
general because the order of events is important. If a particular title is in short supply, it should
be a matter of first come, first served. This would not be guaranteed if the values of 'e' were

enumerated in reverse order, or processed concurrently. This puts a constraint on parallel

processing in the {C} and {D} processes, in that two events affecting the same user or title
should act in the correct order. The price that must be paid for this is that a process cannot act

on an incoming message until it is sure that no earlier one is outstanding.

The single-thread constraint is often relaxed in practice, especially when events arrive from
several geographically distributed sources. If two events are initiated at roughly the same time

at two different sites, the order in which they are a¡rive at a central site is rather arbitrary, so it is
usually considered adequate if the result of updating the database correspon ds to some possible
ordering of the events, even if it is not the order that would have been recorded by some

extemal observer of the system. This relaxed constraint is called 'serialisability'. However,
even serialisability requires that the events initiated at a given site should be completed in their
correct relative orde¡.

The basic way in which these difficulties are handted is to time-stamp events and messages.

Each process must then process its incoming messages in time-stamp order rather than arrival
order. If events arise at several sites, it is possible that two of them might be given the same

time-stamp, in which case the site identifier may be used as a tie-breaker. In this way there
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does not need to be a central arbiter, which avoids a potential bottleneck. Such a system could
resemble Figure 1.5.2, but would have multiple copies of the {A,B } process, one for each site.

I.6 Sequential Access

When the elements of a set can be updated independently of one another, offering the potential
for parallelism, the same circumstances allow a kind of simulated parailelism. Thus, instead of
there being a processor for 'C(1)', aprocessor for 'C(z)', etc., as in Figure L.5.2, a single
processor may support 'C(1)', 'C(2)', etc., in turn. This is sequential processing. Sequential
processing might appeff to offer little advantage over dealing with the elements of 'C' at
random, as demanded by successive values of 't'. In practice, there is almost always some
advantage to.exploit.

Most computers have some form of hiera¡chical memory, in which data must be brought from
slower storage to high speed storage to be processed. Data is usually moved in blocks or
pages, of a size that typically contains many data elements. In random access processing, only
one element in a block is likely to be used before the block is replaced, so that most of the block
is moved uselessly; but in sequential processing, all the elements 'within the block are used
systematically. In othe¡ words, sequential access exploits the property of memory locality. In
addition, it reduces the cost of moving data even more, because it does it at most once per
element.

Sequential access processes can use simpler storage structures than ranclom access processes,
for example, a linear linked list or sequential f,rle rather than a binary search tree or an indexed
file. Sequential structures are cheaper to access and update, and their support algorithms may
have less computational complexity, for example, O(n) rather than O(nlogn) to access n
elements. On the other hand, a sequential access process needs its input stream to be sorted,
which is itself an O(eloge) operation, where e is the number of input events. Despite the cost of
sorting, sequential access processes often out-perform random ones.

Specifically, the advantages of sequential access are manifest in batch information systems
that process large files, retrieved in blocks containing many logical records. Accessing a file
sequentially means that all the records within a block can be dealt with at one time. Accessing a
fiie randomly means that this advantage is lost. Since sequential files have a simpler internal
organisation than random access files, they are also faster to update. There is therefore a
premium on using sequential access whenever possible.

1.7 Scope of the Thesis

The general problem considered here is the transformation of an algorithm into several, often
parallel, processes. The underlying principles have already been outlined. They are
'separability' and 'independence'. Two processes are separable if messages can be passed
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between them in one direction only. Two processes are independent if no messages need to be

passed between them at all.

A system will be modelled by a loop that reads events, changing the state of its database and

causing outputs to be written. (Although the algorithm of Example 1.5.1 creates no externai
output, outputs are possible in general.) The loop accessing the 'A' and 'B' arrays in Example
i.5. 1 may be regarded as an abstraction of reading such an input file; the 'C' and 'D' arrays
constituting the database. The system specif,rcation will always have the form of an iteration
within which events update the database. Absolutely any computational requirement can be

expressed in such an iterative form, but some requirements are easier to express than others.
The theory given here is most useful for algorithms that update states in response to a stream of
events unfolding over a period of time, typically referred to simply as 'systems'. Such systems
arise in information processing, databases, and discrete-event simulations. A newly important
area is that of 'reactive' programs, i.e., interactive programs (often with mouse-driven graphical

user-interfaces) that respond to arbitrary sequences of user commands. Another emerging area

of importance is 'Vy'orkflow' or 'Groupware' [Malone & Crowston 1993, Flores et aI. 1993,
Casati et al. 1995,Weske 1998], which allows users at several workstations to cooperate in the

completion of a task by sending messages over a network. This technology is a direct
automation of manual office procedures in which messages are passed as memoranda. The
enabling technology provides the infrastructure, but it does not address the design issues,
which are exactly those discussed here.

The decomposition of an algorithm into component processes must preserve its correctness,
and it turns out that the set of possible decompositions is a property of the algorithm. Some
algorithms decompose into many processes; others don't decompose at all. Generally
speaking, the more component processes in the decomposition, the better the chance of finding
an eff,rcient implementation. Therefore, although a general theory of decomposition will be

developed here, the theory is more useful for some kinds of problem than others. In some

cases, the theory may yield trivial results. For example, a reactive system may decompose

merely into a keyboard process, a computation, and a display process. The Canonical
Decomposition Method is much more likely to yield interesting results in the case of an

information system.

It is worth mentioning that, as the design of a product may be adapted to let it be made on a

production line, so the specifications of systems are sometimes adjusted so that they yield
eff,rcient decompositions. This is an important topic. A graphical tool presented here, the 'state

dependence graph', or 'SDG' provides both the basis for a mathematically rigorous design
algorithm, and an intuitive understanding of system structure. An SDG helps a designer
visualise the impact of the system specification on its implementation. As a result, it may often
suggest ways in which a specihcation could be changed to lead to a better implementation.
There are three ways in a which a specification can be changed: by changing the way a
requirement is expressed as an algorithm, by changing the way the system is modelled, or by
negotiating a change to the requirement itself.
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1.8 Organisation of the Thesis

The thesis is organised in two parts. The first part concentrates mainly on the issue of
'separability', and the second on 'independence'. Thus, the first part considers the
decomposition of a system into component processes, while the second discusses whether these
processes can be implemented using independent (i.e., sequential or parallel) access. The first
part is concerned with discovering the set of feasible designs, and the second is concemed with
choosing the best of them. The reason for this division is that the conditions for independent
access involve a lot more technicalities than does the division of the system into its component
processes. However, the first part will make intuitive use of the ideas of the second part, by
assuming that the reader can understand the conditions for independent access by the exercise of
common sense. Indeed, it is one of those areas where coÍtmon sense works very well, and an

algorithm is harder to understand.

The first part considers the general problem of decomposing a system into separable
processes. Given the system specihcation, it turns out that its decomposition into the maximum
possible number of separable processes is canonical. Its 'canonical process graph', or CPG, is
a network of loosely connected processes that allows the greatest possible concurrency whilst
preserving coffectness. The graph is a function of the specification.

This satisfying result is mared by two circumstances, which will be referred to as the
'specification problem' and the 'composition problem'.

There are often many ways to specify a given system requirement; some may lead to eff,rcient
decompositions, others may not. The act of formalising a requirement uniquely determines its
CPG, which directiy affects the efficiency of its implementation. This thesis provides a formal
means of discovering the CPG. Without it, it would be hard to predict how a change to a
specification would impact on efficiency - indeed, trivial changes sometimes have enormous
effects. This is called the 'specif,rcation problem'.

The 'composition problem' is as follows. Because the CPG contains the greatest possible
number of processes, it maximises the cost of moving data between them. It is often better to
combine some minimal processes into targer composites, thus reducing the communication
cost. On the other hand, it is bad to combine processes in a way that would destroy the
opportunity for parallel or sequential access. The optimal composition problem is
combinatorial. Its details depend on the environment in which the system must operate,
including the technology underlying its implementation. Since this optimisation problem
involves testing the conditions for independent access, it will be treated informally in the first
part of the thesis, and its formal discussion will be left until the second paf.

There is a further difference between the material in the first and second parts. The first part
develops a graphical technique that can be applied by a systems analyst. The second part
formalises the technique to the point that the design can be canied out by a computer program,
and describes such a program, called Designer. The techniques of both parts, in addition to
deriving a design, are capable of deriving the specifications of the processes that make up the
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system. In fact, these specifications are derived by simple textual transformations of the

original specification. However, no program is described here for making these

transformations. Writing such a program would be straightforward, but tedious. There is no
question about the feasibility of such a program. On the other hand, implementing the Designer
program proved an essential part of the thesis, for two reasons: it checks the correctness of the

theory, and it demonstrates the effectiveness of the optimisation heuristics.

Unfortunately, there are some small inconsistences between the requirements of the first and

second parts of the thesis. These are mainly due to conflicts between what can be done in
principle and what has been done in practice. For example, an SDG can suggest an efficient
process network, but the Designer program may be unable to derive its implementation. This is
because the process specifications would need to be derived by some means that the program
does not know how to do. These conflicts are felt most strongly between Chapter 5, which
discusses independence informally, and Chapter 8, which describes how it may be uncovered

by formal analysis. There is also some conflict between Chapter 2, which describes a
specihcation language, and Chapter 10, which describes the subset of it that is recognised by
the Designer program. To minimise these inconsistencies, sometimes the reader will encounter

arbitrary-seeming restrictions. They are pointed out in the text.

The first part comprises ChapteÍs 2,3,4, 5 and 6. The second part comprises Chapters 7, 8,
9 and 10. Finally, Chapter 11 compares the Canonical Decomposition Method (CDM) with
some existing methodologies, and presents the claims of the thesis, some conclusions, and

some speculations.

Chapter 2 discusses the 'event-state model' of systems, which is the basis of the system

specification language used in CDM. It shows how a system specification may be transformed
into an equivalent set of process specifications, using the notion of 'delayed procedure call'.

Chapter 3 reviews the means by which batch systems are implemented. It gives examples of
two Cobol file update algorithms, one using random access and the other using sequential
access. It also gives an example of a parallel update algorithm. It argues that the sequential and

parallel algorithms are both based on the same notion of independent access'.

Chapter 4 introduces the notion of 'real-time equivalence' that serves as the test of correctness

of a system design. It also formalises the idea of 'separability', which is the property that
allows a system to be decomposed into a set of processes connected by queues, called its
'process graph'. It introduces the 'state dependence graph', or SDG, from which a CPG can

be derived.

Chapter 5 deals with the issue of independence', the property of a process that allows it to
use sequential or parallel access. It introduces a semi-formal method of determining when two
processes can be combined without sacrificing independence, and an informal approach to
optimising the CPG.
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Chapter 6 uses the theory and techniques of the preceding chapters to examine some actual
design problems. Its aim is to show how specifications affect design, and conversely, how the
need for efficiency can prompt changes to a specification. This concludes the first part.

Chapter 7, which opens the second part, describes how the specifications of component
processes can be derived from the system specification and a process graph. The main purpose
of this chapter is to examine some factors that must be considered in deriving an optimum
process graph.

Chapter 8 takes a more rigorous approach to the construction of SDG'S, based on use-
definition graphs similar to those used in optimising compilers. It describes some important
extensions to traditional use-definition analysis that can detect opportunities for using
independent access.

Chapter 9 discusses the optimisation problem. It proves that it is NP-complete. However, it
also presents several heuristic methods that work well in practice.

Chapter 10 describes a computer program, Designer, which can derive an efficient process
network from a system specification, using the techniques presented in earlier chapters.

Chapter 11 relates CDM to existing systems design methodologies, speculates about possible
future developments, and states the claims of the thesis.
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2. System Description
lOlle et al. I99Ll lists three perspectives that can be used to describe systems: data oriented,

process oriented and behaviour oriented. Most design methodologies use more than one

perspective to describe systems. Data oriented views emphasise the relationships between data

objects, usually statically, as in Entity-Relationship Modelling [Chen I976]. Process oriented

views emphasise the computer or business processes that implement a system, and fypically use

Data Flow Diagrams [DeMarco 1978, Gane & Sarson 19791. Behaviour oriented views
emphasise the sequences of events that can occur in the operation of a system [Teisseire 1995],
typically favouring the use of Petri Net models [Maiocchi 1985, Tse & Pong 1986, Tse & Pong
1989, Preuner & Schrefl 1998]. A second approach is to use time-dependent constraints

fBidoit & Amo 1995]. Behaviour may also be defined by the syntax of a language that will
generate it, and the language in turn may be represented by a process or a set of interacting
processes that will generate its sentences. It is therefore possible to have a behaviour oriented

methodology that is described in terms of processes, for example JSD [Jackson 1978, Jackson

1981, Jackson 1983, Cameron 1983a, Cameron 1983b, Cameron 19361 or CSP [Hoare 1978,
Hoare 1985], which should not be confused with a process oriented model.

A typical view presents a relationship between some objects. Most methodologies avoid
unstructured verbal descriptions. Relationships may be drawn as graphs, charted as incidence

matrices, or expressed algebraically. Graphs are best where a human is expected to visualise
complex reiationships, matrices are usually favoured when the documentation is checked or
analysed by the computer, and algebraic methods a¡e favoured in connection with formal
derivation and proof.

lOlle et al. I99Il identify 48 distinct analysis products that can be described. Methodologies
differ in which of these possible products they consider are worth describing, the perspectives
they take of these objects, and the conventions they choose for documenting them. They also

differ in what aspects of system development they address, for example, hnancial and

manpower considerations, the description of existing systems, or the design of system
implementations. Most methodologies aim to assist with system development, but they differ
with respect to the stages that they support. Given these variables, a virtual infinity of
methodologies is possible. There are several good reviews of methodologies available

[Bubenko 1986, Mannino 1987].

The Canonical Decomposition Method (CDM) described here starts with a behaviour-oriented
specification and derives a process-oriented design from it. To a lesser extent, the specification
is also data oriented. CDM is able to refine an abstract data specification to yield a set of file
descriptions.

What is special about CDM? It is a formal approach that transforns a specification into a
design solution. Unlike existing methods, it needs no external help. That is, it is not a means

by which a designer can derive a design from a specification, it derives one by itself. Its only
help is a cost function to determine which design alternative is best.
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There is little point in trying to relate CDM to othe¡ methodologies at this point. It is a ¡adical
departure from most of them. It is the thesis of CDM that the structure of systems must be
derived upwards from primitives. Most existing methodologies assume that the designer can,
and should, impose the gross structure on the system before filling in the details. Often, the
gross structure of a new system design is derived from the gross structure of an existing
system. According to CDM, this only works, if it works, because both systems have gross
structures that are determined by the same primitives. We may summarise the difference
between CDM and other methods by saying that CDM is bottom-up rather than top-down.

Some existing methodologies are transformational, in that a requirement is transformed into a

design, usually in several stages. These methods typically suffer from two drawbacks: there is
little guidance about which transformations should be made, and the transformations themselves
can be complex. Determining the correct sequence of transformations is difficult because the
design problem is posed as the decomposition of a system into parts, and it takes experience to
guess which parts will be needed.

CDM shares this transformational property, but its transformations are very simple, being
based on text substitution. The sequence of transformations is simplihed too, by first
decomposing a system canonically into the maximum possible number of parts, then combining
them again. This process of canonical decomposition followed by composition both limits the
search space for a solution, and provides a sense of direction in searching it. The relationship
between cDM and other methodologies will be discussed in Section r 1.1.

2.I System Models

System behaviours are typically specified by models that are either state based or sequence
based. A state-based model is described in terms of events, which modify the values of state
variables or trigger the generation of output. Events are externally caused, and unfold as a
sequence in time. A sequence-based description expresses the output sequence of the system
(its behaviour) as a function of its input sequence (i.e., its history of events).

A disadvantage of a state-based model is that it is necessary to decide how to represent the
system state, i.e., what set of variables should be stored. This thesis shows that the decision
sometimes tums out to have a profound effect on the number of processes into which a system
can be decomposed, and on the efficiency of its implementation. This issue will be referred to
as 'the state representation problem', and is an aspect of the specification problem.

A sequence-based description avoids the explicit mention of states, and would seem to finesse
the state representation problem. However, the¡e are strong reasons for believing that state-
based descriptions are better suited to the analysis given here - but the reasons can better be
discussed after the analysis has been presentecl. Briefly, the state representation problem is not
avoided in a sequence-based model; there are often many ways of defining the grammars of its
input and output sequences, each of which would be recognised or generated by a
corresponding state machine. Therefore, there are still many ways of describing the same
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behaviour, and each of them corresponds to an underlying state machine. Proving the

equivalence of two regular granìmars is intractable in general, and proving the equivalence of
two context-free grammars is undecidable [Aho & Ullman I972a, Hopcroft & Ullman I979b].
Such a proof, when it exists, usualiy amounts to showing that both grammars are recognised by
isomorphic state machines. So, why not deal with the state machines directly?

A state-based description of a system requires each kind of event to be specified by the

outputs it generates, and its effect on the system state. The effect can be specified by an

algorithm that brings about the required relationship. This choice is used here. It creates the

interesting situation that the algorithm can be decomposed to derive algorithms for the

component processes that make up the system. Thus it promises a means of automating system

construction. Unfortunately, there are sometimes several algorithms that can satisfy the same

relationship, some leading to greater concurrency than others. Selecting the best algorithm will
be referred to as 'the event specification problem', and is a second aspect of the specification
problem.

Alternatively, an event may be specified by the relationship between the states of the system

before and after the event. It might seem that this would finesse the event specification

problem. However, the problem reappears because there are sometimes many mathematically

equivalent ways to formulate the same relationship. Proving the equivalence of two
formulations can be undecidable, and transforming a formulation into its equivalents is

intractable. It is also a reasonable assumption that, given some automatic means to turn before

and after relationships into algorithms, the different ways of expressing the relationship would
lead to exactly the same set of system implementations that could be obtained by specifying an

event by algorithms directly.

It seems that neither the event nor state specification problems can be avoided, and although

they are discussed in this thesis, it offers no solution to them.

Complex systems typically accept many kinds of input events, calling for different responses.

Some events may cause the state of the system to change, others may cause it to be inspected,

yet others may do both. For example, the library example of Figure 1.4.1 (Page 6) could also

allow users to return books, as in Example 2.I.1, where K(e) is the kind of the event 'e'.
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for e in min..max loop
t := A(e);
u := B(e);
if K(e) = Borrow then

ifc(t)>1then
D(u) := D(u) + 1;
C(t) := C(Ð - 1;

end if;
elsif K(e) = Reshelve then

D(u) := D(u) - 1;
C(t) := C(Ð + 1;

end if;
end loop;

EXAMPLE 2.I.I: Two KINps oF EVENT

Since a state-based description assumes a sequence of input events, some kind of read loop is
needed to drive it. The event loop of Example2.I.2 suggests the general form of a system.

begin
loop

"read the next input event";
case "type of event" is
when "event type l" => "execute the procedure for event type 1";
when "event type 2" => "execute the þrocedure for eventtyþe 2,,;

when "event type n" => "execute the procedure for evenf type n,;
end case;

end loop;
end;

Exevplg 2.I.2: A SYSTEM R¡eo LooP

procedure Borrow (t: title; u : user) is
begin

if C(Ð > l then
D(u) := D(u) + 1;
C(t) := C(Ð - 1;

end if;
end Borrow;
procedure Reshelve (t: title; u : user) is
begin

D(u) := D(u) - 1;
C(t) := C(t) + 1;

end Reshelve;

Exevpr-E 2.I.3 : EveNr SprcmrcetroNs

Assuming this outline, it is only necessary to define the procedures that are activated for each
kind of event. This being so, an event may be seen as semantically equivalent to a call of such a
procedure. A system description may therefore consist of a declaration of some state variables
and the procedures that can act on them. In Ada, such 'event procedures' could be written as in
Example 2.r.3. (The specificarion language will be described in Section 2.6.)
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2.2 Process Graphs

The building block of a process graph is shown in Figure 2.2.1. A rectangular box
represents a system or one of its components, and is usually referred to as a 'process'. The box
is labelled intemally with the names of the system variables that it accesses ('A' and 'B' in
Figure 2.2.I). A process may have several inputs and outputs, which are unlabelled.

FTCUR¡ 2.2.1: A PROCESS GREPTT

All inputs are drawn entering a process at a single point. This symbolises that they interleave
to form a single sequence in time. Even if the inputs arive from different sources, it will be
assumed that they are totally ordered - by an arbiter or global clock, for example. Output
streams are shown leaving the process at separate points. This symbolises that although a

system is the 'victim' of its inputs, it has total control over the sequence of its outputs.

Input and output events need not occur in one-one correspondence. A given input event may
produce any number of output events, including zero. The sequence of output events generated

by a component process is usually ordered in time. For example, if the entire action of Figure
1.5.1 were considered as a single event, one input to the '{A,B}' process would trigger its
event loop, generating an ordered stream of't, u' input events for '{C}'.

When an input arrives, its corresponding event procedure is activated. An event procedure is
assumed to be atomic, i.e., to complete its action without interference. The processing of one

event must be completed before the processing of the next can begin. If a new input arrives at a
process during execution of an event procedure, its action must be delayed until the procedure
completes. The means of causing the delay is not given in the specification, but may be

assumed to be a first-in first-out queue of some kind.

Systems exist where a total ordering of inputs is not required, and for which event-state based

descriptions are therefore inappropriate. One such situation is when inputs a¡rive from several
sources which hardly interact with one another. (If they don't interact at all, they are sepa.rate

systems.) Interactions occur when events from different sources contend in their use of the

database. One or other source may then be given priority only at the time of contention. For
exampie, an event that has already acquired a record lock may be given priority over one that

hasn't - in which case some means may be needed to deal with deadlocks between events.
However, events that don't happen to interact have only a partial ordering; the order in which
they are processed won't affect the final state of the database. Such systems are certainly
handled correctly by CDM, but its criterion of correctness is stricter than that usually applied to
them.

A more profound breakdown of the total ordering assumption occurs when a system is
'relativistic'. A relativistic system is one in which the time taken to respond to an event is less

,\B
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than the time taken for a message to propagate across the system. This can happen because the
system is geographically dispersed, or because it is very fast. The global telephone network is
an example of a relativistic system. Suppose you decide to call a friend who lives on the
opposite side of the world, and at the same time, they decide to call you. There is a true sense
in which these two things can happen at the same time, because the two parties can initiate
messages whose paths cross. (This may be contrasted with Ethernet, where crossing messages
are rejected and retransmitted, but is similar to electronic mail.) Both parties would believe that
they had initiated the call and ought to pay for it. It is just as well for them that the actual
telephone network will reject both calls. The problem with describing such a system is that the
order of events depends on the observer. It is often assumed that the state of a system is simply
the product of the states of its parts, but this is only the view seen by a single observer; different
observers of a relativistic system may still disagree about the history of the system,s state. A
conventional system description forces us to specify that events have some underlying paftial
ordering, such that if they were applied according to that order, the correct system state would
be obtained. An attempt to force any similar ordering on the telephone network would bring it
to a halt. If there were a global ordering, a local call could not be connected until it was first
checked that the caÌler had no incoming international call in transit, which would simply take too
long. (For example, if messages were switched through a tree network to impose an ordering
on them, about half the intemational calls would have to pass through a single world-wide
switch.) Relativistic systems cannot be described by a simple event-state or behavioural model,
and have different criteria of correctness. However, they usually contain non-relativistic parts to
which the theory presented here may be applied successfully.

As a matter of terminology, the components of a system will be referred to here as
'component processes' (or simply 'processes') rather than 'sub-systems'. In information
systems usage, the term 'sub-system' is used to denote a part of a system that implements only
a subset of the kinds of its input events (as the term is often used in information processing).
Since different sub-systems in this sense cannot operate concurrently, here they will be referred
to as 'modes'.

2.3 Delayed and Local Procedure Calls

whenprocesses'{c}'and'{D}'areconnectedbyadataflowfrom,{c},to,{D}', process
'{C}'writes an outputthatbecomesaninput to '{D}'. As mentioned earlier, this flow can be
implemented by a transfer file, queue, rendezvous, etc. The simplest case is a procedure call,
i.e., ' {C } ' directly invokes a procedure in '{D } '. Inespective of the actual implementation, the
action of '{D}' can therefore be defined by a procedure - exactly like an event procedure of a
system specification. This is appealing, because it makes the description of a component
process just like the description of a system as a whole. Correspondingly, when process ' i C Ì '
sends a message to process '{D}', the communication may be modelled by a procedure call.
The corollary is that an output from the system as a whole should be modelled by a procedure
call - to a process extemal to the system being modelled. To complete their correspondence
with event procedures, procedures in component processes are also assumed to be atomic.

22



System Description

A procedure call does not have to invoke its corresponding procedure immediately. The calt

may write a record to a transfer file or queue. 'When a loop within the receiving process reads

the record, it will activate the invoked procedure. Thus, there may be an arbitrary delay

between the call of a procedure and its activation. This model of message passing will be

referred to as 'delayed procedure call' (or simpiy 'delayed call').

Because of the one-way nature of the data flow, only input parameters a¡e allowed in delayed

procedure calls. It would make no sense to allow output parameters. Assuming they return
values to be used by the sending process, the sending process could not complete its procedure

call until the called procedure in the receiving process had completed. This would fo¡bid a

delay between sending and receiving processes, defeating the object of the decomposition.
Delayedprocedure call is therefore similar to the 'send' primitive of Andrews's Synchronising
Resources [Andrews 198 1].

(Although procedures with output parameters but no input parameters would also enforce

one-way data flow, they would not model files or queues so well; the call would need to be

made f¡om the receiving process to the sending process.)

This does not mean that event procedures with output parameters are not permined. It means

that calls to them cannot be delayed. Such event procedures can be used to model processes

that may be physically dispersed, but which muSt synchronise their activities. Such inter-
process communications will be referred to as 'remote procedure calls' - whether the

processes involved are physically remote or not. These are similar to Andrews's 'call'
primitive.

The event specifications of Example2.I.3 can be decomposed as given in Example 2.3.I.
The first two procedures correspond to the 'C' process of Figure 1.5.1; the second two
procedures correspond to 'D'. Even though the call of 'Increase' is not the final statement of
'Borrow', 'Borrow' may continue to its completion as soon as it has made the call. This is
precisely because 'Increase' has no output parameters. A similar relationship holds between

'Reshelve' and'Decrease'.

The semantics of any procedure call may be discovered by replacing the call by the body of
the called procedure, substituting aclual parameters for formal parameters. (There is a trivial
substitution of 'u' for 'u' in this example.) If this is done, Example 2.3.1 can be seen to be

equivalent to Example 2.I.3.
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--c
procedure Borrow (t: title; u : user) is
begin

ifC(t)>tthen
Increase(u);
C(t) := C(t) _ 1;

end if;
end Borrow;
procedure Reshelve (t: title; u : user) is
begin

Decrease(u);
C(t) := C(Ð + i;

end Reshelve;

--D
procedure Increase (u : user) is
begin

D(u) := D(u) + 1;
end Increase;

procedure Decrease (u : user) is
begin

D(u) := D(u) - t;
end Decrease;

Exevple 2.3.L: CovTpoN¡NT PROCESS PROCEDURES

2.4 Data Structures

An abstract view is taken of data structures, and only one method of forming structures is
allowed, the functional dependency, or 'FD'. The notion of 'functional dependency, used here
is exactiy that used in relational database theory [Codd IgT1],from which it is well-known that
it is universal enough to model any data relationship [Grant 1987]. It is also the basis of at least
one data modelling technique [Frankel I979,Bertziss 19g6].

FD's will be modelled by arrays. Anay notation provides a convenient way to refer to
elements of sets, such as 'C(t)' or 'D(u)' in the above examples. However, Íuïays are only a
model. Typical user identifiers or titles have fa¡ too many values to be the basis of arrays that
could f,rt into a computer's primary storage. In most situations it would be necessary to use
files or database tabies to store the volume of data involved. Indeed, the numbers of elements
needed by the anay model a¡e not merely the numbers of acnnl users or titles, but the numbers
of possible users ortitles. (In this thesis, the terms 'files' and 'tables' and the terms .records,

and 'rows' are used almost interchangeably.)

An FD models the mathematicai notion of a function from a source domain to a target
codomain (or range). A function may be either total or partial. A total function has a codomain
value corresponding to every argument in its domain. A partial function has values for
particular arguments only. A total function may be modelled by an array with a default value;
each element of the array is initialised to the default. For every argument, the value of the FD is
initially the default value, and its value always remains defined. A partial function may be
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modelled by an uninitialised array. Initially, its value for every argument is undefined. Only
those elements that have been assigned values are meaningful. Whether the value of a particular
argument is defined or not is determined by context, for example, the function may be defined
only for arguments that are known to have some other property, for example, to be members of
a particular set.

Following Ada syntax, the FD's of the library system would be declared as foliows:

C : array (title) of natural :- (others =¡ 0);
D : array (user) of natural :- (others => 0);

where the initialisations ensure that there are no books either in the library or on loan when the

system is created.

Although a set is not an FD, a set may be modelled by its characteristic function, an FD
whose codomain is the boolean set {true, false}. Arguments yielding the value 'true' a.re

considered to be members of the set, and those that yield 'false' are excluded. An empty set is
modelled by an array with all elements false.

There are many ways in which a functional dependency can be represented physically. As a
concrete model, the reader may imagine that they are implemented by files or database tables.
Each row has an argument as its primary key and the corresponding value as its sole non-key
attribute. Specifying the argument therefore enables the matching row to be retrieved, and the

corresponding value to be read or updated.

Even using an external f,rle or database table, it is not usually practical to store a row for every
argument in the domain of a typical FD. Arguments that yield default values need not be stored.
Therefore, if an argument has no matching row in the table, the value of the FD is its default
value. This means that the initial state of the library can be represented by two empty tables.
The convention also allows rows containing default values to be deleted from the database

automatically. In turn, this suggests that it is better for partial functions to have default values
too, to allow the storage they use to be reclaimed. In this respect, FD's are similar to sparse

arrays, i.e., arrays in which only non-default values are stored.

To save space, where there are several FD's with the same domain, they may be allowed to
sha¡e the same table. Specifying an argument would retrieve a row containing the values of all
the FD's in the table. If, as is often the case, more than one FD was used by an algorithm, this
would allow several references to be implemented by a single record ¡etrieval. But whether two
or more FD's ought to share one table or be in separate tables proves to be a design issue that is
an output of the Canonical Decomposition Method. In specifications, all FD's will be modelled
as having separate representations; there are no record structures.

Using default values means that there is no need to distinguish insertion and deletion of
records from other kinds of update. In each case the value of an attribute is changed: insertion
is the special case when the old value is the default value, deletion is the case when the new
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value is the default value. 'Missing' records are not exceptions; they are merely assumed to
have default values.

These conveniences of the array model must be weighed against two minor inconveniences.
The first is that it is impossible to update the key of a record; the contents of the array element
with the old key must be moved to the element with the new key, corresponding to deleting one
row and inserting another. (Such key updates must always be physically implemented by
deletion and insertion anyway.) The second is that testing for the presence or absence of a
given row in a conventional database table reveals a hidden boolean attribute. Such hidden
attributes must be defined expticitly in this model; it is often necessary to declare a boolean a:ray
that specihes, for example, which user identifiers are allocated to actual users.

Two generai assumptions are made about any implementation of FD's. First, given a random
argument of the domain, the corresponding row of the table can be read or updated in less time
than it would take to read or update the whole table. Second, it is quicker to access all the (non-
default) rows of an FD using parallel or serial processing than it is to access them all at random.
Broadly, the implementation is assumed to be like an indexed-sequential file.

2.5 A Specification Example

Rather than invent a completely novel specification language, the thesis will present
specifications in a va¡iant of Ada fBarnes 1989]. The main changes to Ada are these:

. The only data structures are arrays that model FD,s.

' The basis of an affay may be any simple type, or any list of simple types.
. A parallel loop construct is provided.
. Arrays of packages are allowed.

A system will be represented by an Ada package, whose externa-l procedures represent the
events to which it responds.

To illustrate the general flavour of a specification, Example 2.5.1 specifies the Macrotopian
library system. In addition to the 'Borrow' and 'Reshelve' event procedures given in ea¡lier
examples, a 'Buy' event has been included so that the database can be populated, and an 'Audit'
event seryes as an example of a global query. The 'Audit' event counts the numbers of books
in stock and on loan, and passes these numbers to a 'Report' package for presentation to a user.
(This is an example of the system generating an extemal output.) Several more event
specifications would still be needed to make the library model realistic.
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with Report;
generic

type user is private;
type title is private;

package Library is
procedure Buy (t: title);
procedure Borrow (t: title; u : user);
procedure Reshelve (t: title; u : user);
procedure Audit;

end Library;
package body Library is

C : array (title) of natural :- (others => 0);
D : array (user) of natural ;= (others => 0);
procedure Buy (t: title) is
begin

C(t) := C(t) + 1;
end Buy;
procedure Borrow (t: title; u : user) is
begin

if C(Ð > 1 then
D(u) := D(u) + 1;
C(t) := C(t) - 1;

end if;
end Borrow;
procedure Reshelve (t: title;u : user) is
begin

D(u) := D(u) - 1;

C(t) := C(Ð + 1;
end Reshelve;
procedure Audit is

Loans, Stock: natural := 0;
begin

all t in title loop
Stock := Stock + C(Ð;

end loop;
all u in user loop

Loans := Loans + D(u);
end loop;
Report.Audit (Loans, Stock);

end Audit;
end Library;

ExeupIE 2.5.T: A SIMPLE LTSRARy Sysrev

Packages may also be used to describe the decomposition of a system into its component
processes. Example 2.5.2a shows the decomposition of the library system into components
'C' and 'D'. The procedural part of Example 2.5.2a is trivial, serving only to forward the

events reaching the system to 'C'. The 'C' and 'D' anays are no longer global to the system,
but local to its components.
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package body Library is
package C is

procedure Buy (t: title);
procedure Borrow (t: title; u : user);
procedure Reshelve (t: titte;u : user);
procedure Audit;

end C;
package D is

procedure Borrow (u : user);
procedure Reshelve (u : user);
procedure Audit (Stock : natural);

end D;
procedure Buy (t: title) is
begin

C.Buy(t);
end Buy;
procedure Borrow (t: title; u : user) is
begin

C.Borrow(t, u);
end Borrow;
procedure Reshelve (t: title; u : user) is
begin

C.Reshelve(t, u);
end Reshelve;
procedure Audit is
begin

C.Audit;
end Audit;

end Library;

ExRvTpIg 2.5.2I: LIBRARY CovTpoNpNT SPEcIFICATIoNS (PART 1)

Packages may also describe the components themselves, as shown in the package body of
Example 2.5.2b, which describes 'C' of Figure 1.5.i. The 'C'package contains the 'C' array.
Delayed procedure call is used to model communication between the 'C' and 'D' processes.
('D' performs no action for 'Buy' events.)
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package body C is
C: array (title) of natural:- (others -> 0);
procedure Buy (t: title) is
begin

C(t):= C(t) + 1;
end Buy;
procedure Borrow (t: title;u : user) is
begin

if C(Ð > 1 then
D.Borrow(u);
C(t) := C(Ð - 1;

end if;
end Borrow;
procedure Reshelve (t: title; u : user) is
begin

D.Reshelve (u);
C(t) := C(t) + i;

end Reshelve;
procedure Audit is

Stock: natural := 0;
begin

all t in title loop
Stock:= Stock + C(Ð;

end loop;
D.Audit (Stock);

end Audit;
end C;

Exeiraplp 2.5.2s: LrgRRRy Col¿poNpNT SpEcrFIcATroNS (penr 2)

Finally, Example 2.5.2c shows the structure of the'D'component. It contains the 'D' affay.
The procedure call on the 'Report' package is assumed to cause the values of 'Loans' and
'Stock' to be displayed or reported in some way.

package body D is
D : array (user) of natural :- (others -> 0);
procedure Borrow (u : user) is
begin

D(u) := D(u) + 1;
end Borrow;
procedure Reshelve (u : user) is
begin

D(u) := D(u) - 1;
end Reshelve;
procedure Audit (Stock : natural) is

Loans: natural := 0;
begin

all u in user loop
Loans := Loans + D(u);

end loop;
Report.Audit (Loans, Stock);

end Audit;
end D;

EXAMPLE 2.5.2c: LIBRARY CoI,IpoNgNT SPECIFICATIONS (PART 3)
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package body C is
array (title) of package C_title is

procedure Buy;
procedure Borrow (u : user);
procedure Reshelve (u : user);
p

end
rocedure Audit;
C_title;

package body C_title is
C : natural := 0;
procedure Buy is
begin

C := C + 1;
end Buy;
procedure Borrow (u : user) is
begin

if C > l then
C:=C-1;
D.Bonow (u);

end if;
end Borrow;
procedure Reshelve (u : user) is
begin

C := C + 1;
D.Reshelve (u);

end Reshelve'
procedure eu¿it (C1: out natural) is
begin

Cl := C;
end Audit;

end C_title;
procedure Buy (t : title) is
begin

C_tirle (Ð.Buy;
end Buy;
procedure Borrow (t : title; u : user) is
begin

C_title (t).Bonow (u);
end Borrow;
procedure Reshelve (t : title; u : user) is
begin

C_title (t).Reshetve (u);
end Reshelve;
procedure Audit is

Stock, Ci : natural := 0;
begin

all t in title loop
c_title(t).Audit(c 1 ) ;

Stock:= Stock + Cl;
end loop;
D.Audit (Srock);

end Audit;
end C;

ExRl¿pLp 2.5.3t: ExpRpssrNc INDEeENDENT AccESS (PART 1)

As an elaboration of the design, Example 2.5.3a shows how the 'C' process can be further
factorised into many independent processes. In Example 2.5.3a there are as many 'C_title'
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components as titÌes. For any realistic range of identifiers, the number of component processes

would easily exceed the number of physical processors in present day parallel computers. Each
physical processor must therefore support many component processes, whose specifications are

given by 'C-title'. However, only those processes representing real books or real users would
ever be activated. Alternatively Example 2.5.3a can be seen as a model of sequential file
access, with each 'C-title' process representing the actions for each master f,rle record, and the
'C' shell handling fileJevel activity.

In Example 2.5.3a, a procedure call of the form 'C_title(t).Borrow(u)' means that a call is
made to procedure 'Borrow' in instance 't' of component 'C_title', passing 'u' as a parameter.
However, the call 'C-titie(t).Audit(C1)' cannot be implemented as a delayed procedure call,
because it returns an output pa-rameter.

Example 2.5.3a is an approximate model of both sequential and parallel access. The 'Stock'
variable, of which there is a sepa-rate instance for each 'Audit' event, is updated within the 'C'
process shell itself. In a parallel implementation, this is the only way to ensure that the updates

to 'Stock' are properly coordinated. In other words, 'Stock' belongs to the 'C' process, and

can only be accessed by it. The 'C-title' processes return the values of 'C' to be added to
'Stock'. Example 2.5.3a is only a rough abstraction of a parallel algorithm. To model parallel

access more accruately is more tedious than enlightening. An efficient implementation must
avoid the bottleneck of passing procedure calls to 'D' and pass them directly to its internal
parallel components. Section 3.5 explains how this is done.

Example 2.5.3b shows a similar decomposition of the 'D' process, there being one instance

of 'D_user' for each user.
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package body D is
array (user) of package D_user is

procedure Borrow (u : user);
procedure Reshelve (u : user);
procedure Audit (Stock : natural);

end D_user;
package body D_user is

D : natural := 0;
procedure Borrow is
begin

D:=D+1;
end Borrow;
procedure Reshelve is
begi

D
n
:=D-1;

end Reshelve;
procedure Audit (D1: out natural) is
begin

Dl :-- D;
end Audit;

end D_user;
procedure Borrow (u : user) is
begin

D_user (u).Borrow;
end Borrow;
procedure Reshelve (u : user) is
begin

D_user (u).Reshelve;
end Reshelve;
procedure Audit (Stock : natural) is

D1, Loans I natural := 0;
begin

all u in user loop
D_user (u).Audit (D1);
Loans := Loans + Dl;

end loop;
Report.Audit (Stock, Loans) ;

end Audit;
end D;

Exeuplg 2.5.38: ExpRESSTNc INDEPENDENT AccESS (penr 2)
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2.6 The Specification Language

The specification language is based on Ada package specifications. We make a distinction
between two dialects of the language. The first, described below, is used both to def,rne

systems and to describe their implementations. It allows implementations to be derived from
specifications using rewriting rules. The second dialect, which is a subset of the first, defines

those specifications that a¡e acceptable to the Designer program, and is described in Chapter 10.

The form of a system specification is as follows:

sy s t em _s p e c ifi c ati on : :=
package_speciftcation
package_body

p ackø g e _s p e cifi c ation : :=
I e xternal ¿tacka g e _declarations l
I generic _typ e _de clarations l
package system_name is

{ event_specification }
end system_name ;

package_body::=
package body system_name is

{ c omp onent _s p e cifi c ation }
{ c omp onent _definition }
{ state_declaration }
{ p r o c e d ur e _definit i o n I fun c t i on _d efiniti on }
{ event_definition }

end. system_name ,

In describing syntax, most items in italics represent non-terminal symbols of the grammar,

which are defined by one or more grammff rules. The exceptions are 'identifier' and
'constant', which are defined as in Ada. W'ords and special characters in bold type denote

themselves. 'Where an expression appears in braces, i.e., '{...}', it may be repeated any

number of times, incÌuding zero. Where an expression appears in brackets, i.e., '[...]', it may

either appear once, or not at all. A vertical stroke indicates a choice between alternatives.

2.6.1 External Interface

A system is defined by its external interface, given by the package specif,rcation; and by its
implementation, given by the package body. It is possible to separate a package specification
from its body. In particular, when different implementations of a system a¡e discussed, the

package specification will be given once, and alternative versions of its body wili be shown.

exte rnal J) acka g e _de clarat ions ::=
with system_name {, system_name | ;

A package specification may import externally def,ined packages and data types. Extemal
package specifications serue two purposes. Primarily, they introduce the names of external
system components to which output may be sent. As such, they usually represent processes

that format output for display or printing. Altematively, they can represent other systems

within the same environment. In either case, they provide a convenient way to avoid specifying

È,
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the details of output operations. Thus, if the clause '\ryith Report' introduces the name of an
external package, then 'Report' is assumed to contain a 'Loan' procedure, which 'Report.Loan
(t,u)' invokes. 'Report.Loan' may be assumed to display or print 't' and 'u', neatly formatted.
In truth, it does not matter what 'Report.Loan' does. From the viewpoint of the system being
specified, 'Report' is simply an information sink. A secondary.purpose of external package
specifications is to support data types. For example, it would be possible to specify the clause
'with money' to support arithmetic operations on a 'money' data type.

In addition to any data types int¡oduced through external packages, it is assumed that the data
types and operators found in the Ada 'standard' package are always available. These include
'integer', 'natural', 'positive', 'float', 'boolean,, ,character', and ,string,.

g e n e ri c _ty p e _de c larat ion s : i=
generic {type type_name is private; I type type_name is range <> ;}

Generic type declarations may be used to introduce data types whose precise form does not
affect the system specification process. A private data type may be used in assignments,
tested for equality, used as the basis of an affay, or the domain of a loop variable. Thus,
introducing 'book' as a private data type allows variables of type 'book' to be declared, and so
on. Private types have arbitrary ordering, so that it is meaningless to ask which of two
'books' is smaller, for example, or to perform a¡ithmetic on book identifiers. Range data
types serve similar purposes, but also allow integer arithmetic and comparison. If more is
required of a data type, it must be introduced by an external package.

ev e nt _s p ec ifi c ation : :=
procedure event-name | (event4arameters {; {eventgarameters } ) I ;

ev ent g arameter s ;= p aramet e r _name {, p aramete r _name } : typ e _name

Event specifications define the system interface to which external input can be sent. Abstract-
ly, each input has the form of a procedure call, naming an event that appears in an event
specification, and providing a corresponding set of parameters. It is assumed that inputs sent to
the entire system are totally ordered in time - not merely those sent to each system interface.
An event having only input parameters may be called using a deiayed procedure call. An event
having output parameters must be called using a remote procedure call. Only delayed procedure
call allows the called process to lag arbitrarily behind the calling process.

c omp onent _s p e c ifi c at ion : :=
I array (type_name { , type_name } ) of I
package component_name is

{ ev ent _sp ecifícation }
end. component_name ;

When a system comprises several components, each component is specified by a package
specification simila¡ to that used to define the system as a whole. Component specif,rcations
have no external package declarations or generic type declarations of their own, but inherit the
declarations of their parent system. Arrays of component packages may be declared. There is a
separate instance ofthe package for each value of its anay basis. Arrays of packages are used
to model sets of parallel processes 

- either real, or simulated by sequential access.
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c omp one nt _dertniñ on ::=
package body component_name is

{ c omp onent _s p e cifi c ation }
{ c omp onent _definition I
{ stat e _v ariable _de claration }
{ p ro c e dure _definition I function_definition I
{ event_definition }

end. component_name ;

The implementation of a system or a system component is defined by a package body.
Component definitions a-re nested within the system definition, and it is possible to nest
component definitions within other component definitions. A component may receive input
from another component, or from an event procedure of the enclosing system. It may direct
output to another component or to an external package. It is not possible for a system
component to send output to itself (i.e., call one of its own event procedures), either directly or
indirectly. Howevet, an event procedure may call an internal procedure or function, i.e., one
defined within the same package body but not decla¡ed in the package specification.

2.6.2 Variables

state _variable _de claration i := v ariable _de claration
variable-declaration ::= variable_name {, state_name }z type_name .= constant ;
v ariable _de c laration : := v ariable _name {, state _narhe } z

array ( type_name {, type_name }) of type_name z= initial_value 
1

initial_value ::= (others => constant I others => initial_value )

State variables may be either simple, or arays having one or more dimensions. Each state

variable must be uniformly initialised to a default value. The default must be a constant,
lypically'false', '0', or the empty string. Generic private types must be initialised to the

special value null. Integer, boolean, float, character and string constants are also allowed, as

in Ada.

State variables are private to their immediately enclosing components. They may be read or
updated by any procedure defined within the component that declares them, but not by any
other component, even an enclosing component.

Local variables may be decla¡ed within any function or procedure. Local variables are

declared in the same way as state variables. Local variables are always initialised on entry to the

function or procedure, and discarded on exit.

A private data type may be the basis of an anay, even though this not legal in Ada.
However, the actual implementation of an array is supposed to use storage only in proportion to
the number of its entries that have non-default values. It is understood that even though its
basis may have inf,rnitely many values (e.g., integer), its physical storage size stays bounded,
and it is practical to implement it as a database table, for example. Similarly, if its entries are

reset to the default value, the space they occupy may be reclaimed.
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2.6.3 Procedures

p r o c e dure _definition : :=
procedure p ro c e dure _name

l( p eters {; { procedureþrmal4arameters })l ß{to }

_ { procedure_definition lfunction_definition }
begin

statement_list
end. procedure_name i

p ro ce dure Jormal ¿t arame te rs :=
parameter_name {, parameter_name } : [in] [out] type_name

Ioc al_variable _declqration ::= variable _declaration

fun c t i on _d efiniti on ; ;=
function /ø n c t i o n 

-n 
am e ( fun c t i on J) ar am e t e r s { ; I func t i on _p ar am e t e r s })return type_name is

{ Io c al _v ariable _de c I arati on }
{ function_definition }

begin
statement list

end.function_name ;

function¿tarameters := parameter_name {, parameter_name } : type_name

There are two kinds of procedures: event procedures, and internal procedures. An event
procedure must be called from outside the package where it is declared. An internal procedure
may be called by an event procedure or another internal procedure within the same package. An
internal procedure defined within a component package may be called by any procedure within
the component package itself. An internal procedure defined within a system package may be
called by any procedure within the system package, but not within one of its components.
Internal procedures may be used to encapsulate the common parts of simila¡ event procedures.
Internal functions have a similar pu{pose. They may have only input parameters, and may not
refer to non-local va¡iables. (They are therefore 'purer' than in Ada.) A procedure may refer to
state variables within its enclosing package. A procedure may not refer to a state variable or
non-local variable both directly and as a parameter.

An event procedure differs from an intemal procedure in two respects: it may only be called
from a different package, and it may not be nested within another procedure. Event procedures
are textually distinguished from internal procedures by being declared in the system or
component package specification. Internal procedures may have output parameters, but event
procedures may not.

2.6.4 Statements

statement_list:;= statement1{ statemenf ; } Inull;
statement ::= as si gnment p roc edure _c all I c onditional_stat ement I

for_loop I all_loop I while_loop
assignment ;:= variable a= expression

variable ::= variable_name | ( index_name {, index_name }) l
index_name := variable _name
expression ;;= term { operator term }
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term ::= variable I constant I ( expression ) I function_call I operator term

func t i on _c aII : :- func tion _name ( act ual _p arame t e r {, actual ¿t aramete r l)
act unl_paramete r : := e xp re s sion

Assignment is the primary means of changing the system state. It is semantically and
syntactically similar to assignment in Ada. After an assignment, its lefçside va¡iable has the
vaiue its righrside expression had before the assignment. Expressions follow the same general
form as in Ada. An operator may be any of the standard operators of Ada.

A va¡iable may be simple, or it may be indexed by one or more indices. An index must be a
simple variable, not a general expression. This restriction is made to simplify later discussion.
It is not a limitation on what can be specified, because any desired index expression can be
assigned to a local variable that is then used as an index.

procedure_call ::=
I package_name | ( variable _name {, variable_name } ) I . l
procedure_name | ( actualparameter {, actualgarameter | ) I

A procedure call may invoke an event procedure declared within a different package. If the
called package is specified with the 'affay' option, the package name must be indexed, so that a
particular instance of the package is selected. The semantics of a function or procedure call a¡e

given by textually replacing the call by the body of the function or procedure itself, changing the
names of formal parameters to their corresponding actual parameters, and renaming local
variables with unique identifiers.

conditional statement ::=
if expressior¿ then statement_list
{ elsif expression then statement_list }
I else statement_Iist )
end if

One form of conditional statement is provided, having exactly the same form as the Ada if
statement. Howevet, to keep the specification language as simple as possible, no case
statement is provided.

all_loop::=
all loop_variable in type_name loop

statement list
end loop

for_Ioop::=
for loop_variable in type_name loop

statement list
end loop

while_Ioop::=
while expressionloop

statement list
end loop

Three kinds of loop are provided: all loops, for loops, and while loops. The body of an all
or for loop is executed with the loop variable assigned each value of the domain type. In a for
loop, the values are taken in increasing order of the domain type. In an all loop, this restriction
does not hold, and the instances of the loop body may be executed in any order, or in parallel.
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Since the order of execution of a for loop is also a possibie order of execution of an all loop,
an all loop may always be safely replaced by a for loop. The reverse is not true. For loops
are reserved for two purposes: in those rare situations when the order of execution matters, or
when it is used specifically to describe the implementation of a sequential access process. An
all loop is always prefened to a for loop whenever the instances of the loop body can be
executed concurrently in principle, even if they are executed sequentially in practice.

There are actually two kinds of parallel loop, illustrated by the following two examples:

Stock: natural := 0;

all t in title loop
Report.Put (C(t));

end loop;
all t in title loop

Stock:= Stock + C(t);
end loop;

In the first example, all the instances of the loop body can be executed at the same time. In
the second, 'Stock' is a shared variable, which suggests that the instances ought to be executed
one at a time. In fact, the value of 'Stock' can be computed by combining the values of 'C'
pair-wise, e.g., for 8 elements, the computation is:

((c(1) + c(2))+(c(3) + C(4)))+((c(5) + c(6))+(c(7) + c(s)))

Four pairs of terms are summed, then two pairs of partial results, and hnally one pair of
partial results. The number of steps is log2N, where N is the number of terms, This idea can
be generalised to any associative operator, and is sometimes called 'reduce' or p-reduction

[Hillis 1985]. The form given in the example, where an accumulator (e.g., 'Stock') is
initialised in its declaration, then updated within an all loop, will be written to specify a reduct-
ion operation. Syntactically, a reduction has the form 'v := v op E;' or 'V := fn(v,E);', where
'V' is a variable, 'E' is an expression, 'op' is an operator, and 'fn' is a function. (The parallel
implementation described in Chapter 3 actually finds a reduction by a different method.)

Given enough processors, an all loop with a shared va¡iable can be executed in time
O(iogl¡, but one without a shared va¡iable can be executed in time O(f ). In practice, the
range of an all variable is likely to be so great that it will easily exceed the number of available
processors. In that case, the speed-up due to parallelism is likely to be roughly equal to the
number of processors, for either kind of loop.

Because Ada operators can be overloaded, it is not possible to tell when a for loop can be
replaced by an all loop textually. In the second example above, there is no guarantee that '+' is
an associative operator. In an extreme case, it could denote division, in which case a for loop
would produce a unique final value for 'Stock', but an all loop could produce many alternative
values. In addition, if array elements are distributed cyclically and partial reduction is done
locally, as described later in Section 3.5, the operator must also be commutative. Therefore
both keywords are needed.

38



System Description

with report;
generlc

type order is private;
type employee is private;
type product is private;
type money is range <>;

package Sales is
procedure Bonuses;

end Sales;
package body Sales is

Bonus : array (employee) of money := 0;
What : product := null;
Value : money := 0;
Rep : employee := null;

begin
all Ord in order loop

V/hat := Item_Sold(Ord);
Value ;= Qty_Sold(Ord) * price(What);
Rep := Agent(Ord);
Bonus(Rep) := Bonus(Rep) + Value x Rate(V/hat)/1000;

end loop;
all Emp in employee Ioop

Report.B onuses(Emp, B onus(Emp)) ;
end loop;

end Bonuses;
end Sales;

Exnvrpl¡ 2.6.t: Snnn¡o VezueeI-ss

Because of the restriction that array indices must be simple variables, a difficulty can
occasionally arise in specifying an all loop. Consider Example 2.6.I. The intention is that,
given a set of orders, 'Bonuses' computes the commission payable to each sales representative.
To do this, an afiay,'Bonus', is created internal to the event procedure. Each entry,
'Bonus(Rep)', accumulates the commission for one sales representative. Several assignments
to the same element may occur in parallel, but this is permissible, because accumulating a total
is a reduction operation, and the assignments may be done in any order. However, in order to
index the'Bonus' arÍay, it is first necessary to assign 'Agent(ord)' to 'Rep', because the
specification language does not allow a reference of the form 'Bonus(Agent(Ord))'. The
problem is that one instance of 'Rep' is shared by all the instances of the loop body, and there is
no guarantee that its value will survive from assignment to use. Creating multiple instances of
'Rep' by declaring it as an array does not resolve the problem.

To resolve it, the specification language aliows va¡iabies to be decla¡ed within any statement,
using a declare block. This is illustrated in Example 2.6.2. It is assumed that, because 'Rep'
is declared within the first all ioop, there is a separate instance of it for each instance of the loop
body, therefore it is not shared.
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package body Sales is
Agent : array (order) of employes ;= (others => 0);
Item_Sold : array (order) of product :- (others => null);
Qty_Sold : array (order) of natural ;= (others -> 0);
Price : array (product) of money ;= (others => 0);
Rate : array (product) of natural ;= (others => 0);
procedure Bonuses is

Bonus : array (employee) of money := 0;
begin

all Ord in order loop
declare

What : product:= null;
Value : money := 0;
Rep : employee := null;

begin
What := Item_Sold(Ord);
Value ;= ety_Sold(Ord) * price(What);
Rep := Agent(Ord);
Bonus(Rep) := Bonus(Rep) + Value * Rate(What)/1000;

end;
end loop;
all Emp in employee loop

Report.B onuses(Emp, Bonus(Emp)) ;
end loop;

end Bonuses;
end Sales;

Exevplp 2.6.2: UsTNc A DEcLARE BLoCK

The while loop is provided for those cases where an iteration is needed that cannot be
expressedusing an all loop orfor loop. The statement'while expressionloop statement;
end loop;' is semantically equivalent to the infinite conditional:

if expression then
statement i

end if;
if expression then

statement i
end if;

and is a sequential construct whose instances cannot be evaluated concurrently

2.7 Rewriting Rules

There are two rewriting rules, which enable the specification of a system to be reconstructed
from the specifications of its component processes. Since these rules are straightforward,
rather than describe them formaliy, they will be illustrated by example.

The first rule allows an array of packages to be reduced to a single package.

Suppose that the basis of the package array 'P' is '(T, U)', where 'T' and 'u' are type
names, i.e., the package is decla¡ed using the syntax 'array (T, U) of package p is ...'.
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Then each simple state va¡iable of 'P' should be converted to an array indexed by '(T, U)', and

each array state variable should be given extra dimensions of 'T' and 'lJ'. For example, the

declarations:

x : natural;
y : array (V) of string;

should be converted to:

x : array (T, U) of natural;
y : array (T, U, V) of string;

This exampie is easily generalised to any number of indices

Second, each event procedure declaration and definition in the package should be given two
additional parameters, of types 'T' and 'IJ', whose names do not clash with any others. For
example, the event declaration:

procedure E (v : integer);

should be replaced by something like:

procedure E (tl : T; ul : U; v : integer);

Each reference to a state variable in the event definition should then be augmented by having

these additionai variables as indices. Again, this transformation generalises to any number of
indices.

At each point where an event procedure is called from another package, the actual parameters

specifying the member of the package array should be moved to follow the procedure name

rather than the package name. For example, the call:

P (t, u) .E (v);

should be replaced by:

P.E (t, u, v).

Finally, the array clause should be removed from the package specifîcation.

An example of this transformation was that from Example 2.5.3 to Example 2.5.2.

The second transformation enables a package to be deleted, after moving its contents to an-

other package. There are th¡ee steps. First, calls to event procedures defined in the package to

be removed must be replaced by their texts, after substituting actual for formal parameters.

Second, the state va¡iable declarations in the called package should be moved to the calling
package. (If this should cause a clash with the name of a local variable, the local variable must
be renamed.) Third, the called package specification and definition should be deleted.

Two such transformations will convert Example 2.5.2 into Example 2.5J. The intermediate

step is given in Example 2.7.I. This shows the effect of moving the contents of 'D' of
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Example 2.5.2into 'C'. Thetransformationof Example 2.7.IíntoExample2.5.1 is completed
by moving the contents of 'C' into the enclosing 'Library' package.

The rewriting rules specify how to derive a system specification from its component specihc-
ations. They therefore provide a way of verifying that a given decomposition is correct.
Conversely, their inverses allow many ways of decomposing a given system into components.
Given an infra-structure that conectly replaces the system read loop, any decomposition that
leads back to the original system specification is a correct one. Some suitable infra-structures
will discussed in the next chapter. How to choose a good decomposition is a problem that will
occupy a major part of the discussion that follows it.
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package body Library is
package C is

procedure Buy (t : title);
procedure Borrow (t : title; u : user);
procedure Reshelve (t : title; u : user);
procedure Audit;

end C;
package body C is

C : array (book) of natural :- (others => 0);
D : array (user) of natural :- (others => 0);
procedure Buy (t : title) is
begin

C(t) := C(t) + 1;
end Buy;
procedure Borrow (t : title; u : user) is
begin

if C(Ð > 1 then
D(u) := D(u) + 1;
C(t) := C(t) - 1;

end if;
end Borrow;
procedure Reshelve (t : title; u : user) is
begin

D(u) := D(u) - 1;
C(t) := C(Ð + 1;

end Reshelve'
procedure el¿it is

Loans, Stock: natural := 0;
begin

all t in title loop Stock := Srock + C(r); end loop;
all u in user loop Loans := Loans + D(u); end loop;
Report.Audit (S, L);

end Audit;
end C;
procedure Buy (t : title) is
begin

C.Buy(v);
end Buy;
procedure Borrow (t : title; u : user) is
begin

C.Borrow(t, u);
end Borrow;
procedure Reshelve (t : title; u : user) is
begin

C.Reshelve(t, u);
end Reshelve;
procedure Audit (t : title; u : user) is
begin

C.Audit(t, u);
end Audit;

end Library;

EXAMPLE 2.7.1: TRRNSPORI¿ATION OF LIBRARY CoMPoNENT SPEcIFIcATIoNS

43





Implementation

3. Implementation
The purpose of this chapter is to show, in specific terms, the technology of implementing a

batch system. This is a digression from the main thrust of the thesis. Its purpose is to show
that when a batch process uses sequential or parallel access, there are limitations on what it can

do, which are exactly those expressed in Example 2.5.3a-b. Indeed, the limitations of
sequential and parallel access are essentially the same, and the two approaches can be

considered to be specific examples of the more general concept of independent access. The
author believes that the inherent limitations of independent access are most easily understood
and more convincingly presented by means of examples - otherwise the scheme of Example
2.5.3a-b might seem an arbitrary one. The sequential access algorithm given here is actually an

extension of the usual one, to allow for global queries and updates, so it is important to show
how this extension works. In the case of the parallel access system, it is also important to show
that the parallelism results in an actual speed up, and that the advantages of parallel processing

are not overwhelmed by the cost of communication between processes.

The th¡ee program examples given are each based on the Macrotopian Reference Library
system of the preceding chapters. The first example uses random access, and is written in
Cobol. The second uses sequential access, and is also written in Cobol. The third uses parallel
access, and is written in C for the CM-5 parallel processor, using functions drawn from the

CM-5's CMML message passing library [Thinking Machines L993]. All three examples are

paradigms that can be adapted to suit other systems; that is, they demonstrate alternative system
read loops, and can be adapted as technology and circumstances permit.

Naturally, all three examples have common features. Event records have four fields.
'Timing' is the time or serial number of the event record, which reflects the temporal order of
the real-world events. 'Kind' defines the type of the event: 'Borrow', 'Reshelve', 'Buy' or
'Audit'. 'IJser' specifies the identification of a library user, and 'Title' specifies the

identification of a book. 'Where a field is not needed in a particular type of event, i.e., the
'IJser' in a 'Buy' event and both the 'IJser' and 'Title' in an 'Audit' event, it contains a value
less than any actual n¿ìme or title. (It would be better programming practice for each kind of
event to have a different format, including only those fîelds it needs. A common format was
adopted to keep the examples as simple as possible.)

In the Cobol examples, the 'Branches' file contains a record for each user who has drawn a
positive number of books from the library. Each record has two fields: 'IJser' identifies the

user, and 'Drawn' counts the number of books drawn by the user. The file is indexed by
'IJser'. The implementation uses the convention that a user who has drawn zero books does

not need to be represented by a record. This is unrealistic in a more general context, because it
does not keep track of the set of valid 'User' identifications. However, it is perfectly correct for
the library system problem as specified. Likewise, the 'Books' file contains a record for each

book that is in stock. Each record has two fields: 'Title' identifies the book, and 'Copies'
counts the number of books in stock. The file is indexed by 'Title'. A book that is out of stock
does not need to be represented by a record. This means that the system cannot keep track of
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the set of valid titles. In the parallel implementation, the representation is even simpler,
'Drawn' is an array indexed by 'User', and 'Copies' is an array indexed by 'Title', exactly as in
the specification.

One of the more difhcult aspects of the second and third examples is understanding how
'Audit' events are implemented. This is because the database is only in a consistent state before
or after a batch of events is processed. The states of all the books are updated completely in
response to other events before the states of any users are changed at all. Despite this, 'Audit,
events are able to snapshot a consistent state of the inconsistent database at any desired time
during the update. This is possible because they follow the same paths and are subject to the
same delays as the updates that change its state.

3.1 Modelling Independent Updating

FIGURE 3.1.1: A MoDEL oF INDEPENDENT ACCESS

Figure 3.1.1 shows the underlying structure of either a sequential or parallel update algorithm
from the viewpoint of one event. (The Macrotopian Reference Library example needs two such
updates.) There are many element update processes, one for each array element or key. In a
parallel update these processes exist on separate physical processors 

- ideally, one to each
processor; in a sequential update, they exist at different intervals of time. The element updates
may inspect or update the database in whatever way is necessary. The distribution process
sends messages to each element update, and the element updates send messages to a collection
process. The element updates cannot communicate with one another; there is no guarantee that
the messages they sent would anive in time to be useful. In a parallel update, the destination
process may have already processed updates with lnter time-stamps. In a sequential update, a
message sent to an update process for a lower key value will arrive too iate to be processed at
all. This absence of communication between different element update processes is the defining
property of the independent access model. It is precisely this restriction that allows each
process to go about its work without interference or the need for synchronisation.

To relate this model to the specification of independent access given in Section 2.5, we note
that its shell processes can be divided into th¡ee phases: an initial phase that occurs before the
all loop, the independent access within the all loop, and a final phase that occurs after the all

Update

Update

Collection

Update

Update
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loop. Essentially, these phases conespond to the distribution, update and collection processes
of Figure 3.1.1.

A 'distribution' process ensures that information concerning the event is sent to each element
update process to which it is relevant. Two distribution paterns are illustrated by the library
system. Updates are sent to one element update process, but 'Audits' are broadcast to all of
them. Other possibilities exist. In principle, messages may be sent to any known list of
element update processes. The difference between sequential and parallel processing is the
means of distribution. In parallel processing, the means is to send messages from the processor
supporting the distributor to the processors supporting the element updates. In sequential
processing, the means is to tag a record with the key of an element, and to sort the records.
When the event records are merged sequentially with the master file, the record will appear in
main memory at exactly the right time. In the case of a broadcast, a 'memo' is created that stays
in main memory throughout the update. In principle, such memos could be used for all events,
but they would use up too much main memory. Sorting events allows them to be held in
secondary storage and read into main memory as needed, with low cost. If there happens to be
a known list of elements that must be inspected or updated, records can be created for each
element in the list, and sorted. These records correspond to procedure calls made by a 'shell'
process to the elementary update processes it contains - although a common case is that the
shell merely passes a call made to it to the single element of interest.

The 'collection' process accepts messages sent by the element update processes. There may
be one such message, as in the case of the library system updates, or one from each process, as

in an 'Audit' event. Intermediate situations are possible. Messages could arrive from any list
of element update processes selected by the distribution process, and be processed in any way
desired. Sometimes the collection process is degenerate, and does nothing. The sequential
access ve¡sion of the library system has no obvious collection processes in it. In the case of
'Audits', this is because the 'Stock' and 'Loans' variables can be safely updated by the element
update processes. In the case of updates, all information concerning the update is contained in a
single event record. In general however, it would be possible to sort messages received from
several element update processes by time, thus collecting all the records for a given event.

Figure 3.1.1 shows the viewpoint of one event. Logically, each event has its own distributor
and collector, although they all share the same set of element update processes. In the parallei
implementation of the library system, these distributors and collectors are distributed evenly
over the available physicai processors. In the sequential implementation, they are scarcely
evident, because distributing and collecting results is trivial.

To achieve greater generality in a sequential update, a distributor process would need to be
invoked to pre-process the events before the sort operation. This would provide an opportunity
to distribute events to as many update processes as desired, by creating several records to be
matched against different master records. Conversely, when all the element updates had been
completed, the transfer file they produced would be sorted by time, so that all records relevant
to an event would be collected together. The collector processes for each event would then
post-Process these collected records. Such a collecting sort is not a common part of a sequential
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update algorithm in practice. As in the library example, collection processes are often
degenerate. The sort may then be dropped; there is no reason for one update phase to sort its
out-going transfer records into time order when the next update will begin by sorting them into
key order. Nonetheless, both pre-processing and post-processing may be needed in general.

Since there is exactly one distributor and one collector for an event, it is possible to think of
the collector as an extension of the distributor, so that together they form what in Example
2.5.3a-b was called a'sheli'. The messages sent by the distributor to the element updates can
be represented as procedure calls. The messages sent by element update processes to the
collector can be treated as values ¡eturned by these calls. This justifies the abstraction given in
Example 2.5.3a-b of modelling communication between the shell and the element updates as

ordinary procedure calls.

The modei of Figure 3.1.1 restricts the possible forms of a shell procedure. A shell
procedure can consist of some pre-processing (in the distributor), a series of calls to element
updates (distribution), followed by post-processing (in the collector). There is just one
opportunity to do each of these things. It would not be permitted, for example, to call an
element update and use the returned result as a parameter of a subsequent call to another element
update. It would create a dependence between the two element updates that would destroy their
independence.

3.2 Random Access Implementation

The first example is the most straightforward. Example3.2.1a shows the first th¡ee divisions
of a Cobol program to implement the library system. Example 3.2.1b shows the main logic of
the procedure division of the library system, and Example 3.2.1c shows the subsidiary
procedures needed to suppof input and output operations.

In Example 3.2.Ib, 'System-Read-Loop' implements the generic event loop of Example
2.1.2. The remainder of Example 3.2.Ib consists of the four event procedures. They follow
the specification closely, except that they replace its array references with file input and output
operations.
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Identification Division.
Program-ID. Library-System.
Environment Division.
Input-Output Section.
File-Control.

Select Events assign "events"; organization is sequential.
Select Books assign "books"; organization is indexed,

record key is Title of Books; access is dynamic.
Select Branches assign "branches"; organization is indexed,

record key is User of Branches; access is dynamic.
Data Division.
FD Events.

1 Event.
88 Ar-Staft
88 ArEnd
2 Timing
2 Kind

88 Buy
88 Borrow
88 Reshelve
88 Audit

2 User
, 2 Titte

FD Books.
1 Book.

88 At-Start
88 AçEnd
2 Title
2 Copies

FD Branches.
1 Branch.

88 At-Staft value low-values.
88 At-End value high-values.
2 User picture x(10).
2 Drawn picture 9(2).

Working-Storage Section.
77 Stock picture 9(4) value zero.
77 Loans picture 9(4) value zero.
77 Book-Status picture 9.

88 Book-Missing value 0.
88 Book-Exists value l.

77 Branch-Status picture 9.
88 Branch-Missing value 0.
88 Branch-Exists value 1.

EXAMPLE 3.2.Lt: Reuoorra AccESS LTBRARY SysreN4 rN CoBoL (penr 1)

value low-values
value trigh-vãtuõs
picture 9(4).
picture 9.
value 1.

value 2.
value 3.
value 4.
picture x(10).
picture x(20).

Implementation

value low-values
value high-values
picture x(20).
picture 9(2).
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Implementation

Procedure Division.
System-Read-Loop.

Open input Events, I-O Books, Branches;
Read Events, at end, Set ArEnd of Events to true; end-read;
Perform until At-End of Events,

Evaluate Kind of Event;
when Buy, Perform process-Buy;
when Borrow, Perform process-Borrow.
when Reshelvê, Perlorm process-Reshelie;
when Audit, Perform process-Audit;

end-evaluate;
Read Events, at end Set ArEnd of Events to true; end-read;

end-perform;
Close Events, Books, Branches;
Stop run.

Process-Buy.
Perform Read-Book;
Add 1 to Copies of Book;
Perform Update-Book.

Process-Borrow.
Perform Read-Book;
If Copies of Book > 1 then

Perform Read-Branch;
Add 1 to Drawn of Branch.
PerformUpOute-n.on¿h;'
Subtract 1 from Copies of Book;
Perform Update-Book;

end-if.
Process-Reshelve.

Perform Read-Branch;
Subtract 1 from Drawn of Branch;
Perform Update-Branch;
Perform Read-Book;
Add 1 to Copies of Book;
Perform Update-Book.

Process-Audit.
Perform Read-First-Book;
Perform until ArEnd of Books,

Add Copies of Book to Stock;
Read Books, at end Set ArEnd of Books to true; end-read;

end-perform;
Perform Read-First-B ranch ;

Perform until ArEnd of Branches,
Add Drawn of Branch to Loans;
Read Branches, at end set At-End of Branches to true; end-read;

end-perform;
Display Stock, " books in stock, ", Loans, " books on loan.,'.

EXAMPLE 3.2.In: ReNoovT ACCESS LßReRy Sysrelr¿ IN CoBoL (PART 2)
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Read-Book.
Move Title of Event to Title of Book;
Read Books,
invalid key Move zero to Copies of Book; Set Book-Missing to true;
not invalid, Set Book-Exists to true;
end-read.

Update-Book.
If Book-Exists then

If Copies of Book = zero then
Delete Books, invalid key Perform I-O-Error; end.delete;

else
Rewrite Book, invalid key Perform I-O-Error; end.rewrite;

end-if;
else

If Copies of Book not = zero then
Write Book, invalid key Perform I-O-Error; end-write;

end-if;
end-if.

Read-Branch.
Move User of Event to User of Branch;
Read Branches,
invalid key Move zero to Drawn of Branch; Set Branch-Missing to true;
not invalid, Set Branch-Exists to true;
end-read.

Update-Branch.
If Branch-Exists then

If Drawn of Branch = zero then
Delete Branches, invalid key, Perform I-O-E¡ror; end-delete;

else
Rewrite Branch, invalid key, Perform I-O-Error; end-rewrite;

end-if;
else

If Drawn of Branch not = zero then
Write Branch, invalid key, Perform I-O-Error; end-write;

end-if;
end-if.

Read-First-Book.
Set At-Start of Books to true;
Start Books, key not < Title of Books,
invalid key, Set At-End of Books to true;
not invalid, Read Books, at end Set At-End of Books to true; end-read;
end-start.

Read-First-Branch.
Set At-Start of Books to true;
Start Branches, key not < User of Branches,
invalid key, Set ArEnd of Branches to true;
not invalid,

Read Branches, at end Set At-End of Branches to true; end-read;
end-start.

I-O-Error.
Display "Invalid Key error detected when it is logically impossible!";
Stop run.

ExeN¿pr-e 3.2.1c: RANDoM AccESS LBReRy Sysrpv rN CoBoL (Penr 3)

Implementation
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Implementation

Among other things, the procedures of Example 3.2.Ic enforce the conventions surrounding
default vaiues. When an attempt is made to read a non-existent record, a default-valued record
is supplied instead. Similarly, if an existing record is given a default value, it is deleted from
the file. This matches the implementation of functional dependencies discussed in Section 2.4.

The first point to observe about the example is the close correspondence between its event
procedures and those of the specif,rcation of Example 2.5.1. The second point is that this
simple, direct form of implementation puts no restriction on the set of specif,rcations that can be
implemented; the implementation has the same form as the specification. It is a fall-back
method that can always be used when other methods faii.

3.3 Sequential Access Implementation

The second implementation is more complex, and is based on the multi-process decomposit-
ion of Example 2.5.3. The systemis split into 'C' and 'D'processes, called here 'Library-
Books-Process' and 'Library-Branches-Process', which are written as sepamte programs.
These two programs can be run at different times, with the intermediate results (i.e., the delayed
procedure calls) being stored in a transfer file. Because the transfer file is written in 'extend'
mode, it is possible to run the books process several times before running the branches process.
For example, the books process could be run once a day and the branches process could be run
once a week. This would serve no useful purpose in a library, but it is a common practice in
situations where different repofs are needed with different frequencies.

Example 3.3.Ia shows the first three divisions of the implementation of the books process in
Cobol.

The program's working storage contains an affay, 'Memo', which is used to store the times at
which 'Audit' events occur, and to accumulate the numbers of books in stock. The size of this
array limits the number of 'Audit' events that can be present in one batch. This array is not a
usual feature of an update program. Most programs in practice would make provision for at
most one 'Audit' event. The reason for this is that batch programs are typically executed as

soon as an important query is made. Indeed, the need for timely information often determines
the size of a batch, so that, for example, if a report is required daily, a batch is processed once a
day. The point shown by the example is that one query is not a limit in principle, and any
bounded number of similar 'global' queries or updates can be processed in one batch. If a
batch happened to contain more 'Audit' events than could be stored in the 'Memo' array, it
would simply be split into two or more smaller batches.
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Identification Division.
Brogram-ID. Library-Books-Process.
Environment Division.
Input-Output Section.
File-Contñol.

".; organization is sequential.

ial.

FD Events-In.
1 Event-In.

picture 9(4).
picture 9.
picture x(10).
picture x(20).

Timing
Kind
User
Title

2
2
2
2

picture 9(4).
picture 9.
picture x(10).
picture x(20).

value high-values.
picture 9(4).
picture 9.
value 1.
value 2.
value 3.
value 4.

Implementation

2 Timins
2 Kind
2 User
2 Title

SD Work-File.
1 V/ork-Record.

FD Events.
1 Event.

88 ArEnd
2 Timing
2 Kind

88 Buy
88 Borrow
88 Reshelve
88 Audit

2 User
2 Titte

FD Transfers.
1 Transfer.

picture x(10).
picture x(20).

e(4).
9.
x(10).
e(4).

i Old-Book.
2 Titie picture x(20).

88 At-End Íalue high-values.
2 Copies picture 9(2).

FD New-Books.
1 New-Book.

2 Title picture x(20).
88 At-End value high-values.

_ 2 - Copies picture 9(2).
Working-storage Section.

1 Memo occurs 1000 times depending on Memo-Counter.2 Timing picture 9(4) valuè zero.2 Stock þicture 9(4) value zero.
77 Memo-Counter þicture 9(4) value zero.
77 Current-Memo þicture 9(4) value zero.

Exeupre 3.3.le: SequnNrral- AccESS LrsRAnv Svsr¡u rN coBol- (PART 1)
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Implementation

Procedure Division.
Update-Books.

Sort Work-File,
on ascending key Title of Work-Record, Timing of Work-Record,
using Events-In, giving Events;

Open input Events, Old-Books, output New-Books, extend Transfers;
Read Events, at end Set At-End of Events to true; end-read;
Move zero to Memo-Counter;
Perform until Title of Event not = low-values,

Add I to Memo-Counter;
Move Timing of Event to Timing of Memo (Memo-Counter);
Read Events, at end Set At-End of Events to true; end-read;

end-perform;
Read Old-Books, at end Set At-End of Old-Books to true; end-read;
Perform Choose-New-Title;
Perform Process-One-Title until At-End of New-Books
Perform Process-Audit-2, varying Current-Memo from l,

by 1 until Current-Memo > Memo-Counter;
Close Events, Old-Books, New-Books, Transfers;
Stop run.

Process-One-Title.
If Title of Oid-Book = Title of New-Book then

Move Copies of Old-Book to Copies of New-Book;
Read Old-Books, at end Set At-End of Old-Books to true; end-read;

else
Move zero to Copies of New-Book;

end-if;
Move 1 to Current-Memo;
Perform Process-One-Event until Title of Event not = Title of New-Book,
Perform Process-Audit-1 varying Curent-Memo from Current-Memo by 1,

until Current-Memo > Memo-Counter;
If Copies of New-Book not = zero then Write New-Book; end-if;
Perform Choose-New-Title.

Process-One-Event.
Perform until Current-Memo > Memo-Counter

or Timing of Memo (Cunent-Memo) not < Timing of Event,
Perform Process-Audit- 1 ;

Add 1 to Cunent-Memo;
end-perform;
Evaluate Kind of Event;

when Buy, Perform Process-Buy;
when Borrow, Perform Process-Borrow;
when Reshelve, Perform Process-Reshelve;

end-evaluate;
Read Events, at end Set AfEnd of Events to true; end-read.

Choose-New-Title.
If Title of Event < Title of Old-Book then

Move Title of Event to Title of New-Book;
else

Move Title of Old-Book to Title of New-Book;
end-if;

ExRvptp 3.3.ln: SpQueNrmr AccESS LTBRARY Sysrev rN CoBoL (Penr 2)

Example 3.3.1b shows the input-output logic of the procedure division. It is based on the
well-known algorithm in [Dijkstra 1976 , Dwyer 198la, Inglis 1981, Dwyer 1981b], extended
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to deal with global queries.

update.

Implementation

It is a generic paradigm that can be adapted for any sequential

In the procedure 'Update-Books', the input events are sorted into útle order, and where two
events concern the same title, their originai time ordering is preserved. After the sort, the
'Audit' events (which are given dummy low-valued titles) are collected to the beginning of the
sorted file. The program then reads their associated times into the 'Memo' anay.

The procedure then enters a loop that is iterated for each value of 'titie' that appears on either
the old books file or in the event transfer file, calling the 'Process-One-Title' procedure.

The underlying logic of 'Process-One-Title' is to find the initiai state of the title from the 'Old-
Books' file, update or inspect its state according to the events file, then record its final state on
the 'New-Books' file. First, the existing number of copies of the title is found from the old
books frle - but if there is no record for the current title, it is assumed to have zero copies.
Second, the procedure enters a loop where the state of the book (its number of copies) is
updated by 'Process-One-Event'. Third and last, the number of copies is recorded in the new
book file - but only if it is non-zero. The final state is then inspected by any 'Audit' events

that follow the last update, the ea¡lier inspections having being dealt with inside 'Process-One-

Event'.

Each execution of 'Process-One-Event' corresponds to a 'Buy', 'Borrow' or 'Reshelve'
event, so in this example, each execution always corresponds to an update event causing a state

transition. However, because of the 'Audit' events, there may be any number of inspections
needed between updates. Therefore, before each update event, the 'Audit' events that
immediately precede it are processed by stepping through the 'Memo' array.

The overall processing of an'Audit' event is as follows. The value of 'Stock' in the 'Memo'
array is initialised to zero at the start of the program. This matches the similar initialisation in
process 'C' of the specification of Example 2.5.3. The procedure 'Audit-l' matches the

assignment statement in the all loop of 'C'. The procedure 'Audit-2' matches the procedure

call of 'D.Audit'.
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Process-Buy.
Add 1 to Copies of New-Book.

Process-Borrow.
If Copies of New-Book > I then

Write Transfer;
Subtract 1 from Copies of New-Book;
Move corresponding Event to Transfer;

end-if.
Process-Reshelve.

Write Transfer;
Add 1 to Copies of New-Book;
Move corresponding Event to Transfer.

Process-Audit- 1.
Add Copies of New-Book to Stock of Memo (Current-Memo).

Process-Audit-2.
Set Audit of Transfer to true;
Move corresponding Memo (Current-Memo) to Transfer;
Move low-values to User of Transfer;
Write Transfer.

EXAMPLE 3.3.lC: SEQUENTTAL ACCESS LTBRARY SySr¡U rN COBOL (PART 3)

Finally, Example 3.3.1c shows the application specific statements corresponding to the event
procedures in the specification of Example 2.5.3. Where the specification calls for delayed
procedure calls, the procedures write a transfer record with suitable contents. The example is
degenerate in that no event procedure makes more than one delayed call, although the
specification rewriting rules may demand several calls in general. 'When several calls do occur,
it is important for their order to be preserved when they are sorted by the downstream process.
Since two calls generated by the same event share the same value of 'Timing', in general the
'Timing' held of transfer records should be augmented by an additional 'call serial number' to
preserve their correct sequence, making something similar to a Dewey number.

There are two kinds of event procedure that can be processed in the sequential update, those
that concem one particular title, and global events that concern all titles - signalled in the
specification language by an all loop. Because those that involve all titles must be present
throughout the update, they must be held in a buffer ('Memo'), so their number is limited by the
size of the buffer - often 1 in practice. On the other hand, those that concern single titles
require no special buffer, and their number is limited only by the size of the file system. The
example is misleading however, in that only one kind of global event is present. In general, the

loops in the example that concern the 'Audit' events would need to allow for more than one
kind of event. Also, all the single title events are updates, and the only global event is a query.
This need not be the case. With a different example, a banking system say, it is easy to imagine
a global update, to add a month's interest to each account, for example. Conversely, a query
event could report the balance of a single account.
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Identification Division.
Program-ID. Library-Branches-Process.

Environment Division.
Input-Output Section.
File-Control.

Select Transfers assign "transfers"; organization is sequential.
Select Work-File assign "templ".
Select Events assign "temp2"; organization is sequential.
Select Old-Branches assign "oldbranches"; organization is sequential.
Select New-Branches assign "newbranches"; organization is sequential

Data Division.
FD Transfers.

1 Transfer.
2 Timing picture 9(4).
2 Kind picture 9.
2 User picture x(10).
2 Stock picture 9(4).

SD V/ork-File.
1 Work-Record.

picture 9(4).
picture 9.
picture x(10)
picture 9(4).

Implementation

2 Timing
2 Kind
2 User
2 Stock

FD Events.
1 Event.

88 At-End
2 Timing
2 Kind

88 Buy
88 Borrow
88 Resheive
88 Audit

2 User
2 Stock

FD Old-Branches.
1 Branch.

2 User
88 At-End

2 Drawn
FD New-Branches.

I Branch.
2 User

88 Ar-End
2 Drawn

value high-values
picture 9(4).
picture 9.
value 1.

value 2.
value 3.
value 4.
picture x(10).
picture 9(4).

picture x(10).
value high-values.
picture 9(2).

picture x(10).
value high-values
picture 9(2).

Working-Storage Section.
I Memo occurs 1000 times depending on Memo-Counter

2 Timing picture 9(4) value zero.
2 Stock picture 9(4) value zero.
2 Loans picture 9(4) value zero.

77 Memo-Counter picture 9(4) value zeÍo.
77 Current-Memo picture 9(4) value zero.

Exevpls 3.3.2: SEeUENTTAL AccESS LBRARy Sysreu rN CoBoL (PART 4)
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Implementation

Procedure Division.
Update-Branches.

Sort Work-File,
on ascending key User of 'Work-Record, Timing of Work-Record,
using Transfers, giving Events;

Open input Events, Old-Branches, output New-Branches;
Read Events, at end Set At-End of Events to true; end-read;
Move zero to Memo-Counter;
Perform until User of Event not = low-values,

Add I to Memo-Counter;
Move corresponding Event to Memo (Memo-Counter);
Read Events, at end Set At-End of Events to true; end-read;

end-perform;
Read Old-Branches, at end Set At-End of Old-Branches to true; end-read;
Perform Choose-New-User;
Perform Process-One-User until At-End of New-Branches;
Perform Process-Audit-3, varying Current-Memo from 1,

by 1 until Current-Memo > Memo-Counter;
Close Events, Old-Branches, New-Branches;
Stop run.

Process-One-User.
If User of Old-Branch = User of New-Branch then

Move Drawn of Old-Branch to Drawn of New-Branch;
Read Old-Branches, at end

Set At-End of Old-Branches to true;
end-read;

else
Move zero to Drawn of New-Branch;

end-if;
Move 1 to Current-Memo;
Perform Process-One-Event until User of Event not = User of New-Branch;
Perform Process-Audit-l varying Current-Memo from Current-Memo by 1,

until Cunent-Memo > Memo-Counter;
If Drawn of New-Branch not = zero then Write New-Branch; end-if;
Perform Choose-New-User.

Process-One-Event.
Perform until Current-Memo > Memo-Counter

or Timing of Memo (Current-Memo) > Timing of Event,
Perform Process-Audit- 1 ;

Add 1 to Current-Memo;
end-perform;
Evaluate Kind of Event;

when Borrow, Perform Process-Borrow;
when Reshelve, Perform Process-Reshelve;

end-evaluate;
Read Events, at end Set At-End of Events to true; end-read.

Choose-New-User.
If User of Event < User of Old-Branch then

Move User of Event to User of New-Branch;
else

Move User of Old-Branch to User of New-Branch;
end.if;

EXAMPLE 3.3.28 SequrNrnl AccESS LrsRARy Sysreu rN CoBoL (PART 5)
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Implementation

Process-Borrow.
Add i to Drawn of New-Branch.

Process-Reshelve.
Subtract I from Drawn of New-Branch.

Process-Audit- 1.

Add Drawn of New-Branch to Loans of Memo (Current-Memo).
Process-Audit-2.

Display Stock of Memo (Current-Memo), " books in stock, ",
Loans of Memo (Current-Memo), " books on loan.".

Exevpr-B 3.3.2c: SseusNrrnl- AccESS LTBRARY Sysreu rN CoBoL (penr 6)

Example 3.3.2a shows the hrst three divisions of the program corresponding to process 'D'
of Example 2.5.3. They are directly analogous to fîrst three divisions of 'Update-Books'
except that, because it is the last step in the pipeline, 'Update-Branches' has no output transfer
file. (The analogy and the correspondence with the specihcation would be improved if the
'display' statements that report the results of the 'Audit' queries were replaced by write
statements to a transfer file, to be read by a 'Report' package.)

Example 3.3.2b shows the sequential file update logic. It is strikingly similar to
Example 3.3.lb. It is clear that it could be generated automatically from the specification.

Finally, Example 3.3.2c shows the application specific procedures, corresponding to the

eventprocedures of process 'D'in Example 2.5.3. Apart from the substitution of the 'display'
statement for a delayed procedure call to an external system, there is nothing nev/ to describe.

3.4 Analysis of Sequential and Random Access

Why is sequential access preferred to random access? - or rather, when is it preferred?

Sequential access can out-perform random access simply because the logical records of a file
or the rows of a database are physically stored in blocks or pages of many records. This
follows from the nature of rotating storage media. The access time for a magnetic disk drive is
made of three components: the time taken to move the read-write head to the correct track (seek

time), the time taken for the desired block to rotate to the read-write head (latency), and the time

taken for the block to pass under the head (transfer time). At the time of writing, average seek

times are of the order of 10mS and average latency is about 5mS. Transfer time depends on the

size of a block, and for the longest block that can fit on a track (say 50KB), it is double the

average latency. Typical transfer rates are at least IMB/sec. The point is, if it will take 15mS to
start reading a record, it is foolish to read only a few bytes; it is better to spend 25mS to read

50K bytes. (A secondary reason is that the gaps between sectors on a disk waste space, so

sectors are rarely less than 512 bytes long. It is impossible to read less than one sector.)

When a file is read sequentially, all the records in a block will be processed one after another.

However, when a record is read at random, a whole block must be read, and the other records

in it are rarely useful. Random access demands that blocks should be small, i.e., one sector.

q
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Sequential access demands that they should be as long as possible. Given sufficient buffer
space, they should occupy a whole track, or even a whole cylinder. (The upper limit may be
the unit the operating system uses to allocate file space.) As a simple example, suppose a
1,000,000 byte file consists of 10,000 records of 100 bytes. Reading the file in one continuous
transfer would take less than a second. At the other extreme, reading each record separately
would take about 150 seconds.

It is easy to estimate when sequential access is faster than random access. When a batch
contains global events like 'Audit' there is really no contest, as just one such event needs the
whole master file to be read anyway. Assume instead that all events update single records, as

'Buy', 'Borrow' and 'Reshelve' do. Consider the number of master file accesses. In a

sequential update, each master block must be read and written exactly once, regardless of the
number of events. The number of accesses is therefore twice the number of master blocks. On
the other hand, using random access, each update event causes one block of the master file to be
read and rewritten, causing 2 disk accesses. The number of accesses is therefore twice the
number of updates. If U is the number of updates and B is the number of master file blocks,
the break-even point is given by

2U =28

(This analysis is approximate. Occasionally a desired record will already be in the buffer,
which saves an access; but on other occasions records must be inserted or deleted, which
causes extra house-keeping accesses. We assume too that the f,rle's index and memory map are

present in main memory, making it possible to read or write a record in one shot. We also
ignore the necessary precaution of taking a back-up copy of the file.)

The break-even point between the two methods is therefore where the number of updates
equals the number of master blocks [Smith & Barnes 1987]. For fewer updates random access
is faster; for more, sequential access is faster. This rule of thumb can be put into a form that
stresses the importance of the blocking factor. Dividing both sides of the break-even equation
by the number of master file records , M, the ratio of the number of updates to the number of
master records (called the 'hit rate') should equal the inverse of the blocking factor:

UlM=BlM=(MlÐ-\.

For exampie, if the blocking factor is 20 records per block, sequential access is better
provided the hit rate exceeds 5Vo. If the blocking factor is 100, the hit ¡ate needs only to exceed
IVo. This result is a surprise to the uninitiated, because intuitively it seems that it is inefficient
to copy an entire file when only a small fraction of its records are updated.

It remains to justify having ignored reading and sorting the event transfer file. First, given the
low hit rates involved at a typical break-even point, the event file is relatively small and has only
a small effect. Second, it is read sequentially in both cases; the only difference is the cost of
sorting. Here, two factors minimise its importance. First, the number of events at the break-
even point is usually so smali that the event fiie can be sorted in main memory without the use
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of a work file. Second, even if the sort cannot be carried out in main memory, modern sorting

algorithms are very efficient, and operate by sequentially merging files. Even a very large batch

could be sorted in one or two merge steps. Since at the break-even point the size of the event

file is smaller than the master file by a ratio equal to the blocking factor, the sum of these steps

can usually be ignored too. However, since the number of merge steps does grow logarithmic-

ally with the size of the batch, it is possible that for an extremely large batch that the cost of
sorting could tip the balance in favour of random access. The cure is simple: split the batch into

several smaller batches of optimum size.

These considerations are summarised in Figure 3.4.I. The horizontal axis plots the number

of events in a batch. The vertical axis plots the number of disk accesses needed to process the

batch. The graph for random access is a straight line passing through the origin because each

event incurs an equal cost. The graph for sequential access has a vertical intercept that

represents the fixed cost of copying the master file. It then ascends with a gentle slope, which
is the cost of sorting and reading the event file. Its slope is much less than the slope for random

access, because the event hle is always read sequentially, and each access reads many events.

The discontinuity in the graph represents a batch size where the sorting algorithm cannot operate

within main memory, and has to merge external work files. After each discontinuity, the slope

of the line increases, and would eventually overtake the random access line. Practical batch

sizes fall well below this point.

pdate
Break Even
Point

Disk
Access es

Sequøtial Updaæ

Size of Batch

FIGURE 3.4.I: THe BneeK EvEN BETwEEN RANDoM AND SEeUENTTAL UpoerNc

There is a temptation to combine sequential and random access updates in some way to gain

the efficiency of sequential access with the flexibility of random access. This turns out to be

possible only in limited circumstances.

Suppose we attempt to combine sequential access to the 'Branches' file with random access to

the 'Books' f,rle. This means that the events must be sorted into 'User' sequence. If there are

several events that update a particular book, they will be processed in 'User' order rather than

time order. This means that if two branch iibraries try to borrow the last copy of a book, it is
the branch with the lesser 'Llser' identifier that will get it, rather than the branch who requested
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it first. The system would not preserve its equivalence to the specification or to its direct
implementation in Example 3.2.1. v/e say that it is not 'real time equivalent'.

In this example, processing the book file sequentially and the branches file randomly works a
little better, because the only operations on the branches file are to increment and decrement
'Drawn'. The final state of 'Drawn' does not depend on the order in which the operations
occur. However, its history may be different, and it may altogether fail to pass through some
intermediate states that should be inspected by 'Audit' events. Indeed, with mixed random and
sequential access it is impossible to devise any valid way to implement 'Audit' events.

There are two situations in which a mixed-mode update works correctly. The first is when
the random access hle is read-only, so that its state is constant. But when this is true, it is
equally possible to look up the constant data in a separate sequential access that precedes the
update in question, and this would usualiy be a more efficient implementation. An exception
that has some value in practice occurs when the look-up file is small enough to be read into
main storage as an alray. It may then be accessed very quickly. By eliminating the need for a

sort operation, this is preferable to a sepa_rate look-up step.

The second situation occurs when a file has a structured or composite key. This possibility
will be discussed in Section 3.7.

3.5 A Parallel Update Algorithm

This section describes how the decomposition of the library system can be implemented as a
parallel computer program using a CM-5 parallel processor. To understand the example, it is
first necessary to understand the architecture of the CM-5.

The CM-5 contains a number of identical parallel processors 
-32 in the case of the computer

actually used. A separate front-end 'host' processor loads the parallel processors with identical
copies of the same program. This means they have identical memory maps, which simplifies
inter-process communication. The processors need not execute the same instructions however,
because each processor has its own identification number. Each processor can leam its own
identity and branch to a section of code specific to itself.

The processors of a CM-5 a¡e interconnected by two message switching networks: the data
network, and the control network. The data network is used for large message packets, and the
control network is used for short messages, mainly to control synchronisation. The control
network has some builrin logical capability. Both networks are organised as trees. Among
other things, the control network can find a global sum using the tree reduction algorithm
described in Section 2.6.4. The tree structures a¡e invisible to the application program, which
may send messages from point to point between any pair of processors. Messages are
transmitted up the tree to the common ancestor of the sending and receiving processors. If
messages involve separate sub-trees, they can be transmitted concurrently without interference.
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However, in a random pattem of communication, one-half of all messages must pass through
the root. Accordingly, the band-width of the tree increases from the leaves towards the root.

The basic plan was to distribute the 'C' and 'D' affays cyclically across the 32 processors.
This should aliow parallel access to their elements, potentially speeding up access to the arrays
by a factor of 32.

A probiem with any parallel algorithm is to obtain sufficient granularity: the size of the task
given to each processor must be big enough to justify the overhead of inter-processor commun-
ication. This proved to be a major issue. The CM-5 has a 50MHz clock (20nS per cycle), and

the latency for the lowest-level of message passing proved to be about 30¡rS, a ratio of over
1,000:1. Because all the events except 'Audit' execute only a few instructions, their execution
could easily be swamped by the message passing overhead.

A second problem is the initial distribution of the events to the processors. If all the events in
a batch were initially stored on one processor, the act of distributing them could cause a serious
bottleneck at the sending processor. In the implementation that follows, it is assumed that the

events are already distributed evenly. In practice, this would be a reasonable assumption
provided each processor served a similar number of client terminals.

The main technical challenge in programming the library system was to avoid the bottleneck
of having a single process accumulate the results of summation, as in the case of the

decomposition of Example 2.5.3a-b. One possibility would be to have the CM-5's control
network compute the sums, but unfortunately this option was not compatible with other aspects

of the implementation. No compiler was available that would support parallel summation
alongside lowlevel message passing. Further, summation via the control network would
require all the processors to become synchronised before each sum could be caiculated. This
would block other events, effectively dividing the input stream into a series of short batches

separated by 'Audit' events. Instead, pafiial sums were accumulated on each processor
independently, then forwarded to a collecting processor. A different collecting processor was
assigned cyclically to each 'Audit' event in turn. In this way, each processor was given an

equal load, which is the best that can be done.

The execution of the algorithm is divided into six well-defined phases corresponding to the

distribution, update, and collection phases of the '{C}' and '{D}' processes. Figure 3.5.1
shows how the implementation is organised. Each processor assumes the roles of 'C
distributor', 'C updatê', 'C collector', 'D distributor', 'D update' and 'D collector' in turn.
(Figure 3.5.1 shows 3 rather than 32 processors.) Messages are passed between any two
successive processes in the pipe-line, except between a 'C collector' and a 'D distributor'. This
is because each 'C collector' assumes the role of 'D distributor' without the need for message

passing.
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FIGURE 3.5.1: A MODEL oF TTIE IMPLEMENTATION

For ease of programming, no processor starts a new phase until every processor has
completed its current one. This ensures that all outstanding messages have been received before
each phase is wound up. The phase boundaries are enforced by a 'synchronise' library
function that uses the control network.

Once the event streams are set up, each processor functions as a 'C distributor' by executing
its 'C distribution' phase, sending the events it is allocated to the 'C update' process concerned.
For all except the 'Audit' events, the update processor is computed from the value of the 'title',
modulo 32. The'Audit' events have to be broadcast to all the 'C update' processes.

The second, 'C update' phase, consists of two steps: first the events received by each 'C
update'process are sorted into time sequence, then used to update or inspect '/r, of the 'C'
alray. Sorting is needed because inputs can arrive from 32 sources. Otherwise it would be
possible for one 'Borrow' event to overtake an earlier one, and the wrong branch could then
withdraw the last copy of a book. In processing an 'Audit' event, each processor can only
form a partial sum, since it has access to only one partition of the aray.

The third phase, which begins only when all the 'C updates' have completed, is called 'C
collection'. In this phase each update processor sends the partial sums it has sampled for
'Audit' events to their 'C collector' processes. Each collector then adds the sums it receives to
its own sum, computing the stock of books at the time of the audit. No action is needed for
other events, because their 'C collector' processes are degenerate.

The fourth phase, 'D distribution', is as follows: For a 'Reshelve' or successful 'Borrow'
event, each 'D distributo¡' sends a message to the 'D update' process determined by the 'user',
modulo 32. (The 'D distributor' for an event is always the same processor as its 'C collector'
so no messages have to be passed between the third and fourth phases.) For 'Buy' events and
unsuccessful 'Borrow' events, no message is sent (or needed). For an 'Audit' event, its 'C
collector' broadcasts to each 'D' process a message containing the number of books in stock. It
is therefore similar to the 'C distribution' phase.

The fifthphase, calledthe 'D update', is essentially similar to the 'C update'. It is followed
by the sixth, 'D collection', phase, which is similar to the 'C collection' phase, and which
computes the total number of books on loan.

64



Implementation

Following the sixth phase, each processor then displays the results of its 'Audit' events. The

time required to write these outputs is excluded from measurement. This is because all output
on the CM-5 has to pass through the bottleneck of the single host processor.

Actually, the treatment of the 'Audit' event is more general than this particular problem

demands. The '{C}' and'{D}'processes are allocated to the sune 32 physical processors, so

that each '{D }' process already has a list of all the 'Audit' events, because its processor has just
finished executing a'{C}' process. Furthermore, the coordinating processor ailocated to an

'Audit' event in the 'D collection' phase is the same one allocated in the 'C collection' phase, so

it already knows the number of books in stock. It is therefore completely unnecessary for
'Audit' events to be broadcast to the '{D}'processes at all. However, for global events of a

more general type it is likely that the processing during the 'D update' phase would depend on

the result of the 'C update' phase - as it does for 'Borrow' events, so a broadcast would be

needed. Including the broadcast was therefore considered a fairer measure of speed up.

A C program that implements this scheme can be found in [Dwyer 1995]

3.6 Analysis of the Parallel Update Algorithm

It is not enough to demonstrate that a parallel algorithm can be written, it is important to verify
that it achieves a useful speed up. Unlike the sequentiai update algorithm, there is no hardware-

independent heuristic for determining the point at which the parallel implementation breaks even

with a single-thread benchmark. Instead, the break-even point depends on the ratio between

update time and message-passing latency.

For an update event in the benchmark, the time per update is typically dominated by the time

needed to read and write a record, the cost of two accesses. For a parallel implementation with
P processors, it is necessary to add the cost of message passing and the time taken to
synchronise the processors. Each update requires a message to be passed from a distributor
process to an update process. The message needs to be acknowledged, so there are 2 messages

in all. Since there are three phases in each update, three synchronisation steps are needed.

Suppose that one access takes time A, message latency is L, and synchronisation takes time

S. Assuming that each processor takes an exactly equal share of the load, the break-even point

is given by solving the following equation for U, where U is the number of events in a batch.

2AU =2U(A+L)/P + 35

If the number of processors is sufficiently large and the records are stored on disk, message

latency is negligible compared with access time, so the equation simplifies to

ZAU = 35
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With any reasonable values of A and S, the resulting value of U is less than one. This is
clearly a silly result, because one update cannot be distributed over several processors, but it
shows that only a few updates are needed to break even.

V/hat happens if the access time does not dominate the message latency? This could happen if
the arrays are stored in main memory. In this case, access time is negligible compared with
message latency, and the outcome depends on whether LlP exceeds A. If it does, no break
even is possible. The only answer is to increase P, the number of physical processors.
Otherwise, the time saved per update is A-LIP, and the break-even point is given by

2U(A-L/P) = 35.

An experiment was conducted to test this prediction using the CM-5. The parallei algorithm
was evaluated by timing its execution under a numbe¡ of different experimental conditions.
Details of the experiment are given in [Dwyer 1995].

The experimentally measured values of A, t and .S are about 2ps, 30¡rs and 200¡rs
respectively. With P=32, the expected break-even point is about 300 updates. In practice, the
results depend on the size of the anay that is updated. Because of caching effects, the access
time for a larger array is greater than fo¡ a smaller array.

Figure 3.6.1 compares the actual performance of the parallel and benchmark algorithms
graphically. The curve 'P6' shows the time per update for the parallel algorithm, when the 'C'
and 'D' arrays each contain 1,000,000 elements. 'P2' shows the time per update for the
parallel algorithm, when the 'C' and 'D' affays each contain 100 elements. Curves '86' and
'82' show the corresponding times fo¡ the benchmark algorithm. It will be seen that over
1,000 updates are needed for the parallel algorithm to amortise its overhead sufficiently to break
even with the benchmark when the arrays are small, but only about 400 are needed when the
arrays are large.
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Given that caching effects were significant, is it possible that accessing the arrays sequentially
would improve the cache hit rate, leading to greater speed even when there is no disk input-
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output to consider? The short answer is 'No'. The snag is that the read loops in the 'C update'
and 'D update' phases have to be made more complex,like those in the Cobol examples. Their
extra complexity easily outweighs any advantage that results from more orderly access to the

arrays.

Because 'Audit' events examine entire arrays, we should expect a speed up whenever the

saving per array element exceeds the synchronisation overhead. By a similar argument to the
update case, we obtain the following break-even formula,

N(A-LIP) = 35

where Nis the number of array elements. (The factor of 2 is not present here because the array
is inspected, but not updated.) The predicted break-even point occurs when N=600. Of
course, if there a¡e several 'Audit' events in a batch, the break-even should occur for smaller
array sizes. On the other hand, when the number of queries is very small, the assumption that

each processor is equally loaded must break down, because the distribution and collection
phases of 'Audit' events are local to one processor.

Figure 3.6.2 compares the actual performance of the parallei and benchmark algorithms
graphically. Curve 'P' shows the times per 'Audit' per element for the parallel algorithm, for a
batch of 10 transactions, as the number of array elements is varied from 100 to 1,000,000.
Curve 'B' shows the comparable curve for the benchmark algorithm.
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What would happen if the events had been presented to the system as a single queue? It is not
hard to predict. The distribution phase would have a single sending processor, so that the time
to send and acknowledge each update event would be about 60prS, compared with 2¡rS when
the latency is amortised over 32 processors. This would increase the time per update by a factor
of 10-20, and in no case would the parallel algorithm offer a speed up greater than one. The
situation for an 'Audit' is similar, except that a message has to be sent to every processor,
increasing the time per 'Audit' by about 2,000prS. However, this overhead can be amortised
over many array elements, so that a speed up is still possibie for more than 1,000 titles or users.

B\
B\
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Of course, if the arrays were stored on disk, access time would then dominate message passing,
so starting with a single queue would not matter.

A defect of the experimental situation is that a real-world application is likely to need a
persistent database, so that the arrays should be either stored or mirrored in disk files. This
would always favour a parallel implementation, because disk access time (about 20mS) easily
exceeds the iatency of message passing (about 30¡rS). Unfortunately, the CM-5 handles disk
input-output centrally, passing all data through the message network to a front-end processor.
Disk input-output would become a bottleneck that made parallelism irrelevant, so no direct
experiment could be done. If the CM-5 had had disk drives attached to each processor, an
excellent speed up would have been obtainable. It was only possible to test the situation by
using an experimentally measured time delay to simulate disk access.

Although with current technology, one would expect access times of the order of 20mS, the
experimentally measured time per disk access on the CM-5 was about 2mS, irrespective of
whether the access mode was random or sequential. Such a low average access time resulted
because files were stored on a disk seryer with a very large internal cache. Most accesses

involved only the cache. The server was connected to the CM-5 by an Ethemet network, so
2mS is realiy a measure of the latency of the network. Given that an average update needs
about 3 disk accesses, the resulting 6mS overhead is easily enough to swamp the overhead of
message passing. As might be expected, the simulated speed up from using 32 processors was
close to 32 under a wide range of conditions - giving a throughput of about 5,000 updates per
second.

Despite the random and sequential access times being equal, sequential access still has the
advantage that no record is inspected or updated more than once. Given enough events in a

batch - especially 'Audits' 
- the speed-up due to sequential access could be made be as great

as desired. For example, if each record is inspected by an average of 3 events, sequential
access is 3 times faster than random access. Combined with the speed up due to parallelism,
sequential access resulted in simulated speed-ups exceeding 100, or about 15,000 updates per
second.

Another possibility relevant to high-volume transaction processing is to use a main memory
database lEich 1992, Garcia-Molina & Salem L9921. This technique stores the complete data-
base in main memory, but also eventually records a persistent copy on disk. This means that no
disk inpuroutput is needed for queries, but updates must be recorded on a log fîle. Log records
may be buffered in a small non-volatile memory, so iogging can occur lazlly, a disk access

being required only when a buffer is full. This is a very efficient option, which becomes more
attractive if each processor stores a partition of the database in its own persistent disk store. It
is difficult to estimate the performance of this approach, because its speed ultimately depends on
how often the log buffer needs to be emptied. Pessimistically, we may assume that a log record
is written after each update to the database - an average of 1.5 disk accesses, or 30mS per
update. Spread over32 processors, the timeperupdate would be about lmS, or 1,000 events
per second. More realistically, assuming that the log buffer can hold at least 10 updates, #
should be possible for 32 processors to easily exceed a rate of 10,000 updates per second. For
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1,000,000 elements, an 'Audit' event takes nearly 80mS - surprisingly slow compa-red with
an update.

Sequential access and parallel processing are independent ways of improving performance,

and can be used separately or in combination. But both hinge on the structure of the system

specification in the same way. Neither sequential access nor parallel access is possible unless

the accesses to the 'C' and 'D' arrays can be separated. But once that separation is made, all

their elements can be processed independently.

Supposethe separation of the'{C}' and'{D}'processes had notbeen made. Would some

other form of parallel access be possible? Consider first the possibility that the processes are

parallel with respect to the 'C' afiay, but access the 'D' array randomly. Then, there is no

guarantee that the history of a 'D' element will be conect. It is possible that it could be updated

by amessage sent from a fast running '{C}' process before a logically earlier update message

arrived from a slower running '{C}' process. A similar objection applies to making the

processes parallel with respect to the 'D' array. A third possibility is for each processor to

process the events initially allocated to it. This is open to both objections.

Of course, correct results could still be obtained if some protocol were used to ensure that

updates occurred in the correct order. There are many ways this could be done. The most

familia¡ is the two-phase locking protocol used by many database management systems

[Bernstein et al. L986]. For example, each processor could process the events initially allocated

to it, locking the 'C' and 'D' array elements it accesses. Locking an element would cause any

other update that wanted to access the same element to wait until the lock was released. This

would be done at the completion of each update procedure. (By always locking 'C' elements

before 'D' elements, we guarantee that the system will not deadlock.) As it stands, this does

not guarantee real-time equivalence, because alater event may cause the procedure for an earlier

event to wait if they happen to access the same element. However, the system satisfies the

serialisability criterion, the state of the system is consistent with some order of events, although

the particula¡ order cannot be predicted.

Even after relaxing the real-time equivalence requirement, the system would be no faster than

the algorithm given here, because each access to a 'C' or 'D' element would require a message

to be sent from the client process to the server process controlling access to the element, and

back again. There would be no less message traffic, and indeed, there could easily be more: a

message to read the value of the element, a second message to update it, and a third to release

the lock. The alternative, which is to package reading and updating within a single procedure,

saves a message, but it is essentially the solution presented here. In addition, two-phase locking
can introduce further performance degradation through data contention thrashing l$,lang et al.

19971.

'Audit' events complicate the issue further. It is not possible to update a shared database

during an 'Audit' event. 'Borrow' and 'Reshelve' events cause changes to both the 'C' and 'D'
anays. Such an update that occurred when an 'Audit' had completed counting the stock but not
yet counted the loans would be reflected in the loans, but not in the stock. It is therefore
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necessary for an 'Audit' to lock the entire database. This would effectively divide execution
into update phases and query phases. In effect, the updates between each query would
constitute a batch. If IVo of all events were 'Audits', the average batch would contain only 100
events. As discussed earlier, such small batches can lead to less than break-even performance.

So far, we have considered the possibility that the database is partitioned between the
processors. An alternative is for it to be replicated. Suppose each processor has a copy of the
wholeof the'C'and'D'arrays. This certainly simplifies the 'Audit'events, which require no
message passing at all. But now, each update must broadcast every change to a 'C' or 'D'
element to every processor. This makes the processing of updates very slow. There is also a
problem keeping the copies of the database consistent. The updates to each replica must be
made in a consistent order. However, if the ratio of queries to updates is high, this is clearly an
optimal arrangement. Conversely, when the ratio of queries to updates is low, a partitioned
database is better. For intermediate ratios, it is possible for a mixture of replication and
partitioning to work best; for example, there could be 4 copies of the database, each distributed
over 8 processors.

Finally, we must make an important point about absolute time scales. Given that useful speed
ups a-re obtained for batches of 1,000 records, and that throughputs can easily exceed 1,000
events per second, processing an entire batch can take less than one second of real time. This
time is short enough to be considered virrually instantaneous in a typical transaction processing
environment, so that from the user's point of view, a parallel batch system might be
indistinguishable from an on-line system.

3.7 Composite Keys

When a file has a composite key (modelled by an array with more than one dimension) the
structure of Figure 3.4.1 may elaborated further. For example, suppose the library database
recorded a file of loans, whose key was the combination of 'title' and'user'. There could be an
update process for each 'title', and within it there could be an element update for each (title,
user) combination. Figure 3.4.1 would then be both a diagram of the system as a whole, and
also of each 'titie' process. The st¡ucture could be elaborated in this way for as many
component keys as desired.

In the discussion of sequential access in Section 3.3, it was pointed out that global events
such as 'Audit' need to be stored in main memory throughout an update, allowing only a limited
number to be present in a batch. On the other hand, updates to individual records are only
transiently present in memory, and a batch can contain any number of them. A composite key
opens the possibility of a third category: updates or queries to all the loans for a given title.
Their event records would have to be buffered in main memory throughout the processing of
the relevant title, so their number is limited, but the total number present in a batch may be much
greater, because the buffer can be reused for each title.
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Section 3.4 discussed (and rejected) the possibility of combining sequential access to one file
with random access to a second file. IVe have also seen that similar objections appty to parallel
algorithms. However, given the higher speed of parallel or sequential implementations, it is
tempting to try to appiy them more generally.

An opportunity arises when two master files a¡e updated, one having a composite key, and
the second having a key that is part of the key of the first. For example, in a parattel update, it
would be possible to partition access to the loans file by 'title', by 'user', or by both. Suppose
it were partitioned by 'title'. It would then be possible to update or inspect all the loans for one
title within a single processor. Furthermore, the same processor could access the number of
copies of the book, so that, for example, a modified 'Loan' event procedure could record the
loan and decrement the number of copies within the same processor.

The analogous situation for sequential access is store the loans file in (title, user) ,.qu.n.... ''
The event records would then be sorted by 'title', then time - not (title, user) then time. This
would allow concurrent sequential access to the books file, with the events for each book being
processed in time order. The loans file would still need to be accessed randomly, because the
updates for all loans involving a given útle must be processed in time order, not 'user' order.
However, access to the loans would not be entircly random, since a cluster of records with the

same title would be accessed as a group. This would lead to more effective caching and faster
access, especially if a typical group fitted within a single disk block. Although such a mixed
mode update might prove slower than two separate sequential updates, it would certainly prove
faster than a simple random update.

In general, we may conclude that whenever a set of files have keys that share a common com-
ponent or components (or when a set of arrays sha¡e common dimensions) it is possible to
exploit this, and achieve better efficiency than if they were processed by a simple read loop.
Mixed mode access is optimum in the case of parallel access, because it reduces message traff,ic.
Howevet, in the case of sequential processing, although mixed mode access is better than

random access, separate sequential updates are better still - provided the two update processes

are separable.

3.8 Limitations

The update algorithms presented here lack a feature that is common in practice, that is the

ability to report on the updating process itself. For exampie, a company might produce monthly
statements of account by storing all events for a month, then updating customer balances. The

statements of account are simply by-products of the update. Rather than in response to an input
event requesting them, the statements are produced every time the update program is executed.

It is not possible to specify such reports using the Canonical Decomposition Method without
first introducing the idea of a meta-event: an event about events. Instead of adding this new
feature to the specification language, it is easier to model such reports indirectly. Essentially,
the specification must be amended in one of two ways. The first is for the updates to be
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recorded in the database as they occur, without acting on them. The production of the
statements of account then becomes an event that reports these events while updating customer
balances. The drawback of this approach is that it transfers the task of specifying the whole
system to that of specifying this event, effectively requiring the specifier to solve the system
design problem. An easier and more flexible approach is for the updates to be acted on as they
occur, and to record their effects in the database. The report event then consumes these
records.

Unfortunately, it is then impossible to recognise that the effects of the updates could be
recorded transiently in primary storage instead of the database. This is because it is not possible
to specify that the report event is always synchronised with the processing of each batch. If it
is, then the stored set of results is empty at the staÍ and end of each batch, so it doesn't need to
be stored persistently. On the other hand, if this condition is not guaranteed, for example, if
updates are processed daily and reports are produced monthly, it is essential to store the results
between batches. The limitations of the preceding update algorithms and specif,rcation language
make it necessary to implement the more general situation in all cases, As a resuit, a useful
opportunity for optimisation may be lost. However, it seems reasonable that a future extension
of the specification language could solve the probiem.

A second limitation concerns giving priorities to events. For example, if a customer changes
a postal address, this event may be given a higher priority than earlier sales made to the
customer. This is because any invoices, delivery notes, etc., that are printed for the customer
should be deiivered to the new address rather than the old one. In consequence, many update
programs sort events by their types as well as by their time-stamps, to give priority to events
such as these.

This limitation is not a serious one. If an event such as a change of address is supposed to
have priority over ea¡lier sales, it can simply be given an artificial time stamp that places it ahead
of them. The system state should be updated according to the times when events are supposed
to be effective, rather than when they happen to be recorded. Adjusting time stamps is a much
more flexible scheme than assigning each kind of event a fixed priority.

If inputeventsare presented to the system in batches, e.g., as files, their timing information
may be implicit. For example, they may be implicitly time-stamped for the current date. In
such a case the time stamp may sometimes be too coa$e grained to distinguish the relative
timing of events within the same batch. A familiar example is provided by the way a bank
typically handles a personal cheque account. A deposit followed by a withdrawal, both on the
same day, will have the same date, but it may be a matter of chance which is processed first. If
the withdrawal is erroneously processed before the deposit, it could appear that the account is
overdrawn when it isn't. For this reason, banks often process all deposits before all
withdrawals for the same date. In effect, deposits have ea¡lier time stamps than withdrawals.

A more general and more flexible method is to assume that the order of events is their stored
order, i.e., determined by the sequence of the event transfer file, so that each event has a serial
number. There is often little difference between explicit timing information and implicit timing
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information such as an event serial number, because the final state of a system often depends

only on the sequence of input events, not their specific times. Although the input to a system is

really a mapping from times to events, it is usually enough to treat it as a sequence of events.

When time does matter, it may be treated like any other attribute of the event.
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4. Separabitity
This chapter discusses 'separability', the property that allows a system to be decomposed into

a network of component processes and queues. We say that two processes are 'separable' if
data flows in only one direction between them. If two processes are separable, they may be

connected by a queue.

4.1 Real-Time Equivalence

The model of system on which this analysis is based can be symbolised by a time line, as in
Figure 4.I.I. The horizontal strip represents an idealised history of a system. Time passes

from left to right. The system has state S¡-1 until event El occurs, after which its state becomes

S¡. After event E1r,1 its state becomes Si+1, and so on. The events that change the state are

instantaneous; the system is always in a defined state. Moreover, the changes of state occur in
real time, i.e., as soon as the real-world events that they model. There are several respects in
which this model differs from a reaiisable implementation, therefore it is called the 'ideal real-

time system'. Although we cannot build an ideal real-time system, a correct implementation

should in certain respects be equivalent to the ideal. Thus, we call this notion of correctness
'real-time equivalence'.

Svstem St¡te

Real Time

FIGURE 4,I.T: AN IDEAL Sysl¡v TIME LINE

One respect in which an implementation may differ from its real time ideal is that changes of
state may lag behind the real-worÌd events they record. A second respect is that it must take a

finite time for a state change to occur; during the change, the system state is undefined. This

situation is symbolised in Figure 4.1.2. The white a.reas represent time intervals when the

systemstateiswelldefined,the grey areas represent intervals when the state is changing, i.e.,
the new state is being computed from the old state.

Sysæm Søe

Real Tine E"

FTCURE 4.I.2: A MORE ReeLIsrIc Sysrpv TIME LINE

It is important that the rate at which events arrive at the system does not exceed the speed with
the system can respond. One possibility is to queue the input events so that the delay between

the real event and the corresponding state change can be arbitrarily long. A second possibility,
which is common in computer hardware, is for event E1.,1 to be ignored during the response to
event Ei, i.e., until the system is safely in state S¡. This means that the input is lost. A third

S*z

E Q*r

S s*,

ls' S'*t
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possibility, which is common in human computer dialogue, is that the system only invites input
when it is in a well defined state. Whichever of these strategies is used, events are always
treated atomically and the response to one event is completed before the response to the next is
begun.

Now consider a network of several component processes linked by data flows. The response
of each component to an external event may be delayed differently. Assume that va¡iable ø is
accessed by process U, and that variable v is accessed by process V. Let the values of u and v
after event E¡ be denoted by u¡ and v¡.

H^istcry
otu

Real time

Histøy
ofv

Upt

E

u¡*2

Vi,
*l

FIGURE 4.L.3: Two SYSTEM COMPoNENTS

Figure 4.1.3 sketches this situation. Its horizontal bars symbolise the histories of variables
'u' and 'v', with real time running from left to right. The white areas represent periods when
the values of 'u' and 'v' are well defined, and the grey areas represent periods when new values
are being computed. For example, the left-most upper grey rectangle of Figure 4.I.3 represents
the period when u¡ is being computed from u;-1. At times the value of 'v' is more up{o-date
than'u', at others, 'u'is more up-to-date then'v'. There are therefore times at which the
system is in an inconsistent state. Indeed, it is possible that the values of 'u' and 'v' are never
in step.

How can such a system be considered correct? The criterion used here is that the histories of
the state va¡iables (i.e., the sequences of their values) are the same as they would be in an ideal
real-time system, although they may lag real time by arbitrary delays. The system implement-
ation is then said to be 'real-time equivalent'. Although the state of a real-time equivalent
system cannot be discovered by direct observation, it may be assembled by inspecting its
variables at times that correspond to simultaneous points in their histories.

The treatment of temporary variables must be different from that of state variables.
Temporary variables have short lifetimes, and exist only within the scope of one event. They
do not have histories as state variables do. On the other hand, we must treat external packages
similarly to state variables because we must ensure that outputs are generated in the correct
order.

Real-time equivalence is one criterion of correctness. There are at least two other criteria that
could have been chosen. One is that the histories of variables are unimportant, and that only the
outputs of the system matter. This is an argument in favour of behaviour-based or sequence-
based system description. However, it is hard to see how to guarantee correct behaviour except
by enforcing some equivalent discipline on states. The second criterion is that of 'serialisabil-
ity', used in multi-user database management. Serialisability requires that if events originate
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from different sources, the system should behave as though they originated from a single

source. If two events from different sources do not interact, their relative ordering never

matters; if they interact, either can be declared to have priority. However, the original ordering
of events from a coÍrmon source must always be respected. Serialisability and real-time

equivalence may be reconciled by assuming that all events are time stamped, and that if two
interact, their time stamps are used to order their priorities. In real-time equivalence, the time

stamps are applied globally as events enter the system, but in serialisability they may be applied

lazily, as the need arises.

The following sections will develop a theory of system design based on three basic ideas:

I The notion of a system as a network of processes connected by one-way data flows or
queues, modelled by delayed procedure calls.

-J

2. The use of real-time equivalence as a criterion of correctness

The use of rewriting rules to derive the specifications of component processes from the

specification of the system as a whole.

4.2 Event Timing

The concept of delayed procedure call discussed in Section 2.3 ís not itself enough to
guarantee real-time equivalence. The supporting framework of message passing must preserve

the order of events that reach each component process.

The simplest way to preserve event order is for each input event to be processed to completion

before the next is accepted, but this prevents any benefit from being obtained from parallel

processing. The next simplest arrangement is a pipeiine, like that shown in Figure L4.2 of
Page 7 . Because there is only one path between any two processes, messages cannot overtake

one another.

Some system topologies provide different pathways from the source of input to a given

process, which cause different delays, allowing messages to overtake one another. Figure

1.5.2 showed how this can happen. Events reaching the'{D(1)}' process, say, can pass

through any of '{C(l)}', '{C(2)}', or'{C(3)}'. Once there are multiple pathways between

processes, it becomes essential for events to be time stamped, so that they can be processed in
the right order. This requires that each process should carefully merge the input streams it
receives to ensure that it processes each new event only after all earlier ones.

However, time stamps are not enough in themselves. If a process has received event
messages forevents E¡, and Ei,.1, it remains uncertain that it can process event E¡, because an

outstanding message for event E¡-1 may still arrive by a slower pathway. One way to resolve

this is to broadcast all events along all pathways. An event can then be safely acted on as soon
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as all earlier messages have been received from all possible sources. This is not an efficient
solution; the bulk of message traffic consists merely of timing information.

An acceptable alternative is to broadcast timing messages only occasionally. When a timing
message is received, it implies that no outstanding message can arrive over the path concerned.
However, until a timing message is received, all incoming event messages must remain queued,

in case some earlier event has yet to arrive by a slow pathway. The timing messages therefore
divide the input events into batches. In an interactive system, timing messages should be

frequent and batches will contain few events. In a non-interactive system, batches may contain
all the events for a whole day, or even longer.

type user is private;
type book is private;
package Library is

procedure Check (u: user);
end Library;
package body Library is

D : array (user) of natural ¡= (others => 0);
E : array (user) of boolean :- (others => false);
procedure Check (u : user) is
begin

E(u) := true;
if D(u) <= 10 then

E(u) := false;
end if;

end Check;
end Library;

ExevpI¡ 4,2.I: CHpczuNc FoR GREEDY BRANCHES IN A LTsRAny SysrBvT

It is possible for one input event to cause several delayed procedure calls. Example 4.2.L
shows how this might happen. The event 'Check' is intended to f,rnd those branches who have

borrowed more than l0 books. (The result of the event is to set an element of 'E' to true or
false.) The specification can be decomposed into separable '{D}' and '{E}' components, as in
Example 4.2.2. The first component ('C') makes two cails on the second ('D'), the order of
which must be preserved. The time stamp given to these internal calls must be more fine-
grained than the time stamp given to the external event. A simple possibility is to use a Dewey
number, so that, if the input event has time stamp 't', the delayed calls have time stamps 't.1'
and 't.2' . This idea can be extended to several levels, e.g., 't-2.3.2'. Although in this example

the numbering can be assigned statically, in general, e.g., when a while loop makes an

unpredictable sequence of delayed calls, it must be assigned dynamically by counting the

delayed procedure calls.
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package body Library is
package C is

procedure Check (u : user);
end C;
package D is

procedure Checkl (u : user);
procedure Check2 (u : user);

end D;
package body C is

D : array (user) of natural ;= (others => 0);
procedure Check (u : user) is
begin

D.Checkl(u);
if D(u) <= 10 then

D.Check2(u);
end if;

end Check;
end C;
package body D is

E: array (user) ofboolean;= (others => false);
procedure Checkl (u : user) is
begin

E(u) := true;
end Checkl;
procedure Check2 (u : user) is
begin

E(u) := false;
end Check2;

end D;
end Library;

EXAMPLE 4.2.2: CHECTTNC FOR GREEDY BRANCHES 
- CON¿PO¡ENT PROCESSES

4.3 Timing of Separable Processes

This important section considers the conditions under which a real-time equivalent system can
be decomposed into separable processes. The key concept is that connecting two processes by
a queue means that the sending process can never lag behind the receiving process. Queues
therefore induce a partial ordering on processes that controls their relative lags behind real time.

Consider the situation when two processes are connected by delayed procedure call. Suppose
thecallingprocess'{U}'has exclusive access to variable 'u', and the receiving process '{V}'
has exclusive access to va¡iable'v'. Figure 4.3.1 shows possible histories of 'u' and'v',
including a situation where event 'E¡' causes 'u' to be updated. During the updating of 'u', a

delayed procedure call is made to update 'v'. In Figure 4.3.I, the updating of 'v' is completed
first, so that briefly, 'v' has value'vi', while'u'is still undefined. Subsequent calls a¡e

delayed, so that the value of 'v' lags behind the value of 'u', so that for example, 'vi' coexists
with 'u¡a2'. This is possible because there are two delayed calls in the queue linking processes

'{U}' and'{V}'. There is a delay of 2 events at this time between '{U}' and '{V}'. The
delay need not be constant. It is a property of the queue linking the processes that the delay
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may be zeÍo or arbitrarily great, although it may never be negative. When two processes may

be linked by a queue, we say they are 'separable'" This property leads to a key theorem:

History
ofu

History
ofv

E

ü;l

E*r E*,
Real tine

4+z

r+l

FIGURE 4.3.I: DELAYED PRoCEDURE CALL

The Data Flow Theorem:

The queues connecting the separable processes of a system define a partial ordering.

Proof

FIGURE 4.3.2: A CYcLE oF QUEUES

Draw a graph whose vertices are processes and whose directed edges are queues.

Suppose that contrary to the hypothesis, this graph contains a cycle. For example,

Figure 4.3.2 shows a situation where process '{U}' sends messages to process '{V}',
which sends messages to process '{W}', which sends messages to '{U}', cyclically.

Then the state of 'v' may lag arbitrarily behind the state of 'u', the state of 'w' may lag

arbitrarily behind the state of 'v', and the state of 'u' may iag arbitrarily behind the state

of 'w'. Therefore the state of 'u' may lag arbitrarily behind itself, which is clearly a

contradiction, proving that no cycle can exist. Therefore the graph must be acyclic and

defines a partial ordering. (This argument generalises to cycles of any length.)

It is not wrong for several processes to communicate cyclically, for example, for two
processes to exchange the values of thefu variables. One way to model such communication is

by remote procedure call. For any given event, several such calls might be in progress.

However, for a process to bring its variables to their new states, each call it has made must

compiete, and this must occur before it can process the next event. Such data-flows cannot

properly be called queues, as they must always contain a bounded number of messages and

must always be empty between events; nor can the processes be called 'separable'.

Corollary 1:

A state variable may be accessed by at most one separable process. (On the other hand,

there is no restriction that each separable process should access only one variable; it is

80



Separability

easy to imagine a correct implementation in which a single process updates all the state

variables.)

Proof:

In order to preserve the correct sequence of updates and inspections of the variable, it is
necessary, in general, that different processes that inspect the variable have the same lag.

This cannot be guaranteed if the processes are linked by queues.

This result is necessary to justify the rewriting ruIes that have already been presented, in
particular, the idea that va¡iables are private to component processes. Figure I.4.2 (Page7)
gave an example where an erroneous attempt was made to share a variable between two separate

processes. The problem in that example was that updates of the numbers of copies of books

lagged behind their inspections, so that the inspected values could be out of date.

Corollary 2:

A set of separable processes can always be connected as a pipeline.

Proof :

Every partial ordering has at least one topological sort. (A partial ordering may be drawn

as an acyclic graph. A topological sort of an acyclic graph is a sequence of its vertices

such that, for any pair of vertices'u' and'v', if there is an edge from'u'to'v' in the

graph, then 'u' precedes 'v' in the sequence.)

FIGURE 4.3.3: A PROCESS GReprT

Figure 4.3.3 shows a possible graph of processes and queues. Figure 4.3.4 shows one of its
two topological sorts. (The otherpiaces'E'before 'D'.) In Figure 4.3.3, process '{F}' must

mergeinputs fromprocesses'{B}'and'{D}'. In Figure 4.3.4, the path from '{B}' to '{F}'
is implemented by passing calls transparently through processes '{C}' and '{D}', and no

merge is needed. Given the earlier discussion of the importance of preserving the order of
events, the pipe-line structure is usually easier to implement.

A B C D E F

FiGURE 4.3.4: A PIPE-LINE
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4.4 Dependence

Because the primary puryose of queues is to pass data between processes, this suggests that
variables accessed by the downstream process depend on va¡iables accessed by the upstream
process. This section explores the relationship between variable dependences and queues.

If some event can cause the new state of 'v' to be conditional on the existing state of 'u', we
say that 'v' depends on 'u'. That is to say, there is at least one situation in which it will be
necessary to inspect the value of 'u' before updating 'v'. Consequentiy, the {U} process
cannot follow the {V} process.

Suppose that the state of variable 'v' depends on the state of variable 'u'. (An example where
'D(u)' depends on 'C(t)' is provided by Figure 1.4.1 (Page 6).) By 'v depends on u' is meant
that some event E¡ uses the value of ui-t to compute vi. That is, vi cannot be calculated until
after the value of u¡- t has been inspected. Since this inspection occurs during the processing of
event Ei, whenever 'u' and 'v' ale well defined, 'u' never lags behind 'v'. However, the

dependence puts no constraint on the lag of 'v' behind 'u'; old values of 'u' may be stored until
needed.

The Dependence Theorem:

Dependencesforbid queues: If process '{V}' accesses a variable 'v' that depends on a
variable 'u' accessed by process '{U}', then there may not be a queue of delayed calis
flowing fromprocess '{v}'backto process '{u}'. (There may or may not be a queue
from'{U}'to '{V}'.)

Proof:

If there were such a queue, then the state of 'u' could lag arbitrarily behind the state of
'v'. But 'u' cannot lag 'v', because 'v' depends on 'u'.

Unfortunately, given a set of event specifications, it is not always easy to decide where
dependences exist. For example, Example 4.4.1 is a possible event procedure in which 'v'
appears to depend on 'u', but is actually independent of it.

procedure Apparent_Dependence is
begin

ifu>0then
-, ._ 1,Y .- lt

else
,, .- 1.v .- t:

end if;
end Apparent_Dependence;

ExaupI¡ 4.4.T: AN APPARENT DEPENDENcE

If a dependence of 'v' on 'u' exists, it may be shown by example; other variables remaining
the same, it is merely necessary to find two different values of 'u' that result in two different
values being assigned to 'v'. Proving that an apparent dependence does not exist must be done
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symbolically, by showing that the given specification could be replaced by one without an

apparent dependence. This can be very difficult, because it is in general undecidable to show
whether two programs are equivalent. It is easier to take a more pragmatic view, and consider
thattheway the procedure of Example 4.4.I ís defined makes'v' depend on'u'. In order to
execute the procedure as specified, it is necessary to inspect 'u' before updating 'v'. If 'v' is to
be considered independent of 'u', the procedure should have been written differently, e.g., as

in Example 4.4.2.

procedure Apparent_Dependence is
begin

,, .- 1 .v .- rr
end Apparent_Dependence;

EXAMPLE 4.4.2: THE DEPENDENcE REMoVED

Having a precise definition of dependence is unimportant when system design is done by a

human. A human can recognise (or fail to recognise) the absurdity of Example 4.4.1, and
correct it (or fail to correct it). But an automated system that will analyse specifications to
derive dependences needs a precise definition of dependence. CDM derives a set of component
processes for a system, and derives their specifications using the rewriting rules for delayed
procedure calls. Therefore it must link its notion of dependence directly to its rewriting rules.
Since it has no rewriting rule that can convert Example 4.4.1 into Example 4.4.2, it must
consider 'v' to depend on 'u'.

package body Process_U is
procedure Apparent_Dependence is
begin

ifu>0then
Process_V.Apparent_Dependence_ 1 ;

else
Process_V.Apparent_Dependence_2 ;

end if;
end Apparent_Dependence;

end Process_U;

package body Process_V is
procedure Apparent_Dependence_1 is
begin

v:= 1;
end Apparent_Dependence_l ;
procedure Apparent_Dependenc e _2 is
begin

., .- 1.v .- rr
end Apparent_Depend ence _2;

end Process_V;

Exevplp 4.4.3 : APPARENT DEppNopNCE COMPONENTS

Example 4.4.3 shows a two-process implementation of Example 4.4.I, which is possible
because 'u' does not depend on 'v'. Example 4.4.3 may be transformed into Example 4.4.I by
the rewriting rules. However, an altemative decomposition in which process '{V}' calls
process '{U}' is impossible within the rewriting rules. The dependence of 'v' on 'u' forbids a
queuetoflowfromprocess'{V}'toprocess'{U}'. Thealternativedecomposition would only
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be possible only if the rules were extended so that Example 4.4.2 could be derived first,
removing the dependence of 'v' on 'u'.

In this thesis, such extensions to the rewriting rules are seen as a side-issue. The
transformation of Example 4.4.1to Example 4.4.2ís seen as the responsibitity of the specifier.
The Designer program makes use only of the rewriting rules for delayed procedure call
described in Section 2.7. This does not preclude a future version including additional rules to
remove apparent dependencies.

procedure Local_Reuse is
t: natural := 0;

begin
r ,- 

^ 
.

L .- .r1,,

B:=ti
+ .- f-.L.-Ut

D:=t;
end Local_Reuse;

EXevpIe 4.4.4: RE-USE oFALocAL VARIABLE

Another source of apparent dependencies is the re-use of variables. The procedure
'Local-Reuse' of Example 4.4.4 shows an apparent dependence that results from the re-use of
the local variable 't'. ('A', 'B', 'C' and 'D' are state variables.) Since 't' depends on 'A', and
'D' depends on 't', it may be falsely concluded that 'D' depends on 'A'. It is relatively easy to
eliminate this kind of false dependence by distinguishing rhe two definitions of 't'. In its first
definition ('t:= A') 't' depends only 'A', and in its second ('t:= C') 't' depends only on .C'.
Since the definition of 'D' ('D := t') uses the second def,rnition of 't', 'D' depends on 'C', but
not on 'A'. Such use-def,rnition analysis is a standard compiler optimisation technique, with
low computational complexity.

package body AB is
procedure Local_Reuse is

tl: natural := 0;
begin

tl := A;
B := tl;
Process_CD.False_Dependence;

end Local_Reuse;
end AB;
package body CD is

procedure Local_Reuse is
t2: natural := 0;

begin
t2:= Ci
D:=t2;

end Local_Reuse;
end CD;

ExnupI¡ 4.4.5: RE-USE oFALoCAL VARIABLE: CoMPoNENTS

Unfortunately, even this simple case is an embarrassment to the rewriting rules of Section
2.7. Suppose the specification of 'Local-Reuse'is made into two processes, '{A,Bi' and
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'{C,D}'. The declaration and use of 't'cannot be placed in one process alone. The two
definitions of 't'must be declared separately, as in Example 4.4.5. The procedure must be
transformed to make rewriting possible. Although the transformation is simple in this case, it is
more subtle in Example 4.4.6, where a system variable is used as a temporary store. Despite
appearances, neitherdoes'D'dependon'A', nor 'B' on 'D'. However, the procedure can be
implemented by an'{A,B}'process and a'{C,D}' process, for example, provided the first two
occurrences of 'D' are replaced by occurrences of a new local variable.

procedure Global_Reuse is
begin

D:=A;
B:=D;
D:=C;

end Global_Reuse;

EXEUPIP 4.4.6: TEIr¿PORNRY USE OFA STATE VARIABLE

In view of these difficulties, the discussion will initially ignore the extra sophistication of use-
definition analysis. The emphasis will be on clear and simple specifications that avoid false
dependences. Such specifications a¡e in any case easier to read. They also simplify the
discussion. It is much easier to say "Variable 't' depends on variable '4"', rather than 'The
def,rnition of variable 't' in 't := A;' depends on the initial definition of variable '4"', and so on.
Basing dependences on va¡iables rather than definitions of variables is a gross simplification
that makes a very poor analysis of some specifications. In Chapter 8, it will be explained how
the basic method may be extended to employ use-definition analysis.

4.5 A Working Definition of Dependence

This section defines dependence so that it dovetails with the rewriting rules. This ensures that
the set of component process specifications can be derived directly from the system
specification. Dependences will be used to derive the process network, and to allocate variables
to component processes. Procedures in component processes can access only the variables
allocated to their parent processes or the variables passed to them as input parameters.
However, the rewriting rules further limit the ways these procedures may be constructed. What
matters is that the notion of dependence is consistent with the rewriting rules for delayed
procedure call.

The rewriting rules replace a procedure call by the statements contained in its body. A call is
therefore equivalent to a group of whole statements, not statement fragments. So, if an outer
statement encloses an inner statement, the outer statement may call a procedure containing the
inner one, but the inner statement may never call the outer one. By defining dependence so that
the variables appearing in the inner statement 'depend on' the va¡iables appearing in the outer
statement, the effect is to forbid a queue from flowing from the inner statement back to the outer
one. The definition of dependence must ensure that if 'v' depends on 'u', the process accessing

85



1

2

Separability

'v'maynevercall a procedure in the process accessing 'u'. We therefore make the following
rules:

In an assignment of the form 'v := E', 'v' depends on every variable appearing in 'E'.
(This rule expresses the idea that 'E' can only be evaluated if the variables that appear in it
are either accessed in the same procedure as 'v', or are passed to it as input parameters.)

In an assignment of the form'v(ij) := E', 'v' depends on 'i' and J' (with an obvious
generalisation to any number of suffixes).
(This rule expresses the idea that the subscripts used to access a variable must either be
accessed in the same procedure as the variable, or passed to it as input parameters. Where
parallel processing is an option, the subscripts are used to select the instance of the
process that is called, and the same conditions apply.)

If an assignment of the form 'v := E', occurs within a conditional statement, e.g., of the
form 'if B then... end if;', then 'v'depends on every variable appearing in'B'. (By
'conditional statement' is meant an if statement or a while statement.)
(This rule is motivated by the fact that either the conditional statement and the assignment
may appear in the same process, or the process containing the conditional statement may
call the process containing the assignment. However, the assignment may never call a

process containing the conditional statement that encloses it, because the rewriting rules
allow only complete statements to be replaced by calls. Therefore the assignment would
have to call a statement containing itself, which is absurd.)

If an assignment of the form 'v := E', occurs within a for statement of the form 'for i
in...' or an all statement of the form'all i in...', then 'v' depends on 'i'.
The for or all statement itself is treated as an assignment to the loop variable.
(This rule is motivated by the fact that either the for or all statement and the assignment
may appear in the same process, or the process containing the loop may call the process

containing the assignment. However, the assignment cannot call a process containing the
loop that encloses it, because the rewriting rules allow only complete statements to be
replaced by calls. Therefore the assignment would have to call a statement containing
itself, which is absurd.)

The above rules are straightforward, and correspond to an intuitive understanding of
dependence. However, a fifth rule must be introduced, with a different motive.

If any expression contains an indexed term 'v(ij)', 'v' depends on 'i' and 'j' (with an

obvious generalisation to any number of suffixes).

This fifth rule is contrary to intuition, because the simple occurence of 'v' in an expression
does not affect its value, so that no real dependence can be said to exist. The effect of the rule is
to treat a reference to 'v' similarly to an assignment to 'v'. The dependence forces 'i' and J' to
be accessible to the procedure that accesses 'v', either directly or as parameters.

-J

4
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Suppose state variable 'v' is accessed in process '{V}' but 'i' and J' are accessed in a later
process '{W}', calledby'{V}'. Thenthe whole array'v'mustbe passed as aparameter of the

call, so that the element 'v(ij)' can be selected by '{W}'.

Unfortunately, a state variable can't be passed by reference, but must be copied. This is

because, by the time the called process inspects it, a later event reaching the calling process may
have changed its value. To ensure that the value of the variable cannot be corrupted, it must be

copied. Remembering that the array 'v' could be very large, e.g., implemented by a database

table, passing its whole value would be very inefficient. It would dramatically increase the

complexity of the event procedure concerned. A procedure that accesses an element of an array
of N elements should be expected to have complexity O(logÀ/), whereas copying the whole
array has complexity O(Ð. To remove this source of additional complexity, the parameters of
event procedures may not be state array variables.

However, local arrays are different, and may be passed as parameters. There is a separate

instance of a local array for each event, so no other event can comrpt it. Therefore they may be
passed by reference, and don't need to be copied.

4.6 State Dependence Graphs

A state dependence graph, or SDG, records the dependences between variables that arise from
analysing a set of events. (It is sometimes convenient to consider single events, sometimes ail
the events that a system must process, or sometimes a subset of them.) It is an abstraction of
the dependence information that can be distilled from the text of a system specification.

The vertices of an SDG represent the state variables, the parameters and local variables of
events, and external packages, and are labelled accordingly. Since the parameters and local
variables of different event procedures may have identical names, the labels of their vertices
may be made unique by writing them in the form 'E.v', where 'E' is the name of the event
procedure, and 'v' is the name of the local variable or parameter.

Strictly, every eiement of an array should be represented by a separate vertex. However, for
most pu{poses it is enough to use one vertex to represent a whole array. (This convention
assumes that the elements of an array have similar dependences.)

The edges of an SDG represent dependences between variables. Specifically, if 'v' depends

on 'u', then a directed edge must be drawnfrom'n' to 'y' - the direction of the edge matches

the direction of the data flow. Because a system design must be valid for each event, the set of
edges that result from several events must be the union of the edges for each event.

Although an SDG should have a vertex for every input, every state va¡iable, every temporary
variable, and every output, unless a special point is to be made, only the state variables are

drawn, to keep the diagrams as simple as possible. The input variables are always sources and

the output variables are always sinks, so they can be taken as read. Temporary variables can be
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omitted because they don't have to be assigned to processes; they are typically used to can-y
data between them. Drawing temporary variables sometimes makes an SDG simpler and
sometimes not. A temporary variable can usually be regarded as standing for the expression
assigned to it, and treated as the bundle of variabies appearing in the expression. After an SDG
has been drawn and analysed, it is easy to see where the missing vertices should be attached.

procedure Borrow (t : title; u : user) Ís
begin

if c(r) > 1 rhen
D(u) := D(u) + 1;
C(t) := C(t) - 1;

end if;
end Borrow;

EXAMPLE 4.6,1: A BoRRowEVENT

Consider the 'Borrow' event procedure of Example 4.6.I. Figure 4.6.1 shows its
corresponding SDG. 'C', depends only on 't' and itself, but 'D' depends on .c" .t,, .u, and
itself. The arrow drawn from 'C' to 'D' suggests the need for a data flow from 'C' to 'D'. It
means that, other things being equal, it is possible for the flow to pass through a queue, or a
'C' process to use delayed call to communicate with a 'D' process. Conversely, there can never
be a queue flowing from 'D' to 'C'.

FICUR¡ 4.6.1: SDG FoR THE BoRRow EVENT

Suppose the 'Borrow' event in the specification of Example 4.6.1 were revised to become
that of Example 4.6.2. This change makes it impossible for any branch to borrow more than l0
books, introducing a new dependence of 'C' on 'D'. The SDG of the revised specification is
given in Figure 4.6.2.

procedure Borrow (t : titte; u : user) is
begin

if D(u) < 10 and C(Ð > 1 then
D(u) := D(u) + 1;
C(t) := C(t) - 1;

end if;
end Borrow;

EXAMPLE 4,6.2: A REVISED BoRRow EVENT
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FIcURE 4.6.2: SDG Ton THE REVISED LIBRARY SYSTEM

Remembering the Dependence Theorem, i.e., that dependences forbid queues, the cycle
between'C'and'D'suggests that data must flow in both di¡ections between the'{C}' and

'{D}' processes, and they can no longer be linked by a queue of delayed calls. Suppose that

process '{C}' calls '{D}' as before. 'Where in the program text could the call be written? It
could not merely replace the assignment to 'D'; 'D' must be accessed by the if statement in the

calling process. Nor could it repiace the whole if statement. Since the assignment to 'C'
occurs within the if statement, the 'C' process could only update the value of 'C' if the called
procedure passed the new value of 'C' back to the calling process as an output parameter.

Delayed procedure calls forbid output pammeters; data can't flow through a queue backwards.
Since the rewriting rules only aliow complete statements to be enclosed in procedures, these are

the only two interesting options. But even ignoring the rewriting rules, a delayed call is clearly
impossible, because 'C' depends on 'D' in the intuitive sense too.

If we suppose instead that process '{D }' calls process '{C }', an analogous argument proves

that a delayed call is still impossible.

(Neither can access to the 'C' or 'D' affays be shared by both processes; the two processes

may be out of step, and the arrays have unique histories that cannot be synchronised with both
processes at the same time. Nor does making two copies of 'C' or 'D' solve the problem.)

This argument does not prove that 'C' and 'D' cannot be accessed by physically remote

processes, but only that their histories may never be allowed to become out of step (except
transiently during the processing of an event). To process event E¡ the values of 'C(t)i-1' and
'D(u)i-t' must both be available before 'C(t)i' and 'D(u)i' can be computed. The '{C}' and

' {D } ' processes must be closely coupled. The simplest option is to access both the 'C' and 'D'
arrays in a single '{C,D}' process. 'We would only separate the processes if we were forced to
by external considerations. For example, if 'C' and 'D' had to be stored at physically separate

sites, we would have to take pains to ensure their states were kept in step.
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package body C is
C : array (book) of natural ¡= (others => 0);
procedure Bonowl (t : title; C: out natural) is
begin

C := C(t);
end Borrowl;
procedure Bomow2 (t : title) is
begin

C(t) := C(t) - 1;
end Borrow2;

end C;

package body D is
D : array (user) of natural :- (others -> 0);
procedure Borrow (t : title; u : user) is

C: natural;
begin

D.Borrowl (t, C);
if D(u) < 10 and C > 1 then

D(u) := D(u) + 1;
C.Bonow2 (r);

end if;
end Borrow;

end D;

EXen¿pIp 4.6.3: REMoTE PRoCEDURE CALL

If for some reason the 'C' and 'D' arrays must be accessed in different processes, the
communication can be modelled by 'remote procedure call', which does allow output
pa-rameters. Example 4.6.3 shows one model of close coupling. Component 'D' has access to
the 'D' array. It makes two remote calls on 'C', which accesses the 'C' array. The first remote
call returns an output parameter equal to the cunent value of 'C(t)'. The second remote call
decrements 'C(t)'. Only the second remote call could be replaced by a delayed procedure call.
In the following discussion, close coupling will be ignored. It involves the dist¡ibuted database
integrity problem [Lampson & Sturgis !976, Gray 1981, Schneider & Lamporr Igïz],which is
an issue in its own right, and outside the scope of this thesis. We shall say simply that 'C' and
'D' must be allocated to the same component process. The reader should remember that any
non-trivial process can always be further decomposed into closely coupled parts.

Drawing dependences as edges of a graph suggests that paths in the graph may have
important properties. For example, is dependence t¡ansitive? If 'v' depends on 'u' and 'w'
depends on 'v' does that prove that 'w' depends on .u,?

In themselves, dependences are not transitive. The fact that variable 'v' depends on 'u' and
'w'depends on'v'does notprove that'w'depends on'u'. (An event specification may be
simply 'w:=vi v:=u;'.) Despite this, because of the way dependence has been defined, the
edges of SDG's ar¿ transitive.

An alternative reading of an edge from u to v is, according to the Dependence Theorem, that y
may lag ø, but u may not lag u. If u may lag u and w may lag v, then w may lag u.
Conversely,if umaynotlagvandvmaynotlagw,then umaynotlagw. Intermsof data-
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flows, if data flows from ø to v and data flows from y to w, then data flows from u to w. In
teÍns of queues, if no queue is allowed from y lo u, andno queue is allowed from w to v, then
no queue is allowed from w to u. 'We may therefore say that dependences are pseudo-
transitive.

4.7 The Canonical Minimal Process Graph

There is obviously a strong connection between the SDG of a system and the process graphs
of itspossibleimplementations. For exampie, the edge from'C' to 'D'Figure 4.6.1 suggests
that a queue of delayed procedure calls could flow from a'{C}' process to a '{D}' process.
(Which is why the dependence is drawn from 'C' to 'D' rather than the reverse.) More
accurately, the edge makes a queue useful; it is the absence of an edge in the reverse direction
that makes a queue possible. However, no queue is ever necessary. It remains possible to use
a combined'{C,D}'process to implement the specification of Example 4.6.2 (although it may
be less efficient). In the SDG of Figure 4.6.2, the cycle between 'C' and 'D' makes their
processes strongly connected, and forbids the use of a queue. This is closely connected with
the Data Flow Theorem, which forbids a cycle of queues in a process graph. What is the
precise relationship between an SDG and a process graph?

Definition

The 'strongly-connected components' (or simply 'strong components') of a directed
graph are maximal subsets of its vertices, such that 'u' and 'v' are members of the same
strong component if the graph contains both a path from 'u' to 'v' and from 'v' to 'u',
i.e., they form part of a cycie.

The strong components of a graph partition its vertices; each vertex is a member of exactly
one strong component. Figure 4.7.1 shows the strong components of an arbitrary directed
graph. Its components are {A,B,C}, {D}, {E}, and {F,G}. (Each component is enclosed
inside an elliptical outline.) A component containing a single vertex, such as {D}, is called a
trivial component. (Every vertex of a graph has a zero length path to itself.)

FTCUR¡ 4.7.I: STRoNG Coir¿poN¡NTs oF A GRAPH

Definition:

The 'reduced strong component graph' (or simpiy the 'reduced graph') of a di¡ected
graph G has vertices that are the strong components of G. There is an edge from vertex
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U to vertex V of the component graph if and only if there exist vertices u and v in G such
that ueU and veV and there is an edge from ø to v in G.

Figure 4.1.2 shows the reduced graph of Figure 4.7.I. Areduced graph has the important
property that it is always acyclic. Moreover, the reduced graph is connected if and only if the
original graph is connected.

FICURE 4.7 ,2: THE COMPONENT GRAPH oF FIGURE 4.7.1

Suppose that Figure 4.7.1 represents the SDG of some system. Then we claim that Figure
4.7.2 is a process graph of a network that can implement the system. It is also the most general
process graph; every other feasible process graph can be derived from it. The vertices of Figure
4.7.2rcpresentits 'minimal separable processes'. A'minimal separable process'corresponds
to a set of variables that must be accessed either within a single process or by a group of closely
coupled processes, but which could not be accessed by two or more processes linked by queues

without losing the guarantee of real-time equivalence. The processes a¡e 'minimal' in the sense

that although they cannot be subdivided, they may be combined. For example, it would be

possible to access 'E', 'F', and 'G' within a 'composite' process, giving the process graph of
Figure 4.7.3. Finally, they are 'separable' in the sense that each vertex represents a process

that can be linked by queues to the others.

(The vertices of an SDG, which represent variables, a¡e drawn as circles. The vertices of
process graphs, which represent processes, are drawn as rectangles. A component graph is a

form of process graph.)

FTCUR¡ 4.].3: A PRocESS GRepu DERIVED FRoM FIcUR¡ 4.1.2.

Figure4.l.3isoneof severalprocessgraphsthatcanbederivedfromFigure 4.7.2. The 11

valid ways of composing the processes of Figure 4.7 .2 arc as follows:

{D}

A,B, C {F,G}

{E}

{D}A,B,C] E,F,G)
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But the remaining 4 possible compositions are invalid, such as {A,B,C,F,G},{D},{E}
shown in Figure 4.7 .4, because the pairs of edges joining {D} and {E} to {A,B,C,F,G} form
cycles, and a cycle of queues is forbidden. Choosing the best valid composition is a potentially
complex combinatorial problem, discussed in Chapter 9.

FTcuRe 4.7.4: AN INVALID COMPOSITION BASED oN FIGURE 4.7.2.

In drawing various kinds of graph, such as SDG's, it is easy for them to become cluttered by
numerous edges. If we are only interested in the existence of paths bet!ñ/een vertices, it is
possible to delete many of the edges and still retain the essential path information. This makes
the drawing of a graph easier to understand.

Definition:

A 'transitive reduction' H of a graph G has the same transitive closure as G and contains
the same vertices as G, but fewer edges. That is, if there is a path from ø to v in G, there
is also a path from u to v in 11. Figure 4.7.5 shows the only transitive reduction of the
graph of Figure 4.7.2.

FIGURE 4.7.5: THE TRANSITIVE RooT oF FIGURE 4.7.2

Definition:

A 'minimal transitive reduction' H of G is a transitive reduction of G with fewest edges,
i.e., such that no other transitive reduction of G has fewer edges than Ë/.
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The minimal transitive reduction of an acyclic directed graph is unique, and is called its
'transitive root'. It may be discovered by constructing a graph G.G+ containing the vertices of
G, and an edge for every composite path in G (i.e., paths of length 2 or greater). The edges of
G that conespond to edges in G.G+ are then removed l\ho et al. 19721. (If G is the graph of
Figure 4.7.2, the only edge in G.G+ is from {A,B,C} to {F,G}. Figure 4.7.5 is the result of
removing this edge.)

By finding its the strong components, and finding the transitive root of the reduced

component graph, any directed graph may be transformed to a canonical acyclic form.

If Figure 4.7 .I is considered as an SDG, Figure 4.7 .5 is called its canonical process graph,

or CPG. The CPG is defines a partial ordering that constrains all possible process graphs that

could implement any specification from which Figure 4.7.I 'nught be derived. Specifically, any

system implementation must preserve the partial ordering of Figure 4.7.5. For example,

Figure 4.7.5 is itself a valid process graph. So is Figure 4.7.3. So is any topological sort of
Figure 4.7.5, e.g., the pipe-line of Figure 4.7.6. However, no valid process graph can include

a queue that flows from one process to another that precedes it in the partial ordering. For
example, no queue may flow from {D} to {A,B,C} of Figure 4.7 .3 - which is precisely why
thecompositionof Figure 4.7.4iswrong. However,aqueuemayflowbetween {D} and {E},
because they are unordered.

FICUR¡ 4.7 .6: A ToPoLoGICAL SOnr OF FIGURE 4.7.5

If an SDG is connected, so is its CPG. We should cenainly expect both graphs to be

connected, because otherwise their connected regions describe independent systems. (Any

event that accesses variables in more than one region couid be split into parts that affected each

region independently.) In the following discussion, it will generally be assumed that the graphs

are connected. However, it makes no great difference if they aren't.

Definition:

A 'composite process graph' P is a 'valid composition' of a canonical process graph C if
theverticesof P a¡e labelled with sets of vertices of C, P is acyclic, and the edges of P
a¡e such that whenever there is a path from vertex ø to vertex v in C, there is a path from
vertex U to vertex V in P, where ueU and veV.

(There are therefore fwo stages of composition needed to derive a composite process graph

from an SDG. First, state variables are grouped into strong components to form the vertices of
the CPG, then selected vertices of the CPG are merged to form the composite process graph.)

It is now appropriate to demonstrate some of the claims of this chapter more formally. We

first show that a reduced component graph is always acyclic.

A,B,C) {D} {E} {F,G}
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Lemma 1:

Every reduced strong component graph is acyclic.

Proof:

Suppose that the reduced graph of G contains a cycle between distinct vertices U and V.
Since the edges of the reduced graph result from edges in G, there must be a path from
ul to vl in G, where ureU andvÊV. Likewise there must be vertices v2eV and u2eU
such that there is a path fromv2to u2in G. The vertices v1 and v2 need not be identical,

but they must be strongly connected, because they are both members of V. Similarly, ø1

and u2 must be either identical or strongly connected. Therefore there is a cycle passing

through ur, vt, v2, and u2 in G. Therefore ut, vt, v2, ard u2 are members of the same

strong component of G, and U and V cannot be distinct vertices, contrary to the

hypothesis.

Lemma 2:

The reduced strong component graph of G is connected if and only if G is connected.

Proof:

Let U and V be vertices of the component graph of G. Suppose that there is an edge

from ø to u in G, where ueU andveV. Then, because of the way it is constructed,

there is a conesponding edge from U to Vin the component graph of G. Conversely, if
there is an edge from U to Vin the component graph of G, there must be a least one pair

of vertices uandvinG suchthat ueU andveV,and there is an edge from ø to v in G.

By induction, a pair of component vertices is connected if and only if two of their

elements are connected. Therefore, every pair of vertices in the component graph of G is
connected if and only if G is connected.

Lemma 3:

The transitive root of an acyclic graph is unique and acyclic.

Proof:

Given an acyclic graph G, compute the graph G.G+ containing all composite paths in G
(i.e., all paths of length greater than 1). Remove the corresponding edges of G. The

resulting graph ^FI is the t¡ansitive root of G. The process is deterministic, so .F/ is

unique. To see tbat H has the same closure as G, observe that the edges removed from
G correspond to composite paths in 11. Therefore they are generated by the transitive

!.
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closure of ^F1, so G cannot generate any edges in its closure that are not in the ciosure of
H. To see that the transitive reduction computed in this way is minimal, observe that it
contains no edges between vertices that are otherwise linked by composite paths. If any
edge were removed from //, the edge could not be generated in the transitive closure of
the modified graph, and it would not be a valid reduction of G. Since G is acyclic, and

its transitive reduction is obtained by removing edges from G, its reduction is also
acyclic.

The Separability Theorem:

Every state dependence graph has a unique conesponding canonical process graph that
represents a feasible system design.

Proof:

Given a state dependence graph, its reduced strong component graph is obtained by a

deterministic construction and is therefore unique. From the reduced strong component
graph, the canonical process graph is obtained by constructing its transitive root. Any
reduced strong component graph is acyclic, therefore its transitive root is acyclic and
unique. Since the resulting CPG is acyclic, it cannot contain a cycle of queues.

Therefore it represents a feasible system design.

Corollary 1:

The canonical process graph contains the maximal number of separable processes.

Proof:

The processes of the CPG correspond to the vertices of the reduced strong component
graph of the state dependence graph. Since members of the same strong component are

cyclically connected, placing any of its members in separate processes would result in a
cycle of queues, which is forbidden by the Data Fiow Theo¡em.

Corollary 2:

The CPG defines a partial ordering of its processes
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Proof:

Any transitive acyclic graph defines a partial ordering. The CPG is transitive either in the
sense that an edge from U to V allows V to lag U, or in the negative sense that a queue
cannot flow from V to U. Both these properties are transitive.

Corollary 3:

Every state dependence graph has at least one valid composite process graph, and at least

one valid pipe-line process graph.

Proof:

Construct the CPG from the SDG. First, it is itself a possible composite process graph.
Second, since the CPG defines a partial ordering, it has at least one topological sort.
Connect the terms of the sort by queues to form a pipeline. (See Corollary 1.) Third,
composing all the processes of the canonical graph into a single process is also a valid
process graph. (The three cases are not necessarily distinct.)

(A simple way to find a topological sort is to choose any source vertex of the canonical
minimal process graph (i.e., one that does not have edges entering it), and place it first in the

pipeline. Delete the chosen vertex and its out-edges from the canonical minimat process graph.
Now find a source vertex in the remaining graph, and place it second in the pipeline. Delete the

vertex and its out-edges as before, and repeat until no vertices remain.)

4.8 Finding the Canonical Process Graph

This section explains efficient aigorithms for finding the strongly connected components of a

directed graph and a topological sort of an acyclic graph. These algorithms could form part of a
computer program that could derive CPG's from specifications. The main point of the section
is to show that there are polynomial-time algorithms that can derive a CPG from an SDG. In
fact, the same algonthm can derive both the strongly connected components and the topological
sort.

Depth-first search is a particular recursive procedure for exploring directed graphs. The
pseudo-code procedure 'DFS' in Example 4.8.1 outlines depth-first search. 'Preorder' and
'Postorder' are arbitrary procedures that can be invoked during the search. 'Visited' is a

boolean attribute of each vertex that is initially false.
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procedure DFS (v : vertex) is
begin

if not Visited(v) then
Visited(v) := true;
Preorder(v);
for all edges v-)w leaving 'v' loop

DFS(w);
end loop;
Postorder(v);

end if;
end DFS;

EXaVpTE 4.8.1: DEPTH FIRST SEARCH

As given in Example 4.8.I, 'DFS' is a procedure for making a depth-first search from one
vertex. The vertices it visits, and the first edges followed that reach them, form a tree with the

starting vertex as its root, called its 'depth-first search tree'. The depth-flrst search from one

vertex does not necessarily visit all the vertices of the graph. A depth-first search of a whole
graph may be made by augmenting the graph with a dummy source vertex with an out-edge

leading to each true vertex of the graph, then making a depth-first search starting from the

dummy vertex. The same effect may also be achieved by invoking 'DFS' for each vertex of the

graph in turn, in any order, without reinitialising the values of 'Visited'.

The complexity of 'DFS' applied to a whole graph is OitU+l,ä), where lVl is the number of
vertices, and lEl is the number of edges of the graph. Each vertex is inspected once directly,
and once for each of its in-edges.

Every acyclic graph has a topological sort, which may be found by depth-f,rrst search.

Consider the sequence of calls to 'Postorder'. By induction, it is easy to prove that a vertex can

only appear in the call sequence after all its successors. Therefore, in the reverse of the call

sequence, it will appeff beþre all its successors. This is the defining property of a topological
sort.

If a graph is cyclic, the cycles are easily detected during the depth-first search. It is merely
necessary to keep track of the set of vertices with acúve calls of 'DFS' (those that have been

visited in preorder, but not yet visited in postorder). If an attempt is made to call 'DFS' for an

already active vertex, it must be its own successor in the graph, and therefore a member of a

cycle.

Given a cyclic graph, there is an efficient algorithm due to Tarjan that finds the strong
components of a graph in a single depth-first search [Tarjan 1972]. Furthermore, the strong
components are isolated in reverse topological order.

During a depth-first sea¡ch of the graph, each vertex is assigned a 'preorder visit number',
that is, the vertices are numbered in the order they are first visited. A second number is also

associated with each vertex, which we call the 'marking' of the vertex. Initially, each vertex is
unma¡ked (or marked with zero), to indicate that it has not yet been visited. When a vertex is
first visited, it is re-marked with the same value as its preorder visit number.
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FTcuRp 4.8.1: STRoNG CovpoNeNTS oF A GRAPH

Figure 4.8.1 shows the preorder numbering of Figure 4.7.I, assuming that vertices and
edges are always chosen in alphabetical order. The order of calls to 'Preorder' is
'A,C,B,E,F,G,D'.

Consider a vertex that happens to be the first vertex that is visited in a strongly-connected
component, say 'A'in component {A,B,C}. Before'A'is frnally visited again in postorder,
every other vertex of the strongly-connected component will have been visited, i.e., 'B' and
'C', because they among its successors. Each of these vertices must receive a higher preorder
visit number than 'A'. (They cannot have been visited before 'A', or 'A' would not be the first
vertex visited in the strong component.) Moreover, unless the component is trivial, at least one
of its vertices must have a back edge, i.e., an edge connecting it to a vertex with a lower
preorder visit number, i.e., 'B' has an edge back to 'A'. (By definition, there must be a path
from every vertex ofthe strongly-connected component to every other, so at least one back edge
must enter 'A'.) Whenever an edge is found from a vertex to one with a smaller marking, it is
re-marked with the smaller value, i.e., B's marking would be changed from '3' to '1'. As the
postorder visits are made, every member of the strongly-connected component - except the
first vertex visited - will eventually receive a marking that is less than its own preorder visit
number, i.e., C's marking would aiso be changed to'l'.

This information is used as follows. As each vertex is visited in preorder, it is numbered,
marked, and pushed onto a stack. If a vertex still has a marking equal to its preorder visit
number when it is visited again in postorder, it was the first vertex visited in a strongly-
connected component. In fact, the other vertices of its component lie immediately on top of it
on the stack, e.g., 'B' and 'C' lie on top of 'A'. During the postorder visit to 'A', these
vertices are popped from the stack and assigned to the current strong component, until the
vertex whose marking equals its own preorder numbering ('A' in this case) has been popped
and assigned.

Although at one point during the search 'A', 'B' and 'C' are covered on the stack by 'E', 'F'
and 'G', and at another point by 'D', they are removed from the stack during the postorder
visits to 'F', 'E' and 'D'. This must always happen. Any successors of the vertex in question
that belong to other components are removed when visits to those components are completed.
This must occur before its post-order visit, because of the acyclic property of any reduced
graph.
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Once a vertex has been assigned to a strongly-connected component the algorithm marks it
with a number greater than the number of vertices, to prevent it causing problems later. This

could happen during the visit to 'D', where the edge leading to 'F', which otherwise would
have a marking of '5', would be mistaken for a back edge, causing 'D' to marked incorrectly

with'5' also.

During a depth-first search, while visiting one strongly-connected component, an edge may

be found leading to a successor component. The visit to the successor component must be

complete before the visit to the original component is resumed. Thus, the visits to components

are completed in a reverse topological sort of the reduced graph. This means that the list of
strong components discovered by the algorithm is a reverse topological sort of the vertices of
the reduced graph.

Tarjan's algorithm is remarkably efficient. Each vertex and edge of the graph is processed

only once.

Another property of a graph that may need to be established is whether a path exists between a

given pair of its vertices. This property is given by its transitive closure. The transitive closure

of graph G has an edge corresponding to every edge or compound path of G. In the transitive

closure, each vertex has an edge to all its descendants in the original graph. Since a depth-f,rrst

search from a given vertex eventually visits all its descendants, the transitive closure of a graph

may be efficiently computed using another variation of Tarjan's algorithm.

Suppose vertex w is a successor ofvertex v. Every vertex that is a descendant of w is also a

descendant of v. During a depth-first search of an acyclic graph, the postorder visit to w must

be completed before the postorder visit to v. Assuming that the descendants of w have been

found at the completion of the postorder visit to'lr, on resuming the visit to v, v can simply

inherit w and its descendants as its own. By the time the postorder visit to v itseif is completed,

it will have inherited the descendants of all its successors.

When the graph is cyclic, the situation is more complex because although w is a descendant of
v, v may also be a descendant of w. Thus if v is visited before w, a depth first search will not

visit v again, so it will not find all the descendants of w. However, the approach still works

correctly for the first vertex visited in each strong component. Since every vertex of a strong

component has a path to every other vertex, they all share the same set of descendants as the

first vertex visited. The Eve and Kurki-Suonio algorithm [Eve & Kurki-Suonio 1997] is

simila¡ to Tarjan's strong component algorithm, but in addition, it keeps track of the

descendants of vertices. As each strong component is identified, it assigns the set of
descendants of its first vertex visited to all the vertices of the component as they are popped

from the stack.

Although it finds the transitive closure during one depth-first search of a graph, the time taken

by the Eve and Kurki-Suonio algorithm is usually dominated by recording the edges of the

resulting closure, which may number as many as the square of the number of vertices.
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4.9 A Worked Example

To illustrate ail the steps involved in deriving a CPG from a specihcation, consider the

student record system of Example 4.9,1. Three events are specified: 'Admit' acknowledges

that the student has satisfied the admission criteria, 'Set_Quota' makes a class available by
setting a non-zero quota, and 'Enrol' records the enrolment of a student. The intention of the

specification is that a student may enrol in a class only after satisfying some admission criteria,
and provided the class is not already full. (Many realistic details have been omitted from the

specification. For example, what happens when a class quota is reduced?)

generic
type student is private;
type class is private;

package Student_Records is
procedure Admit (s : student);
procedure $st_Quota (c : class; n : natural);
procedure Enrol (c : class; s : student);

end Student_Records;

package body Student_Records is
Admitted:array (student) of boolean:- (others -> false);
Enrolled: array (class, student) of boolean:- (others => (others => false));
Quota : array (class) of naturai :- (others => 0);
Size : array (class) of natural :- (others => 0);
procedure Admit (s : student) is
begin

Admitted(s) := true;
end Admit;
procedure Set_Quota (c : class; n : natural) is
begin

Quota(c) := n;
end Set_Quota;
procedure Enrol (c : class; s : student) is
begin

if Admitted(s) then
if not Enrolled(c, s) then

if Size(c) < Quota(c) then
Size(c) := Size(c) + 1;
Enrolled(c, s) := true;

end if;
end if;

end if;
end Enrol;

end Student_Records;

Exeuplp 4.9.I: A STUDENT REcoRD SYSTEM

The first step in the analysis of the specification is to find its state variable dependences.

From the 'Admit' event we find that 'Admitted' depends on 'Admit.s'. From the 'Set_Quota'
eventwefindthat 'Quota' depends on 'Set_Quota.c' and 'Set_Quota.n'. The 'Enrol' event is
more complex:

From the use of the expression in the outermost if statement we get 'Admitted' depends

on 'Enrol.s'. (This is an application of Rule 5 of Section 4.5.)

1
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2. From the expression in the second if statement we get 'Enrolled' depends on 'Enrol.c',
'Enrol.s', and'Admitted'. (A more complex application of Rule 5: the dependence on
'Admitted' ensures that if the second if statement is encapsulated in a delayed procedure,
the call will be nested within the outer if statement.)

From the expression in the innermost if statement, we determine that both 'Size' and
'Quota' depend on 'Enrol.c', 'Enrol.s', 'Admitted' and 'Enrolled'. (Rule 5 again.)

From the first assignment we get 'Size' depends on itself, 'Enrol.c', 'Quota', 'Enrolled',
'Enrol.s', and'Admitted'. (Rules I,2, and 3.)

5. From the second assignment we get 'Enrolled' depends on itself, 'Enrol.c', 'euota',
'Size', 'Enrol.s', and'Admitted'. (Rules I,2, and 3 again.)

The SDG of this specification is more complex than any previous example. Its full graph
would look too cluttered. Figure 4.9.I adopts the convention of showing only its transitive
reduction. Since dependence relations are pseudo-transitive, this simplifrcation will not affect
the resulting CPG.

FICURS 4.9.I: SDG pon THE STUDENT RECoRD SysrBvT

Figure 4.9.1 has a non-trivial strong component containing 'Enrolled', 'Size', and 'Quota'.
Figure 4.9.2 shows its CPG. The graph shows five input processes, which represent the
sources of the parameters of the three events that the system handles. These source processes
lie outside the system being specified. Usually, unless we wish to discuss the environment of a
system, little is lost by ignoring input processes. In this example the system proper contains
two minimal separable processes. It may be implemented by the pipeline of Figure 4.9,3.

Enrol.c

Quota
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FIGURE 4.9,2: CanoNTceL PRocESS GRepH FoR THE STUDENT RpcoRo Sysrpv

FICUn¡ 4.9.3: PROCESS Pp¡I.INp FoR THE SruoeNr Rpconn SYSTEM

Neglecting parallelism or sequential access, there are exactly two possible implementations:
join the minimal processes by a queue, or compose the two processes into a single process
whose specif,ication is exactly that of Example 4.9.I. However, independent access cannot be

neglected. Although it cannot be deduced from the SDG, it turns out that there can be a separate

copy of the '{Admitted}' process for each 'student', and a separate copy of the '{Size, Quota,
Enrolled)'processforeach'class'. (Considering'Enrolled' as amatrix, each of its rows may

be accessed concurrently, but not each of its elements.) The parallel impiementation may be

represented by the process graph of Figure 4.9.4, which shows the processes for two possible

students and two possible classes. How independence can be detected is addressed in the next

chapter.

FIGURE 4.9.4: PARALLEL PRocpsses FoR THE STuopNT RECoRD SYSTEM

The opportunity for parallelism or sequential access is a strong reason to prefer to keep the

processes separate. Combining the'{Admitted}'and'{Size, Quota, Enrolled}' processes to
yield a single composite process would destroy the opportunity for independence. The
composite process could not be made independent by 'student' and still preserve correct 'class'
histories. For example, if there is a shortage of places in a class, it could not be guaranteed that

the first students to en¡ol will get the places. The composite process could not be parallel by

S
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'class' and preserve the correct 'student' histories. For example, an 'Enrol' event could
overtake an earlier'Admit' event for the same 'student', causing the enrolment to be rejected.
On the other hand, by sorting the calls from each student process, the queuing network that
links the two sets of processes in Figure 4.9.4 can ensure that the correct sequence of events
enters each class process, exactly as in the sequential and parallel implementations described in
Chapter 3.

Chapter 5 discusses an informal method for discovering opportunities for parallelism or
sequential access and the related problem of choosing the optimum process composition. To
complete this chapter, we derive the component specifìcations of the Student Record system by
using the rewriting rules.

The implementation should contain two internal packages; the first, which accesses

'Admitted', calling delayed procedures in the second, which accesses 'Size', 'Quota' and
'Enrolled'. Where should the procedure calls be placed? There is no problem with the 'Admit'
event, which is confined to the first process. 'Set_Quota' is confined to the second process. In
'Enrol'the calledprocedure mustenclose all references to 'Size', 'Quota' and 'Enrolled'. The
calling procedure should also include all assignments to 'Admitted' 

- except there aren't any.
Example 4.9.2 shows one way to divide the text. The other is to place the whole procedure in
the second process, passing 'Admitted' as a parameter. The question of where best to place

delayed procedure calls will be discussed in Chapter 7.

procedure Enrol (c : class; s : student) is
begin

if Admifted(s) then

if not Enrolled(c, s) then
if Size(c) < Quota(c) then

Size(c):= Size(c) + 1;
Enrolled(c, s) := true;

end if;

end if;
end Enroi;

ExaIr¿pI-e 4.9.2: PRocESS BouxonRy FoR .ENRoL' 
EVENTS

Choosing the boundary of Example 4.9.2, the resulting component specifications are given in
Example 4.9.3. Only the package body is shown. Since all three arrays in the package
'Process-SQE' (which represents the process accessing 'Size', 'Quota' and 'Enrolled') have a

first subscript which is a 'class', and because all three of its procedures have a 'class' as a
parameter, it is possible to replace 'Process_SQE' by an array of processes, as in Example
4.9.4.
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package body Student_Records is
package Process_A is

procedure Admit (s : student);
procedure Set_Quota (c : class; n : natural);
procedure Enrol (c : class; s : student);

end Process_A;
package Process_SQE is

procedure Set_Quota (c : class; n : natural);
procedure Enrol (c : class; s : student);

end Process_SQE;
package body Process_A is

Admitted : array (student) of boolean ;= (others => false);
procedure Admit (s : student) is
begin

Admitted(s) := true;
end Admit;
procedure Set_Quota (c : class; n : natural) is
begin

Process_SQE.Set_Quota (c, n) ;

end Set_Quota;
procedure Enrol (c : class; s : student) is

n
Admitted(s) then
Process_SQE.Enrol (c, s);

end if;
end Enrol;

end Process_A;
package body Process_SQE is

Enrolled : array (class, student) of boolean :- (others => (others => false));
Quota : array (class) of natural :- (others => 0);
Size : array (class) of natural :- (others => 0);
procedure Set_Quota (c : class; n : natural) is
begin

Quota(c) := n;
end Set_Quota;
procedure Enrol (c : class; s : student) is
begin

if not Enrolled(c, s) then
if Size(c) < Quota(c) then

Size(c) := Size(c) + 1;
Enrolled(c, s) := true;

end if;
end if;

end Enrol;
end Process_SQE;
procedure Admit (s : student) is
begin Process_SQE.Admit (s); end Admit;
procedure Set_Quota (c : class; n : natural) is
begin Process_A.Set_Quota (c, n); end Set_Quota;
procedure Enrol (c : class; s : student) is
begin Process_A.Enrol (c, s); end Enrol;

end Student_Records;

Exeuple 4.9.3: COMPONENT PROCESS OF THE SruOENr RECORD SYSTEVI

begi
if
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package body Process_SQE is
Enrolled : array (student) of boolean :- (others => false);
Quota: natural := 0;
Size : natural := 0;
procedure Set_Quota (n : natural) is
begin

Quota:= n;
end Set_Quota;
procedure Enrol (s : student) is
begin

if not Enrolied(s) then
if Size < Quota then

Size := Size + 1;
Enrolled(s) := truel

end if;
end if;

end Enrol;
end Process_SQE;

ExeMpLe 4.9.4: PARALLEL IMILEMENTATToN oF pRocEss_SeE

An independent access form of 'Process-A' may be constructed along similar lines, as shown
in Example 4.9.5. There are two nuances. First, the 'Set_Quota' event is not associated with a

particular student. To even the load on each student process in a parallel implementation,
'Set-Quota' events may be sent to student processes at random, perhaps by hashing their
parameters. (An altemative would be for these events to by-pass 'Process_A', the enclosing
package calling an instance of 'Process-SQE' directly;but this raises the problem of it merging
two streams of deiayed calls.) Second, the parameter 's' has to be passed to the 'En¡ol'
procedure for student 'S', so that it may be forwarded to the 'Enrol' procedure in
'Process_SQE'.

package body Process_A is
Admitted: boolean := false;
procedure Admit is
begin

Admitted := truel
end Admit'
procedure Set-Quota (c : class; n : natural) is
begin

Process_SQE(c). Set_Quota (n) ;

end Set_Quota;
procedure Enrol (s: student; c : class) is
begin

if Admitted then
Process_SQE(c).Enrol (s);

end if;
end Enrol;

end Process_A;

ExRIT¿pIe 4.9.5: PARALLEL IMPLEMENTATION oF PROCESS A

When a package is decomposed into an array of independent instances, each instance may
only refer to array elements (or, as in the case of 'Enrolled', sub-arrays) that share its own
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index. V/hat makes the transformation possible is that no package instance has a need to refer
to an element declared within a different instance of the same package.
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5. Independence
Close coupling corresponds to a cycle in the SDG. Separability corresponds to a one-way

path. Independence colresponds to the absence of a path. Independence is the property that
makes parallel or sequential access possible.

This chapter develops the theory of independence semi-formally - in the sense that it can
used rigorously by a human system designer, but is not yet formal enough for a computer
algorithm. (This will be remedied in Chapter 8.) It extends the SDG notation to show where
independence exists. It shows how independence information can be extracted from the text of
a specification. It also makes the distinction between the pure notion of independence, meaning
that some form of parallel or sequential access is possible, and a pragmatic notion, which
determines whether the parallel or sequential update algorithms of Chapter 3 can be used to
achieve it.

There are two main sources of independence. First, a single event may inspect or update

many elements of an array in an all loop independently. Second, different events that inspect
or update disjoint sets of array elements may proceed independently of one another. A third,
minor source of independence can occur when an event inspects or updates a few selected

elements of an array.

The rules for constructing SDG's were determined by the capabilities of delayed procedure

call; likewise, the rules for independence must be determined by what the sequential or parallel

update algorithms of Chapter 3 can do. In the same way that the rewriting rules for delayed
procedure call determined dependence, so the transformation into sequential or parallel access

must determine independence. Without constraining the rules in this way, analysis might reveal
that the elements of an array could be updated independently, but not suggest how. Such
pathological cases rarely arise in practice, and will be discussed in Chapter 8.

There is a considerable body of work on detecting potential parallelism in loops, as a feature
of optimising and parallelising compilers, to which [Chandy & Misra 1938] provides a tutorial
introduction, and of which fBacon et aI. 1994] gives a comprehensive survey and bibliography.
There is sometimes a close connection between this work and the transformations used in this
thesis. For example, the basic form of the sequential access algorithm of Section 3.3 can be

derived by loop reordering [Bacon et al. 1994, Section 6.21, and the parallel access algorithm
may be derived from it by an additional data distribution.

Disappointingly, Iittle of this work is relevant to this thesis. For example, one of its chief
concems is to detect loop-carried dependences in cases such as:

u,
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for i in 1..100 loop
C(i) := B(i);
B(i+l) := A(i);

end loop;

where 'C' depends on 'A' through the assignment to 'B'. In this thesis, an index such as 'i+1'
is virtually meaningless because 'i' would typically represent an object identifier such as an

account number or a product code, and there would typically be no logical relationship between

the objects identif,red by 'i' and 'i+1'. On the other hand, this thesis is concerned with
analysing loops of the form:

for c in customer loop
r:= Sales_Rep (c);
Commission (r) := Commission (r) + Sales (c);

end loop;

in which there appears to be littie opportunity for parallelism, because there is read/write

contention for the 'Commission' array. The potential parallelism can only be exploited after

separating the 'Sales_Rep' and 'Commission' processes, an option involving a series of several

transformations by an optimising compiler, and not likely to be discovered.

For an optimising compiler to deal with events that don't have for loops, the event read loop

would have to be made explicit. This could be captured by treating a batch of events as an ¿uray

indexed by time. However, to capture the idea of sorting events,'the array would need to be

multi-dimensional, indexed both by time and by master file keys. Sorting would correspond to

transposition of this array, or equivalently, to dynamically altering its mapping onto storage.

[Bacon et al. L994, Section 7.1] discusses the optimal mapping of arrays, a problem that is NP-
complete even in the static case. fAguilar 19961 also suggests some novel approaches for
mapping tasks to processors based on neu¡a-l nets, genetic algorithms and simulated annealing.

In short, although it would be possible to express a batch system in a way that could be

optimised using established compiler technology, it would be unreasonable to expect any

compiler to find the necessary sequence of steps.

Equally disappointingly, the existing work on parallel databases is not useful here either.

[Weikum 1995] gives a useful recent review. The work either concerns scientific array-based

problems, e.g., lThakur et aI. 19961, or database management systems, which focus on

satisfying arbitrary queries. Essentially, a database management system is a server for one or

more unpredictable clients, e.g., [Kwong & Majumdar 1996]. Since the precedence relations

within update transactions are invisible to the server, the onus is on the clients to issue sub-

transactions that can be executed in parallel, e.g., [DeVirmis & Ulusoy 1996]. The database

management system must resort to data placement strategies based on static relationships

between data objects, e.g., [Taniar 1998] and on dynamic load balancing between processors,

e.g., [Taniar & Yang 1998]. In this thesis, we assume on the contrary that all possible queries

and updates are known at the start of the design process.
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Before discussing how independence should be analysed in the context of the thesis, the next
two sections discuss some further properties of independent access algorithms, which were not
explored in Chapter 3.

5.1 The Treatment of Nested Loops

Chapter 2 illustrated the use of loops in the specification of the 'Audit' event. A similar event
to audit the number of enrolments in each class of the Student Records system, shown in
Example 5.1.1, is a second example of a specification with a loop. Its aim is to check that the

number of enrolments in each row of the 'En¡olled' array equals the corresponding value of
'Size'. If it does not, a 'Bad-Size' event is sent to an externally defined 'Error_Report'
system, which can be assumed to display a suitable message to the user.

with Error_Report;
generrc

type student is private;
type class is private;

package Student_Records is
procedure Audit;

end Student_Records;
package body Student_Records is

Enrolled: array (class, student) of boolean;= (others => (others => false));
Size : array (class) of natural :- (others => 0);
procedure Audit is

Count : array (class) of natural :- (others -> 0);
begin

all c in class loop
all s in student loop

if Enrolled(c, s) then
Count(c) := Count(c) + 1;

end if;
end loop;
if Count(c) /= Size(c) then

Error_Report.B ad_Size (c) ;
end if;

end loop;
end Audit;

end Student_Records;

Exnuple 5.1. I: Cg¡crINc THE INTEGRITY oF CIess SIZES

The specification contains two nested all loops. The outer loop can be executed in parallel

by independent processes, but the inner loop shares the use of 'Count(c)'. As explained in
Section 2.6.4, the assignment to 'Count(c)' is a convention for a reduction operation.

(There is a separate element of 'Count' for each class. The convention for reduction given in
Section 2.6.4 requires 'Count' to be initialised in its declaration. With sequential execution of
the outer loop of Example 5.1.1, it would be possible for 'Count' to be a simple variable,
provided it is re-initialised on each iteration. However, the all loop allows its iterations to

111



Independence

proceed in parallel, so that its initialisations, increments, and inspections would occur
unpredictably.)

Example 2.5.3a-b showed an example of modelling independent processes in a library
system. Where there a¡e nested loops, as in the example of Example 5.1.1, they may be

modelled by nested levels of enclosing packages, or shells within shells. Example 5.1.2 shows
the resulting model. The outer shell represents the whole system. It encloses an instance of
'Student-Records-Class' for every value of 'class'. An 'Audit' event sent to the outer sheli
causes an 'Audit' event to be sent to each instance of 'student_Records_Class', in parallel. In
turn, the 'Audit' procedure in each 'Student_Records Class' instance invokes an instance of the
'Audit' procedure in 'Student-Records_Class_Student' for each vaiue of 'student'. There is a

separateinstanceof 'Count' for each'class'. The abstraction is similar to the treatment of the
library 'Audit' event in Example 2.5.3a-b.

package body Student_Records is
array (class) of package Student_Records Class is

p
end

rocedure Audit;
Student_Records_Class ;

package body Student_Records_Class is
Size : natural := 0;
array (student) of package Student_Records_Class_Student is

procedure Audit (Count : in out natural);
end S tudent_Records_Class_Student;
package body Student_Records_ Class Student is

Enroiled : boolean := false;
procedure Audit (Count : in out natural) is
begin

if Enrolled then
Count := Count + 1;

end if;
end Audit;

end S tudent_Records_Class_Student;
procedure Audit (c: class) is

Count : natural := 0;
begin

all s in student loop
S tudent_Records_Class_Student(s).Audit(Count) ;

end loop;
if Count /= Size then

Enor_Report.B ad_Size(c) ;

end if;
end Audit;

end Student_Records_Class ;
procedure Audit is
begin

all c in class loop
Student_Records_Class (c).Audit(c) ;

end loop;
end Audit;

end Student_Records;

Exeuple 5.T.2: PRoCESS SppcmTcRTIoNS FoR CHEcKING CLASS SIzes
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5.2 Updating Multiple Elements

Consider the simple accounting system of Example 5.2.I, whose 'Transfer' procedure
models an event where some money ('Amount') is moved between the accounts 'From' and
'To'.

generic
type account is private;
type money is range <>;

package Accounting is
procedure Transfer (From, To: account; Amount : money);

end Accounting;
package body Accounting is

Balance : array (account) of money :- (others => 0);
procedure Transfer (From, To: account; Amount : money) is
begin

Balance(From) := Balance(From) - Amount;
Balance(To) := Balance(To) + Amount;

end Transfer;
end Accounting;

EXAMPLE 5.2. T : A TneNsncTIoN BETWEEN Two ACCOUNTS

package body Accounting is
array (account) of package Accounting_Account is

procedure Transfer_l (Amount : money);
procedure Transfer_2 (Amount : money);

end Accounting_Account;
package body Accounting_Account is

Balance : money := 0;
procedure Transfer_l (Amount : money) is
begin

Balance := Balance - amount;
end Transfer_l;
procedure Transfer_2 (Amount : money) is
begin

Balance := Balance + Amount;
end Transfer_2;

end Accounting_Account;
procedure Transfer (From, To: account;Amount : money) is
begin

Accounting_Account(From). Transfer_ 1 (Amount) ;
Acc ounting_Acc ount(To). Transfer_2 (Amount) ;

end Transfer;
end Accounting;

EXEUPIP 5.2.2: COI¿POTVSNTS OF A TRANSAcTIoN BETwEEN Two AccoTINTS

In this example, the two accounts are updated independently, and it does not matter in what
order the assignments are done. Provided the value of 'Amount' is transmitted to both the 'To'
and the 'From' processes, parallel or sequential updating is possible, as shown in Example
5.2.2. The distributo¡ would need to pre-process each event record to create two calls: one for
each account involved. In the unlikely case that 'From' and 'To' are the same account, the

atomic natures of 'Transfer-l'and Transfer-2'ensure they are executed serially, so that
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'Transfer' causes no change in 'Balance', which is correct. Further, provided the delayed
procedure calls are time-stamped properly, they must also be executed in the specified order.

The possibility of the distributor making multiple calls was not discussed in Chapter 3. It
might even make an unpredictable number of calls. The example of Example 5.2.1 may be

extended to a more general case where a list of accounts must be updated, as when posting a

complex joumal entry. The distributor process would then have to generate a call for each

account in the list. Although several accounts are involved, their processing remains

independent.

generic
type account is private;
type money is range <>;

package Accounting is
procedure Safe_Transfer (From, To: account; Amount : money);

end Accounting;
package body Accounting is

Balance : array (account) of money :- (others -> 0);
procedure Safe_Transfer (From, To: account; Amount : money) is
begin

if Balance(From) >= Amount then
Balance(From) := Balance(From) - Amount;
Balance(To) := Balance(To) + Amount;

end if;
end Safe_Transfer ;

end Accounting;

EXAMPLE 5.2.3: A .SAFE' TRANSACTION BETWEEN Two ACCOUNTS

Now consider a version of Example 5.2.1 when a money transfer is valid only if the 'From'
account would not become overdrawn, as specif,red in Example 5.2.3. Such a specihcation has

no parallel implementation because the value of 'Balance(From)' must be inspected before
'Balance(To)' can be updated. In other words, 'Balance(To)' now depends on

Balance(From)'. The various 'Balance' processes are no longer independent, and cannot lag

one another. Although for a particular transfer, 'Balance(To)' can lag 'Balance(From)', a

second transfer might reverse the roles of the two accounts. For example, the first transfer
might be from 'Smith' to 'Jones', but the second might from 'Jones' to 'Smith'. No partial
ordering can be exploited, because transfers can occur between any pair of accounts in either
direction.

Example 5.2.4 shows the effect of trying to make a parallel implementation of Example 5 .2 .3 .

It needs to call two procedures, 'Find-Balance' and 'Debit', in the 'From' component. It does

not fit the independent update model of Section 3.1 because it has two distributor and collector
stages. Two stages cannot be allowed by independent update algorithms, because it would be

possible for some other 'Debit' event to change the value of 'Balance(From)' between the two
stages. This might decrease the value of 'Balance' to a point where the second stage would
cause the 'From' account to become overdrawn. The only way to ensure safety is to make the

shell procedure appeæ atomic by using a locking protocol. This in turn could lead to deadlock

- for example, if two concurrent events involved the same two accounts with reversed roles.
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This would be moving along way from the independent access model of Section 3.1. The
constraints on an update shell are rigid: the generation of a set of remote procedure calls to one
or more element updates, sometimes followed by collecting the returned values. Since the
properties of the update algorithms define independence, we have to say that the different
accounts are not independent.

generic
type account is private;
type money is range <>;

package Accounting is
procedure Safe_Transfer (From, To: account; Amount : money);

end Accounting;
package body Accounting is

array (account) of package Accounting_Account is
procedure Find Balance (Balance : out money);
procedure Debit (Amount : money);
procedure Credit (Amount : money);

end Accounting_Account;
package body Accounting_Account is

Balance: money:= 0;
procedure Find Balance (Bal : out money) is
begin

Bal := Balance;
end Find Balance;
procedure Debit (Amount : money) is
begin

Balance := Balance - Amount;
end Debit;
procedure Credit (Amount : money) is
begin

Balance := Balance + Amount;
end Credit'

end Accounting-Account;
procedure Safe_Transfer (From, To: account; Amount : money) is

Balance: money:= 0;
begin

Accounting_Account(From).Find Balance (Balance) ;
if Balance >= Amount then

Accounting_Account(From).Debi(Amount) ;

Acc ounting_Acc ount(To). Credit(Amount) ;
end if;

end Safe_Transfer ;

end Accounting;

ExevlpLe 5.2.4: AN ArreNlPT To PnRaTIpIISE A .SAFE, TRANSAcTIoN

Does the example of Example 5.2.4 mean that any form of dependence between two accounts

prevents parallelism? Certainly not. Example 5.2.5 shows a counter-example. In this
modified form of the problem, instead of requiring that the 'From' account does not become
overdrawn,wemerelyrequirethatbothaccounts are'Authorised'. In this case, not only does

the updating of the 'To' account depend on the 'From' account, but the updating of the 'From'
account depends on the 'To' account.
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generic
type account is private;
type money is range <>;

package Accounting is
procedure Careful_Transfer (From, To: account; Amount : money);

end Accounting;
package body Accounting is

Authorised : array (account) of boolean 1= (others => false);
Balance : array (account) of money :- (others => 0);
procedure Carefui_Transfer (From, To: account; Amount : money) is
begin

if Authorised(From) and Authorised(To) then
Balance(From) := Balance(From) - Amount;
Balance(To) := Balance(To) + Amount;

end if;
end Careful_Transfer;

end Accounting;

EXAMPLE 5.2.5 : A .C¡R¡¡.uL' TRANSAcTIoN BnTw¡eN Two ACCoUNTS

package body Accounting is
package Accounting_A is

procedure Careful_Transfer (From, To: account; Amount : money);
end Accounting_A;
package body Accounting_A is

array (account) of package Accounting_A_Account is
procedure Find_Authorised (Auth: out booiean);

end Accounting_A_Account;
package body Accounting_A_Account is

Authorised : boolean := false;
procedure Find_Authorised (Auth: out boolean) is
begin

Auth := Authorised;
end Find_Authorised;

end Accounting_A_Account;
procedure Careful_Transfer (From, To: account; amount : money) is

Authorised_To, Authorised_From : boolean;
begin

Accounting_A_Account(To). Find_Authorised(Authorised_To) ;

Accounting_A_Account(From).Find_Authorised(Authorised_From) ;

if Authorised_To and Authorised From then
Acc ounting_B . Careful_Transfer_From(From) ;

Accounting_B . Careful_Transfer_To (To) ;

end if;
end Careful_Transfer;

end Accounting_A;

Exnupl¡ 5.2.6¡^ THE 1ST CoMPoNENT oF A .CAREFUL, TRANSFER

Despite this double interaction, Example 5.2.6a and Example 5.2.6b show how the

specification of Example 5.2.5 can be implemented by two parallel update processes. The first
update accesses the values of 'Authorised' and the second accesses the values of 'Balance'.

The two processes are separable. The factorisation into two separable processes is analogous to

the library system example of Example 2.5.3, except that, whereas in that case the two
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processes have different domains ('usets' and 'books'), in this case they have the same
domain.

package Accounting_B is
procedure Careful_Transfer_To (To: account; Amount : money);
procedure Careful_Transfer_From (From: account; Amount : money);

end Accounting_B;
package body Accounting_B is

array (account) of package Accounting_B_Account is
procedure Careful_Transfer_To (Amount : money);
p rocedure Careful_Trans fer_From (Amount : money) ;

end Accounting_B_Account;
package body Accounting_B_Account is

Baiance : money := 0;
procedure Careful_Transfer_To (Amount : money) is
begin

Balance := Balance + Amount;
end C areful_Transfer_To ;
procedure Careful_Transfer_From (Amount : money) is
begin

Balance := Balance - Amount;
end Careful_Transfer_From;

end Accounting_B_Account;
Balance : array (account) of money ;= (others => 0);
procedure Careful_Transfer_To (To: account; amount : money) is
begin

Accounting_B_Account(To).Careful_Transfer_To (amount) ;

end Careful_Transfer_To ;

procedure Careful_Transfer_From (From: account; Amount : money) is
begin

Accounting_B_Account(From). Careful_Transfer_From (Amount) ;
end Careful_Transfer_From;

end Accounting_B;
procedure Careful_Transfer (From, To: account; Amount : money) is
begin

Accounting_A.Careful_Transfer (From, To, Amount) ;

end Careful_Transfer;
end Accounting;

ExeupI¡ 5.2.6s: TTre 2No CovTpoN¡NT oF A .CAREFUL' 
TRANSFER

These examples show how pre-processing and post-processing in the update shell can

increase the power of a set of independent processes, either by directing messages sent to them,
by coordinating their access to a shared variable, or by containing some part of an event
procedure that requires access to more than one element. The existence of the shell also means

that a process does not need to know whether a second process to which it sends an output uses

independent access. The output may always be safely sent to its enclosing shell.

5.3 Showing Independence on State Dependence Graphs

Although SDG's have proved adequate for associating processes with sets of attributes, they
have not yet thrown any light on the question of independence. This is because their vertices
have represented whole arrays, rather than single elements. The solution is draw a vertex for

TT7



Independence

each element. Unfortunately, realistic problems involve arrays with many elements, so the

resulting graphs would be too iarge for practical use. But by pretending that domains have very
few elements (e.g., 2 or 3), it becomes possible to draw and understand SDG's that have a
vertex for every element. Figure 5.3.1 models the 'Audit' event of Example 5. 1 . 1 , in the case

that there arc two classes and two students. The vertices 's(1)' and 's(2)' represent the two
different definitions of 's' that occur in the two iterations of the body of its outer loop. (This is
a case where it is impossible to ignore the distinction between a variable and its definitions.
Each iteration of the outer loop body involves a separate definition of 's'.)

FIGURE 5.3. 1 : MOoeII-TNG PARALLELISM

Figure 5.3.1 does not show what might be expected. It suggests that 'Enrolled' and 'Count'
could be allocated to separate processes, whereas the implementation modelled in Example

5.1.2 combines them into a single process. Indeed, it is possible to separate them, with the

'Enrolled' process making delayed calls to a procedure in the 'Count' process that contains the

simple assignment 'Count(c):=Count(c)+1'. The truth is, that is exactly how the parallel

implementation of Section 3.5 works: partial sums are forwarded to a collector process; the

'Count' process is the collector process.

It is interesting to conffast the SDG's shown in Figure 5.3.2, Figure 5.3.3, and Figure 5.3 .4

for the three different transactions between accounts that were specified in Example 5.2.I,
Example 5.2.3, and Example 5.2.4. Note especially the dependences between the elements of
'Balance'.

Size
(l)

(1,'b)
Count
(l)

(2,'a') Count
(2)

Size
(l)

Size
(2)
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FICURE 5.3.2: THE.TRANSFER, SDG

FTCURp 5.3.3: T¡Tg .SRFE TneNsrER, SDG

FIGURE 5,3.4: THe .CaREFUL TRANSFER' SDG

In Figure 5.3.2, each 'Balance' element is independent of the others. In Figure 5.3.3, each

'Balance' depends on all the others. (This arises because the value of 'Balance(To)' depends

on 'Balance(From)', and we assume that 'To' and 'From' can have any of the values I, 2, or
3.) In Figure 5.3.4, although there a¡e dependences between accounts - because for example,
'Balance(From)' depends on 'Authorised(To)' 

- there are no dependences between the

elements of 'Balance' or between the elements of 'Authorised'. Figure 5.3.2 allows parallel or
sequential access because the balances are independent. Figure 5.3.3 does not, because the

balances are strongly connected. Figure 5.3.4 allows parallel access provided that the

'Authorised' and 'Balance' arrays are accessed in separate processes. In this example, the

shells enclosing the parallel 'Authorised' and 'Balance' processes allow the delayed calls to be

switched between different accounts. Without this intervening switching network, the

from

amount

ised(1

from Author-
ised(2)

Author-

amount
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parallelism would be impossible, exactþ as in the case of the library system of Figure 1.4.1
(Page 6).

Analysing independence is therefore a simple extension of earlier principles. In Figure 5.3.3,
the elements of 'Balance' are strongly connected, so they form one separable process. In
Figure 5.3.2 and Figure 5.3.4 they are unconnected, so they may be processed independently.

Suppose, in a modification of the specification of Example 5.2.4, the values of 'Authorised'
also depended on 'Balance', perhaps because of the requirements of some new event, e.g., a
periodic check to 'de-authorise' accounts whose balances have exceeded their budget. Then the
SDG for a system that could implement both requirements would contain edges connecting each

element 'Balance' to the corresponding element of 'Authorised', as in Figure 5.3.5. These
edges would create cycles, the 'Balance' and 'Authorised' processes would no longer be

separable. But worse still, because of the cross connections between accounts made by the
edges from 'Authorised' to 'Balance', all the 'Authorised' and 'Balance' elements would be

strongly connected; they would belong to one minimal separable process, therefore their
independence would be destroyed too.

FIGURE 5.3.5: .CARET.UL TR¡Ns¡eR, PLUS BUDGET CugcTINc

5.4 Compatibility and Conflict

Given the text of an event procedure, how can it be decided when it has independent com-
ponents? Independence is possible when the elements of a single array in an SDG are

unconnected. In general, a process can update several arrays using independent access, even if
elements from different anays are connected, provided that the sets of elements for each index
are not connected to one another. This was the case for the 'Size' and 'Quota' arrays in
Example 4.9.I, where each 'class' can be processed independently. The subgraphs of the

dependence diagram for each 'class' are independent. As in this example, if the elements of
two or more arays allow independent access when they share the same process, the arrays will
be said to 'agree' or to be 'compatible'. In terms of an implementation, it will usually pay to
store the attributes they model in the same file or table and access them in one hit.

from

amount
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Example 4.9.1 also illustrated limíted independence involving the 'Enrolled' array" In this
case, the 'Enrolled'array could be accessed independently by 'class', but not by 'student'.
Compatibility is not all or nothing. The 'Enrolled' affay may be said to be 'many-one
compatible' with the 'Size' and 'Quota' arrays, or more accurately, 'compatible with respect to
class' .

We have seen that the strong components of an SDG determine the separable processes of an

implementation. Where two separable processes are connected by a path, the direction of the
path determines the direction of data flow, and the order in which the processes may be

executed. But when there is no directed path between two processes, they are independent.
The two processes could be executed in either order, or concurrently. However, we would not
say that the two processes were 'compatible' unless they accessed files or arrays with related
domains, because one sequential or parallel update can only deal with hierarchically related
domains. We would expect unrelated domains to be updated by separate processes.

The notion of compatibility serves two purposes. First, if several anays are accessed within
the same process, their compatibilities determine its maximum degree of parallel or sequential
access. Second, if two processes are compatible with each other, it may pay to combine them
into a singie 'composite' process. There are two reasons why composing them is almost certain
to improve the efficiency of the implementation. First, it may eliminate the overheads of a

queue connecting the processes. Second, provided the attributes they access are stored in the

same file or table, they may be accessed by only one retrieval. In contrast, combining two
incompatible processes would destroy an opportunity for parallel or sequential access.

Partial compatibility is an intermediate case. Combining two partially compatible processes

would pay in a parallel implementation - unless the number of elements of their common
domain were fewer than the number of physical processors. But it would not usually pay in a
sequential implementation, because it would introduce (clustered) random access to at least one

table. Therefore, the optimisation of a system for parallel access differs slightly from its
optimisation for sequential access.

A simple lexical rule that makes it possible to recognise compatibility between two variables is

that they have the same index values in the text of the event procedure; e.g., in the assignment
'A(j):=B()', 'A(i)' is compatible with 'B(i)'. Where the variables have different numbers of
indices, the common elements determine their degree of compatibility. For example, if i' is of
type 'T', 'C(ij,k)' and 'D(i,n)' are partially compatible with respect to T.

It is important to be sure that the values of the indices are the same in each of their uses, e.g.,
that J' has the same value in 'AO' as it does in 'BO'. For simplicity, variables may be con-

sidered to agree only if the indices concerned are constant - e.g., given by input par¿rmeters of
the procedure, or are defined by an all loop. This rule is 'safe'; conflicting variables will never
be considered to be compatible, but some pairs of compatible variables may be overlooked.

(It would be more general to test whether indices had equal values, rather than equal names.
However, this would mean interpreting the values of expressions, which is not consistent with
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the variable-oriented approach to dependence discussed in Section 4.5. It would be more

general still to detect when elements were accessed in one-to-one correspondence, as in 'A() :=

B(j+l)'. This is an important topic in the optimisation of parallel algorithms [Chandy & Misra
19881, but is not discussed here. Identifiers used in databases are often assigned to objects

rather arbitrarily, and rarely have any useful arithmetic properties.)

However, even elements that have different indices may have compatibility of a kind, as

illustrated by Example 5.2.2, where 'Balance(To)' and 'Balance(From)' may be accessed in
parallel. The essential point is that if an assignment of the form 'Balance(To) :=

Balance(From)' had been present, it would have destroyed the compatibility. Compatibility is

therefore the absence of conflict. Conflict arises because of a dependence between variables

having different indices. These cases give the following rules:

If two arrays 'A' and 'B' have domains (D,E,F) and (D,E,G,H), 'A' and'B' are

compatible at most with respect to (D,E).

If variable 'A(ij,k)' depends on'B(ij,m,n)' then'A' and'B' are compatible atmostwith
respect to the domain of '(ij)'.

(These rules are easily generalised to any number of indices. In the case of simple va¡iables,

which have no indices, two simple variables are compatible, and a simple variable is compatible

one-to-many with any indexed variable.)

If there are several compatibilities established by Rules L and 2, their smallest domain should

be chosen, e.g., two arrays 'A' and 'B' are compatible (maximally) with respect to (D,E),
provided they agree at most with respect to (D,E), but a¡e nowhere compatible only with respect

to (D) alone.

If anay'A'hasdomain(D,F)and'B'has domain (E,F), 'A'and'B' are considered here to

conflict, not be partiatly compatible with respect to 'F'. This supposes that a physical imple-

mentation of 'A' will be primarily clustered according to 'D' and the physical implementation of
'B' will be primarily clustered according to 'E'. To make 'A' and 'B' partially compatible, their

domains would have to be specified as '(F,D)' and '(F,E)' instead.

Choosing the best domain hierarchy is part of the specification problem. Thus if the

'Enrolled' array of Example 5.1.1 had been declared with the basis '(student, class)' rather than

'(class, student)', it would have destroyed the parallelism by 'class' that was exploited in
Example 5.L2. In the case of sequential access, it is the coûrmon prefix that counts, because

that coruesponds to the sorted order of the master files; in the case of parallel access, it is

necessary to decide how they will be mapped to processors. 'We may assume without loss of
generality that the mapping is indicated by the order of the domains, so the same rule applies.

It is important to treat local variables carefully. Because each invocation of an event

procedure creates new temporary instances of its local variables, they enjoy a freedom not given

to state variables. Consider the sequence of Example 5.4.1.
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begin
t:= A(i);
B(i) := t;

end;

EXAMPLE 5.4,I: IMPLICIT AGREEMENT

If 't' is a local variabie, it is compatible with both 'A(i)' and 'B(i)'. The effect would be

exactly the same if 't' was declared as an array, and both occurrences of 't' were replaced by
't(i)', as in Example 5.4.2.

begin
t(i) := A(i);
B(i) := t(i);

end;

Ex¿,rr¿pl¡ 5.4.2: Expr-rcrr AGREEMENT

Compatibility is not transitive. In the sequence of Example 5.4.3, 't' is compatible with
'A(i)' or 'B(j)' separately, but it cannot be compatible with both at once.

begin
t:= A(i)l
B() := t;

end;

Exevplg 5.4.3: AN AGREEMENT CoNn-Tcr

Unfortunately, it is not possible to deal with these last two situations well whiie using a

definition of dependence that is based on names rather than dehnitions of variables. For the

present, the reader may either rely on common sense, or may consider all four assignments in
Example5.4.1 andExample 5.4.3 to conflict. In the case of Example 5.4.L, the specification
should be rewritten as in Example 5.4.2. Example 5.4.3 may be rewritten either as Example

5.4.4 or Example 5.4.5. In one case 't' conflicts with 'A', and in the other 't' conflicts with
rB'.

begin
tO := A(i);
B(j) := t();

end;

Ex¡lvtplg 5.4.4: CoNrucr wITH'A'

begin
t(i) := A(i);
BO := ¡(i);

end;

EXAMPLE 5.4.5: CoNFLICT'WITH .B'

With this simplified view of compatibility, like dependence, it becomes a pseudo-transitive

relationship. Conversely, Example 5.4.6 shows rhat confliu is intransitive; 't' conflicts both
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with'A'andwith'B', although'A'and'B'agree- they share the same domain, and there is
no dependence between them.

begin

end;

ExaupI¡ 5.4.6: UN¡IRgcT¡D INTRANSITIVITY oF CoNFLICT

begin
t(i) := A(j);
B() := t(i);

end;

EXeN¿pI-s 5.4.7 : DIRECTED Pspuoo-TnANSITIVITY oF CoNFLIcT

Howevet, considered as a directed property based on dependence, even conflict behaves

pseudo-transitively. InExample 5.4.7 there is a conflict from'A' to 't', and a second conflict
from 't' to 'B'. In the sense that they could not be accessed by the same set of independent
processes,'A'and'B'conflict. Anyproposed {A,B} process wouldbe strongly connectedto
the 't'process, so that the {A,B} and't'processes could not be separated. The resulting

{A,B,t} process would allow no independence, because 'A' and 'B' conflict with 't'.

5.5 Showing Compatibility Information in Graphs

Several examples have shown that it is cumbersome to draw SDG's even when each domain
is limited to contain only 2 or 3 elements. It is more convenient to draw SDG's whose vertices
represent entire arrays, and then label them with compatibility information. Two new
conventions make it possible for a system designer to construct labelled SDG's directly from
the texts of event procedures.

The first convention is to colour the vertices according to their domains. If two vertices have

the same colour, they have the same domain, and potentially agree. Two vertices with different
colours certainly conflict. This scheme has the minor drawback that it does not explicitly show
many-one, or partial, agreement. Thus, in interpreting a graph, the viewer may have to
remember, for example, that the grey vertices are many-one compatible with the black vertices.
In practice, little such information needs to be remembered, and the convention of assigning
colours to domains works well.

Apart from those between domains, conflicts also arise from dependences between variables.
Even two arrays with the same domain may conflict, as in the assignment 'A(i) := Bc)', where
'i' and 'j' have the same domain. Dependences are represented by edges in the SDG. The

second convention is to ma¡k edges with a cross if they cause a conflict, and leave them
unmarked if they don't. However, to prevent visual clutter, edges that join differently coloured
vertices are left unma¡ked. In other words, a cross means that a conflict exists between

compatible domains. When two domains have a many-one agreement (e.g., between '(Class,

AO := t(i)
BO := t(i)
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Student)' and 'Class'), the same basic rule applies. An edge joining them is marked only if it
destroys the many-one agreement. If there are several dependences between two vertices, only
one edge is drawn; but if any of tbe dependences conflicts, it must be marked.

(It is possible to find intermediate situations, as in the assignment 'A(ij) := B(i,k),, where J'
and 'k' share the same domain. Here, the edge to 'A' from 'B' would need to be marked by a
cross, and some additional footnote might need to be added to the graph to make it clea¡ that ,A'

and 'B' still agree partially with respect to the domain of i'. Such situations a¡e rare enough in
practice for this to be a minor notational problem.)

Finally, we must take care when drawing a transitive reduction of an SDG that we do not omit
edges that convey essential conflict information. For example, the following assignments could
arise separately in th¡ee different events; 'A(i):=B(i)', 'B(i):=c(i)', and .A(i):= c0),.
Ordinarily, an SDG would not need to show an edge from 'C' to 'A' as there is also a path
from 'C' to 'A' via 'B'. However, the edge would need to be drawn to record the conflict
between 'A' and 'C'. As a special case, it may even be necessary to draw a loop on a vertex, as
in the assignment 'A(i) := A(i)'.

Despite these caveats, the annotated SDG's for the earlier examples are easy to understand.
Figure 5.5.1 shows the simplification of Figure 5.3. 1. None of its edges are marked because
all the dependences agree as far as they can. For example, the edge from 'Enrolled' to 'Count'
is many-one, and agrees partially with respect to 'class'.

(Class,Student)

l--l lctass¡

I No inae*

FIGURE 5.5.1: AUDITING CLASS SIZES

Figure 5.5.2 is the simplification of Figure 5.3.2, which describes the unconditional transfer
of an amount between two accounts. There are no conflicts due to dependences. This should
be contrasted with Figure 5.5.3 (which is the simplification of Figure 5.3.3), showing the SDG
of a conditional transfer. The graph includes a loop on 'Balance'. The loop is marked, to show
the dependence of 'Balance(To)' on 'Balance(From)', which destroys the opportunity for
independent access.

Size

Bad
Size

Count
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FICURE 5.5.2: TTTS.TR¡.NSFER, SDG
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fl No inoex

FIGURE 5.5.3: THp .Se¡E TRANSFER' SDG

Figure 5.5.4 is a simplification of Figure 5.3.4, and shows the case where a transfer is

possible only between authorised accounts. The edge from 'Authorised' to 'Balance' is ma¡ked

to show the conflicting dependences. The 'Authorised' and 'Balance' processes are separable,

and both processes may use independent access. The conflicting dependences are handled by
the queuing network. Recalling Example 5.2.5, the shell enclosing the 'Authorised' process

instances is responsible for collating their outputs, and forwarding a single delayed call to ttre
'Balance' shell. The 'Balance' shell is responsible for splitting this call into two. However, if
a single process were to access both 'Authorised' and 'Balance', it would contain the

conflicting dependence, and would need to use random access.

(Account)

No index

FIGURE 5.5.4: Tgp .CRR¡FUL TRANSFER' SDG

Balance

amount
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amount
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FTCUR¡ 5.5.5: .C¿.REFUL 
TRANSFER, AND Buocer CugcrrNc

Figure 5.5.4 must be contrasted with Figure 5.5.5, which shows the effect of adding the

budget checking event to the specification. Because of the two-way dependence between
'Authorised' and 'Balance', they must be assigned to the same minimal process. Independence
by 'Account' is now impossible, because the minimal process contains a marked edge.

5.6 Recursive Structures

Figure 5.3.3 showed a case where there are no directed paths between the elements of an

array (i.e., 'Balance'), and Figure 5.3.4 showed a case where they are totally connected. The
total connectivity arose because we assumed that all accounts are equal: a transfer may occur
from any account to any other account. Are there any cases intermediate between independence
and total connectivity? Possible candidates are graphs whose vertices are not totally connected,
and which are either cyclic or acyclic. The cyclic cases may be reduced to acyclic cases by
considering their reduced strong component graphs, i.e., the vertices forming each strong
component are clustered together, resulting in an acyclic graph of clusters. The resulting
clusters represent minimal separable processes. The clusters therefore form some kind of
paftial ordering, and have at least one topological sort. It should therefore be possible to
process the clusters in topological orde¡.

Are there any real-world problems that have this characteristic? At least two: one is the 'Bill
of Materials Problem', a second is the 'Chart of Accounts Problem'. They prove to be outside
the scope of the Canonical Decomposition Method. Nonetheless, they are worth a brief
discussion as a footnote to this chapter.

The Bill of Materials Problem is really a set of problems that involve products assembled from
parts. Each 'final assembly' is assembled from several 'sub-assemblies'. Each subassembly is

assembled from lower-level sub-assemblies or from 'basic parts'. Basic parts arc manufactured
or purchased, not assembled. Consider an ordinary pair of spectacles. They are structured as

in Figure 5.6.1, where the labeis on the edges indicate the numbers of parts required, e.g.,
there are 4 screws altogether. (The screws that clamp the lenses are assumed to be similar to the

screws that hinge the side-frames to the lens mount.) The structure is a Hasse diagram that
defines the ways in which the spectacles may be assembled.
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FIGURE 5.6.1: SrRucruRE oF A PaIR or SPEcTAcLES

A typical Bill of Materials Problem is to compute the number of basic parts needed to
construct a given number of final assemblies, e.g., given the need for i0 pairs of spectacles, to
deduce that 40 screws are required, and so on. This can be done by a downward pass over the
graph. Other problems, such as finding the total cost of materials used, require an upward
pass. Stiil others require a depth first traversal, and so on.

The Chart of Accounts Problem is somewhat simpler. A Profit and Loss Statement or similar
accounting document has major headings such as 'Revenue' and 'Expenditure', which may be

subdivided into categories such as 'Capital' and 'Recurrent', which are in turn subdivided, and

so on, down to basic accounts. The structure is an ordered rooted tree, rather than a general

acyclic graph. Given the balances for the basic accounts, the totals for the major headings may
be computed by an upward pass from the leaves to the root. (A complication in practice is that
the same set of basic accounts may be formed into different trees for different accounting
purposes.)

How do such structures affect system design? Consider the parts requirements problem just
outlined, whete, given a required number of final assembiies, it is desired to find the required
numbers of each sub-assembly and basic part. Since a requirement for a given sub-assembly
generates new requirements for lower level sub-assemblies, a simple-minded specif,rcation of
the problem gives an SDG based on Figure 5.6.1. Since the graph is acyclic, it could become
the basis of an implementation. The problem with any graph based on Figure 5.6.1 is that it is
not compatible with a basic assumption of the Canonical Decomposition Method, that a system
is afixed network of component processes. Any event that changed the parts structure would
require a colresponding dynamic change to the system network. This is outside the scope of
the thesis.
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use Schedule;
type part is private;
package Bill_of_Materials is

procedure Requirements (Required : array (part) of natural);
end B ill_of_Materials ;

package body Bill_ot_Materials is
Uses : array (part, part) of natural ¡= (others => (others => 0));
procedure Requirements (Required : array (part) of naturat) is

Inherited : array (part) of natural ;= (others -> 0);
Generated : array (part) of natural :- (others -> 0);
Done : boolean := false;

begin
all p in part loop

Inherited(p) := Required(p);
end loop;
while not Done loop

Done := true;
all major in part loop

if Inherited(major) > 0 then
Schedule.Requirement(major, Inherited(major));
all minor in part loop

*E:i'iäflåäi#ö?>othen

Generated(minor)+Uses(major, minor)*Inherited(major) ;

Done := false;
end if;

end loop;
end if;

end loop;
all p in part loop

Inherited(p) := Generated(p);
Generated(p) := 0;

end loop;
end loop;

end Requirements;
end B ill_of_Materials ;

ExAMILE 5.6.I: Cel-cullrrNc REeUTREMENTS FoR PARTS

To make progress, it is first necessary to specify the problem in iterative form, as in Example

5.6.1. An outer while loop propagates requirements down one level at each iteration. The

number of times part 'major' incorporates part 'minor' is given by 'Uses(major, minor)', which
may be thought of as a matrix. 'Inherited' contains the requirements from the previous level,
and 'Generated' accumulates the requirements for the next level. The inherited requirements at

each level are sent to the external 'Schedule' package for whatever purpose it needs them. The

number of iterations of its while loop is unpredictable, being determined by the maximum path

length in the parts structure. Likewise, the system topology is determined by the number of
levels in the parts structure and cannot be described by a fixed process network. However, it is
possible to design a fixed network of processes to implement each iteration of the loop body.
Figure 5.6.2 shows the SDG for the first part of the loop body. The final values of 'Generated'

for one iteration become the initial values of 'Inherited' for the next iteration.
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The SDG shows that the values of 'Inherited' may be inspected independently, by part. Each
part that has inherited a non-zero requirement may generate a thread for each part it uses, so the

inspection of each element of 'Uses' may proceed independently too. Finally, the accesses to
'Generated' may also be independent. However, full independence is not possible unless all

three processes are separated. Combining the 'Inherited' and 'Generated' processes to complete
the loop would destroy the independence because there is a data flow from each part to the

components from which it is assembled. This is implied by the marked edge in Figure 5.6.2,
which indicates that the index of 'Generated' and the first index of 'I-Ises' differ, and the

potential many-one agreement is absent. (Considering 'Uses' as a matrix, transposing it would
remove this conflict, but would create a new conflict between 'IJses' and 'Inherited'.)

[.:El eart,PatÐ
(Part)

No index

FlcuR¡ 5.6.2: ONe lrgReuoN oF THE 'REeUIREMENTS' pnocEouR¡

A variation of the procedure of Example 5.6.1 is possible when a parts graph has a f,rxed

number of levels. Each part can be assigned a level number given by the length of the longest
path connecting it to a leaf. This allows the while loop in Example 5.6.1 parts to be unwound
into a fixed number of copies, and the parts data to be partitioned by level. The resulting SDG
then becomes essentially a number of copies of Figure 5.6.2Lud end to end, starting with finat
assemblies and finishing with basic parts. Given this f,rxed partitioning, the processing of the

lower level partitions may lag behind that of the higher leveis by successively increasing
amounts. It becomes possible to mix batches of 'Requirements' events with other kinds of
event and still preserve real time equivalence. A drawback of using fixed levels is that the

resulting process network cannot handle an event that increases the level number of a part. Its
record would have to be moved against the data flow.

In summary, when the dependences between elements form an acyclic graph, it is likely that
the system specification will include events that access the structure recursively or iteratively.
By considering one iteration of such an event in isolation, the methods outlined for simpler
kinds of event may be applied to yield a process graph that allows independent access.

However, since this requires the data to be partitioned into levels, it requires a non-trivial
change to the specif,rcation, which must be assumed to be the responsibility of the specifier.
Consequentiy, this topic will not be discussed further, and acyclic dependences between
elements of an aray will be treated in the same way as cyclic ones.

Schedule Done
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6. Requirements Analysis
The emphasis of this chapter is the interaction between requirements analysis and finding an

efficient system implementation. We have established that every specification has a unique
CPG, which offers a restricted range of possible implementations, none of which may be

particularly eff,rcient. However, it is sometimes possible to change the specification of a

problem so that a different range of solutions results. Surprisingly, this may be possible
without changing the external behaviour of the system. Even when the behaviour of the system
must be changed to find an efficient implementation, the new behaviour may be equally
acceptable to the user. In practice, such negotiation about specifications often takes place

between a systems analyst and a client. The aim of this chapter is to show why such
negotiations are useful.

6.1 An Order-Processing System

A business sells products to customers. An 'Order' is a request from a customer to buy a
certain quantity of a product. The business will send the fult quantity if it can, otherwise
it will send what it has (the 'Stock'). When there is a shortage, it is first-come, f,rrst-

served: the available stock is sent to the first customer to order it. Each customer owes a
'Balance', which must be increased by the value of the items actually delivered, rather

than the value ordered. There is no limit to how much a customer may owe. Orders
made by non-existent customers or for non-existent products must be ignored.

Is there an eff,rcient solution to this problem involving only sorting and sequential access,

avoiding random access?

The first step is to formalise the requirement as a specification, as in Example 6.1.1. The

specification uses two extemal packages: 'Invoice' prints a properly formatted invoice on the

basis of the parameters it is given, and 'Error' displays error diagnostics. In practice, 'Invoice'
will need to access attributes such as customer addresses and product descriptions, and so on,
but these attributes are omitted from the example for the sake of simplicity. The specification
introduces two va¡iables not explicitly mentioned in the informal specif,rcation: 'Authorised',
which indicates whether a given customer identifier is that of a valid account, and 'Offered',
which indicates whether a given product code refers to an actual product that is offered for sale.

These 'existence variables' would probably be implicit in a database, being true for those
primary keys with a corresponding row, and false for those without.

The second step towards a solution is to draw the SDG of Figure 6.1.1. White vertices
represent the attributes of the customer table, and grey vertices represent those of the product
table. Black vertices represent inputs and outputs. However, for simplicity, local variables are

not shown.
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with Error, Invoice;
generic

type customer is private;
type product is private;

package Order_Processing is
subtype money is integer;
procedure Order (Who : customer; What : product; Qty_Ordered : positive);
-- other event specifications

package body Order_Processing is
Authorised: array (customer) of boolean:- (others => false);
Balance : array (customer) of money :- (others => 0);
Offered : array (product) of boolean :- (others => false);
Price : array (product) of money :- (others => 0);
Stock : array (product) of natural :- (others -> 0);
procedure Order (Who : customer;What : product; Qty_Ordered: positive) is

Qty_Delivered : natural := Q;
Vaiue_Ordered: money := 0;

begin
if not Offered (What) then

Error.Product (What);
elsif not Authorised (Who) then

Error.Customer (Who);
else

Value_Ordered := Price (What) * Qty_Ordered;
Qty_Delivered := min (Stock (What), Qty_Ordered);
Invoice.Deiiver (Who, What, Qty_Delivered);
Stock (What) := Stock (What) - Qty_Delivered;
Balance (Who) := Balance (V/ho) + Qty_Delivered x Price (What);

end if;
end Order;
-- other event procedures

end Order_Processing;

Exnuple 6.1.1: Sp¡cmymc AN'ORDER'

Authorised
Error

.Product

Who
Balance

O¡dered
Invoice
,Deliv er

What ck

Offered Error
Customer

FICUR¡ 6.1.1: THE SDG FoR AN Ono¡R

The edges of the graph are drawn as follows:

ary
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There is an edge from 'Who' to 'Authorised' because ''Who' is used to select the customer
row whose existence is tested.

There is an edge from 'What' to 'Offered' because 'What' is used to select the product
row whose existence is tested.

There is an edge from 'Qty Ordered' to 'Stock' because it is typically the amount by
which the stock changes.

There is an edge from 'Qty Ordered' to 'Balance' because it affects the amount by which
the customer's balance changes.

There is an edge from 'Price' to 'Balance', because the change in the customer's balance
depends on the price of the product.

There is an edge from 'Stock' to 'Balance', because the quantity actually sold to the
customer depends on whether there is sufficient stock.

There are edges from 'Stock' and 'Balance' to themselves, because their values after the
order event depend on their own values before.

There are edges from 'Authorised' and 'Offered' to both 'Balance' and 'Stock' because
their values are changed only if the customer and product rows exist.

There is an edge from 'Stock' to 'Invoice.Deliver' because it affects 'Qty Delivered',
which is one of its parameters.

' There are edges from 'Authorised' to 'Error.Product' and from 'offered' to
'Error.Customer', because an error should be reported if either row is missing.

Several edges have been omitted from Figure 6.1.1 because they do not affect its transitive
closure; for example, no edge was drawn from 'Offered' to 'Balance', because there is already
a path via 'Stock'. Figure 6.1.1 is a transitive reduction of the full graph. There are no
conflicts other than those implied by the colours of the vertices.

Input and output vertices carry very little design information. Essentially, all inputs must be
sources, and all outputs must be sinks. However, there is some useful information present, for
example, none of the outputs depends on 'Balance'. This means that it might be possible to
update 'Balance' less frequently than the outputs are produced. For example, invoices might be
produced daily, but balances might only need to be updated once per month. Omitting the input
and output vertices, and the loops on 'Balance' and 'Stock', leads to the much simpler SDG of
Figure 6.1.2.

o

a

a

a

a

a

a

a
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Authorised

B alance

Price

Stock

Offered

FiCUNT 6.T.2: THP SIIT,IPIIFIED SDG

Since Figure 6.1.2 is acyclic, it may also be interpreted as the CPG. Each vertex is a separate

trivial strong component, and represents a minimal process. Vertices in Figure 6.1.2 therefore

map directly to processes that access the database attributes named by their labels. The edges of
Figure 6.L2 map to the queues that carry data between them.

The next problem is to find the best way to cluster the minimal processes into composite

processes, which become the components of the finished design. In this example, the design

domain is assumed to be a batch information system that uses sequential access.

6.2 Process Composition

Combining two processes avoids the cost of transferring data between them, but it may

increase the cost of accessing the database. If two attributes with the same index are accessed

or updated by the same composite process, they can be present in the same row of a table,

which can therefore be accessed once instead of twice. But if they have different indices, they

cannot be present in the same row, and independent access would become impossible.

Attributes with different domains certainly have different indices. It is therefore assumed that

two steps should be combined if they access the same index, but should be kept sepa.rate if thei¡

keys are different. In Figure 6.I.2, it is only useful to combine vertices with the same colour.

Figure 6.2.1 shows how the attributes of Figure 6.L2 can best be grouped. Each ellipse

contains vertices that have the same indices, which allows sequential access.
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Balance

Price

Stock

FICUN¡ 6.2.I: THE BEST GRoupINc oF ATTRIBUTES

FTCURS 6.2.2: THE CoMPoSITE PRoCESS GReprr

Figure 6.2.2 shows the resuiting process graph. The steps implement the following
functions:

Step 1,: The orders are sorted and matched sequentially against the customer table. Any orders

for which the customer row is missing are in er¡or.

Step 2: The orders are sorted and matched sequentially against the product table. If there is no

corresponding row in the table, the order is in error. Otherwise, the quantity delivered is

the lesser of the quantity ordered and the stock, and the stock is decreased accordingly.
The price and quantity delivered are transmitted to the third step.

Step 3: The orders are sorted into customer sequence again, and matched against the customer
table. The customer balances are incremented by the product of price and quantity

delivered.

It is sensibie to ask if Step 1 and Step 3 could be combined, as this would enable the two ac-

cesses of the customer table to be reduced to one. But this is impossible. Step 1 must precede

Step 2; it would be a mistake to decrement the stock in response to an order for an unauthorised

customer. Likewise, Step 2 must precede Step 3, as the change in a customer's balance

depends on the stock of the product. Combining Steps 1 and 3 would result in a composite

process that would have to simultaneously precede and follow Step 2, which is clearly

impossible. It would create a cyclic pipe-line between processes, contrary to the Data Flow
Theorem.

Provided they are only accessed by the processes to which they are assigned, it does not

matter whether or not attributes with a com.mon key belong to the same table. In this example,
'Authorised' and 'Balance' could be held in two separate tables, or in a single table. The issue
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is a minor space-time trade-off. Keeping the attributes in sepffate tables means that the
'customer' keys must be stored twice. Placing them in the same table means that, although the
keys are stored only once, 'Balance' has to be retrieved uselessly in the first process, and
'Authorised' has to be retrieved uselessly in the third process.

6.3 Adding Other Kinds of Event

with Error, Invoice;
generic

type customer is private;
type product is private;

package Order_Processing is
subtype money is integer;
procedure Open (Who : customer);
procedure Close (Who : customer);
procedure Pay (V/ho : customer; Amount : money);
-- other event specifications

package body Order_Processing is
Authorised: array (customer) of boolean:- (others => false);
Balance : array (customer) of money :- (others => 0);
Offered : array (product) of boolean :- (others => false);
Price : array (product) of money :- (others => 0);
Stock : array (product) of natural ;= (others => 0);
procedure Open (Who: customer) is
begin

if not Authorised (Who) then
Authorised (Who) := true;
Balance (Who) := 0;

end if;
end Open;

procedure Close (Who : customer) is
begin

if not Balance (Who) /= 0 then
Authorised (Who) := false;

end if;
end Close;
procedure Pay (Who : customer; Amount: money) is
begin

if Authorised (V/ho) then
Balance (Who) := Balance (V/ho) - Amount;

end if;
end Close;
-- other event procedures

end Order_Processing;

Exevplp 6.3.1: SPECIFYING .OPEN' .CLOSE, AND .PAY, EVENTS

A real-life order processing system should provide for many kinds of event. It should be able
to open new customer accounts, close them, change names and addresses, accept payments,
add or remove products, adjust their prices, and record their deliveries. These events may be

analysed in the same way as the order event, and their new dependences must be added to the
existing SDG; a system design must simultaneously provide data flows for all the kinds of
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event. As examples, Example 6.3.1 shows the specifications of the 'Open', 'Close' and 'Pay'
events.

The 'Open' and 'Pay' events (and some other possibie events, not specified in Example
6.3.1) involve dependences (e.g., to'Baiance'from'Authorised') that are already present in
Figure 6.I.2, so the design suggested by Figure 6.2.2 can handle all of them without
modification. It turns out that only one kind of event causes a new constraint, and that is the
'Close' event. Because of the common-sense rule that the account should be left open if the
customer's balance is non-zero, the new value of 'Authorised' depends on the existing value of
'Balance', as shown in Figure 6.3.I. Adding this dependence to the graph of Figure 6.1.2
results in the graph of Figure 6.3.2, which has a strong component comprising 'Authorised',
'Balance' and 'Stock', i.e., there is a directed path between any pair of them.

Authorised
B alance

Itice o

o
o Stock

Offered

FICURS 6.3.I: A DEPENDENCE DUE To .CLoSE, 
EVENTS

Authorised
B alance

flice

Stock

Offered

FIGURE 6.3.2: A CYCLE DUE TO 'CLOSE' EVENTS

Since the all the vertices of a strongly-connected component form one separable process, the

CPG must group the vertices as shown in Figure 6.3.3.
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Stock

Balanee

Offered
, ,,,'4,

FIcuRe 6.3,3: S¡peResLE PRoCESSES wITH .CLoSE' EvENTS

There are now only three separable processes; 'Authorised', 'Balance' and 'Stock' must be

accessed in the same one. This is easy to understand. If they had been accessed in separate

steps, no one step could precede either of the others in the data flow. So all three attributes
must be accessed at the same time. Because this composite process involves attributes with
different keys, it cannot use sequential access, and must use less effrcient random access. (If
the events were sorted into the order of the rows of one table to avoid one random access, this
would scramble the sequence of events affecting a given row of the other tabie.) The presence

of a cycle in the SDG is ha¡mless in itself; it is the fact that the cycle involves attributes with
different domains that causes the problem.

'Offered' and 'Price' could be accessed sequentially, in a step preceding the random access of
the other three attributes. But this would actually be an inferior design. Since the random-
access process must access the same rows of the product table to update 'Stock', it can access

'Offered' and 'Price' at the same time at no additional cost. So the best design is a single
random-access step. The cycle introduced by the 'Close' event completely invalidates the

efficient sequential access design of Figure 6.2.2.

(This analysis does not exclude the possibility that 'Authorised' and 'Balance' are stored

remotely from 'Stock'. It means that the processes that access them have to be closely coupled.
Neither does it exclude parallelism, provided that a suitable locking protocol is enforced.)

6,4 Avoiding Data-Dependence Cycles

Given the order of magnitude difference in efficiency that usually exists between sequential
access and random access, a clever systems analyst would certainly attempt to remove the cycle
from the graph of Figure 6.3.3.

A common strategy used in information system design is to partition events into two or more
'modes'. Each mode is then implemented using a different design. We have seen that the graph
of Figure 6.1.2 can be implemented efficiently, and there is certainly no difficulty in
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implementingFigure 6.3.L, which simply involves an update of the'customer'attributes. To

be useful, the partitioning must assign at least one of the edges in the cycle of Figure 6.3.3 to a
different mode from the others. Here, this can only be done by separating the 'Close' and

'Order'events.

But this solution has drawbacks. If there are some 'Order' events followed in time by a

'Close' event, followed by further 'Order' events, correct results can only be guaranteed by
processing the first set of orders, then processing the 'Close' event, then the remaining orders.

This limits the size of batches, and reduces the efficiency of the system. If the batches are to be

economically large, 'Close' events would either need to be rare, or capable of being defened

until a large enough batch of orders had been accumulated. If the intention of 'Close' events is

to prevent deiinquent customers making further orders, then delay is clearly inadvisable -
although presumably 'Close' events should not occur very often.

In practice, many systems are decomposed into modes in a rather arbitrary way, separating

'processing' ftom 'file maintenance'. Thus all events that affect only 'customer' information

might be grouped together, e.g., opening new customer accounts, closing accounts, changing

names and addresses, and so on. Similarly, another file maintenance mode might update the

'product' information. Only events that involve both files, such as 'Order' events, would be

handled by the 'processing' mode. This conventional arrangement is clearly inferior, as it
reduces the sizes of batches; the batch of 'Order' events has to be processed before every hle

maintenance operation, and conversely, the batches of file maintenance events have to be

processed before every batch of orders. Sometimes a virtue can be made out of necessity, for
example, by declaring that file maintenance operations have higher priority than other

processing, so that file maintenance should logically be done before processing every batch of
orders, but this does not really preserve real-time equivalence.

An alternative is for the systems analyst to negotiate a harmless change to the specif,rcation to

remove the cycle from the SDG. One option here is to introduce a new boolean attribute,

'Closed', that is changed without reference to 'Balance', as in Example 6.4.L Once a customer

account is closed, no further orders will be accepted, but payments made by the customer will
still be allowed. The modified event specifications are shown in Example 6.4.I, and the

resulting SDG is shown in Figure 6.4.I.

The revised specification is probably closer to the client's intention of what a 'Close' event

should do anyway. Since the SDG of Figure 6.4.1 is acyclic, it also leads to an efficient

design. After an account has been closed, and payments reduce its balance to zero, its row can

be removed from the table - it becomes a garbage collection problem.
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with Error, Invoice;
gener¡c

type customer is private;
type product is private;

package Order_Processing is
subtype money is integer;
procedure Open (Who : customer);
procedure Close (Who: customer);
procedure Pay (Who I customer; Amount: money);
-- other event specifications

package body Order_Processing is
Authorised, Closed : array (customer) of boolean := (others => false);
Balance : array (customer) of money :- (others => 0);
Offered : ârray (product) of boolean :- (others => false);
Price : array (product) of money :- (others -> 0);
Stock: array (product) ofnatural:- (others -> 0);
procedure Open (Who: customer) is
begÍn

if not Authorised (Who) then
Authorised (Who) := true;
Balance (Who) := 0;

end if;
end Open;
procedure Close (V/ho : customer) is
begin

if not Authorised (V/ho) then Error.Cusromer (Who);
else Closed (Who) := true;
end if;

end Close;
procedure Pay (Who : customer;Amount : money) is
begin

if not Authorised (Who) then Error.Customer (Who);
else Balance (Who) := Balance (Who) - Amount;
end if;

end Close;
pro_cedu_re Order (V/ho : customer; What : producr; Qty_Ordered : positive) is

Qty_Delivered : natural := 0;
Value_Ordered: money := 0;

begin
if not Offered (What) then Error.Product (What);
elsif not Authorised (Who) then Error.Customer (Who);
elsif Closed (V/ho) then Error.Closed (Who);
else

Value_Ordered := Price (What) * Qty_Ordered;
Qty_Delivered := min (Stock (What), ety_Ordered);
Invoice.Deliver (Who, What, Qty_Delivered) ;

Stock (WhaÐ := Srock (What) - Qry_Delivered;
Balance (Who) := Balance (Who) + Qty_Delivered * Price (What);

end if;
end Order;

-- other event procedures
end Order_Processing;

Ex¡¡T¿pI¡ 6.4.L: SPECIFYING .OPEN, .CLOSE' AND .PAY, EveNrs.
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Authorised Cosed

B al ance

Price

Stock

Off ered

FICunn 6.4.I: SDG wlrgA .CLosED, ATTzuBUTE

However, the original problem hasn't really disappeared; checking the conditions for garbage

collection would have to be done by a separate mode. However, since the only function of this

mode is to reclaim storage space, it could have very low priority. Such modes are common in
practice, and are called 'file weeding'.

6.5 Sensitivity of Design to Specification

The preceding section demonstrated that adding requirements for additional events could

cause a dependence cycle, but even a single event can cause one.

Consider an extension of the original order processing problem to take account of a

customer's credit-worthiness. Each customer account has a 'Credit Limit' that its balance may

never exceed. For an order to be accepted, the value of the order should not exceed the

customer's 'Available Credit', defined as the difference between the customer's 'Credit Limit'
and existing'Balance'. The modified event is specified in Example 6.5.1, and the resulting

SDG is shown in Figure 6.5.1.

Thereisan edge in Figure 6.5.1 from'Stock'to'Balance'because the stock determines the

value that can be delivered to the customer, and therefore the amount by which 'Balance; must

be increased. There is an edge from 'Balance' to 'Stock' because the existing balance deter-

mines whether an order is accepted. There is a cycle between 'Stock' and 'Balance' that even

the most ingenious designer cannot remove. It is impossible to place its edges in different
modes because they arise from the same event. There is no way to avoid random access.

This example illustrates a common experience of anyone who has had to maintain batch

information systems. Changes to specif,rcations a¡e constantly being made, and many of them

are easily incorporated into the existing system. But occasionally, a 'simple' change is

requested that makes it necessary to redesign the system from scratch. Such a change is one

that creates a new cycle in the SDG.
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with Error,Invoice;
generic

type customer is private;
type product is private;

package Order_Processing is
subtype money is integer;
procedure Order (Who : customer;What : product; Qty_Ordered: positive);
-- other event specifications

package body Order_Processing is
Authorised: array (customer) of boolean:- (others => false);
Balance, Credit_Limit : array (customer) of money :- (others => 0);
Offered : array (product) of boolean ;= (others => false);
Price : array (product) of money ;= (others => 0);
Stock : array (product) of natural :- (others => 0);
pro_cedure order (who : customer; what : product; Qty_ordered : positive) is

Qty_Delivered : natural := 0;
Value_Ordered, Avaiiable_Credit :money := 0;

begin
if not Offered (V/hat) then

Error.Product (What);
elsif not Authorised (V/ho) then

Error.Customer (Who);
else

Value_Ordered := Price (What) x ety_Ordered;
Available_Credit := Credit_Limir (Who) - Balance (Who);
if Value_Orde¡ed > Available_ Credit then

Error.Credit (Who,'What, Value_Ordered, Available_Credit) ;
else

Qty_Delivered := min (Stock (Whar), ery_Ordered);
Invoice.Deliver (Who, What, Qty_Delivered) ;
Stock (What) := Srock (What) - Qry_Delivered;
Balance (Who) := Balance (Who) + Qty_Delivered x price (WhaÐ;

end if;
end if;

end Order;
-- other event procedures

end Order_Processing;

EXAMPLE 6.5.1: SPEcIFYING AN .ORDER' wITH A CREDIT LIMIT

Authorised Credit
Limit

Balance

Price

Stock

Offered

FICURp 6.5.1: ORDERS V/ITH A CREDIT LIIr¿Tr
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6.6 Sensitivity to Data Representation

with Error, Invoice;
generic

type customer is private;
type product is private;

package Order_Processing is
subtype money is integer;
procedure Order (Who : customer; What : product; Qty_Ordered : positive);
-- other event specirtcaüons

package body Order_Processing is
Authorised: array (customer) of boolean;= (others => false);
Balance, Credit Limit, Commitment : array (customer) of money ;= (others=> 0);
Offered : array (product) of boolean :- (others => false);
Price : array (product) of money ;= (others => 0);
Stock : array (product) of natural :- (others => 0);
Back-Order : array (customer, product) of natural ¡= (others => (others => 0));
pro_cedure order (who : customer;what : product; Qty_ordered : positive) is

Qty_Delivered, Shortage : natural := 0;
Value_Ordered, Available_Credit : money := 0;

begin
if not Offered (What) then

Error.Product (V/hat) ;

elsif not Authorised (Who) then
Error.Customer (Who);

else
Value_Ordered := Price (What) * Qty_Ordered;
Available_Credit := Credit_Limit (Who)

- (Balance (Who) + Commitment (Who));
if Value_Ordered > Available_Credit then

Er¡or.Credit (Who, What, Value_Ordered, Available_Credit) ;
else

Qty_Delivered := min (Stock (Whar), Qry_Ordered);
Shortage ;= Qty_Ordered - Qty_Delivered;
Invoice.Deliver (Who, What, Qty_Delivered) ;

Stock (What) := Stock (WhaÐ - Qty_Delivered;
Balance (Who) := Balance (Who) + Qty_Delivered * price (What);
Back_Order (Who,IVhat) := Back_Order flMho, WhaQ + Shortage;
Commitment (Who) := Commirmenr (Who) + Shortage * Price flMhaÐ;

end if;
end if;

end Order;
-- other event procedures

end Order_Processing;

EXEMPI-E 6.6.L: SPECmYNG AN 'ORDER' WITH A COMMITMENT

A further example shows that a design can be affected even by how facts are represented in
the database. Consider the 'Order' event yet again, but now assume that when the stock is too
low, unfulfilled orders are automatically placed on back order, i.e., a promise is made to fill the
shortage as soon as new supplies arrive. The customer is therefore committed to pay for these
items in the future, which should be taken into account in assessing credit-worthiness. The
total amount of future commitment is represented by the attribute 'Commitment'. The modified
event is specihed in Example 6.6.I, and the resulting SDG is shown in Figure 6.6.1. 'Back
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Order', which is number of items put on back order, has a composite key comprising the

customer and the product.

Credit
Limit Commitment

Authorised

Balance

Price

ck

Offered Back Order

FlcuRe 6.6.I: ORo¡Rs wrrH Col¿rr¿rrrr¿¡Nrs

The SDG now has a strong component containing 'Stock', 'Balance' and 'Commitment'.
'Stock' affects how the value ordered should be added to 'Balance' and 'Commitment', and

'Balance' and 'Commitment both affect whether an order is accepted, and therefore determine

whether 'Stock' should be updated. There appears to be little prospect of finding a solution that

permits sequential access to be used.

Credit
Limit Credit Used

Authorised

Price Balance

tock

Offered Back Order

FICUnE 6.6.2: ORoeRs wITH CREDIT USED

But here's the trick! Suppose that the data representation is changed. It is the sum of
'Balance' and 'Commitment' that determines whether an order is acceptable. Instead of
'Commitment', why not store the sum itself, calling it 'Credit_Used'? If needed, it would still

be possible to determine 'Commitment' by subtracting 'Balance' from 'Credit Used'. The

revised specification is shown if Example 6.6.2. 'Credit Used' is the amount that the customer

must pay either now or in the future; it depends on the value ordered but is independent of
'Stock'. The resulting graph, shown in Figure 6.6.2, has no cycles, it may be optimised by

clustering its separable processes as in Figure 6.6.3, and may be implemented by a sequence of
five sequential steps, as suggested in Figure 6-6.4. (Step 4 and Step 5 could be processed in
either sequence.)
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with Error, Invoice;
generic

type customer is private;
type product is private;

package Order_Processing is
subtype money is integer;
procedure Order (Who : customer;What : product; Qty_Ordered : positive);

end Order_Processing;
package body Order_Processing is

Authorised: array (customer) of boolean;= (others => false);
Balance, Credit_Used, Credit_Limit : array (customer) of money ;= (others -> 0);
Offered : array (product) of boolean :- (others => false);
Price : array (product) of money :- (others -> 0);
Stock : array (product) of natural ;= (others => 0);
Back_Order : array (customer, product) of natural :- (others => (others => 0))l
procedure Order (Who : customer; What : product; Qty_Ordered : positive) is

Qty_Delivered, Shortage : natural := 0;
Value_Ordered, Available_Credit : money := 0;

begin
if not Offered (What) then Error.Product (What);
elsif not Authorised (Who) then Error.Customer (V/ho);
else Value_Ordered := Price (What) x Qty_Ordered;

Available_Credit := Credit_Limit (Who) - Credit_Used (V/ho);
if Value Ordered > Available Credit then

Error.Credit (Who, What, Value_Ordered, Available_Credit) ;

else
Qty_Delivered := min (Stock (What), Qty_Ordered);
Shortage ;= Qty_Ordered - Qty_Deiivered;
Invoice.Deliver (Who,'What, Qty_Delivered) ;

Stock (WhaÐ := Stock (What) - Qty_Delivered;
Back_Order (Who, What) := Back_Order (Who, V/hat) + Shortage;
Balance (Who) := Balance flVho) + Qty_Deiivered x Price (V/hat);

end if;
Credit_Used (Who) := Credit_Used (Who) + Value_Ordered;

end if;
end Order;

end Order_Processing;

EXAMPLE 6.6.2: SPECIFYING AN .ORDER' wITH CREDIT USED

u,

Authorised
t Used

BalancePrice

Offered

Stock

Back Order

Flcunp 6.6.3: CoIr¿poslre PRoCESSES FoR ORDERS WITH CnpoIr USED
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FIGURE 6.6.4: PRoCESS Gnepn FoR ORDERS wITH CRpoIT UsEo

Figure 6.6.4 represents the following design solution

Step 1: Sort the orders into product sequence and match them against the product table.
Check that the product row exists, and find its price.

Step 2: Sort the orders into customer sequence and match them against the customer table.
Check that the customer row exists, decide if the credit limit will be exceeded, and update
the customer's credit used according to the price and quantity ordered.

Step 3: Sort the orders into product sequence and match them against the product table.
Decide what quantity can be delivered, and update the stock.

Step 4: Sort the orders into customer sequence and match them against the customer table
Update the customer's balance according to the price and quantity delivered.

Step 5: Sort the orders into customer, product sequence and match them against the back order
table. Update the back order quantity according to the difference between the quantity
ordered and the quantity delivered.

Although f,rve sequential access processes are needed, it is likely that this design wilt still
prove much more efficient than one that uses random access.

This example illustrates a surprising fact: even if the data representation is a conectly
normalised schema, the correct choice of representation can make the system more efficient. In
this example, replacing 'Commitment' by 'Credit Used' moved an assignment outside an if
statement and therefore eliminated some dependences.

It is not easy to generalise this result. Choosing the best set of attributes seems to call for
genuine creativity. On the other hand, it is easy to see how to make a data representation

worse. It is merely necessary to find two attributes that are accessed in different processes and
pack their contents into one variable. For example, two boolean variables might be combined
into one 4-valued variable. The effect on the SDG would be to merge two vertices into one,
perhaps creating a cycle where none existed before. Exactly this effect could be achieved in
Figure 6.4.1by packing together 'Autho¡ised' and 'Closed'. Indeed, there is a temptation to do
so; they could be replaced by a single variable with th¡ee states: 'IJnused', 'Authorised' and
'Closed'. Presumably, successful design must consist of factorising variables into independent
parts - although this does not really seem to apply to the 'Order' event example, where 'Credit
Used' is just a linear combination of 'Balance' and 'Commitment'.
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6.7 Optimistic Fail-Safe Systems

Example 6.5.1 specified a form of the order processing problem that had no efficient real-time
equivalent implementation. This sad fact resulted from a cycle between 'Stock' and 'Balance'
intheSDGof an'Order'event. It is necessary to check'Balance'before adjusting'Stock'to
ensure that goods a-re not issued to customers who cannot afford them. It is necessary to check
'Stock' before adjusting 'Balance' to ensure that customers are not billed for goods that cannot
be supplied. The only way this can be done in a real-time equivalent system is to access both
attributes in the same process. Since they have different indices, this destroys the opportunity
to use independent access.

But what if the design is not real-time equivalent? Is it possible ro negotiate with the client a

specification that has an efficient implementation? To be efficient, the design would have break
the cycle between 'Stock' and 'Balance'. One way to do this would be to separate the
inspection of 'Balance' from the updating of 'Balance', or separate the inspection of stock from
the updating of stock, or separate both.

What happens if the inspection and updating of 'Balance' are separated, as in Figure 6.7.1?
The processing of an order would then consist of checking that the customer could afford the
order, finding the amount that could be delivered, then updating the customer's balance owing.
This would be faulty because it is always the initial value of 'Balance' that is inspected. A
customer might make a series of small orders, none of which individually would exceed the
customer's credit limit. However, they might do so cumulatively. Allowing a customer to
exceed their credit limit is a potentially dangerous situation. The client would almost certainly
reject such a solution.

Order
Requests

Updaæs

FIGURE 6.7.T: SppeRerwc INSPECTIoNAND UpoerlNc oF .BALANcE'

The fault in Figure 6.7.1 arises because 'Balance' is not updated soon enough. Figxe 6.7.2
attempts to redress this by updating 'Balance' before updating 'Stock'. Since it is impossible to
know whether the full amount of an order can be delivered until 'Stock' is inspected, 'Balance'
can only be updated under the assumption that the whole order will be satisfied, i.e., the
customer balance is debited the mærimum possible amount. There is no longer any danger of
customers exceeding their credit limits. On the other hand, if updating 'Stock' reveals a
shortage, the value assigned to 'Balance' will be incorrect, the customer having been billed for

s

Check
Balances

Customers

omer Update Stock

Update
Balances

r47



Update
B alances

ustomers

omer Update Stock

Adjust
Balances

Requirements Analysis

goods that can't be supplied. Therefore, the 'Adjust Balances' process is used to credit

customers for any goods that were ordered but not supplied.

Order
Requess

Balance
Adjusrnents

FrcuR¡ 6.7.2: Oprn¿rsrrc UpoerrNc oF 'BALANcE'

The resulting system is aimost correct, but not quite. It may happen that a customer makes

two orders. Assume that, individually, the values of both orders equal the customer's credit

limit, so that cumulatively, they exceed it. Therefore, the first order will be accepted, but the

second will be rejected. This behaviour will usually be correct. Suppose, however, that the

first order concerns a product that is out of stock. Then it too will be rejected, but for a

different reason. The customer's balance will have been debited by 'Update Balances', so a

compensating credit has to be applied by 'Adjust Balances'. At the end of this process the

customer's balance will be the same as its initial value, which is correct, given that both orders

were rejected. Unfortunately, the result is still incorrect. If the first order is rejected, there is

no reason to reject the second one. The system has lost the opportunity to sell goods to a
customer in good credit standing because some other product was out of stock. It may be that

this is an acceptable result. Statistically, the likelihood of these, or similar, circumstances

occurring in practice is so remote that little revenue would be lost, and the client may be

satisfied with the proposed design.

We may call this type of system an 'optimistic fail-safe' design. It is optimistic because it
updates the customer balances assuming that there will be no stock shortage. That is, it
assumes that some future condition will be satisfied. It is fail-safe because, even if the

condition is not satisfied, it cannot lead to a dangerous condition in which customers exceed

their credit limits.

It is possible to consider an alternative solution that optimistically updates 'Stock' rather than

'Balance', as shown in Figure 6.7.3. This design would have to assume that no orders would

be rejected by exceeding customer credit limits. The stock would be decreased in the 'Update

Stock' process, but, if an order was rejected for lack of credit, it might need to be increased

again in the 'Adjust Stock' process. Its fault is that, if a product was in short supply, it might

allocate its remaining items to customers who could not afford them rather than ones who
could. At the end of the process, there could be stock left over, even though there were

S
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customers who able to pay for it. 'Whether this is a better design than that of Figure 6.7.2
depends on the client's business policies.

Order
Requesß

Stock
AdjusEnents

FIGURE 6.7.3: OPTiMISTIC Upo¡,rnqc oF .STocK,

Neither the design of Figure 6.7.2 or of Figure 6.7.3 is real-time equivalent. The design of
Figure 6.7.2introduces unwanted interactions between products, whereas that of Figure 6.7.3
introduces unwanted interactions between customers. As a result, it is not possible to specify
either system using the specification language of Section 2.6, at least, not directly. Example

6.1.I shows how this might be done indirectly. There are two copies of 'Balance':
'Rough-Balance' and 'Exact-Balanca'. 'Rough-Balance' is the attribute updated by 'Update

Balances' in Figure 6.7.2, whereas 'Exact Balance' is the attribute determined by 'Adjust
Balances'. Analysis of this specification could lead to the design of Figure 6.'7.2, because

'Rough-Balance' does not depend on 'Stock', and 'Stock' does not depend on 'Exact_Bal-

ance'. However, we have to assume that some other event forces 'Rough_Balance' to agree

with 'Exact Balance' at the start of each batch, by copying all values from 'Exact_Balance' to
'Rough-Balance'. This event would have to be allocated to a separate mode, run between

batches of orders.

s
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with Er¡or, Invoice;
generic

type customer is private;
type product is private;

package Order_Processing is
subtype money is integer;
procedure Order (Who : customer; What : product; Qty_Ordered : positive);
-- other event specifications

package body Order_Processing is
Authorised : array (customer) of boolean ;= (others => false);
Rough_Balance, Exact Balance, Credit Limit:

array (customer) of money ;= (others -> 0);
Offered : array (product) of boolean ;= (others -> false);
Price : array (product) of money :- (others => 0);
Stock : array (product) of natural :- (others -> 0);
pro_cedure Order (Who : customer; 'What 

: product; Qty_Ordered : positive) is
Qty_Delivered, Shortage : natural := 0;
Value_Ordered, Available_Credit: money := 0;

begin
if not Offered (What) then

Error.Product (What);
elsif not Authorised (Who) then

Error.Customer (Who);
else

Value_Ordered := Price (V/hat) x Qty_Ordered;
Available_Credit := Credir_Limit (Who) - Rough_Balance (V/ho);
Rough_Balance (Who) := Rough_Balance (Who) + Value_Ordered;
Exact_Balance (Who) := Exact_Balance (Who) + Value_Ordered;
if Value_Ordered > Available_Credit then

Erro¡.Credit (Who, What, Value_Ordered, Available_Credit);
Exact_Balance (Who) := Exact_Balance flilho) - Value_Ordered;

els e
Qty_Delivered := min (Stock (What), Qty_Ordered);
shorrage := Qty_ordered - Qty_Delivered;
Invoice.Deliver (Who, What, Qty_Delivered) ;

Stock (WhaÐ := Srock (WhaÐ - Qry_Delivered;
Exact-Balance (Who) := Exact-Balance (Who) - Shortage * Price (V/hat);

end if;
end if;

end Order;

-- other event procedures
end Order_Processing;

EXAMPLE 6.].I: Sp¡cI¡.yING AN OPTIMISTIc FAIL-SAFE .ORDER'

In summary, it was possible to design an optimistic fail-safe system that was not real-time
equivalent to the specification of Example 6.5.1, but which nonetheless may have behaviour
acceptable to the client. But this system proved to be real-time equivalent to the altemative
specification of Example6.7.1. This must be so in general. If the system contains more than

one process that updates the same attribute, it is merely necessary to make multiple copies of the

attribute, and ensure that the specification updates each one as in the optimistic rail-safe design.
We must then assume that some other event brings the various copies of the attribute into step.
Thus, provided we specify the system we actually want, rather than one that we would like to
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have, dependence analysis will still lead to the desired design. 'We make one proviso: the
implementation being discussed must be a batch system. If the data flow diagram of Figure
6.7.2 represented a set of concurrent processes linked by queues, there would be less risk of
unwanted interactions between events. There would be a good chance that the updates to
'Balance' made by 'Adjust Balances' would occur so soon after the inspections made by
'Update Balances' that the two processes would rarely be out of step. They might become out
of step only when an order directly followed another for the same customer. Example 6.7.1
does not describe this situation well.

6.8 Error Detection and Correction

What happens if an event is in error? For example, an order might be placed by an

unauthorised customer, or made for a product that is not offered. In practice, this typically
means that an error had been made in recording a customer number or a product code. As a

result, a customer might fail to get the goods they ordered. One'way to deal with this would be

to correct the event, and submit it again in the next batch of input. This might be expedient, but
it is not logically correct. It might prove that, although sufficient goods were in stock at the

time the customer's order shouldhave been processed, they were no longer available when it
was actually processed. This might be satisfactory in practice, on the grounds that the

customer's order might just as easily been delayed in the postal system. However, it is clear
that such an approach will not work in general [Inglis 1981, Dwyer 1981b].

The problem with invalid events is that they cause one or more state variables to fail to reach

their correct states, and their histories remain incorrect from that time onward. It is therefore
necessary not just to resubmit the erroneous event, but all those following it that affect the same

state variables. In principle, it would be possible to freeze each state variabie in its most recent
valid state, and resubmit only those events that a¡e affected by the invalid ones. But there is
typically little to be gained in doing this. Using sequential updating, the cost of updating the

master files depends only secondarily on the number of events in the batch, so it is almost as

cheap, and certainly a lot simpler, to resubmit all the events, starting with the database in its
initial state. The same a.rgument does not apply to parallel access, but resubmitting the batch
from scratch is still attractive, because of the extra processing needed to do anything more
sophisticated than to start again from the previous back-up ofthe database.

Given that errors in a batch will be corrected by resubmitting it, a more liberal approach may
be taken to algorithm design. In the order processing system discussed in the previous section,
most actions are conditional on the value of 'Authorised' or 'Offered'. As a simple example,
consider the specification in Example 6.8.1 of the 'Close' event from Example 6.4.I. Because

the assignment to 'Closed' is conditional, this specification creates a dependence of 'Closed' on
'Authorised'.
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procedure Close (Who : customer) is
begin

if not Authorised (Who) then
. Error.Customer (Who);

else
Closed (Who) := true;

end if;
end Ciose;

Exeuplg 6.8.1: CoNoTTIoNAL SPEcIFIcATIoN oF THE .CLoSE, Evgxr

However, if errors are conected by resubmitting batches of events, the specif,rcation could
just as well be written as in Example 6.8.2, in which 'Closed' is independent of 'Authorised'.
The point is, that although 'Closed (Who)' is wrongly updated if 'Authorised (Who)' is false,
whenever this happens, the batch will be resubmitted anyway. In general, removing
dependences is a good thing, because it may remove a cycle from the SDG, perhaps making an

efficient solution possible where none was possible before.

procedure Close (Who : customer) is
begin

if not Authorised (Who) then
Er¡or.Customer (Who);

end if;
Closed (Who) := true;

end Close;

EXAMPLE 6.8.2: UNCONOIUONAL SPECIFIcATIoN oF THE .CLoSE' EVENT.

A completely different approach to error detection is to adopt a front-end/back-end design. In
such a design, potential errors are eliminated before events are submitted for batch processing.

The simplest kind of front-end process is a 'validation program', which attempts to find
elrors by statistical means. For example, it can check quantities and values to see if they fall
inside the usual ranges. When a value falls outside the normal range, it is not necessarily

wrong, but it certainly deserves extra scrutiny. In addition, redundant data may be supplied.
For example, customer numbers and product codes may incorporate check digits, so that any

transcription errors introduced when copying them will almost certainly be detected. Another
use of redundancy is to use 'control totals' calculated by independent meansi e.g., the total
number of items ordered in the batch can be compared with the sum of the number of items in
each event. It is also possible to use redundancy within an event: e.g., the number of items,
price, and the value sold may all be provided as data, then a check made that the value sold
equals the quantity times the price. These statistical techniques cannot eliminate the possibility
that errors will occur in batch processing, but they can greatly reduce the frequency with which
batches of events have to be resubmitted.

To ensure that every batch is processed without error - or at least without a detectable error,
it is necessary for the front end to check all possible error conditions against the database.

Figure 6.8.1 shows one possible way in which the design of Figure 6.6.4 could be adapted.
The first process in Figure 6.8.1 represents an interactive program that randomly accesses those
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The remaining three

FIcuRs 6.8.1: A FRoNT.END/BACK-END DESIGN

It might seem that there is little advantage in such a design because, since the front end
process must already access the product and customer information, it might as well update
'Stock' and 'Baiance' too. However, this overlooks the fact that such a system will almost
certainly need to produce reports that involve the whole of the customer and product files. This
being so, then the previous a-rgument can be reversed; if it is necessary to access the whole of
these files to produce reports, why not update them at the same time? Independently of this
argument, it is also the case that the front end design minimises the need to write to the
database. Typically, writing one record sequentially as a delayed procedure call to be processed
by the back-end process can replace several random-access writes to individual fiies. Thus, the
front-end./back-end design is likely to allow quicker response and greater throughput than a

design that processes each event to completion in the front end.

The argument for a front-end./back-end design is even stronger if the front-end operates in
read-only mode. The system of Figure 6.8.1 does not permit this, because 'Credit Used' has to
be updated. However, is it an error for a customer to exceed their credit limit, or merely an
aspect of normal operation? In other words, would the event need to be corrected and
resubmitted? If exceeding a credit limit is not an error in this sense, then the front-end could be
restricted to checking 'Authorised' and 'Offered'. If it is further assumed that 'Order' events
will not be mixed in the same batch with events that can change the 'Authorised' or 'Offered'
attributes, then the front end has only to read them. This means that several operators could
enter orders concuffently, without the possibility of interaction or the attendant need to lock
records. Indeed, it might be possible for the front-end process to read the lists of authorised
customers and offered products into main memory once, during initialisation. This would
eliminate further accesses to the files by the front end, allowing the ma.¡rimum possible event
throughput and the fastest possible response.

6.9 The Need for Automated Design

The sequence of examples examined in this chapter has been chosen pa¡tly to dispel the idea
that a efficient and robust system can be designed top-down. It would be wrong to assume that
the basic design of a system can be independent of the details of the algorithms involved. An
experienced designer may appear to sketch a system design without a detailed knowledge of its
procedures, but presumably the designer really knows enough about them to be able to mentally
construct the SDG. Moreover, we have seen that a design may need to change dramatically in
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response to changing requirements - which may prove very costly. The only safe design is a
single random-access process, but it is often an order of magnitude less efficient than a less

robust independent access design.

A better approach would be to staf with a formal specification of the system, derive its SDG,
choose an optimum set of composite processes, and transform the system specification into a

set of process specifications - all these stages being performed automatically by a system
generatorCASE tool. (For several examples of existing CASE tools, see [Chikofsky, 1989]).
This would dramaticaliy reduce the cost of implementing batch information systems. Assuming
that the specif,rcations are stated formally, the CASE tooÌ could have the structure of Figure
6.9.r.

Slstem
Specifications

Dependency
Graph

C¡nonical
Processes

Composite
Processes

Process
Specifications

FICURP 6.9.I: STRUCTURE OF A PoSSIBLE CASE ToOI

.Starting with a formal specihcation of the functional dependencies and each kind of event, the

flow analysis module extracts the SDG. Next, the strong components of the graph are found,
resulting in a CPG. Then an optimiser clusters them into composite processes to improve

system performance. Once the set of system components and the database attributes that they

may access a¡e known, this knowledge can be used to transform the original specification,

resulting in a set ofprocess specifications. Ifthe system specification is procedural, the process

specifications can be a set of working programs.

Inpractice,Figure6.9.l wouldbe better structured as two separate CASE tools: a Designer,

and a Programmer. A systems analyst could use the Designer tool to explore or confirm the

consequences of choosing different data representations and event specifications. However, the

optimisation step might not produce the most practical design; there may be some factors in the

operating environment that it might fail to take into account. It might be better for the designer
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to be able to over-ride the result of the automated design stage. The Programmer tool needs

only to know how attributes are allocated to processes to generate the process specif,rcations.

One reason why a systems analyst might wish to over-ride a design is that external

requirements might demand the system to be interactive. As discussed in the preceding section,

a system can be divided into an interactive 'front end' that checks for errors, and a batch

processing 'back end' that ca¡ries out the bulk of the processing. Such environmental

requirements are not expressible in the specification language described in Chapter 2, although

there is no reason in principle why a specification language should not allow them to be

expressed.

Although the Designer tool logically precedes the Programmer, we discuss the Programmer in
Chapter 7, and deal with the much more complex Designer tool after that. The Programmer has

not been implemented in software. It would have the usual characteristics of a program

generator: it would be straightforward but tedious to write. On the other hand, a prototype

Designer tool has been built, because the design process is potentially computationally complex.

Therefore it is important to demonstrate that design can be completed quickly enough in
practice.
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7. System Generation
'We assume that a Designer CASE tool has assigned each va¡iable to a process, or more

accurately, allocated each lexical appearance of a variable to a process. In a specification, a

local variable could be reused in two unrelated contexts, and the Designer might allocate its
different appearance s to different proce s se s.

As a result of these allocations, each statement of the specification can also be allocated to a
process. Often it will be the case that a control statement encloses some assignment statements
that become allocated to processes that follow the process allocated to the control statement.
But a statement can never become aliocated to an ea¡lier process than a statement that encloses
it, because the way dependence is defined ensures that it can't happen. An enclosing statement
can always activate the statements it encloses, either directiy or by delayed procedure call.
Therefore, the specif,rcations of component processes can be derived by encapsulating groups of
statements as procedures, without a fundamental restructuring of the system specification.

This chapter describes how a system specification can be transformed into a set of process
specifications. There are two main stages in this transformation: In the first stage, the
specification of each event must be decomposed into a set of event procedures, one or more for
each process. In the second, ifthe process can use independent access, these procedures must
be transformed further to fit into the framework of a sequential or parallel update algorithm.
There is also a third rather trivial step, which is to embed the event procedures within the update
process's read loop.

The reason why we discuss process generation before giving details of the Designer tool, is
that the requirements of process generation put constraints on the output of the Designer, which
must be taken into account later. 'We 

therefore discuss some of these issues here.

7.1 Event Decomposition

The event decomposition problem is best considered by means of an example. Consider the
specification of Example 6.6.2, which discussed an order processing system where customers'
orders were subjected to a credit check based on thet total credit used. This eventually lead to
the pipeline design of Figure 6.6.4, comprising five processes:

{Price, Offered}

{Authorised, Credit Limit, Credit Used}

{Stock}
{Balance}

{Back Order}

Using this numbering, it is possible to mark the assignments in the specification of the
'Order'procedure with the latest processes in which they can be made, as in Example 7.I.I.
Assignments to state va¡iables are simply allocated by their numbering above. Assignments to

1

2

J

4

5
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local variables are ailocated by finding the earliest process in which they appear on the righr
hand side of an assignment that has already been numbered.

procedure Order (Who : customer;What : product; Qty_Ordered : positive) is
Qty_Delivered, Shortage : natural := 0;
Value_Ordered, Availabie_Credit: money := 0;

begin
if not Offered (What) then

Error.Product (What);
elsif not Authorised (Who) then

Error.Customer (Who);
else

(3) Value_Ordered := Price (What) x Qty_Ordered;(3) Available_Credit := Credit_Limit (Who) - Credit_Used (Who);
if Value_Ordered > Available_Credit then

Error.Credit (Who,'What, Value_Ordered, Available_Credit) ;

else
(3) Qty_Delivered := min (Stock (What), Qty_Ordered);(5) Shortage :- Qty_Ordered - Qty_Delivered;

Invoice.Deliver (V/ho, What, Qty_Delivered) ;(3) Stock (What) := Stock (What) - Qty_Delivered;(5) Back_Order (Who, What) := Back_Order (Who, V/haÐ + Shortage;
(4) Balance (Who) := Balance (Who) + Qty_Delivered x Price (IVhat);

end if;
(2) Credit_Used (Who) := Credit_Used (Who) + Value_Ordered;

end if;
end Order;

EXAMPLE ] .I.T: LeT¡sT PROCESSES FoR ASSIGNMENTS

It is also possible to ma¡k each expression with the earliest process in which it can be fully
evaluated, as in Examplel.I.2. As it happens, all the expressions that appear in assignments to
system variables in this example can't be evaluated any earJier than in the processes that update

the variables, for the simple reason that in each case the assigned variable also appears in the

righrhand expression. This need not be true in general, as in the case of the assignment to
'Value Ordered', which can be allocated to any of the first three processes. The situation would
be made more complicated if we allowed the possibility of evaluating sub-expressions and

assigning them to internal variables. For example, the sub-expression 'Qty_Delivered * Price'
in the assignment to 'Balance (Who)' could be evaluated in the 3rd process rather than the 4th.

Consideration of the control structure reveals that although the outermost if condition ('not
Offered (What)') can be evaluated in the 1st process, it need not be used until the 3rd, because

all the assignments it encloses can be deferred to the 3rd process. Similarly, the call 'Error.Pro-
duct (What)' can be made as early as the lst process, or deferred until the 5th process.
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pro_cedqre order (!ho : customer; what : product; Qty_ordered : positive) is
Qty_Delivered, Shortage : natural := 0;
Value_Ordered, Available_Credit: money := 0;

begin
(i) if not Offered (What) then
(1) Enor.Product (V/hat);
(2) elsif not Authorised (Who) then
(1) Error.Customer (Who);

else
(1) Value_Ordered:= Price (What) x Qty_Ordered;(2) Available_Credit := Credit Limit (Who) - Credit_Used (Who);
(2) if Value_Ordered > Available_Credit then
(2) Error.Credit(Who,'What,Value_Ordered,Available_Credit);

else
(i) Qty_Delivered:= min (Stock (What), ery_Ordered);(3) Shortage :- Qty_Ordered - Qty_Deliverêd;(3) Invoice.Deliver (Who, What, Qty_Delivered);(i) Stock (WhaÐ := Stock (Whar) - Qty_Delivered;(5) Back_Order (Who, What) := Back_Order (Who, WhaÐ + Shortage;(4) Balance (Who) := Balance 1 /ho) + Qty_Delivered t Price (What);

end if;
(2) Credit_Used (Who) := Credit_Used (V/ho) + Value_Ordered;

end if;
end Order;

ExevIpT¡ 7.T.2: EARLIEST PRocESsES FoR EXPRESSIoNS

Where is the best place to allocate the evaluation of each expression, each assignment, and so
on? Compared with choosing the optimum set of processes, this is a minor problem; but it
deserves consideration because it determines the number of parameters that have to passed
between processes, and therefore the sizes of the messages that are needed to transmit them.
The problem is analogous to the optimum allocation of registers in an optimising compiler.
Rather than deal with the problem optimally, we suggest some simple heuristics.

The first heuristic is, other things being equal, to evaluate each expression as early as

possible. This means that the value of the expression can be passed between processes as a
single parameter, whereas the collection of terms that make up the expression would usually
need more than one parameter. This argument is not watertight; it may be that many different
expressions are composed from a few basic terms, but this is rather unlikely.

Early evaluation also has the dubious advantage of giving some control to the specifier. It
means that an expression can be assigned to a local variable in the expectation that it will be
evaluated as soon as possible, and therefore the variable will be passed to later processes rather
the terms that are used to evaluate it. With this assumption, the specification of Example 6.6.2
would be slightly improved by discarding the locai variable 'Value_Ordered', and wherever it is
used, using the expression 'Price (V/haÐ x Qty-Ordered' instead - the point being that 'Price
(What)' and 'Qty-Ordered' have to be passed as parameters to later processes anyway, so
'Value_Ordered' is redundant.

As a corollary of choosing early evaluation, the calls to external packages can also be made as

early as possible. Since these extemal packages often model reporting processes, this makes
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the system more interactive. This is paficularly valuable if the outputs are error reports, as it
may be sensible to abandon processing and correct the errors before continuing. If the outputs
are destined become the inputs to other systems, producing them early means that these systems

are not held up waiting for data.

Early evaluation also makes sense for if statements. For example, if the outermost if
statement in Example 7.1.1 and Example 7.I.2 succeeds, an external output is produced, but
nothing else happens, so no messages will be passed between the processes. In general,

placing if statements as early as possible can only serve to reduce the number of messages that

flow through the system.

If an assignment is nested inside an if statement, it may turn out that its right-hand expression

could be evaluated in an ea¡lier process than the if expression can. This is the case for the

assignment to 'Value_Ordered' in Example 7.I.2, whose expression could be evaluated in the

first process, but whose controlling condition cannot be evaluated until the second process. In
such cases it is important that the Designer tool should defer the evaluation of the assignment

expression until the process that evaluates the control condition - it may be that the purpose of
the if statement is to ensure that the expression can be evaluated safely, e.g., by protecting it
against a division by zero. (On the other hand, if an expression can safely be evaluated outside

an if statement, it may pay the specifier to place it there; it might remove a dependence and

permit a more efficient implementation to be found.) Clearly calls to extemal packages must

follow the same rule; although the parameter of the call 'Error.Customer (Who)' is known in
the first process, the call certainly shouldn't be made until the appropriate conditions have been

tested, which must wait until the second process.

In fact, these situations are handled without difficulty, because the 3rd rule in Section 4.5
forces us to regard the control conditions surrounding an assignment or call as if they were part

of the right-hand expression itself. With these rules in mind, the assignment to

'Value_Ordered' and the call 'E¡ror.Customer ('Who)' would be allocated to the 2nd process

rather than the 1st.

Theresulting allocation of expressions to processes is shown in Example 7.I.3, which may

also be interpreted as defining the placement of the corresponding statements into processes.

For example, if a control expression should be evaluated in the 2nd process, then the text of its
conesponding if statement should also appear in the 2nd process. To make the example a bit
clearer, the elsif clause in Example 7.1.1 and Example I .L.2 has been expanded into an else
clause containing an if statement.

160



System Generation

procedure Order (Who : customer;What : product; Qty_Ordered : positive) is
Qty_Delivered, Shortage : natural := 0;
Value_Ordered, Available_Credit: money := 0;

begin
(1) if not Offered (What) then
(1) Eror.Product (What);

else
(2) if not Authorised (Who) then
(2) Error.Customer (Who);

else
(2) Value_Ordered := Price (What) t Qry_Ordered;(2) Available_Credit := Credit Limit (Who) - Credit_Used (Who);
(2) if Value_Ordered > Available Credit then
(2) Error.Credit (Who, What, Value_Ordered, Available_Credit);

else
Qty_Delivered := min (Stock (What), Qty_Ordered);
Shortage :- Qty_Ordered - Qty_Delivered;
Invoice.Deliver (Who,'What, Qty_Delivered) ;

Stock (What) := Stock (What) - Qty_Delivered;
Back_Order (Who, V/hat) := Back_Order (Who, What) +
Balance (Who) := Balance (Who) + Qty_Delivered x Price

end if;
end if;

(2) Credit_Used (Who) := Credit_Used (Who) + Value_Ordered;
end if;

end Order;

EXAMPLE 7.I.3: EARLY ASSIGNMENT oF EXPRESSIoNS To PRoCESSES

Given such an allocation, generating the texts of the process specifications is straightforward.
Considering the lst process, it should contain all the statements labelled (1) in Example 7.I.3,
replacing all the rest by delayed procedures. The first decomposition is shown in Example
7.I.4a and Example 7.1.4b.

Apart from allocating the correct statements to each process, it is also necessary to ensure each

procedure has the coffect parameters. In general, processes can only refer to va¡iables allocated
to them, or va¡iables that are accessed in earlier processes that are passed to them as input
parameters. Since the firstprocess accesses only 'Offered (What)', which is not referred to in
the 2nd process, it is not needed as a parameter.

procedure Order (Who : customer; 'What 
: product; Qty_Ordered : positive) is

begin
(1) if not Offered (What) then
(1) Error.Product (V/hat);

else
(2) Process_2.Order(Who,'What,Qty_Ordered);

end if;
end Order;

EXAMPLE 7.L.4I: THE 1ST EVENT PROCEDURE

(3)
(3)
(3)
(3)
(s)
(4)

Shortage;
(What);
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procedure Order (Who : customer;What: product;
Qty_Ordered : positive; Price : money) is

Qty_Delivered, Shortage : natural := 0;
Value_Ordered, Availabie_Credit: money := 0;

begin
(2) if not Authorised (V/ho) then
(2) Error.Customer (Who);

else
(2) Value_Ordered := Price x _Ordered;(2) Available_Credit:= (Who) - Credit_Used (Who);
(2) if Value_Ordered > Available_Credit then
(2) Error.Credit (Who, What, Value_Ordered, Available_Credit);

else
(3) Qty_Delivered := min (Stock (What), Qty_Ordered);(3) Shortage :- Qty_Ordered - Qty_Delivered;(3) Invoice.Deliver (Who, What, Qty_Delivered);(3) Stock (WhaÐ := Stock (WhaÐ - Qty_Delivered;(5) Back_Order (Who, WhaÐ := Back_Order (Who, V/hat) + Shorrage;
(4) Balance (Who) := Balance (Who) + Qty_Delivered x Price;

end if;
(2) Credit_Used (Who) := Credit_Used (Who) + Value_Ordered;

end if;
end Order;

Exeuple 7.I.48: THE 2No To 5TH EvgNT PROCEDURES

procedure Order (Who : customer;What: product;
Qty_Ordered : positive; Price : money) is

Value_Ordered, Available_Credit : money := 0;
begin

(2) if not Authorised (Who) then
(2) Error.Customer (V/ho);

else
(2) Value_Ordered:= Price x Qty_Ordered;(2) Available_Credit := Credit_Limit (U/ho) - Credit_Used (Who);
(2) if Value_Ordered > Available_Credit then
(2) Error.Credit (Who,'What, Value_Ordered, Available_Credit);

else
(3) Process_3.Orde¡ (Who, What, Qty_Ordered, Price);

end if;
(2) Credit_Used (Who) := Credit_Used (Who) + Value_Ordered;

end if;
end Order;

Exevplp 7.1.5n: THE 2ND EvENr pRocpouR¡

The factorisation of the second process proceeds in a similar way. Except for the innermost
else clause, the whole text can be allocated to the 2nd process. This gives the decomposition
shown in Example 7.1.5a and Example 7.1.5b. Inspection of the text of the 3rd and following
processes reveals that 'Price (What)' needs to passed to them as an extra parameter. It must
declared as a formal parameter, 'Price', in the text of the 3rd and following processes and then
substituted for 'Price (What)' throughout. The declaration of the 'Price' formal parameter is
derived straightforwardly from the type of the 'Price' state variable. Because 'Value Ordered'
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and 'Available-Credit' are evaluated in the 2nd process, it is also necessary to declare them

there.

procedure Order (Who : customer;What : product;
Qty_Ordered: positive;Price : money) is

Qty_Delivered, Shortage : natural := 0;
begin

(3) Qty_Delivered:= min (Stock (What), Qty_Ordered);(3) Shortage ;= Qty_Ordered - Qty_Delivered;(3) Invoice.Deliver (Who, What, Qty_Delivered);(3) Stock (What) := Stock (What) - Qty_Delivered;(5) Back_Order ('Who, What) := Back_Order (V/ho, WhaÐ + Shortage;
(4) Balance (V/ho) := Balance (Who) + Qty_Delivered x Price;

end Order;

Exerr¿pl-E LI.SS Tue 3no ro 5TH EveNr PRocEDURES

Continuing the decomposition, the 3rd process must be decomposed as in Example 7.I.6a
and Example 7.1.6b. 'Qty-Delivered' and 'Shortage' have to be declared in the 3rd process

and passed as parameters to the 4th process.

procedure Order (Who : customer;What : product;
Qty_Ordered: positive;Price : money) is

Qty_Delivered, Shortage : natural := 0;
begin

(3) Qty_Delivered:= min (Stock (lMhat), Qty_Ordered);(3) Shortage :- Qty_Ordered - Qty_Delivered;(3) Invoice.Deliver (Who, What, Qty_Delivered);(3) Stock (What) := Stock (What) - Qty_Delivered;(4) Process_4.Order (Who, What, Price, Qty_Delivered, Shortage);
end Order;

ExAlr¿pr.¡ l.T.6t: THE 3RD EvpNr PRocgouRg

procedure Order (Who : customer; What : product;Price : money;
Qty_Delivered, Shortage : natural) is

begin
(5) Back_Order (Who, What) := Back_Order (Who, What) + Shortage;
(4) Balance (V/ho) := Balance (Who) + Qty_Delivered t Price;

end Order;

Exevple 7 .T.68 TH¡ 4Tu AND 5TH EVENT PRocEDURES

The f,rnal decomposition is trivial, and is shown in Example 7.I.7a and Example7.I.7b

procedure Order (Who : customer; What : product;Price : money;
Qty_Delivered, Shortage : natural) is

begin
(5) Process_5.Order (Who, What, Shortage);
(4) Balance (Who) := Balance (Who) + Qty_Delivered t Price;

end Order;

EXRI¿pI¡ 7.T.7¡: THe 4rg EVENT PROCEDURE
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procedure Order (Who : customer;What : product; Shortage : natural) is
begin

(5) Back_Order ('Who, V/hat) := Back_Order (Who, What) + Shortage;
end Order;

EXAMPLE 7.T.78: THs 5rH EveNr PRocpounp

It may seem almost miraculous that the decomposition proceeds so smoothly. However,
there should be no surprise; the allocation of variables to processes was made to ensure ttrat it
would do so. Likewise, the definition of dependence made in Section 4.5 was chosen with the
same goal in mind.

The decomposition into the 3rd, 4th and 5th processes is somewhat arbitrary. The
decomposition given above follows the process pipeline design of Figure 6.6.4. Because the
composite process graph of Figure 6.6.3 forces no ordering on 'Back_Order' and 'Balance',
the order of the last two steps could be exchanged. Better still they could be independent; the

'Stock' update could send delayed calls to each one directly. The system design would no
longer be a simple pipeline, but would branch. However, since the advantage claimed for a

pipeiine design is that it does not have to merge messages from different sources, the branching
would introduce no additional technical difficulty. (For that matter, if a system is generated
automatically by a computer, a pipeline design has no advantage; the technical problem of
merging data-flows has only to be solved once, then incorporated into the Programmer tooI.)

It is worth making one final cornment. Suppose the assignments in the innermost else clause

hadbeen specified in a different order, so that Example 7.I.5b had read like Example7.I.8a,
separating the assignments to'Back-Order' and'Balance'. Assuming again that a pipeline is
used, and messages are not passed directly from the 3rd process to the 5th process, the obvious
decomposition is that of Example 7.1.8b, which uses two delayed calls instead of the single call
used in Example 7.L6a. In fact, it must always be safe to adjust the order of the assignments
within a sequence so that only one call is needed. In fact any delayed cail can always be safely
placed as the last statement of a sequence. The reason is simple, delayed calls have no output
parameters; any assignments made by the procedure invoked by the call cannot affect variables
in the calling process.

procedure Order (Who : customer;V/hat : product; Qty_Ordered : positive;
Price : money) is

Qty_Delivered, Shortage : natural := 0;
begin

(3) Qty_Delivered:= min (Srock (Whar), Qty_Ordered);(3) Shortage := Qty_Ordered - Qty_Delivered;(ll Back_Order (Who, What) := Back_Order (Who, What) + Shorrage;
(3) Invoice.Deliver (Who, What, Qty_Delivered);(3) Stock (What) := Stock (What) - Qty_Delivered;(4) Balance (Who) := Balance (V/ho) + Qty_Delivered x Price;

end Order;

EXAMPLE 7.1.8e: A MonmmD ORDER oF ASSIGNMENTS
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procedure Order (Who : customer;What: product; Qty_Ordered : positive;
Price : money) is

Qty_Delivered, Shortage : natural := 0;
begin

(3) Qty_Delivered:= min (Stock (lMhar), Qty_Ordered);(3) Shortage := Qty_Ordered - Qty_Delivered;(5) Process_4.Order_1 (Who, What, Shortage);
(3) Invoice.Deliver (Who, Whar, Qty_Delivered);(3) Stock (What) := Stock (What) - Qry_Delivered;(4) Process_4.Order] (Who, Qty_Delivered, Price);

end Order;

ExeIr,rpIp 7.1.8s: A MoDIFED VERSIoN oF THE 3RD PRocsss

Only one thing spoils the simple early evaluation approach: loops should be placed as far
downstream as possible. The argument is the converse of that for if statements; it is better to
pass one message to activate a whole loop than to pass many separate messages to activate each

of its iterations.

It is easy to deal with while loops. Any sensible while loop must contain at least one

assignment that modifies the value of its control condition, otherwise it has no means of
terminating. This effectiveiy binds the loop to the same process as the assignment, ensuring
that at least part of the ioop body is allocated to the same process as the loop itself. It does not
exclude the possibility that the loop body will need to make calls to a later process, because it
may also include an assignment to a va¡iable allocated to the later process. However,
optimising the process graph will tend to group as many assignments with the loop body as

possible, provided they are compatible with it. If they are incompatible, multiple calls are

unavoidable.

The treatment of all and for loops is a little harder. The reason is due to a defect of the

specification language. It is possible to write 'all i in index loop ...', suggesting that all
values of i' in the domain 'index' should be generated, whereas the intention is that only
'interesting' values should be generated, specifically those for which at least one atûibute

accessed in the loop body has a non-default value. For example the specification might read:

all p in product loop
if Offered (p) then

elsif Stock (p) > 0 then

"trå"ir;end if;

where it is implicit that only those values of 'p' that have 'Offered' equal to true, or a non-zero
value of 'Stock' should be examined. This assumption could be made explicit by changing the

syntax of an all or for loop as follows:
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all p in product with Offered or Stock loop
if Offered (p) then

elsif Stock (p) > 0 then

end if;
end if;

This makes it clear that the loop should be placed in whatever process inspects 'Offered' and
'Stock'. In practice, all and for loops cause little difficulty. Essentially, there is never any
reason to separate loop variables from loop bodies. Provided it places loops as far downstream
as possible, the optimisation process ensures that they gravitate together. There is nothing to
keep them apart.

7.2 Transformation to Independent Access

procedure Order (Who : customer;What: product;
Price : money; Qty_Ordered : positive) is

Value_Ordered, Available_Credit: money := 0;
begin

all c in customer loop
ifc=Whothen

if not Authorised (c) then
Error.Customer (c);

else
Value_Ordered := Price x Qty_Ordered;
Available_Credit := Credit_Limir (c) - Credit_Used (c);
Íf Value_Ordered > Available Credit then

Enor.Credit (Who, What, Value_Ordered, Available_Credit) ;

else
Process_3.Order (Who,'What, Qty_Ordered, Price) ;

end if;
Credit_Used (c) := Credit_Used (c) + Value_Ordered;

end if;
end if;

end loop;
end Order;

EXEUPIP ].2.I: TgE 2NO EVSNT PRocEDURE ADAPTED FoR INDEPENDENT AcCESS

The second stage of transformation, which applies only to independent access processes, is to
embed each event procedure into the structure of a parallel or sequential update algorithm. This
can be envisaged as occurring in two stages: first, each event is transformed into a independent

access process, and second, the operations on the events are interleaved. Suppose that a
process allows independent access by 'customer'. Then the first stage requires each event
procedure to include an all or for loop whose ioop variable has the domain 'customer'. In the
case of a composite key, such as '(customer, product)' nested loops are needed. Access can

only be made to elements that are indexed by the loop variable. Access to arbitrary elements is
achieved by selecting the iteration where the loop variable takes the desired value.
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For example, the event specification of Example 7.I.5a would be transformed for
independent access by customer as in Example 7.2.I.

Although this transformation is very simple, it captures the essence of both the sequential and
parallel update algorithms. They differ mainly in the means used to exploit the all loop, as

explained in Chapter 3. A secondary difference is that they use different means to reduce the
storage needed to process events. The sequential update sorts the events sequentially so that
they can be matched systematically against the records of the master file. The parallel update
sorts the events spatially, so that a parallel processor receives only those events that are relevant
to it.

What about more difhcult events, in which more than one element is inspected? Recall the
'Careful' transaction between two accounts of Example 5.2.5. This can be factorised into two
processes as shown in Example 7 .2.2a and Example 7 .2.2b.

procedure Careful_Transfer (From, To: account; Amount : money) is
begin

if Authorised(From) and Authorised(To) then
Accounting_2.Careful_Transfer (From, To, Amount);

end if;
end Careful_Transfer;

EXAMPLE 7.2.2I: THE 1ST EVENT PRocEDURE FoR A .CAREFUL, TRANSACTIoN

procedure Careful_Transfer (From, To: account; Amount : money) is
begin

Balance(From) := Balance(From) - Amount;
Balance(To) := Balance(To) + Amount;

end Careful_Transfer;

EXAMPIE 7 .2.25: THE 2NO EV¡NI PROCEDURE FOR A 'CAREFI.IL' TRANSACTION

The second procedure is the easier one to transform. It is just an extension of previous
principles, as shown in Example 7.2.3.

procedure Careful_Transfer (From, To: account; Amount : money) is
begin

all a in account loop
ifa=Fromthen

Balance(a) := Balance(a) - Amount;
end if;
ifa=Tothen

Balance(a) := Balance(a) + Amount;
end if;

end loop;
end Careful_Transfer;

EXAMPLE 7.2.3: THE 2ND EVENT PROCEDURE TRaNsT.oRIT,IED FoR INoepeNoENT AccESS

The first procedure is abit trickier, as explained in Section 3.1, itrequires both elements of
'Authorised' to be brought together in o¡der to evaluate the control expression. This must be
done in the 'collection' phase of the update, as shown in Example 7.2.4.
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procedure Careful_Transfer (From, To: account; Amount : money) is
begin

all a in account loop
ifa=Fromthen

Authorised_From := Authorised(a) ;

end if;
ifa=Tothen

Authorised_To : = Authorised(a) ;

end if;
end loop;
if Authorised_From and Authorised_To then

Accounting_2.Careful_Transfer (From, To, Amount);
end if;

end Careful_Transfer;

EXEVPIT ] .2.4: THE 1ST EVENI PRocpnun¡ TRANSFoRMED FoR INoBp¡NoeNT AcCESS

In Section 2.5,it was explained how arrays of packages could be used to model independent

access, so, logically, a specification such as that of Example 7.2.2a should be transformed
again to exploit arays of processes. However, process ¿urays are irrelevant to the actual task of
programming, because the final steps of the transformation have to be tailored to generate

parallel or sequential updates. The important point is that if a specification can be put into a

form similar to that of Example 7.2.2a, then it must be possible to incorporate it into an update

algorithm.

The above examples concern cases where the original event specification does not contain a

loop, so a loop must be added in order to model independent access. The alternative is that the

specification already contains an all loop, so no transformation is needed. However, it is clear

that the domains of the loops must agree; it would not be sensible to access all customers in a
process that updates all products.

From the foregoing, it will be seen that a procedure can always be transformed into a form
suitable for independent access provided the frequency with which its statements are executed is

related to the degree of independence of the all loop. If their frequency is the same as the

degree ofindependence, the event is broadcast to each instance ofthe loop body; ifit is less, the

event is sent to selected instances. This result generalises to the case of composite domains.

For example, if an attribute is indexed by '(customer, product)' and allows independent access,

then an event procedure may contain nested loops, such as 'all c in customer loop all p in
product loop ...', a single loop, such as 'all c in customer loop ...' or 'all p in product

loop . . .', or no loop at all.

7.3 Loop Structures

Although the treatment of all loops is straightforward, there are many other interesting cases

to consider, e.E., specifications that contain while loops, nested loops, or sequences of loops.
Only certain structures can be embedded into independent access processes. Therefore, it is
important for the Designer tool to be able to distinguish these structures, so that the
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Programmer's task is feasible. It is pointless for the Designer to decide, on the basis of
dependence analysis, that independent access is possible, unless the structure of the algorithm
has a realisable loop structure.

We may distinguish two kinds of while loop. The first is illustrated by the following
example:

Order_Qry (What) := 0;
while Order_Qty (What) < Shortage (V/hat) loop

Qr$er_Qty (What) := Order_Qty (WhaQ + Economic_Order_Qry (Whar);
end loop;

Exa¡¿plp 7.3.1: A 'COMPATBLE' WHILE Loop

which sets 'Order-Qty (What)' to the least multiple of 'Economic_Order_Qty (What)' that is no
less than'Shortage (What)'. The loop in Example 7.3.1 has little effect, because it could be

replaced by:

Order_Qty(What) := least_multiple (Shortage(What), Economic_Order_Qty@hat));

where 'least-multiple' is a function. The loop involves only one value of ''What', so there can

be no interaction between different array elements.

The second kind of while loop is illustrated by:

while Boss (Who) /= null loop
Who := Boss (Who);

end loop;

Ex¡.tr¡ple 7 .3.2: AN 'INCotr,tpATIBLE' WHU-E Loop

The loop in Example 7.3.2 cannot be replaced by a function, unless we write
'Who := highest_rank(Who, Boss);

where the whole 'Boss' array would have be passed as an argument to the function, not just
one element of it. In particular, the loop involves mulúple values of 'Boss (Who)', and

furthermore, each value depends on the previous one. It should be clea¡ that this algorithm
cannot be implemented using independent access. The two cases are easily distinguished,
because the 'compatible' while loop does not assign new values to an index, whereas the
'incompatible' while loop does. For the distinction to be apparent from an SDG, 'Boss', must
be ma¡ked as incompatible with itself as in Figure 7.3.L (The argument is simitar to that in
Section 5.6.)

FIcun¡ 7.3.T: BOSS IS INCOMPATIBLE WITH IrspIp

The rules for constructing dependences ensure that the nesting order of loops and conditionals
can be preserved when generating process specifications. An absence of incompatible edges

Boss
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also determines when independent access is possible in principle. However, since dependences

suppress the syntactical structure of the specification, they cannot guarantee that the loop
structures assigned to a process are consistent with the parallel or sequential update algorithms.
That is to say, there is a danger that dependence analysis may discover that independent access

is possible, but it achieving it may involve a deeper transformation of the specihcation that can

be achieved by the means discussed above"

Before considering cases involving unrealisabte control structures, it is instructive to see how
a cartesian product may be formed, as in the specification of Example 7 .3.3.

package body Cartesian is
A: array (domain_A) of type_A;
B: array (domain_B) of type B;
procedure product is
begin

all i in index loop
all j in domain loop

report.product (A(i), B (l));
end loop;

end loop;
end product;

end Cartesian ;

EXAMPLE 7.3.3: FoRI¿INc A CARTESIAN PRoDUCT

The analysis will factorise the specif,rcation into an 'A' process and a 'B' process as in
Example 7.3.4.

package body Cartesian_A is
A: array (domain_A) of type_A;
procedure product is
begin

all i in index loop
Cartesian_B.product (A(i)) ;

end loop;
end product;

end Cartesian_A;

package body Cartesian_B is
B :array (domain_B) of type_B;
procedure product (A : type_A) is
begin

all j in domain loop
Report.product (A, B(l));

end loop;
end product;

end Cartesian_B;

EXEVPIP 7.3.4: CARTESIAN PRODUCT PROCESSES

There is an implementation problem here: 'Cartesian_A.product' will create a call of
'Cartesian-B.product' for each value of i'. The 'Cartesian_B' package must store all these

calls throughout the inspection of 'B'. Typically, there will be too many calls to store them all
in main memory. The solution is to store the calls on secondary storage, and to read them into
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main memory in batches. Each barch can rhen be marched to an inspe.rr"" 
"rtät,e.* 

ïTîi:";
general strategy that can be applied to any batch of events that is too big to ht into main storage.
(Similar remarks were made concerning the use of the 'Memo' array in Section 3.3.) In this
case, it also corresponds to the usual method of forming a cartesian product.

Example 7.3.3 shows that an event procedure may be called an unlimited number of times
within the execution of a single event. On the other hand, an independent access update has
only two internal means of looping: itmay use one or more all loops to access the elements of
an array, and it may include while loops. However, the while loops cannot enclose the all
loops, because this would imply a series of update phases rather than one. However, there can
be a while loop within the processing of each element, and there can be while loops in the
distribution and collection phases.

Usually, if an all loop is nested within a while loop, the termination of the while loop will
depend on the execution of the all loop, as in Example I .3.5.

T:= 0;
whileT<100 loop

all i in index loop
T:=T+A(i);

end loop;
end loop;

EXAMPLE 7.3,5: INreRecrING LooPS

In this case, dependence analysis will determine that the accesses to 'A' are incompatible.
Because of the assignment, 'T' depends on 'A(i)'. In turn, 'A(i)' depends on the all loop
variable, 'i', which in turn depends on 'T' because 'T' appears in the expression that controls
the while loop. This links together definitions of 'A(i)' for different values of i', so that
independent access to 'A' is impossible.

However, it is possible to create rather afifrcial specifications where the number of iterations
of an outer while loop is independent of the inner all loop. Consider the example of Example
7.3.6, whose effect is to multiply every element of 'A' by eight:

procedure TimesS is
Count: natural;

begin
Count := 3;
while Count/= 0loop

all i in index loop
A (i) := A (i) + A (i);

end loop;
Count := Count - 1;

end loop;
end TimesS;

ExevpLe L3.6: NoN-rNrpRecrINc Loops

It is a property of this procedure that 'Count' and 'A' are separable, that is, the number of
executions of the outer loop does not depend on the number of executions of the inner loop.
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This is not a valid structure for independent access, because it has multiple update phases. On

the other hand, this is not revealed by dependence analysis, because the actions on each element

of 'A' are independent of one another. In effect, dependence analysis establishes that the

multiple update phases are not really needed. This can be seen to be true by transforming the

specification to that of Example 1 .3.7 .

procedure Times8 is
Count: array index of natural;

begin
all i in index loop

Count (i) := 3;
while Count(i) /= 0loop

A (i) := A (i) + A (i);
end loop;
Count (i) := Count (i) - 1;

end loop;
end TimesS;

Exrrr¿pL¡ 7 .3.7 : Nox-wrsRecrrNc Loops

Unfortunately, Example 7 .3.6 cannot be transformed into Example 7.3.7 using the rewriting
rules. Therefore, if.tbe Designertoolwere to decide that Example L3.6 permitted independent

access, it would be beyond the capability of the Programmer tool to implement it.

However, if the while loop and all loop are allocated to separate processes, fhe Programmer

could use the ordinary rewriting rules to derive both processes. This is an interesting

possibility. The first process accesses a local variable ('Count'), but no state variables. The

first process will generate three delayed procedure calls, and the second process will deal with
each call in turn as it processes each element of 'A', effectively iterating each assignment

statement th¡ee times. The effect at execution time would be almost as if the specification had

been transformed to that of Example 1 .3.7 .

In cases of this kind, although dependence analysis suggests that the accesses to 'A' are

independent, the Designer tool must detect that the specification of Example 7.3.6 cannot be

implemented as an independent update process because it has the wrong loop structure. The

rule is simple: an all loop cannot exploit independent access if it is nested within a while loop
in the same component process.

7.4 Frequency

In order to preserve enough information about syntactical structure to determine whether

loops are properly nested, the Designer associates each statement with a 'frequency', which is a
measure of how often it is executed. The frequency is simply a list of the all or for loop
va¡iables that enclose the statement in the specif,rcation - or in the case of a while loop, a

dummy variable associated with the control condition. Because independent access is modelled

by one or more nested all loops, only that part of the frequency that consists of nested all loops

has the correct structure to be embedded in an independent access process. (In the case of
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sequential access, we may also include for loops.) Thus, the specification of Example 7.3.6
cannot be implemented by independent access in one process. However, once the while loop
and all loop are separated, the all loop can exploit independent access.

In the specification, the frequency of the assignment in Example 7.3.6 is ('while
Count/=O', 'all i in index'). After separating the two loops into different processes, the event
procedureinthe second process is called with frequency ('while Count/=O'), so itmust have
frequency ('all i in index'). Since the second process is independent with respect to 'index',
the all loop can be embedded into the access algorithm. The frequency with which a statement

is executed in the specification therefore has two factors: its frequency within the process to
which it allocated, and the frequency with which the event procedure in that process is called.

In turn, the frequency of a statement within a process breaks down into two fuither factors:
the frequency due to the all loops modelling independent access, and its frequency within each
independent sub-process. If the leading terms of the frequency match those for modelling
independent access, they can be embedded into the access algorithm; those that remain must be
executed within the sub-processes. In the case of the assignment in Example 7.3.6, there is no
remainder, so the assignment is made once only. However, in the case of the while loop in
Example 7.3.1, it cannot be embedded, so the whole loop must be executed for each relevant
value of 'What'.

An important aspect of the example of Example I .3.6 is that a while loop can never match an

all loop. Therefore, it is not until the outer while loop has been stripped off by the first
process that the inner all loop can be matched against the all loop of an access algorithm.

On the other hand, it is not necessary that the leading terms of the frequency actually match all
the loops in the access algorithm. The effects of the loops in the algorithm can be suppressed
by selecting only a specific value or values. In effect, to evaluate:

A(k) := A(k) + 1;

for some specific value of 'k', an independent access process evaluates, in effect:
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all i in index loop
ifi=kthen

A(i) := A(i) + 1;
end if;

end loop;

7.5 Incompatible Loops

with Report;
generic

type employee is private;
type money is range <>;

package Personnel is
procedure Percent;

end Personnel;
package body Personnel is

Salary : array (employee) of money :- (others -> 0);
procedure Percent is

Total : money := 0;
begin

all Empl in employee loop
Total := Total + Salary(Empl);

end loop;
all Emp2 in employee loop

Report.Percent(Emp2, S alary(Emp2) * 
1 0O/Total) ;

end loop;
end Percent;

end Personnel;

Exeupl-e 7.5.I: FINDING PERCENTAGES oF A TOTAL

Another problem arises if loops a-re not nested, but are executed one after another. The
specification of Example7.5.1 reports each employee's salary as a percentage of the total of all
salaries. There are two loops: the first finds the total, the second reports the percentages.

Taken separately, each loop could use independent access. However, the two loops cannot be

interleaved, because the correct total is not found until after the first loop has completed, nor can

they be placed in separate processes, because they both access 'Salary', and we assume that
'Salary' could be updated by other events. The only ,ü/ay to implement this specification, as it
stands, is as a singie-thread process.
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with Report;
generic

type employee is private;
type money is range <>;

package Personnel is
procedure Percent;

end Personnel;
package body Personnel is

Salary : array (employee) of money ;= (others -> 0);
procedure Percent is

Temp : array (employee) of money := 0;
Total : money := 0;

begin
all Empl in employee loop

Temp(Emp 1) := Salary@mp t);
Total := Total + Salary(Empl);

end loop;
all Emp2 in empioyee loop

Report.Percent(Emp2, Temp(Emp2)* 100Æotal);
end loop;

end Percent;
end Personnel;

System Generation

Exevplp 7.5.2: USING A LocAL ARRAY

As a practical matter, the same effect can be achieved more eff,rciently by copying the 'salary'
array into the local a:ray 'Temp', effectively taking a snapshot of it, as specified in Example
7.5.2. Bothloops now access the 'Temp' array, but only the f,rrst accesses the 'salary' anay.
However, since there is separate, private instance of the 'Temp' array for each 'Percent' event,
there is no ionger any possibility that it might be changed by other events. Furthermore, the

array can be safely passed between processes by reference rather than value. Because the loops
on'Empl'and'Emp2' are nothierarchicallynested, we must treat them as incompatible. This
strongly suggests the loops should be placed in separate processes, making it possible for them
both to use independent access.

In contrast, the specification of Example 7.5.3 presents something of a dilemma. It is clear
that Example7.5.3 can be transformed into Example 7.5.4 by folding the two loops into one.
So the two loops are not incompatible in the sense that it is possible to interleave them within a

single independent access process. The distinction between this example and Example 7.5.3 is
that there is no longer a variable appearing in the second loop whose value depends on the

completion of the first loop. So a better rule might be to say that two loops are incompatible
only when tbey both are improperly nested, andhave a dependence linking them.
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with Report;
generic

type customer is private;
type money is range <>;

package Accounts is
procedure Averages;

end Accounts;
package body Accounts is

Authorised : array (customer) of boolean :- (others => false);
Baiance: array (customer) of money:- (others => 0);
procedure Averages is

Ave, Total : money := 0;
Count : integer:= 0;

begin
all V/hol in customer loop

Total := Total + Balance (Whol);
end loop;
all V/ho2 in customer loop

if Authorised (V/ho2) then
Count := Count + 1

end if;
end loop;
Ave := Total / Count;
Report.Balance(Ave);

end Averages;
end Accounts;

ExevIpT-¡ 7.5.3: FINDING AN AVERAGE

The dilemma arises because, although this rule would then permit the effîcient solution given
in Example 7 .5.4, it can't be derived from Example 7 .5.3 by using the existing rewriting rules.
Rather than extend them, we insist that loops in specifications can be embedded into
independent access processes only ifthey are hierarchicaliy nested - period.

procedure Averages is
Ave, Total : money := 0;
Count : integer:= 0;

begin
all Who in customer loop

Total := Total + Balance (Who);
if Authorised (Who) then

Count := Count + 1;
end if;

end loop;
Ave := Total /Count;
Report.Balance(Ave);

end Averages;

EXAMPLE 7.5.4: Loop FoLDING
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8. Use-Definition Analysis
This chapter discusses how the dependence analysis discussed in Chapter 4 can be made

rigorous enough to be used in a Design¿r CASE tool.

It was suggested earlier that dependence analysis should really be carried out with definitions
of variables rather than the variables themselves. This is because the same va¡iable may be

reused in unrelated contexts. Analysing the dependences that determine separability needs
techniques that a¡e already well known to compiler writers. These methods consider arrays as

single objects. However, analysing compatibility requires extension of the usual analysis
techniques to allow elements of arrays to be considered as separate objects. Analysing loops
requires a further extension, so that the analysis must distinguish 'dynamic' definitions from
'lexical' def,rnitions.

The input to use-definition analysis is an abstract syntax tree derived by parsing a
specification. The parsing process is described in Chapter 10. However, its details are of little
importance here - on the contrary, the output from the parsing process is determined by the
needs of use-definition analysis.

8.1 Introduction

An SDG is a kind of use-definition graph. Its vertices are definitions of variables, and its
edges represent 'uses'. A va¡iable is given a definition whenever it is assigned a new value,
typically by an assignment statement. A 'use' represents the use of one definition in
constructing another. For example, given the assignment 'x:=yi', a use-definition graph will
contain an edge from a definition of 'y' ro a definition of 'x'. (The direction of the edge is that
of the data flow.)

Of course, an event procedure may def,rne a variable more than once, so it is important to
establish which definition or definitions of a va¡iable a¡e 'live' at a given point; that is, can

determine the value of the va¡iable being defined. A definition is live at a given point if control
can pass to it from the place where the definition,was made, without the def,rnition having being
destroyed, e.g., by an intervening assignment. For example, in the sequence:

ifz=0then
., ._ f .
! .- L,

else
v'=)'
J'

y:=3;
end if;
x t=yl

'y' is defined in three places, but control flows from only the lst and 3rd definitions to reach
the definition of 'x'. Therefore, both these definitions of 'y' should be linked to the definition
of 'x' in the SDG. On the other hand, the 2nd definition of 'y' cannot reach the definition of
'x', because it is destroyed by the 3rd definition of 'y'.
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It proves inconvenient to use a set of definitions for each va¡iable; it is easier to give each

variable at most one live definition. This is done by merging definitions wherever control flows
merge. In the example just given, the live definitions of 'y' from each branch of the if
statement are merged at its end by creating a new definition of 'y' that 'uses' them. Thus only
one definition of 'y' emerges from the if statement to be used by 'x'. This is called the 'single
definition' method of use-definition analysis.

To further simplify things, every va¡iable may always be made to have a definition wherever
it is in scope. It is assumed to be initially defîned by its declaration, even if its initial definition
is immediately replaced by an assignment.

How many definitions of a va¡iable should there be? In the conventional use-definition
analysis used in optimising compilers [Aho & Ullman I972b, Kennedy 1981, Veen 1986] it is
assumed that definitions correspond to points in the text of a program, typically, its assignment
statements. This is obviously a simplification for programs that contain a loop, because the
same variable may be freshly defined by the same assignment on each iteration. As it happens,
this simplification does not affect the usual purposes to which use-definition analysis is put, but
it is inadequate to deal with the question of compatibility. Clearly, we cannot construct a graph
with a new vertex for every iteration of a loop, because, among other things, we cannot always
predict how many iterations there will be. To understand the correct solution to this problem,
we must first understand how the SDG will be used, so this part of the discussion is deferred.
For the present, we ignore loops and assume that a statement creates at most one definition. 'We

call these 'lexical' definitions, because they correspond to occurrences of the variable in the
program text.

Because a variable may have several definitions, to denote one uniquely its name can be

decorated with a subscript or superscript. Here, we use either 'Ar' or '4"' to denote the
second definition of 'A' within the text of the specification. When an array element is defined,
it is important to know not only the name of the subscript, but also its definition, so that a

definition of 'A(i)' mightbe denoted 'Ar(ir)' or '4"'(i")', indicating that it corresponds to the

3rd definition of 'A(i)', indexed by the value assigned in the 2nd definition of i'.

8.2 The Treatment of Indexed Variables

Although loops are not discussed until a later section, it is necessary to lay some groundwork.
In particular, we need to discuss the treatment of indexed variables.

For the analysis of independence, it is necessary to check if definitions are compatible. To be

considered compatible, it isn't enough for two array elements to have the same index variables;
they must have the same index definitions. Of course, two different definitions could happen to
assign the same value, but the Designer is not smart enough to prove whether this is the case.
(Only a perverse specifìer would deliberately choose to assign the same value to two different
index variables, but it is always possible for different index variables to have the same value by
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chance. Further, since a loop variable takes on every index value, it is inevitable that at some
point it will replicate the value of every other index variable with the same domain.)

Indexed variables therefore have to be treated with care. One possibility, which is adequate
for many applications of use-definition analysis, is to treat a definition such as 'A(i)' as defining
the array 'A' as a whole. Certainly an assignment to 'A(i)' changes the value of 'A'.
However, this is not adequate for checking compatibility. Instead, we regard 'A(i)' as a local
variable-i.e., as if it were held in a buffer or register. If 'A(Ð' is inspected and has no live
definition, one is constructed from the existing definitions of 'A' and 'i'.

Even so, it is not easy to decide which edges should be part of the SDG. Consider the
assignment:

A(i) := A(j);

Since 'i' and J' cannot be assumed to be equal, this dependence is considered to represent an
incompatibility, preventing independent access. The SDG should contain an edge from the
dehnition of 'A(j) to that of 'A(i)'. Because the indices 'i' and J' have different definitions, the
edge causes a conflict.

Likewise, the sequence:

t:= A(i);
i:=i+1;
A(i) := t;

should also cause an incompatibility. Although 'A' is indexed by 'i' in both assignments, the
tlvo occurences of i' have different definitions.

However, the following case is also important:

AO := x;
y := A(i);

The order of the two assignments matters; there is a possible dependence of 'y' on 'x'.
Although 'i' and J' probably have different values, they are not provably different. In the case

that'i' and J' are equal, 'y'depends on'x'. , The process that updates 'y' cannot precede the
processthatinspects'x'. Inthis case, even though two different index variables are involved,
there is no incompatibility between 'x' and 'y', because the dependence only exists if i' and J'
happen to be equal.

On the face of it, to show that the dependence exists requires the definition of 'A(i)' to use that
of 'AO'. After all, if i' and T' are equal, the definition of 'A(i)' is the definition of 'A()'. But
this case would be indistinguishable from the edge due the assignment 'A(i) := A0)'.

This presents a dilemma. If a edge linkin E array elements with different indices is considered
to cause incompatibility, then the SDG should not include one from 'A(j)' to 'A(i)'. On the

other hand, if no edge is present, then the potential dependence of 'y' on 'x' won't be detected.
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The resolution of this dilemma is to distinguish two kinds of edges. Basically, there are those
representing dependences that always exist, and those representing dependences that only arise
when two index variables happen to be equal. We refer to these edges as 'hard' and 'soft'
respectively. Independence is determined by the hard edges, whereas separability is determined
by the union of both the hard and soft edges.

A definition of 'AO' should not destroy the definition of 'A(i)', even though 'i' and J' might
happen to have the same value. To see why, consider the following event specification:

procedure Transfer (Payer, Payee : account; Amount : money) is
begin

Balance (Payer) := Balance (Payer) - Amount;
Balance (Payee) := Balance (Payee) + Amount;

end Transfer;

When this event is invoked, 'Payer' and 'Payee' are probably different, but not provably
different. If they are different, a sum of money is transferred from the 'Payer' account to the
'Payee' account. Since the operations on 'Payer' and 'Payee' are independent, they are capable
of being done in parallel, as explained in Chapter 3. Briefly, if 'Payer' and 'Payee' differ, a
coordinating process will typically send messages to two different processors to carry out the
assignments. On the other hand, if 'Payer' and 'Payee' are the s¿une, both messages will arrive
at the same processor. But provided messages reaching a given processor are acted on in the
same order that they were sent, the desired semantics will always be preserved. (In this case,
executing the event procedure achieves no overall effect.)

If the analysis were to regard the assignment to 'Balance(Payer)' as affecting the whole
'Balance' arÍay, then, since the value of 'Balance(Payee)' also depends on the 'Balance' arÍay,
the analyser would deduce that 'Balance(Payee)' depended on 'Balance(Payer)'. Now,
although this is true in the case that 'Payer' and 'Payee' are equal, it is not true when they are

unequal. Acknowiedging a dependence would preclude the analyser finding a design in which
the payer and payee could be updated independently. Therefore, it must regard the assignment
to 'Balance(Payer)' as affecting only the local 'Baiance(Payer)' variable, not the whole
'Balance' array. This assumption is correct when 'Payer' and 'Payee' are different, and
ha¡mless when they are the same. Therefore, a correct analysis must avoid constructing a
'hard' path from 'Balance(Payer)' to 'Balance(Payee)' in the SDG.

Even though it considers each array element separately, the analysis must not ignore the effect
of theassignmentto'Balance(Payer)'on the array as awhole, because atthe end of the event
procedure 'Balance(Payer)' becomes undefined, but the array has certainly been updated. The
value assigned to 'Balance(Payer)' by one 'Transfer' event can be the same value inspected by a
later 'Transfer' event, either in the guise of 'Balance(Payer)' or of 'Balance(Payee)'.
Therefore, taking the event as a whole, the use-definition graph should include edges indicating
that the f,rnal definition of the 'Balance' array uses 'Balance(Payer)' and 'Balance(Payee)' 

- or
more strictly, the definitions of them. Likewise 'Balance(Payer)' and 'Balance(Payee)' must
both use the initial definition of the 'Balance' anay. However, there must be no edge linking
'Balance(Payer)' and 'Balance(Payee)'. This is done by creating a new definition of the
'Balance' array atthe point that 'Balance(Payer)' ceases to be live (e.g., at the end of the event
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procedure), dependent on the definition of 'Balance(Payer)' and the current definition of
'Balance'. The same treatment is given to 'Balance(Payee)'. The resulting use-definition graph
is shown in Figure 8.2.I. This treatment is needed whenever the current definition of an index
variable is dropped, i.e., when an assignment is made to it, or it passes out of scope.

Payer

Balance(Payer) Balance'(Payer)

Balance'
Balance Balance

Amount

Balance(Payee)
Balance'(Payee)

Payee

FTcuRs 8.2.T: Usps eNo DEFINITIONS oF VARIABLES

In Figure 8.2.I, solid lines indicate'hard' dependences, and dashed iines indicate 'soft'
dependences. Basically, whole arrays only participate in soft dependences, but their elements
participate in hard ones. 'Balance(Payer)' denotes the initial definition of the 'Balance(payer)'
element before its assignment, and 'Balance'(Payer)' represents its definition after the
assignment. 'Balance' represents the initial definition of the 'Balance' aray before the event,
and 'Balance'' represents its definition after 'Payer' ceases to be live. Similarly,
'Balance(Payer)' and 'Balance'(Payer)' denotes the initial and final definitions of the
'Balance(Payer)' element, and 'Balance"' represents the final definition of the 'Balance' array
after 'payee' ceases to be live. Although there is a path that includes the dashed soft edges
connecting adefinition of 'Balance(Payer)' with one of 'Balance(Payee)', there is no path that
follows only the solid ha¡d edges. Thus, although the graph shows the dependence of
'Balance(Payee)' on 'Balance(Payer)', it has no incompatible edges.

Standard constructions are used to model the situations when an affay element is assigned a
value, when it appears in an expression, and when it is dropped. Figure 8.2.2 shows that
when a reference is made to an array element that is not already defined, a defrnition of it is
created, using the current definition of its parent array and its index. Figure 8.2.3 shows that
when an afiay element is defined by an assignment, a new definition of it is created that uses its
index, and any terms that appear in the expression assigned to it in this case,
'Balance(Payer)' and 'Amount'. No reference is made to the parent arÍay,as it is not necessary
to inspect it in order to assign the value. Finally, Figure 8.2.4 shows that when an ¿uïay
element is dropped, for whatever reason, a new definition is made of its parent array, using the
element being dropped and the existing definition of the affay. This construction may be taken
to model the writing of the buffer containing the element back to its parent anay.
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FIGURE 8.2.2: RpppR¡NcE To AN ARRAY ETeueNr
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FiCUN¡ 8.2.3: DEFINITION OF AN ARRAY ETEI¿PNT

Balance'(Payer)

Balance
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FICUNP 8.2.4: DROPPING AN ARRAY EI-EUENT

At first sight, these constructions do not enforce the 5th rule of Section 4.5, which makes the

array 'Balance' depend on 'Payer'. However, since 'Balance(Payer)' depends on 'Payer', and
'Balance' depends on 'Balance(Payer)' when it is dropped - which it must be sooner or later

- 
'þ¿l¿nçe' depends indirectly on 'Payer'. lndeed, the constructions of Figure 8.2.Z-Figure

8.2.4 seem more intuitive than the rather ad hoc rule of Section 4.5.

The constructions do not always result in the best possible use-definition graph. Consider a
case where a 'dead-end dehnition' is involved, as in the following sequence:

A(i) := x;
y := A(i);
A(1):=z;

where 'A' is a state variable. The first definition of 'A(i)' does not reach the end of the

sequence, and the f,trst two occurrences of 'A(i)' could be replaced by occurrences of a local
variable, so 'A' should not appear to depend on 'x'. The use-definition graph built up by the

preceding constructions is given by Figure 8.2.5, from which it is seen that they cause a soft
dependence of 'A' on 'x'. However, the SDG is consistent with the rewriting rules. As will be

seen, without the dependence, the two definitions of 'A(i)' could finish up in different
processes, and if 'A' is a state variable, there is no rewriting rule that could deat with this.
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FIGURE 8.2.5: A D¡eo-¡ND DEFINITIoN

8.3 State Variables and Local Variables

Because the final state of a state variable generated by one execution of an event procedure.
becomes the initial state for its next execution, for some purposes it is necessary to link the final
definitions of all state va¡iables back to their initial definitions. This forces all definitions of a
state variable to fall within the same strongly-connected component of the SDG, and so ensures
that all the definitions will be made by a single process. In Figure 8.2.I, linking them will
create a dependence of 'Balance' on 'Balance"', binding all the definitions of 'Balance (Payer)'
and'Balance (Payee)'into a single'{Balance}'process. In Figure 8.2.5, it will create a
dependence of 'A' on '4"', which will not bind either of the definitions of 'A(i)' into the
process that updates 'A'. This is correct, the definition 'A(i)" could occur in an earlier process
that accesses 'z', and the definition 'A(i)' could occur in another unrelated process. These
definitions could be made to local variables, and passed as parameters to the process that
updates 'A'.

The astute reader will immediately notice that linking the f,rnal definition of 'Balance' back to
itsinitialdefinitionin Figure 8.2.1 would create a sneakpath, from'Balance (Payer)'through
'Balance' and 'Balance"' to 'Balance (Payee)" 

- which is precisely what the analyser must
avoid if it is to establish the independence of 'Balance (Payer)' and 'Balance (Payee)'. The path
reflects the effect of one 'Transfer' event on another and is essential to finding the correct set of
separable processes. The same value can index the 'Payer' in one transfer and the 'Payee' in
the next. However, the path includes 'soft' edges (dashed lines), which will be ignored when
testing to see if 'Balance' can be accessed independently.

In contrast with state variables, the final definitions of local and parameter variables a¡e
dropped at the end of an event, without linking them back to their initial definitions. This is
because each execution of an event procedure uses new instances of tocal variables. As a
result, the different definitions of local variables will not form a cycle, and may therefore be
assigned to separate processes. In the case ofan ¿uïay declared as a local variable, because the
array becomes undefined at the end of the event procedure, the final definitions of its elements
must be dropped. They are not iinked to the initial definition of the array, and nothing forces
the accesses to the local array to be assigned to a single process. This is perfectly acceptable; a
local array can be passed between processes by reference. (In practice, the array could be
stored as a temporary file, and the name of the file could be passed between processes.) This
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differs from the treatment of state variables, for which passing a reference is invalid - because

of the lags between processes, an incorrect (future) state of the variable might be observed by
the downstream process. But since a local variable is private to a single instance of an event, its
observed state is always exactly the one required.

It may not ahvays be strictly conect to link the initial and final definitions of state variables.
There are often restrictions on the order ofevents, so that a final definition created by one event
may not really be the initial definition used by another, or even by itself.

The allowed sequences of events may usually be described by a regular graÍlmar or finite-
state automaton. For example, it might only be possible to close an account that was already
open, it might be incorrect to open an account or close it twice in succession, and so on. A
'state transition diagram' is a graph whose veftices are states and whose transitions are events.
If we consider the state transition diagram of such an account, shown in Figure 8.3.1, it has

two distinct states: 'inactive' and 'active'.

lnactiv e Active

Tran sfer

FTCURE 8.3.1: Srern TRaNSITIoN DIAGRAM oF AN ACCoUNT

In principle, the definitions of the account att¡ibutes could be partitioned into two sets, each

associated with one of the two states. Each set would contain the final definitions following the
event edges that enter the states, and the initial def,rnitions of the edges that leave them. The
definitions belonging to the 'inactive' state would be the final definitions of 'Close' events and
the initial definitions of 'Open' events. The defìnitions belonging to the 'active' state would be

the final definitions of 'Open' events, and the initial definitions of 'Close' events. They would
be also both the initial and final definitions of 'Transfer' events. There is then no a priori
reason why the definitions in the 'active' and 'inactive' sets should be allocated to the same

process, even two def,initions of the same variable. Without changing the behaviour of the

specification, a specifier could give the same atüibute different names according to whether it
was in the active or inactive state.

Distinguishing the states would not be helpful in this example. Consider the definitions of
'Balance' in the two states. Its definition in the 'active' state depends on its definition before
the 'Open' event, which is its definition in the 'inactive' state. This definition in turn depends
on its definition before the 'Close' event, which is its def,rnition in the 'active' state. Thus the

two definitions form part of the same strongly-connected component, therefore they must be

accessed by the same process, and distinguishing them would achieve nothing.

The only situation where a restriction on the sequence of events is likely to offer any
additional freedom to the designer is when there is an acyclic relationship between states. This
might happen in following the progress of a student through a university course. The student is
at first an 'applicant', after admission the student becomes an 'undergraduate', after graduation
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the student becomes a'graduate'. There are no real-world events corresponding to 'de-
admitting' or 'ungraduating', so the state transition diagram is acyclic. The attributes of
students in these three states could be given distinct names. Indeed, it is possible that
information about students in these different states might be held in different tables, or even in
different databases. Despite this, imaginary events such as 'de-admitting' or 'ungraduating'
would probably need to be part of the system specification, to allow errors to be conected after
a student had been 'admitted' or 'graduated' by mistake. If these were handled in the same
mode that handled admitting and graduating, then separating the states would no longer be
practical.

We do not address the issue of event sequence in this thesis, for th¡ee reasons: first, the
specification language does not spell out the possible event sequences; second, separating
distinct definitions of a variable is rarely helpful in pracúce; and third, when it is, the specifier
can give different names to the separable definitions of variables.

8.4 An Analysis Algorithm

The analysis of an event procedure as a whole begins with the set of initial definitions of state

variables. The initial definitions arising from parameter declarations and local variable
decla¡ations are added to this set, then the body of the procedure is analysed. During the
analysis of the procedure body, definitions of loop variables and of array elements may be
created and dropped. At the end of the event procedure, the definitions of all local va¡iables and
parameters are dropped, including any array element definitions of state variables, which a¡e

then linked to definitions of the anays themselves.

The body of an event procedure is represented by an abstract syntax tree. Each node of the
tree represents a statement. Where one statement contains other statements, the enclosed
statements are part of the subtree rooted at the node that represents the enclosing statement.

An event procedure can be analysed recursively, applying local rules that depend on the type
of statement represented by the root of the current subtree. Apart from the subtree itself, the
recursive algorithm needs two further arguments: the set of live definitions reaching the
statement, and the 'conditional context', explained in Section 8.8. As results, it returns the set

of live definitions that leave the statement, and two subgraphs representing the dependences

created within the statement: one representing the 'hard' edges, the other representing the 'soft'
edges. The live definitions that enter a null statement emerge from it unchanged, but most
other statements drop some definitions, and create others.

The subgraph returned by anaiysing the body of an event procedure represents the SDG for
that event. However, since the analysis of each event begins with same set of initial def,rnitions
of state variables, the subgraphs for each event automatically become linked into a single SDG
representing the complete specification.
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8.5 The Analysis of Compound Statements

The body of an event procedure is a compound statement, comprising a list of simpler
statements. Such a list is analysed by examining each statement in turn, applying the rules
particular to each type of statement.

The analysis of the statement 'begin Si; 52; end;'may be symbolised as in Figure 8.5.1. In
the figure, each circle represents a set of definitions, the rectangles represent mappings from
one set to another that are due to the statements concerned. The live definitions that leave the
first statement in the sequence become the initial definitions for the second statement, so that the

final dehnitions ieaving the compound statement a¡e simply those that leave the last statement in
the sequence. The SDG that results from a sequence is simply the superposition of the graphs
for each statement in the sequence. (The example is easily generalised to sequences of arbitrary
Iength.)

r I

FrcuRp 8.5.1: CoNsrRucrroN FoR A STATEMENT SEeUENCE

8.6 The Analysis of Expressions

An expression is analysed by merging the subgraphs for each term. If a term already has a
live definition, the analyser returns a subgraph consisting of a single vertex: the definition
concerned. Except for indexed variables, all variables should always have one live definition.
Howevet, the first reference to an indexed va¡iable, 'A(i)' say, should hnd 'A' and 'i' have live
definitions, but that 'A(i)' doesn't. The analyser then creates a subgraph with a vertex for a

new definition of 'A(i)' that uses the live definitions of 'A' and 'i'. (An example of this
construction was used to define 'Balance(Payer)' in Figure 8.2.2 on Page 182.)

The analysis of expressions is simplified by a restriction on the specification language that
requires subscripts to be simple variables rather than general expressions. It allows the analysis
of termstobecompletedintwo passes: one to fînd the live definitions of simple variables, the

second to find the live definitions of indexed variables. Without the restriction, the analysis of
expressions would need to be recursive.

8.7 The Analysis of Assignments

The subtree representing an assignment statement has two children: one representing the
assigned variable, the other representing the assigned expression. The expression is analysed
(as just explained) beþre the definition of the assigned va¡iable is dropped. Then the assigned
variable is given a new definition, using the live definitions of all the terms in the assigned
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expression and in the 'conditional context', i.e., all the definitions used in its enclosing control
expressions.

A va¡iable is 'dropped' by deleting its current definition from the set of live definitions. An
important case arises in the case of an array element. Although would be possible to keep track
of several elements of the same array, in the event that their indices happened to have the same
value any other element could be an alias of the element being def,rned. That is to say, a
definition of 'A(i)' could be a definition of 'A()' in the case that 'i' and J' happen to be equal.
The analyser deals with this by dropping the definition of the alias ('A(j)'), treating it as an

update to the whole affay, as in Figure 8.2.4 (Page 182). It then constructs a new reference to
the defined variable ('A(i)'), as in Figure 8.2.2. This deals correctly with the case that the
indices are equal. (It thus creates a soft dependence of 'A(i)' on 'A(j)'.) Because any existing
alias is dropped when an anay element is defined, there can never be more than one live element
definition for any given array.

8.8 The Analysis of 'If' Statements

The treatment of if statements is pivotal to the analysis as a whole.

The root of a subtree corresponding to an if statement has three children: the control
expression, the statement that is executed if the expression is true, and the statement that is
executedif the expression is false. The two statements are referred to as its 'true branch' and
'false branch' respectively. Assuming that the dependence analyser is capable of processing the
true and false branches recursively, it is only necessary to discuss how to combine the results
from the two branches correctly.

A problem is to avoid creating false dependences. consider the statement:

if U(i) then
if V(i) then

X(i) := V/(i);
end if;

end if;

where 'X(i)' depends on 'X', 'i', 'IJ(i)', 'V(Ð' and 'W(i)'. However, 'W(i)' depends only on
''W' and 'i', and not on 'U(i)' or 'V(i)'; nor does 'V(i)' depend on 'U(i)'. The analyser should
not constrain the order of accesses to 'IJ', 'V' and ''W' unnscessarily. The references to 'U(i)',
'V(i)' and 'V/(i)' could be safely promoted outside the context of the if statements, as follows:
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Ui := U(i);
Vi := V(i);
Wi := V/(i);
if Ui then

if Vi then
X(i):=Wi;

end if;
end if;

However, the reference to 'X(i)' cannot be promoted. If the control conditions fail, the final
definition of X(i) is its initial definition. The following would be wrong, because there would
then be no way for the initial definition of 'X(i)' ro survive:

Ui := U(i);
Vi := V(i);
Wi:=W(i);
if Ui then

if Vi then
Xi := V/i;

end if;

Therefore, the analyser should make the definition created by an assignment, e.g., 'X(i)',
depend on the terms in any enclosing control expressions, but it.should not make the definitions
of elements inspected within expressionS, e.g., 'W(i)', depend on them.

The solution is as follows: buring the analysis of an if statement, the live definitions of the
terms of the control expressions are added to a'conditional context'. 'When if statements are

nested, the conditional context is extended at each level of nesting. A definition created by any
assignment within the if statement uses all the definitions in its conditional context. For
example, if a true or false branch contains an assignment statement, the analyser makes the new
definition of the assigned variable depend on all the definitions in the conditional context. On
the other hand, the conditional context is ignored within the analysis of expressions.

The mechanism for handling the conditional context is simple. A dummy variable is
associated with the control expression, and this variable is assigned the value of the expression.
The definition of this variable becomes the new conditional context. Since its evaluation takes
place under the control of the existing conditional context, the new context automatically
depends on the existing one. As a rule, representing the conditional context by a single variable
will generate less edges in the SDG than representing it by the set of variables in the control
expression would do. If there are m terms in the control expression and n assignments
dependent on it, using the dummy variable will require m+n edges; without the dummy variable
there would need to be mxn edges.

As has already been outlined, rather than have two definitions of the same va¡iable emerge
from an if statement, they are merged into a single definition. Each branch is capable of
creating new definitions for variables. If a branch does not define a variable, the same
definition that entered the branch will also leave it. Since the set of def,rnitions entering each
branch is the same, the two definitions of a variable that leave the branches will be the same
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only if neither branch created a new one. But if the definitions are different, the analyser
generates a subgraph containing a new definition that depends on both those emerging from the
branches. Since definitions made within the branches depend on the conditional context, which
includes the if expression itself, the new definition indirectly depends on the if expression.

The construction for the statement 'if B then S1; else 52; end if;' is symbolised in Figure
8'8.1. The set of definitions entering the if statement is augmented by assigning the control
expression to the dummy variable representing the conditional context. The augmented set of
definitions ('D1') forms the initial set of definitions for both the true and false branches. 'D2'
and 'D3' are the sets of definitions emerging from the two branches. These two sets are then
merged into one to produce 'D4'.

_J
Flcun¡ 8.8.1: CoNsrRucTIoN FoR AN .IF, STATEMENT

It is easy to merge the dehnitions of simple variables. If the variable is assigned a value ín
either branch, its two definitions will be different. A new, third definition is constructed which
then uses the other two, so that only one definition emerges from the if statement. Since any
assignment within the if statement will make the assigned variable depend on the conditional
context, the new definition also indirectly depends on the context. However, if the definitions
emerging from the true and false branches are the same, then the variable cannot have been
assigned a value, and no construction is needed.

Merging definitions is more complicated when a conditional assignment is made to an indexed
variable, 'A(i)' say. If the index variable ('i') has the same definition emerging from each
branch, the definitions of the indexed va¡iable can be merged as above. A further case arises
where no reference has been made to 'A(i)' before the if statement, one branch of the if
statement refers to 'A(i)', but the other doesn't, and so no dehnition of 'A(i)' emerges from it.
In that situation, the definition emerging from the second branch should actually be that which
would have held on entry to the if statement. Logically, the analyser should construct the
missing definition, and merge it with the live definition from the active branch. However, it is
simpler to let the existing live definition emerge from the if statement, because creating the new
one would add no fresh dependences to the SDG. (It would merely cause 'A(i)' to depend on
'A' and 'i', which it does aiready.)

However, a more careful treatrnent is needed when the index has a different definition
emerging from each branch, as in the following example:

S1

mergeE*P

52
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if E then
i:= j;
t:= A(i)i

else
: .- t-.l.-Nr

t:= A(i);
end if;
B(i) := t;

Here, there a¡e three def,rnitions of i', two created by assignments, and the merged definition
following the if statement, which is used in the assignment to 'B(i)'. The two definitions of
'A(i)' potentially refer to different elements of 'A'. It is therefore illogical to merge them into a
single definition. It would be feasible to create a new defìnition of 'A(i)' using the merged
definition of i', and make it depend on the two existing dehnitions created by the assignments.
Howevet, this definition would be incompatible with both existing definitions, and would
suggest that independent access to 'A' was not possible, when it actually is. So instead, it is
better to link both definitions of 'A(i)' by 'soft' edges to a new definition of the array 'A' as

whole, then drop them. This does not create the appearance of an incompatibility, because it
does not create a path between the two definitions of 'A(i)'.

However, the 'single definition' method of analysis described here does not solve all
compatibility problems. For example, the definition of 'B(i)' above uses the merged def,rnition
of i', and so appears to be incompatible with both definitions of 'A(i)' because all three have
different index definitions. In reality, it is compatible with both of them: whichever path the

execution takes, the value of i' used in 'B(i)' is the same as that used in 'A(i)'.

Two other methods of analysis can be considered: the 'set of live definitions' method, and the

'case analysis' method.

In the 'set of live definitions' method, which is well known and widely used [Aho er ø/.

19861, a variable is allowed to have multiple definitions. Thus, after an if statement, the sets of
definitions from its two branches are simply merged together, forming their union.
Immediatelyaftertheif statement in the above example, there would be two definitions of 't',
two definitions of i', and two definitions of 'A(i)'. Unfortunately, it is not possibie to
recognise which definitions are associated with each another. The reference to 'B(i)' must
therefore use both definitions of i', creating two alternative definitions of 'B(i)'. Each
def,rnition of 'B(i)' must also use both definitions of 't', indirectly using both definitions of
'A(i)'. Two combinations of 'B(i)'with't'are compatible, but the other two create the

appearance of incompatibility. The 'set of live definitions' method therefore has no advantage

over the 'single def,rnition' method, and tends to generate a more complex SDG.

On the other hand, the 'case analysis' method is capable of analysing the above example
correctly. This method considers the two possible executions of the if statement separately. If
the control condition is true, only one def,rnition of i' and one definition of 'A(i)' emerge, and
the definition of 'B(i)' is found to be compatible with that of 'A(i)'. The same conclusion is
reached if the control condition is false. The two cases may be considered by back-tracking
through the possible execution paths. In effect, two definitions of 'B(i)' may be constructed,
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one for each execution path. Essentially, the 'single definition' and 'set of definitions' methods
fail because they construct only one case for the definitions 'B(i)', which of course cannot be
compatible with both definitions of 'A(i)'. However, the 'case analysis' method is not
infallible, as the following example shows:

if E then
: .- :.r.-J,
t := A(i)l

else
: .- t-,l.-Ãt

u := A(i);
end if;
if E then

B(i) := t;
else

B(i) := u;
end if;

Unless the analysis recognises the equality of expressions (the two occurrences of 'E'), it will
consider that there are four execution paths rather than just two. The two cases that cannot
occur in practice create apparent incompatibilities. A second problem with the 'case analysis'
method is that, as in the above example, the number of execution cases can increase
exponentially with the number of if statements.

Given that all th¡ee methods will sometimes f,rnd false incompatibilities, the 'single definition'
method was chosen because it has the least computational complexity. Given suitable
supporting data structures, its worst-case execution time is proportional to the product of the
length of the program text and the number of live variables. Although the 'case analysis'
method will succeed in some cases when the 'single definition' method faiis, it is doubtful
whether such cases arise often enough in practice to justify its use.

One final point. To satisfy the needs of the Programmer tool it is necessary to associate the if
statement with a process. This is done by treating the evaluation of the control expression as an

assignment to a dummy variable. Dependence analysis and optimisation result in allocating this
variable to a process. This process is then the correct one in which to evaluate the control
condition, and therefore the conect place for the if statement.

8.9 The Analysis of Procedure Calls

The analyser does not support internal procedures. The effects of internal procedures can be
specified by writing them in-line, or replacing them by one or more function calls. The only
procedure calls allowed are those on events in extemal packages.

The subtree representing a procedure call has two children: the identifîer of the called
procedure, and a list of all the terms in the expressions that are the parameters of the call. A
call statement is treated as if it r'vere an assignment in which the parameters are assigned to the
called procedure. Howevet, if a live definition of the called procedure already exists, it is not
dropped, but is used by the new definition, as if the existing definition were another parameter.
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It is necessary because any definitions that are not live at the exit of an event procedure are

ignored, as they can have no external effect. If a definition created by a procedure call did not
use the existing definition of the cailed procedure, it would be treated like a dead-end
assignment, and only the final call would have any effect. This approach can also be justified
by considering the called procedure to be associated with a queue to which successive calls are

appended.

Because calls are treated like assignments, they also receive exactly the same treatment within
if statements.

8.10 The Analysis of Return Statements

The subtree representing a return statement has one child: the returned expression. There are

two contexts in which a return statement can appear, within a function, or within a procedure.
If the return statement appears in a function, it is not analysed at all, because the analysis of the

whole function is skipped. A function call such as 'min(x,y)' is treated in the s¿rme way as the
expression 'x+y'; the actual defìnition of the function is irrelevant to dependence analysis. A
return statement within a procedure can't return an expression. However, since a return
statement causes the procedure to exit, it is treated in the same way as the end of the procedure
itself: the definitions of locai variables are dropped and the definitions of array elements are

linked to final definitions of their parent anays.

8.11 The Analysis of Loops

If a reference is made to an a.rray element such as 'A(i)' and a reference is made to a different
element such as '40)', we assume that 'i' and J' can be unequal. If 'A(i)' depends on 'AO' or
'A(j)'depends on'A(i)', either directly or indirectly, we say the references to'A'are
incompatible. Similarly, if 'A(Ð' depends on 'A(i)' but 'i' has different definitions in each

case, we assume the definitions can be unequal, and again decide that the references to 'A' a¡e

incompatible. What happens if the references occur inside a loop that modifies 'i'? Although
'i' is known to have different values on each iteration of the loop, it only has one definition,
because the definition of i' corresponds to one of its lexical occurrences in the text of the loop.
A definition cannot be unequal to itself.

To analyse such loops properly, it is necessary to distinguish 'dynamic definitions' from
'lexical definitions'. That is, although 'i' may have oniy one lexical definition in the text of the
specification, it is given a new dynamic definition for each iteration of the loop. Each lexical
definition therefore corresponds to a series of dynamic definitions. In the absence of loops,
each lexical definition has at most one dynamic definition, which is why it was unnecessary to
distinguish them in the preceding discussion.

However, it would be wrong to drop the notion of lexical definitions in favour of dynamic
definitions, because it is iexical definitions that must be allocated to processes. It would be
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embarrassing for two dynamic definitions to be allocated to different processes, only to find that
they were associated with the same lexical definition. This would imply that the same fragment
of program text would need to be placed in more than one process, which wouid be inconsistent
with the rewriting rules for delayed procedure call. Therefore, it is necessary to use lexical
definitions to determine separability, but to use dynamic definitions to analyse independence.

8.11.1 While Loops

The most difficult case is that of a while loop. The anaiyser must try to determine what
dependences exist between one iteration of the loop and the next. 'We may immediately
distinguish two kinds of while loop. The f,rrst is illustrated by Exampte 7.3.1, reproduced
here as Example 8.11.1, which sets'Order_Qty (What)'to the least multiple of
'Economic_Order_Qty (What)' that is no fewer than 'shortage (V/hat),.

Order_Qry (What) := 0;
while Order_Qty (What) < Shortage (What) toop

Order_Qty (WhaQ := Order_Qty (What) + Economic_Order_ery (Whar);
end loop;

ExRvTpI-E 8. 1 I. 1: A .CoMPATIBLE' WHILE LooP

As aiready discussed, the loop in Example 8.1 1.1 has little effect on dependence analysis. The
loop involves only one value of ''What', so the¡e can be no interaction between different array
elements.

The second kind of loop is illustrated by ExampleT.3.2,reproduced here as Example 8.II.2.

while Boss (Who) /= null loop
Who := Boss (Who);

end loop;

Exevple 8.1I.2: AN .INCOMPATIBLE' WHILE Loop

The loop in Example 8.IL.2 accesses multiple values of 'Who', and furthermore, each value
depends on the previous one. For this dependence to be apparent in the SDG, there must
clearly be more than one vertex representing a definition of 'Who', and they must be connected
by a path.

If we assume that definitions a¡e associated with places in the text of the specification, there is
only one relevant definition of 'Who', which must clea¡ly be equal to itself. However, if we
assume that the number of definitions of 'Who' is equal to the number of iterations of the loop,
the number is unknown, and may even be infinite. For the Designer program to succeed, the
SDG must be finite, so some way has to be found to represent a potentially infinite graph in
finite space. The graph must obviously contain at least two definitions of ''Who', otherwise -since a thing must be equal to itself - there is no way to conclude that its definitions on
successive iterations are unequal.
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A potential problem is that it may take more than two iterations to establish a dependence

between va¡iables, as in Example 8.11.3.

whileA/=0loop
A:=B;
B:=C;
C:=D;

end loop;

Ex¡Ir¿pT.¡ 8.1 1.3: AN INoRSCT DEPENDENcE

It takes 3 iterations of the ioop in Example 8.11.3 to establish that 'A' depends on 'D'. The
first definition of 'C' depends on the initial definition of 'D', the second definition of 'B'
depends on the first definition of 'C', and the third definition of 'A' depends on the second
definition of 'B', and thence of the initial defrnition of 'D'. In principle, such a chain of
assignments may be a¡bitrarily long.

A possible approach is to regard a while statement as an sequence of if statements: i.e., the

statement 'while E loop S; end loop;' is treated as 'if E then S end if; if E then S end if;
...'. The SDG is constructed for at least two successive if statements, but the construction
must continue until all dependences have been discovered. The SDG for two iterations of
Example 8.1 1.3 is shown in Figure 8.1 f . i.

In Figure 8.11.1, unprimed names, such as'A', represent the initiat def,rnitions of the

variables before the loop. The primed names, such as '4", represent the definitions created by
the assignments on the first iteration of the loop. All of them depend on 'A', because 'A' is part

of the loop's control expression. The doubly-primed names, such as '4"', represent the

merged definitions that result from treating the first iteration of the loop as an if statement. The

triply-primed names, such as '4"" represent the definitions created on the second iteration of
the loop. The quadruply-primed names represent the merged definitions resulting from treating
theseconditeration as an if statement. They all depend on '4"'. This construction correctly
models the dependence of 'A' on 'C': there is a path from the initial definition 'C' through '8",
'8"', and '4"" to 'A""', the final definition of 'A'. However, it would take a third iteration
to establish the dependence of 'A' on 'D'.
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FICUR¡ 8.1 1.1: SDG FoR 2 ITERATIONS oF EXAMPLE 8.1 1.3

How can it be determined when enough iterations have been modelled? It seems intuitively
obvious that termination should be associated with finding the closure of the SDG. However,
the graph of dynamic definitions can never reach closure, because each iteration generates a new
set of vertices. Instead, we turn to the graph of lexical definitions, shown in Figure 8.II.2.

FIGURE 8.11.2: LEXICAL DEPENDENCES FoR ONE ITERATION oFEXAMPLE 8.11.3

FIGURE 8. 1 1 .3: LgXCeI- DEPENDENCES FoR 2 ITERATIoNS oF ExeIr¿plg 8. 1 1 .3 .

FIcuRg 8.11.4: LexlcRr. DSpSNoBNCES FoR 3 IrsRArroNS oF Exllvlpls 8.11.3

Figure 8.IL2 shows the dependences between lexical definitions that can arise in one

iteration of the loop. Figure 8.1 1.3, shows the dependences that arise after two iterations of the
loop. This graph is found by forming the product of the original graph with itself. The product
contains an edge for every compound path of length 2 in the original graph. The union of the

product and the original graph yield Figure 8.11.3. Similarly, Figure 8.11.4 shows the

dependences arising from 3 iterations. This is found by forming the product of the original
graph with Figure 8.11.3, which contains an edge for every path of iength 3 in the original
graph, then forming its union with Figure 8.1 1.3. However, if we were to repeat this process
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again, the resulting graph would still be that of Figure 8.IL4, because the longest path in
Figure 8.II.2 has length 3. In other words, Figure 8.11.4 is the transitive closure of the lexical
SDG. Since it takes 3 steps to find the closure of the lexical graph, modelling 3 iterations of the

dynamic definition graph is also sufficient to model all the dependences between va¡iables.

A more appealing idea is to model the loop by constructing a dynamic definition graph that
also contains a loop. With the correct construction, only two definitions of the variables are

ever needed to represent any loop conectly. The construction is shown in Figure 8.1 1.5. Each

iteration is modelled by an if statement, as before. The set of definitions emerging from the

second iteration of the loop body is linked back to the set of definitions entering it. This
simulates as many iterations of the loop as needed. The first iteration must still be treated

separately, for two reasons: at least two dynamic definitions are needed to detect

incompatibility, and it prevents unwanted interactions between different loops.

FICURE 8.1 1.5: AN ALTERNATIVE CONSTRUCTION FoR A .WHILE' LooP.

The diff,rculty with this approach is to decide which definitions should be linked together.
Linking identical dynamic definitions would simply link them to themselves. Linking identical
lexical definitions would also be incorrect, because there may be several iexical definitions of a
variable within a loop, so its final lexical def,inition should be linked to its first. The only
remaining altemative seems to be to link the live definitions of the same variabies. 'Whereas this
is correct, we must be careful about what we mean by 'the same va¡iable'. Consider the

following loop:

i:=0;
whileicnloop

i:=i+1;
A(i) := A(i) + 1;

end loop;

It is certainly sensible to link the hnal and initial definitions of i', because its f,rnal definition for
one iteration is its initial definition for the next. Unfortunately, applying the same rule to the

definitions of 'A(i)' links two definitions of 'A(i)' having different dynamic definitions of i' as

indices, so the accesses to 'A' seem to be incompatible. Clearly, it is wrong to regard the two
defìnitions as matching, because they can concem different array elements. The rule adopted is
therefore the following: two definitions match either if they are definitions of the same simple
variable, or they are definitions of the same array element, i.e., they have identical index
definitions. In this case, the definitions of 'A(i)' would not be linked, because, although they
are both indexed by the same lexical definition of i', they are indexed by different dynamic
definitions.
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As an example, consider the loop of Example 8.1I.2. In Figure 8.11.6 'Who' and 'Boss' are
the initial definitions of 'Boss' and 'Who' before the loop. The (unprimed) definition 'Boss
(V/ho)' is that caused by the reference to 'Boss' in the expression controlling the first execution
of the loop. The (primed) definition ''Who" is created by the first execution of the assignment
statement, and depends on 'Boss (Who)' both because it is the assigned expression, and
because it is in the conditional context. Since the existing definition, ''Who', must be dropped,
'Boss (Who)' becomes invalid, and must be dropped too. It is linked to a new definition of the
'Boss' aÍray, 'Boss", which depends also on'Boss'. The (doubly-primed) definition ''Who"'
results from conditionally merging the definitions of 'Who'and ''Who". The definition
'Boss"' results from conditionally merging the definitions of 'Boss' and 'Boss". In a similar
way, the definitions of 'Boss"(Who")', 'Who"", ''lVho""', 'Boss"" and 'Boss""' afe
constructed to model the second iteration of the loop. (Note the edge from ''Who""' back to
''who"'. Because 'Boss"(who")' indirectly depends on 'Boss(who)", and 'who"' and
''Who' a¡e different definitions, we deduce that the accesses to 'Boss' involve different indices,
and a¡e not independent.

FIGURE 8.11.6: THE SDG FOR THE LOOP OF EXAMPLE 8.11.2.

On the other hand, in the case of the loop of Example 8.1 1.1 it is clear that, whatever its SDG
may look like, there is only one definition of 'What', so all the accesses to 'shortage',
'Economic Order Qty' and 'Order Qty' are compatible. Therefore, the final definition of
'Order_Qty(What)' should be linked to the initial one.

8.1I.2 All Loops

The treatment of all loops depends on whether the system implementation will use sequential
or parallel access. If sequential access is intended, an all loop can be treated in exactly the same
way as a for loop, discussed in the next section. There are two approaches to the analysis of
parallel all loops: the 'trusting', and the 'careful'. Using the trusting approach, since the
specifier has declared the instances of the loop body to be independent, they may be treated just
like a single instance.

Boss

Boss'

Boss

Who Who' Who

'Who'
Who'

B oss

flMho)
Boss'

)

Boss"'

B oss'

The trusting approach is not always safe. For example, in the loop:

t97



Use-Definition Analysis

all i in index loop
T:= A(i);
B(i) := T;

end loop;

Exnvpts 8.11.4: A B¿,or-y Specr¡rpo ALL Loop

there is a potential interaction between loop body instances via the shared variable 'T'. The

effect of the loop is unpredictable, and is probably an error on the part of the specifier. A
conect analysis should find that 'B(i)' can use an instance of 'A(i)' with a different definition of

An all loop may more accurately be modelled by two parallel executions of its loop body,
each using a different definition of its loop variable. Then every use of a shared variable (i.e.,
any variable not indexed by the loop variable) in one execution instance should be cross

connected fo every definition of the same variable in the other instance. This models all
possible timings of the t\ryo execution paths. Figure 8.11.7 shows the SDG for the loop of
Example 8.1 1.4. (For ease of drawing, some edges have been omitted.)

FICURS 8.1 1.7: SDG FoR THE LooP oF EXAMPLE 8.1 1.4.

In the SDG of Figure 8.11.7, unprimed names represent the initial definitions of the

corresponding variables, singly primed names represent definitions associated with a first loop
body instance, doubly primed names represent definitions associated with a second loop body
instance, and triply primed names represent the final definitions obtained by merging the two
loop body instances. Because 'T' is a shared variable, 'T" and 'T"' are interconnected (but

not '4" and '4"' or 'B" and '8"'). This creates a path from 'B'(i')' to '4"(i")', for
example, which involves different index definitions, revealing that the loop cannot be safely

executed in parallel.

This treatment does not forbid shared variables, providing they are used correctly. In
particular, if the shared va¡iable is read-only, no path involving unequal indexes will occur, nor
will one occur in the case of an accumulator va¡iable.

A (i') B'(i')

A" (i" ) (i)
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Actually, the current implementation of the Desígner tool does not use either of these
approaches, but treats an all loop as if it were a while loop containing an assignment to the
loop variable. The reason for this arises from the restriction that indices must be simple
variabies, a property that simplihes many aspects of the Designer. As was illustrated in
Example 2.6.L andExample 2.6.2, this sometimes means that index variables must be declared
within a loop body. However, the Design¿r is not sophisticated enough to distinguish a correct
situation, as in Example 2.6.2, from an incorrect situation, as in Example 2.6.1. Conecting the
defect would be laborious, but it is not a problem in principle.

8.1.1.3 For Loops

Unlike an all loop, a for loop may reliably create a dependence between one indexed element
and another, as in Example 8.1 1.5. This loop only makes sense in a sequential context, never
in a parallel one. Indeed, it is unlikely to be sensible in most sequential contexts too, because
there is usually no logical connection between the successive values of such indexes as

customer numbers or product codes.

for i in index loop
T:=T+A(i);
B(i) := T;

end loop;

EXAMPLE 8.11.5: A DEPENDENCE BETwEEN ITeRATToNs

In a parallel implementation, a for loop must be treated as a while loop containing an

assignment to the loop variable. Thus the loop variable has a different def¡nition in each
instance of the loop body. But in a sequential implementation, it may be treated as a while
loop in which the loop variable is given a definition before the loop, rather than within the loop.
The loop variable then has the same def,rnition in each loop body instance, so that paths between
definitions in successive iterations will not destroy compatibility. This is the method currently
used by the Designer. As a result, the Designer can be used to derive designs for either parallel
or sequential impler¡rentation by changing the way that for loops are specified. In most cases a
for loop can be expressed as an all loop. But in those cases where there is intended to be a
dependence between iterations, as inExample 8.11.5, an all loop cannot be used. If a

sequential implementation is intended, a for loop should be specified, but if a parallel
implementation is intended, a while loop must be specified instead.
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9. Optimisation

9.1 The Composition Problem

Once the SDG of a system has been derived from a specification, it is simple to find the
strongly-connected components that define its CPG. There are well-known algorithms that can
find the strong components of a graph in a time proportional to the size of the graph. (See
Section 4.8.) The CPG always allows a real-time equivaient decomposition of the system into
component processes, but it is not always the most effrcient decomposition. As illustrated in
Chapter 6, it often pays to combine compatible processes.

The processes of a system are composites of its cànonical processes, chosen to optimise
system performance. Each composite process corresponds to a set of canonical processes, and
each canonical process belongs to exactly one composite. In other words, the composite
processes partition the vertices of the CPG.

Even a small set has many possible partitionings. For example, if a process graph has just 5
vertices, they may be partitioned into composites with the following sets of sizes: { 1,1,1,1,1 },
{rJ,l,2}, {1,i,3}, {1,2,2}, {1,4}, {2,31, or {5}. There are S2partitionings in all: there is 1

way to form the {1,1,1,1,1} or {5} parritionings, 10 ways to form { !J,r,21, {1,1,3} or
{2,3} partitionings, 15 ways of forming {I,2,2} partitionings, and 5 ways of forming {1,4}
partitionings. Thenumberof waysof partitioningaset grows very rapidly with the size of the
set, being a Stirling Number of the second kind. Although the examples in earlier chapters
suggest that an optimal set of composite processes is easily found by common sense, it will be
shown that the optimum partitioning problem is potentially complex - specifically, Np-
complete.

No computer algorithm can afford to test all the possible partitionings of a iarge process
network. A more directed search for a solution is needed. Two methods are considered here:
Branch and Bound Search, and a greedy heuristic method. Both methods have their own
characteristics. Branch and Bound Search guarantees to find a solution that has the least value
of some cost function, in this context, some measure of execution time. Although a Branch and
Bound Search often finds a optimal solution quickly, its worst-case execution time grows
rapidly with the size of the problem. On the other hand, a greedy heuristic method always finds
a solution quickly, but the solution may not be optimal. In practice, a greedy method can be
found that performs suqprisingly well for realistic process composition problems.

9.2 The Lattice of Process Graphs

Both the methods to be discussed operate by combining pairs of processes, starting from the
CPG. It is important to show that an optimal solution can indeed be found by pair-wise
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composition, and that no more general form of composition is needed. This can be proved by
showing that the set of all partitionings forms a lattice under pair-wise composition.

A partitioning generates a homomorphism from the canonical minimal process graph to a

'composite process graph' in which sets of vertices (minimal processes) are mapped to a single
partition (a composite process). Each partition is represented by a vertex of the composite
process graph. An edge joining two vertices of the ca¡onical graph is mapped to an edge

joining the corresponding partitions of the composite graph. Duplicate edges are merged.

Composing the vertices of an acyclic graph in this way may generate a cyclic graph. Because

of the Data FIow Theorem, cyclic graphs do not correspond to valid process graphs. (Such an

invalid composition was iilustrated in Figure 4.1.4 of Page 93.) Since all valid process graphs

are acyclic, they have unique transitive roots. Therefore, if we consider only their transitive

roots, each patitioning of a CPG that leads to a valid process graph has a unique corresponding

composite process graph.

A,B

{A}, {.4Þ1, {B},
{B,c,D} {c,D} {A,c;D}

{c}, {A,c}, {D},
{A,B;D} {B,D} {A,B;cl

{C,D},
{A},{B} {A},{

{A,B},
] {A},{D} {B},{D} {c},{D}

),
Ì {B},{

{A},{Bi,{c},{D}

FTCUR¡ 9.2.I: THE LATTICE oF PARTITIoNS FoR 4 ELgIr¿pNrs

Figure 9.2.1 shows the lattice of partitionings of the set {A,B,C,D} generatedby pair-wise
compositions. The elements 'A', 'B', 'C' and 'D' represent the separable processes of some

system. The panition'{A,B}' denotes the composite process generated by combining '{A}'
and '{B}'to access both their associated sets of variables. The partitioning '{C,D},{A},{B}'
denotes the family of process graphs that have {A}, {B} and {C,D} as component processes

and preserve the partial ordering of the canonical minimal separable process graph.

The graph has four levels, which correspond to the numbers of partitions. The top element

comprises the single partition'{A,B,C,D}'; the bottom element contains the four partitions

'{A}', '{B}', '{C}', and'{D}'. (The order of the terms is unimportant; '{C,D},{A},{B}'
and '{A},{B},{C,D}' denote the same partitioning.) An edge between two partitionings
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indicates that the upper partitioning can be generated from the lower one by composing two of
its partitions

The relation 'can be generated by zero or more pair-wise compositions' defines a partial
ordering, because it is clearly reflexive, transitive and antisymmetric. For the partially ordered
set to form a lattice, every pair of partitionings must have a least upper bound and a greatest
lower bound. The least upper bound PvQ of two partitionings P and Q is such that, for each
pair of elements x and y, x andy belong to the same partition of PvQ if and only if they belong
either to the same partition of P or to the same partition of Q. Likewise, their greatest lower
bound Pr^,Q is such that for each pair of elements x and y, x and y belong to the same partition
of PnQ if and only if they belong both to the same partition of P and to the same parrition of e.
Clearly, ' { A,B,C,D } ' is a universal upper bound, as it always possible to merge partitions pair-
wise until it is reached. Likewise '{A},{B},{C},{D}' is a universal lower bound, because its
partitions can always be merged to generate any desired partitioning. Therefore every pair of
partitionings has a least upper bound and a greatest lower bound.

The existence of the lattice justifies the use of optimisation methods based on merging
partitions in pairs. The optimisation problem may be visualised by labelling the vertices of the
lattice with processing costs. An optimal solution is represented by a vertex with the lowest
cost' The universal lower bound vefiex represents the CPG. It will not usually be the optimum
partitioning, because it maximises the number of separate accesses needed to variables and the
number of data flows. The universal upper bound vertex represents a solution in which a single
process accesses all the state variables, i.e., it has the same form as the specification. It too will
not usually be the least cost vertex, because it will typically contain sets of conflicting variables,
and will not allow independent access. Along the paths from the universal lower bound vertex
to an optimal partitioning the cost function usually improves monotonically. For example, if the
optimum solution is'{A,B,C},{D}', then the costs of ,{A,B},{C},{D}, 

and
'{A},{B,c},{Di' typically lie somewhere between the cost of the cpc '{A},{B},{c},{D}'
and the optimum. This is the basis of the heuristic method to be described shortly.

FICUn¡ 9.2.2: A CANoNIcAL MINIMAL PRocESS GRAPH

A complication in f,rnding an optimum solution is that not all partitionings correspond to
acyclic process graphs. Consider the CPG of Figure 9.2.2. For this graph, the partitioning
'{A,D},{B},{C}' would not correspond to a valid process graph because the {A,D} process
would have cyclic data flows with both the {B} and {C} processes. Suppose the oprimal
partitioning is actually '{A,B,C,D}'. This can be generated by two pair-wise compositions
from the invalid ' {A,D }, {B }, { C } ' partitioning. However, it is also possible to reach it along
the path '{A},{B},{C},{D}', '{A},{B,C},{D}', '{A,B,C},{Di,, ,{A,B,C,D}' passing only
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through feasible process graphs. Is it always possible to generate a valid partitioning by such a

sequence of feasible compositions? Searching among feasible partitions would reduce the

search space.

Fortunately, the answer is yes. The composition of two processes is always infeasible if the

longest path joining them in their associated process graph has more than one edge. Since any

compound path between them must include at least one other process, combining two processes

linked by a compound path must create a data flow cycle. However, it is always safe to
combine two processes that a¡e linked by a single edge, or that a¡e not linked at all, which we

call 'feasible compositions'. Feasible compositions cannot create cycles.

To show that infeasible compositions are unnecessary, consider the proposition that an

infeasible composition is needed to reach the optimum partitioning. Since the optimum
panitioning must be valid, it can contain no data flow cycles. Therefore the vertices of any
cycle that is generated by an infeasible step must eventually be merged into a single process in
the optimum partitioning. Consider that the infeasible composition combines processes P6 and

Pn, and that there is some longest compound path Pg, Pb ... Pn-1, Pnlinking them, where n>2.
(P1 is not necessarily distinct from Pn-1.) Then Pg, Pt, ... Pn-t, Pn will all belong to the same

partition in the optimal partitioning. Since P1 is the first process on a longest path from Pg to
Pn, the longest path from P6 to P1 is a single edge. Combining Pg with P1 is a feasible

composition. By finding the longest path between {P6,P1} and Pn in the resulting process

graph and repeating the process, all the processes linking Pg to P¡ can be combined with Pg,

even if there are multiple paths. Thus is never necessary to consider infeasible compositions.

For example, given the desire to compose {A} and {D} in Figure 9.2.2 infeasibly, their

composition would create a cycle containing {A,D} and {B} and a cycle containing {A,D} and

{C}. Therefore, all the vertices would be forced into the same separable process, {A,B,C,D}.
But the sequence,'{A},{B },{C},{D}','{A,B },{C},{D}','{A,B,C}, {D}','{A,B,C,D}'
could construct {A,B,C,D} using only feasible compositions. There are two longest paths

between {A} and {D}, one passing through {B}, the otherthrough {C}. Two compositions

are suggested: {A} with {B}, or {A} with {C}. After arbitrarily choosing the {A,B}
composition, the resulting transitive root still contains a compound path from {A,B} to {D},
passing through {C}. Therefore {C} is composed with {A,B}, after which the composition of
{A,B,C} with {D} becomes feasible.

The existence of a sequence of feasible compositions that can generate any feasible

partitioning implies that the set of feasible process graphs also forms a lattice under feasible

composition. Figure 9.2.3 shows the lattice for the CPG of Figure 9.2.2.
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A,B,C

{A}, {A,B},
{B,c,D} {c,D}

{B,D},
{A},{c} {A},{D} {B},{D}

{A,c},
{B,D}

{D},
{A,B,C}

{c,D},
{A},{B}

B,C { Ì, {A,B},
{c},{D}

{A},{Bi,{c},{D}
FIcun¡ 9.2.3: THE LATTIcE oF FEASIBLE PRoCESS GR¡.pTTs FRoM FIGURE 9.2.2

9.3 Two Example Problems

Two related examples will be used to illustrate optimisation. They result from slightly
different versions of the same specification, which appeared in Example 6.6.1 and Figure 6.6. 1

(Page I44). Their SDG's are reproduced in Figure 9.3.1 and Figure 9.3.2. The graph of
Figure 9.3.1 is acyclic and leads to an efficient independent access implementation; that of
Figure 9.3.2 is cyclic, and has no efficient independent access implementation.

Credit
Limit Credit Used

Authorised

Price Balance

tock

Offered Back Order

FICURE 9.3.7: AN ACYCLIC SDG
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Credit
Limit Commitment

Authorised

Balance

Price

Stock

Offered Back Order

FTCUR¡ 9.3.2: A CYCLIC SDG

The first step is to derive their conesponding CPG's. (An eff,rcient algorithm for this purpose

was described in Section 4.8.) The resulting CPG's are shown in Figure 9.3.3 and Figure
9.3.4. The striking difference between the two graphs is that although all the processes in
Figure 9.3.3 allow independent access implementation, the cycle in Figure 9.3.2 geneÍates a

minimal process in Figure 9.3.4 that contains conflicting domains, which therefore does not

allow independent access.

FICUNT 9.3.3: THE CANONICAL PRoc¡ss GReprr oF FIGURE 9.3.1

FIGURE 9.3.4: THE CANoNIcAL PRoCESS GnRpu oF FIGURE 9.3.2.

9.4 The Cost Function

To illustrate the optimisation methods, some specific costs for measuring the qualify of
solutions must be assumed. There are several forms this cost function could take. An obvious
choice is to estimate the average execution time for each event. Alternatively, events might have

Balance

Gedit
Limit

C¡edit
Used

Author-
ised

C¡edit
Limit Author-

ised
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deadlines, some perhaps demanding faster response than others. It is even possible that parts
of events could have different deadlines, for example where a slow back-end batch system has
an interactive front end. Ideally, the cost information would be given as part of the problem
specification. This has not been done here, so a simplified cost function will be assumed. In
fact, the optimum process graph is often rather insensitive to costs, so a simple function works
quite weil. The assumptions are these:

It costs i0 units for a process to random-ly access any set of attributes that share the same
index. The cost is considered to be dominated by the cost of searching for the record that
has the required index.

Independent access causes a speed up of 10, so that accessing a set of attributes
independently costs only 1 unit. (It hardly matters how much speed up is associated with
independent access, provided it is large compared with the number of processes involved.
This ensures that any process graph that uses only independent access is better than any
process graph that doesn't.)

The cost of transferring delayed procedure calls between processes is negligible. (In any
case, since the effect of the first two cost factors is to minimise the number of processes
(but not at the cost of independence), they also minimise the cost of the data flows.)

These costs are sufficient to evaluate any proposed implementation - and to demonstrate the
properties of the optimisation problem. The canonical process graph of Figure 9.3.3 contains 8

independent access processes, so it has a cost of 8 units. The CPG of Figure 9.3.4 contains
one random access process, which accesses two indices, and 5 independent access processes,
so it has a cost of 25 units.

FIcuRe 9.4.I: AN INFEASIBLE PRocEsS GRAPH

Before considering optimisation algorithms, it is worth optimising these process graphs
informally, to highlight the underlying principles. Considering Figure 9.3.3, it pays to com-
bine compatible processes. For example, it pays to combine 'Authorised', 'Credit Limit' and
'Credit Used'. However, it does not pay to combine any of these with 'Balance' because the
resulting graph would contain a cycle, like that shown in Figure 9.4.1. Figure 9.4.1 could only
be made feasible by then combining 'Stock', 'Balance' and 'Authorised' into a single process.
Since the resulting process would access attributes with two unrelated domains, it would no
longer be capable of using independent access.

J

Gedit
Limit

Gedit
Used

u
Balance
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The optimal composite process graph that can be generated from Figure 9.3.3 is shown in
Figure 9.4.2. It may be derived by a sequence of three feasible compositions: {Stock} with
{Offered}, {Credit Limit} with {Credit Used} and {Authorised} with {Credit Limit, Credit
Used). It has a total cost of 5 units, compared with 8 for Figure 9.3.3. Since there a¡e no
feasible compositions between compatible processes remaining in Figure 9.4.2, no more
improvement can be made.

FIGURE 9.4.2: AN Oprn¿el. CoMPoSITIoN oF FIGURE 9.3.3.

Now consider the CPG of Figure 9.3.4. It allows two feasible compositions between

compatible attributes, of {Price} with {Offered}, and of {Credit Limit} with {Authorised}, as

shown in Figure 9.4.3. It has a cost of 23 units (rather than 25).

FICURE 9.4.3: A FpnsßLE COMPOSITION oF FIGURE 9.3.4

It may seem that no fuither improvement is possible, because any further compositions are

sure to destroy independence eitherin {Price, Offered} or {CreditLimit, Authorised}. But it
does not follow that destroying their independence is a loss. Inspection of the original
specification (Example 6.6.1) reveals that the set of indices used to access 'Price' and 'Offered'
isthesameasthat used to access 'Stock'. So by placing all three attributes in the same table,

the access to 'Stock' retrieves the other two attributes at no extra cost. Likewise, it pays to put
'Credit Limit', 'Authorised', 'Commitment' and 'Balance' into the same table. It does not pay

to combine the accesses to 'Back Order' with these, because a different set of rows is involved.
In this example, the optimal process graph accesses all the attributes except 'Back Order' within
a single process for a total cost of 21 units.

The fact that a canonical process graph shows that attributes a.re compatible does not
necessarily mean that they must have the same set of indices. Agreement is the absence of
conflicting indices. It would be possible for the same graph to represent a situation where
'Price' and 'Offered' were accessed by one set of event procedures, and 'Stock' was accessed

by a disjoint set. Altematively, it would be possible that, although the same event accessed

'Offered'and'Stock', the access to'Stock'was conditional on the value of 'Offered'. If the

Balance
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Lim

u thorised
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condition is rarely true, 'Offered'may be accessed much more often than 'Stock'. If either
possibility held, Figure 9.4.3 might be better than the 'optimal' process graph. Unfortunately,
there is not enough information in the specif,rcation to judge which graph is truly better - and
the simple cost function doesn't take account of it anyway.

9.5 A Greedy Heuristic Method

A 'greedy algorithm' is one that seeks to minimise a cost function by making the greatest local
savings first. One advantage of greedy methods is that they are fast. Greedy algorithms use
one or more local optimisation rules, or 'heuristics', which they continue to apply until no more
improvement is possibie. There is no consideration of alternatives. Thei¡ secondary advantage
is that the heuristics may substitute for the cost function, and no costs need be computed -indeed, the true costs need not be known. Four rules are proposed here. They assume a cost
function such that independent access is always preferred. However, no greedy algorithm can
guarantee to find an optimal solution to every process composition problem.

The heuristics are based on the observation that it always pays to compose two compatible
processes 

- indeed, this is what we mean by saying that two processes are compatible.
Unfortunately, some compatible compositions would introduce cycles into the process graph,
making it infeasible. Therefore, two compatible processes should be composed only if their
composition is feasible. (The rules a¡e simila¡ to an optimising rule in ISDOS [Nunamaker
1971, Nunamaker et al. I976, Nunamaker & Kosynski l98ll).

To discover such pairs of components, it is best to consider the transitive roots of process
graphs. (The transitive root of an acyclic graph preserves only the longest paths between
vertices.) Candidate processes for composition are either unconnected or adjacent in the graph
of the transitive root. Although the CPG is itself a transitive root, a composition may generate a
composite process graph with redundant paths, so that its transitive root needs to be
recomputed.

Consider the CPG of Figure 9.3.3. It allows five feasible compositions, 'Offered' may be
combined with either 'Price' or 'Stock', and any pair chosen from 'Credit Limit',
'Commitment' and 'Authorised' may be combined. Figure 9.5.1 shows the effect of merging
'Credit Limit' with 'C¡edit Used'. Figure 9.5.2 shows a second composition, in which 'Credit
Limit' and 'Credit Used' are merged again with 'Authorised'. Because of the lattice property of
feasible process graphs, the order in which 'Credit Limit', 'Credit Used' and 'Authorised' a¡e
combined does not affect the outcome.
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FTCURE 9.5.1: A FEASIBLE COMPOSITIoN APPLIED To FIGURE 9.3.3.

FTCUR¡ 9.5.2: A FpesBI-E CoMPoSiTIoN APPLIED To FIGURE 9.5.1.

A third composition of 'Offered' with 'Price' leads to the process graph of Figure 9.5.3.
This graph exhausts the opportunities for merging processes. It has a cost of 5 units, and is an

optimal composition. Combining 'Offered' with 'Stock' instead of 'P¡ice' would have led to
the alternative optimal process graph of Figure 9.4.2.

FIcune 9.5.3: ANoTHER Oprn¿¡,1 Corr¿posluoN oF FIGURE 9.3.3

The decision to use feasible compositions of compatible processes is not in itself sufficient to
define an algorithm. It does not state which of several possible compositions should be chosen

first, and although the idea of compatibility has been discussed with respect to variables, the

compatibility of processes has not yet been def,ined. (Process compatibility will be discussed in
a later section.)
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Given a choice, which feasible composition should be chosen? Figure 9.5.4 shows a process
graphthatallowstwofeasiblecompositions: {B} with {C}, and {A} wirh {D}. Figure 9.5.5
shows that the effect of composing { B } with {C } is to make the { A,D } composition infeasible.
Conversely, Figure 9.5.6 shows that the effect of composing {A} with {D} is to make the

{B,C } composition infeasible.

Ifall the processes concerned allow independent access, both compositions generate a process
graph with a cost of 3 units. If none of them do, the cost is 30 units. But what if only {A} and

{D} allow independent access? The cost of Figure 9.5.5 is then 12 units and the cost of Figure
9-5.6 is 21 units. Conversely if oniy {B} and {C} allow independent access, the cost of
Figure 9.5.5 is 21 units and the cost of Figure 9.5.6 is 12 units. This example suggests that it
is wiser to compose random access processes before independent access ones. Applying this
rule systematically to the CPG of Figure 9.3.4, or its composition in Figure 9.4.3, leads to a
single process that accesses all the attributes.

FIcuRp 9.5.5: THE ET.pEcT oF CoMPoSING TV/o UNCoNNECTED PRoCESSES

FIcune 9.5.6: Trr¡ Epp'pcT oF CoMPoSING TV/o CoNNEcTED PRoCESSES

Other things being equal, is it better to compose two connected processes or two unconnected
processes? InFigure 9.5.5, merging {B} and {C} eliminates an access; butinFigure 9.5.6,
merging {A} and {D} eliminates an access andadataflow. Also, as a rule, unconnected pairs
are usually associated with input parameters or with calls to extemal events. These vertices are
not associated with accesses, so composing them achieves nothing. As a rule of thumb,
therefore, it pays to compose connected vertices before composing unconnected ones. With
luck, the compositions of adjacent vertices will make composing unconnected pairs of vertices
unnecessary. (Consider Figure 9.4.3, where each of the independent access processes would
be merged into the random access process, by-passing the two unconnected compositions that
generated Figure 9.4.3.)

Four heuristic rules are proposed, as follows:

I compose random access processes with adjacent compatibie processes.

2 compose pairs of adjacent independent access compatibie processes.

BC

A D

C B

AD

J Compose random access processes with unconnected compatible processes.
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4 Compose pairs of unconnected independent access compatible processes.

If more than one rule is applicable, the first rule listed should be applied. If there are several
possible applications of the same rule, the choice is arbitrary. The set of rules should be applied
until no more applications are possible. It is therefore implicit that conflicting processes are

never combined, and that being able to distinguish 'compatible' processes is part of the method.
Although these heuristics cannot guarantee to find the optimal solution in the artificial case of
Figure 9.6.1 below, they perform well in practice.

9.6 The Complexity of the Optimisation Problem

Process compositions do not commute. Figure 9.6.1 shows a graph that permits three
compositions: {C} with {D}, {E} with {B}, and {E} with {F}. Assuming that all the
processes allow independent access, the optimal composite process graph is shown in Figure
9.6.2. It is generated by composing {C} with {D}, and {E} with {F} (in either order), and
has a cost of 5 units. However, composing {B} with {E} generates the process graph of
Figure 9.6.3, which has a cost of 6 units, yet allows no further compositions.

FICURE 9.6.I: ANOTHER PROCESS GRepg OrrgnrNc A CHoIcE oF CoMPoSITIoNs

FICURS 9.6.2: THe OpriN,IAL PRocESS GRAPH

FICURS 9.6.3: A SugoprIMAL PRoCESS GRAPH

The time complexity of an algorithm is the function that relates an upper bound of its
execution time to a parameter. Usually, the parameter is the length of the encoded input,
assuming that the encoding is 'reasonable', i.e., not unnecessarily padded. The exact form of
the function is not usually important, and one is more interested in the 'order of compiexity'
denoted Uy 'O1f1n;)', where 'l is some function of ¡¿, the iength of the input. For example, to
say that the time complexity of an algorithm is O@\, is to say that the actual execution time
'g(n)' is such that g(n)<kn2 for large n and some constant k. (This definition is such that if
g(n) is actually 2n, the complexity may still be correctly described as OØ\ (for any ¿>0),
although it is better described as O1n¡ (with Þ2). On rhe other hand, if g(n)=n3, it cannot be

described asOln2¡,becauseforanyfinitevalueof k, thereis always avalue of n such that

n3>kn2.)
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Broadly, algorithms may be classified in two categories according to their complexity:
'tractable' and 'intractable'. Tractable algorithms have complexity O1t1n¡¡, where f(n) is a
lrnite polynomial in n. Since for large n, the highest order term dominates any polynomial,
tractable algorithms are often described as having complexity O@\, for some finite k>0.
However, if there is no finite polynomial that sets an upper bound on its execution time, the
algorithm is said to be intractable. Intractable algorithms may have complexities such as Oq2r¡,
Oçnt¡, and so on, and are loosely referred to as 'exponentially complex'.

The complexity of a problem is the lowest order complexity of any algorithm that can solve it.
Problems are tractable if there a¡e known polynomial algorithms that solve them. Other
problems are provably intractable; e.g., finding all permutations of a sequence of length n is
intractable because the sequence has n ! permutations, so it must take time O(n t) just to list
them.

NP (non-deterministic polynomial) problems lie somewhere between these two categories.
They have the property that the correctness of a solution, once it is found, can be checked in
polynomial time. However, there a¡e an intractable number of possible solutions. An NP
problem could be solved in polynomial time if an oracle could guess the correct solution. NP
problems can often be solved by algorithms that are fast on average, by using a heuristic in
place of the oracle. However, for any given heuristic, there always exist example problems that
defeat it, in the sense that either the algorithm fails to find the solution, or it performs no better
than an exhaustive search. 'NP-complete' problems are the hardest subclass of NP problems.
No poìynomial algorithm has ever been found that solves any NP-complete problem (some of
which have a long history), nor it has eve¡ been proved that no deterministic polynomial
algorithm exists that solves one. If a polynomial algorithm can ever be found to solve any NP-
complete problem, then one can be found to solve all NP probiems.

Because this thesis offers no polynomial time algorithm that reliably solves the optimal
process composition problem, it is obligatory to show it is NP-complete, and therefore it is
unlikely that any such algorithm exists. Technicaliy, this is done by showing that a known NP-
complete problem can be mapped onto the optimal process composition problem. (Finding a

tractable algorithm for the composition problem would then solve the NP-complete problem,
and therefore every other NP problem.) In fact, this cannot be proved for all cost functions.
For example, if the cost is simply equal to the number of processes, the optimal solution is
always a single process, and the problem is trivial. However, it can be proved for some
particular cost functions. In particular it can be proved for the combinatorial sub-problem posed
in Figure 9.6.1, where the cost is proportional to the number of processes, but only compatible
processes may be composed.

The'Shortest Common Supersequence'problem [Garey &Johnson I979J is a known NP-
complete problem, as follows:

We a¡e given a finite set R of strings from I* over the frnite alphabet I, and a positive
integer K. Is there a string weL* with lwl<K such that each string xe R is a

subsequence of w,i.e.,w =woxlwlx2w2...xkwk, where eachw¡eI* and x= xlxz ...
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x¿? This problem is NP-complete provided the alphabet contains at least 5 letters, there

are more than2 strings in R, and each string has more than2 tenns.

Optimising Figure 9.6.1 can be considered as a problem in pairing the matching terms of two
sequences. The first sequence is represented by 'C, E', and the second by '8, D, F', except it
is their colours that must be matched, not their names. The alphabet L is {white, grey}, and set

rR is {white-grey, grey-white-grey}. The problem is to find the shortest sequence of colours
that contains the original two sequences. Figure 9.6.2 represents the corìmon supersequence
'grey-white-grey', and Figure 9.6.3 represents the coîrmon supersequence 'white-grey-white-
grey'. Clearly Figure 9.6.2 with 3 terms is the shortest common supersequence, because one

of the strings in R also has 3 terms. It is easy to imagine a generalisation of Figure 9.6.1 that

has more thanZ sequences of length greater than2, and at least 5 colours.

Any shortest common supersequence problem can be mapped into a process network like that

of Figure 9.6.1 by defining a one-one correspondence from I to a set of colours. Each

sequence in R is mapped to a coffesponding pipeline of processes. Optionally, source and sink
processes can be added to complete the correspondence to Figure 9.6.I. It only remains to
show that such a process network could result f¡om a system specification. If a typical
sequence is X1X2 ... Xk, it is merely necessary to postulate that some event procedure contains
the assignment x2 := xL, some event procedure contains the assignment x3 := x2, and so on,
where for all i from I to k, x, has domain X,. Therefo¡e, if there exists a polynomial time
algorithm to solve the optimal process composition sub-problem, where the cost is proportional
to the number of processes, but only compatible processes may be composed, there exists a
poiynomial time algorithm to solve 'Shortest Common Supersequence'. Therefore at least one

version of the process composition problem is NP-complete.

9,7 Branch-and-Bound Search

Although it is unlikely that a tractable algorithm for the optimai composition problem exists,
this does not mean that a typical process graph cannot be optimised quickly. An exhaustive

search for an optimum would be time consuming if conducted blindly, but a more intelligent
search could be expected to succeed in polynomial time in almost all cases - in the sense that

although some pathological problems would take more than polynomial time, they would be

unlikely to arise in practice, and too rare to affect the average complexity. One such algorithm
is 'Branch and Bound Sea¡ch'.

Choosing whether to make each feasible composition may be treated as a 'design decision';
e.g., given the CPG of Figure 9.3.3 (Page2O6), should 'Price' be composed with 'Stock'?
Each design decision may be represented by a node in a binary tree. The root of the tree

represents a state in which no decisions have been made; its leaves represent states in which all
possible decisions have been made, i.e., proposed solutions. For a given problem, there are

many possible decision trees, depending on which decisions are considered first.
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Figure 9.7.1 shows the first two levels of a possible decision tree for the CPG of Figure
9.3.3. The tree is drawn with its root on the left and its leaves on the right. The complete tree
has many leaves. The root corresponds to the question of composing 'Stock' with 'price'. The
upper branch leaving the root represents the decision to combine them, its lower branch
represents the decision never to combine them. Decisions a¡e irrevocable. All the solutions in
the upper subtree access 'Price' and 'Stock' in the same system component; all the solutions in
the lower subtree access them in different components. By inspecting Figure 9.3.3, it is clear
that combining 'Price' with 'Stock' implies that their composite would be cyclically connected
to the 'Credit Used' process, so in turn the decision implies that all three attributes must be
accessed in the same process. In the upper subtree, separating 'Credit Used' from 'Price' or
'Stock' is no longer an option.

Stock=Price
Stock=Price
Stock=Balance

Stock=Price
Stock*Balance

Stock+Price
Stock=Credit Limit

Stock*Price
Stock+Credit Limit

FTCU T 9.7.I: PART oF A DEcISIoN TREE

The second decision depicted in Figure 9.7.1 is whether to combine'Stock'with 'Credit
Limit'. For example, the topmost right hand node represents the case where 'Stock' and 'Price'
are combined, and 'Stock' and 'Credit Limit' a¡e combined. It follows that all three attributes
must be accessed by the same process (along with 'Credit Used' too), so that it may not later be
decided to keep 'Price' and 'Credit Limit' separate. Although it is not shown here, the
development of the tree should continue to the right until ali possible pairs of compositions have
been considered. Logically, wherever a process network allows a choice between random and
independent access, both possibilities should be considered. In practice, the choice will almost
always favour independent access.

Constructing the complete decision tree would merely be a systematic way of enumerating all
possible solutions, of which there a¡e usually too many to consider. (Even the simple process
graph of Figure 9.5.2 has 11 valid compositions.) Branch and Bound Search is a way of
elaborating only the 'interesting' part of the decision tree, by temporarily ignoring less
promising alternatives. This is done by assigning a cost to each node of the decision tree. The
cost of each leaf, representing a solution, is its true cost. The costs of the internal nodes,
representing paftial solutions, have to be estimated. The defining property of Branch and
Bound Sea¡ch is that the cost estimate is always a lower bound; the true cost is always at least
the estimated cost. As will be shown shortly, this implies that if a leaf of the decision tree has a
lower cost than any other node evaluated by the search, then it must be an optimal solution.
The speed of Branch and Bound Search depends on the accuracy with which the estimated costs
approximate the true costs and the order in which design decisions are considered.
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A lower bound for the cost an internal node of the decision tree may be estimated by assuming
optimistically that every set of attributes with a given domain may be accessed in the same

process. In the case of Figure 9.3.3 the cost of the root of the decision tree is estimated by
assuming that all the 'customer' attributes can be accessed in one independent access process,
the 'product' attributes can be accessed in a second independent access process, and 'Back
Order' can be accessed in a third independent access process. Therefore the estimated cost is 3

units. It is not ceftain that only three processes will be needed, so the true cost may be more
than 3 units, but it can certainly be no less.

Suppose the first design decision considered is whether to combine 'Credit Limit' and
'Balance' in one process. Consider keeping them separate. This means that there must be at

least two processes accessing the 'customer' domain. Therefore the cost is at least 4 units.
Now consider combining them. This would create a cycle between the proposed {Credit Limit,
Balance) process and the {Stock} process. Consequently, the proposal to compose 'Credit
Limit' with 'Balance' is also a proposal to compose them with the other attributes in the

resulting cycle, in this case with'Stock' and 'Credit Used'. The newly formed process would
access two different domains, and could not exploit independent access. The proposed process

has a cost of 21 units. Including the cost of independent access to 'Back Order', the total lowe¡
bound cost of this proposal is 21 units.

The essence of Branch and Bound Search is that the unpromising proposal to compose
'Credit Limit' with 'Baiance' is not rejected outright; it is set aside for possible consideration
later. Although keeping the two attributes separate looks more promising, it is not certain to
lead to any leaf with a cost of less than 21 units. However, since its estimated cost is lower,
Branch and Bound Search will consider the proposal to keep 'Credit Limit' and 'Balance'

separate in greater depth before it will reconsider the proposal to combine them. Indeed, if it
finds a leaf with a cost less than 21 units, it will never reconsider the proposal to combine them.
The proposals (i.e., the intemal nodes of the decision tree) that have yet to be considered are

stored in a priority list, in order by cost. At this stage, the list looks like Table 9.7 .I, so that the

proposal to keep 'Credit Limit' and 'Balance' separate ought to be considered next.

Cost Decisions Made

4 Credit Limit * Balance.

2I Credit Limit = Baiance.

T¡,sLe 9.7.I: OUTcoMES AFTER THE FIRST DEcISIoN PoINT

The second decision might be to combine or to separate 'Credit Limit' and 'Authorised'.
Keeping them separate (while still keeping 'Credit Limit' and 'Balance' separate) has a cost of 4
units. (The simple-minded method of estimating the lower-bound costs assumes that
'Authorised' and'Balance'can be composed cheaply later, and fails to foresee that this would
create acycle.) Composing 'Credit Limit' and 'Authorised', while still keeping 'Credit Limit'
and'Balance'separate, alsoleadstoacostof 4 units. The state of the search is now given by
Table 9.7.2.
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Cost Decisions Made
4 Credit Limit É Baiance, Credit Limit * Authorised.

4 Credit Limit * Balance, Credit Limit = Authorised.

2I Credit Limit = Balance.

TABLE 9.7.2: OUTcoMES AFTER THE SEcoND DECISIoN PoINT

It is arbitrary which of the first two alternatives is explored next. Suppose it is the first one
listed. The next decision might be whether to combine 'Price' and 'Stock'. Composing them
would create a cycle involving 'Credit l-Ised', and the cost would be at least 21 units. Leaving
them separate gives a cost of 4 units. Assuming that decisions of equal cost are taken in first-
come-first-served order, the state of the search would then be as given by Table 9.7.3.

Cost Decisions Made
4 Credit Limit É Balance, Credit Limit = Authorised.

4 Credit Limit * Balance, Credit Limit É Authorised. Price + Stock.

2I Credit Limit = Balance.

2l credit Limit r Balance, credit Limit + Authorised, price = stock.
TABLE 9.1 .3 : OUTCOMES AFTER THE THIRD DECISION POWT

Two decisions made so far have shown a large difference in cost between their two outcomes,
one has shown no difference. Where there is no difference or a small difference in cost, Branch
and Bound Search must pursue several alternative partial solutions. Where the costs differ a
lot, the partial solution with the higher cost may not need to be considered again. Any partial
solution whose estimated cost exceeds the true cost of the optimal solution will certainly never
be reconsidered. It is best to consider first those decisions that make the greatest difference to
the cost, thus reducing the number of promising partial solutions to be considered. Therefore,
rather than continue the solution above, it is better to examine a sea¡ch where the most
significant decisions are made first.

For this problem, the significant decisions are those that either consider composing two
processes with different domains, or that consider composing two processes with the same
domain, but whose composition would create a cycle involving a third process with a different
domain. There are 23 such significant decisions, where merging the vertices would generate
partial solutions with a cost of 21 or more. In whatever order they are considered, they lead to
the following partial solution, which needs at least two independent access processes accessing
the 'customer' domain and at least two independent access processes accessing the 'product'
domain, as shown in Table 9.1.4.
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Cost

4

2I

Decisions Made

Back Order * Balance, Back Order + Authorised, Back Order + Credit Used,
Back Order + Credit Limit, Back Order É Offered, Back Order É Price,
Back Order * Stock, Price # Balance, Price + Authorised, Price * Credit Used,
Price É Credit Limit, Offered É Balance, Offered + Authorised,
Offered * Credit Used, Offered * Credit Limit, Stock r Balance,
Stock + Authorised, Stock + Credit Used, Stock + Credit Limit,
Credit Limit É Balance, Authorised I Balance, Credit Used * Balance,
Price # Stock.

TesLT 9.7 .4: OUTcoMES AFTER THE 23RD DEcISIoN PoINT

The 8 attributes in Figure 9.3.1 form possible 28 pairs, of which 23 have aiready been

considered, leaving the following 5:

Offered = Price?,
Offered = Stock?,
Authorised = Credit Limit?,
Authorised = Credit Used?,
Credit Limit = Credit Used?

These are exactly the possible compositions that would be considered by the heuristic method.
It is no coincidence the Branch and Bound Search initially rejects the others.

Taken alone, the first two decisions make no difference to the cost, but deciding against any

of the last three would imply a 3rd access of the 'customer' domain, increasing the cost to 5
units. Because a cost differential of one is greater than a cost differential of zero, the last three

decisions listed are considered first, giving the partial solution, shown in Table 9.7.5.

Cost Decisions Made

4 Back Order * Balance, Back Order # Authorised, Back Order * Credit Used,
Back Order + Credit Limit, Back Order * Offered, Back Order É Price,
Back Order É Stock, Price * Balance, Price * Authorised, Price * Credit Used,
Price + Credit Limit, Offered t Balance, Offered * Authorised,
Offered * Credit Used, Offered * Credit Limit, Stock É Balance,
Stock * Authorised, Stock * Credit Used, Stock + Credit Limit,
Credit Limit É Balance, Authorised + Balance, Credit Used + Balance,
Price * Stock, Authorised = Credit Limit, Authorised = Credit Used,
Credit Limit = Credit Used.

5 ...

TABLE 9.7.5: OUTcoMES AFTER THE 26TH DECISIoN PonT

The remaining two decisions, 'Offered = Price?' and 'Offered = Stock?', still have no cost

difference when considered individually. Considering the first, it leads to two partial solutions,
both of cost 5, one with 'Offered = Price', the other with 'Offered É Price'. The first choice

cannot be combined with the choice 'Offered = Stock' because that would imply 'Price =
Stock', a decision that has already been excluded, so that solution is infeasible. However, it
may combine with 'Offered É Stock' to give a solution of cost 5 units. Since no decisions
remain to be made, it is a complete solution. The list of partial solutions contains no proposal
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with an estimated cost less than 5 units, so the solution is optimal. This important property of
Branch and Bound Search, that the flrst soiution found is optimal, holds only because the cost
estimates of partial solutions are lower bounds of their true costs.

There are actually two optimal solutions. The solution described is shown in Table 9.7.6,
which corresponds to the process graph shown in Figure 9.5.1. If the search were continued,
the remaining partial solution of cost 5 would lead to the alternative shown in Table g.7 .7 ,
which differs from the first only in its last two terms, and corresponds to the process graph of
Figure 9.4.2 (Page 208). Once the classic Branch and Bound Search has found one leaf of the
decision tree it will not search for another. However, the classic search procedure can easily be
modified to yield alternative solutions, which it will generate in order of increasing cost.

Cost Decisions Made
5 Back Order É Balance, Back Order + Authorised, Back Order * Credit Used,

Back Order * Credit Limit, Back Order * Offered, Back Order r Price,
Back Order É Stock, Price + Balance, Price * Authorised, Price * Credit Used,
Price * Credit Limit, Offered É Balance, Offered * Authorised,
Offered * Credit Used, Offered + Credit Limit, Stock É Balance,
Stock * Authorised, Stock + Credit Used, Stock * Credit Limit,
Credit Limit É Balance, Authorised t Balance, Credit Used + Balance,
Price * Stock, Authorised = Credit Limit, Authorised = Credit Used,
Credit Limit = Credit Used, Offered = Price, Offered * Stock.

T¡.srp 9.7 .6: lsr SoIurIoN FoUND BY BRANcH-AND-BoUND

Cost

5

Decisions Made

Back order É Balance, Back order É Authorised, Back order + credit used,
Back Order É Credit Limit, Back Order + Offered, Back Order + Price,
Back order I stock, Price + Balance, Price + Authorised, Price * credit used,
Price * Credit Limit, Offered É Balance, Offered + Authorised,
Offered + Credit Used, Offered * Credit Limit, Stock # Balance,
Stock * Authorised, Stock * Credit Used, Stock * Credit Limit,
Credit Limit É Balance, Authorised É Balance, Credit Used + Balance,
Price É Stock, Authorised = Credit Limit, Authorised = Credit Used,
Credit Limit = Credit Used, Offered t Price, Offered = Stock.

TRsI-g 9.1 .7:2No SoruuoN FoUND BY BRANcH-AND-BoUND

From the example, it may be seen that by taking significant decisions first, Branch and Bound
Search may need no more steps to find an optimal solution than there are pairs of vertices in the
CPG. However, its effectiveness depends critically on having a good estimate of the cost of
partial solutions. As an example of a very poor cost function, a cost can never be less than 0,
therefore 0 is a vaiid lower bound estimate for every partial solution. However, the function
would fail to differentiate between good and bad proposals, and since no leaf has a zero cost,
the search would generate every possible solution, of which there are very many. The ideal
estimator would be the true cost, but finding it would be time-consuming, since it can only be
found by search. The trick is to f,rnd an estimate that is as close to the true cost as possible, but
which is easy to compute.
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A second example shows what happens when the implementation must use random access.

Consider the CPG of Figure 9.3.4. It has 15 pairs of vertices, so 15 design decisions must be

made. The lower bound on the cost at the root of the decision tree is 21 units, which assumes

that although 'Back Order' can be accessed independently, random access is needed to only two
different index values. This is because all the 'customer' or 'product' index values involved a¡e

equal.

As before, the decisions with the highest cost difference should be considered first. These a¡e

the decisions to keep any of the original processes separate from one other, each of which
increases the cost by at least I unit. In whichever order these alternatives are considered, they
will all be rejected. Therefore all the vertices should belong to the same component process,

and the cost of the solution is 21 units.

9.8 Hybrid Search

It is reasonable to ask whether its is possibìe for an algorithm to combine the best aspects of
Branch and Bound Search with the greedy heuristic method. This is encouraged by the

observation that, provided the most significant decisions are taken first, Branch and Bound

Sea¡ch begins by rejecting infeasible compositions, testing only the same compositions

considered by the greedy method. Bearing in mind that any valid process graph can be reached

purely by feasible compositions, the infeasible compositions will stay rejected until a solution is
found. Therefore Branch and Bound Search only needs to consider the same set of
compositions as the greedy method. In the case of the CPG of Figure 9.3.3, the number of
decisions would be reduced from 28 to 5. This vastly reduces the size of the search space. The

whole decision t¡ee would be similar to the subtree generated by the partial solution given in
Table 9.7.4.

It is interesting to see how such a hybrid method copes with the combinatorial problem
presented by the process network of Figure 9.6.1. The actual cost of this graph is 7 units. Its
lower bound cost is 3 units, because it involves 3 different domains. There are 3 feasible

compositions: {C} with {D}, {B} with {E}, and {E} with {F}. These all reduce the cost by 1

unit, and all 3 are unconnected compositions, so there is nothing to choose between them.

Suppose that {B,E} is considered first. It generates two sub-solutions given in Table 9.8.1.
Since the {B,E} composition allows no further feasible compositions, its cost is known to be 6
exactly. The decision to keep {B } and {E} separate still has a lower bound of 4 units, because

there must now be at least 4 processes.

Cost Decisions Made

4 B*E
6 B=E

Teel-g 9.8.1: AFTER THE lST D¡CISION

With {B} and {E} separate, there is still nothing to distinguish the composition {C,D} from
the composition {E,F}. Suppose the composition {C,D} is evaluated first. Combining {C}
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and {D} has a cost of at least 4, and separating then has a cost of at least 5
search is then given by Table 9.8.2.

Cost Decisions Made
4 B*E, C=D

5 B*E, C*D

6 B=E

TABLE 9.8.2: AFTER THE 2ND DECISION

Optimisation

The state of the

The only possible composition remaining is {E,F}. Making it has an actual cost of 5,
whereas leaving {E} and {F} separate has an actual cost of 6. Assuming that alternatives of
equal cost are consider in fîrst-come-first-served order, the state of the search is then given by
Tabie 9.8.3.

Cost Decisions Made

5 B*E, C+D

5 B*E, C=D, E=F

6 B+8, C=D, E+F

6 B=E

Tasl-p 9.8.3: AFTER THE 3RD DECISION

Separating {B} and {E}, and separating {C} and {D} still allows the {E,F} composition,
after which the heuristic allows no further feasible compositions. The alternatives are shown in
Table 9.8.4. Since the lowest cost item allows no further optimisation, it is a solution. Since
no other solution can cost less, it is the optimal solution.

Cost Decisions Made

5 B*E, C=D, E=F

6 B*E, C-D, E*F
6 B=E

6 B+E, C*D, E=F

7 B+8, C+D, EÉF

TABLE 9.8.4: Arrpn THE 4TH DBcISIoN

In this example the hybrid method found an optimum solution after considering only 4
decisions and 3 possible compositions, whereas the pure Branch and Bound Search would have
to consider 21 possibie compositions. This seems to suggest thar the hybrid method is clearly
superior. The truth is not so clear cut. Assuming that the pure method considers the most
significant decisions first, it will reject (i.e. defer forever) the 18 infeasible compositions
because of their high cost, leaving only the feasible compositions. After rejecting the infeasible
decisions the pure search will then proceed in the same way as the hybrid search. The main
benefitof the heuristic is that composing only adjacent and unconnected vertices may prove to
be a faster way of avoiding cycles than composing first and testing later. Also, the heuristic
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method reduces the size of the graph by one vertex after every composition. On the other hand,
the Branch and Bound method considers all pairs of vertices, and the hybrid method considers
all feasible compositions. Therefore, the greedy heuristic method can be expected to need less

iterations than the other two methods.

9.9 Process Compatibility

The notion of process compatibility was introduced as the basis of the greedy heuristic
method. By definition, two processes are compatible if combining them would reduce the cost

of the process network. Conversely, the greedy method assumes that combining two
compatible processes will reduce the cost of the process network. As a result, the precise

definition of process compatibility gives fine control over the results of the greedy method. In
addition, apart from its formal use in the greedy method, process compatibility is a useful aid to
coûtmonsense reasoning. As explained in Chapter 6, commonsense reasoning may help a
human system designer adjust the system specification so that it has an efficient implementation.
What rules may a designer use to decide whether two processes should be combined?

Process compatibility is based on the same ideas as compatibility of va¡iables introduced in
Section 5.4. To a first approximation, if two processes access compatible variables, the two
processes are compatible. This means that two independent access processes with the same

domain may be composed providing that (1) their composition is 'feasible', and (2) there a¡e no
dependences between variables with different index definitions. However, this simple rule
cannot deal with the case where one or other process already can't use independent access. The

notion of many-one or 'partial' agreement further clouds this simple picture.

Processes can be divided into two broad categories, independent and random access. It
would never be wise to merge two independent access processes if their composite was a

random access process. On the other hand, combining them is beneficial if the variables they
access are compatible. This allows their variables to be placed in the same table, replacing two
accesses by one. Even if the sets of indices they access are disjoint, their composition will not
increase execution time appreciably (accessing larger records takes only slightly longer), and it
will certainly save file space. Likewise, when two processes both use random access,

combining them is always harmless, and, if any index is accessed by both of them, the

combined process will replace two accesses by one.

It is possible to have va¡ious degrees of independence. Referring back to the example of
Example 5.1.1, there is a possibility of independence by 'class' or by '(class, student)'.
Clearly there are more instances of '(class, student)' than of 'class' alone. Therefore, it is better

to have '(class, student)' independence than 'class' independence, and it would be unwise to
combine a doubly independent '(class, student)' process with a singly independent 'class'
process. In practice, their composition may prove harmless in a parallel implementation
because there are not enough physical processors to exploit the extra parallelism, i.e., there may
be far fewer processors than 'classes'. On the other hand, in a sequential access

implementation, combining the two would mean that that the '(class, student)' domain had to be
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accessed randomly, albeit clustered by 'class'. How we should treat many-one compatibility
therefore depends on the intended form of the implementation. In the case of composite
domains we should add a footnote to the cost function of Section 9.4. When a process is
independent we assign it a speed up of 10, so when a process is doubly independent we should
assign it a speed up of 100, and so on, otherwise the cost function will treat many-one
compatibility just like one-one comparibiliry .

Finally, there is compatibility of a kind between an independent and a random access process
ifthe independent access process accesses a subset of the rows accessed by the random access
process. (This was discussed in connection with the optimisation of Figure 9.4.3.) The point
is that if the random access process must access all the rows accessed by the independent access
process, it may as well retrieve the variables the independent access process needs as well. It is
easy to decide if one set of indices is a subset of another, although the textual use of an index
does not always imply its use during execution. It may be that the access is conditional, as in
'if A(Ð = 0 then B(i) := false; end if;'. The accesses to'B' are a subset of the accesses to
'A', but the accesses to 'A' are not likely to be a subset of the accesses to 'B'. Thus, if 'A' was
accessed in a independent access process and 'B' in a random access process, then it would be
unwise to combine them, but if 'A' was accessed in a random access process and 'B' in a
independent access process, then it would be wise. This matter can be resolved by reference to
the text of the specification. However, it can also be approximated by reference to the SDG,
because the state of 'B' depends on the state of 'A'. Therefore, it may be unwise to combine
the processes if the independent access process is upstream of the random access process.
What should be done if the processes are unconnected? It is hard to tell from the SDG alone.
An unconnected pair of 'A' and 'B' vertices could be generated by 'if c(i)=O then A(i):=0;
else B(i):=0; end if;' in which case their accesses are disjoint, and they certainly should not be
combined, or by 'begin A(i):=C(i); B(i):=C(i); end;' in which case their accesses are the same,
and they should be combined. Since an independent access process has negligible cost
compared with a random access process, there is little benefit in ever combining them, and
sometimes a great risk. However, in the case that all the variables of the independent access
process depend on variables of the random access process with the same indices, the
composition is always safe and beneficial. This may be detected in the SDG by noting that each
independent access process va¡iable has a compatible dependence on a random access process
variable.

The above remarks may be generalised to a pair of independent access processes whose
domains have a many-one relationship, e.g., '(class, student)' and 'class', by replacing
references to 'the random access process' by 'the process with the lesser degree of
independence' and to 'the independent access process' by 'the process with the greater degree
of independence'. Therefore, the following two heuristics define'process compatibility':

1 Two processes agree if they have the same degree of independence, and all their variables
are compatible at that level of independence.
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2 An independent access process agrees with a process of lesser independence if the indices
accessed by the more independent process are a subset of the indices accessed by the less

independent process, and all the shared indices in the more independent process depend

on indices in the first process.

Variables local to event procedures do not cause special difficulty unless they have been

reused, either as discussed in Section 4.5, or by being used within a loop. Where a local
variable is reused within a loop, it should be declared within the loop, as in Example 2.6.2, and
may notionaily be replaced by an array of variables. A variable used to accumulate the result of
a reduction operation (discussed in Section 2.6.4) is a special case. An accumulator variable,

needed in the specification language to model reduction, mustbe reused. It actually is reused in
a sequential access implementation, but something more subtle than simple reuse occurs in a

parallel access one. It is important to access an accumulator variable in the same process as the

loop that controls the reduction, otherwise the O(logn) reduction tree would be replaced by a

more costly Oln¡ set of delayed procedure calis to a separate process. Its association with the

correct process can be forced by treating the accumulator øs if it had one instance for each

iteration of the loop body, typically making it agree with the variable or expression it
accumulates. On the other hand, outside the loop, it must be considered to have one instance

for the loop as a whole. In the sense that an accumulator reduces a set of values to a single

value, it must present two different faces. This is difficult to show on an SDG, and no special

notation is used to show it.

Because of the potentially complex nature of process compatibiiity, it is impractical to fully
label composite process graphs with compatibility information. This is not very satisfactory for
a human designer equipped with a process graph, who must continually refer to the text of the

specification to decide what optimisations are possible. A better approach is for the designer to

work directly with the CPG, enclosing proposed composite processes within outlines. Figure

9.9.1 shows how outlines (the grey ellipses) can be drawn on Figure 9.3.1 to correspond to the

optimal process graph of Figure 9.4.2.

Credit Used

Price

tock

Back Orde¡
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Since they represent composite processes, the designer must draw the outlines so that there is
no cycle between them. Outlines that contain compatible vertices can be implemented as

independent access processes; outlines that contain incompatible vertices must be implemented
as random access processes. Provided the CPG is not too large, an informal approach to
choosing the best outlines works surprisingly well in practice.

The needs of the Designer CASE tool are somewhat different from those of a human
designer. A human designer works best with a simple graph, but can apply sophisticated
reasoning. Indeed, SDG's for human use typically show one vertex per variable, and only the
state va¡iables are shown. On the other hand, the graphs generated by use-definition analysis
contain at least one vertex for each lexical dehnition of every variable. They are typically much
more complex, and very difhcult for a human to comprehend. In particular, they introduce a
further problem in optimisation, which is that simple local variables can be many-one
compatible with more than one state variable. It is as if simple local va¡iables a¡e uncoloured,
and can assume whatever colour is desired - but only one. The number of possible
compositions is therefore much greater than it is for a graph showing only state variables. It is
also easy to show that the problem remains NP-complete; the case when all the vertices a¡e

coloured is NP-complete, and this case is a subset of the case where some vertices may be

initially uncoloured. Exactly how this additional complication is handled is explained in
Chapter i0.
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10. The Designer CASE Tool
This chapter describes a CASE tool, Designer, that can design an efficient batch processing

system to implement a given specification. The tool is implemented as a program written in
Prolog [Clocksin & Mellish 1984, O'Keefe 1990], and listed in the Appendix (Chapter 13).
Prolog was chosen as the implementation language for several reasons: it provides a non-
deterministic grammar notation that simplif,res the construction of the parser, it provides pattern
matching on data structures, which can be used to manipulate syntax trees, it has library
routines for operations on sets and directed graphs, and its pattern matching and non-
determinism make it an ideal language for writing heuristic rule-based systems. Similar reasons
for the choice of Prolog as an implementation language for an optimising Pascal compiler can be
found in [Gabber 1990].

Briefly, the method is as follows: The system specification is parsed, then the resulting
abstract syntax tree is analysed to discover the dependences between definitions. The SDG ttrat
is constructed is a form of use-definition graph in which each vertex represents a definition of a
variable, and each edge represents a use of one def,rnition in constructing another. The use-
definition analysis needed is more complex than is normal (e.g., in a compiler), in order to keep
track of compatibiliry information. Once the SDG has been consrructed, it is analysed to
discover its strongiy-connected components. Each strong component corresponds to a

separable process. The reduced component graph, which is always acyclic, links these

separable processes by first-in-first-out data flows, and is a feasible system topology. This
process graph is canonical, and derives uniquely from the specification. Unfortunately, it
containsthegreatest possible number of processes, and is not as efficient as it might be.' The
CPG is optimised by successively combining pairs of processes, provided that doing so does
not reduce the degree of independent access that is possible. When no more compatible pairs
can be found, the design is complete. It is then known what processes the system should
contain and what variables they access, so it is possible in principle to generate the procedures
that each process should contain. As was seen in Chapter 7, generating them is tedious but
straightforward.

The Designer CASE tool is engineered as a 'proof of concept', and is not a particularly robust
program. However, it can correctly analyse all the specifications given in the earlier chapters.
The optimiser uses the greedy heuristic method, which finds an optimum solution in each case.

1

The program consists of five major phases:

The Parser converts a textual specification into an abstract syntax t¡ee.

The Analys¿r converts the abstract syntax tree into an SDG.

Tl'rc Canonis¿r converts the SDG into a CPG.

The Optimrsør simplifies and optimises the process graph.

2

3

4
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5. The Generator allocates the nodes of the abstract syntax tree to processes

The Generator phase is not the Programmer tool described in Chapter 7. It does not generate

process specifications, but merely provides the process labeis assumed at the start of Chapter 7,
e.g., in Example 1.I.2. The f,ive phases can be called as an integrated system, or each can be

run separately, reading and writing transfer files. The advantage of being able to run the phases

separately is to aid debugging.

10.1 Formal Syntax

To be acceptable to the the Designer program, system specifications must be stated in a subset
of the specification language. Specifically, there is only one package: the system itself. In
addition, although Designer allows internal functions, it does not allow internal procedures.
Any internal procedures must therefore be expanded in-line. This restriction is imposed to
simplify the Designer program, but it is not a restriction on what can be specified. The syntax
of the language accepted by Designer is given in Table 10.1.1.

There are also some restrictions on the use of variable names that are not present in Ada: The

names of variables may not be overloaded. There can only be one variable in scope with a
given name. If a local variabie has the same name as a global variable, the global variable

becomes invisible. (This is because the Designer program is not sophisticated enough to

resolve which of several variables might be meant by a given name.) In addition, the names of
loop variables must not duplicate the names of local variables, or one another.
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system + packages generics
package identifier is

ev ent _s p e cffic ation { ev ent _s p e c ifi cation }
enò. identifier;
package body identifier is

{ variable_declaration | {function } event I event }
end identifier;

packages -+ { with identifier; }
generics + [ generic generic_type {generic_type } I
generic_type -+ type identifier is private ; I type identifier is range <> ;
identifier_list -+ identtrter { , identifter }

type_declaration + [ array (identifier_list) of ] identifier
event_specffication -> procedure identifier | ( parameters ) f ;
event + procedure identffier | (parameters ) I is

{ v ariable _de claration }
begin statements end, identifier ;

function + function identifier ( parameters ) return identffier is
{ loc al_v ariable _de claration }

begin stotements end, identifier ;
paramete rs + p aramete r _de claration { ; paramete r _de claration }
parameter _declaration + identifier_list z type _declaration
v ariable _de claration + identífier _Iis t : typ e _de claration I initialis e r I ;
statements + statement { statement }

statement + null ;
statement + return I expressionl ;

statement + if expression then statements I elsif4art I end if ;
elsifgart + elsif expression then statements f elsifpart ] I else statements
statement + while expressionloop statements end loop ;
statement -+ all identifier in identifier loop statements end loop ;
statement + for identifier in identifier loop statements end loop ;
statement + identifier . identifier | ( expression_list ) I ;
statement -+ declare I local-variable-declaration ) begin statements end ;
statement + variable := expression t

variable + identffier [ ( identifier {, identffier } ) ]
expression + terrn { infix_operator term }

term + prefix-operator term I ( expression) I identifier ( expression_list )
I constant I variable

expression_list + expression {, expression }

initialiser -) 2= constant I ¡,= mapping
mapping + ( others =) mapping ) I ( others =) constant )
infix-operator+ + l- l* l/lmod l& lor land I =l/=14= lq l=> l>
prefix_operator -) + I - I not

TRnIe 10.1.1: SYNTAX oF THE SPECIFICATION LANGUAGE

The Designer CASE Tool

10.2 The Parser
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The purpose of the Parser is to convert a system specification into an abstract syntax tree.

The syntax of the language accepted by the parser was given in Section 10. 1. Example I0.2.I
shows the specification of the Macrotopian Reference Library system, as presented to the

parser. Example 10.2.2 shows the syntax tree the pa$er created as a result.

with ¡æort;
gme-ic

tl4>e title is private;
tlpe uss is girate;

pad<aæ übarfr'is
FrocdÍe bcuzoÂr (t : title; u : r.¡se);
lEoced¡€ resteLi¡e (t : title u : user) ,.

eocea¡:e U¡¿ (t : title) ;
¡rooed.re a.iät;

sd Lil¡ary;
padcge body f.ib:¿ùy is
C : an:iatr (Litle) of nah¡:al := (otlss => 0);
D : array (use) of nab¡:al = (otlss + 0);
tr¡ocea¡e borro,r¡ (l : Eít1e; u : r¡ss) is
begi¡r
ifC(È) >1tlsr
C(t) := C(È)-1;
D(u) := O(u)+1;

sd if;
sd bo:zon¡;
prooeAze resteLve (t : title u : r¡ss) is
beqjn
C(t) := C(t)+1;
D(u) := D(u)-1;

sd reslel-re;
eocA¡e U¡V (t : title) is
begjn
C(t) := C(t)+1;

<d kt¡¿;
ercceô¡e auåit is
stcd<, loans : raLr¡:al := 0;

b€rjn
all t jn title locp
stock := stocj< + C(t);

sd low
all u Jnusæ loq>
loærs = loæs + D(u);

ed 1oæ;
:rçcrt.a vri L (stocl<, 1øs) ;

sd a¡diq
sd Ljbary;

EXAMPLE IO.2.T: SPECmyINC THE LIBRARY SYSTEM
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EÞtsn(lib:dry,
padcges(trræortl ),
geøics(ttitle,ussl ),
lstate (1e<( tg1ea1/1ibãn/d,t¡ss], 1),rlab¡ral),
state (1e< ( tglcbal/ljbidy/c,titlel, 1),natuaJ-) L
lqsÈ(børo¡¡,

tparan0oc ( ti¡pt/bcr-¡u¡¡/ul, 1), r¡se),
paran0ec( tir{xrt/boËnoü/tl, L) , titLe) L
il,
tif (Iec( t 

jnteæIÆors¡¡/eçn-11, 1),
tle< ( [g1dca1/Ubãqr'/c, ttçut /]rr¡;ørr/ E], 2) ),
lassiEr 11o1 tg1d.a1l1ibra1'/c, irprcÆo:zoultJ, 3),

[1e< ( [g1cÈ.1 /1ib:arylc,i¡p¡t ttuail ü, Al ) l,
ass:gn ( 1ec ( tglcbal/Ultriõy/d, irprtZlcorrrcr,/uJ, 2 ),

tle< ( tglcbal/1jb.aryld,iryrt¡bon¡o^¡/ul, 3 ) I ) l, t I ) I ),
g,srt, (reheLr,¡e,

iparanGoc( tirgrt/restel-r,eÁrl, 1),use),
¡¡løn[Io< ( tirgrt/reste]-ræÆl, 1), title) L
il,
lassign(lsç1 tg1d.a1lUbrary/c, irp:t/reheJ-ve/tl, 5),

tloc( tglcbaJ-/fjbãry/c, jrg-1t/æslel-ve/tl, 6) I ),
assign(loc( tglchal/library/d, jrgrrt/rcsbelrÆ/ul, 4),

llec(tgrleaylib:dryld, jrgrt/æsle\/e/ul ,5) I )l ) ,
ssÈ(b¿¡,

tperan(Iec( tirsrt/bða/tl . l-), title) L
I],
lassign(le<( tglcbÊllljbrary/ c, t¡ptt/b¡y/ tl,7),

[Iec ( [91&41/1 ibran¡ / c, itptt /lctr /E], 8 ) I ) I ),
s,stt(a'r'it,
t],
t1æ.1 Oec( [Ioca]-/a rlit/loansl, 1), nau¡:al),
IæaJ- tle< ( [1ocal/a:dit/std<] , 1) , nattr-d].) L

[aII (Iec( t1oæ/eo.dit/t] , 1) ,

uu(å
lassign (1ø<( [1æa1/ardit/stcc]<1, 2 ),

[Iec( [1oca1/a¡dit/stæ]d, 3 ),
1e< ( [gÈ&a1/1ib:arylc,1ccp / aÅlt / t), 9 ) ] ) I ),

aII(lec( [loæ/a¡dit/u] ,l-) ,

\lsg,
lassien (Iec( tlocal-/a.dit/Ioæsl, 2),

tle< ( [1cca1/a:dit/1oærs], 3 ),
1e< ( tg1d.a1l1ib:a¡yld,1ocp/a:dit/ul, 6) I ) I ),

cal I (ls( ( [o]B¡¡l/ræcrt/aditl, 1),
[1s<( [1æa1/a v¡ì È/stæJ<],4),
1ec( [locaf/a¡clit/1oærs],4) I ) I ) I ) .

Exevplp 10.2.2: THE SyNTAX TREE oF EXAMPLE IO.2.T

The Parser generates no output from event deciarations; only their implementations within the
package body are represented in the abstract syntax tree. The immediate children of its root are

these: the generic package declarations, the generic type declarations, a list of state variable
declarations, and a list of event definitions. The subtree for each event definition comprises
three parts: the declarations of its parameters, the declarations of its local variables, and a list of
the statements in the procedure body.

The Parser detects syntax errors, but its diagnostics and error-recovery are poor. It also

detects cases where a variable is undeclared. Unlike in Ada, only one definition of a name can

be in scope. For example, the parser does not allow a loop va¡iable to have the same name as

another loop variable, parameter or local va¡iable within the same event. Its type checking is
rudimentary. It checks only that array elements have appropriate indices. For example, if the

domain of 'Back-Order' is '(customer, product)', in the reference to the element
'Back-Order('Who, What)' it verifies that 'Who' has type 'customer' and 'What' has type
'product'. The aim of the program is demonstrate feasibility; it is not a consumer product.
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10.2.t Variables

Each variable is cha¡acterised by its domain and codomain. For example, the deciaration:

C : array (title) of natural;

has domain 'title' and codomain 'natural'. If the variable is a state variable, the parser extends

the name of the variable into the form'globaVsystem/variable', where system is the name of
the system, and variable is the name of the variable, in lower-case characters. For example, if
the system name is 'iibrary', 'C' would be represented internally as 'global/library/c'. The

complete subtree for the declaration of 'C' would be 'state(lex([global/library/c,title],1),

natural)'. (See Example 10.2.2.) Extending the identifier serves two purposes: to distinguish
the variable from any local variables with the same name, and to identify references to the

variable instantly as references to a state variable.

The names of parameters and locai variables are extended like those for state variables.

Parameter names are extended to 'input/event/variable' and local variables are extended to
'locaUeventlvariable', where event is the name of the event. Variables decla¡ed by for and all
loops are extended to 'loopleventlvariable', and dummy variables used to represent if and

while statement control expressions are extended to 'internaUevent/varíable'. Thus all

distinct variables are given distinct names.

Each occurrence of a variable in the text is formed into a lexical definition of the form
'lex(variable,n)', where variable is the extended identiher of the variable, and n is unique to

each occur¡ence of the variable. In addition, a dummy variable is associated with each control

expression occurring in an if or while statement (e.g., 'expn_f in Example 10.2.2). This
variable serves two purposes: its eventual allocation to a process determines the allocation of its
control statement, and its use usually reduces the number of edges in the SDG.

10.2.2 Statements

The body of an event definition comprises a 'begin ... end' list of statements, which is
represented internally as a list of subtrees. Each statement in the list is represented by a tree

whose root labels the type of statement: 'assign', 'call', 'null', 'return', 'if', 'for', 'all' or
'while'. (See Example 10.2.2.) The number of children varies according to the type of node.

Since if, for, all and while statements enclose statement lists, some of their children are also

lists of subtrees. The parser simplifies single-branch if statements and multi-branch if
statements containing elsif clauses into nested two-branch if statements - possibly with
empty statement lists. Other possibie children of statement nodes are event names, variabies,

variable declarations, and expressions. Va¡iable declarations that arise from for and all
statements have already been discussed, and are treated in exactly the same way as local

variables. Event names, which appeff in procedure calls, are extended similarly to variable

names, to the form'event/packagelevent', where pacl<nge is the name of the called package,

and event is the name of the called event procedure.
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Variables are also represented as lists. The first element of such a list is the extended name of

the variable itself, which is then followed by the names of any subscripts it may have. For
example, a reference to 'C(t)' within the 'Borrow' event is represented as '[gtobal/library/c,
inpuVborrow/tl'. (See Example 10.2.2.) Alistrepresentation does not allow nested subscripts
or subscript expressions, but the specification language only permits subscripts to be simple
variables anyway.

An identifier is expanded to its extended name by inspecting a two-level symbol table. The
outer level lists the names of system variables; the inner level lists the names of parameters and
local variables for the event cunently being analysed. In the case that a name refers to both a
local variable (or p¿rameter) and to a state variable, the local variable is chosen. When loop
va¡iables are encountered, or variables are declared within blocks, e.g., within an all loop, the
inner level of the symbol table is extended, but it is not contracted again when the variable
passes out of scope. Therefore, all local variables must have distinct names. This is not a
limitation in principle. It would be possible to have multiple declarations with the same name.
The parser would then have to give synonyms serial numbers, in order to distinguish them.
However, it is already confusing enough to distinguish the different lexical definitions and
dynamic def,rnitions of the same variable, so this extra complication was foregone.
Furthermore, it deals neatly with problem of loop folding dealt with in Section 7.5. Loops with
different loop variables are considered incompatible, so unnested loops cannot be considered
compatible, and loop folding cannot occur.

Expressions are represented as lists of variable representations; constants are not included.
Since only dependences matter, the parser suppresses the intemai structure of expressions.
Thus, the list 'fiex(flocaVelx],3),lex([ocal/e/y1,2)]' might represent the expression 'x-y+l', the
expression 'min(x,y)', or many others. The internal workings of functions are irelevant to
dependence analysis, so they are ignored by the parser. This has the advantage that the spec-
ifier need not say how to implement a complex function. For example, if income_tax' is
calculated from 'taxable-income' in some way, it is sufficient to write 'income_tax :=
tax(taxable-income)'; it is unnecessary to specify the implementation of the 'tax' function.

10.3 The Dependence Analyser

The dependence analyser derives an SDG from the abstract syntax tree created by the parser.
The principles underlying dependence analysis were discussed in Chapter 8. Each definition
within the program text may have several dynamic defînitions. Dynamic definitions are
represented as records of the form 'dd(variable, flag, frequency)' . Variable is a list of triples.
In the case of a simple variable, the list contains a single triple. In the case of a reference to an
array element, the list contains a triple for the array name, followed by a triple for each of its
indices. Each triple consists of an extended variable name, its lexical definition number, and its
dynamic definition number. Dynamic definitions can refer to enti¡e a.rrays, in which case their
indices are replaced by triples of the form '(*,0,0)'.
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Lexical definition numbers uniquely identify the places in the specification that define the

va¡iable and its indices. Dynamic def,rnition numbers, in conduction with the variable name,

uniquely identify the dynamic definition itself. Flag is either 'rd', which is used when a
definition inspects aî array element, or 'wr', which is used when a definition is created by an

assignment. Finally, frequency is a list representing the loop structure enclosing the point
where the dynamic definition is made, and measures the number of times the definition can be

made within a single call of the event procedure in which it appears. Each enclosing for or all
loop is represented by the triple for its loop variable, and a while loop is represented by the

triple for a dummy variable that is assigned the value of the control expression. The frequency

information is used by the optimiser to determine compatibility.

Example 10.3.1 shows part of the output from the Analyser. It represents the SDG in the

form of two incidence matrices. The first matrix shows the 'hard' edges, and the second shows

the 'soft'edges. Each row represents a dynamic definition. To read the output, consider any

given row. Each '^' or 'v' entry indicates a dependence or 'use'. The reader's eye should

follow the 'v' down, or the '^' up, vertically, until reaching a row containing 'o' or '@'. This

row contains a definition on which the given definition depends. The 'o' entries simply mark

the diagonal of the matrix. An entry of '@' shows a loop, i.e., a definition that depends

directly on itself. The remaining entries: '.' ,'_' , and 'l' are merely to help the eye.

Given the assignme¡1 'x:=y;', for example, the use-definition graph will contain an edge from
a definition of 'x' to a definition of 'y'. The direction chosen for the internal representation of
an edge is the reverse of that used in the diagrams in previous chapters: from 'x' to 'y',
indicating that 'x uses y', rather than 'y is used by x'. This is because tbe Analyser asks the

question 'What definitions are used by x?' more often than ''What definitions use y?'
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( glcÈal/library/ c, Q, 4), (irgrt/torruiv/t, 1, 1 ) l,r¡r, [ ] )
( g1chl/1ib:aq"/ c, 2, 2],, ( irg¡t/bc¡=o^r/t, L. 1 ) l,rd, t I )
(g1cb1/1jb:d4r'lc, 3, 3 ), (irp:t/bc¡zc¡¡¡/t, 1, 1) l,ur, t I )
(q1cbl-/1ib.arylc,5,7), (irp¡t/restel-r¡e / t,L,1)),vr, ll
(g1dæJ-/1ibiary/ c, 6, 6ll, ( iry.rtlrcshe1l¡e/t, 1. 1) l, rd, t l
(g1cb1/librdry/c,7 ,1:0), (jrprt¿e¡¿/t,l-, L) Lr¡r, tl )
(g1ch1/libidry/c,8,9) , (irg¡t/lcrr¿/t,1,1) Lrd, tl )

d ( t (g1chal/Ub.dryl c, 9, 12), (Jq / ã ð; E/ E, t, 2) l, Lè, t ( loæ/a¡dir/r, 1, 1) I )
..1
d( t (g1d:a1lüb:drylc,9 ,I4l , (locp/ajdit/t ,!,4) lrn, t (loæ/adir/r, L, 1) I )

d ( i ( g1dæ,1/1 ibrar'j / d, 2, 3ll, ( ir$rt/lcoütro^/u, 1, 1 ) Lr^¡r, t I )
d' ( I ( glda]/I ituît / d, 3, 2],, ( jrprt/bo:=o¡¡lu, 1, l-) l,rl, t I )
d( t (g1dã1/likdry/d,4,6), (jrgrt/restel_re/u,1,1)l ,r¡r, tl )
d( t (glckal/libary/d,5.5) , (jrgt/restel-ræ/u, 1,1)l ,d, il )

( t (glcbal/1ibrary/d,6,8) , (lq/adit/u, L,2)) ,tÅ,1(1oç/adir/u,l_, L) l)

t (g1cba1/1ibrary/d,6,l-0) , (]oæ/a.dit/u,1,4)J ,rð, t (1oæ/a¡dir/u,1,1)l )
d( t (i¡p¡Zbor':¡o¡¡lt, 1, l-) l,rd, tl )

d( t (j¡p-tÆor¡u¡/u,1,1) Lrd, [] )

o

-I

o
o

-l-L-l-v_l d(

OVV

t (jry-t/e{¿/t, l-, l-) l,rd, tl )

t(j¡p-t/resheLve/t,1.1) Ld, Il )

t ( jrg,t/restel-r,e/u, 1, 1) l, d, I l)
Lrø, [])
[(1oæ/ardit/u,1,1) ] )
n)
[ (loæ/audit/u,1,1) ] )
t (loç/adit/u,1,1-)l )

[ (1oæ/âì "ri Vt, 1,1) ] )
t])
t (1oæ/adit/t,1,1-) I )

[ (Icç/a¡ì t/t,1,1) J )
(Iocp/a..dit/t, 1, 1) J )
(1oæ/a"1it/t,1
(1oç/a ¡ì È/t,1
Ooæ/a:dit/t,1
Oocp/adit/t,1
0oæ/a:dit/u,1
Ooç/a.rùit/u,1
llocp/a¡dit/u,1
Ooæ/adit/u,1
O-oç/a vrì È/u,1

^ol ,t

t (g1cba1/1jb€ry/c,L,L) , (* ,0,
t (g1dca1/1ibrary/c,1, 5), (*, 0,
t (glcbaf/Ub:&y/c,1,8) , (*,0
t (glcbal/Ubãry/c,1-, ]--I), (*,
(g1cba1/1j1¡dy/c,1, 13) . (*,
(g1cba1/1jbãy/c,1, 15), (*,
(g1cba1/Ubiary/c,1, 16), (*,

t ( jnterra1,acor¡q¡¡/egr_1,
[ (1cca1/-udit/1øts, 0, 4) ]
[ (local/-r vtit/loæts. ]-. 1) l
t ( local/adit/Iøts, 2, 2) l
[ (lccat/a "lit/loærs, 2, 3 ) ]
t (bcaf/ardit/stod<, 0, 4) l
t ( 1æa1/audit/stocl<, l-, 1) l
[ ( local/a: ¡i t/ stg-k, 2, 2\ )
[ ( loca1/adit/stoc]<. 2 , 3 ) l
t (loøa.xlit/t,1-,1) Lur, I
t (lodaudir/r, t,2) l,v'a:, I
t (locr/adit/t, 1,3) ),w, I
t (lo@adit/t,I, 4l ),w, t
t (lcdardit/t. 1, 5) Lr^r, I
[ (l@ardit/u,1,1) ] ,ur, t
t (lccdardit/u, L,2) l,vr, I
[ (lcdaûdit/u, 1, 3) ],r¡¿, t
t (Ioøædit/u,1,4\l ,w, t
[ (lcda:dit/u, ]-, 5) l,r^r, I

0)l
0)l
0)l
,0)
,0)
,0)
,0)

,rl, il )

,vr, tl)
ur, [] )

,1,ü, tl)
,ur, [ (loç/adit / E, l, 1l ] )
,rø, I Ooæ/adit / E, I, t) ] )
,un, I Ooæ/adit/ E, 1-, l) ] )

d(
dd(
d(
d(
d(
d(
d(
d(
d(
d(
d(
d(
d(
d(
dc(
d(
d(
d(
d(
d(
d(
d(

1,1)
,\¡lE,

,d,
,W'
;!E I

,$rr,
,Id,
W,
W,

l)
l)

1)
L)
1)
1)
l_)

1)
1)
r_)

1)

^o.v
^.o.
l.^o

d([ (o]Ert/rçort/adit,1,L)1 ,l^r, tl )

d( I (g1cba1/lib.drylc,0, 4), ( jrsrt/borz¡:¿/t, 1, 1) 1,r,,¡r, t I )

l.

r-)

r-)(glcbal/Ubid¡1//c,9,l11 , /t,1,,
(g1dca1/Iib.&y/d,1, L) , (

(g]cbal/library/d,L, 4), (

(g1cbal/liÌtr dyld,!,1l , (

(glevljb:dryld,L, 9 ), (

(glcbal/1ib.dry/d,L, 11),
(gldcal/lü¡:¿¡yl d,l, 12\,
(glcbat/1ih3¡l¿/d,2,3), (

d(
d(
d(
ö(
d(
d(
d(
d(
dd(
d(
d(
ö(
d(
d(
d(
d(
d(
d(
d(
d(
d(
d(
e(
d(

0
0
0
0

(qlcbal-/Ubãy/c,2,2), (irgrt/bor=oalt, 1, 1) l, d, t I )
(g1cba1/1ibiary/c,5,'l) , (jrp:t/restel-rdt,1, L) L\,.r, [] )
(glcbal/Ub.dryl c,6, 61, ( jrgt/resheJ-rdt, l-, l-) l, rd, t I )

(glcbal/1iÌ¡:aryl c,8, 9],, ( irgrE/14¿lt, l-, 1 ) l, rd, t I )
(gldcal/1ib.æylc,9,12ll, (1ocp/ardit/t,L,2) l,Ld, t (loæ/adj¡/t, j-

(g1cba1/libraqr'/ d,3, 2),
(g1cba1/1ibãry/ d, 4, 6),
(g1cba1/Ufrdy/d, 5, 5 ),

dd( t (g1eavljbãry/d,6, 8),
.o d( t (glcbal/Iitun¡/d,6,10) , (loæ/ardit/u,1,4)),¡d, [ (loæ/a¡ir /u,t,L) jl

.o..

..o.

...o
( jrp¡t/bons¡¡/r+ l-, 1) l,rd, t I )
( jrp.t/restel-rdu, l-, l-) Llr, t l )
( jrgrt/reslæIidu,1,1-) Lrd, [] )
(lccp/:,{itlu,l,2l) ,ñ, [(loæ/a¡diVu,1, ]-) I )

EX¿,I¿pLs 10.3.1: PART oF THE Ourpur FROM THE ANALYSER
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[ (lec( tg1èÈ1/1i-la:aryld,use] ,l-) ,rlatrr-al) ,
(1e<( tglô41/1ib:arlzlc, Litlel, 1) ,r¡iU¡:al) ,
(1e<( tnptZbctzu¡/ul , L) ,uss) ,
(1o<( tirplt/lccuzo,r¡ltl ,1) , Litle) ,
(1ec( tirprt/ræstel-r,e/ul ,1) ,r¡.s) ,
(1e< ( tirp¡t/reteLve/tl, l-), tjlle),
(1ec( iirprc/laryltl ,1) , Eitle) ,
(lgç( []s@l/¡r yri Vløsl, 1),rah¡:al),
(1o<( [1oca1/-' "1iE/stæj<] , 1) ,rab¡:al) ,
(1ec( tloqp/a.dit/tl, 1), Litle),
(lec(tloç/ardit/ul ,1) ,r:se) l.

(9rld.D1lljin:arylc,L,L) , (*,0,0) Ld, tl ) ,
(glctã1/ljbran¿/c,1,5) , (*,0, 0) Lvr, [] ) ,
(g1cka1/ljbrdry/c, 1, 8), (*, 0, 0) l,rø, tl ),

td(
d(
d(
d(
d(
ö(
d(
d(
d(
d(

,0,0) I .t¡r, tl ) ,
,0,0)l 'v¡r, [ (locp/ãdit/t,1,1) ]),
0,0)1,d, [),
0,0) l,rø, [] ),
0,0)l ,vr, tl ) ,
, 0, 0) L'r¡r, [ (1oæ/adit/u, ]., L) I ) ,
,ur, tl )l .

td ( t (g'1cfta1/1ituary, / c, Q, 4), ( irprtÆonov/t, 1, 1) l,ür, t I ) -
td( t (g'lcba]/1ütrrdq¿/c,2,2) , (irgrt/bor:sn¡lt,L,1)l,rd, [] ) ,
d ( t (gl.ba1/1ib:drylc, 3, 3 ), ( irprt/tcor:s¡¡lt, l_, L) l, rø, t I ) l,

d( t (glckal/1ituar¡/c,2,2) , (l'p:t/turo¡t/t,1,1) l,rd, il )-
td(t(i¡p:t/bcuzur¡/t,l-,1) Ld, [] ) L

d( I (g1dæl/1itun¡/c,3,3), (irprtiborzo¡lt, 1,1) Lvü, il )-
tdd ( t (glchal/Ub.aryl c, 2, 2), ( irp¡tÆorrq¡./t, l-, L) l, rd, t I ),
d( t (jrgrt/bcÐÍq^/r,, L, 1) l,d, il ),
dd( t (jrternl /rnrctr/qy],,1,1) l ,rø, [] ) l ,

ö ( t (g1cta1/l ituary / c, 5, 7 ), ( irprr/resteLræ / E, L, Dl, !Ë, t I ) -
id( t (qlcbal/libia¡y/c,6,6) , (irp¡tr/ræteLræ /t,t,t)l,rd, il ) ,
e(t(i¡p.rtl¡esTeLre/t,1,1) l,d, tl ) l,

d ( [ (g1cb1/] ibra¡r¡ / c, 6, 6), ( jrgrt/res]el-ræ/t, 1, l-) l, rr1, t I ) -
tdd( t (irpt/¡eslel-¡,e/t,1, L) l,rd, [] ) L

d( t(s1dæ.1/1ibran//c,7,t0) , (irg:t¡hrvlÈ, l_,l-) l,u¡c, tI)-
td(t (glcbat/1ib:a4¿lc,8,9) , (iryrt/la{//t, L,1) Ld, [] ) ,
d( t (irErt/hå¿lt, l, l) ), d, tl ) L

&( t (gldæ]/lituary / c, 8, 9), (nprvla¡y/t, 1_, 1) l, rd, t I ) -
ld( t (irprtllcå¿lt, 1,1) l,d, [] ) l,

d( t (qlchal/]itur'¡/c,9,12), Ooq>/arrr'i¡/8,1,2)J,rd, t(1oæ/a.r1it/8,1,\ll-
ldd( [(1@/^'.lit/L,I,2) ],rø, [(lcæ/a'¡lit/È,1,1) ])l ,

d' ( t (glc&allIibary / c, 9, L4), 0cæ/audit/ t, L, 4) l, rd, t ( loæ/ardi t / t, L, \ I ) -
ld( t (1q/aucliL/8,1,4)),ræ, [ (loæ/a-rät /t,!,]-1D] ,

ö( t (g1d.a1l1ituary/d,2,3l', (irgrt/borroa/u,l-,1) l,r¡r, tl )-
td ( I (gld:a1lübrary/d, 3, 2 ), (irlrrt lturc¡¡ /u, t, I) l, d, I I ),
dd( t (j¡p:t/borrc^¡/u,1,1) Ld, tl ) .
dd( t (irteîa1/bonoa/egr_1, L, 1-) Lrlr, t l ) L

d ( I (g1d.a1lI itury / d, 3, 2|l, ( jrgrt/børor/u, 1, 1 ) l,rd, i I ) -
tdd( t (j¡g¡t/bozo¡¡/u, l-, 1) l,d, tl ) l,

d ( [ (glda.l/I ituî,t / d, 4, 6), ( jrprC/reshe].r¡e/u, L, 1) l, r^r, [ ] ) -
td( t (glcbal/lijrary/d,5,5) , (irp.¡tlreslel-re/u,I,]-l),rd, tl ),
d( t (jrrut/restel-re/u, 1, L) l,¡d, tl ) l,

d ( t (gl-d.atl1jb.a4,'/d, 5, 5), ( jrp.rElrehe}æ/u, 1, 1) l, d, I I ) -
tö(t (irgrt/r€teL1Æ/u,L,t) l,!d, tl)l ,

d( t (gld.D1lljbrary/d,6,8) , (ìoç/a vri r/u,1,,2|l) ,ù [ (loæ/arät/u, j_,1)] 
) -

tdd ( t (Iq/a¡dit/v, t, 2\ l,vr, [ ( loq),/ardit /v, I, 1l ]) ),
d ( t (9t1d.41/1ih?¡yld, 6, L0), Ocæ/audit /u, t, 4) l, d, t (lcç/adit/u, 1, 1) l ) -
td( t (lq/aldit/lr,t,4)1,\ü, [ (1oq9/adit/u,1,1) ]) L

d( t (irg-È/bo:zovlt, L, l-) Lrd, tl ) - tl ,
d( t (jrg-tÆo:zon¡lu, 1, 1) l,d, tl ) - tl,

... ad so qt...

Exevple 10.3.2: TH¡ INpur ro rHE C.cNoNlssR

The analysis algorithm has already been discussed in Chapter 8. The Analyser phase uses ttìe

single definition method. In the case of a definition that results from merging the branches of
an if statement, where the def,rnition has no corresponding lexical occurrence, the lexical
occuffence number is zero.

(g1da1/1ib.ârylc, 1,11) , (*
(g1d.a1/1ib:dËylc, t, L6), (*
(g1ctãL/UtE-dÐ',/d, 1, 1), ( *,
(g1cb1/Ubrary/d,'J-, 4), (*,
(g1ctæJ-/1ii¡:aryld, I,7 ), (*,
(slch1/1ibãy/d, t, 12), (*
(o:Þrt/repcùt/adit, l-, L) l
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Actually, the part of the Analyser output shown in Example 10.3.1 is meant for human

consumption only. The hard and soft edges are actually transmitted to the Canoniser phase as
two lists of dynamic definitions, each member of which is paired with the list of definitions on
which it depends. This representation is less concise than the mat¡ix form, but is easier for the
Canoniser to parse, and corresponds directly to its internal representation. These lists a¡e
preceded by a list of ail the variable declarations occurring in the specification, and-a list of all
its final definitions, i.e., those that correspond to outputs or the final definitions of state
variables. The declarations are not needed by the Canoniser, and are simply passed forward to
the Optimiser. The beginning of the Analyser output is shown in Example lO.3.Z. (The listing
of the SDG is incomplete.) The Canonlser ignores the dependence matrix shown in Example
10.3.1' Intemally, the Analyser stores the dependence information in a third form: a pair
comprising a list of vertices and a list of edges, i.e., ordered pairs of vertices.

As explained in Chapter S, the Analyser builds the SDG by traversing the abstract syntax tree
prepared by the Parser. A typical Prolog predicate within the Analyser has the form:

analyse_stmt(Context,Statement,Defsln,Defs Out,Hard,S oft,Decls)

where 'Context' is the conditional context, 'statement' is the subtree whose root is the
statement being analysed, 'Defsln' is the set of live definitions entering the statement, and
'DefsOut' is the set of live def,initions leaving the statement. 'Hard' and 'Soft' are the parts of
the hard and soft SDG's constructed to model the action of the statement. The SDG's are built
bottom up, starting from the leaves of the syntax tree (which represent uses or definitions of
variables), the subgraphs being formed into larger graphs using the constructions explained in
Chapter 8. Finally, 'Decls' is the list of all intemal variable decla¡ations made within the
statement. At the top levels of the syntax tree, this list of declarations is concatenated with the
listsof parameter, local and state variable declarations, and passed to the Optimiser by way of
the Canoniser.

The conditional context is initially empty, but within the context of an if statement or while
statement it becomes a list containing the dummy variable that represents the control condition.
Since the assignment to this variable is made inside the context of any enclosing if or while
statements, the definition uses the existing conditional context, so one term is sufficient.

10.4 The Canoniser

The hard and soft SDG's constructed by the Analyser must be combined to give the graph
needed for determining separability. The strongly-connected components of this graph
correspond to separable processes. It is necessary to ensure that all the dynamic definitions that
derive from the same lexical definition are assigned to the same process, otherwise it would be
impossible to generate component specifications using the rewriting rules. Also, all the
definitions of a state variables must be assigned the same process, as required by the constraint
of real-time equivalence. No such treatrnent is needed for local variables 

- including those
representing elements of state variable arrays.
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For these reasons, the Canoniser temporarily links together all sets of dynamic definitions
that share the same lexical definition, i.e., those with the same variable and lexical occurrence

numbers. This forces them into the same strong component, and therefore into the same

process. This serves both goals, because the Analyser gives all the definitions of state variable
alrays the same lexical occurrence number - the value '1', corresponding to the point of their
decla¡ation in the specification.

The Canonis¿r constructs the reduced graph of this augmented SDG. There is an edge

between a pair of vertices in the reduced graph if there is an edge in the SDG between any pair
of members in the components the vertices represent. The Canon¿s¿r finds the reduced graph

using Tarjan's Algorithm lTarjan 1972], during a singie depth-first search of the graph, as

described in Section 4.8.

The Canoniser then finds the 'transitive root' of the reduced graph. A 'transitive reduction' of
a given graph is any subgraph of the graph that has the same transitive closure as the given
graph. A 'minimal transitive reduction' of a given graph is a transitive reduction such that none

of its proper subgraphs is also a transitive reduction of the given graph. An acyclic graph has a

unique minimal transitive reduction, called its ransitive root. If one is interested only in the

transitive closure properties of a graph, as we are here, its transitive root is a more compact way
to represent it. Using transitive roots also simplifies the Optimiser.

One way to find a transitive root would be to first find the transitive closure of the SDG, a
graph containing an edge for every path of positive length in the graph. Using a related

algorithm due to Eve & Kurki-Suonio [Eve & Kurki-Suonio 1997], also described in Section

4.8, the transitive closure of a graph can also be found during one depth-first search. Then, by
forming the product of the transitive closure with the original graph, a graph is formed that has

an edge corresponding to every compound path of the original graph, i.e., every path of length
2 or more. By subtracting the edges of this product from the original graph, all edges that

correspond to compositions of other edges are eliminated [Aho et aI. 1972]. However, this

approach proved too memory-intensive. Instead, each edge of the graph was individually tested

to see if it corresponded to a compound path, and was removed if it did. Although testing for
the presence of a compound path needed a separate depth-first search from each vertex in turn,
rather than the single search needed by Tarjan's Algorithm, this method proved fast enough. In
fact, since finding the transitive closure of a graph involves constructing many more edges than

are present in the original graph, and the chosen method avoids this, it may actually prove faster

in some cases.

The transitive root of the reduced SDG is a feasible system design, i.e., its CPG (canonical

process graph).

The output of the Canoníser consists of five parts:

. The list of declarations passed to it by the Analyser

. The SDG passed to it by the Analyser.
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A list of the strongly connected components of the SDG. (Each component is simply a
list of dynamic definitions.)

The CPG

The incidence matrix of the CPG, in which each dynamic definition is mapped onto its
corresponding lexical definition.

vl tglobal/library / c, *1, 1),
lglobal/library / c, input/borrow / trl, 0),
[global/library / c, input/borrow / t ], 2'),
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Exevplp 10.4.1: Pnnr oF THE CeNoNlsBR Ourpur

The incidence matrix produced for the Macrotopian Library system is shown in Example

10.4.1. Again, the matrix is to aid debugging, and is not read by the Optimiser. It uses the

same conventions as Example 10.3.1, in that each row represents a vertex of the graph.

However, a vertex now corresponds to a set of dynamic definitions. There arc often several

dynamic def,initions of each lexical definition, but all of them must fall in the same strongly-
connected component. Therefore, to make it more concise and more readable, the incidence

matrix shows their corresponding lexical definitions.

10.5 The Optimiser

The inputs to the Optimiser are the first four outputs produced by the Canoniser; the incidence

matrix is ignored. In turn, it produces three outputs: a topologically ordered list of processes,

the process graph on which the topological ordering is based, and the incidence matrix of the

process graph. The incidence matrix for the Macrotopian Reference Library process graph is
shown in Example 10.5.1. It has two rows, representing its 'C' and 'D' processes. A process

vertex is a pair of values: its degree of independence, and the list of lexical definitions allocated
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to it. The degree of independence is a list of the domains over which parallel or sequential
access is possible. If the list is empty, the process must use single-thread random access. The
'C' process allows independent access by 'title', and the 'D' process allows independent access

by 'uset'. The matrix indicates that data flows from the 'C' process to the 'D' process

o. ( [tj-tle] , [Iex( [g1obal/Iibraîf /c, *] ,1) ,
lex( [gIoba1 /l-lbrary/c, input/borrow/E] ,0) ,
lex( lglobal /ltbrary/e, input/borrow/t],2) ,
lex( lgIobal /Iibxary/c, input/borrow/EJ ,3) ,
lex( [g1oba1 /library/c, input/buy/t],?) ,
Iex([g1oba1 /Ilbraty/c, inpur/buy/r] , B) ,
lex( lgloba] /llbrary/c, input/reshelve/t] ,5) ,
Iex ( [ g]obal / l-tbr ary / c, input/reshelve/ t l, 6 ),
lex ( [gIobaI / l-lbrary / c, loop/audir/t], 9),
lex( [input/borrow/t] ,1) ,
1ex ( [input/buy/t] , 1) ,
lex ( [ input/reshe]-ve/tl, l- ),
lex ( [internal/borrow/e>çn_1], 1 ),
lex ( [1oca1/audit,/stock], 0),
lex( [1oca1/audit/stock] ,1) ,
1ex ( [1oca1/audit,/stock], 2 ),
lex( [loop/audir/r] ,1) I )

^o ( luser] , [1ex( lgrlobal/libra¡y,/d, *],1),
lex( [globa1 /Iíbrary/d, input/borrow/uj ,2) ,
lex( [g1oba1 /l-ibraty/d, input/borrow/u] ,3) ,
1ex( [global /1Lbrary/d, input/reshelve/u] ,4) ,
lex ( [ globa1 / Ltbr ary / d, inpur /reshelve/u], 5 ),
lex( lglobal /l-tbrary/d,1oop/audit/u] ,6) ,
lex( [input/borrow/u] ,1) ,
1ex ( [input/reshelve/u], 1 ),
1ex ( []ocaI/audit/1oans], 0),
Iex ( [loca]/audÍt/loans], 1),
Iex ( [1oca1/audit/1oans], 2),
fex( [loop/audit/u] ,1) ,
lex ( [outpuL/report/audit], 1) I )

ExeupLs 10.5.1: PART oF THE Oprll¿rseR Ourpur

Some optimisation strategies were discussed in Chapter 9. The Optim¿s¿r uses the greedy
heuristic method, merging vertices in pairs. Merging proceeds in such a v/ay that the graph
connecting the merged vertices always remains acyclic, and it is simplified to its transitive root
after each merge operation. Therefore the input and output of each optimisation stage are both
transitive roots. The Optimiser merges pairs of processes until its heuristics can find no more
pairs to merge. The resulting graph? which is acyclic, is the finished system design. The
merging process is monotonic, and no backüacking occurs. As a result, the finished system
design may not be truly optimal, although tbe Optimiser acfially finds an optimal design for the
examples in this thesis.

10.5.1 The Degree of Independence

Each process is given a degree of independence (or simply, 'degree'), represented as in
Example i0.5.1. In general, a degree is a list of domain types, possibly empty. A process also
contains a set of definitions. The degree of a process depends only on the definitions that are

allocated to it, and the 'hard' edges of the dependence subgraph that connect them. It does not
depend on any edges leaving or entering the process or the vertices they connect to. In
implementation terms, this reflects the fact that sorting event messages between processes
resolves their incompatibilities.
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A degree of independence must not only be established for the minimal processes in the CpG,

but must continually be re-evaluated for new compositions proposed during optimisation. It is
clear that composing a process that is independent with respect to 'customer' with a process that
is independent with respect to 'product' will produce a single-thread process. Therefore, the
known independence of processes can be used to filter out useless compositions. However, it
is not clear that composing two processes that are independent with respect to 'customer' will
result in a process that is also independent with respect to 'customer'. This requires detailed
investigation to discover whether there is, joining the two processes, a dependence that links
definitions with different indices.

A definition has a degree that is determined by its relationship to the definitions it 'uses' in the
SDG. The degree of a definition is the degree of independent access possible in assigning
values to the variable concemed. The degree of a process is the common prefix of the degrees
of all the definitions it contains.

The degree of a def,rnition has three components: First, it has an 'inherent' degree, which
depends on the domain types of the defined variable, but also depends on whether the variable
is a state variable or a local variable. Second, it has a degree determined by the definitions it
uses' If their definitions are incompatible with the definition's inherent degree, its effective
degree must be reduced. Third, its degree may need to be ¡educed a second time because the
loop structure of the event procedure clashes with its degree.

The inherent degree of a state variable is the list of its domain types. For example, the
declaration:

Back_Order: array (customer, product) of natural;

means that the variable 'Back-Order(Who, What)' has degree '[customer, product]' because, in
itseli it can be accessed independently by both 'customer' and 'product'.

Local variables and parameters must be treated differently from state variables. Consider an
assignment of the form:

Back_Order('Who, What) := Shortagel

where 'Back Order' and 'shortage' are both allocated to the same process. If 'shortage' is a
state variable, no independence is possible; its degree is empty, because all accesses to
'Shortage' must occur in real+ime order. On the other hand, if 'shortage' is a local variable,
then the degree of the assignmentmay yet be '[customer, product]'. This is because there is a
separate instance of 'Shortage' for each instance of the event procedure. The degree of a
parameter or local va¡iable is therefore said to be 'extensible'. The Optimlser represents an
extensible degree by terminating its list of domains with an asterisk. If 'shortage' is a local
variable, its degree is represented as '[x]'. To assess the common degree of two lists, the
optimiser treats 'x' as a wild-card, so that the common degree of '[customer, product]' and
'¡xf is '[customer, product]'.
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However, to assess the common degree of an assignment, it is necessary to look at index

definitions, not domains. For example, if the following sequence is allocated to a single

process:

t := A(i);
: ._:.r'-Jt
B(i) := t;

ithasdegree'[]', because the definition of i'used in 'B(i)' is not the same definition used in
'A(i)'. Therefore, the Optimiser must sometimes consider degrees that are lists of index

definitions rather than lists of domain types. It also follows that definitions cannot be

considered in isolation. The degrees of the first and third assignments taken separately are the

domains of 'A' and 'B', but their joint degree is empty. Therefore, their degrees depend on

whether or not they are assigned to the same process.

The Optimiser modifies the degree of each def,rnition by considering all the definitions it uses,

either directly or indirectly, provided they lie within the same process. For the process under

consideration, it first finds the subgraph of the 'hard' SDG whose vertices correspond to

definitions assigned to the process. It then finds the transitive closure of this graph, in which

each definition is linked to all the definitions it uses either directly or indirectly.

For each edge of the closure,the Optimiser finds the longest common prefix of the index lists

of the source and target definitions. This list is then immediately converted to a corresponding

list of domain types. The degree of a definition is the common prefix of all the degrees

computed in this way, for each edge entering it. (The index lists of local variables are

considered extensible, as before.)

In the case of the sequence above, a depth-first search would discover that the definition of
'B(i)'usesdefinitionsof 't' and 'A(i)'. If i" and'i"' denote the two different definitions of
'i', the Optimiser would find the cotnmon degree of the lists'[i']', '[*]', to be '[i']', but the

common degree of '[i']' and '[i"]' to be empty. After converting these results to domains, their

common prefix is empty.

It is important to convert indices to domains for each dependence separately. For example, if
'S' is a local variable in the following context:

all i in index loop
S:=S+A(i);

end loop;

'S' is compatible with every instance of 'A(i)', even though the instances of 'A(i)' are

incompatiblewithoneanother. The dependences of 'S' on'A(i)' are'[i']', '[i"]', and so on,

which have an empty cofirmon prefix. However, converted to domains, the dependences a¡e

'[index]', '[index]', and so on, having the common prefix '[index]'.

Since every assignment made in a process needs to have at least the same degree as the

number of independent instances of the process, then conversely, the degree of a process is the

longest prefix common to the degrees of all the definitions it contains.
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This approach deals corectly with the event:

procedure Transfer (Payer, Payee : account; Amount : money) is
begin

Balance (Payer) := Balance (Payer) - Amount;
Balance (Payee) := Balance (Payee) + Amount;

end Transfer;

There are two lexical definitions of 'Balance (Payer)' here. The second depends on 'Balance,
and'Payer';the first depends on the second, and on the definition of 'Amount'. Its degree is
the common prefix of '[Payer]' with '[*]', and '[payer]' with '[payer]', i.e., both yield
'[Payer]', which then translate into the domain type '[account]'. The degree of the definition is
therefore the common prefix of '[account]' and '[account]', i.e., '[account]'. Likewise, the
degree of the second definition of 'Balance (Payee)' is '[Payee]', which is also translated into
'[account]'. Since every definition in the event has degree '[account]' or '[*]', the degree of the
whole 'Transfer' procedure is '[account]'. More accurately, the degree of the 'Transfer' event
itself is never established; it is the process associated with 'Balance' that has degree '[account]'.

Only the dependences within a process count. Consider the event:

procedure Transfer_2 (Payer, Payee : account; Amount : money) is
begin

if Authorised (Payer) and Authorised (Payee) then
Balance (Payer) := Balance (Payer) - Amount;
Balance (Payee) := Balance (Payee) + Amount;

end if;
end Transfer_2;

If 'Authorised' and 'Balance' are assigned to separate processes, each process has degree
'[account]'. If they are assigned to the same process, it will have degree '[]'. The dependences
of 'Balance (Payer)' on 'Authorised (Payee)' and of 'Balance (Payee)' on 'Authorised (Payer)'
are only relevant when they share the same process. The Optímis¿r considers only the
subgraph of the SDG that includes the vertices assigned to the process concerned. If
'Authorised' and 'Balance' share the same process, the edges representing the dependence of
'Balance (Payer)' on 'Authorised (Payee)' and of 'Balance (Payee)' on 'Authorised (Payer)'
fall within the same process's subgraph, but if they are in different processes, the edges span
between the processes, and don't form part of either subgraph. This is how the Optimiser
determines that combining the 'Balance' and 'Authorised' processes would be unproductive,
even though they have the same degree.

I0.5.2 Preserving Structure

Recalling that the transformation of a system specihcation into component specifications is
based solely on text replacement using delayed procedure call, what aspect of the Desígner
ensures that the transformation is possible? Essentially, it needs to ensure that if Process p calls
an event procedure within Process Q, the text of Q's event procedure can be nested within the
text of the calling procedure in Process P. For example, if P contains an if statement
controlling an assignment in Q, that is acceptable; but it should never create a design where an
if statement in Q attempts to a control an assignment in p.
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This function is taken care of by the use of the conditional context by the Analyser, which
forces the assignment in Q to depend on the control expression in P. Since loops are treated

analogously to if statements, no difficulties can arise with loops, either.

A related problem is to preserve the nesting order of if statements and loops. Section 8.8
explained that the conditional context forces the nesting of if statements to be preserved. Since

the Analyser models loops similariy to if statements, it also forces the nesting order of loops to
be preserved. Despite this, it cannot gua.rantee that the structures assigned to a process are

consistent with a sequential or parallel update algorithm. This problem was discussed in
Section J.3, where it was also pointed out that an event procedure may be called many times

within the processing of a single event.

Every definition has a 'frequency', which measures the number of times it must be executed.

The Analys¿r establishes the frequencies, which it represents as ordered lists. An all loop is
represented by its loop variable, and a while loop by its control expression variable. If the

implementation will use parallel access, for loops are treated like while loops; for sequential

access they are treated simiiar to all loops. The Analyser currently gives them frequencies like
those for all loops, which means that it solves for sequential access designs. If a parallel

access design is required, the specifier must replace for loops by equivalent while loops.

The frequency of a definition within an event procedure has two components: the frequency

with which the event procedure containing it is called, and the frequency with which the

definition is executed within it. The calling frequency and execution frequency can be

distinguished by testing to see whether each ioop variable or control expression is defined

within the same process as the definition in question. If it is, the loop must be part of the same

process; if it isn't, the loop must belong to the calling process. The list of loop variables in the

calling process therefore dehnes the calling frequency.

In the calling frequency is deleted from the frequency of a definition, the residue is the

definition's execution frequency within the called procedure. But the execution frequency and

degree of parallelism of the process containing it must be compatible, otherwise the procedure

does not have a loop structure capable of f,rtting into an independent update algorithm. To check

this, the Optimiser must infer the loop structure of each independent process. In particular,

independent access can only support a loop strucfure that is a simple nesting. For example, if
an event has the form:

all i in index loop
all j in domain loop

end loop;
all k in key loop

end loop;
end loop;

the independent update algorithm's loop structure cannot be '[ij]', because that leaves no place

to embed the statements with the loop on 'k', nor can it be '[i,k]', because of the statements in
the loop on 'j'. It is only possible to achieve independence with respect to 'i', and the T' atrd
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'k' loops cannot give rise to extra independence. This gives rise to the idea ttrat J' and 'k'
should be called 'invalid' indices, i.e., they cannot contribute to independence. The degree of
independence is '[i]' in this case, not because it is the cortmon prefix of '[ij]' and '[i,k]', but
because 'i' does not conflict with any other loop, and is 'valid'. Further, any indices defined
within a while loop cannot contribute to independence, and are 'invalid' too.

To determine the degree of a process, the Optimiser fîrst finds the subgraph of the 'hard'
SDG, as above. Second, it finds the 'invalid' loops for each event, by comparing the
frequencies of its venices. Third, it strips out the calling frequency of each definition, by
removing all loop variables preceding the first loop variable whose definition is allocated to the
process. Finally, it determines the independence of each variable as described in Section 10.5. 1

with an important modification: only 'valid indices' are accepted. Valid indices are valid loop
variables, constants or pa-rameters. Valid indices are those whose def,initions have frequencies
that do not include a while loop or an invalid all loop.

This approach deals correctly with the example of Example 7.5.2, which computes each
employee's salary as a percentage of the total payroll. Its optimum process graph comprises
two processes, the first containing the loop on 'Empl', and second containing the loop on
'Emp2'. The values of 'Total' and 'Temp' are passed between them. It is important to keep
these processes separate; the independent access algorithms do not allow two all loops in
succession. The local array 'Temp' is important here. It is used to store a copy of 'Salary'.
Without it, as in Example L5.1., both loops have to access 'Salary', and since 'salary' is a state

variable, they are allocated to the same process. Since 'Empl' and 'Emp2' are invalid indices,
no independence is possible.

However, the analysis of Example 7.5.3 is more problematic. Its purpose is to compute the
average balance of all authorised customers. To do this, it computes the total balance in one
loop, and counts the number of authorised customers in a second loop. As in the case of
Example 7.5.2, the Optimis¿r allocates the two all loops to separate processes. The value of
'Total' is passed from the first process to the second. However, it would be theoretically
possible to compute the values of 'Total' and 'Count' within the same loop, as in Example
7.5.4. This case may differentiated from the case of Example 7.5.2, which requires both
loops. The opportunity for folding the loops can be detected by observing that no definition
made in the second loop of Example 7.5.3 depends on any definition made in its fîrst loop.
However, if the Optimis¿r took this into account, and assigned both loops to the same process,
the Programmer would need to know how to generate a process in which the two loop bodies
were folded together. This would require more than the simple text-substitution mechanism
associated with delayed procedure call. Consequently, the Optimiser currently keeps the loops
separate.

10.5.3 Optimiser Heuristics

The two conditions under which it pays to merge processes 'X' and 'Y' are called
'subsumption', and'promotion'.

u,
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Process X 'subsumes' process Y if X accesses every index that Y accesses. This means that

if the attributes accessed by X and Y were stored in the same records, X would already need to

access every record that Y would access. Merging X and Y is therefore bound to save

accesses. This is an obvious saving if X must use random access, because the attributes used

by Y are accessed at no additional cost. It is also a saving if independent access is used,
because every record needs to contain a key, which is copy of its index value, so combining
two records saves storing and accessing the second key. If the two processes are neighbours in
the process graph, combining the processes also eliminates the cost of transmitting data between

them.

X 'is promotable to' Y if the degree of parallelism of X either equals, or can be extended to
equal, the degree of parallelism of Y. If X and Y have the same degree of parallelism, then the

attributes they access can be accessed by the same process, and combined into the same table -provided that their indices are compatible. By eliminating one copy of each key, the total
storage occupied is reduced, and this reduces the number of accesses needed. On the other
hand, if the degree of X is not equal to the degree of Y, but extensible to it, it follows that X
must access only local variables or parameters. In such a case, combining the processes avoids
creating a trivial process for the iocal variables. There are several ways in which X could be

involved:

In one case X could access a simple variable with one definition, as in:

X:=W(i);
Y(k) := X;

X could be merged either with 'V/(i)' or 'Y(k)', which are both assumed to be state variables

here. However, once X has been merged with 'W(i)', the resulting process would have the

same degree as ''W'', and would no longer be extensible, so it is unlikely that it could be merge.d

with the 'Y' process. Conversely, merging 'X' with 'Y(k)' would probably prevent it being
merged later with 'W(i)'. In this instance, it does not matter which optimisation is chosen.

A second case is when 'X' is an accumulator variable, as in:

all i in index loop
X := X+W(i);

end loop;

In this case 'X' should be merged with 'W' to avoid passing all the 'W(i)' values between
processes.

The third case is when 'X' is broadcast, and inspected in a loop, as in:

all k in key loop
Y(k) := Y(k)+X;

end loop;

Again, the motive for merging is to avoid having a trivial process for 'X'.

However, if there is a choice between merging 'X' with'W(i)', as in the second case, or with
'Y(k)', as in the third case, the merge with 'W(i)' should have priority, because it reduces the
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number of procedure calls that must be passed between processes. These last two cases
introduce an asymmetry into the merging of neighbouring processes. If process 'X' is
promotableto'W'orto'Y','Y' depends on'X', and'X' depends on ''w', the optimiserwill
therefore consider merging 'X' with 'W' before considering merging it with 'y'. This is in
accordance with the principle of early evaluation discussed in Section 7 .I, in which it was also
noted that loop va¡iables should be an exception. Because the Parser extends the names of loop
variables with a distinctive prefix, they are easily recognised. The Optimiser never merges a
simple loop variable with an upstream process. However, once the loop variable has been
merged with other variables, that becomes a different matter.

As a result of these considerations, the optimiser merges processes 'X' and 'Y' according to
the following priorities:

2

1

'X' and 'Y' are neighbours, 'X' depends on 'Y', and either 'X' subsumes 'y' or 'y' is

extensible to'X'.

'X' and'Y' are neighbours, 'X'depends on'Y', andeither'Y' subsumes ,X'or,X, 
is

extensible to 'Y'. (Except in the case that the only member of 'X' is a loop variable.)

There is no directed path between 'X' and 'Y', and either 'X' subsumes 'Y' or 'X' is
extensible to 'Y'. (There is a symmetrical case, exchanging the roles of 'X' and 'Y'.)

A problem with these rules as they stand is that simple locai variables are compatible with
anything, including other simple local variables. There is a danger that the Optimiser will begin
by placing all the local va¡iables into a single process, then find that it is difficult to combine this
process sensibly with any of the others. For example, if the Optimiser were to compose
'Stock' and 'Loans' given the example of Example 10.4.1, it would not be able to allocate them
optimally, as in Example 10.5.1. The Optimiser therefore gives a very low priority to
composing two processes whose degree is extensible. The practical effect is that local variables
must be composed with state variables before they can be composed with other local variables.
As a result, such compositions could never be made except in a trivial event specification that

made no reference to any state variable.

Another problem in optimisation is that the graphs constructed by the Analyser are usually
much more complex that those that have appeared in diagrams in this text. The diagrams
typically suppressed local va¡iables and parameters and showed only the relationships between
state variables. Those constructed by the Analyser not only include local variables, but
variables representing affay elements. What is more, there may be several def,rnitions of each
variable. As a result, two state variables that are linked by a single edge in a diagram in the text
may be linked by a long compound path in the Analyser graph. For one optimisation step on a
diagram, the Optimiser may make several steps. Since most optimisation steps involve merging
neighbouring vertices , the Optimiser has no long-range goal and succeeds only locally. Indeed,
this is the main cha¡acteristic of a greedy algorithm. It therefore seems a matter of chance
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whether the Optimis¿r will succeed globaliy. To help counteract this, the Optimiser always
chooses to merge two non-extensible processes when it can.

As a result of these considerations, the Optimiser gives highest priority to merging non-
extensible processes, second highest priority to merging an extensibie and a non-extensible
process, and lowest priority to merging two extensible processes. Within each of these three

groups, it then applies the 3 rules given ea¡iie¡. As a result, it has 9 priorities altogether.

10.6 The Generator

The Generator reads the first part of the Optimiser's output, consisting of the topological
ordering assigned to the processes. This is shown in Example 10.6.1. This ordering
associates each lexical definition with a process. The Generator also reads the abstract syntax
tree created by the Parser. The output of the Generator is a labelled syntax tree, as shown in
Example 10.6.2.

t (tr¡sel , [Ie<( [s1d:sr /1ib:æyld, *] ,l-) ,

lec ( tglcbal/ljb:dryl d, upl¡.Jbprro'n /ul, 2),
1e< ( tgldcal/libidn¿/d, lrprt/børu,v/uJ, 3 ),
lec ( lg]cbal/libia4r/d, nqrrvres]el-r¡e/ul, 4),
1e<( tgldoal/ül¡:d4¿ld, iryrVresfeLr.e/uJ, 5),
le< ( tglcÈa1/1ikd4¿/d, Icæ/adit/ul, 6),
1e<( [jrErt/corrs¡/u] ,1) ,

te<( tirE¡t/reLel-re/ul ,1) ,

1e<( [1æa1/adit/1ærs] ,0) ,

1o<( [1oa1/a.dit/1øs], 1),
1ec ( tloaJ-/adit / ]:øs),2),
1o<( []q/adit/u),t) ,

1e<( Iq-ÞrE/rÇør/adirl ,lJ I ) ,
( ititlel , [Iec( tglcbat/I)Mry/c,*1 ,L) ,

le< ( [gicbal/1jb:arylc, j¡p:tibo:zu,r¡lt], 0 ),
ls< ( lg]dca1/1ituary/ c, ,¡,WYbprc¡¡/ tl,2),
lec( [g]d.ELlUb.arylc, j¡p¡Vborrc¡*¡/tl, 3 ),
Iqc( iglchaUlibary/ c, :¡p¿Ylc"ty / E),'7 L

Is< ( tglcbaL/Ub.d4alc, jrgrt/la:y/tl, 8),
le< ( tqlchal/lib.drylc, Jrp:VresleJ.ve / tl, 5),
lec( tglchal/1ibrary/c, jrg¡Vreslel-ræ / t), 6),
lec ( tgld:aLllib.drll c, Iqt /ail]/ tl, 9),
1e< ( tngrÈ/bæ¡o,r¡ltl, 1),
1o<( [irprt/h¡¿/t], 1),
loc ( ti¡prt/resleLre/tl, 1),
lec ( [ 

j¡ter¡a1 lfurcn / Wt_il, 1),
loc( [leaI/o ¡i t/stod<] , 0) ,

1oc( [læal/o ¡; t/stock] , 1) ,

1o< ( [loal/a "1it/ stæk],2]l,
1e<( [lop/a,"1it/t] ,l_) l)l .

ExeN{PI-e 10.6.1: PART oF THE Ourpur FRoM THE OPTIMISER

The Generator places the topological number and degree of independence of each process

alongside each def,rnition in the syntax tree, and reconstructs the text of the specif,ication.

Because the specif,rc forms of expressions are unimportant to dependence analysis, the Parser
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does not preserve them, so the reconstructed specification represents each expression as a call
on an unknown function, denoted by 'fn-l', 'fn-2', and so on. However, it is clea¡ that there
is nothing in principle to prevent the reconstruction being faithful to the original. As explained
in Chapter 7, there would then be sufficient information in Example 10.6.2 to generate detailed
process specifications.

o. ('Proes_l', ttitJ-el )

^o ('P¡cces-2 , tussl )

pad€æ tody:jt¡ary.is
d:a:r:a¡r (.sæ) of r¡ab¡:al,.
c:alÍidy (title) of nab¡ral;
ploced-ue bor:g¡ (u : r¡sg ;

tr:title) is
begin
if ûr_l-(c(t) ) tllgr
c(t) := fri_2 (c(t) ) ;

d(u) := fri_3 (d(u) ) ;
sd if;

sd borrou;
pccea.re resleLve (u :r¡ss,.

t:titl_e) is
begj¡

c (!) := frr_4 (c (t) ) ;
d(u) := frr_5 (d(u) ) ;

sd restel-ræ;
gocd¡¡e U¡V(t:title) is
begjn

c (t) : -- fri_6 (c (t) ) ;
<d hry;
procd:re audit is

loærs:nä¡raJ-;
stock:nä.ta1;

begin
all t ineitle lccp
stcd< := !r_7 (stoclc,c (t) ) ;

sd Icæ;
all s j¡¡sq 1"*
1oæs = frr_8 (Ioa's,d(u) ) ;

sd Icæ;
rçort.a "1it (stoclc, loars) ) ;

sd' aldiq
<d 1jb:aa¿;

-- Prccess_2, [r¡ss]

- P¡ocess_l-, ttitlel

- Præs-1, ttiClel

- g¡ocess_2, tr¡ssl

- Èccess_]., ttitlel

- Pcoess_l-, ttitlel

- P¡ocess-2, iussl

- P¡ces_J., [tj.tle]

- P¡ccess_l-, teiclel

- P¡ces-]., ttiLlel

- P¡æs-2, Iusel

- Prccess_2, tussl

- P¡ocess-2, tusel

Exnrvrple 10.6.2: Tgg OurpuT oF THE Gex¡neroR

L0.7 Conclusions

The Designer tool is successful in so far as it achieves correct results. Apart from its obvious
deficiencies in generating process specifications - which could be remedied, given sufficient
programming resources - there are two other problems. The first is that it is slow. It takes the
Designer 20 seconds (on a Macintosh LC630) to transform Example 10.2.1 into the output of
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Example 10.6.2. Worse, it takes it 27 times longer (9 minutes) to analyse a specification that is
about 3.5 times longer. This suggests that some parts of the Designer have complexity O(rt),
where n is the number of words in the specification. Since the number of vertices in the SDG
produced by the Analyser is roughly proportional to the length of the specification, except in
those cases where the specification contains loops, the cause of the problem would seem to be

the Optimiser. This hypothesis is supported by timing the various phases of the Designer
independently.

The reason is that the number of optimisation steps is roughly proportional to the number of
vertices in the CPG, and each optimisation step involves a pair of vertices. Since sets of
vertices or processes are stored as lists, there a¡e many situations in which the Optimiser must
scan lists. For example, an optimisation step involves scanning a list of edges, and for each

edge, the properties of the processes it connects must be retrieved from other lists. What is
more, after each successful optimisation, the Optimiser must find the transitive root of the
resulting graph. As explained earlier, this requires edges to be eliminated that correspond to
composite paths. The current implementation makes a depth-f,rrst search to test each edge. As
Figure I0.7.L and Figure I0.7.2 show, an optimisation step may introduce a path that makes it
necessary to delete an edge that is remote from the site of the optimisation. In Figure 10.7. 1 the

edgefrom {A} to {E} ispartof the transitive root, because there is no other path from {A} to

{E}. But after {D} and {F} are composed, as in Figure I}J.2-, there is a compound path from
{A} to {E} via {D,F}, so the edge from {A} to {E} becomes redundanr.

FIcURE 10.7. 1 : B¡pons Opruls¿,rloN

FlcuRp 10.7 .2: AF"TER Oprn¿rs¡.rrox

Given these difficulties, it is perhaps surprising that the time taken to optimise a process graph
of n vertices does not grow faster than O(n3). The saving grace here is that the vertices of the
transitive root of a graph tend to have low degree, usually having no more than two incident
edges. Thus, although the number of edges of a graph is bounded by the square of the number
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of its vertices, in practice, the number of edges is roughly equal to the number of vertices.
Therefore, searching for a composite path takes time roughly proportional to the number of
vertices. Since this must be done for each edge, and there are roughly as many edges as

vertices, finding the transitive root takes time proportional to the square of the number of
vertices. Since a transitive root must be found after each optimisation step, the complexity of
the Optimiser is roughty O1n3;.

There is little doubt that the Optimiser could be made faster by using more sophisticated data
structures. However, more eff,rcient structures would be hard to implement in Prolog, and are a
subject for future work, and not within the scope of a prototype. An interesting possibility
wouid be to find the transitive root by a novel adaptation of Eve and Kurki-Suonio's transitive
closure algorithm, whose execution on an acyclic graph evaluates the transitive closure of each
vertex on its postorder visit. The algorithm could be modified to find only the indirect
successors of the vertex. It would then be possible to inspect its direct successors and delete
those edges that were redundant. The efficiency of this algorithm would be close to that of Eve
and Kurki-Suonio's transitive closure algorithm.

with report;
generic

type product is private;
type money is range <>;

package personnel is
procedure top_dog (who : employee);

end personnel;
package body personnel is

Boss : array (employee) of employes ¡= (others => null);
Salary : array (employee) of money ;= (others => 0);
procedure top_dog (Who : employee) is
begin

while Boss (V/ho) /= null loop'Who 
:= Boss (Who);

end loop;
report.put (Salary (Who));

end top_dog;
end personnel;

ExRvTpI-E 10.7.1: A SPECIFICATION WITH A WHILE LooP

In only one instance did the Designer produce a result that was sub-optimal. This was in its
analysis of a specification incorporating a while loop, based on Example 7.3.2, and shown in
Example 10.7.1. It assigns 'Boss' and 'Salary' to separate processes. The 'Boss' process
uses random access, but the'Salary' process is independent with respect to 'employee'. In
fact, it is probably better to combine the two processes; the index of 'salary' is the same as the
index of 'Boss' on the last iteration of the loop. Thus, by packing 'Boss' and 'Salary' into one
record, the access to 'Salary' could be free. Although this would uselessly retrieve 'Salary' on
each iteration of the loop, in practice there would still only need to be one disk access per
iteration. The reason why the Designer cannot find the better solution is because the Analyser
uses the single definition method. The definition of 'Who' following the loop is a new
definition produced by merging that entering the loop, and the two dynamic definitions created
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within it. It is therefore equal to none of them, and the 'Boss' process cannot subsume the
'Salary' process.
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11. Discussion
This chapter discusses the implications of the thesis, and its relationship to other work.

ll.L Comparison with Other Methodologies

There are many methodologies that have been developed for information system design. [Olle
et al. 199L1 list 32 methodologies that are well documented, many of which are available
commercially, either as CASE products or through special tuition. The methodologies differ in
which analysis products they consider important, and in the conventions (diagrams, charts)
used to represent them. They also differ in their perspective: data-oriented, process-oriented or
behaviour-oriented. In principle, an almost unlimited number of methodologies could be
devised.

In the face of this complexity, the following subsections deal with only three methodologies,
which seem to be those most strongly related to the Canonical Decomposition Method presented
here. They are among the most widely used: Entity-Relationship (E-R) Modelling, Structured
Analysis and System Specification (SASS), and Jackson System Development (JSD). (tFloyd
19861 compares them.) They are examples of data-oriented, process-oriented and behaviour-
oriented perspectives.

L1.L.1 Entity-Relationship Modelling

One of the features of the specif,rcation language presented in Chapter 2 is that the database is
modelled by FD's, whose syntax is similar to that of arrays. We say that 'Y' is functionally
dependent on 'X', if, given 'X', it is possible to deduce the unique associated value of 'Y'. It
is a prerequisite of the specification process given here that the FD's have already been
recognised by the specifier.

One way of discovering FD's is through Entity-Relationship Modelling [Chen L976]. This
data-oriented technique requires that, in consultation with the client, the database designer
should first identify the kinds of entities the system should model. Each entity is modelled by a
table within the database. Second, the designer should identify the attributes associated with
each kind of entity, which become the columns of the tables. Third, the designer must discover
which sets of attributes uniquely identify an individual entity. These sets are called candidate
keys. One candidate key must be chosen to be the primary key of the table. Fourth, the
designer should consider the relationships between the entities that have been identified. Figure
11.1.1 shows a simple Entity-Relationship (E-R) Diagram for an order-entry system such as

that discussed in earlier chapters.
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FIGURE 1 1.1.1: AN E-R DIAGRAM FoR ORDER PROCESSING

In Figure 11.1.1, the designer has discovered that 'Customer' entities are identified by 'IDs'
and have 'Names', 'Credit Limits' and 'Balances' as attributes. Similarly, 'Product' entities are

identified by 'Codes', and have 'Prices', 'Stocks' and 'Descriptions' as attributes. From this,

we may immediately conclude that 'Name', 'Balance' and 'Credit Limit' are functionally

dependent on 'ID', and that 'Price', 'Stock' and 'Description' are functionally dependent on

'Code'. It is easy to model these properties in a database. For example, each product may be

represented by a row of a 'Product' table whose primary key is 'Code', and whose non-key

attributes are 'Price', 'Stock' and 'Description'.

The designer has also recognised that there a relationship between the 'Customer' and

'Product' entities, of the form 'Customer orders Product'. It is then necessary to classify the

'orders' relationship as one to one, many to one, one to many, or many to many. A one-to-one

relationship would mean that a given customer is always associated with the same product. If
that were the case, it might indicate that either some customers were products, or some products

were customers, or customers and products were the same thing. A many-to-one relationship

would mean that each customer would be able to order at most one product. Conversely, a one-

to-many relationship would mean that each product could be ordered by at most one customer.

None of these situations are likely to arise in practice. The most likely situation is a many-to-

many relation, where each customer could order many products, and each product could be

ordered by many customers.

The type of the relationship determines what FD's are present. A one-to-one relationship

implies both that 'Code' is functionally dependent on 'lD' and that 'ID' is functionally

dependent on 'Code' - perhaps through the identity function. A many-to-one relationship

implies only that 'Code' is functionally dependent on 'ID'. A one-to-many relationship implies

that 'ID' is functionally dependent on 'Code'.

The case of a many-to-many relationship is more interesting. 'Code' is not functionally

dependent on 'lD', nor is 'ID' functionally dependent on 'Code'. To represent a many-to-many

relationship in a database, it is necessary to introduce a new 'Orders' table having 'Code' and

'ID' as attributes. Thus, the fact that a customer orders several products would be represented

by the 'Orders' table containing several rows having the same customer ID but different product

codes. Conversely, the fact that a given product is ordered by several customers is modelled by

the 'Orders' table containing several rows with the same product code but different customer
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ID's. Because the 'Code' and 'ID' attributes of the 'Orders' table refer to primary keys in the

'Product' and 'Customer' tabies, they are called 'foreign keys'.

Once the designer recognises a many-to-many relationship, it often becomes appa.rent that the

database table that represents it should contain additional attributes. In this case, each 'Orders'

row should contain the guantity of the product that the customer orders. It also turns out that no

set of attributes in the 'Orders' table is sufficient to identiff an order uniquely; the same

customer might order the same quantity of the same product on several different occasions. In
such a situation it is necessary to use some kind of serial number or time-stamp to identify each

order uniquely. In this way, the many-to-many relationship becomes an entity in its own right.

A weakness of Entity-Relationship Modelling is that it has a rather static view of the world:
essentially a snapshot. It does not distinguish clearly between entities such as products and

customers, which are likely to be represented within the database, and entities such as orders,

which are events that update the database. Similarly, the SQL language [Date 1993], which is

the standa¡d language for describing and manipulating databases, has no means for treating a

row of a table as an event, except in very simple cases. Whenever a database table has no
natural primary key, and rows have to be identifred by serial numbers or time stamps, this is
usually a sign that the rows concerned represent events. Therefore Entity-Relationship
Modelling cannot be regarded as a complete methodology, but it is an important part of several

other methodologies, e.g., [Weinberg 1980].

Although it is not strictly part of Entity-Relationship Modelling as such, modelling is usually
followed by 'database normalisation'. By this is meant that an attempt is made to design the

database in such a way as minimise redundant information. The idea is that it should be

impossible to introduce anomalies when the database is updated. For example, if the name of
each customer were stored twice, it would be possible for the two copies of the name to differ,
and in any case, it would be more complicated to update two copies rather than only one. For
most problems, this goal is easily realised, except for foreign keys: attributes that link to the

primary keys of other tables. For example, since each 'Orders' row refers to a customer row
by means of its ID, any update that changes the ID of a customer row should also change all the

corresponding ID's in the 'Orders' table. However, most modern database management

systems can propagate such changes automaticaliy, provided that the foreign keys are declared

as part of the database schema.

A potential drawback of normalisation is that it requires all attributes with the same primary
key to be placed in the same table, because this saves storing redundant copies of the primary
key. The consequence is that it tends to suggest system designs in which all the attributes

functionally related to a given primary key are updated within the same process, whereas

previous chapters have presented cases where the attributes are best split between processes,

e.g., in the design of Figure 6.6.4 (Page 146). To be fair, although normalisation requires all
the attributes of a given key to share the same tabie, it does not forbid the same table to be

updated more than once. Thus, even if there is only one customer f,ile and one product file,
Figure 6.6.4 is still applicable. It simply means that each update uses certain attributes and
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ignores the others. However, splitting attributes between files is more efficient in this example,
because fewer data blocks need to be read or written.

In summary, we may regard Entity-Relationship Modelling as complementary to CDM; it
provides a means for identifying the state va-riables the system will use. However, Entity-
Relationship Modelling does not guard against the problem observed in Section 6.6, that given
a certain requirement, the choice of system variables can critically affect the design and
efficiency of a system.

It.l.2 Structured Analysis and System Specification

How does CDM compare with probabiy the most widely used method of designing
information systems, namely, Structured Analysis and System Specification (SASS) [DeMarco
1978J? The basis of SASS is the data-flow diagram (DFD). SASS is one of a family of
'Structured Design' methods promoted by the Yourdon school [Yourdon & Constantine 1978,
'Weinberg 1980, Chapin i981, Colter 1982, Connor 1981, Delisle et aL 1982, Richter 19361.

Collectively, this school has proved adaptable and eclectic, for example, adopting Entity-
Relationship Modelling and database normalisation into its armoury, so that it is difficult to
specify exactly what Structured Design is. SASS is perhaps the most purely process-oriented
Structured Design method.

DFD's roughly correspond to what this thesis calls process graphs. The primary difference is
that process graphs allocate state variables (database attributes) to processes, whereas DFD's
showdatastoresandprocessesasseparateobjects. Figure II.l.2 shows aprocess graph, and
Figure I 1. 1.3 shows its corresponding DFD. In Figure 1 1 . 1.3, it is assumed that the database

has been normalised, so that there is a table for 'Product' information, a table for 'Customer'
information, and a table for 'Back Order' information. The DFD shows that an external source,
'Customers', gives rise to a stream of 'Orders' that flows into a process called 'Check Offered
and Price'. This process reads the 'Stock Records' table but does not update it. It also sends a
data flow to a process calied 'Check Authorisation and Credit' that reads 'Customer Accounts'.
'Check Authorisation and Credit' then sends a data flow to 'Check and Update Stock' which
updates 'Stock Records'. 'Check and Update Stock' sends data flows to 'Update Balance',
which updates 'Customer Accounts', and 'Record Back Order' which updates 'Back Orders'.
(Strictly speaking, all the data flows in the diagram should have been given meaningful labels,
such as 'Priced Orders', etc.)

Authorised
Gedit Limit
Gedit Used

Balance
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FrcuRe 1 1.1.3: Dere-ruov/ DTAcRAM FoR ORoBRs \ilTrH CReplr Useo

It is clear that all the process graphs in this thesis could be derived by using SASS.
Unfortunately, so could many others, most of them wrong. The DFD of Figure 11.1.3
demonstrates some of the difficulties of the SASS method.

Again, database normalisation suggests that all attributes sharing a given key should be placed
in the same table, so that the DFD does not distinguish, for example, between the 'Stock
Records' attributes accessed by 'Check Offered and Price' and those updated by 'Check and

Update Stock'. It is therefore not clear that the DFD represents a valid batch processing
system. If an att¡ibute updated by 'Check and Update Stock' were also inspected by 'Check
Offered and Price' only its initial state would be observed. In faimess, it would be possible for
the designer to split 'Stock Records' into 'Price Information' and 'Stock Information', but
although SASS allows this, it conflicts with SASS's emphasis on database normalisation.

A second difficulty is that the DFD shown only shows the processing for 'Orders'. Once

other event types a¡e considered, there is difhculty in drawing the DFD. If a new set of
processes is drawn for each rype of event, the DFD does not show how the sets of processes

should be integrated to implement the system as a whole. To be implemented as a batch
system, the processes for each type of event would have to be merged. But once they are

merged, the processes gain complex descriptions, since the processing for each kind of event is
different. This is in conflict with a basic rule of SASS that requires each process to have a

simple, meaningful description. The only simple description that can be given is the rather
vague "Inspect and update 'Offered' and 'Price' , etc.", which is effectively how a CDM
process graph is labelled. A simila¡ labelling problem affects the data-flows, which must now
carry messages of many kinds. These problems are not so much a fault of SASS itself as due
to the nature of batch processing. As we have seen in earlier chapters, the event procedures
within batch processes are made up of almost meaningless fragments of event specifications,
and the data-flows are merely calls on these procedures. Nevertheless, to design a batch
system, the processes for each kind of event must be merged, an action that SASS calls
'regrouping simple processes' 

- although SASS gives no specific guidance about how this
ought to be done.
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Although the DFD resulting from analysing the problem may contain cycles, the DFD of a

batch implementation must be acyclic. It is clear that if a designer is to use SASS successfully
to design a batch system, there must be some stage at which the cycles in the DFD are given
special treatment. Unfortunately, there seems to be no formal design stage at which this occurs.
In text books describing SASS [DeMarco 1978, Gane & Sa¡son 19]91, the essential step seems

to occur when the system DFD is subdivided into programs, but the method is never explained,
or even mentioned. In some texts, it is simply stated that cycles directly between processes ¿ì.re

forbidden [Hawryszkiewycz 1994]. It is also unclear when data-flows can be thought of as

queues. In many contexts it is obvious that they can be implemented as transfer files, as inter-
office memoranda, or other forms of messages; in others it is not. The designer is supposed to
decide somehow when queues are valid.

A typical program within a system designed using SASS has a number of 'afferent branches'
that merge data from various sources into a nexus called the 'central transform'. From the

central transform, data spreads out to its various destinations along 'efferent branches'. It is the

function of the afferent branches to transform data from its stored representation into an abstract

form most suitable for use by the central transform, and also to collate corresponding items

from different sources. The efferent branches arrange the results generated by the central

transform into formats suitable for display or storage. The central transform itself changes

abstract inputs into abstract outputs. It is quite coÍtmon for a central transform to be

'transaction directed', that is, to consist of a case statement that directs each type of transaction

to a separate procedure for processing.

From this description, it will be seen that a typicai program is assumed to have an acyclic flow
of data, inward from the afferent branches to the central transform, then outward along the

efferent branches. It is also the case that a program must correspond to a subgraph of the DFD.
For example, in the DFD of Figure 1 1. 1.3, it would be possible for 'Check Offered and Price'
to constitute a program. Its afferent branches would flow from 'Orders' and 'Stock Records'
and its efferent branch would flow into a transfer file called 'Priced Orders'. Since it is always
possible to segment a graph into acyclic subgraphs, SASS must always succeed. The problem
is that instead of SASS insisting that cycles must be placed within a single process, as this
thesis proves that they should be, it actually tends to spread them across several processes.

In defence of SASS, it does recognise the paramount importance of data flow in system
design. However, it is not clear from the literature on SASS whether data flows should be

derived from some underlying notion of dependence. If so, the idea has not been formalised.
In short, it must be said that although SASS allows correct design, it also allows or even

encourages wrong design. Its successful use relies heavily on the designer's experience.

An interesting variant of SASS for real-time systems design is described by [Ward & Mellor
19781. Primarily, it adds to SASS by introducing notations for control aspects of a system.
Essentially, data flows a¡e controlled by the actions of finite state machines. There is a clea¡

distinction between control signals, which carry no data, and data-flows, which carry no
control information. This makes it impossible to describe delayed or remote procedure calls,
which carry both control and data. Also, rather curiously, the method allows control signals to

258



Discussion

be placed in queues, whereas data-flows may not. It makes it possible to implement
semaphores [Dijkstra 1968], but makes it almost impossible to describe a batch system, or any

other set of separable processes linked by queues. This might be defended if such queues were
unusual features of real time systems. In fact they are commonly used, as evidenced by
Monitors [Hoare 1974], and the Mascot methodology [Simpson 1986].

11.1.3 Jackson System Development

Like SASS, Jackson System Development (JSD) concentrates on the data flows between
processes, which it calls 'datastreams'. Datastreams have the same properties as queues.

However, JSD is more formal than SASS, and has more in common with CDM. Like CDM,
JSD recognises that the purpose of a database is to record the states of objects, which it calls
'entities'. Likewise, the purpose of datastreams is to pass messages between entities to update

or inspect their states.

[OIle er aI. L99I] classify JSD as process-oriented, but this seems to be taking a rather

superficial view of it. JSD is really a behaviour-oriented method, but it describes behaviours by
processes that generate them [Kobol 1987]. These so-called 'model processes' describe the

behaviour of real-world entities. They are only indirectly related to business or computer
processes.

Some aspects of JSD are a useful complement to those described here. JSD views entiúes as

long-lived, communicating processes. From the point of view of the business, each customer
is a process that emits orders, payments and so on. Likewise, each producf item is a process

with a history of being purchased, ordered, sold, delivered, and so on. The simplest

implementation of a system would be to model each real-world process directly by a

corresponding model process. However, mapping these processes onto active tasks would
overtax the largest computer; there are simply too many of them. Even given sufficient
resources, direct modelling would still be ineff,rcien| processes that represent customers or
product items, for example, are active for only a tiny fraction of the time. In addition, their
activation records must be persistent.

In the absence of a technology that implements a large number of low-activity, persistent

processes efficiently, it becomes the designer's task to devise a good way to store their
activation records in a database. Thus, the activation record of a customer model process, say,

is represented by a row in a customer table. An order event may be interpreted as modelling the

interaction of the customer process with a product process, which is modelled by another row
in the database. Events may be seen as the means by which model processes and the real-world
entities they model are brought into step. JSD aims to transform the set of model processes into
a set of computer processes. Describing the behaviour of real-world entities by model

processes is a means of mapping all system design elements to processes. Thus, system design

becomes a series of process to process transformations.

A strength of JSD is its emphasis on event sequence. As already mentioned, each entity is
seen as a process. The events a process can interact with must occur in certain specific
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sequences: for example, a product cannot be sold until after it has been manufactured. The
valid sequences may be modelled by finite-state automata, whose states are recorded in the data-
base. Such states have names such as 'in production', 'in stock', etc. (Typically, the state
diagram of the automaton is strongly-connected, so that the associated entity can be forced into
any desired state - perhaps to correct an update carried out in eror. This requirement often
prompts the discovery of event types that had been overlooked in earlier analysis.)

An event typically interacts with more than one entity. For the event's procedure to be
applicable, all its interacting entities must be in states where the event is possible. An important
aspect of JSD is that this is the only constraint on event sequence. If the existing set of entities
does not sufficiently constrain the sequence of events, a new entity must be introduced to
constrain the sequence further.

As an example, consider a student enrolment system. Once students have been admitted to a
degree, it is possible for them to enrol in subjects or withdraw from them as often as they wish.
Likewise, subjects may be enrolled in or withdrawn from by students as needed. Each
enrolment or withdrawal involves an interaction between a specific student and a specific
subject. However, the automata of the student and subject entities alone are unable to express
the constraint that a student may not withdraw from a course without having previously enrolled
in it. Even using push-down automata to count the numbers of enrolments made by students
does not solve the problem. It would still allow a student to en¡ol in one subject, but withdraw
from a different one. To enforce the constraint properly, it is necessary to introduce enrolment
entities, corresponding to enrolments of specific students in specific subjects. An enrolment
entity needs to have at least two states: active and inactive. In the inactive state, only enrolment
events are allowed; in the active state, only withdrawals are allowed.

(There is a useful parallel here between JSD and Entity-Relationship Modelling. The
relationship between students and subjects is many-to-many. In different ways, both methods
recognise the need to model the '(student, subject)' pairs present in the relation.)

Of course, sequences of interactions between processes can also be modelled by Petri Nets

fMaiocchi 1985, Tse & Pong 1986, Tse & Pong 1989]. It is easy to transform a set of
interacting processes into a Petri Net model. However, it is not so easy to decompose a Petri
Net model into a set of interacting processes. In this respect, the JSD model captures aspects of
the real-world that the Petri Net model doesn't.

Once the analyst has recognised the sets of entities and events needed, the next step in JSD is
to draw a System Specification Diagram. This is a form of DFD in which pathways are

provided to pass messages to and between entities. Later, the System Specification Diagram is
transformed into an implementation scheme, in the form of a Network Diagram. The various
design stages use graphical conventions to express the designer's intentions, but offer Ittle
direct help to the designer.

Although JSD predates the wave of inte¡est in object-oriented programming, it is essentially
an object-oriented technique [Masiero & Germano 1988]; the entity processes are 'objects', and
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the events are 'methods'. As a result, some comments made below about JSD can apply
equally to other object-oriented design methods lBooch 1991].

In the light of the Canonical Decomposition Method, there are two shortcomings of the JSD
approach. The first is that the objecroriented viewpoint encourages the idea that all the
attributes of a given object should be accessed by a single process that models the entity. Thus,
the order processing example should model two sets of processes, one for customers, and the
other for products. The result of modelling the order processing example is shown in the

System Specification diagram of Figure II.1r .

FTCUNB 7I.L.4: SYSTEM SpscFIceIIoN DIAGRAM FoR ORDERS WITH CR¡DTT Us¡o

Figure II.I.4 shows that an 'Order' message enters the system, and is passed to a 'Product'
process, which returns an 'Invoice' message. To do this, it carries out a dialogue with the
'Customer' process, involving 'Price', 'Stock' and 'Credit' messages. It may also send a

'B/O' message to a 'Back Order' process. The SSD does not specify the order in which the

messages occur.

(There is a subtle difference between the ways customers and products are modelled. Each

customer row models o/?¿ customer, whereas each product row models a set of indistinguish-
able products of the same kind. Therefore, a customer row records the state of a single
customer, but a product row records the states of many products. This is done by recording the

numbers of products - of the same kind - that a¡e in the 'in stock' state, 'on order' state,

'sold' state, and so on. This leads naturally to 'conservation laws', the idea that the total
numbers of items should be conserved as they move from state to state.)

Using JSD, a designer might then elaborate the System Specification Diagram into a Network
Diagramthatresembles Figure II.I.2, perhaps that shown in Figure 11.1.5. However, there
is no guarantee that the designer will consider this option, which is actually counter-intuitive
because it requires that what was originally seen as a 'Product' entity should become both a

'Product' and 'Inventory' entity, and what was originally a 'Customer' entity should become

both a 'Customer' and 'Account' entity. Such distinctions might be justified by stating that, 'A
Product record contains generic information about a kind of itemthat is sold, whereas Inventory
refers to individuøl items.' Or, 'Although in this system each Customer has exactly one

Account, this need not be true in general, so we must be careful to distinguish Accounts from
Customers.'

Order Price

CreditProduct Customer
lnvo Stock

Back Order
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Frcuns 11.1.5: NETV/ORK Dncnnu FoR ORDERS wrrH Cneorr Uspo

In short, JSD has the same difficulty with cyclic flows that SASS has, and like SASS, it has

no formal means of dealing with them. Perhaps JSD would be improved by a rule that
suggested that the designer should try to eliminate cycles by splitting entities where necessary.

Another dubious aspect of JSD is its use of 'state-vector connections', by which one model
process may directly observe the state of another, without the use of a datastream connection
and its attendant delay. Considering the implementation methods described in Chapter 3, and
the discussion of real-time equivalence in Chapter 4, a state-vector connection cannot be

regarded as valid unless there is no intention of preserving real-time equivalence. Typically, a

state-vector connection is used by a reporting process - in which case the process is likely to
report an inconsistent state of the database. Such reports are best regarded as providing meta-
level information about the implementation itseif, rather than the system that it models.
Unfortunately, examples of the use of JSD seem to use state-vector connections much more
freely than they should lSutcliffe 19881.

On the positive side, JSD does recognise some aspects of system design that CDM considers
important. One of these is the need sometimes to split a system into modes, which can

eliminate cycles by partiúoning the kinds of events into subsets. JSD calls this 'process
dismemberment', in the sense that a process (object) that is being modelled, which can accept a
stream of events (methods) of all kinds, is implemented by two or more model processes that
can only accept particular subsets of events.

Another strong connection between CDM and JSD is its associated program design technique:
Jackson Structured Programming (JSP) fJackson 1975, Storer L987]. JSP is well suited to the
design of programs whose structure is dominated by the data structures of their inputs and
outputs, and is therefore applicable to the design of update algorithms.

In JSP, a program's structure is determined by the data structures it manipulates. Typically, a

program works its way systematically through some input data structures while systematically
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constructing some output structures. Some sets of structures lead to satisfactory progr¿rm

designs, but other sets have no direct solution. 'Where the order of data elements in one

structure differs profoundly from the order of corresponding elements in another there is no
direct way of deriving a program structure. These situations are called 'ordering clashes'.
There are two ways to resolve ordering clashes: by providing random access to one or more
structures, or by sorting one or more of the structures so that their corresponding elements are

in the same sequence. These are exactly the same means used within CDM to deal with process
incompatibilities. First, although CDM attempts to use independent-access processes whenever
possible, if a process is allocated some incompatible attributes, it must resort to random access.

Second, in order to prevent incompatible attributes being allocated to a process, CDM prefers to
use two processes linked by a data flow. Typically, the data flow is sorted on input to the

downstream process to allow it to use independent access. Thus, there is a close parallel

between the JSP's notion of 'ordering clash' and CDM's notion of incompatibility'.

11.1.4 Advantages of the Canonical Decomposition Method

How do SASS and JSD rate in the light of CDM? Essentially, their treatments of cyclic flows
are too informal for them to be used to derive valid batch-processing systems. It might be

argued that this is because of their flexibility, in that the methodologies are not restricted to one

class of problem. There are two things wrong with this a-rgument: First, the methods are

capable of producing incorrect results. Second, formalising a design process does not
necessarily reduce its flexibility. CDM produces a canonical process graph, from which all
possible valid designs can be derived by merging its minimal processes. It distinguishes
between those situations where processes are strongly-connected, separable, or independent. It
therefore clearly distinguishes when processes have to be closely coupled, may be linked by
queues, or can operate in parallel without contention. The only way in which CDM lacks
flexibility is that this thesis has concentrated on one particuiar cost function for optimisation:
one that maximises independent access. In principle, any other design objective could be

expressed by some suitable cost function. In practice however, it might be harder for the

designer to specify the cost function than to choose the optimal processes by intuition.

CDM, like JSD, is superfrcially process-oriented, in that its specifications consist mainly of
the bodies of event procedures. However, also like JSD, it is really a behaviour-oriented
technique. Event procedures have little to do with any business or computer procedures that are

likely to be observed except in a small business. They describe details of what may be parts of
several business processes. The business and computer procedures that CDM uses are chosen
from a restricted set ofparadigms: random access, sequential access and parallel access updates.
The purpose of CDM is to choose a suitable process network, then tailor these standard
procedures to fit.

This is a respect where it differs strongly from JSD and SASS. Although both these methods
also operate by transforming procedures, the transformations they make a¡e hard to do. For
example, JSD requires the designer to constantly switch between a process viewpoint and a
state-transition viewpoint. In contrast, delayed procedure call relies only on simple text
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substitution. This simplicity results from taking a state-oriented view of behaviour above the

event level, but a procedural view below it. The state of the database constrains event

sequence, whereas events are modelled by procedures.

CDM is not a complete methodology. It does not say how the FD's and event specif,rcations

of a system specification a¡e derived. Chapter 6 made it clear that this is an important task that

can affect the efficiency of the design, often involving negotiation with the client. The author's
opinion is that these early stages of analysis are well served by adapting some techniques from
JSD. The most useful element is to model entities by finite-state automata. This leads to the

discovery of the kinds of events that are needed and suggests conservation laws that need to be

obeyed.

1I.2 The Specification Problem

'We have seen that a canonical form of system design can be derived rigorously from a

specification. 'We 
have also seen that minor changes to a specification can cause major changes

to the resulting design. Some of these changes make no difference to the observable behaviour

of the system. For example, Section 6.6 showed how a system may be implemented more

efficiently by changing the way its state is stored. Is it possible that there is some form of
specification that eliminates this problem?

1I.2.1 Data Flow as a Starting Point

Whereas CDM derives data flows from the dependences implied by an aigorithm, it seems to

be an implicit assumption of the SASS and JSD methodologies that data flows are somehow the

givens of the problem - or even that they are something the designer can invent. Is there some

way in which data flows can be determined without reference to a specific algorithm? A¡e the

data flows, in some sense, the more fundamental?

The specification language described in Chapter 2 allows the use of functions as a means of
abstraction. For example, the package body of Example 6.6.2 (Page 145) could altematively be

expressed as in Example II.2.l. In the figure, the specification is replaced by a less procedural

form in which each assignment is unconditional, and involves the evaluation of a function
whose details are left unspecified. The precise forms of these functions do not matter, what
matters are the sets of parameters they need, which determine the data precedence graph. It is a

little awkward to extend the same notation to outputs, because they are generated conditionally,
and have sequential stmcture. However, the same effect has been achieved in Example IL2.I
by generating each output r¡nconditionally, with the addition of a boolean parameter, which
determines whether the output is truly needed. The point of Example 17.2.1is to show that the

designer does not really need to know the algorithms of events in detail in order to draw
SDG's. There are several variations of Example 6.6.2 that would lead to the same behaviour,

and which would all have the same SDG. For example, any local variable in Example 6.6.2
could be eliminated by textually replacing all references to it by the expression assigned to it. In
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a sense then, the SDG is more fundamental than the algorithm of Example 6.6.2 or the

algorithm of Example It.z.L

On the other hand, it is hard to see how an SDG can safely be drawn without having some

algorithm in mind. To do this would be know absoiutely that a certain datum is needed to
compute a given result, and that certain others are not. This is reasonable, for example, in the

case that an employee's income tax is known to be dependent on the employee's tærable

income, because the tax authorities insist on it. In a case like this, it is known that some

function for computing the desired result must exist, and it is only a matter of finding out what
it is. However, it may be unwise to continue the analysis without knowing more about the

function concerned, because there may be additional unsuspected dependences, such as on the

age or marital status of the employee.
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package body Order_Processing is
Authorised : array (customer) of boolean :- (others -> false);
Balance, Credit_Used, Credit_Limit: array (customer) of money;= (others -> 0);
Offered : array (product) of boolean ¡= (others => false);
Price : array (product) of money :- (others => 0);
Stock : array (product) of natural :- (others => 0);
Back_Order : array (customer, product) of natural ¡= (others => (others => 0));
function fn_l (Offered : boolean) return boolean is ...
function fn_2 (Offered, Authorised : boolean) return boolean is ...
function fn_3 (Qty_Ordered : natural; Price : money) return money is ...
function fn_4 (Credit_Limit, Credit_Used : money) return money is ...
function fn_5 (Offered, Authorised : Loolean; Qty_Ordered : natural;

funcrionf 
"-6(aPö':3,.iJ:så:-*'"H',ï:Íåiff :,0";i:ïJàii:urnbooreanis

function fn_7 (Offered, Authorised : b_ooleary_Qty_Ordered, Stock : natural;

funcrion ,r_, roÌäiËa1f"fi-¿1,ä01Îå'"iå#'ed 
: monev) return boolean is " '

Back_Order, Qty_Ordered, Stock : natural;

funcrion fn_e (oPff:c;aifsihi,ä.ti;åit#'ed 
: monev) return naturar is " '

_Ordered, Stock : natural; Balance, Price,
Credit_Used : money) return money is ...

function fn_10 (Offered, Authorised : boolean;
Qty_Ordered, Stock : natural;
Price, Credit Limit, Credit_Used : money) return natural is ...

function fn_li (Offered, Authorised : boolean;
Qty_Ordered: natural;
Price, Credit Limit, Credit_Used : money) return money is ...

procedure Order (Who : customer;What : product; Qty_Ordered: positive) is
begin

Error. Product (What, fn_ 1 (Offered(V/hat)) ) ;

Error.Customer (Who, fn_2(Offered(What), Authorised (Who))) ;

Error. Credit (Who,'What, fn_3 (Qty_Ordered, Price(What)),
fn_4(Credit Limit (Who), Credit_Used (Who)),
fn_5(Offered(What), Authorised (Who), Qty_Ordered,

Price(What)), Credit Limit (Who), Credit_Used (Who))));
Invoice.Deliver (Who,'What, fn_6(Qty_Ordered, Stock (What)),

fn_7(Offered(What), Authorised (Who), Qty_Ordered,
Stock(What), Price(What), Credit Limit (Who),
Credit_Used (Who)));

Back_Order (Who, V/hat) := fn_8(Offered(What), Authorised (Who),
Back_Order (Who, What), Qty_Ordered, Stock (V/hat),
Price(What), Credit Limit (V/ho), Credit_Used (V/ho));

Balance (Who) := fn_9(Offered(V/hat), Authorised (Who),
Qty_Ordered, Stock (What), Balance (Who), Price(What),
Credit Limit (Who), Credit_Used (Who));

Stock (WhaÐ := fn_10(Offered(What), Authorised (Who),
Qty_Ordered, Stock (What),
Price(What), Credit Limit (Who), Credit_Used (V/ho));

Credit_Used (Who) := fn_ 1 1 (Offered(What), Authorised (Who), Qty_Ordered,
Price(What), Credit_Limit (Who), Credit_Used (Who)) ;

end Order;
end Orde¡_Processing;

EX¿TT¿pI-E LI,2.I: SpBcIpyING AN .ORDER, wITH Cn¡olr USED
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It is hard to believe that dependences exist independently of algorithms, for the following
reason: Suppose that the astrologers are right, and everything is foretold by the stars. Then,
given the time of birth of each client, it would be possible to predict their actions. In particular,
it would be possible to predict exactly not only when they would place orders, but what they
would order, and how much. On that basis, an order-processing system could operate with no
input other than the date, and its SDG would be trivial. Although this sounds far-fetched, it is
impossible to rule it out by logic. It is impossible to prove that an oracle capable of predicting
any desired behaviour cannot exist, because for any given sequence ofevents, there is clearly at

least one oracle that would have predicted them.

As a more realistic use of an oracle, consider the specification of Example 7.5.I (Page 174),
which finds each employee's salary as a percentage of total salaries. This 'clearly' requires a
sequence of two loops, the first to accumulate the total, the second to compute each percentage.

All the percentages depend on the total, and the total depends on all the salaries. But suppose

an oracle could guess the total. Then one loop could both compute the percentages and

accumulate the total. At the end of the loop, the procedure could check that the oracle's guess

was actually correct. The interesting point is that such an oracle might exist in practice. It is
likely that for control purposes the personnel department already knows the totat payroll -probably by adjusting a previous figure according to whatever changes are made. This control
figure could then serve as the required oracle.

Consequently, although it is feasible to derive dependences from algorithms, it is hard to
prove that they have an independent existence.

11.2.2 Non-Procedural Specification

One reason for choosing a procedural specification language is that it allows process

specifications to be derived that are also procedures. Perhaps this choice has sacrificed some

other useful property. An alternative approach would be to use a non-procedural specification
language, on the lines of 'Z' [Spivey 1989, Potter et al. 1991], for example. In 'Z', each event

would be specified as a relation between a pre-condition and a post-condition. Essentially, 'Z'
expresses the state of the database after an event in terms of its state before it. This has the

advantage that there are no intermediate assignments to consider. Essentially there is at most
one assignment per event to any given attribute. Although this simplifies dependence analysis,
it only achieves the same result as is obtained by use-definition analysis; therefore it does not
solve any problem that has not already been solved.

In fact, the author gave Serious consideration to lsing 'Z', or something similar, for the

specifications in this thesis. Its use was rejected for two reasons: First, it is difficult to adapt it
to a process-oriented description;'Z' does not support the notion of processes, and it provides
no representation of data-flows, except between the system and its environment. Second, even

if 'Z' were adapted in some way to overcome these problems, its use would be less convincing.
It would lead to a set of process specif,rcations that were non-procedural, and there would
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remain the mystery of how these specifications could be implemented. In contrast, the delayed
procedure call mechanism used here works so smoothly that it would be a pity not to use it.

1I.2.3 Eliminating States

Another potential criticism, which has already been mentioned, is the description of the
system in terms of states stored in the database, rather than its external behaviour. In particular,
since Section 6.6 showed how the choice of how the system state is represented can affect the
efficiency of an implementation, a behaviour-based specif,rcation might eliminate the problem.
The assumption here is that a behavioural specification says nothing about states, or how they
are represented.

One possibility is adapt JSD's process descriptions. Although these were referred to in
Section 11.1.3 as describing finite-state automata, they actually do it indirectly, by describing
the grammars accepted by them. In this respect they do not define states, and there can be many
automata that implement a given grammar. In this way, the same grammar coffesponds to
many possible state machines.

Unfortunately, the converse is also true: a given class of state machines can be described by
many possible grammars. Another problem is that there is no tractable way to derive the set of
all possible state machines from a grammar. There does exist a formal method of deriving a
state machine from a given grammar and reducing it to minimal form, provided the grammar is
regular fHopcroft & Ullman I979a]. This process has exponential complexity in the length of
the grammar. If two regular grarnmars are equivalent, they lead to the same minimal state
machine. This is the only certain way to discover if two grammars are equivalent, so proving
that two regular grammars are equivalent is exponentially complex. In fact, the minimal state
machine is a canonical form that captures the whole set of granìmars with the same behaviour.
Deciding the equivalence of context-free grammars is even harder, being undecidable [Hopcroft
& Ullman I979bl. There is therefore little that can be said in favour of grammar-based
descriptions of behaviour in preference to state machines.

Even though there is a canonical representation for each regular grammff or finite-state
machine, the states of the canonical machine may still be modelled in many ways. A set of N
states may be modelled in logrNbits by numbering the states and recording the states as binary
numbers. Unfortunately there are N/ ways in which the numbers l-N can be assigned to N
states. Since each bit can be modelled in a database as a sepffate boolean attribute, this ieads to
many possible representations. In addition, there are redundant representations using more than
the minimum number of bits. For example, each state could be represented by a separate
attribute, with only the attribute for the curent state being true. Many other scenarios are
possible. Even if a canonical representation of a state machine were to be defined, there is no
guarantee that it would prove to be optimum.
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11.3 Extensions of the Method

11.3.1 Real-time Systems

Although CDM has been applied here in the context of batch systems, it remains valid in the
degenerate case when a batch contains one event. Such a situation arises in real-time systems.
The separable components of a real-time system may be linked by queues, but in constast to a
batch system, their queues should be a short as possible, serving only to buffer events that a
downstream process has been too siow to serve. In some cases the components may be
separated by as little as a procedure call, or even merged into a single process. In these cases,
separability offers no performance benefit, but serves only to modula¡ise the system into
smaller processes that can be separately tested and understood. In other cases, it may be
desired to communicate between the processes within a strong component. This may be
because of extemal constraints: for example, the processes may need to be assigned to
physically separate processors, or it may be done purely for modurarity.

Within a strong component, communication must be two-way. Before it updates its own
state, each process must communicate its state to other processes and discover the states of the
processes on which it depends. There are typically many ways this can be done. The simplest
is to arrange the processes as a sequence. Each process except the last calls the next using
remote procedure call, passing it its own initial state, plus any initial states passed to it by its
caller. This guarantees that the last process in the chain has access to all the state variables in
the component. Each process returns from the procedure call its own initial state, plus any
initial states returned by the process it has called. Thus every process has access to all initial
state information, both from earlier and later processes in the sequence and is ready to update its
state. If communication costs are considered, such a linear arrangement may not be optimal.
Choosing the optimal communication pattern is not considered in this thesis.

To illustrate how CDM can be applied to a real-time system, consider the guidance sub-
system of a surface-to-air missile. (The missile system also includes aerodynamic, propulsion
and weapons sub-systems.) The pu¡pose of the guidance sub-system is to convert positional
and motion information into signals that operate servo-motors.

Two servo-motors control the direction of a radar dish, helping it remain pointing at the
target. Four other servo-motors adjust the angles of control surfaces arranged at 90" intervals
around the axis of the missile, labelled 'N', 'S', 'E' and ''W' in Figure 11.3.1. Through
aerodynamic forces, they control rotation of the missile about any of its three axes. Rotation
about the long axis of the missile is called 'roll', rotation about its nominally vertical axis is
called 'yaw', and rotation about its nominally horizontal axis is called 'pitch'. Coordinated
motion of the 'N' and 'S' control surfaces induces yaw, coordinated motion of the 'E' and ''W'
surfaces induces pitch, and diffe¡ential motion of all four surfaces induces roll.
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FICURE 1 1.3.1: A MISSLE GUIDANCE SUB-SYSTEM

The aims of the guidance sub-system are to prevent the missile from rolling, and to adjust the

pitch and yaw rates of the missile so as to keep the pitch and yaw angles of the radar dish

constant. These conditions will ensure that the missile maintains a constant bearing with the

target, a property of a collision course.

A gyroscope mounted with its axle aligned with the long axis of the missile measures its rates

of pitch and yaw, and another with its axle at right angles to the long axis measures the

missile's rate of roll. These are rate gyroscopes: they do not remain at the same orientation in
space, instead, they remain at the same orientation with respect to the missile, and the forces

with which they resist precession measure rotational velocities. The target radar measures the

pitch and yaw deviations of the target from the axis of the radar dish. Two further sensors

measure the pitch and yaw of the dish from the long axis of the missile. Finally, four sensors

measure the angles of the control surfaces relative to the same axis. All these inputs are

processed by the guidance computer to determine the control signals sent to the six seryo-

motors. We assume that the inputs are sampled at regulff intervals. Each sample constitutes an

event.

Figure 11.3.1 suggests that, apaft from the gyroscopes, the whole system forms a single

strongly connected component: data flows both to and from the radar and the control surfaces.

In this respect the figure is misleading, because data flows from a detector and angle sensors

mounted on the radar dish and to its servo-motors, and from sensors on the control surfaces

and to thetr servo-motors. From the point of view of the control system, the detector and

sensor signals are inputs and the servo-motor signals are outputs. Because power to a servo-

motor eventually results in motion of the target sensor or a control surface, which then changes

the signal coming from a detector, there is a feedback effect.

To apply the CDM method to this system, we must consider its state variables. These are the

pitch and yaw rotations of the radar dish, and the positions of the control surfaces. We assume

that the radar dish servo signals depend on the rada¡ detector outputs, the dish's cunent
position, and its rate of movement. 'We also assume that the desired control surface positions
a¡e determined by the rates at which the radar dish moves, and the signals from the rate

s
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gyroscopes. Finally, the control servo signals depend on their desired positions, their
measured positions, and their rates of motion.

It may surprise the reader that there are any state va.riables at all. For example, the state of the
'N' control surface can surely be found by reading the signal from its angle sensor. However,
to adequately control the surface, it is not enough to know its position, one must also know its
velocity: If it is in the correct position and at rest, no signal should be sent to its servo-motor,
but if it is in the conect position and moving, a signal needs to be sent to stop its motion and
return it to the correct position. The velocity of the surface can estimated from the difference
between its old position and its new position, measured over the time between events. The
same reasoning applies to the other th¡ee control surfaces and to the pitch and yaw motions of
the rada¡ dish.

Through aerodynamic forces, the control surfaces ultimately determine the position of the

missile in space, and therefore the signals reaching the radar detector. The missile's
environment creates a feedback loop. Therefore the exact rules by which the guidance sub-
system computes its outputs from its inputs must change the missile's orientation in such a way
that the feedback does cause instability. Although the analysis of this feedback is an important
pan of the design of the control rules, it lies outside the ambit of the design problem considered

here. However, feedback via the environment not a unique feature of missile systems. V/hen
an order entry system sends goods in response to customer orders, its outputs influence the

future actions of customers, completing a feedback loop. Such dynamic behaviour of business
systems is thought to cause trade cycles.
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FICUn¡ 1T.3.2: THEMISSLE GUIDANCE SDG

Figure 11.3.2 shows the SDG of the guidance sub-system, including its inputs and outputs,
for a hypothetical set of control rules.

Inspection of the SDG of Figure 11.3.2 reveals the familiar property of separability: The
control surface angles depend on the radar dish angles, but not the reverse. It is also reveals the
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property of independence: The two radar dish angles are independent of one another, and the

four control surface angles are independent of one another. This suggests a decomposition into
two similar radar dish controllers and four similar control surface controllers. The advantages

of such a decomposition are that the system can be made from replicated pafts and tested in
modular fashion.

It will thus be seen that, although the objectives of system decomposition may differ, the

CDM approach can be used to decompose dynamic systems of all kinds, and is not restricted to

the analysis of batch systems.

On the other hand, having shown that the CDM method can be applied to the design of a

missile guidance sub-system, we norvv have to admit that in such a context it is almost

worthless. The reason is simple: Every missile guidance system has much the same functional

requirement, and therefore much the same structure. A design similar to that suggested by
Figure 1I.3.2 has been used in virtually every missile ever built, and CDM has nothing new to
tell us. For CDM to be useful, the problem must have some novel structure. Further, for CDM
to yield a helpful result, the structure should not be too richly interconnected, or no

decomposition will be possible. Business information systems are a fruitful source of suitable

problems, but there may not be many others.

11.3.2 Avoiding Deadlock in Databases

This section is a footnote to Section 3.6, which discussed a contention-free parallel database.

It was pointed out that if processors were allocated to events without f,rrst decomposing them

into their minimal separable processes, the processors would have to contend for rows in the

database. This would necessitate the use of a locking protocol to prevent unwanted interactions

between transactions. In the two-phase protocol, when a transaction reads a row or wishes to
update a row, it locks it. The transaction retains the lock until it is complete, when it releases all

its locks. When a transaction wants to read a row, it locks it in shared mode: other transactions

may read the row. 'When 
a transaction wants to update a row, it locks it in exclusive mode: no

other transaction may access the row at all. This prevents two updates from interacting, and

prevents rows from being inspected when they in the process of being updated, but does not
prevent read-only access by several transactions at once.

An unfortunate property of locking protocols is that they can cause deadlock. For example,

transaction T may have locked row R and wish to access row S. It is forbidden from doing this

because t¡ansaction U has already locked row S. Once transaction U releases the lock on row
S, transaction T can continue. Sadly, transaction U wishes to access row R and is waiting for
transaction T to release it. This situation is called deadlock. It is only possible to remove the

deadlock by one or more transactions relinquishing their rights to the records they have locked.

Typically, the transactions are aborted, and sta¡ted again. This is a nuisance in two ways: first,
the database management system must have the means to prevent aborted transactions from
changing the database, and second, it may inconvenience the system's users. Deadlock can be

detected by drawing a graph in which each vertex represents a row. An edge is drawn from
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row R to row S if some transaction T has locked row R and wants to access (and lock) row S.

The edge is labelled'T', to identify the transaction that caused it. If two or more vertices are

strongly connected, they are deadlocked. Deadlocks can be efficiently detected by depth-first
search of such a graph.

It turns out that deadlock can never occur in the Macrotopian Library database system: the

deadlock graph can never contain a cycle. The update events, such as 'Borrow', first access a

book.row, then a branch row. All the edges they generate lead from book rows to branch

rows, and cannot cause cycles. The only possibility is for cycles to be present within the book
rows or within the branch rows. These could only be caused by 'Audit' events, but these only
used shared locks, so they cannot cause deadlock either.

Is it possible that some adaptation of the techniques described here could be used to design

systems that, although unable to avoid contention, are deadlock free? This would be useful
when a batch design is impossible or inappropriate. Being certain that deadlock could not occur

would be a major advantage. It would ensure that every transaction could commit successfully,

and would remove the need for undoing uncommitted updates. This would reduce database

management overhead and simplify database recovery.

First, we note that if every database attribute can be given a rank, and attributes are only ever

accessed and locked in rank order, then deadlock cannot occur. This can be seen by
considering the graph whose vertices are database rows, a cycle in which indicates a deadlock.

If the rows are totally ordered, and they are accessed in rank order, a cycle can never occur.
The question is, can a suitable ordering be imposed on the rows?

In fact, by ranking tables and rows, it is always possible to avoid deadlock. The default
strategy is to lock the whole of every table, in rank order. This will rarely be the optimum
strategy, so the question of choosing the best ranking is an optimisation problem. Despite this,
it is surprising that this approach to deadlock-free locking does not appear to have been

previously studied.

This is not quite the same problem as the one we have already considered. For example, if
row A depends on B, it cannot be updated until row B has been locked, but there is no reason

why row A cannot have been locked before row B. The only requirement is that the program

must know that row A needs to be locked before it locks row B. The only way that it could fail
to know this is when row B determines which A row is selected. For example, B could be an

enrolment, and A could be the student who made the enrolment. Suppose students is ranked

before enrolments. In this case, to avoid deadlock, it would be necessary to lock all the student

rows. Since this is inefficient, a better strategy would be to rank en¡olments before students.

The need for this ranking arises because an enrolment contains a foreign key that references a

student, and may therefore be part of an access path that is used to find the student. Assuming
that access paths typically follow foreign key - primary key connections, heuristically, a good

ranking may be discovered by drawing a graph whose vertices a¡e tables and whose edges

represent links from foreign keys to primary keys, i.e., from children to their parents. If the
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resulting graph is acyclic - and it often is - then each topological sort of the graph gives a
possible ranking of the tables.

In addition to ranking the tables, it is also necessary to rank the ¡ows within a table. consider
the example of a 'Safe Transfer' between accounts considered in Example 5.2.3. Here, if the
'Payer' account is always locked before the 'Payee' account, deadlock may occur. For
example, two transactions might take place concurrently in which the roles of payer and payee

were interchanged. But if the row with the smaller account number were always locked before
the row with the higher account number, inespective of its role, deadlock would be avoided. In
other words, rows within a table ought to be ranked, just as tables should be.

Of course, it is possible to reverse the usual di¡ection of access, from child to parent, and
retrieve a parent before its children. Assuming that the children must be locked first, this may
mean locking the entire child table. But if the database system supports hierarchical locking, it
may be possible to lock only the child rows concerned, provided that the parent key has been
used to cluster the rows. Of course, if a child table has more than one parent table, only one
parent can control the clustering. For example, an enrolment has two parents: a student, and a
subject. Hierarchical locking allows that, if the enrolments are clustered by subject, then to
access the enrolments for a subject needs only one cluster to be locked, but to access the enrol-
ments for a given student needs the entire table to be locked.. Conversely, if the enrolments
were clustered by student, then to access the enrolments for a given subject would need the

entire table to be locked, but to access the enrolments for a student would need only one cluster
to be locked.

Sometimes it is not possible to access the rows of a table in rank order. For example, a Bill
of Materials database involves an undirected cycle in which an assembly comprises several
components. Each component may itself be an assembly, recursively. Ultimateiy, atl
assemblies comprise a set of basic parts. Although the same component may be used by several
assemblies the parent-child graph is necessarily acyclic. It is possible to rank the assemblies by
level, so that working from higher levels to lower leveis locks rows in rank order.
Unfortunately, when it is necessary to work from lower levels to higher levels, the rows must
be accessed in the reverse of rank order, so it becomes necessary to lock the whole table.

There is always a deadlock-free implementation of any system, and the above examples
suggest that deadlock-free systems may be a practical solution in many instances. In so far as

they can implement a wider range of specifications that contention-free systems can, their study
may prove worthwhile.

lL.4 Contributions of the Thesis

In this section, the author wishes to formally state what he believes are the original
contributions made by the thesis. Of course, these claims are always 'to the best of the author's
knowledge.' The discovery of single example proves that something exists, but any number of
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absences of an example can't prove that it doesn't - especially when it may exist in some

unrelated a¡ea of computer science, using different terminology.

ll.4.L Generalisation of Sequential Update Algorithm

Although correct descriptions of the sequential update algorithm have appeared previously

[Dijkstra 1976, Dwyer 1981a], they have assumed that all events affect at most one master

record, and that reports are only produced concerning the final state of the master file. In this

thesis, we have described how to implement events that affect many master records, and how to
report the state of the master file at any desired time.

11.4.2 Parallel Batch Processing

The parallel processing algorithm of Section 3.4 is an analogue of the sequential access batch

system described in Section 3.3. This algorithm was described by the author in an earlier report

[Dwyer 1995]. It is believed to be original. Also, although contention-free databases may not
be new, a systematic method of deriving their design is new.

11.4.3 Real-Time Equivalence

The author claims that the idea of real-time equivalence presented in this thesis is the first
formal attempt to define what it means for the design of a batch system to be correct.

11,.4.4 Separability

Separability is an old idea, but its importance in system design has gone unrecognised - or
perhaps it is truer to say it has only been used informally. The formal use of dependence

anaiysis to derive the separable processes of a system as the strongly-connected components of
an SDG has not previously been reported.

11.4.5 Independence

Independence is a trivial idea whose importance has long been implicitly recognised in
designing parallel algorithms. Where this thesis makes a new contribution is in generalising its

definition, making it possible, even when it is heavily disguised, to detect the potential for
parallelism by f,rrst decomposing a system into separable parts. Independence becomes then

both the motive for decomposition, and a criterion for constraining optimisation.

1I.4.6 Extensions to Use-Definition Analysis

The use-definition analysis used in this thesis extends conventional techniques in two ways:

First, it distinguishes array elements, so that it becomes possible to test for independence.

Second, it extends the usual idea of lexical definitions to ttrat of dynamic definitions, making it
possible to test for independence in specifications containing loops.
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IL.4.7 The State Dependence Graph

There are really two kinds of SDG described here: the kind used by the Designer program,
and the more informal kind suitable for use by a human systems analyst. It is the second kind
which is of interest here. Essentiaily, it provides a formal way for an analyst to determine the

CPG of a system. By colouring vertices and marking edges, the notion of compatibility also

provides a semi-formal way of helping the designer optimise the process graph. As discussed

in Chapter 6, it also provides a useful tool with which the analyst may consider design options
and quickly assess the implications of a given specification. As such, it may assist the analyst

in negotiating a new specif,rcation with the client that can be implemented more efficiently. The

author believes that the use of these graphs is original.

11.4.8 System Design as a Composition Problem

A major contribution of this thesis is that instead of system design being perceived as a

problem in optimal decomposition, it becomes one of a canonical decomposition followed by
optimal composition. This insight serves to greatly reduce the search space of the optimisation
problem, and to help direct the progress of optimisation.

11.4.9 System Optimisation as a Lattice Problem

Section 9.2 demonstrates that the set of feasible system designs may be expressed as a lattice.

The author believes that this is the first time the problem has been expressed in this way. The

majorbenefit of this insight is to see that pair-wise composition is all that is needed to reach an

optimum.

11,4.10 NP-Completeness of Process Optimisation

Section 9.6 proves that the composition problem can be NP-complete. The author believes

that this strongly suggests that finding the optimal process graph from a specification is also

NP-complete. It does not prove it, however. It is possible that a radically different approach

might not involve the composition problem, although it seems unlikely.

lI.4.ll Optimisation Heuristics

The optimisation heuristics described in Subsection 10.5.3 have proved successful in the case

of the examples given in this thesis, and are a useful contribution to the practical problem of
automating system design.

11.4.12 The Designer Program

The Designer progtarn demonstrates that it is feasible to automate system design. Although
previous authors have described simila¡ programs [Teichroew & Sayani 1971, Nunamaker et
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al. 1976, Teichroew & Hershey 19771, they had nanower scope than the program described
here.

ll.4.l3 A Design Methodology

Finally, the author claims that the synthesis of all the ideas in this thesis form a new design
methodology, which should prove of great value to systems analysts and designers. Many
practicing systems analysts have been surprised at some consequences of CDM, although it
must be admitted that not ail of them are willing to accept real-time equivalence as the criterion
of correctness. It seems to be a common belief that any system requirement can be implemented
using sorting and sequential access, without the need for random access. On the author
demonstrating that for some problems random access is necessary to preserve real-time
equivalence, real-time equivalence has been rejected as too strict. On the other hand, no-one
has yet suggested an alternative to it that is both useable and less strict.

The author also ciaims that the method has a very wide range of applicability, as exemplified
by the case studies of Sections 5.6 and 11.3.1, although, because many problems are already
well solved, it has a much narrower range of utility.

11.5 Some Frank Remarks

Someone once said that research is like entering a darkened room and f,rnding the right switch.
Once the lights are on, everyone can see. Although the ideas in this thesis make a coherent
story, getting them to hang together has not been easy.

Although the author soon recognised that the strong components of the SDG determined a

canonical process graph, it was not easy to get the details correct. On the one hand, early forms
of dependency analysis could lead to CPG's that had no obvious implementation, or they might
fail to find valid CPG's that did. These problems had to be remedied by generalising the

known update algorithms or by adjusting the rules for defining dependences. For example, the

'Careful Transfer' of Example 5.2.5 caused such a problem. Its CPG suggested that two
independent access processes would implement the specifrcation efficiently, but it took the

author a long time to see how to add preprocess and postprocess phases to the usual update

algorithm so that it could handle it correctly.

Another major source of problems was detecting independence. This is so easy to do

intuitively that the author was amazed by the complexity involved in automating it. In
retrospect, the ease with which independence can be found intuitively is often based on extemal
knowledge: in an order processing system, we don't expect different products or customers to
interact. It is not so easy to detect from the text of the specification alone. The author had also

hoped to find that the problem had already been solved by previous research into parallel
algorithms, but never succeeded in finding any work that was relevant.
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Similarly, the analysis of independence caused embarrassment, in that the graphical approach

often showed the possibility of independent access without suggesting how to implement it. An

example of this is loop folding, as described in connection with Example 1 .5.4. Again, a major

problem was to find a set of rules for defining independence that would correctly match the

independent update algorithms and the text rewriting rules for delayed procedure call. Of
course, such difficulties really mean that additional program transformations - such as loop
folding - would improve and generalise the results presented here, but every piece of resea¡ch

has to stop somewhere.

At one point, when it became apparent that lexical definitions were inadequate, they were

entirely abandoned in favour of dynamic definitions. But this often gave rise to designs where

one assignment statement was assigned to two different processes. In fact, this was a clue that

a loop could be unfolded into a series of separate processes, along the lines of the iterative

approach to the Bill of Materials Problem of Section 5.6.

Part of the problem of analysing independence was to construct the SDG correctly -
including the dependencies for inspections and updates of arrays and their elements. Finding

the correct constructions proved very elusive, because the SDG must serve two purposes, to

determine separability, and to determine independence. The notion of dynamic definitions

proved useful here. Even so, it seemed very hard to get one property right without spoiling the

other. In fact, a case was eventually found in which inciuding a particular edge gave the correct

analysis of separability, but the same edge had to be omitted to derive the independence

information. Eventually, this led to the decision to classify the edges of the SDG as hard or

soft.

Another problem was to choose the right form for a specification. Because SASS and JSD

both ignore the details of specif,rcation algorithms and concentrate on data flow, it took the

author a long time to see that data flow is not a given, but is ultimately based on an algorithm,

even if the algorithm is never formalised. Once this had been realised, the advantages of a

procedural specification over a precondition-postcondition style of specification were quickly

realised, including the possibility of automatically deriving process specifications.

Even so, the author's first attempts at formal specifications were a failure, being based on'Z' ,

where system outputs are represented by output variables. This form of specification failed to

model process communications within the system properly, especially the case where one input
produces multiple outputs. Other attempts were based on process algebras, such as CSP.

These proved too general, and the burden of proving the correctness of a design was too

complex. The idea of modelling proÇess communication by delayed procedure call may seem

obvious now, but it didn't seem obvious then. In fact, even after the author had decided to

model outputs of internal processes by procedure calls, for some reason the logical step of
specifying the whole system in the same way took a little longer. This stage of development

can be seen in the author's earlier technical report [Dwyer 1992].

A further hang up concerned the NP-completeness of the optimisation problem. To the

author, it was perfectly obvious that the problem was NP-complete, but that was not the same
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as proving it. Clearly, if the thesis could not show how to solve the optimisation problem
efficiently in all cases, then it must prove that it can't be done - at least as far as anyone
knows. The method of reducing a known NP-complete problem to a new one is well known,
but it was not easy to spot what known problem would provide the proof. Also in this context,
it was 'obvious' that feasible pair-wise compositions were all that needed to be considered, but
proving it was somewhat harder.

In this respect, it may be added that actually implementing the Optimiser has suggested that
the author's faith in feasible pair-wise compositions may be misplaced. As mentioned earlier,
composing pairs of state variables is what matters, and state variables may be connected by long
paths in the full SDG. Usually, a long series of pair-wise compositions has to succeed before
two state variables are composed. A faster method might be to proceed more on the lines of the

manual method, and attempt to compose pairs of system variables, whether their compositions
are feasible or not. This approach has yet to be tested.

To complete this litany of failure, the author would like to confess that many problems were
revealed only when - after false sta¡ts in Pascal and Ada - attempts were made to implement
the Designer program. Arguments that seemed convincing on paper faited to stand up to
experiment. Conversely, early prototypes of the program sometimes stood up well to
experiment, but were revealed to be faulty when an attempt was made to explain them on paper.

They were easily proved to be incorrect by counter-examples, many of which are now
imirortalised in this text.
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Appendix: The Designer Program

13. Appendix: The Designer Program
Using Open-Prolog fBrady l997]the Designer files may be consulted as follows:

:-[çLimi-:l .

:-[pars<].
:-lstnrd].
:-[ar:alfee] .
:-[cæløri.-r].
:-[gserabrì.
:-tdesigrgl .

The Designer pro1ram may then be invoked by a goal of the form:

desigrr(Seu:e,ù@)El .

where Source is the name of the specifîcation f,rle, and Output is the destination of the result.

The Designer plogram makes use of some system calls that a¡e unique to Open-Prolog.
These merely indicate the progress of the design phases, and summarise the times they take.
The modules, as called from Designer, also make some system calls. To adapt the program to a
different Prolog programming environment, these system calls should be modified. Alternat-
ively, they may all be removed without ill effect.

desig(Sq-rce,Orþrt) : -
' qrstsn$seccrds' (T0),

pa¡se_.¡æec (Sorce, Tlee),
'qpter$seccrds' (fl-),
æa1yse_q6ten(T¡ee, Decls, Firnl¡efs,tbes,Links),
'qstsrçseøds' (T2) ,
cercrrise_gI4:ùt Qses, Lìrl€, gs,Ræt),
'qpterr$secøds' (T3) ,

ætjmise_sccs (ÞcLs,Lls€, Ss,Root, processê,G@-Olt),
'sLstsrçstrds' (?1),
ggsate-crrÞtÈ (Orþrt,,flee, Præesses,O@O:t),
'sfÞter$sesds' (T5) ,
Þrse i-s TL-T0,
.êna116e is f2-fl,
cserale is T5-T4,
Ca'rnise )-s 13-T2,,
Qtjmise is 14-Í3,
lãgth(Uses,Nf),
lsgth(Linl€,¡C) ,

1úgth(Sæs,¡ß) ,
vu-ile(' Þrse:' ),\rzite(Pêrse) .!,¿-ite(' secs.' ),n1,
!,À-ite(' .Anal1æe: ') ,r¡riEe@nat:æe) ,\,,r-ite( , secs. ') ,n1,
ï¿-jte( ' Gss:a.te: ' ) ,r¡r-ite(Geløate) ,\^riË( ' secs. ') ,rù,
$¿-jte(' Cæsrise: ') ,r^rite(k¡:njse) ,!,rite(, sæ.') ,rù,
\48_ite(, Qtimise: , 

) ,vrite(Qtimise) ,$È-iÞ( , secs. ,) ,rù,
$rjte(' lÞnl:'),!{r'ite(N1_),n1,
ur-j¡e(' soft:'),\ÀË'ite0¿),rù,
r¡rjte(' SIs: ') ,\^Eite(I,B) .n1.

13. L The Parser

The Parser may be invoked directly by a goal of the form:

pa¡se(S:tzæ,ftæ) .

where Source is the specification file, and Tree is the file into which the abstract syntax tree

shouid be written.
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/* Þr'ss.
Th,is prcgran parses a çecificatia'r.
*,/ prse(9:rce,Ttæ) :-

pa:se_..æec (So¡:ce, Sec) ,
teüjryGbe) ,t¡.l 1 (Tte),pætW(Sec) ,told,teII(r.Fs). /**/ 

¡=rse_.,¡pec (So¡¡ce,Sec) :-
'qÞtsIçþlslì$diÐ1"4r'' fressage,left,,par€i¡g specifieLiør.-.,,',,,',,,),
sør_ìrgrt(So-rce,lrburÈ) , segr, see(uss) ,secificaticn(Sec,r¡bùds,Rest) ,
( Rest = []
; RestÊ[v\brdu ->

\,ü-ite(bbrd),r¡rite(' fo11oæ <d of çæifielicrr.' ),nI,
assst.(e¡¡crU )

),
' eÞlsrfuæSdiæla¿' þessagel,
ryt. clause(e=cnu,ü:e), !. /*

*/ scõr_jrprL (So-rce,bbrds) : -
seejrg(Use),see (So¡:ce), geEO (I-colcth€d), ecÌ¡c (l-ooletred),
slcip_æacæ (l-oolAted, I¡olçALeadt),
r€ad_all_vords (I-olråLedl,Ìrbrds,J, l,sesr,see(LËer) . /**/ r@-all_r'ærds?6,lJ,26\ ;- !. /**/ rqall_\'€rds (Ico)<AH, il¡òrd I 

v\bÈdsl, Ioo]ètedl) : -
æ{_r,ord(Iod<Ahead,V,brd,r¡cùehed),
slcþ_çaces (Ioolreted2, Læ]ç¡hæd3),
red_alI_.f¡púè (I¡ol<Afeð,übrds, Icokåheadl) . /**/ rêad_r,Ed (LolètÆd,t4brd, L@l¡èheadl-) : - valid_clar (Læ}êhæd), !,

getO (I¡o]èhead2 ), ehc (I-oo}ç¡üræd2),
rest_nane (lod<Ahd2, Rest, LockAhædl),
lo¡q_:¡ase0¡oiêhæd,fo¡s),nare(tntord, tI-oúslResÈl ) . /**/ Þd_r¡Ed(Loo]êLed,i^brd,L@]<Ahædf ) :- del_i¡nits(tool<IÈed), l,
get0 (r¡ol¿headl),ec]¡c(I¡ol<Ahedf),nare(Iü¡rd, Il¡o]êÏeadl ) . /**/ rca.r_r,ød(I¡oliåted,Q.I-co]ÕLedf ) :- r¡alid_æ(IoolcAtead) , l,
9et0 (Ioo]<Àhæd2 ) , eÌ¡c (I-oolcAled2 ) ,
r€st_c[Eator (Loo],êLead,Rest,LcoldheËdL),nare (Qp, ttoolehædlnesü ) . / *

*,/ ¡est-nare (I¡ol<Aked, tI-ols lResEl, LookALÆdf ) : - r,ralid_cåar (Loli¡llead, l,
Io¡e_case (I¡okAhæd, Lo/,s),
getO (lcolièhead2 ), eÏ¡c (r¡olcAled2),
rest_r:are (I¡ole¡hed2, Rest., I¡olèbeadl) . /**/ rest_nare(Loo]ê¡ed, [],I¡o]ê]ed) . /*

*/ rest_qe:ator(Iolehead, tl@],åtæadlRestl ,f¡olcÀleadL) :- r¡aliùcp(I¡d<Ahæd) , l,
getO (Lcoldted ), eclo G¡oleleü),
r€st_qmtor û.cokAfEd2,Rest, I.colêLEdl) . /**/ rest_qe:ator(I¡oketEad, [] ,Iool<Akæd) . /**/ slcþ_çces(26,26) :- !. /*

(l-ooleled,look¡hæd) :- deLimits(Iool<êhead) , t. ,/*
(f-æ]dhæd,lool<¡Led) :- \,a.liùc}nrû¡olÈhæd) , l. /*
(I¡okAhed,I¡oHùæd) :- ræIid_cp(LolcÂLed) , t. /*
(I¡o]çALed,I¡olGhæd2) : -

Appendix: The Designer Program

skþ_çces
sl<þ_çces
slcþ_çces
slcþ-çces

getO (LoolêLedl) , eclp (I.oolc¡ted1) ,
skþ_qgaces (I-co1.Ahædl-, r-coldlread2) .,/*

*/ digiE(clar) :- CÏnp--48,eæ--47. /*
*/ lette((tnr) :- Chap=55,Cta¡=<90, l. /**/ lettg(Char) :- Char>=97,C1e:¡-122. /*
*/ 1o,t _case(Cbar,Lo¡8) :- Gap=65,Char-<90, l,IølËr i-sC}ar+32. /*
"/ 1q,'e_æse(Char,Char) :- Þoe. /*
*,/ \¡alid_drar(Ctnr) :- leEEs(Cbar), l. /**/ \¡alid_òar(char) :- digÈt(eiar), t. /**/ valid_drar(Ctnr) :- nare('_ , tGt'rarl ) , t. /**/ dêrimiE(Char) :- rEnE(, (', tcttarl),1. /"*,/ (È]imiÞ(Érar) :- nare(')', t(l'iarl), t. /**/ èfi¡niÞ(Char) :- rEne('r', tcharl ) , !. /**/ rnliùç(Ctnr) :- ra.Iid-ehæ(Ctnr), ! ,fai!. ¡**/ ralid-qp(cÏl¿¡r) :- delimits(ctrar), !,faiL. /**/ ralid-æ(Ctr¡r) :- Char > 32. /*
*/ ech)Lj :- !. /* IEÐ lS 9r]tIclED CFF*/ æÌD(261 :- l,r,rite('(æf) ') ,ù. /**/ ecÌÞ(31) z- !,rù. /**/ æÌÞ(9) :- ! ,vr-ite( ' ') . /**/ æÌþ(C) :- C >= 32,!,ptts-(Ct . /**/ ec¡lc(C) :- ur-ite( '\' ) ,\,'/rite(C) . /**/ scæt(So,rce,r'ìs$¡g) :-

scan-irgrt (Soxce,tlrbrds), ter I (LisLirS),
!''riteq(vtbrds) ,vü-ite ( ' . ') , told, tel1 (rse) . f
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Appendix: T)l,e Designer Program

*/ æecificacicn($Þtsn(qêhe,padøæs (mdeæs),
Cersics (Gssics), StatÐecs,E\¡qts) ) ->erabfe (Adeçs, Gseics),

padcaæ__¡æec ( g¡*are),
pad<aæ_þdy(q¡slhre, Stat*cs, EVstts) . /*

*/ prurble (Padeges,cssics) -->
{abolish(el=oç 1), abolistr(fimctj-q 1) .abolish(pacløeÊ,1) },
pacløæs (paOæs),grasics (csericsl, ! . /*

*/ paclcg6( tpaOeælmOeæsl) --> padcee(pacleæ) , l,paclcges(Pacl€ges) . /*
*7 padcg€(l]) --> srpty. /*
*/ @cge(Pad€ge) -> t\^¡ithl, idsrtjfis(hdeqe), [' ;' ], !,

{asset'(pad{age(mdeæ) ) }. /**/ @<agpL) -> hnrithl , !,sl¿tðcæast('pad<aç dæla:¡aticn' ,'¡'l . /*
*/ çsærics(cs¡sics) --> [gstric], !,gssj.c_t)¡tr:€(cssics) . /**/ grssics(tl) --> grpt)¡. /*
*/ gssiç-tlpes(ttlee,a¡elr!,e,øresl ) -> 9øeic-t1pe(r\paare) , l,

ggsic-tlpes(T\¡pd6res) . ,/**/ gssic-bpes(tl) -> arpÇ. /*
*/ grseic-Þpe(Tlpe) --> ttlæl ,iÈËifis(T:pe) ,[i-s] ,[riratej,1'¡'],t. /**/ gssiqEpe(T\pe) --> ttfæl ,ikrtifis(T\pe) ,tisl ,tr¿¡æl ,['o'],[';'],!.*/ gssiç-tt¡tr>et-) --> [ttæ] , l,syntäx$ast('Wsic tlpe dælaraEjcn' , '; ') .

*/ padcge_Ðec (Slêh¡e) -->
{aboljs}r(ct¡=slt-.:r¡-m, 2 ) },
lpadcagel, idstifie (S:ælhle), Iisl,
gErc_qEcs,
tsdl, iÈÈifjs (s¡¡slare2), l' ¡' L

{ccrsisÈæÈ (S:êhe, g.e}hre2 , ' sd of padcæ çecificæicn' ) } , I*/ pad@e-..iæec ($¡slEre) -->
{aboljsh (currert_.:am, 2 ) },
tpad<agel , id<tj-fiø(slplhIe) , tisl,ssrr_specs, t,
q¿nta:<_to('ssrt ful¡ratias', '@cge') . /**/ tr)adc€e_æec (s)ê6re) -->
{aboljsh (q-r¡ert_.:rum, 2 ) },
qfntax_to('pad€ge çecificaticn','pad<age' ) . /*

*/ pad,ege_bcqr'(S16lhre, g¡atecs, É\,..rts) -->
{abolis}i(cuuret-.:nm, 2 ) },
tpadcgel , tboq/l ,iereifier(Sfêh.e2), tisl ,

state_rærj-ebIe (S:æ¡øre2, t l, ScaEæcs, t l, GlcbaLs ),
ñ.rsticrs,
s,/qtts (E\Erts,clchals),
lsdl, iÈÊifis(s¡1slarÉ), l' ¡' l, t,

{cøsistert (S:êEre, qÞ}bre2,'pad€ge bcdr'' ) },
{ccn-sistsrt (Slêhre, S¡s¡ere¡,' sd of padcge body' ) }, l. /**/ ¡xdcge-þcèf (q/s¡Ere, SEatæcs,E\Erts) ->
{aboüsh(cu::srt_.:m, 2) },
tpadese] , tWl , ieüfier(s¡plEe2), [isJ ,
state_\Erj-ab1€ (S:êøre2, t l, Statecs, t l, clcbaLs ),
ñ¡stj.æs,
qgrts (Evsts,clcbal-s), !,
syntac_to ('aet inplarantatiøs',$êHre), /t*/ padage-þcdy(qêhre, Statæcs,Evsrts) ->
{abolis}l (o:rzst-..:r¡.¡n, 2 ) },
tpad<agel , tbc*l ,iertifier(qpwrez) , tisl ,

state_\Erj.ab1æ (S)Flhre2, [],Statæcs, [],clèals),
ñrsLicns, I,
qyntac_to('sElt' jnplsrÐtatiørs',S¡¿slHre) . /**/ tr)ac]<age_bcÔ¡($êHre, Statæcs,R/srts) ->
{abofis}t (o-rrent-.:m, 2 ) },
tpacleæl , tboê/l ,ierifis(SfêEe2), tisl ,

state_r,arjable (s:ê4re2, [ ], Stat&cs, t l,clcbals), t,
+¿ta>c_to(' fi¡ceiax jnplørantaeiøs',q¿s¡hre) . /**/ padege_þcdy(qF¡6re, StatFrìÊcs,EvÐts) ->
tabolisÈr(cr¡=ert_.¡n rn,2) ) ,
tpac:egel , [bcd/],iÈÌtifien(gæ¡he2), [is] , l,
syritæc_to('stde varj¡bþ C-:1a¡'atlcrrs', 9æ¡6re) . /**/ tr)ad@e-bcdf (S¡êwrc, State¡-Þ<,EvÐts) ->
{aboljstr (curret-.¡r¡.m, 2 ) },
þdegel , t,
synta<_to('pad€Ee body ieadirg',9êHre) . /*

*/ state_rarj¡bles (q/slEre,Þcsfrr,DecÐrt, Sl¿rsf¡r, q¿rúrt) ->state_lEldæ (qêEre, Ècsf-ri, bL, q/nsÏrÌ, SyrEl ), l,
state_r¡arj¡bles (SjF¡Ere, CEcs1, Þú:t, g¿rs1, S¡Ãrú:t) . /**/ state-\årj-ab1es LrE-=,rr*-s, SyrE, Syrs) -> srpql. /*
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*/ trÞrane@s (E\EÈ,BIn,D=cú-rt, g¡rsln, g¡rúrt) -->
païaÉteqliec (E\Ert,Ècsf¡,rEc.l-, S)¡rsTn, SlÀrE1) , I ,
pardreteqttail (E\slt, Ècs1, Þc$tt, S¡rsl_, S¡¡rÐrt) . / *t/ parareE_¡ail (E\Ett, ÞcsI¡I Ècott, g¡rET.rl, qÄrútt) --> [, ;' ] .

pararetgs (E\Ðt, DecsIn,ÈcÐrt., g¿'rsIJI, SÆúrtl, I . /**/ tr¡rðreE-tail (E\Ert, Þcsïrl Èc$rt, ${rÊfri, qÆûtt) --> [' ;' ], l,
q¿ntax¡ast( þarðrets lji-st',,,' ). /**/ pa:=rre@_tai-L LIÈce,rÞ.=,S)¿Ts,Sl,rrË) -> srpÞ¡. /*

*/ local_rarj¡b1es (E\8lt.,ÈcsÌ1,Èc*,rt., S)/IIsnt, g¿Ért) ->lccal_r¡af _& G\,qÈ, ÞcsIn, Ècs]" S\,¡rEIn, Slnsl ), l,
læal_r¡ari¡bles (E\srt, Þcs1, Þc$lt, S¡¡rsl, S¡arúrt) . /**/ loca.l_r¡rjables LÈcs,Decs,S)¿r6,SjÃr€) --> ørpÇ. /*

*/ state_r¡r_dec (S)F¡ErÊ, Þcsln, Dec$rt, q¡rEln, S¡¡ñ.rt) ->id-Li.sE (Ids), t' :' l, tlæe_& (Dro, Cùn), irritja.üss, l' ¡' ), t,
{defire_state_r¡a¡.s ($n¡Ere, Ids,hn,Cù$DecsÏ¡,lJdrt, g¿rsIri, S¡¿rúrt) } . /**/ state-rar-dec L,D=cs, lbcc, qÆ8, Sl¡r€) ->iC_IisÈ U, [' :, ], t, q¿ntæ<¡as¡ (,sbte fularaticn,,' ì' \ . / **/ local_¡¡r_È (BVant, æcsIrr,ìlHtt, S)Ãrsfn, grrs0rt) ->id-Iist(Ids) , [' : '] , tlpe_è(hn,Ca{+'n) ,i-nit-ialiser, t' ;'l , l,

{&firte_1æa1_r¡ars (E\Ett, Ids, bn, Cc&¡t ÞcsT¡i, Þcúrt, g¿rsln, S¡aú:È) } . /**/ locaL-r¡r_dec L, TÞ--, n-æ, rynÊ, SyrE) ->id_list U, [' :' ], !,s1ntæ<_¡xst. (' loaL &laraLiør',' ¡,\ . / *
*/ tr)araretø_.¡b (E\}gÈ, ÞcsT.rl,]:Htt., S)drETr¡, S¡¡rúrt) ->id li-st(Ids) , t' : 'l ,tfæe_è(D¡n,csr-n) , l,

{defire_¡¡r.aretes(E\¡glt,Ids,Drn,Cc&qÈcsti,Dec$lt,S)¿rsTn,S¡¡rúrt) }. /**/ parzrre@3Jec L,Þcs, rÞre, gIrE, SynE) ->id_ijst U, [' :' ], !, q/ntaxæast ('pæ-arets decl¡'.ari cn',,'¡, ) . / **/ tt4Þ-è(Dãn,Oo&n)->[arry], ['('],id list(DÍù, t,),1, tofl ,idg¡rifis(Ccdsn) , t. /**/ t)æe-dæLj --t tarz:e¡1, !,s¡a-rtac-to('arr4¿ tlÃE dælaraLicn',' ì' l. /**/ type-&(ll,ccdon) -> idstifis(codo¡ , ¡. ¿"*/ t]æe-ÈLJ --> qrrtax_to( 'sinple \4:e rr-claraticn' ,' i'l . /**/ iilisr( trdlrdsl ) -> idmrifis(rd) , I , id_rail(rds) . /**/ iùljst( []) -> srpty. ,/*
*/ id_tail-(rds) -> [",],id_ljsr(rds),!. /**/ iLtajL(Ids) -> [' , '] , l,qrra<¡xsr( 'idætifie lisr' , 

, í') . /**/ id_rail([]) --> srpry. /*
*/ qett_qEcs -> s/stt_E)ec, l,s/st_jÐec_tai1. r
*/ aøt_qæc_taiJ- -> erørt_q:ecs. /**/ erert-qæc_taiJ- -> erpþr. /*
*/ øøit-qæc --> [proced-re],iÈitifie(E\¡srt),

t' (' l,pararess (E\Err, il,- U,_), t' ) l, t, i' l, ! . /**/ aørt_qæc --> [çroceó-næ] ,iÈrtifis (E\¡st) , 1, ; ,l , I . /**/ e,ert-qæc --> [gcoed-oæ], l, Ðrrtð<¡last ('s/B'rt çecificatiør',' ¡, ) . / **/ s¡srts ( [E\srE lE\Eìts],cld:aLs) ->e,srt (E\,6rt., clcbaLs), l,
s/sÉ_tail (EvÐts,clòals) . /*

* / q/gÌt_tail (E\.srts, elcbÊJ-s ) --> e\/glts (E\Eits, GlcÈals) . / **/ s¡srt_tail(tl,J --> srpty. /*
*,/ g¡srt (eert.(E\¡srt, Þra¡Ècs,fccal¡ecs,eody),clóaLs) ->Fooeazel, idsrtjfis(E\ert),

t'('l,pararetes(EVsrt, tl,ÞrarÈcs,e1cbals,parðrs) , t,) ,l , tisl,
1æ1_r¡arj¿bIes (Evsrt, tl ,foelnecs, Par:ars,S1ns) ,

Þinl,
statssìts (EVÐt, SJrs,.- Bcdy),

[sd] , iÈrtifie(E\Ert2) ,1.' ¡'1, | ,
{cnsistgrt(E\Elt,Iltgf2, 'sd of sst bc4;')}. /**,/ s¡sÉ (eert (EVsÈ, t l, t¡cal-Ècs, ¡cdy), clcbals) ->
þooea¡rel ,iÈrtifis(E\eE), tisl ,

Ioal_varjables (EVs'Ë, [] ,Iaca1æcs,c1cba1s, g¡rs) ,
t@jnl,

staEsrsrts (EVe1t, S)¡s._, Bcq/),
lsdl ,idgrLifis(E\¡gt2), ['; ,] , ! ,
{cmsi-sEsrÈ(Evsrt',B,øt2, 'sd of s¡srt boô¡,)}. /**/ g,'grt(nù],-J -->
tprcced-uel, idsrtifis(E\ert),
t'('l,pa¡:æretes(Evæt, tl ,-n), t')'l,lisl ,
Iæl_r¡arj¿bles(E\Ert, tl ,,11 ,) ,
tqrjnl, !, ÐÃttæç¡xst (' er¡srt bcry',,sd, ),skþ_¡¡st (, ì' ) . / **/ sert(n¡l-l,_J -->
tecoed.sel, l, s1/¡tð<lnst (' gsrt headirg,, sd, ),slcip¡¡st (' ¡' ) . / *

*,/ ñ.u'cEicns -> fi.1-cticri, !,fr.rrEicr:s. /**/ fr¡:cticrs -> sq>Ey. ,/*
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*/ fi¡cticn -->
tfmcUiorl, ièrtifis (rincCicnqre), {asert (ñ¡lcCicn(Ft-rctjcrùEre) ) },
t' ( 'l ,pararetss (Ft¡cÈicnlhre, [] ,Decsl-, [] ,SVnEl-) , t ') 'l ,

lreb¡rtl ,idstifiqL) , tisl ,

1ccal-iariables (F\¡cticr¡ørc,Þcsl-,Þc9, S\trr61, S\fis2),
tbqrjrtl,

statsrðts Fl.rcticnÌ,h.re, qÆ82, 
-_J,tsdl ,ieÈifisu, ["ì'),!. /**/ fr¡-cticnL) -> [ñ-r-cEicn] ,1,

slÃrta:q)asE (' ñ¡'rtjø C.claraLicn,,, sd' ), sldpæasiu (, ;, ) - /*
*/ statsrents (E\/qrt, S\,ns, q¿TEOrt, tSffi I Sbrtsl ) -->

statsrmt. (É\srt, gfis, SynE1, Sftrû), !,
staEsrat_tail (E\,art, S)¿rsl-, g¿rÐr8., Sffis) . /*

*,/ statsrmE_tail (E\Et, q¿rs, qÃ'Étt, Sunts ) -->
statersÉs (Evslt,Syns, S)¡Túrt, Sffis) , ! . /**/ statsrsrE-tailLSyrE,Ðn6,tl) -> erptl¡. /*

Tte ¡zedicate 'statsrsrt(+E\ist,+flns]rr,-S¡aúrtr€\ntalcfee) ' paEes a statflsrt. prodlcjrg a Ðntax fee
BeøIse SOre Statgrgtts nalr dcìare rs.'¡ ¡¡arjables, Ðnúrt nelr be a sÐqset of Syrsn:.
*/ statglgtt.L,S\trrs,Syrs,ru11) -> [nr11],l¡1 ,!. f
*/ statsraÈL,S¡rs,S)Ãrs,reb¡ri(Ðg:) ) --> treU¡r¡l ,l¡1,1. /**/ statsre.itLq¡rs,qÃrs,return(Ðq¡r) ) -> [reu-un¡,eçræsicn(g¿rs,ÞÍn) , [;] , !. /**/ statqmtL_,Sl¡rE,qÃrE,J --> [reb-u¡] ,g/ntð<lÉE('rebllî statsrslt' ,' ¡') . /*
*/ ståtsrent(Evsrt,q¡rg,qIrú-L,if (1s<( ljntsral/B,srt¡Var] ,1) ,ÞgÌ,Îb€,Fälse) ) ->lifl ,eçressicn(SrJr6,Ðgr) , {eç_nare(Esrt,Var) i, tt}erl ,

statãs¡Es (E\¡Ðt, S)¿r,s, qÆs1,Thre) ,
elsifJart. (EVsrt,SyrE, Syrrs2, Fälse),
{æsd ( S)Ãrsl-, S}r82, qÄns3 ), sort ( Syrs3, g¿rú¡t ) i,

tsdl , tifl ,l;), !. /**/ statsrent,L,S)¡rE,Syrs,J -->
tifl ,srztæc¡¡sE('if staterslE' , '<d'),skþ_¡xsE(¡) . /*

*/ el-siflärt(Et¡srt,Syrs,q¿rns0¡t,tif(le<( tjnÈernl/EretNarl ,t),Þgr,True,Fälse)l)
-> telsifl , !,eg:essici(Sl/rrs,Eqrr) , {eç-¡are(gr¡srt.,Var) }, tt}srl ,

statãrsiLs (E\,qìE, Sy{rE, S)¡rs1,1hle) ,
eLsif part (E\Ert ,SlÄrs , q¿rs2 , FäLse) ,

{æsd (S)¿rsl, qÀ82, S)¿rs3 ), soft (qrrrs.3, SlÀrúrt) }, ! . / **/ el-sifuÞrt. (fi,'<tt, Syns, S¡¡rm:t, Sffis) ->lelsel, staterglts(E\/gÈ, S¡ars, gArúrt,StrnLs), I . /*
*,/ eLsif GrtLSyTE,SynE,-) ->teLsifl, !, q¡ntar¡>st (' efsif cla¡se,,'sd, ), skþ_¡:ast ( ; ) . /"*/ elsif ÞrtLSyTE,SynÊ,J ->

lelsel , l,q/rtðLtrast('else cla¡se, , sd,),slci-p¡=str(¡l . f*/ el-siflartLsyrs,S)¿rs, []) --> srpty. /*
*/ statsrmt(E\ert,gÃrÊ,q¿Túi,vtrile(1ec( [irrteîa1/EVÐt.Nar),I),Þ{¡]Ecdy) ) ->iunrilel , eçressicn(Syns, Ðgr) , {eç_nare (E\Ert,Var) } , [1oæ] ,

statsrsrts (E\EÈ, S)¿TE, S)4Élt,Ecdy) ,

tsdl , tlccpl ,L;1,t. /"*/ statqrmtL, SyË, gÃrE,_J -->
lr¡trilel, E¿ntÐq¡ÞÉ ('vbile statgrgrt','sd' ), skipl¡st ( ; ) . /*

*,/ statsrsrt(E\¡gtt,qinË,q¿Tú.t,a11(1e<([1ccp/E\etlvar] ,N) ,C&n,BcÖ¿ ) -->
taXl ,idgrtifis(lår),
(1@l-_ched( (E\¡æt,Var, q¡rE ),
$4r (loç/aret/\Ër, tl, Ccdcrù,
Lniçe ( Ioæ/E\ErWar, N) ),
tinl ,idsrtifis(cen) , tloæl ,

statsrents (E\¡s¡t, tsl¿nl qÃrEl , q/núrt,Bcqf) ,

tsdl, Iloæl ,lì),!. /**/ statsIgrt.L, q¡rs,S:,ns,J -->
taltl ,sf¿ta+¡xst('a11 statanslt','<d') ,slcþ¡xst(;) . /*

*/ statsrgnÈ(E\,qIE,q¿rs,q¿rút,fcn(le<(llcoplÉ\,stlvar] ,N),Co&n,Eoè¿ ) -->
[fcn], idgrtitis (\ãr),
{ local_dd<(E\,Ert,Var, q/nÊ ),
S¡ar= (loç/E\eÈ/\år, tl, Ccdsrù,
Lr:-içe ( lcæ/E\ErWar, N ),
[irr] ,idsrtifis(cún) , [].oæl ,

staEsrsìts (E\,glt, ts)¿nl qÃrsl, S¡¡rÐ:t,e@),
tsdl , tlocpl , l¡l , t. /**/ statqsit L SltrrE,Syrs,J -->
lforl ,qfntax¡xst('for stat<rsrt' , 'qd') ,sl<þ_¡¡st(; ) . /*
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*/ statsfÊnt (EVsÉ, S)¡ns, S)¿rú-t,¿þclare(fccalE,Ecdy) ) ->tdeclaæ1 ,

lccal-_r¡arj¡bles E\lert, tl ,LccalÐecs, g¡rs,qÃrs1) ,

tbesinl ,

stalerglts (E\,qlt, S)in€l, q¿TSrt,Boô/),
tsdl , t' ,'1,!' /**/ statsrsit L q¿rs, S)¿rE, tl ) ->tÈlaæl , !,qyrita>ç$ast(,dec1aæ blccl<', ,gd,),slcipæas|(';,) . /**/ statsrsÌt L g¡rs, S1¿rs, crr I (ler ( tcr¡Ft/racjøCpÆVÐtl, N), Ðgr_List) ) ->iÈrtifiq(Þd<agd, [, ., ], idørtifie(Egrt),
{u-riqre (orF¡t/Þdcge/Evsrt, N) },
t' (' l, eç_Iist (S)Äcs,Ðgr_Lisr), t, )',' ¡' l, l . /**,/ statsrsrtLq¿rs,SjÃrË,call(1oc( lorçrt/ÈdcæÆ\'e:È] ,N) , il )) ->idertifis(Padegd, i, .' l, idmrifis(Bert), [' ¡, f , !,
iuriwe (orÞt/Pad€ge/Evsrt,N) J . /**/ statsrgnt L SVrE,SyrE,J ->l&Êifierf) , [,.,],idsrtífisL) ,
t'('l, !,stnta<¡=È(,defa)d cFl l parEnetss' ,'I;,),!. /"*/ statsrslt. L q/nE,S:ÃÍE,J ->i&rtifisL), t' .'1, l, E/ntðeast(,èlAæd car I,,' ) ;, ), ! . /*

*,/ statsrslt. L SlrE, Slrnsi, aqeigr (Var, Ogr) ) ->lari¡b1e(Ðns,Var), [:=] ,egessian(g¿e,Þgr) , [;J, l. /**/ statsrgle L SIÃT6,S)[[E,J ->r,arjaJole (S¡¡rs,J, t:=1, l, q/rÌtæc-¡ast (' æsigrnsrt',' ì' I . / **/ rcrjable(g¿rs,1e<( ts:¡borls¡bsæiptsl ,N) ) __>

iÈrifie(rd),
{lco}aæ (rd, g¿rs, (Si¡rbo1, hn, Ccdsn) ),
uriqr¡e(S:¡rbol,N) ),
subsæipc-list (Id,Èn,SJ¿rÊ, Sll:Êøþts) . /**/ subeøþt_lisE(Id,Þn,qÃrE,Vars¡ --t [' ('],ær_üst(Id,Dcn,SjÃrË,Vats) , t') 'l , I

"/ subeøbt_Ji-stL_,-J -> [' (' ], l,slÀltðcjast('s.rbsøipE liq¡'., l, ) . /**/ sr¡lcsøblJ-isEL tl ,_, tl ) -> gIpry. /**/ subsøþL]-ist(AFdl/, LlJ,_, []) -->
{\¡rite('"'),vrite(.êË-rð,') ,rÈ-ite(',' shaid be jrÈed. ,) ,nl}. /**/ rar-1i.*.(Ar::a12, tDcrnlDf,rÊl ,g¡rg, tvarlvarsl ) -> iÈltjfis(Iö , t,

{Iælcp (ra, sl¡rs, (Væ, Sjnple, Cùn) ),(Si¡rpl-tl , CcAeU., local-rar0/ar) ;
Ì^E-ite( '"') ,r¡E-itelld) ,\4Eite( ' 

,' ]ras vaag tlæe to irÈc , ,),
vrite (è¿:::¡dl¿) ,r/rriÞ ( ' " ' ) ,d

)

),
var_tai1 (Arr4¿,Dors, gÃ¡s.Vars ) . /**/ va._1i.*.(turay, LlJ,q,ns, tl ) --> l,
t!'rite ('Iict eujgh sllbGsipts of "' ),r^rite (Arra¡¿),\,,/rite (' "' ), nl] . /**/ r¡ar_Ii.*.L tl,_, tl ) --> qrty. /**/ var-1i.*.(arz:ay, tl,Sl¡s, tl) --> i&rtifier(Id), l,
{ürite('"'),\,rrite(td),vrrite(',, is ar eaæs subÊGipt. ef ",),
r^E-itqtrGË,qr),!,/riÞ (' ", ),nl],

var_tail (¿rre/', n,C/lÊ, ) . /*
*/ raf_tailßrrea,hn,qine,Vars) --> [','], !,slrrta<_aftæ(,r¡arjable Ust',';').*/ r¡a¡_tailL tl,_, tl) --> !. /**/ l¡ar_tail(.ê¡1q¿,Ll),- tl) --> ft,¿-ite(,Missjrgsù6ejpr(s) fcn ",),

\^rite(A¡lq¿),\¡ü-jte(' "' ),n1]. /**/ 1ocal_r¿r(1cca1/J) :- !. /**/ 1ocal_rar(1cç/J) z- t. f*/ 1oæ1_rar(irgut./J) :- !- /**/ loca.l_'\.Er(jrlteîal/J) :- !. /*
*/ eçresslcn(Slns,Vars) -->

tøn(S¡¡rs,Varsl) ,
rore_terrs ( g¿re,\års2 ),
{æsd(va¡s1,Vars2,Vars) } . /**/ tern(Slns,Vars) --> prefix_cBsatcn, l,te3n(qÃE,Var.s) . /**/ teî(gÍE,Var:s) --> [ ' ( '] ,eqzesior(Syns,Vars) ,l,l,l,l . /**/ tern( ) --> ['('],l,qfntar_past(,retd oqresicr' ,,1,1. /*

"/ temL [] ) --> øist¿nt, ! . /**/ tæn(qt¡rs, Þqrrs) --> iÈrtjfis (n ¡rrticr¡øre),
{cla:e (ñ¡'sEicn (n¡'cEiøùkre), fue) },
l' ('l,ep_tlsE(s)¿rÊ,Þgrs), [') '] , I . /**/ tern( ) --> idsrtjfis(rU-ctiø¡ãre) ,
{sl a,ç (fi-rcticn (¡t-rrtj.ø¡Are), true) }, !,
Ðz1tð($ast('fu-cEial call', ')') . /**/ tern($ng, lvarl ) --> ¡nriatle(Ðns ,Varl , | . /**/ tefn( J --> str¡tæç-to('tern', ' ì') , /*

u.
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* / nore_te¡rs ( Syn€,Var€ ) --> inf ix_qerator, oçræicn (S¡¿rs, Vars ), 1 . /**/nDre_terrE(*lrs,Vars) --> Jnfi¡_çe:ator, l,synÞ<l)ast('infixq)s-åor','ì'). /**/ ÍÞr€-tearêL tl) -> srpty. /*
*/ eç-U-*. (g¿rs,Vars) -->

eçæssio: (S¡¡rs,Va:s1),
oç-tai-l- ( S¡¡rs,Vars2), {æsd (Va¡s1,Var€,Vars) } . / *

sç-tail (g¿rs,Vars) -> [' ,'] ,ep_1ist(Syns,Va:s) , !. ,/*
eç_tail (Syrs,Vars) -> [',' ], l,qfnta<-¡¡st('egessicn lj-st,,' ì, ) . /*
sp_tailL [] ) -> srpty. 

^initja.liss -> [:=] ,østant, ! . /*
initiâliq _> [:=],næirg, l. /*
jraii-i â l i ee' -> [ :=], !, slrrta:<_to (, inir.i al i q',, ;' ) . / *jnitialìq 

-> srptl¡. /*
rræirs --> [' (' ], lottss], t+l,næirg, l' )' l, t. /*
ræiry --> [' ('] , tot]ssl , [+] ,castant,l')') . /*

--> [+]. /"
-> l-). /*
-> [*] . /*
-> l/1 . /*
-> tÍÞdl . /*
-> [&] . /*
-> [cn] . /*
--> ta'dl . /*
--> l=1. /*
-> l/=). /*
--> l<-). /*
-> l<1 . /*

> [+). /*
> [>] . /*
-> l+) ' /*

frefjx_æe¡a.tor --> l-). /"
prefjx_æe-ator --> [rpt]. /*
srpty(gs). /*
ress¡,4-:¡p¡d(õd) . /*
r.ese¡A_:¡pnl(ar¡,ay) . /*
ressl4¡praþærjn). /*
resgrd¡¡¡xd(bcdy¡ . 7*
¡essr4¡prd(eLse). /*
resqd¡¡prd(eleif). /*
r€ssvdlÁDrd(sd) . /*
r.eserid¡¡prd(fu-sticn) . /*
ræer,{¡¡p¡¿(gssic) . /*
resendlto¡d(in) . /*
rese.rd¡¡prd(js) . /"
:esv¿_¡¡nra(Ícd). /*
reserd_¡¡prd(rnt). /*
resæd_¡;¡prd(of). /"

rese¡d¡¡prC(anE) . /*
resend¡¡nrd(r¡ct) . /*
¡esenù¡cr¿(pacJege) . /*
resen{¡crA(prlvate) . /*
resen$¡¡¡ra(prccd¡e) . Ê
¡ess¡d¡¡¡xd(retun) . /*
rese¡,ù¡prA(subq4:e) . /*
reseîd¡¡nrd(tlsr). /*
reser"'ed¡¡pra(tipe) . /*
¡esqd_:¡prd(vÁth) . /*
i&tjflq(Id, tldlsl,s) :- rese¡d-.]nrrd(ffl), l,rair . /*
i&rrifi-e(Id, tldlsl ,s) :- nare(rd, tclR6rl ),IÉ'rs(c) . /*
defi¡e_state_rærs (S:æ¡Are, Edlldsl ,Dan,Ccdcn,hsln,æc$rt, g¡r€tn,S14rúrt) :-

state_decJ< (S¡plEre, Id, S)ÃrETn),
lâræùcba1/S)Flhre/Id, q¿r= (IEre,DqrlCcddn),uriq¡e(lEreN),
Ècs1 = [state(le<( trElelÈn] ,N),Ooùn) IÈcshl ,
g¿rs1 = ¡51rnlq¡ornJ ,

èfirE_state_\Ers (S:æ¡hIe, Ids,E¡r, Cd"'n,Dæs1,Þc$¡t, e¡rs1, g¿r$rt) . /*
* / def ire_state_rærs L [ ], - _,Decs, Þcs, S)ins, S)ÃrE ) . /*
*/ defire_lccal_r¡ars (E\¡5It, tldl Idsl, En,Cc&ri,DecsIn,DÞcStE, SyrEnr, g¡Ðrt) : -

Icl_dled< (E\Ðt, Id, SyrrsIrr),
lrhrFlocallB\,qÌt/Id, $nr (Ì.hre, En Ocùn), r-rrig.æ (lEre, I0,
Ècsl = tlæ.I(]ec(tl6relDcnl ,N),Odcln) læcslnl ,
qlnsl = tsl¿nlg¿rshl 'defire_1æ.1_rBrs (EVÐt, Ids, En, codon, Þcs1, æcú¡t, S¡rsl-, g¿rúrt) . /**/ defi¡e_local_rcrs L [ ], --Decs, Decs, SyrB, Slrrs ) . / È
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*/ defire¡xrareters(E\,qlt, tICIdsl ,Èn,Ocdan,ÈcsTn,Þc$rt,qÃßIn,S¡¡úrts) :-

local_ctred((E\Ðt, Id, Syrslrr) ,
¡hrrir{¡rt/Evglt/Id, $¿rtr (¡Ere, En,Ccdcrù, r¡l_iele 0EIe, ¡0,
Ècs1 = [paran(lo<(t],hTelbnl ,N) ,ødcrn) lDecsTnl ,
g/ns1 = tslÃ.nlg/rshl .
efire¡¡¡arees (E\,Ert, Ids,D.rn,Cadan,Decsl,Þc$.t,, g¡æ1_, S¡¡rúrt), /**/ rr-fi¡el¡rareters L t l,_,-æcs, Þcs, S),rrs, S:/rrE) . /**/ lcolaæ(Id,s\ns,Var) :- fi4j-d(1ocp/JId,s!trr8,\år) , t. /**/ lcolq4> (Id, qurs,Var) : - finùid(1oca1/JId. SSrrs,Var\, ! . / **/ loolop (rd, grs,Var) : - fjdid(iryrt/JId,S¿¡rsVar), ! . / **/ lcoloæfid,S\¿rs,Var) :- fi4idl/Jfd,g¡rs,Var), I. /**/ lool<pGd,Sl¡¡rs, (' ?' /' ?' /fd,Í1, tl ) ) :-

vrit€q(Id),r¡rite(' is nct èl,a¡€d. ,),n1,trn€Ety(S)ÃrE) . /**/ local-_òed<(E\ert, Id, g¿rs) : -
firr_id(1oca1/Jrd. S],Ís,J , I ,E-ireq(rd ,
v¡r-ite(' is afre{¡ declard as a local varjable in ') ,v,riteq(E\Ert) ,ù. /**/ 1ocal_+ted<(É1,,s¡t, Id, q¿rs) : -
fi¡4_id(1ocp/_/Id,Syns, J, t,\^E-itq (Id),
I^E-ite(' is a}effelared as a lcq>rnriable in '),¡^n-iÈq(E\Ert),ttl. /**/ 1ocal_òed<(Er,srt, Id, q¡s) : -
fir4_id(irg¡t/JId,SI,rE,_) , I ,\^rit€q(rd ,
$r'ite(' is a}ea{¡ Èlared as a pariletù in ,) ,\¡r-iteq(E\EE),rù. /**/ lcca1_òed<L_,J :- Eue. /*

*/ state_d1ed<(Sletgn, Id,Ðns) :-
fj¡4-id(g1ob1/-/Id,Syns,_J, l,r¡ritÊ't (Id),
r^tr.ite(' is a]le{¡ dælared as a state ¡arjable jn ') ,v¿-j.tq(qistsn) ,rù. /**/ state_decJ<L-J :- Uue. /*

*/ fi¡{id(Id, [(Id,Èn,ccdsn) lqãr6] , (Id,Dcrn,ooed) :- t. /**/ fird-id(Id, Llq4T€1 ,qÃboli :- fi¡d_id(Id,S:Es,Sl4bo1). /**/ qrstat 
-> [tue]. ,¡"*/ cørstæt -> [fa]sel . /**/ ccrlstërt -> [rl-]11] . /**/ cøstæÈ( tNlsl ,s) :- nare(N, tclResrl ) ,digd.t(c) . /**/ Ð¡nta><l¡st(I.ßg,stcp, tulrl ,U) :-

v,/rite('S\Ãtð( errcr jn ,) ,\,,4-ite(lßS),urite( aC cn afte ,, ,),
r^¡rite(H),¡¡¡rite( "' .' ),nL,
sklp¡tst(Stç, [Hl1] ,U),assst(error(s¡ritar) ) . /**/ q4ta<_to(I,Ëg,Stæ, tUlrl ,U) :-

r^a-ite( 'SlÃÌtÐ( s¡a in ') ,vrite(I,Eg) ,\,rrite(' at or afts ,,') 
,

\^tr-i-te(H) ,!\E-ite( "'.') ,n1,
slctp_ro(Srq), tHlTl,U) ,assst.(e=cn(qrra)<) ) . /*

"/ s]<ip_:æt(x, txlsl ,S) :- !. /"*/ skþ¡ætfi, Llsll ,9) :- d<þJasr(x,sl ,e). /*
*/ ddp_ro(x, txlsl , txlsl ) z- !. /**/ sldp_to(x, LlsLl ,9) :- skþ_ro(x,Sl ,9,). /*
"/ @rsisËlt(P1,P1,I/Êgr) :- l. /**/ cørsj-stsrt (P1, P2,tvsg) :-

r¡rite0ßgr),\,,E-ite(' shol1d be nared ",),
\4rite(p1) ,r¡r-ite( '" rÐÈ " ') ,brite(t2) ,v,E-ite(,". ,) ,rù. /**/ eç_r¡are (E\,srt.,Var) : -
tlliçe (' intemal-/E\,Ert/ogr_',ñ,
r:are(N,Digits) ,

æsd ( "eg:_", Djgrits,IEre),
nare(Var,lihre) . A

Ðrd of ¡nse. */

13.2 Shared Predicates used by other Modules

The Shared module contains predicates that are called by all the modules below. It is not
intended to be invoked directly.

/* *raredprdicates.
ftE fol-lodrg predicates are nodified ftqn tÌÞ SICStus erolog libãy.
A gBidÌ is us¡al-lv rrçres<rted as ær ødsed list of (Ve*ec-S¡ccesscus) paiæ, vtee s¡cæssors is at crlsed
l iot of tle recicæ tlnÈ are tle s.:ccessæs of VetÐ. in tle gtr-dFh, i.e., tfee is an Qp ftcrn Vsto. to æ¿t
rrsrbs of S:ccessors.
Tle prediele 'vsEices-4es-Èo¡o:4*r(+vøcice,@es,-Gq*1) ' slccds if Vetices is a list of veLie, Eþesis a List of @æ, ard G:aFh is a g0:d1 brilt Ê¡onveftices dd EÈtæ. VsLices dd EÈË nq¿ be ìn a¡¿ cre.
lbe reLiæs rsrtiød jn Edges & r¡ct Llare to oco-r eplicitly jn Vetices. Vstices na¿be used to str:ecify
retjcæ ûtat are r¡ct ccr¡'ectd to aly eÈes.
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*/ retices-@es_to3r4*r(Vetie0,@es,Gdr) : -
scrc, (Vetices0,Veticesl) , sort (rdæs,rdæS+) ,
+Ês_r¡stie (pdgeset,Bag), scnE (Bag,VeticÊs2 ),
or{r¡rrian(Vqticesl-,Vatic€2,Veîo€et),
goæ-e&Es fveto€eE, EÐeset,G4'l) . /*

*/ Qes_vscioes(tl, tl ) . /**/ dge-r,etices(trrcn;roln@l , tFÏqn,Tblvetiesl ) :

#_verCie (B*es,Vetices) . /*
*/ guop_e&es (ll ,_, lll . /**/ grEræ-eèes ( tvsEÐ<lveficÊsl,ECges, tvsre<-Src€sscEs lCl l'-

E:op-eÈes (f&æ 
, Vertoç Srccessors , RestEåB ) ,

gro¡>_eèes (Vqtie,Re$Efoes.c) . /*
*/ goop-eÈes(tvo-XlEdæsl ,V txls:æsorsl ,ResECæs) .- l/O-J/, l,

goroÐ_dæs (E*es,V, S¡cesors,RestEÈes) . A*/ grotp_e&es(Edæs,- tl,ECæs) . /*
Tte prdiete 'reeices(+Oql1-Vstices)' urifiæVsticæ \^¡ith tiæ rerticæ in C4lr.
*/ l¡ tiæs ( ll ,l.Jl . /**/ retices( tvste< 

-lG:aFhJ , tverto<lvøticesl ) :- r,gtice(Gæçh,Vstices) . /*
The ¡rediete 'dæs(+GedÌ,-Hæs) ' u"rifies Eèes\^/ith tbe @es in Gq:h.
*/ e&Ë(tl ,Íl\. /**/ 4ræ (tvefer-Srccessor:s lq,f¿æsl'-

rluEe(_@Es (S-:ccesscrs,\,þ:tec, Fdges, l.eüÐEæ),
dæs(G,¡l¡r$*es) . /*

*/ r,e@_lsåes(tl,-EftEs,Eæs) . /**/ retog.FÐEs ( tS¡ccessonl S.æsorsl,Verte(, lVste<-S¡ccesscnl¡Cges],]4rrddæs) :-
vsÞ<_edges (S:Gsøs,VstÐ(, E*es,I,bÈ€åes) . /*

Tte prediete 'tarææe(+OæÈ,-tariæose) ' is ble if Tlarææe is ü'E 9L-4:h curp:.ted LV ¡Wlacir€ each edge
(u,v) jn GdI b/ its qnreuic erte (v,u). It can crùy be used cre v4¿ arcr,u-d. Tte ccst is O(N logf N) .
*/ Earryse(Gq*r,Tfançæe) :-

tralspæe-eCEes (Adl1Eåes, tl ), scrE (TEæs,1@æ2),
leLices (G@'r,Vetices), gKr4>_@es (VsELcæ, TF,ftes2,Tlançcse) . /*

*/ ÞãriÐse_.-eåæ(tl ,ECEes,dæs) :- !. /**/ fariæse-.,gÈes ( tverto(-S.Doessoæ le1,f$esf ,n¿esf ) :-
traræose__¡*Eæ (S:cescùs,Vste<,8Èes1,Eèes2),
t¡aræ:dqæ (c,EÈÞ2,EÈEs3) . /*

*/ 1=anpse-.e&es(tl,-EdEes,Fdgæ) :- !. /**/ Earræse-.eères ( t*æsorl s.:ccessorsl,VertÐ(,FèFS1-,@es3) :-
rrtesl= ts¡ccærcr-V*t* | 

Edæs2 l,
t¡arycse_lsCges (S.¡cesors,Vsto<, EÈes2,Fèes3 ) . /*

Tte prdicate 'reighbcr.Es(+VqtÐ(,+Oah,-S:cesøs)' is fue if VsÞ< js a rlgEe< in G4il ad S.rccæsors æe
its reigù'ib-trs
*/ reighb-trs(V, M-s:ccessorsll ,s:ccessors) :- \rcr=/, l. /**/ reighhcrrs(V, LlGq*rl ,S¡æescrs) :- reigh:bo-rs(V,Gæçh,S:cesos) . /*

Tte predicate 'Þ:ansj-tire-clowe(+Gæ'r,-Closr¡:e) ' carprtes Clos-ve æ tle trærsitive clcsr.re of G@r in O(IO3)
Ltre.
*/ b:arrsitir.e_cfcsure(G@i,CLærre) :- l,r,e¡:shall(G@r,Gæçh,C1osue). /*
*/ uer.slell( [] ,C1æwe,CLcsue) . ,/i*/ r,rerslnll ( tV--lVsJ,G4ùr,Cl,osr:re) :-

reigfbo-lrs fr/, G:411, Y),
va:stta11_r¡sts< (Cdr,V,Y,trbrGqil),
tøEtraIL (Vs,I\blGæl, e.csLre) . /*

*/ unrshalL_vstec(l ,-_, lll. /**/ r¡arstnll_r,ets<( tx-Sloes¡s ICl,v,v, lx-]Ei\Éxaæsorslle,,Cl I :-
cmr_subset( M,S¡ceçrs) , !,
oùd_da1_eLsratff,X,10,
orrr_rn-icn(Sræso::s,f4,¡ErA:ccesses),
vas¡aff_lets<(G,V,YÀE/G) . /**/ r,ersle1l_reÈec( ix-SlccesÐIs lCt,UV, tx-S:æescrs llEiGl ) :-
r.^øsirafL-:tete< (G,V,YÀE,G) . /*

lte pdicate 'subE:4r(+eæd':,+VsLie,-$bgrdt' suooeeds r¡Ègl S:lg4jl is a gn:Sr vt¡æe r,etjces are cnnûl
to VefJ-ce a'd Gqtrr, õd t¡ÈGe 4es are tte sutset of thse jn Gqh tlnt join tle ¡,etle jn SrbEqtrr.
*/ subso:d1(ll ,_,1)l . /**/ sr:bgr@r( tv-s.rcesscrs lOahl,Vs, tv-S.:æsc¿s1lS:bgr-gil ) :-

oÍr s,j.6et(M,Vs) , l,
cd_jntqsecticn ( S.pcæsors, Vs, S:ccæscrs1),
s¡Erd-r(Oæçtr,Vs, 9rbg:4Èr) . /**/ s:bgo:4trr(flo:4*rl ,vs,sla4r) :- sfun:@r(c4*r,Vs,S:lær4*r) . /*

Íte p:edicate 'r€d.Ee(+Gr4fr,*d¡ced)' is trtÊ if Rd¡od is tlre rdred gÈq*r fø Gq:h. The r¡stices of tle
red¡ced g@t are tle sfcrgly cør-Ected ccnp6ElE of G@r. TfEe is ar @e irl Rdroed ftqn u to v iff t]¡ee is
an @e in Gqf1 ftcrn øe of tle reLices in u to cre of tle reLices in v. A st:øg1y ccrrÉcted carpcrænt is a
na:<i¡eL sd. of r,stie \¡hse ech vsto< has a p*Ìr to e,ey otle \EEe<. Ãlçritlm fton "A1gcrithrs" b/
S@erÉd<,page 482, TÞrjan's alærithn. ¡feoA¡r*efy Ii¡Er jn tle mxim¡n of arcs ard rDC- (O(N logr M ) .
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*/ rd:ce(G@r,Redrcd,Ss) :-

sErcrgtcÍpcrEnts (Gql1,Sæs,I@),
rc¿-oed:','stjces_edæs (eq*j,Vstic€,1,Þp,Eæs, t I ),
sortMstices,Vstiel), scrE (Fèes,EdgesL),
gËuÐ_eè€ (Vstic€s1,Eùesl_,neô:cd), sorÈ (SCs,Vertj.ej_) . /*

fte ¡xdicate 'sfErg_oorpcrsts(G54*Lgs,l,4)) ' succeeds iff ffs ap tle suugly qr.eEed @rpcrÐts of gr4ù.t
Gæ1, ardl,þ associat€s æch corçcrørt in ss wi.th a set of r,ecices in c1dr.*/ st¡¡øg_¡:cnfsets (G@t,SCs,A) :-

ncèj¡fo (Ol4*r, Ircèinfo, VsLic€s),
orüist_to_assoc (l¡¡èjnfo, ¡0 ),
vj-si-t(Vertjcæ ,0,,A0,l'0,- [,-Ss, t] ) . /*

Ttre prdicate 'vj.sit(+Verti€,Id¡!-,¡ai¡2,fr:fo,ù@,PrecrdeãVm,Stad<1,sad¿, gs1,sæs2) , irçkrants a @tlr-fi¡st b:atesal of a go:a$r r¡Èse lqtices are VeEj-ces, æd uÈE€e @e are ¡qzessrte¿ ¡¡ *è f:st ,f¡rfo,l v¡iOr
assæjates a Eþ1e of tle fc¡¡n 'r*(S:æsors,M¡S.rc,J, with æchretec.
EacL retec is ccrsidged irr blrl. Tte call of 'çt-asscc' firds tle i¡fcrraLicrr fcn ve¡e< V. A visitd 1gtoc
Ï¡as a }4jrrgrceo, r¡ùriù i.s rþt Wdated.
¡n uß¡isid \Etec has a }4ir:Srcc of 0, æd res1llb iß lai¡rs:oc beirywdatd to its precùdeðrlÍrF1, fo11o,u=d þ a
recr-rsiræ cal l of visit t.o al l its s]æessors, wiür p¡eorHLrn irrreæe¿ Ur r.*/ visit([] ,Mi¡r,Min,A,A,r,r.stk,stk,ss,ss) :- r. /*

* / wj.sir ( V 
I 
vs l, Mino,Min, A0,À, r, M, suú, srk, sCG1,scs4) : -

get_æsoc (V,AO,r* (IË, J,Eq),Aj-,rpde (I6,K,Eq) ),
(,J>0 -> .I=K,.Iå{ir:L, A1=43,f=1, gflg=gflçf, 

, S3Cs3ffs1;
K is r+l,visir(¡6,K,I.4irI1,At_, M,R,L, tvlSrldl ,sEjd_,ss1,G2) ,
(Kxf¡J-->42=a3, Stkl-Stk2, Ss3--SCCs2 ;
pcpV,ES,A2,A3, StJ<l, stl¿, tl, gsz, ge3 )

)

),
(Vj¡r0olinl -> ¡d¡¡2*f¡0; Ifjrt{4i¡l-),

vj.sit(Vs,Mir¿, Mjn, 43,.è,, L^ù{. SEk2, SEk, SCCs3, rc4 ) . / *
lte ¡rdicate 'pcp(VstÐ(,Es,I-rfol,afo2,Stad<1.SÞc1¿,90,-ssl-,+SCs2)' tests if Vstec is tle tç of tle
stad< Stadcl. rf it is, it rrqgress¡ts tle first rste< visitcd of a ùcrgIy ccrl-Ected corpcìsìt, ard sæ!
ccntai¡rs te rerainirg r,etice of tle ccçcrænt.. lt pæ6 stad<l qivjrg Stacl¿, adÈ tle úp of stacl< to tle I iqt
scCO, sorE the wdatd sc!, æd adrs it to tle list. of strcrg coçcreìts qs2 griviry scs1. rf Vete< is rot.tlletæof stad<Stad<L, itarÈstletæof stacl<lellplis!S0, ddcallsitself recr.usiræly.
Irr eitls case, tl¡e }4inslæ ascciated r^,'ith tÏ€ I'ete< is set to a h-i$r rrah:e, to FrsElt it bdry misusd þ al-ate visil.
*/ pæ (v,Eq,Ao,A, [\/] I srjol, sË(, sæo, sæs1, scs2 ) : -

gÉ_assæ Ml, 40, rrde (IË, 
- Eq), AJ., rþ,è (\b, I 99999,Wt ),(\ÊvI -> qæs1= ts I 

sccs2 l, A1+, sEjo-_srk,sort ( [],r1 | sæ!], s) ;
pæ (v, Es,A1,À, sUO, sd(, [Vl I 

sol, ssl-, sCOs2)\ /*
Tte predicate 'n¡de_i¡Éo(+Gq}r,-Ib&List,-VsLice) ' succ* iff gÈql1 'Gqfr, has vsCice 'Verlices, ad
'IbdeList' is a correçødirg 1j.st of vrycices, edr pajrcd witJl a trþle of t¡e fc¡:n 'r¡cè(s¡æsor:s,O,J ,.*/ ncdei¡fo( tl, tl, tl ) . /**/ ri¡èjnfo( tv-Àblcl , tv-rþdeois,0,-¡ Inoda¡tol , ¡vlvsl ) :- rx¡deir¡fo(eJrbèjnfo,vs) . /*
lte pdiete 'reO-4ustice-Aæ(+Gdr,-Ved-ces,+¡@,-Fdæú¡t,+EÈestr)' places tle r,e:tie of tle
red]cd g0"Fh of cqh into VsLices, õd al&ls its €dges to Fdges¡i gÀ¡jrg EigeÐrt, \^¡ith tLE aid of I@, utridr
næs æcj1 SOC to a set. of vstie.
*/ red¡oe{:r,scices_edges ( tl, [,_,EtES,Fdges) : - ! . / **/ rdrcQ¡etices_Qes ( tv-s.:æesscrs lGdrl, tVI lvsJ,l@, @est-, @es3 ) : -

geE_assoc (V,[Þ,N),f,]r]de L-Vl),
rd¡cd_.l=¿ges (S.:ccesscus,VI,I'4¡,Edæs]_, EèË2),
rca4i,sticeslsiSes @qfÌ,Vs,Iq), ÐÈes2,@es3 ) . /**/ red¡ceC_.FÈes(tl ,-_,Edæs,EÈes) :- l. /**/ rd:@Eåes ( tVlVsJ,Vl,lþ,ECses1,E*es3) :-
gË.-asscc (V,ùæ, N),Ì'r+Dde L_,\2 ),
M+Z_-FdæS2=EdEæI¡ ECgesl= [Vl_i,e lEdge2] ),rO¡4eOæs CVs,Vl,Dq), E&es2, F&es3 ) . /*

Tfe pædicate 'redubl-e(+VsÞ<,+Gæ1,-Reachabld ' is gi\El a cq*rad a Verta< of tìat Giqfr,ad :eb¡rs the
set of reticæ tìat a¡.e Reacl"âble ftqn t¡at Vstec. Täl€ O(t{"2) tjne.*/ ræd:å1e(Initial,Cd'r,Rechable) : -

edla¡te:rete< ( ttnitiall .Gdr, I IniFì år ], næcl:ebLe) . /**/ reclrdcle:vet-gc( tl ,-næóabl_e,Rædlable) . /**/ redrdcle .vetoc( tal Rl, Gqù1, Rærho, Ræcbable) : _
reigt'Èoæ (a,Gdr, S¡escrs), l,
ad_r¡-r-iæ (Ræch0, S¡cæssors, Ræô1, lE¿),
æsd(R,lE^¡,S),
:eac¡tabfe_:rertec (S, GøFh, RÉdrl , ReacåahLd . /**/ red:dcte_¡uetec( telRl,Gq:h,RÈd.ro,Reachabl_e) :-
æ¿taUfe_:usCe< (R,Gd1, RæchO, Ræc}rabld . /*

lte-¡rdicate 'nErægdrs(+Ia?G)' succeds r¡tsrc is tle g¡:4i1 cqrtrisirg tle sui:gÈærs i¡l tLE list L, r,rithcle
dplicaÈes.
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*/ n'sgeso:ætrs(tl,g( [], [])). /**/ nege3a4ùs(tgfl/,E) I ill,s(V,B) ) :- !. /**/ nese-gr4ls(ts(\n,EX) lcl,s¡¿,nl I ,-
nggejÈ-4ls ( G, g Fr2,Ðl ), odr-u'ricn Ml, \2,\B ), orrl_r¡-ricn (ú,,Ð,Bl . / *

lte trzedi@te 'cartesia¡r_¡xcd¡t(Llsss,tFeds,Edgæ) ' G€tes dqes fton a,e1z elarant of LÈss to sglz e.lsrst of
Usds.
*/ cartei.ær¡xodrct( tGelu:sl,Useds,Frtes) :-

erpA¡cC_¡,ste< (i-Iss, llseè, EÈes1),
carGsiânlrcd:cE (l-bss,fbeds, Edges2 ),
æsd(F&es1 ,Fcgê2,Fþ-) . /**/ carEesi¡n_¡zodrt(tl,_, []) :- Er¡e. /*

Tte predicate 'frpd¡cL_:r,ste<ßfser,Useds,F&es) ' aetes €&æ ftqo IÞ to s.}el¡ elsrsÉ of llseds.
*/ prcdrd. retec(Uss, tusdltsdsJ , tuse-tFedlFftsl ) :-

erc¿¡cL:',etor(ttss,llseè,Edæs) . /**/ trucd¡d._:vstecL, tj , tl ) :- t¡ue. /*
Tte prediete 'ecdrctjr-ddx(€.,+@,-c3) ' cøpltê 6 as tle e?odrct of G1 æd e, ie., if tlse is an @e ftan
U to V jn Gl ard ftcrn V to W in @, tlse is ar e@ ftcrn U to W jrr 6.
*/ rrcd¡4._sn:+h( [V-SI lcll ,@, tv-g 16l) :-

pcd.Et_@es(SI,@,52ìr ,

ecdæt rtr-4jr(eL,@,el,) . /**/ Frod:ô_go:dr( [],- []) . /*
"/ Frcdd._:dges([VlIS1l ,@,S) :-

gca¡cC-¡e0æ_set. W,e, 9),
pcdlct_e&esßl,Q,,g) ,

od_rnÍcn(9,S4,S) . /**/ 
tr¡æd:ct_.1gfuÊs ( tl ,- tl ) . /*

*/ ¡zod¡d._..sùe_set(V, lv-El@l ,E) t- !. /**/ frod:ct-.¡sÈe_set(V, Ll@l ,E) :- frod¡cE_.eùe_æÈ $t,@,,8) . /**/ prod¡d-rsÈejsetL tl, Il) . /*
Tte predicate '9n:@r_rrricn(+G1,+@,-€) ' cqrpttes € as tle rrricn of gr-q*)s c1 æd @.
*,/ go:q*r_r¡'ricn(tl,c,c) :- !. /**/ gp:4fr_r¡'ricn(c, tl ,c) :- !. /**/ s¡q*r_r:nicn(tv-Élc1l , tV-Pl@1 , tv-Blc3J) :- r,

ord_r.u'riør (É-, Ð.,8),
cq4rh-rn'Éo:l(G1,e.,8) . /**/ ffl-ml€l l:-v].:@.tr2,t,

l.l*/ 
\l\z-ælel):-

T?e pædicate 'ræc¡ta¡:-e--sub904*l(+So-rces,+G@rTr,-(lrdûrt) ' sets G14*ort to tle sulæs4h of G@:frr that is
redtalcle ftqn tle vstie in So-cce.
*/ redrdcle_s:bgo:açh(So-aces,Odr, Sriû@r) : -

scrt(So-rce,Scrted) ,
rsjtabfe:ustices (SorÈd,Gq:h,Vstices),
s¡qodr(Odr,Vætices,SlG@e) . /*

*/ rechdcle .i;eEices (Kngdn,Gæl,Vstice$rt) :-
srcesscr .øcices( tl ,Ir's/,rl,G4trr,Sþcs) ,
(orr_subÊet ($ccs,Krì:r¡rù -> Vgticeúlt = Ifig¡ni
ord u'riø (S¡ccs,i<nc^nÀE^r),
reduble rvetie (lE¡¡, G:-4*r,VeticeÐrE)
). /*

*,2 stræot .r,edces(I(r¡r^n, MstoclvsLicesl , tvste(-EÈEslG@.rl ,srcs) :-
!, crd_rrÉcn (&bes, Itto,'¡.l ÌEv),
$ccessor .i,etices (Ife¡r,Vstices,G4jl,S:ccs) . /**/ s-ryrelicæ(Krs,'¡"l, MsEÐd-lvstiel , ifA:te¿-BdæslQ@rl ,S:ccs) :-
Vete<1@</ste<2, !,
suaesscqj,,etices (It¡¡¡,n,Vertiæs, tvetÐ.2€dæs lG:.4hl, S:ccs) . /**/ sr:cæcq \Ætjces(Kns/ü-r,\Þfie, LlGq:hl ,Stcs) :-
successcr .øCice (I{rs¡n,Vstjces, Gæ1, Srcs ) . /*/ sr.¡ccescr:r,stices (I{:lãú, tl ,-It¡ã¡¡'l) . /*

TtE origirÊl ¡xdiete lras:
¡æ¿:¿te_.':s:tE4*l (æfs, Gæh,Gdrl) : -

r:ællafc1e_tgte< (rof., G:r4ù, oefs, nec}lable),
so¿t (ReachabLe, Defsl ),
orùr¡Licn( tDefs,Þfs1l ,Defs2) ,

sJq:dr (Od¡ Dels2, Gæú) .

Tte predicate 'rcuîafiseSc-4i1(+GIn,-Ort)' ccrn¡ets tle r¡sortd gtr-4Ìì Gn, pæsibly cørbinirg d.plicate
wtices ad eèes, into tle Ðrted gx?Fh Ott.
*/ rro:mlise-Sr4ft(@t,GarE) :- scnE,(Gnr,G),rr¡:raf-ise_:uetoc(G,@rt). /*
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*/ nurralìse_¡uetoc( tl, tl) . A*/ ncnralise¡r,ete<( IV-EX,V-P lG-),@l :- !,

soÊ(EX, E3 ), Ðyt (Ð.,M),odtriicn (8. Bl, E),
r¡o¡ralise_r,etec( tv-El€.1,e) . /**/ rn¡:relise_:veto<( tV-E.ld-1, tv-Pl@l ) :-
sort(E,P) ,
r¡:n¡nlise_ræs< (GL,@) . / x

Tte ¡rdicate 'sinple-Qes(+@es1,+@æ2,-SiÍples) ' suoceeds if SÍE>les is tle set of all sinple eùes jn
E*81, i.e., aII thcse that ò r¡¡t haræ a ør¡rsite path iri EdEes2.
*/ sirrple_@es([],- [] I :- !. /**/ sjnple-eftes ( tl,-Vl Restl, FQes, SjrçIes) : -

cclposite (U, @es,V), t,sinple_@res (næc, Eèæ, Sirrples) . /**/ sinple_ertes(tu-VlRestl ,Fèes, ttFvlsjÍptæl ) :-
sjrple_eùe (Ræc,4es,Sinplæ) . /*

the prdicate '@çæite(+vste'<,+E*e,Ðes€fu.) ' sucoeds if tlEe is a pat]'. of lgprtr > 1 ftsnveîo< to
Þscedant in tle aqplic set of ertes, @es.*/ corpæLte(Veto<,Fdgæ,Èssdæt) :-

Slccesscr(VeLÌs<,ffte, S:ccessor) , sr.:cesr(S.¡coesscn,adçs,s:ccesscrl_) ,
èssdalÈlS:æessæi-, @es, D=scadær.t.) . /*

Tte prediete 'descsdæt(+VsEec,+Ð9es,Ðesc<dant)' suoceds if tlEe Js a path of 1ggdx >= 0 ftqnVsto<to
Descsdæ:t in tle aqclic set of edges, EÈes.
*/ descsdant.(VstÐ(,-Vstod :- t¡¡e. /**,/ dæcsdæt(VsEs<,E*es,Dscsdart) :-

s:æson (Vstec, r'Èæ, S.:æessor),
èsdanE (S.rcæsscr, Eftæ, Desc<dærE) . /*

lte prdicate 'srccstr(+Veæ(,+FFgæ, ?Descsdat) ' suæeds if tlee is a patll of lggth 1 Êsn Vq:ts< to
D=s€dar'rt irr t¡e set ECges.
*/ suæon(Vsto<, lVste<-s'coe-rcrl_l,Sjæessc) :- true. /**/ sr¡cceson (Vsto<, Ll RæEl,S:æessoi) : - s¡æcr (Vstoc, Rest, Srccesscr) . /*

Tle predicate 'tcp_sort(+Gdr,-Sorted) , fj-rds a eologrical orÈir€f of a G@r æd reb¡ns tle ordæjrg as aljst of Søted vstices. Fäils iff nc orerirg sri:sts, i.e., iff tle gÊ:dr ccntains c1cIe. ¡tæoroc ON fog N
LiÍe.
*/ tæ-søt(Gr4h,Sorted) :-

fanin_co-r'rts (O4h, Oo-nts ),
gÉ_tæ_eLsrsrts (Acrrrts, TÞ, 0, I),
or¡ _1ist_to_assoc (Ccr¡rts, I4>),
tç_scËt_1 (Ttp, I,I.@, $fteö . /*

*/ tæ_sqE_1 ( [] , 0,_, ll) . /**/ ta_søt_L ( tv-vlrl Ttpol, r,r@, tvl sorteAl I : -
a-:_.::o¡.ts (W, I,,J,I,QÐ,Ift>, TÞ0, Ttp),
tcp_Fcrt_1 (TÞ, J,I@>, Scnted) . /*

*/ dæ_co¡-rts ( tl, I,I,t@,}æ,T'æ,TÞ) . /**/ dæ-co-rrts ( tNlrcl, I,K,Ù@,1.@,ttp0,tp) :-
get_asscc (N,I@,IN€!,1,Þ1,Iùrc),C is O-1,
(G:=0 -> (,r is r-L,rÞ1 = t¡ËINlTtpol ); (J=r,TÞ1gnp0)),
èXs¡rts (lË, J,K,I,Þ]-,I@, ftp1,TÞ) . /*

*/ get_tæ_eLsrgÈs (ll , î),r,D . /"*/ geE-tæ_dlsrsrts ( tv- (\i¡rc) 
| co.tr-rsl, T@, r, K) :-

(G:=0 -> (,1=r.tpG[v-vNltçLJ ); (.t is r+1,TÞOrnæ1) ),
geE_@_el-srsìts (Co-rts,TÞ1,,J,K) . / *

*/ færin_co¡lts(Cq:h,Co.rtts) :- farrEree_edges GãFh,Et60, [] ),
ke¡soÉ(EjæsO,EèË) ,

fæj¡_co.rrts (G€Fh,Fèes,Co-rts) . /**/ f,ærin_co¡rts( tl , tl , tl ) . /**/ ferrin_canrs(tV-\A,TlGdll ,Edæs, tV-(\¡,rc) lco'¡rrsl ) :-
fanin_co-rits (Frtes,V, 0,C, EÈesL),
fæin_corits (Gqtr, EQel,Co-u-rts) . /*

*,/ fædn_corits(tV-_lECæsOl ,\D,C0,C,E&Ë) :- V=/0, t,
C1 is Cû+1, fær-in_ccr,u'rts(Edges0,V0,CL,C,EftE) . /**,/ færi¡r_ccr¡-rts (F4Es,_,C,C, Eiges) . /*

lteprediete 'get-asscc(+Kqz,+Àsscc,¡/a1ue) 'assrnes that.Asscc is aprçæ "aqccc', Eee. ft is Euer¡itæIe¿is
idsìLicã.l to (:) cre of tle f€lë in Àsscc,õd Vafue u'rifies $¡ith the asscciaÈed ra.lue.*/ get-a.soc(I{qz, t(K,V,L,Ð,\åL) :-

corpa¡e(nel,Kgf,X) ,
gÉ._asscc_rel (Rel, Iq/V, L, R,Vaf ) . /"*/ get_a.soc_rel (=,-Va1,_,-Va1) . /*

* / get_a.soc_re1 (<, Kq¿, - Èeq- Val ) : - get_assoc(I(Ef , Tr€e,Val) . /*
* / get-a.soc_re1 ( >, Key, - _, Í:æe, Val) : - get_assoc(I{qf 

, Tree,Val) . /*
The pdiete 'get-assoc (+Key,+oldAsscc, ?o1d/afi¡e,ab,\Asscc, ?¡üs¡¡/alte) ' is Eue ¡¡tsr oldAsæ æd lB¡Assæ a¡e

bees of tle sare shæ ira\¡jrg tle sare elerslts Ð€æt t¡at te value for Kq¡ jnol&ssoc is Old/atr:eædtle r¡alue for Kq¡ j¡r ¡ÞvAssoc is lÊ¡Vafi:e.
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*/ get_asæ (t(q¡, t G{O,VO, ú, m),Va10, t (K,V, L, R),\ã.1) :
orpareßeI,fq¡,K0) ,

çt_a.*soc_rel (Rel,I{qf, K0,\i0,I¡ , R0 ,Val-o, K,V, L, R,Val) . /*
* / get_ascc_re.1 (=, 

- K,Va10, I+ R,Va10, K,Val, L, R,Val) . /*
* / get_asoc_:¡eJ. (<, I(qr', K, V, TÞ0, R, Va10, K, V, TI€e,R, Val ) : -

get_assoc (I(qf,Tïeeo,VaJo,TYee,Va]-) . / *
* / geÈ-asoc-rel ( >, I(q/, K, V, f,,TYee0, Va10, K, V, L, ft e, Val ) : -

get_asscc (I(qr', Tleeo,Valo, TTee,Val) . /*
Tte predicate 'cËd-U-st-to_assc(+Li-st., ?Asscc) ' i-s rrie rtsr Ti<t is a¡rc4s lic! ef Kry{a1 paj¡:s (lqBcutd
ard Asscc is an associaticn t¡e. "fecifyjrg t}:e sare finite ñ.rcLicn ftEm KgÞ to Vahres.
*/ cÈd-1ist-to-assoc (T'iqt.,Assc) :-

I<gLh(riet,N) ,

U.st-to-asscc(N,r,;o¿,¡".., [] ) . /"
*/ IisÈ-b-asscc(0,r'iqt,t,Lis¡) :- !. /**/ list_b_asscc (N, I'i st, t (Iqr',Va.l, L, R), Fest) : -

A ís (lÊ1) >> 1,
z i-s (N-1)-4,
Iist_to assoc (A, Li-st,, 14 tKef-Val ll.trel ),
lÈÈ_to_assoc (z,¡4)re, R, Rest) . /*

Tte prediete 'crd-de1-elsrgt(+Setl-,+E1grsrt,?See)' is true vÈsr Set2 j,s Setl hrt lrrit]Ì Elsrsrt rsroved.
*/ crd_&1_elsrsrt([] ,- []) . /**/ ord-&1-elsrsrt ( tlËadlTèill,Elgrsrt, Set) :-

corpare (Ordæ, fbad, ELsralt),
ord-de1_elsrmt_reL (Ods, Ibad, 1¿j1, Elsrmt, Set) . /*

*/ cËd-&1-eLsrsrt-re1 (<, Hsad, 1äi1, d.srgrt, tfbad lsetl ) : -
crd_èL_elsrat (fäil, Elsrsrt, Set) . tr*/ crd_de1_elsrst_re1 (=,- 1ìaiJ.,-Täi]) . /**/ crd-de1-elsrsìt_re.1 (>, rþad TäiI. - tlËad I 

TÞjl-l ) . / *

TTe ¡xedieÈe 'crd-intssectio(+SetL,+Set2,?T¡tesectioe)' j-s brue r¡ùg: I¡rtersecLio is Èe crdeæd
rææssrtæicn of Setl æd Set2, FËc ¡idd that Setl æd Set2 are crlH sets.
*/ ord_jrtssecticn(tl ,- tll :- |. /**/ crùi¡ÈesecLio:L tl , tl ) :- !. /**,/ crd_i¡ÈssæLior ( tlËadl- l'Iäilf- I . tlbad2 | 

TàiU l, r.ttesecticn) : -
qrpa¡æ (OrCs, lbadl, fÞd2 ),
crù jnterseceicn-el (Odtr,Iþdf ,TäiLI,IH2,È112, Intssæticn) . /*

*/ crd_irtssecticn :rel (<,- n,-- [] ) :- ! . /*
* / ord_irÈssectiør-rel (<,- [bdl I 

Täill], tÞdz, Þi12, T¡rtssecLicn) :-
øçare (OrCø, ¡bdt, Ibd2 ),
crd-jntsseceio:-e1 (ùCs,rÞdL,Täi1L,fbd2,Täi12, Irtesectjcn) . /**/ crd-irtesecb-on-:re1 (=,lbd,TäjLl-, 

-%n2, ttædl ¡rtssectiorl ) :-
crùintersectiør(%jL1,1äi12, l¡tersectj-cn) . /**/ crùirtssecEicrt-re1 (t,--, [], []) :- l. /**/ crd-jrlssectiør-:re1 (>, lþdl. Täill-, - llÞû, lT ãJ21, TrrtssecEiqr) :-
cøpare (Od*, tþadl, fbad2 ),
crd_jntesectic¡r-æf (ùds, rbadl-, 1ai]-l,r&fc,2,hn2, l¡rtesetiqr) . /*

Tte pr$iete crd-sub6et(+Setl-,+Set2) is true vfrer a,,ey elsrsit of tle ordsd seE. SetL æea¡'s in tle orrH
set Set2,
*/ cËùsÈêet (Í) ,) . /**/ crd_Slb6et,(tIËad]-lräi-Ll-1 , tÞd2 lÎaiul ) :-

ørpare (<Þ, !þdl-, IËad2 ),
crd_subÊet_rel ((Þ,rbad1,Tai1]-,T.äil2l . / *

*/ cüq_sLbset_rel (=,- TäiIl, Þil2 ) : - orrd_sr¡bset (IäiLL, Täi12 ) . /**/ cr{sb6et_æ1 (>, I{eadl, TäiLL, t}rad2 | 
Täil2 J ) : -

ccnpare ((Þ,fbêdL, IÞd2 ),
ord_s¡bsee_r'e.I ((ìuìtr,IËad1-,Taill,Mil2) . / *

Tte predicate 'o{r.rricn(+Set1,+Set2,?Il'ricn) ' is true vÈsl lh-io: is t}e r¡'ricn of Setl õd Set2. }ücte that \¡tsr
screthirg oærxs in bot¡ sets, \,\,e harrt to retain o1y øe cq¡¿.
*/ crd-r¡r¡icn(tl ,Set2,Set2) :- !. /**/ crd-tnicn(Set1, tl,SetL) :- ! . /**/ crd_r¡¡icn(trËadl-lrÞill-1 , trÞd2lÞil2l .rrrim) :-

ccrrpar.e (Odæ, Ihdf ,¡bad2 ),
crù uu-rioe_re1 ((H+, IËadL, 1äil-I,1@,, Tåil2,Itlian) . /*

x/ crd-r.u-rior_re1(<,tbad0, !. /**/ cr{u-¡icn_re1(<,fþad0, l) :-
ccrpare ((Þ, Ibdl-, IËad2 ),
crd_r.n-icn_re1 ((H+, IËadL, TäjLl-, lead, Täi12, tniqr) . /**/ ord-r.u'¡icn-re,1 (=,tbad,1äi11, 

-þj-)2, tlþadlûriorl ) :-
orùr¡úar(Täi-!-,taiu,I¡riør) . /**/ ord_r¡ri-cri_:e1(>,tÞdl,läiu,!Þd0, tl, t¡bado,tþdf lÞil11 ) :- !. /**/ qd_r-u-¡i-qr_re1 (>, IbdI, 1äi11, IÞdo, Iiêd2 I 

Þiul, treado lûrio:l ) : -
oaçar¡e (ùè,Ihdl_, IËadz ),
crd_r-u-ricn_re1 ((Þ,IËadf ,Tä.iI1,IËad,Täi12,tlricn) . /*

TtF Fredicate 'crd-r.rricn(+Sets,Zt¡ricn)' i.s tn¡e r¡Èsr tl'rior js tle rrrio-r of all tle sets jnsets.
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*/ ord-r.r¡Lcn( Il,tlrior) :- !,(?ricn = l). /**/ ord_r.mlcn(Sets,Ln'ricn) :-
lsprth (Sets, l¡¡rb<Of,Sets ),
crd_r¡riofa11 (N¡ÈsOfsets, Sets,ll'ricn, I I . / *

*,/ or{r-nlcn_alL(1, tseElsetsl,set,sets) :- !. /**/ ord-r:r¡!cn-all(2, tset;Seúlsetsl ,Lr¡ior,SeLs) :- l, ord-rrricn(Set,S*2,ITrim). /*
* / ord-t-r¡icrt-all (N, SeLsO, t¡-ricn, Sets) : -

A is IÞ>1-, cùrùrr'!icrÌ_aJ.1 (4, SetsO,x, Sebl),
Z is N-4, ord_r¡niqr_all (Z,Sets1,Y, Sets),
crd_r-u'riør(x,y,û'rb1) . /*

The prdicate 'crùr¡ricn(+Set1,+Set2,?tTricn,?IÈ¡r¡) ' is Eue vÈsr Lfricn is ttæ u'riø of SeLl ad Set2, ãd Ì,þ^¡ is
tle diffeslce beb¡Êst Set2 ad Setl. Thi,s js usár1 if lor ar:ìe aæmr¿atjrg Ísrbss of a set æd lpr $ãrt to
Frocess rs¡¡ elqrsits as tlq¿ aæ affi to tle set..
*/ orùuicn([],SeE,SeE,Set) :- !. /*
*,/ ord_r.u'¡Lcn(Set,tl,Set,[]) :- t. /**/ crd-t¡'¡Lm( tolosl , tNl¡61 ,sd.,IE¡¡) :-

ørpre(C,O,N),
crd_r¡ricn_re1 (C. q Os,N,lts, Set, lE^¡) . r

*/ ord-r-u-rlcn_re1(<,O, [] ,N,]G, tO,Nl]Gl , IN]]Isl I :- ! . /**/ o¡d_r:r¡icn_re1(<,O1-, tOlOsl N,IÊ, tollSetl .I€¡¡) :-
ccrpare(C,O,N) ,
crd_r.¡-ricn_re1 (C, O,Cs, N,lË, Set, IJe,¡) . /**/ orùr.r¡iør-reL(=,-,Os,N,16,tNlSetl ,IE¡/) :- crd_r.rriør(os,IG,Set,NIe^r) . /**/ ord-r.¡-¡icn_re1(>,O,G,N, tl, tN,OlOsl , [N] ) :- !. /*./ odr¡:icn-rstr,o,e,rrn, iñ:¡¡slj f¡nièËj, fmim^'ll '-ørpare(C,O,N,
ød_l¡nior_re1 (C, O,G,N,lts, Set,IË^r) . /*

*/ por-Þ:+,¡(X) :- n1,çretty_tern(0,X),¡¡rite (' .' ),rL. / *
lte prdiete 'tr¡€tty(x) ' is lcgÉcal-ly eqrirrakrc to 'vri@(Ð,utr-ite(' .') ', i.e.. it r¡tr-itÊs a tesn in a fc¡:n
suitable Ën readirg b/ 'rædfi) '. Hri,s,e, its orFrt js betts forattd æd npre r:se-fui<dly.
*/ ¡xetþlx) :- nf ,Fretty_tern(0,X) ,v,tr-ite(' .'),n1,n1. /*
*/ ¡zettLtern(N,X) :- rar(X), !,r,øite(X) . /**/ getty_tem(N,le<(X,Y) ) :- !,r¡¡rite(1ec(X,Y) ) . /**/ trrrettLtsn(N,state(X,Y) ) :- l,rø-ite(state(x,Ð ) . /**/ ¡xetty_tsn(N.paran(X,Y) ) :- l,rø-ite(¡nran(X,Y) ). /**/ pirettLtem(N, lccal(X,Y) ) :- l,r¡r-ite(1ocaL (X,Y ) . /**/ trr:etty-Ee:n(N,s,EÌE(x,Y) ) :- !,rø-ite(qsrt(X,Y) ). /**/ FtretELtsmN,d(X,Y,z) ) :- l,rø-ite(d(X,y,Z')). /**/ ¡xettgtemN, gM,E) ) :- l,urite (' gr( ),FretÞf_teîN,\4,\^E-ite(', ),rù,

Nl is N+3,tab(Nl),p¡etty_tecn(Nl-,E) ,\4L-ite(')'l . /**/ tr¡ættLtem(N, Il ) :- !,r¡r-jle(' [] ') . /**/ getty_tean(N, tHlTl ) :-
!,t¡rite(' t') ,N1- is N+1,Fretty_teEn(Nf ,Ii ,p€tty_tail(Nf ,T),\¡r'ite('l ') . /**/ trEetty_tef,n(N,x) :- atcxn(X, l.\^E-iteq(x) . /**/ trr€ttLtesn(N,X) :- integg(X), l,$E-j-te(X) . /**/ ¡zeÈEy_teinN,)VY) :- sin¡fe_tean(Y), l,
p0ætty_tem(N,x) ,!,Eite( '/' ) ,pretty_tern(N,Y) . /**/ trEetty tein(N,VY) : - l,tr¡etty_teÍt(N,X),r,"rite(' /' ),ù,
Nl is N+l,tab(Nt) ,Fretqr_teÍÌ(Nl,Y) . /**/ IEetty_tern(N,X-Y) :- sjnple_tern(Y), !,

¡reELy_tøn (N, X), \^a-ile (' -' ), Fretty_tem0t, Y) . / **/ trxettLtesn(N,X-Y) : - !,trn€tty_tsmN,X),utr'ite(' -' ),n1,
NI is N+1,tãL.(Nl),pætEl¡_te¡n(Nl,y) . /**/ trzettLtesn(N, (X,Y) ) :-
l,\,'E-ite (' (' ),NI is NFl,Fetq/_tean(N1-,X),r^edte (',' ),
çretty_tem(Nl_,Y) ,vElte( ']|,) . /**/ prettll tef,n(N,E) :- corpa¡d(e), l,Þ.. tFl¡ù€sl,
¡¡riteq(F) ,r¡rrite(' (,),NL is ñrl,freEtl¡_lisENf ,AËgE) ,$r-ite( '),1 . /"

*/ Fretty_tai1(N,X) :- r¿r(X), l,wrj.te(', '),vr-ite00 . /**/ poretty_tai1(N, []) :- l. /**/ p¡etEy_tail(N,T) :- sjnple_1jst(T), !,\¡tr-ite(' ,') ,pætty_lj.st(N,T) . /**/ IEetty_tail (N,T) :- r¡¡r-ite( ' , , 
) ,nl,t¿b(N) ,p€tÞf_list(N,t) . /*

*/ pretfv list(N,X) :- r¡æ(X) , l,$tr-ite(X) . /**/ pretty_1isc(N, tl) .- !. /**/ pætty-list(N, tHlTl ) :- !,peter_tern(N,H) ,FüËry_rail-(N,T) . /**/ sirç1e_list(X) :- r,ar(X) ,1. /**/ sinple_1ist([]) :- t. /**/ si¡rple-list(tTl tll) :- si¡qp1e-tem(T),t. /**/ sinple-Iistr(tH,Tl tl I ) :- sinple_tern(H) ,si¡rp1e_tøn(,1) . /**/ sinple_tern(X) :- r¡ar(X),1. /*
*,/ sinple-tern(l]) :- !. /"*/ sinple_ta:n(X) :- atqnic(&,1. /**/ sìnp1e_tem(X-Y) :- atc¡nic(X),atqnic(y), l. /**/ sirple-te:nfi,¿Y) :- sinple_teen(X),sirç1e_tecn(y), l. /**,/ si¡ç¡le-tern( (X,Y) ) :- sinple-tøn(X),si¡rpl-e_tern(Y), l. /*
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Tfe pdicate ircidsce-rmgjx(rGqi1) sroceeds b/di.ÐfaLjrg a fc¡rn cf jrridsæ naEjx d Gqù. Þch rete< js
allccatedacolunn. ttædiagmal j.snarled 'r*r, cE'G'if tlseisaloç. ErptycellsaenarJed'.1_'. ¡'¡g-
are rrer}ed '+' . Eac]r rq'¡ rÐ€sstts a \rerto( õd its eèes.
x/ irci&ce_naUix(G4*r) :-

retices (O=çh,Vsticæ),
lsgdr(Vetices,N) ,

l¿ i-s N+1,r¡1,
jrriÈEe (1,I¿,G:4h,Ve*ices) . /*

*/ jrEidsEe (M,N, tvsts(-EÈe lGæhl,Velcices) :-
di.ç1a¿_rur'r(1,M,N,Vete<,Vstices, F&Ë),
04-5 -> Ml=1; ML is ¡++L) ,
incidsre (Ml,N, G4h,VøLices) . /**/ ji-ciÈEeL- [],J :- rù. /*

*/ di-spþr-:ou(K,M,N,VetÐ<, fiZøte<lvelîices] , tvsEe<lECgesl ) :- !,
(K:5 -> Il-=1; I{- is K+1) ,

\^E-ite ( G' ), di-æ1e¿_reE (IG,M, N,Vste<,Vcuices, Eftes) . /**/ diEgþr-rrø(K,M,N,vefÐ(, MsEe(lvefticél ,EÈ=s) :- t,
(K:5 -> IL=1; IO is K+1) ,

vz-ite (' o' ), diælal¿_rest (1<l, M, N,Vstec, V<tices, EQes ) . / **/ dJ.spJ.4¿-rw(K.M,N,Vetoc, mgelVeeicesl , tEdælFdæsl ) :- l,
(K:5 -> IC=l; I(l is K+1) ,

\ü-ite (' ^' ), di5pla¿_rs¡, (Ic, M, N,Vsto<,Vetie, @æ ) . /**/ di-spþr-roø(K,M,N,Vstec, Llveticesl . Edges) :- l,
(K:5 -> KL=1; Kl is K+1) ,
(K:5 -> r^rite(' | 'l ; leS -> \¡E-ite(,_') ; r^¡r-ite(, . ,) ),
diEpf q¿_rã¡/ (KL, M, N, \trø<, VsLices, EèEs) . / *

*/ di-spþr_rest(K,M,N,vstø,<, tFftelvøEicesl , tEdælFdgesl ) :- l,
(K:5 -> IO=1; KL is K+1) ,

r¡tr-iEe('v' ),di.ælq¿_rest (I(.,M,N,Vefe(,V<Lices,Eftes) . /**/ dislpþr-rest (K,M,N,vsEe<, Llvsticesl, EÈs) : - !,
(K:5 -> Kl=l-; IO is K+1) ,
(K:5 -> r,vrite(' | 'I ; les -> !'¡.ite( _,) ; r,E-ite(' . ,) ) ,
diæl1f_rest (Il-, M,NVstø(,V<Lie, @e) . /"*/ di-spL4¿-resE(K,M,N,Vstoc, tl, tl) :- l,\^E-j-te( ' ') ,F!.etty_teî(N,Vets<) ,rú-. /**/ di-spJ-4¡-ræsE (K,M,N,Vst.g<, [], ECges) : -
!,/rite(''),FretEy_tsn(N,Vste() ,\4rj.te('bæl:,),r,,E-ite(EÈes),n1. /*

*/ eère_raEjx(Fèps) :-
retices-eftes_to3o:$r( t L Fdæs, Gæh1),
nry_to_loes (G4f)-l, Gqf,t),
i¡ridgrce-¡ratrjx (GqÈr) . /*

Tte prdiete 'rq)-to-1e€s(rc.4Íú1,-Ci4*'trt) ' ønets a dyr:anic usdefiniticrr g¡radx into its eqril,Elsrt
le<ical uedefinit-j.cn glqfr.
*/ nq>_to_loe (GæfhIn,Gq*ûrÈ) :-

ve*.ices (GæChnr, Ðocs),
æ(Cdrffl,Edæs),
nælxoeses (Prccs, Ðrccsl-),
næ_+es (BCges.r'¡gÊs1),
w*ices_edg€-tojrrdl(kccs1, Fèes]-, e$t:t) . /*

*,/ næl¡ocesses(il , tl) :- a.E. /x
*,/ nq>l¡ocesses(tprccl¡rlP¡ocsTnl , tprocûrtlÐocú.rtl ) :-

Íælulccess ( Ðrccl¡,Proctrt),
nælrocesses (P¡ccsTn, P¡oc*:t) . /*

*/ næ-eùes(tl, tl) :- Eue. /**/ næ-eùes( tßedr¡r-tlse¡:ldæs]fll , ttFeÕrt-UssQÈlEÈeOrtl ) :-
rEp¡¡ocæs (l.EedIn, UæÕrl),
rq)lxccess (UssI¡, UsûlE),
ræ_edæs (f4es¡1,r'¡gÊ"ût) . /*

*/ nq>l¡ooæs((Degree,Þfstg, (Þ!€e,Èf.útt) ) :- !,
np-defs(ÞfsTrr,Defs) ,
scrt(Èfs,Þfú¡t). /**/ nq>l¡ocess(tÞfs¡rl ,Þfú¡t) :- l,
nA-efs( tÞfsInl ,Dds),
scrE(Þf,s,Def$rt) . /*

"/ nq>l¡ocess(Þf¡:,1s<(Vars,Le<) ) :- l,
nry_to_ids_1ees (Þftn,Vars, tle< ILs€sI ). /**/ np-dds(tl , tl) :- true. r dcre*/ næ-dds ( tÈf]frlÈfsrrÌl , tlec(vars,r-e<) lÞlsrEl ) :- l,

np_to_ids_1oes (Þfh,Vars, tfÞc I 
I-s€sl ),

næ_èfs(Þfsln,ÞfÐt) . /* otls
*,/ nq)_to_ids_1e€s(d( tl,-J, [], []) :- Eue. /**,/ n4>-to-ids_1ee(ö( t(Id,I-o<,J ls.:bsl ,Ðag,¡teq), tIdlIdsl , tr-eclleesJ ) :-

np_to_ids_lees (d(S¡6, Ft¡g,Ð€q), Ids, fe€s) . /*
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*/ Íq)_to_narë ( (Þæe,Þfs), (þree,l6res) ) :-
rÐ_to_ids (Defs,Ids) ,

sGt.(Ids,IErEs) . /*
*/ næ-to-ids(tl, tl) :- rue. /**/ nE9_to_ids( td(var,_,J lDdsl , trdlrdsl ) :-

np_rar_to_ids Var, Id),
Íæ_to_ids (Defs, Ids) . /*

*,2 nep-væ-to-ids ( tl , tl ) :- brue. /*
*,/ n4>_ræ_to_ids(t(*,_,_) ls-bl , t*lrdsl ) :- ræ_rær_to_ids(sÈs,rds) . /*
*u nw-,¡æ-to-ias ti Ù-lta',--l I srt"t , tia¡ rosl l- :- næ-rarto-ios (s.!.s, rds) . /*

TTe ¡xdicate 'd.nÍ\¡-l-ist(+Xt+Y,-Z)' succeeds r¡tsr Z is a list of X's of tle sare l<pilJl æ Y.
*/ d¡ur!¡-l|stL tl, Il) . /**/ d.mrv-Li-st(x, LlTl , txlul) :- drmy-list(x.r,U). /*

Tte prediete 'uúgre(Jù.rn) ' sræds ty assignirE a ren¡ ssjal rllbs to 'ìf,rn', jrr:r€sirg 'NÌ' Ð 1 an each
call.
*/ Lndque$) :- æbiact(cl¡rrsrtjû¡n$f) ), !,N js NL + 1-,asssta(qzrst'_.f¡,m(N) ). /**/ uriqe(l) :- asseta(orzert-¡un(I')). /*

rte prdiete 'uu-riçe(+kefix,-N.m)' srceeds Iy æsigrdrg a reø seial n¡rios to 'N¡n', jr¡.ræsjrg 'Nm' Þ 1qr
€dÌ G.11. Tlære j-s a sq>raÞ seqi<æ for eachrvah¡e of Èefix.
*/ u-riq.:e(Ftefjx, N) : - rebacl (o:r¡srt-¡rlm(P¡efi:çNl) ), l,

Nis Nl + l,asseta(orrvrt_¡o-m(PIefix,N)). /**/ r¡riwe(Pr€fix, 1) : - asssÞ (o¡nerE-.¡¡.m(Ð€flç L) ) . /*
the pdicate 'ng¡bs(+E1srs&+List) ' succds if Elerat is in tle list Li-st.
*/ Ísrbs(H, [Hll ) :- !. /*
*,/ nsrbs(H, Llrll r- nsrbsúI,T). /*

Tte prdiete ' ;FFad (?4, ?ts, æ) ' suoceeds if list C ccntai¡s tle teîÊ of lise A fo11oi'd þ tle terrs qf I ì s! S.
*/ 4sd(L, l),Ll . /**/ q)Úd( ll ,L,L) . /**/ ç<'d(tvrlr,Ll,r2, twll¡l ) :- etrFsd(Ll ,r2.,T3) . /*

Erd of shaed ¡rdicates. */

13.3 The Dependence Analyser

The Analyser may be invoked by a goal of the form:

æa116e(7uæ,@:) .

where Tree is a file containing the abstract syntax tree generated by the Parser, and Graph is the

file that should contain the hard and soft SDG's generated by the Analyser.

/* Tle Àrnl1æe.
the ¡r.uçæ of th-is ¡rqo:ãn is to ræd tte syrrtax fee of a q>æificatlo: æd ccnret it jnto a useèfinieicn
g:-d'r.
*/ anafiæ(¡æut,Ortgrt) :-

dæec(]:p.ÌE,Sec) ,
arnl¡æe_slptan(Sec, necls, ¡'i¡:alÈfs, ttud, Scft),
r,,r-jleæn:dr(o¡qr¡t,Ècls,F5¡alDefs,IËrd,sofr.), I . /*

*/ re¡ çec(frp.rt,Sec) :- eejrg((ßs),see(Irgt) ,æad(t{) ,sesr,ee(Ilss) . ,/*
* / r¡r-iteSo:4*r (OrÞrE, ÈcLs, Fj¡alDefs, !Þ¡d, Soft) : -

te]l-irg (Iße), telI Orqgrt),
Fretty(Decls),
pætty(I.irnLÞfs) ,

fretty(Iä¡d,
pretty(Soft),
irriÈ¡ce_natrix (¡b¡d),
irciÈre_nakix(ScÉt),
to1d,te11(Llse). /*

Tte cnly jnpcrtælt parts of tte s1etsn specificatjrri are tle varjable fula¡¡aticns õd tle a,ant qæcificaLiøs,
sjrce tleæ are tle cnIV thirç t}laÈ csate definilicrrs. A sæarate li-st is neè of tt€ Þæes of all rarj¿lcle,
so that tle degree of panlleli-sn cær be tested l.ts.
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*/ anallæ_sletsn(q/stsnL_,-Statd/ars,Evslts) ,Decls,Fl¡ratÞfs,IÞ@r,tG@r) :-
'sfÞtsr$¡rrsl$di.æ14,'' (nesage, left,'Arn}lsirg 0æsdsres. . .', ",',, " ),
dcolish ( o-ererÐ:un, 2),
æalyse_state_èfs (Statevars, [] , StatÐefs, rEc]sl) ,
ænE. (StatÐef-s, IrritiafDefs),
aín]1æe_e,eÈs (E\srts, f:ritjalpefs, !lrn1D=Es, !Þrd, Soft, Decls2 ),
ærCices_eÈes_toSo:dl( t l, ltud, IÊd-t,
lertie_e&es_toSreh( t l, SofÈ,tGqdo),
æ-d(Þclsl-, ÈcLs2,Decls),
'qæterfuægdiælay, fiæsage¡ . 7*

Tte state ærj¡ble definitiø:s are fcurred jrrto a sirEle }lst. the coùrain of a state va¡idcle ís ælã¡anE to
tjfheckirg, blE r¡ct. to use*finiticn ena1i6is. tle irriFìa.] definiricn of æch state rarj¡ble is oøsb¡¡cæd
ftqn the rariable rElre, a army sutssipt lic!, ad ¿ @.*/ a:a11æ_state_&fs ( [state(Id,Codon) lVars] ,netsfn,Þf$tE, t (Id,Codon) lÈcLsl ) :-

anallee_ÈJa::aticn( (Id,Ooùn),ÞfsIrr,Ddsl),
arnl1æe_state_defs (\ãrs,Þfsl,Defú:t,Èc1s) . /**/ æa11æ_state_èfs( tl,Þfs,Þfs, ÍJ) . /"

Tte predicate 'ana11æe_fu1arËiør( ( t+Idl+Ðanl ,Coùn) ,+Þfsln,-Þf.*lt,-ÞcI) , succeeds r¡tsr a re¡¡ definiticn has
begr eet=d fcr r¡arjabfe ,Id, \^rith danain ,Drn' (sçEy fcr a sinple urjable) . Tle defi¡itior bas the fc¡rn
'd(t(Id,N,T¿S),(",0,0) ,..l,Fl,ag,Èeq)'. If tlesæí&ltifisisal¡edydtrrared, rn¡ithtlesaren¡rbsof
sft€æipts¿ its old èfjnition is lost.
*/ æralyæ_declaraticn( (1ec( lrdlDen] ,N),J,ÞfsI¡l, tlÊ¡Ðef lÈf.sInl ) :-

l.¡riqLe(ld,Tag),
dffy_list ( (' *', 0, 0),Èn,Stars),
IE¡Ðef=et( [ (Id,N,Täg) lsaß] ,rd, Ul . /*

SjfEe tlee na¡¿ be sse:at sgtts, aII tlejr èfi¡itiøs a:e æ<ded to fco¡n a sirgle ìict. Si¡re s,q.rts cænct
see cre aotle's deeiniticrs, Uqf alL begrjn r¿rriù tle sa¡e set of g1òa1 èfinieiøs.
*/ aa'ral1æ_erents ( tE\/ErElE\igtsl,Þfsh,Þfsott,¡Ërd,Soft ,Þcls) :-

!, an11ee_a,elt (Evstt, Defsfn, Þf$.It1, lbldl, SoftL, Ècls1),
anlyse-anæts (Ev<rts, ror"¡1, Def,so.rt2 , lÞtd2 , Soft2 , Þcls2 ) ,
æsd(Ècls1, Ècls2,Þ1s),
ad_r.¡nicn ( tÞfOrt], Þfúrt2l, Þf$tt),
ad_rriicn (SofEl, Soft2, Soft),
orl-r¡dcn(lË¡df ,Itu:@,,\bñ) . /**/ an.lle_eørts([],rÞfcl¡¡,rÞrqln, tl, tl, []) :- brue. /*

Each o¿s¡tne]<es i¡liriâl defi¡iLiøs of its pararÈøs æd loca1 v¿ridcles, ard qetes ddiniLiørs ttùu-€h
assigrnvrt statgIsrts, etc.

* / anallæ_e,reË (s¡srt, (E\,qÈ,Þrars, LocEls, Sffis), ¡ritialæÉs,
Fi¡lalæfs,th¡C, Soft,Þcls) : -

arnÞse_¡¡raBrÈfs (para¡s, lrritial-æfs,Èfs1,ÞcLs1),
arnÀæe-Icoaf-æts (I¡cE.ls 

, Èfs1 , r¡fef, , r¡v: l s?) ,
scùf(Defsz,Ècl-æfs) ,

ætallæe_.sffi ( ( t l, t I ), Sffis, ÞclÞfs, Defs4, Iä3å1, Soft1, Decls3 ),
ó1æ_aJl-_locaLs ( t l, ÈÉs4, Defss,IÞñ,, Sclfr2),
linlçglcbaLs_to_dæ]s (nds5,rj¡ral-Þfs, Iåd3,SofE3 )
o{triicn ( [Dec1s]-, ÈcLs2,Ècls3l, rEcls),
crd uu-riør ( [Ibzdf .Itud2, IËrd3], Itud),
crd-¡¡ricn( tsoftl, Soft2,SfL3) ,Sc¡f:-) . /*

TIE pararË.s èfi¡iticrs are atraì to tle gIc¡:al deÉjniticr¡s.
*/ ælallææaraUÈfs( k=r:an(Id,Ocdcrrù lVarsl ,Oefsfn,rÞ-rçtrt, t (Id,Oo&n) lEls] ) :-

aral1æe_&claratiør ( ( Id, Oced, æfs]r¡, ÉsL),
arnlfæe¡¡¡aUÈfs (\tus, Þfs1, rbf€'lt,, DæLs) . /**/ ae11'e¡=rar¡.¡Èfs(tl ,æfs,Þfs, lll . /*

TtE 1ocal definiticns are atrgr to úe pararetæ èfinicicrs ad gld:al èfiniticrs.
*/ ænl]æ-1oca1-def,s(tlocl(Id,Ocdo'd lVarst,Oetsfrr,rs€QrE, I(Id,Cced læctslt :-

arn116e_èlaraticn ( ( Id, Oced, Èfstn, ÉsL),
anall6e_1oca1_èfs (\års,Defs1,Þfúrt, ÈcLs) . /**/ æ:a11æ_1ocal_defs( [] ,æfs,Defs, ll) . /*

The predieÌe 'æta11æe-sffi,(+cnts<t,+statsrsrt,+tÞfsÍri,-Èf$rt,-Gqh,-Ècls)' aaoggts a 'CcnÈecE' (ccnsistirEr
of tlerr-finiticr¡s cnvÈridrtÌÊstatsrsrt list isccrdiLicnal) , a'Stdsrent', ard 'Þfsnx,, a list of &finitiøs
¡a.lid cn gtþl¡ to tle statsrst list,. It pcd:cæ 'Èf$rt', an rpdaæd list of m.tid &finiticr¡s, a'd 'G€Fh,,
tle ren¡ ve*ices a'd dg€ of tÌ:e r:sedefiniticn gr-4*r cretd hz tte statsrsrÈ t.ict.
I¡ a squsæ of staEffs¡ts, üe 'Þfsrt' efiniticrs of tle first sbtertr:c beq¡e the ÐefsIn' definitios of
tlF seccr4 ad so cn. the 'Gæ1' of a sq,ærre is tle r-u'ricn of tle jrdivió¡al gl4f-rs.
*/ an11æ-strnlL [],È€sln,rÞç"T¡l, [], [] , []) :- l. /* erpQr sf¿ls¡sf lie!
*,i analyæ_sffi,((tuq,ocnts<t),tsufLlsffisl ,Þfsrr,Þfs.rt,IÞrri,soft.,ÈcLs) :_ !,

a¡æÀæe_.:sffi ( (Fæq, Ocnte<E), Sffi.,Defst¡l,ÈÊs1,Iårdl, SoftL,Declsl),
aul1æe_,sffi ( (Fleq,Cmte<E), SErts,Þfsl,æfeort,Iärd2,SofE2,Þcls2),
æsd (Declsl, Þcls2, Èd-s),
o¡d_unicn( []brdl, rËrd2 I .]Ërd),
ord_rrricn(tsofEl-,Soft2l ,Soft) . /* rrarerpty list
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An assigrnert statsrsrt Geat€ a re,¡ C-ri¡iÈicn d its LIIS r¡ariable, a:d rerc¡æs anv eci.*irg èfiniticrs of tle
sare r¡arjlc1e. It begj¡s bV aallæj¡g tle FIS ¿11s'¡f,¡içþ¡l'l fAS r¡arjafcles *ræfa ¡aræ èfinitios.
Tfsr it l<ills aì] definitiørs of its uF variable. IE tlsr G€tes as:bg0:qlx for its usr,arj¡b1e. Fjrjally, it
Urtlçs tte definiticrrs irr the Hls egessiør õd tÌÞ ocrltÐ<t to tÌ¡e defirritio of tle tIxS rariable.*/ æra1}æ-surt. ( Gleq, Co1te<Ð, assign (Var, Ðgrr), r¡feïn, De&trt,I{arl, $ft, t l ) : - l,

analyse_egr (Ð€q, Eçn, DefsTrr, Defsl, ÐgÈfs,Itardl, Softl),
Varls<(trdlslbEl,J,
ùcp_¡¡¿r_èf ( tldl Sj.El,ÞfsL, Þfs2 ),
æ:al1æe_var_èfri (F)¡eq, Var, Þfs2,VarÐef , Iård3, Soft3 ),
<artesian¡xodrt ( t\ãrÈf l, Ogræfs, tUrü),
cartesi¿nlnod.rct ( t\äræf l, CcnteÈ, fËrds),
@_r-rúcn ( t tvaÐef l,Þfs2 l, æf$rt),
crd_r¡ricn( tIhdf , IÞd3,Iåd4, Itud5l, Itud,
odrrricn( tsofLl,Sofr3l,Soft) . /* assigrranÈ

lte 'c.'11' statrsrsÈ is UJ€ an assigrnant., b¡t æl¡ edstj¡g definiticns of tle sare æll red. to sta¡¡ live, rot'
get drçd.
*/ ,Ðgr1),DdsTrl,Def.srt,IËrd,ScÊt,Dec1s) :-

( trdl Ill ,Èfsrrr,J , l,

aallæe_sffi, ( (¡):q, CctscE), :cqjE1 ( p¡oç, Egrl ), DeÉsIrr,
Þfú¡t,tä¡d, Soft,Decls) . /**/ anallæ-strnt.((FÞ€q,OcrÌÈs<Ð,ælr (þrcc,Ðgr) ,Ddsln,Þf$.È,fÞd,Scft,Þcls) :- l,

aal1æe_strnÈ. ( (F)rq, Odte<t), assign (Þîcc, Þfn), Defsf¡,
æfÐrt,Iärd, Soft,Þcls) . /*

¿n 'if ' statsrsrt. js hædled b/ firdirg tle &finilicr:s used irr its @diLicnal egæssian, a'd aöirg tlese tÞtle ccrditicnal ccrrts<t. Its 'fue' æd. 'false' brærles aræ æra11æedreo-n:sir,e1y, ad tl€ir rcsrnts a:æ neg=d.
v\f1y i-s:'t ccnte<t passed into 'anallee-egr'? rf it !€€, array r.efssæ used i¡r tle cqdiLiøal eçressicn
!'rcrrld dæsd crr <clæirg ccrditicrs, r¡t'sæs tlpe is rrc reascn tl:at tlqf cæ't be inæ*A u-ccrU:.eiaa:fy.

* / analyæ-strrË, ( (Frq, Ccrìts<t), if (Var, Ogr, trle, Êlse), r¡f qf¡r,
Þfút,rËrd,Soft,Ècls) : -

!, ael1ee_sffi, ( (FI€q, OcntÐ<t), assigr(Var,Þgr),DefsI¡,
r=fs!tËrdl,SofL1,J ,

v¿¡--ls<(Id,J,f ird_Iir,e_def (Ìd,Þfs1,Ð{Ðef ),
aalyse_sffi ( (rteq, 5psf1 ),True,Þfs1,Þfs2,rÞrü, Soft2,ÞIs1),
anallæe_strnÈ ( (rreq, EçDef1 ) , ÞLse, æfsl" Defs3 ,IbId3 , SofC3 , Þcls2 ) ,
æsd(Þcls1, ÈcLs2, Þc]s),
jojn_þærrles Gleq, Þfs2 , Þfs3 . Þf,Ðrt, ¡ård4, Soft4) ,
orùr¡':-icn ( [Itud]-, Þd,rÞÌd3,Iårl4l, IÞd,
ord_r.r'-ior ( [SofEl, Soft2, Soft3, Soft4], Soft) . /* if statsrmt

Ä '$trile' statsrsrt is an i¡finite rest of ,if , satsrsrts. btt tv,Þ r¡dll &.
*/ ænl1æe_strnt ( (Fleq,Ocnte<t),ufrile (Var, Ðqn,ry),æfsTrr,

Èfsort,tËrd,Soft,Decls) :- l,
anallæe__Sbrt ( (IYeq, Ccnte<t) , lccp (Var, Egrl, Ecdy) ,

ÈfsIn, Þffi-rt,Iårl, Soft,Decls) . /*
¿n 'all' *atsrÐÈ is equivalerlt to a 1oq> qltainirgt an assigrnert.
*/ anal1æ_stnÈ.( (Fleq,Ccntectl,all (Var,Ocdan,Bodfl,

Èfs]¡,Èfsr,tËrd,Soft, [ (var,cún) læ:-s] ) :- t,
anallee_stmÈ ( (fteq, OotÐ€), lccp (Var, [], [assign (Var, t ] ), Bodyl ),

ÈfsT¡r,Þf.*rt,Iår1, Soft.,ÞLs) . /*
A 'for' statsrs¡t is qui\¡èlst' to a locp puæcgUy an assigrnant.
*/ an11æ_strnt( (Fleq,Coxte<t) , fcn(Var,Ocdan,Bo{,') ,

ÞfsI¡,Def$¡t,Ilard,Soft, tMar,c¡ùn) læclsl ) r- t,
anallæe_sffi ( (FYeq, @rte<t), [assign fl/ar, [l ), lcç çy¿¡, t ], Body) l,

Èfs]¡r,æf$lt,Iãrd, Soft,kls) . /*
A 'locp' *atsreet is a gse:al-¡rrææe statsrartusedby 'utrile,, ,aII', æd ,fcn,.

*,/ anallæ_sbrÈ. ( (Fleq,Ocrits<t), locpVar,Ðqgn, Bcô¿,Defsûr,
ÞÉú,rt,lbrdrsoft,Èc1s) :- t,

a:allee-surt'( (Fteql,CcntÞ<t) ,assign(Var,Egl ,DefsIrÌ,Èfsl_,Iårdf,SofLl_,J ,
Var=le< (ÀHe,_), f i¡vr lire_èf (I6re, Defs1, EGf 1),
ÐgÈfLd(Va:s,-J,
+æ<d(Hæq,Vars,n€q1) ,
arali6e_su'rt ( (¡teqL , tÞçÐefl I ) , Body, ÞÉs1 , Dds2 , rÞd2 , Soft2 , Ècls ) ,
aullee_.sm ( (p¡eql-, tnçenl ), assig(Var,Þfn),Þfs2,Def,s4,Iårü, Soft4,J,
fi-dliræ_èf (l6re, Þfsa, Eçnef2 ),
ataÀæe_.¡sffi ( (rreq1, tg@f2l ),Ecq/,Þfs4,Dds5,IÞrd5, Softs,J,
1j::ls_iÈtical_elsrsrts Ðefs2, Þfs5, ¡Ërd6, Sdt6 ),
joi¡r þ:arles (Frql-,Èfs1,Defs5,Defs6,IËÍf/,Soft7),
&ç-locp-rar (nteql,lbTe rbfs6,TÞfcqlt,¡Þrd8,Soft8),
ozrd_r¡liør( IlË¡dl,IbrC2.Iå¡l4,tÞrd5,Iård6,Iård/,fÞr$l,tÞd),
ord_¡nicn ( tsoftl, Soft2, $ft4, SofLs, Soft6, SoÈ7, SoftSl, Sofr) . /*

ItE 'ru11' statãsrt has nc efEect.
*,/ anal1æ_strntL,nrLl,Þfs]¡,Þfs]¡, tl , tl , tl I z- l. /*

À 'reb-Drl' statsrsÌt is of r¡c irrtæst ecçt. in ar s.€nt pocearre. ft has rÞ assocjated egæssicrr. ell lrral
varjables m¡st be ùqæed.

L
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*/ æra11æ_stnÈ ( (¡lq, J, rctu¡fl (Ðgr), æ€sln,Def$.¡t,!Ëri, Soft, t I ) : - l,
&q9_a11_1oca1s (Ð€q, DdsÏrr, Þfs0¡t,Iârd, ScÉt) . /*

TtE fulâ€ statsrstt infod:ces læal rariables, æpecJallywithi¡ an 'a1I' 1oç.
*/ anal1æ_stmE.((F)?eq,Ocnte<Ð,declare(Var.s,Ecdj¡),ÞfsIn,Þfs.¡t,,Iãrd,SofE,Dæls) :-

æa1i6e_1cca1_defs Va¡s, Þfstn, EefsL, Þclsl),
aa116e_stnÈ ( (¡f eq, Ocrte¡c ), Body, rs- rq1, 66r¡, Iård, Sof t, rþc t € ),
4¡p<d(Èclsl-,Èc1s2, Þcls) . /*

¡rð/thirE dse is ¿¡n eÍor:
*/ æa.llæ-sffi, (OcntÐ<E., Str¡t.,Þfs¡x,Þf.Ðtt,fÞrd,SofE, Decls) :-

$ri-te('fhreccgrüsed sÞtsrsrt:' ),rù,
tr¡etty(õra\Ee_sürû, (Ocnto<t, Strnt,,Þfs¡r, Ëúrt,tÞrd, Soft,Ècls) ),n1. /*

TtE p€dicate 'æa11æe-rær-deft(+Var,+Ðefsar,-Þf,-lbrl,-Soft) ' ølsþr¡cts a rs,¡ èfinitisr Def for larjable \år,
þ refeøre to tÌæ set of ecistjrg definiticrs Ddsnx.
*/ æn-l]æ_r,ardeÊr(Freq, 1e.( t¡dl il l,N),_,Vaùf , il, n ) : - t,

t¡rie-e (Id, Täg),VarÈfd( t (Id, N, Täg) l,r¡r, F@ . /**/ anl1æ_rnr_defrr(F!?eq, 1s((tIdls'l^Êl ,N) ,Þfsûr,Varæf,¡Iard, n ) :-
uÌiq-e(Id,Tagf) ,
loolop_tags (S.rb6, Þfsln, @gds:bÊ),
VarÐdd( t (Id,N,TÞg) lraæAS¡e:,r^r, Fteq),
Èt¡e-subeejpt-.¡èfs (S¡bs,r-fsIn, s¡lÞfs),
carteiar¡xod¡ct( tvaÈfl ,S¡lÐef-s,fbrd) . /*

fte predicate 'aalyse-egr(+@,+Ðqrr,+Defs]ll,-Èf-Stt,-ÐgrrDefs,-¡tuC)' caetes tle sþn:rAh 'c@.r' fø tle
list of r¡æiables in 'Þqrì', tdith tire cc¡rææø¿irg list of definitiqs ÐqriDefs. A1t¡¡:rdh an eçressiør doæ r¡ct
nele æ¡r æsigilrents, it na¡r cete èfiniticrs. If a teî sr¡ch as 'e(i) ' æears, it i.s reaæd-as deJini¡g
'tÀ,il ' udrg '[À,*]' erd '[i] ', rnless t]se is afr€aqf aèfiniticriof 't&il ' i¡ 'Þfsl.r'. ¿parE ftqntese
-.1äticrrs, æf.srt is a ccg¿ d ÞÉsIn.
",/ æralyæ-oqn(Èeq, tTÐnlEgtl, æfsTrr,Èfú.rt,ngrÈfs,rËrd, Soft) :-

æa116e_tern(Fæq, TEn,DefsIrr, Þfs1, ÐgrDeË1, Iårdl, Softl_),
arn11æe_ogr (¡lq, Þ{rr,Defsl, DefSrE, ÐçntÉs2,1þñ,, %ft2),
cr{u'rim ( tÞglDefsL, ÐçnDÞfsz l, ÐgÈfs) .
cr{r.nicn( [rËrdl, lÞd2], IÞrd),
oduliæ( tsoftl,Soft2l,Soft) . /**/ anallæ-eqnL [],ÞfsIn,r¡r.I& tl, tl, [] ) :- Eue. /*

lte 'æal¡se-Èeen' pædicate d¡alc r¡rit¡ cre elsrst of an eçlæssicn. Sirçle varjables ard arral¿ elsrsrts al€
rJealt with sæaratefy.
*,/ æn11æ_tern(Fleq, lec( trd I t I l,N), ÈfsTrt, ÈfsÏr} og:Þfs, rurd, Soft) : - !,

ana116e-sùrp1e_use(ftq,1sr( tldl U l,N),Defsar,ÞglÞfs,¡Ëri,sofq . /**,/ æalyæ_teî(fYeq, Def , DefsIn, DplûÈ, Þ'g)Defs,fÞnl, Soft) : -
arnÐse_.refsrat_t¡se (F:€q Def , ÈfsI¡r, r¡fúrt,ÞgDefs, Iå¡d, Soft) . / "

Tte ¡xedicate 'ana11ee-sirç1e-r:se(+Þf,+Defsar,-ng:æ€s,+ard,-soft) ' reÈuîs tle edstirg definitiør as tle crùy
nsrbs of EqrlÈfs. ff úte væj¡ble t¡as nc lire èJinitjcn tls¡e is ar srcr.

*,/ aelyæ_sinple_r:se (¡lq, lec( trdl ¡ 1 ¡,¡¡, DefsTn, toldDefl, il, il ) : -
fird_Iiræ_èf (tral ¡¡1,Þfs]rr,oldÞf ) , !. /**/ anlyæ_sinple_use(rreq,le((trdl Il LN) ,æfs¡r, tlÊ'æfl , Û , [] ) :-
Id=cuÞ_tU_, ',
Lu'riwe(Id,Tãg) ,l,eÐd=dd( t(fd,N,tag¡ ¡ ,d,F.req) . /* used j¡ c¿¡'t ts*/ a:alyæ_sÍnp1e-r:se(fteq,1e<( ttdl tl LN) ,ÞfsTn, t}Ê/\Èfl , tl , tl ) :-
uriwe ( ld, Tbg), IE^Ðdd ( t ( Id, N, r'ag¡ 1, r4 ¡rql,
r¡lr-iÈeq(Id),!,8-ite(' is r¡ct èfired j¡ ,),n1,pætty(DefsIrr) . f

The ¡xedicate 'æra11ee_elarant_use(+Var,+ÐeÉsI¡r,-Þf.Ð.rt,-bq:oÞf,-Gq*1) ' ccnsfLrts a sitgraFh ccrreæcrdirg to
a RtfS an ð/ elqgtt :efesre. rf Èe elsrglÈ has an ecirsLirg efinitjat. tle siu:atior is sjmil¡r to tlat fcr a
sjnple mriable. If thse is no e<isuirg èfj¡Ìitio1, tle jrdoed varjable uses tle e{iistjrg èfiniticrr of t}e
array (GsEricÐef), vtÌich in b.!Tr r:ses tle èfiniticrs of tlÊ subsGj$s (s¡tÈfs). Èf$tt is fclfrEd Ësn DdsT¡r
Þy. adirg tle reu elffs¡E. èfjniticn.
*/ arnllæ_e1srñt_use(Fbq, lø(( tldlSÈ61 ,N) ,Þfsr¡,refsh.toldÞfl ,U,[]) :-

fi¡4-lire-def ( lral s']:6i, ÞfsI]], O1dÞf l, I . / **/ anal1æ_elermt_use(F)eq,le<( ttdlsi:sl ,N) ,Defsln,Def-Ð.rÈ, tELsrsrtl,¡brd,Soft) :-
ùW_afiâs (Frq, Id,DefsIn,Þfs1,rÞrdt,SftJ.),
gsrsic_def ( tId I 

S.f:8l, Èfsl-, cseicÐef ),
lrliwe(Id,TaS) ,
loolcp_@e (S¡bs, Dds1, T@gedS:bs),
Etsrsrrd( [ (rd,N,Þs) lææ¿s¡cs] ,rl,fted,
Iiræ_subsæþC_fefs(S¡bs, Þfsl, S-iÈfs),
cartesia'r¡zod¡ct ( Ftsrsltl , S¡bÈfs , ¡Þrd2 ) ,
carEesia'r¡rcdrct( lElsrsrt] , [Gssiùfl ,%fE2) ,
4uliø( [ [Eletgt], Þfs1l, Þfs¡t),
cr{r¡'ricn( t}tudf ,Itui2l ,I{â¡d) ,
crd_r¡ricn( tsoftl,scft2l ,SofÈ) . /*

fhe pædicate 'ùcp-afjâs (+Flq, +Gseic, +Þfs]n, +fS,É, -!Þrd, -Soft) ' sets æf$¡t, to Ddstrl, less tle
definiticrr of aryr elarsrt. reLted to Gsg.ic fr€slE jn Þfsln.
*/ ùct)_auas (Flq, Id, ÞÉsln,Þf-Ð:t, tbrd, Soft) :-

fi¡l_alias (1d, ÞfsIn,ELsrert), t,
aray_uses_elørant (F!æq, Ð<rrrt., ÞfsTrr, Ddú¡t,, Iärd, Soft) . /**/ &W_a1i.asL-Þfsl¡,ÞfsIn, tl , tl) :- true. Ê
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The gdicaEe 'find-alas(+Ggeric,+DefsTn,-l!.ergÈ) ' suooe* if it ets Els¡grt to tÌÞ èfjrÉLior of tle fi:st
(ard cnly) elsrsrt of Gg.E'ic presant in DeÉsI]-r.

j-,,,
igrrre tle gaeic itself*/ fi¡{_alias (Id, t¡LersrtU,Elsrmr) :-

El-grmtd( t(rA,-__.¡ !,_,_t, I. /* rds ÍËch, brt rþr subEtrbrs, Gp.*/ fi4a1j,as (Id, LlÈfs]-rll,El-s¡sr) :-
ft4_a1jas(Id,DefsIn,Elsrsit) . /* igrrre tle gøeic itself

The ¡xedicate 'arra¡z_rrses_elerert(+IY€q,+nsrs1t.,{ÈfsIn,-Defúrt,-Iãd,-Soft) ' Geates Iã3C jl] vb-ich a rE¡r
gsEr-ic ddinition of its cor:eço-dirg arralr is èfired as r.:sirg tle elgrsrt defini¿icn Elsrg:Ìt, æd tle o1d
èfiniLicn of tTe arralz.

* / array_trsæ_ekr<rt (_, Elare.rt, DefsIn, ÞÉsln, t l, t I ) : -
reaå_ø1y_1cca1(Elsrst) , I . /* 1@J_, \.d_ür æad flãg

* / arz:alz_usæ_efsrsrt (¡:q, nlors:t, Þf-sIn, Def-ÐlÇ [ ], Soft ) : -
rry_to_ids_1ees (Elsrgt,Vars, I-e€s),
g<eic-èf (Vars, rbfq14 Gs'g-icÞf ),
cæsi.ùH( t(rd,-J lstars: ,-__l ,
rlljq¡e(Id,Î¿g),
(Ifulcbal/_/_ -> lË1; \tTbg),
IE/Ðeffi( t(Id,N,Tag) lSa¡sl ,r'r,¡teq) ,
eq.o_èf (csEiùf 

, DeÊ]¡Ì, Þfs1),
drqg_èf (Elsrsrt, Þfs1,Èfs2 ),
ol{r¡-rior( t lrc¡æfl, ÞÉ21, Þfsrt),
scrE ( [ElffsÌt., cssicÐd], Useds),
cartesiânlxcôrct(tNs^æfl ,Lbeds,Soft) . /* ary otle ørbjratiør

*/ ræd_crùy_1ocat1fi( [ (g1d.a1lJ-_,J ll ,-J ) :- t,fajl-. /" tr€at glcba1 as r,,rite.*/ @an1y_1cca1(d(-,rd,J) :- tn:e. /* nct glcbaJ_, red øùy.
The pædiete -¡Ìard,sft) ' deLetes tle èJiniticrrs of
' tldlslbsl ' in Trr arfütiøÌ, if ,$b6' is srpuy, ir èLeres AII
&finitioß tl¡at hã,e 'Id' as a s:bsøþt.. Thjs n*Ls tle siu:aLicn that $tsr tle sr¡bsaipt of ær jrdsed
variable heocrrë irn¡afid, tle elsrmt. læes its èfi¡itjør. If Varhas no defini¿iør, rothirg m:dr haçpars.*/ ùcp_Jocp_war(Ilq, tsic| tIl ,oefsl¡1.Defsû:t,Ilad,SofE) :- l,

ùç_e1ørat_defs (F!q, Sjc, ÈfsTrr. DefsIrr,Þfs1, Ìtud, Soft ),
ùcp_rnr_èf (tsÈl tll,Defsl,Defs:r) . /**/ ùcp_Jcç_rnr(FYeq,Var,DeGh,DpJ$rt, tl, tl ) :- l,
ùcp_var_èf Var, Defsln, Eefúrt.) . /*

Tte predicate 'ùç-eler<rt-Ës(+S:lc,+Þfs,+DefsIi,-Defúlt,€-¿Fh) ' ncdifies Èf,sfn to gi\,e Þf$lt dd Gqll br'
Urkiry all elsrsrts that tta\,€ S¡b as an ir&( to a rE^/ gsìtric arrayèfiniticn.

* / ùcp_elarant_defs (Fbeq, Sjc, tÞf I 
Defs l, DeÉsI¡r, Þf*¡t, Ilard, Sof t) : -

H=d( tldlSlbsl ,-J ÃrsÈs( (sjlc,_,J,$ts) , t,
a:::a1z-usæ-elerant (ftq, ¡¡f 

, 
ro-rqI-n, ÞfsL , fÈrdl , Softl ) ,

åryr-.eì g¡s6-6¡" (F)€q S-rlc,Defs.Þfs1,DefÐrt,Iþñ,, Sc¡fr2),
od_r¡'rion( IlbrlL,ltud2l,Itud),
o'd_r¡dor( tsoftl,Soft2l,%ft) . /*

* / ùcp_elarant_defs (Flq, Sjlc, L I 
r-r"1, Defstr, Þffi:t, fb¡d, Soft) : -

òcp_ekrelt_èfs (Fleq S-fc.Defs, Þfslrr,Þþrt,fbrd, SofE) . /**/ ùcp-elørant-def,sL- [],Þfsl¡l,ÈfsTrÌ, tl, tl) :- fue. /*
E!-q¡srts are 'iÈiLicaf if tlq¿have tle sare sutsaiBt definitiø.s.
*/ lir$<_ituitical-_elsrsrts(tl,- tl ,ll) = t. /**/ 1i¡l}c_jdgrcical_elsrstsLtl, tl, []) :- l. /"*/ li¡ls_jturtical_eLsrsrts( tÞf lusssl , tÞf lusdsl ,tÞ¡d,SofE) :-

!, U¡]<_i&rLical_elersÌts (Usss,Us€ds,lb3l, Soft) . /* id<rLict èfs*/ ]i¡ì](_jÈrtical_elsrexts ( ttËs I 
tFqsl, tused I 

usdsl, IÊrd, Soft) : -
rcæd( t (ra,_,¡ 

| 
s-b6l ._J,rb#( t (rd,_J ls¡êt,_J,

!, cartæj.d4xcótcc(ttßsl, tffdl,Join),
( srbËt(*,0,0) l-] -> softLdoin,lÞ¡dl-=tl
; Softf=[],]Þdl-=']oin
).
li¡k_idgrtical_eLsrgrts (tbss, Lbeds,ftuü, :þfr2),
crd_t¡úcn ( tttudL,lÞd21, rÞri),
crd_r.¡nicn( tsofLl-, Soft2l , Soft) . /* sare irÈ< defj¡itiøs*/ lirl](_iÈÈiær J.t s¡gf5 ( tr.Ëe I 

tßeLsl, tusedl usdsl,lb¡d, soft) : _
tbe€<jsd, t, lirÌ]<_iÈÈicl_elsrsrts (tbss, tusdll_Is*l,rÊrd.soft) . /*

* / lirl]<_jÈÈicat_elsrsrr-s ( tl¡s I 
Gersl, tused I 

usdsl, lbrl; sofE) : -
tlssG>usd, l, ljr¡]<_ièrtical_elsrsrts ( tuslI]sersl,Usds,Itud,Soft) . /*

The pdiete 'ùW-alt-locals(+Frq,+Èfsf¡r,-ÞfÐrt,-¡Ërd,-Soft)' .þlc wj-th proced¡:e ecit. clùl mrj¡bles
nust rot he eçed, b¡t irÈed clcba] ¡ærjables m¡st be U¡kd to tleir glgsic ar=-dlÞ.
*/ &cp-ê¡-I-lccaLs (Ft€q,Þfsh,Þf$lt, IÞrd,Soft) :-

dcp_elarats (Frq, Ðdst¡, DefsI¡, Þfs1 , Ià3i., Soft) ,
:etain_glcbals (Þfs1,Èfúrt) . /*
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Tte ¡xedicate '&ç-e1ørants(rFreq,+Þfs,+ÞfsIn,efúrt,,-!Ërd,-SofE)' drlcps elr arr¿V elsrsrts in tle list r¡t
ftcrn Þfsl'Ì to gue Def$tt, (ErsbrucLirg GraFh bl/ lirrkiry eac}r elsrst with a ,r¡rite' f,lg to a rerr g<øic aeq¿
definiticn- SirçIe rcrjables ad grej.c an:a1æ in Defs a¡e rnt @¡ed.*/ &cp-ekrsrts (Ð:,eq, tDef lHsl,Þfs]¡r,Defúrt,Iãrd,Soft) :-

ùq9-elqrÐt (FYeq, Èf , r¡fs]-n, Þfs1, !Þrdl, Scftl-), l,
drp-elermts (E¡eq, Defs,rqtel-,Þfújt,fËrrl2, %ff2l,
orùrnicn( lsoftl, Sozu], Soft),
cr{r-u-ricn( [Iårdl,IÞrd2],IËrd) . /**/ ùç-elarantsL tl,Þfsf¡r,Èfsl¡r, [] , [] ) :- tne. ,/*

*/ ùcp_áerantLd( trdl nl,-J,Defsh,Þfs¡x,[] ,U) :- I. /* sinple*/ @)_elerÐtLd(tId,(*,0,0)ll ,-J,Defstr,Þfstr,tl ,tl) :- t. A ggsic
*,/ örq>-eler<rt(Freq,Þf ,ÞfsTn,DeÉú:t,rb¡d,SofÐ :-

an:4r_r.rses_elaent (ll€q,Èf , Þfsl¡, æÉúlt, ttud, %fl) . / * elglst
Tte ¡redicate 'lirrlcalcbeJs-to-&cls(+Defstr,-Þf$.rt,-Iård,-Soft) ' ndifiæ Èfsl¡r to trrlcû¡ce Þf$¡t a-d' ¡rad br'
linkirg efr fi¡al g1&al &finiticn to an jrsta¡:e of its fulanticn èJjniuicn, if it jjs nct crÞ alædy.
(Þclar:atjcn definitiørs hare a static r¡¡rÈs of 1. tse stlo.üd be ro an:a1r elsrsrts tr¡esrt at this ti¡re.
Àrrqrs slo:1d alredf har,e a satic ru¡bs of 1. ùly sinple gldcals sl¡e¡ld reed nodifyjrg. )*/ Iir¡kSùals_to_èls( tl, tl , tl , tl ) :- t¡¡e. /* erpEy Ust*/ 1ir:Ìca!.d:a'lsJrL¡J-rc( tDeflÞfsInl , tÞf lDefotl ,IÊrd.Soft) :-

Þfd( Í (at@.tt/ J,-) l, - ), !,
lirk_g1d:els_tn decls (DeûsÏrr,Þfúrl,Ifad,Soft) . /* ssrt, Ëinitior*/ ljrl]<S&aLs_to_dæls( tDeflÞ€s].rrl , tÞf lÞfs-rl ,¡rarrt,Soft) :-æH(tL,1,-) lJ,_),t,
Urtl<_gùcbals_to_fu ls (ÞfsT¡r, Èf.s:t, Itud, Sof t) . /* alredy nnbøed L*/ ,Soft) :-

øùr-rricn( t tDef2-Þfl.l,Softll,SofE) . /* ürik a r-, *r*rrcrt
lte prdiete 'join_þarrhes(*)eq,+Þfs1,+Ðefs2,Ðef$tt.,-Itud,-SofE) , neges Èfs1 dd Èfs2 to g¡æ Þf-Ð.& in
srh a valz that at. ÍDst cr€ ddjniticn of ec}l øriable eci-sts in Þf$tt. À 'larj¡b1e' tE€ is eitle a sinple
varj¡b1e ø a ryecifÍc array ekrant, ie., Lravjrgpartioi¡r jrdie ard tägs. Þfjniticrs ccrtrrsr to both tj.*s
or 4rpearjrg i¡ crùy qre Iict are cçid to Defút. ¡Ir¡sE, definiticrrs of tle sane ¡¡ariable tllat diffs are
ti¡l€d to a rear drur¡r defirriuicn (n¡rbered 0) in Þfúrt. ALso, if tleæ a¡:e b/Ð defirlitjcrrs of tle sare
i¡ariabfe, blt I¡tGe i¡de< &finiLiørs diffs, both defi¡iticns a:e li¡id to tle gssic ara¡¡, æd drcEpd.
ltse are tho passes. ¡tj¡st, elsrsrt, definitjøs with rrequal i¡È< èfi¡iticrs are ôrq¡d by Urkirg tlsn b
tlejr geric arra)¡.rêfjllitjoE. lte prdicate '¡orn_defs' dcale q¡jt|¡all tl¡e ¡grainj¡g eses, ie., sinple
mriables, iÈrtica1 elsrsÈ èfjnitiøs, èfjniLioi.s rrriq:e to qre ]iqt crrly, ard urc èfi¡iLicrs of tle sare
elsrsrt tlat ha\Æ tle sare irÈ< rr-finiLicrs. This learæs tle lÊri ææ, vtrich is r/ùse æargrufv tle sane
elqsrt 4gears irl both llsts, btt it has diffqst' jrds< èfiniticr:s.
*/ join-þ:a:c}es (Frq,ÞfsL,ÈÉs2,æfútt,Iärd, Scft) : -

sirplify_defs (¡:eq, Defsl" Defs2, Þis1, Þfs3, Iårdf , Sofll),
s j¡rplify_defs (Fleq, ÈÉs2, Def,sl- , Defs2 , Defs4 ,Iþrd., , %ft2) ,
joi4_efs (¡:æq, Þfs3, ÞÊ4, Def$rt, Iård3, SoÈ3 ),
crd_r¡úcn( tlÐdl, Itud2,Itud3l, Itud),
ord_t¡dcn( [Softl, Soft2, SfC3], Soft) . /*

*/ sinpJjfy-defsL [] ,-æfsI-Ì,Þf,sIn, [], [] ) :- l. /**/ sinpli!¿-defsL- tl,æts¡'r,DefsTn, [], U) :- l. /**/ sinpli!¿-defs(FYeq, lÞfilrÞfq1] . tDef2 lÞfs2l ,Þf.I¡,tÞf,ú¡E,Iård,Sft) :-
Èfl-=ü( t (Id,--J lsùsl,-J,rbfid( t (rd,_-J lsub61,_J, r,
sjrylify_defs (Flq,Èfs1,Cefs2,DefsIri,Þf$rt,ltud,Soft) . /* = irdøc defs*/ sinpüfy-deÉs(È€q, tÞfllr-Þfc1l , tÞf2 lDefs2l ,rÞfcn1,ÈÉsout,!ÞrrC,SfE) :-
Íqto_ids_Io€s (Þf1,\tus, J,
nry_to_ids_1oæs (Þf2,låns,-), !,
analz-usæ-ekrant (Frq, Èfl, r¡fqIl:r, Èfs3, Iårdt, SofLl),
sit¡glifu-defs (Þeq, Èfs1 , Þfs2 , Èfs3 , Þf$t ,frar@, , Srlft2) ,
crÈr-rricn( tltudf ,!Þtdl,Itud) ,
crÈt¡tiø(tsofEL,Soft2l,SofE) . /* = i¡dicesbrE ,/= j¡Èc dcfiniliørs*/ sinpli.fo-defsF:¡eq, tæff lrefsll , tDef2lDefs2l ,rÞrc¡.r,ÞÊúrt,llard,sft) :-
Èfl.G<Þf2, !,

I>:-
Þfl.G>æf2, t,
siplify_defs (F)æq, tÞfl. lDefsll,æf,s2,æfsl1,Þfsrt,ttud,soft). /*

310



Appendix: The Designer Program

*/ jojn_èf,s(fteq. tl ,ll ,n, tl, tl) :- t. /* erptyti.srs*/ join-èfs(lYq, tl , tDef lÞßl , toef læf*rtl ,lbd,soft) :- t,
joÌn-èfs(Ðæq, tl ,æfs,ætsO-rt,Iård,Soft). /* lst üsE <rpty*/ join_èfs(Frq, tDef lÞfsJ , tJ, toef læfOtl ,lbd,Sofr) :- l,
jojn_defs (Frq/ rb-rc, [ ],Defsort,tËrd, Soft) . /* 2::d llst arpþr*/ jojn_èfs(rreq, tÞf lÞfs1l, tÞf lDefs2l , tÞf lDdÐrrl ,na¡d,sofr) :-
l,þin-defs(F!q,Èfs1,Þfs2,Þfúrt,rtud,Sft) . /* sare detu jn bottr*/ join-èfs(F)€q, tDefl-|Þfsll , tDef2 lr-tq2l ,EêÊsort,IËrd.,Soft) :-
Defl-d( t (Id,Nl-,J lslbÊ1,-J,
Þe=ü( t (rd,r.D,i lsrui,--t, t,
(NL=:åû -> Ir!+il; IË0),
rn'1iæe(Id,1ag),tùe,,Èffi ( t (Id,N,Îær) 

| 
Slcsl,rnr, rreq¡,

sctt ( IÞfl,Þf2l ,tbeds),
ca¡tesia¡:¡xodcE ( tlþ\Èf l, tSeds, Join),
( crbËt(*,0,0) lJ -> $frl=]oin,rarü=[]
; $ft1=[],¡Ërdl=Join
),
join-efs (¡lq, Þfs1, Dds2, Defs3,Itêñ,, þfû),
orùr.¡-ricn(ttlÞf¡oefl ,n Ê31 ,Þfsrt) ,

odr.ulior ( []Ërdt, IËrj2l, ¡brd),
or{trriæ([SoftL,Soft2],Soft). /* /= &fs, b:t = irdices & = tæ.

"/ jojn-èfs(IYeq, [DefllÞrc1], tÞf2 lÞls2l, tæfLlnefO:tl ,]brd,Soft) :-
Èftc<Þf2, !,

). /* 1st crlY*/ j l,rård,sofr) :-
Defl.G>Èf2, l,
join-èfs(rrq, tÞfLlDdsll ,rEfc2,ÈÉÐ.rt,IÈrd.,Soft) . /* M øLy

gTS CF'E]NTIIOE
Setsof ddjniLicrrsarestordasordeædlists. Þòdefi¡iticrrhastlefcu:n: d(Vars,rd/$r,Ð€q) , uÈe,eVaris
a r¡arj¿bIe i&rtifie j¡r tlæ brn tldltubsl , Ls€s æneçcrds to tle te<U¡al irlstãæ of tle rrerjable, ard Î¿gs
has tl€ sare 1eryLh as Var ædis a list of 'd¡¡:ani-c èfiniLicn' (d) idgrtifies.
Tte prdicate 'fir¡-lire-def ({/ar,+Defsar,-Þfort) ' sucds if it fùds the lire efinitjcn 'De6ott' of varj.dcle
'Var' in tle set 'ÞfsTn'.
*/ fj¡rr_lire_def ( tldl SrbÊl,Dds,Þf) :-

lod{p_taæ ($bs, EÞfs, TàggÊdsrbs),
Deffi(t (ra,-_j lÞ@rb6l,-J ,
nsÈs(Þf,Defs). /*

Tte predicate 'dq_var_èf (+\är,+Þfsf¡r,-Ipf$tt) ' ews t}re Live definiUicn (if arrl¡) of r¡arj¡b1e 'Var' Êrqntle
set 'Þfsi:l' givjrE 'ÞfÐ.rt'.
*/ drcp-rar-&f (var. tæf lnefsrnl ,Defs!x) :-

nq>_to_ids_1e<es(Þf,Væ,_) , !. /**/ ôrç_rar_&f üar, tÞf læfsrnl , IÞf lDefsltl ) -
&q9_\,ar_def (Var, Þfs]¡¡Þfúrt) . /**/ &q>-r¡¡-defLtl ,tl) :- Er.re. /*

The pædicate 'ùç_def (+Var,ræfsIn,-Þfú,¡t) ' @:6 tÌ:e lile &finitior (if al¿) of rarjable 'Var' Êsn tleset
'ÞfsIn' givjrp'Def$lt' .
*/ d]]æ-èf (Def, IÞJIÞlsrnl ,Þfsr¡) :- !. /**/ drw_èf (Def, tÞfLlÞfsûrl, tDefllÞf*rrl ) :-

&qg_èf (Èf,Def,srn,ÈffirÈ) . /**/ &qp-èf L tl, tl) :- Eue. /*
Tte predicate 'gssic_def (+væ,+ÞfsTrr,-Gssj-@d) firds tle definilior of tle array @ltainirg elsrsrt Var in
tIÞ set of definiticns Èfsf¡i.
*/ ggsjc_def (tÌdl$bsl ,DefsrrÌ,cssj-ùf) :-

óln\/_list ( *, SÈ6, Stars),
fi¡4-1ive-def ( tId|Sta6l ,Defsl¡r,Gsei-cÈf) . /*

lte predicate 'lir¡e-subsciptlbÉs(+Srb6,+Þfsfn,€rhDefs)' sets SrtÐds to tle set of al.l lir,e ¿¡afìniLiøs of tte
sirçle reriables in tle list SÈ6.
*/ 1iræ_s:beæipt-.¡Èfs (SÈs, r¡fsTrr, S¡tÈf,s) : -

Iive_sub_defs (S¡bÊ, DeÊkr, Þfs1 ), soLî. (Èfsl, S:tDefs ) . /*
*/ 1iræ-s.:b-defs(tsiclsrb6l ,r¡rcf¡, tÞf lÞfgor¡l ) :-

fi¡.r_]iræ_def ( t$bl il1,Þfsrn,Þf) ,

lir¡e_sulc_&fs ($bÊ,Ésl¡,Defútt.), /**/ liræ_sllc_èfs( tl,- tl) :- t¡.e. /*
lte prediete 'retain-glcbals(+Þfsfrr,-Þf$rt) ' crnstructs Þf$rt Ê<m Defsh bz deletj¡Ef all rnrjables ocçgt
glcbaLs ad ssrl calls.
*/ retajrrglcbals(tÞf lDefsfrll , tDef lÞf*rtl ) :-

Ddd( t@tdcEJ/J_,_) l) ,_) , !,
r*ainglckals (Þfsl¡r,ÈÉs0rt) . /**/ retaj4glcbaLs(tDef læfsr-rl , [Þf lDefsrr] ) :-
Ë=*1(t (cuÞrt/J_,-J l),-_l ,t,
rÉainglchals (DefsIrr,Defú¡t) . /**/ retair¡glcbals ( LlÞfs]rrl,Defsrt) :-
reaìn-glcbals (læfsTrr,Èf$¿t) . /**/ retair¡gldcals(tl , tl) :- trL¡e. /*
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Tte predicate 'loolcp-tags(+S¡s,+Èfs,-TbggedSrlos) ' stæeds if S.rb6 js ¿ lic! of iÈrLifiss of sjnple
rærjables, õdÞfs is a listof rrorjniLicrs, byrnifyirylæs r¡¡ith tie correæcrdirg listof tte iÈrtifies'
tæÊ in tte lìct of rr-fjnitiøs.
*/ look¡p_tags(tl,_, tl) :- !. /**/ lcola.p_tags, ¡' *' I 

rdsJ,Þfs, [ (*, 0, 0) lTäçpeds.rbs] ) :
! ,lookæ_tags (Ids,r¡fc,fbggsl$bs¡ . 7**,/ læ]a.p_tags ( tId I 

Ids l, oefs, tr"aggedsrb I 
r"ageds:fæJ ) : -

firdliræ_def ( trdl U l, Èfs, d( truædsbl, _ _),t, !,
loolqp_tags (Ids,Þ&,IÞgged$bÊ) . /**/ Iodoæ_@s(tldjrdsl ,Þfs,il) :-
rr-ite(Id) ,\¡Eite( ' has r¡c tag definiticn in: ' ) ,pcrÈ:a¡¡(Þfs). /*

Erd of ara11æe. *,/

13.4 The Canoniser

The Canoniser is invoked by a goal of the form:

ca'aúse (G:ah, huricall .

where Graph is the hle containing the output of the Analyser, and Canonícal is the file that
should contain the canonical minimal process graph created by the Canoniser.

/* Tle Canrriss.
Tte p-rpoe of this lrogran ís to fird tle sucrgly cørectd carpcrsts of tle r¡s+defi¡iLiør goraEh, utdch
ccr¡stih¡te tle slætsn's mininal sqlara¡fe Grpcrrøts.
*/ cææise(lrgrt,OrSrt) :-

rEd-SE:4ùr ( T-rFrt, Ècls, Firnlæfs, Ie¡d, sof Ð,
carcxriseg4*r (Itud, Sdt, Sæs, Root ),
displqa_sccs (OrF.tt, Dscls, Iåd, Sæs, Root) .,/*

*/ reùqrr4ù (Aprt,ÞcJs,F5ralDefs,fËrd, Soft) : -
sæirg (Lbe), see (lr4rrt),
red(hls), red(FjrnlDefs), red(Ilad), rcËd(Soft),
sesr,see(LÊs). /*

Tte prdicate ' carlzljse-gr-4J: (+tb¡d, +Soft . -gs , -Rlot) ' fiÌst arEøtts the r:s+definitjcn g4i1 Gæh¡r wit]l a set
of eÈes that stlrrgly ør-Ect a:Ll tlE O/rladc definiticns æfatiry to tle sane staLic d^riniticn. It ttE:l firds
tte sUug @rpqlsits Sæs æd' ¡:ansitriræ rcot Rcct' of tle resrnCirg gr-4h.
*/ canørise_Sr4fl(lbrd,Soft, gs,Root) : -

' q/sEsr$Þ¡*r$di-æfal¿' fressæe, left,, CcrsbsnLirg caurical gr4trr.
gr:dl-rlúøl (lbrd, Soft, Cdll-),
ljn]<_static_defs (G:ëÉ¡1, CãFh2 ),
redæe (Cqft, Rdred, SCCs),
b:ærsitiræ_root (RÊdJd, Root) ,

'qætsr$pæSdi.æ1e¿' trËsage) . /*
*/ di.qpJ.q¿-sccs (OrF:t,Oecls,llard,SCs,Root) :-

leLices (Root,Vstje),
*æ(Rcot,Hæs) ,

nqr_sccs_to_1e'es (Vstjcæ, ¡&es, Lse),
tellirg (LEe), telL (OrÞrt),
prËty(æcls),
FEËty(¡Þrl),
EEËW(Sæs),
PÉW(Ræt),
irridsce_natr-ix (Ls€s ),
told,tell-(Ilser). /*

Tte predicate 'U¡]c-stalic-&Ê(+VsticæIn,+EÈestr,-Vstice$¡t,-¡eæO:t)' dorbly li¡lçs all definicicns tl:â.
ccrrqcrO to tlle sare toctual irctarEæ. It assures tlBt G:4*lfrl is an orlH lìst sf \Þ:tec-Sæesors paìrs.
Because V<tices hõ,e tÌÞ fco:n d(Vars,F1ag,Ðæg) ad tle list is or<H, dlr-ranic &finitlcrs of tte sare teô¡aj.
jnstar¡¡e m:st. be afracant.
"/ 1j¡i<-*atic-defs (G@rrn,Gqùû:t) :-

retices (C@rfn,VetjcesTrr),
fcurn_&-rlc1e_Qes (VeticesTn,VsLicesl, Eig€sl),
vstie-eåes-to-S041 (V<Lie1, @es1, G4Èú),
gÈ-4*l-r¡licrì (Gæ1.Tn,Gr+'nl-,Gi4l'f)rt) . /*

Tte pedicate 'foun-&:b1e-4æ(+Gdün,-Vstice,-ECæs) ' sets VsÈlces to tle Vstie of G@rfn, æd ¡dçE
to tle Lrdirectp.l set of ertes ûrat lirik pairs of relices ærræçcrdirg Eo tle sane te<u¡.I irstaæ.

),
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*/ fo4-ù:b1e-eQes(tDef1,Dd2lÈfsl , tÞfl,Def2 lvsl , tæfl-¡ef2,rÞr2-æft-lF.&esl ) :-

refl=ü.(Va¡sL,-_), ÞæVars2,-__¡,
sane_le'ere (Var.s1,,Vaß2]t, !,
forq-&rble_ecgæ ( tDef2lÞfsl,Vs, Fllges) . /**/ fc¡¡n_ù¡lc1e_4es ( LlDef,sl,vs, rèes) :-
fo¡n_&.:ble_eùæ (Þfs,vs,EÈes) . /**/ fo:n_ù¡b1e_*es ( tl , tl , tl) :- r¡r:e. /*

*/ sare_leere(tl, tl) :- true. /**/ sare_leere( ttVar,t-e<,J l\ãrsl-1 , tVar,¡.er,J l\tus21 ) :- sare_1egre(Varsl_,Vars2) . ,z*
The gediete 't:arsiLire-rcot(+Gq*r,-Rcot) ' sets Root to tle basitive root of Gæ1, vhich rust be aclplic.It &es t¡i"s b/ rerovjrg Qes that to ccnpcsite patls.
*/ t¡ansit.ire_rcot(G4*t,RooQ :-

dges (GGFh,Hges) ,
retices (G@r,Vstices),
sinple_e&es (f.&es, Bùes, Si¡ples),
retices_4es_to_Sq:ù: V<tices, Sirçle,Rcot) . /"

fte ¡xedicate 'n4_to_1ees(+Gæhf.r,-è-4l-û¡t) ' conrets a g¿nanic uedefinitrior gq4il into its q¿irzalæt
ledcal uedefJniticn 9o:4h.
*/ nq>_sæs_to_1oes (p¡ocs,Ees,Cqh) : -

rry_sccs(Procs,Procs1) ,
rqp_scc_eftes (EdEes, Hæs1),
r,gtices_eÈes_to¡o:dl (ProcsL, EÈEsl,Gqll) . /*

*/ nq>-sccs ( tl , Il ) :- rL¡e. r*/ nq>-sccs ( tkocnx I 
ProcstrJ, tProctrt I 

P¡cc$rt] ) : -
lq>_scc (Præfn, Prcct.t),
rq>_sccs (Procsnr, PrccSrE) . /*

*,/ nq>-scc_@es(tl,ll) :- trx¡e. /*
* / rry-sa-@es ( ttbedlri-UseTrl I 

EdæsInl, ttßeört-tßetort I 
E@rtl ) : -

rry_soc (LIsdIrr, tbedC.È),
rq>_scc(Ussnr,IjseO.t) ,

rry_scc_@es (EÈesr¡,Eteúrt) . /*
*/ n4>_sa (Þfsl¡r,Þf-Ðrt) :-

rql_&fs(ÞfsÏrl,Def,s),
sr{(Þfs,Þf-ú:t) . /*

Ðrd of @rrriss. */

13.5 The Optimiser

The Optimiser is invoked by a goal of the form:

æcimise (Grslr ca.I, @tinr.l) .

where Canonical is the file containing the output of the Canoniser, and Optimal is the file that
should contain the optimal process graph created by the Optimiser.

/* The Qptjmiser.
nriüally, tggs' 'lìsts llp j¡j.ri¡] sets of èfiniticrrs (tlæmini¡a1 æara¡fe ørpoants), æd ,classify_sæ'
assigrs a degree to tlsn to fo¡n FEccessæ. 'Root' çecifies tlE jnitjal g0i4fr beb¡æst pþcesses.
*/ çtimise(lrp:.t,O:þrt) :-

rqsocs ( Ir¡r¡t, Els,G@'rnr, S3Cs, Root),
qtjInise_sæ (Oecls,C4'U¡, S, Root, Ð1cc2, Oq*Ot),
djæI4¡lxoeses (olÞtÈ, Procs2, G:aq*trt) . /*

*/ read_æ (Ir{rrt, æcls,Oqh, Ss,Rcot) :-
æeir€t (tbs), see (TrEl-t),

'Êåd 
(Ècls), æad(Gq]1) .rËd(SCs), rËd(þot),

æsi,see(Llss) . /*
*/ q>timise_sccs (Þcls, GæÈ¡r, gs, RæÈ, Prccs,G4*trt) : -

'eFtgr$Þ¡*$dispfay' tressaæ,]eft. 'ALimisirg Frccess Eqj-l... , ,, , , " ,',) ,
bansiti¡,e_c1cs¡¡e(Gd-l¡r.C1ær¡re),
4æ(Root,RootEÈes) ,
cJassify_reLices (Decls,Clcs-re, Sæs, Ðccs1),
classjfy_eèes (ProcsL,RætEÈEs, Eåes1),
lsgth(PrccsL,N),
' g¿EterSsho,rfuÐgress',
:qeroie_:sofuU.cri(0,N,Þcls,C1exe, PrÞcs1,Eåes1, kocs2,EÈes2),
'q¿stsr$aiefucgress',
vsEices_eÈes_to¡r¡dr (Prccs2, Fdæs2, G4lú ),
np_to_Iee (Odf 

, OdO¡t),
tA_scrt(G4trOrt,Ðocs) ,
'qÞtgr$Þqg$di.Ðl4f ' (nessage). /*
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*/ di.spla¿¡rocesses (Olqgrt, Èe2,Gæq*ûrÈ) : -
te]-]jrg(Use), tFl I (OrÞ¡t),
pretty(Prccs2 ),tr¡ætqf (cq:ùOrt),
jrcidsce_mEjx (Gq*ûrt),
told,teII(iFs). /*

the pædiete 'cJ.assifu-sccs (rÐecls, rGæ1, +gs, -Prccs) ' s-rcceeds þ associatirpr \4ritÌÌ €ô g i¡1 tlp 1 i c! SCs ¿
'DegÊe', \¡fridx is a ¡resr¡æ cf tle pa:alJ-eli.sn ¡nsible \^¡ithin tle SC.
*/ classjô¿-r¡etjcæ(Þcfs,Gæl, tS|Sæsl , t(Dryee,S) |p¡ccsl) :-

cl¡q<if,¡lzoes (Ècls,G4fl,Sæ,Þ€e),
cÞssif¡_refices (Ècis,Gqh, gs, kccs) . / **/ classifl¿-vvtiel,-tl,[] ) :- Er-æ. /*

Tte predicate 'cl-"sifulxoæ(+Decls,+Gqfr,+ÞG,-Degree) , srcceeds by asscciaLirg \^rithÞfs a ,Ègree', \¡tridx
js a neasrne of tle parallelj-sn pæsib1e \^¡ithirr iL
*/ classifyl¡oces (Þcls,cqù,Þfs,Eree) :-

scrt(Þfs,Èfs1),
s-ùgd1 (Cd^i, ÞÉs1, S:iGæCh1),
jr¡raf id_lccps (SrÊ4h1, Tnræ]-ül),
adjæt¡p:d'r-ft+ (oefs! *lo@r1, s¡fgæh),
cl aqiV_r¡sss (Ècls, Irn¿Iid, S¡oqf:, [*], Dqree) . /*

lte p:edicate 'adjust-go4:h-Êæqs(+Þfs,+G@rnr,€@û:t) ' sr¡cceds þf Ara'girg tle ftqrscies in G:4lhlri b
gilæ Cdt¡t in sLEh a valr tlat fcr each èfjnitjcn tle cal li¡Er ¡æq-scy i.s eLimi¡atd.
*/ adjr¡st¡n:açh-Éææ (pefs,G4¡Un, C4.O.rE) :-

\Btec_ñ?æ (Defs, G€3hIrt, VetsGtqs ),
djnstsol4*r (VsteÕeæ /VertedYç, Gdü-n, Gdû:t) . /*

*/ tetec-fteæL tl, tl) :- üue. /**/ retec-fteæ(æfs, tvete<¡r -lcehl , tvstso-tlvstj.cesl ) :-
\,êL{øcTnd Mar, Flag,FHnx),
:ørove-calt-fteq(Þfs,F¡qfn,¡fe€¡t),
\,ërteo¡td (Var, Fl¿gt Fbeqo'tt),
\Bfo<_fteæ (Þfs,G4h,VsLices) . /*

*/ rqr¡¡e-.::a11_Ê:eqL tl,ll) :- trr-¡e. ,/**/ rqoæ-..ræ.11-fteq(Þf-s,VarsTn,Varsh) : -
\årsfr=[(Id,LÐ€s,J !,
neths(d( t (Id,I-o€sJ L-J ,Þfs) , !. /* Yar IS d-fird in ùis Frccess*/ ¡qror¡e-.paE-Ëæq(Þfs, Ll\ÞæT¡ll ,Var$¡t) :-
:arwe_call_frq(Þfs,VarsI¡r,Var$:t) . /*Yar is ¡ÐI èfird in tlds trrces

Tte predicate 'adjusE¡+-4jr(+\Þte#leç,+Vstedrg]q,+Gq*rTr,-Oæd'Ot) ' is gtivsr a Ustvetedlç of retlces
td'me fteqrsEies Lene be<r afrr:strd. fhis list *¡:x-ùd be 1: 1 witJl tÌÊ ljirst. of recices in the 9qf1. So it i-s
jusE a Íatts of rplacirg co:ræs¡udìrg rqCices, tÌã fÐcirg tle eÈ-.
*/ adjust-So:4j1L-, lJ , [] ) : - er¡e. /**/ adjr:st-S0:4*r (Vstedrææ, Møtec1 lVeticesll, Mste¿-Fdgesl lGæ-trnl,

lvste<f-SCç2 lG@'OrtJ ) :-
VsÞ.1=ü(Vars,_, J,VetÐ<2=dd(Vars,-_), !,
adjut-eÈes (VsEeÕreæ, 4es1, Edæs2 ),
adtst_Soi4h tvefeðreæ,VerLioæl, G@rIrr, e@û:t) . / **/ adjr:st-Scqh(Vsteõteæ, llVe*icesJ,Cæfhl-n,G:ad'trt) :-
adjut¡r4*r (Veted:ææ,Vøtj.ces, G@lTr, @ùûrt) . / *

*/ adjusLeùesL tl , []) :- true. /**/ adjr¡st-e&ræ ( tvsted. lvstiell , tveto¿ lverEic€s2l , tvsted- lvstie3l ) :-
Vsts<1¡dd(Vars,_, J,Veto<2d (Vars,- J, !,
adjut-e&es (VsEicesl, \þrLices2, VsEices.3 ) . / **/ adjrst-edqes ( Llvsticesl-l,Vsticæ2,Vetie3) :-
adjut-ertes ffeticæl-,\Þtices2,Vstices3 ) . /*

The ¡zedicate 'ina1iQ-1ccps(rÈfs,-r¡¡¡al-id) ' hrilds ¿ lic¡ 6¡ jnralid 1oç rcrjabtæ, ie., tÌæe tlat 4¡errrrr
hisa¡ehical1y. licte tltat sortjrg is used to rsru/e dplicates.
*/ i¡¡¡ald-Jocps (G4*r, Invalid) :-

ftq:gries(Gqi'r,¡teæ),
scÈt(IYeæ,Lcæs) ,
def_def_øflicts (I¡cps,I¡æs. ll ,I(r¡a^¡t) ,
scnE(I(rrx¡n, lrn¡alül) . /*

ÀccuruLate aJ1 Ê:eqtøcies.
*/ Êqløcies(tl, tl) :- ruê /**/ fteq.røcies ( tdL- Fþql)-_l ø4h1, trreq2 | 

rrçl ) : -
sEjp_tags (Freql,Frg,A,
trq¡gcies (eqlr,H€æ) . /*

*/ sEþ-tagÊ(il , tl) :- true. /**/ sEiB_tass ( t (rd,Lo<,J l¡bqll , [ (Îd,IÞ(,0) lr:@l ) :-
sEip-@s(Frq1 ,W) . /*

CcrsiÈ all fteq¡eq,.' pai¡s.
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*/ def_tr_cøflictsL ll,r¡n¡lid,rrna.Iid) :- ræ. /**/ def,.lrÉf_r:o'rfl i cFq (lÏeæ1, FÞeqlF,r+21, IrnaLi.dfr, t¡valiðrt,) :-

&f_øtflicts(næL,Fh€q, tl ,rrnalidl_) , t,
æqd (l¡Ã¡a1id1, Trr\¡dlidln, TrÃ¡d1id2 ),
èf-¿ufjqlf licts (Fteæ1, FTeæ2, frrr,a.Iid2, t¡ra.LiÕ:t) . / *

¡1btch a ns¡*'c¡a æÊirlst tÌæ fcn tle sare ssrL
*,/ def_canflicts ( tl ,- rnafid, frvalid) :- kte. /*
* / def_ooflicts ( tF/q1 | 

Fye$l, Freq2, trÃ,¡êIidln, rr¡¡aLiÕrt) : -
Fbe{-=[ L/E\,EÌt/--j Il ,
Fhe@= [ UÈ,]<lt/__) l) , ! ,
frqfteq_@Élicts (Ftql, Fteq2, Ðæq1, Trr\a.Ud¡r, trÃË_Iidl ),
&f_cæfl icts (¡tæ, ¡tÊ€, Irra-Lidl, t-rnraliÕt') . /*

* / def-oanflicts ( L I 
IYeæ1, ¡b2, r¡ræ.Iülrn, Ana.l jðrt) : -

dêfJ.øflÍcts (Ð€æ,FYee, tñralidln, l¡n¡alið:t) . /*
Gred< æd1 tsn of a fteqrery aæj¡rst tle otte, ïejætjry all tsfiB foltordrg a uùrile 1cq>.*/ ftqfteq_ccnflictsL_, tl,frn¡alid,T¡nn_Iid) :- t¡ue. /**/ ftq_¡€q_ccnfticts (FÞq1,F@, tVar lVarsl, t¡n¡_Lidln, t¡¡¡aliört) :-

vaf_fteq_ccrflicæ (FI€d., ft€d,Var, Ifeq2, Irvatidln, frrr¡alidL ),
ftq_Ê€q_crrrfficts (ftq1, r@2,Va¡s, Irn¡aUdt, trn¡alidC¡t) . /*

fteq_fteq_ccnfllicts (Fteql- ,Ê€q2 , Iyeq, AÃË.lidIn, I¡validC¡t) : -
ftçtvarlvaæl ,
( \tu=(loæ/J_ _,) ->

vaffteq_cqîflicts G&1, ¡1q2, Var, Iye@, TrnaLiclln, Tlr¡al_idL),
ftq_Êreq_cøtfficb(F-r€q1_, ¡te@, Varc, Ir¡¡alidl_, IrÃ¡aliÕtt)

; \è:=(i¡rte¡al /J_ -) ->
æa'd (Vars, TrrraLidfr, IrÁra-l_ið.rt )

).
Checl< crEt-eîagairst all terrs of tbe otls Êæqræq¿, rejectjrE all te¡rs follo¡rirq avù:ile 1oç.*/ rar_Êeq_ørflj-ctsL-- tl ,l¡¡,a-Iid,Inr¡aliö :- tne. /**/ frnali&rt):_

id1),
t,ar_fteq_ccnfl icts (Ft€d., ¡l€æ,Var1, Vars, frrËlidl, frr\¡àIiört) . /*

rar_åq_ørflicts (F)€ql, Ereo!, Var1, Fleq, lrnralüllrr, lrna_IiÕ¡t) : -
¡rq=tvarz lvarsj,
( snr2=(Lq/J_,) ->

raf_r¡ar_ø¡flicts (E¡q1, Iyeq2, Var1, Var2, Tna-Lid¡x, I¡rra.Hdf ),
rrar_ftq_cørflicts fi@l_, Fle@,Var1,Va:s, t¡¡¡alidl, fr¡¡aliÕ,t)

; \är2=(interlal /J__) ->
ç<d (t/ars, Tnralidh, trÃra.liÕrt)

).
Gred< if b¡Þ têÍrs are hie:arûrically related. Rdect both if r¡¡t.

* / ra4_væ_ccnflicts (IYeq1, ¡Igtrz, Varl-,Var2, Ir¡¡alidl.rl, h!'alid3tt ) : -( (ngrbæ(Var1,¡Yeo2)
; nanb*Var2,Fleq1)
) -> ï¡¡¡ali-dC:t=¡r¡¡aüdl¡r

i Þr¡e -> Irr'¿a.IiÕrt= [Væl,Var2 | h\¡alidln]ì/*
The predicate 'classifu_rrses(+DecJs,+C1ær-re,-Ègree) ' sets Degree to tle ccÍfiq.Ì dqrce d para1leli-st1 ¡:cssiblefor tle ddiniLicrrs tlat. are üæ ¡ecices of c1osr.re. Trì ClcLre, eò. de¡jniticrr is pajæd-wiüì a UsCof alltle definitions ftcrn vÈriù it is dsi\d. lte @ree of Closrre is tle cqurrn g€fix of æctr definiticn jn iÈ.*/ classi-67_r:s<sL- tl ,Degoee,Eree) . /* døE
*,/ classify_usesL-_, tl ,lD :- t.. /* porntless to csttir¡¡e*/ ^/ v ) i-

cl assifu_1sss (Èc1s,TrÃ¡àIíd,Ges, Þrce1,Èg¡æe) . /*
Tte ¡xedicate 'cr¡q<ifu-r,rser(oecls,+rnyalid,{-bs,rbds,-Ègree) ' csqrrtes t}E @rce of ædr èfinieiør þfirdirg tte ør¡rsr pefix of üe i¡dices of tle ddiniticn trd all its antec'dæEs, t¡sr crrn¡gtirg this to a üst
of æ&rairrs, or data tlæes. Afts tlis, tbe deE€e of paralleli-sn is cleclcd aæirist tle 1oæ structr-re, ad
ædæed if recæsar1¿.
*/ classifo_rrse (Þcls, Trn¡aljil,Ilse,tbeds, brsIrr,J.Nlt) :-

cl ¡eqilf-def (Ilss, l¡raJül, t¡dicesl,J,
cc&rairs (Èc1s, Irdic€l, Drrsl),
s l æqlñ/_rrssb (D=cls , tr¡ælid, Usds , T¡die1, Dcnsl , krê2 ) ,
crrmcn_ccùrajrs (Èrsf¡lÞrs2,Dc¡rÐrt) . /*

rte ¡xdiete 'classiÊr-us*(+Decls,+lnalid,+{.Isds,+lrdices,-Deg0€e,-Rate) ' firds t}e conrsr pefix of t}e
deçtree (DqEree) æd of tle raÞ (Rate) of eac}t definiLicn in tle set, lËeds.*/ c1assiS7_r.rseds L- tl,_,ocrs,Dcrs) :- true. /* fuE*/ c1assi57-r.rsdsL-_, tl ,È¡g,Dsrs) :- !. /* pojntlæs Eo ccrrLir:-e

* / cJassi5T_r.:sds (Ècls, frnalid, ttËed I 
Usdsl, Trdiælrr, DsrsIrr, tutúrÐ : -

c'lasqifu_èE (t.Isd, I¡nalid, t¡dices1,J ,
crrnsr_irdices ( Irdicet¡r, I¡dices1, Trdice€ ),
ccdarairis (æcls, lrdiæs2, hßL),
qnrrn_cc'ibmjrs (D¡rsT¡r, hrsl, ÞrE2 ),
cl asqjfu_1¡ssþ (Decls 

, T¡¡¡¿Lid, Useds , frdicel¡1, Þrs2 , ffirt) . / *
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the pædicate 'cIa.sifo_èf (+Þf,-Irdices,-Rate)' sets f¡die to t}lesÍrplest ljst of 1oç rarj;ble definiticrs
thatcclùdscfæeÞf, teîdrâtectÎ^¡ith [*] a'd tol if itis'o'<tssible', i.e., irrsloq:sarealto/.d. À*ate
v¿riable elsrgrt alloas parallelj-sn b1 its sr¡cscbts. A gertric anqr refesne j.s fÐEd as ecEssible ( [*] ) .
Iocal rcriables a¡e also octssilcle.
*/ classiff-def 1fl( [(g1ckE]/JJ-J ls$Ê] ,-¡!ed,Invalid,l¡die,]' E) :- !,

vali{gefix(I¡¡¡alid,s'ì:e,Irdices). /* srÈe varjalcle (cær't he a loop rcriable)*/ classifo-def (d( Lls¡bsl ,-¡)æq) ,l¡na.Lid,Irdices,F¡q) :-
find-dæÈ€e ( Srb6, Êq,Þ€e),
¡¡alid¡zefix ( l¡Ã,rèIid, Þrce, ægeef ),
( æE:esægqed- -> 4g<d(SJcs, [ (*,0,0) ],¡dic€s)
; t¡ue -> T¡dicsÞreeL
) . /" lccal rnrj¡ble traff be an j¡n¡alid lcç mrjable, or haræ innJ-ül irdices)

*/ fir4-ègree(S:be,Fleq]rr,D€gl€e) :-
renne_sr:bs_É.orLÉ€q (S¡b, ¡fqnr, F¡e€¡t),
æsd(S:l:s, ¡te€rt.,Dqree) . /*

*/ rerwe-sr¡l:s-Êoq-fteqL tl, tl) :- true. /**/ rsroræ_sr¡bs_ftot_frq ( s¡bs, [ (Var,- J I 
Þæqf¡l],FY@rt) : -

¡rerbs( (Væ,-_), S¡b6), !,
rercræ_subs_@Ëæq(9¡b, F¿eqln, ¡te€rt) . /**/ reror¡e-sub-fturufteq(S&s, tvarlfteq]¡rl , tvarlne@:tl ) :-
rerove_sÈs_ftcn_Éæq(9:b, I@In, FÌe$rt) . /*

*/ valid$refixL tl , []) :- Eue. ,/* dcre*/ \ralidlxefix(I¡r¡afid, I (intsr¡af/J--_J lJ , Í)l :- l. /* ratrlle 1oç wrjable*/ mlid:xefjx(I¡¡¡afid, t(ra,-¡ ll , t:l r- ÍsrbÉ((td,--¡ ,Tnr¡aliö,1 . /* bad 1oç rar*/ ratid:xefix(r¡n¡alid, t$bl$bÊl , ts.rblrrdicæJ ) :-
Elid$€fix(¡n6116,q:h-,lrdices). /* CX( so far.

Tte predicate 'cc¡rncri-:r¿icæ(+S:lcsl-,+S¡bs2,-Pæfix) ' strceeds if S:bÊ1 æd Sjlo62 are lisb of taggd srbssigs
ard Prefix is tlejr løEest comcn prefjx. A subtripE of [*] is a wjld ca¡d ad natdæs a:Vf:r:rg.
*/ cor¡ralj¡di-ces(t(*,0,0) lJ,Irdices,rrdie) z- !. /**/ coursr irdices(l¡dices, [(*,0,0) U,rdi€) :- !. /*
* / øursr-j¡dices ( tlrde( | Irdicæ11, t lrÈ( 

| lrdiceg l, t l¡Èc 
I 
T¡die3 I ) : -

l, onrcn-irdices (frdicesl-, l¡die2, lrÀíæ3) . /*/ conrrrr-irdicesL- tl) :- t¡r¡e. /*
Tte ¡rediete 'cc¡urcn-ccdsrairs(+Ers1,+Drrs2,-kdjx) ' s¡oceeds if brsl æd hrs2 are lists of &rairs ad
Prefjx js tleir Iøpest ccrrrcnpæfix. A sub€øjg of '*' is a wild e¡d æd natcle all¡ftirg.
*/ conrqf_¡*rai¡s([*],Dcrrs,Er€\ :- !. /*i/ courc¡:-¡:odsrairs(DcÍ8, [*] ,hrs) :- l. ,/**/ ccn¡nru:cdørai¡s ( tDcnlDElEll , tÈnlhß21 , tDc¡nlhrs3l) :-

l, ccru'n:n_.poerai¡:s (ûrrs1,hrg2,ErÊ3) . r*/ conrqlcodsrairrsL- tl) :- tn¡e. /*
Tte predicate 'drai¡r-s(+Ècls,+kefix,-C&rs) ' suoceds tV firdirg tle declaratiør of ædr tecn of Prefix in
Decls, rdsetLirg tle te3rs cf Cc&rs to tleir øreæq¿irg ccdoeirs, i.e., t14æs.
*/ ccdc¡rairsl tl, tl ) :- l. A*/ ccdorsirs(Ècls, [(*,0,0) ls'b6], [*lcc&rs]) :-

l, ccdøajrs (Þcls,Sjs,Ccùrs) . /**/ oodcrai¡s(Ècls, (t(rd,--J Isùel ), tocdonlocdoEl ) :-
fir{&laraticn(Id,Ècls, LCo&n) ),
<nerajrs (Þ1s,S¡bs,Ocdc¡rs) . /*

lte gedicate 'fi.4fu1araLiç¡(+Id,+Ècls,-Þc1)' s:oceds if æc1s is a List o¡ dr.cl¡ratians, a'd Ècl is tle
(*ie=) ècl¿¡¡aLicn of tl:e iÈrtifiq Id.
*/ fi¡4_ècl¡raticn(Id, [], (1e<([Id],1) ,'*')) :- t,

!,a-ite( ,Iüc rrêclâratirq fcr ,),uriteq(Iö,d. /*/ fi¡{èclaraLion(Id, tÞcllÈcl-sl ,81) :- Þc1=(1e<([rdlj,J ,_),!. /**/ firùèclaraLicr:.(Id,LlDedsl ,Èc1) :- fird_fu1¡r-aLi (Id,Ècls,Þc1l ,t.. /**/ fi¡d_ècl¡raticri(Id,Decls, (1ec( [Id],1),'*' ) ) :- !,
$r-j-te( 'Nc Èl¡¡¡atjcn fcr '),uri@(Id),po¡È:A1(DecLs) . /*

Tte ¡xedicate 'classlfF-qiges(+kocs,+EgesT¡r,-EÈ=sârt)' s<tsds E&EIn to EÈEs ort bygiwiry edr pc'es its
dærce Êon kocs.
*/ classifl¡-eèEs(Prccs, ttße.-rEedlr¡ccl , [FÌæ1-tod l@es] ) :-

look_rp¡rocess (L.Iss, Prccs, Èoc1) ,
lcok_rpl¡rccess (IJsd, Ðrccs, Præ2 ),
classify-eèes (Procs, Èfs, E&es) . /**/ classifL-e&esL, tl , tl) . /*

The ¡rdicate 'i¡rFroie-:sofuUicn(+Dec1s,+G@r,+PrcEsIn,+EùEsT-rÌ, -PrcGO¡t.,-Edæút)' srcceeds by i¡rfrc¡¡irg fte
oorpøElts çecifid b!/ Þrccsh, with EÈes Edæs 1, to ki¡æ Prccút ad EÈÊÐrt, þ Aeatedly fi::st
ocrçæi¡g all pæsib1e pairs cf neiúbo-rs jn @sI¡, tler a pajr of prwesses tl:at a¡e roE ørectd in ECg€@
r.u'rtil r¡c nore ør¡rsiLiøs are ¡nssiJrle.*/ jrproe-.,isoluEicn0{,NÈc1s,C:-4f,r,kccs]rr,EftEsTn, Èccú¡t,EÈEú10 :-

' q,stan$set$prcgx€ss' (M,N),¡4f is MrL,
attarpt_irr¡ro\rsrart Þec1s,Gæfh, P¡ocsnr,@estr, Procsl,Edæsl),
!, sjnple_ertes @dæs1, EÈes1, EdEesz ),
i¡rproie-sofuUio0,fi$,Ècls,Cqh, Ðocsf"E&es2, Procúrt,r¡þn"t¡t) . /**/ j¡rpore-.¡soluLicnL--- Bocsln,EÈes]¡, Þlocsln,EÈEsfrr) . /*
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The orfu of tle follo'rìrg cla:ses affects tle ¡rjcriry of æ1yjrg Ìe.ristics.
* / attaçt-jnpcr,er<rt, (Þcls,Gæ1, ProcsTri, FdgESAr. PIGJ-, @esl-) : -

nsge_W ( state, ÞcLs, Gt4*r, EÈesTn, Procstr, E@resIrl, kccs1, Eùesl), I . / **/ attarp_inpaoer<rt (Decls,G4h, Hocslrl,Edgestn, PrccsJ-, Ertesl) : -
nege_donn(state, re^l s,Qq*t,E&esTrr, Ðî@sTrt,EÈesl¡, procsl,E*Ë1-t, I . / **/ atterp_inporersrt (Decb,Aæ1, PrccsIn,Etesh, Ðrccs1,E*e1) : -
statelrocs (Èocstt,StateÐocs ),
nege_disjojnt (stateæcls,Gq*r, (SEateÊrccs,Stat€ÈG, StateÐrccs),

PrÞcsf,r1,Eùes¡x, Ðæcs1,Eèesl), ! . /**/ attar¡È_jnprcxelrt (Decls,G@h, ÐocsIrr,EÈesnr, prccsl,@es1_) : -
neçe_rp (mj:ed,ÞcLs,Cæ-r,EÈEs]r:, nocsTn,ECgesIn, Þccs1, Eåes]'), ! . / **/ aetarp_jrp:or,erant (Þcls,Cqdr, P¡æl¡r,E*esh, h€csL, E*ræ]-) : -
nege_&^n(mird, rg-l q,Gqfl,E€eslr, ÞlcI¡r,EÈesl¡r, Èocsl-,EÐæI), I . / **/ attarg,_inpovs nt (bls,G4jx, Prccsln,Edgesnx, Prccsl, @resl) :-
statelrocs (kGnx,Statekocs ),
local_¡rocs (kænr,I¡cal-Þrccs ),
nege_di-sjoint. (nb€d, Þcls, Gq:h, (StateÈccs, tccalÈccs, I¡cal-Procs),

erccsTn,ErtesÏ¡, PrccsL,E&EsL), | . ¡ **/ attarçt-inçrolerent (Ècls,Gdr, ÞrccslrÌ,ECgë1.i, Procsl-,EÈesl-) : -
nelge-rp (IocEf ,ÞcLs,Gqù,EÈesh, PrÞcsÏrÌ, EèesIìt, PrÞcsl, EùesL), I . / **/ attag-jn¡xcnervrt (Þcls,C4fl,PrccsLn,Eåesix,Þocs1,@es1) :-
nerge_&Án(1oca1, Ded-s,Gq*r,EèesIn, ÞlæsI¡l,Edgesh, Þrccs1,ECges1), ! . / **/ attørçt_inpror,ervrt, (Èc]s,Gqil, Pzefn,EÈEnx, kocsl,Eèesl) : -
local¡rccs (Þrccst¡,foca1Þ¡ccs ),
nerge_disjoint ( local, Decls , Gq*r, (Iocal-kccs 

, I¡calÞrccs , Localprccs ) ,
ÈocsT¡r,Eèesnr,Prccs1,Fè€s1ll, t. - /*

the prediete 'ne¡ge_rp (+eè,+Èc1s, +@4*r, +Hidatæ, +ÈccsTrÌ, +ECA€Í¡, -Ècc*]t, -EÈFS'lt') ' s¡coeeds if
erdidates ccrrtair:s ær eèe bd¿€sl tr,o cor¡ntihle l¡ooesses, fu-ivjrg Þocûtt by rçlacirg ttsn br/ tleir
øqæiticri, $irse Úle caçæifiør rrpiaces tlE usd Proc, õd tÏ¡e usd proc is a state ra-jable.
*/ ne€e¡p04¡è,Dec1s,G4'Ì,t(tse-Ilsed) ll ,ProcsTn,ECæsTn,PrÞc$tt,E*Êúrt) :-(g= (OeSÈel,æf.sL),IËeè (æSreez,_),

( M¡êtate -> rrn_eùssible (Dæreel ), nrr_ectøsible (Þ€e2)
; I4¡Èni¡cd -> octæsible(ægeel),rrn_ots¡sib1e(þree2)
; I4rÈ1cca1 -> s<Esrsible (Degûæel_),ectansibte(þo:æ2)
),
rrÈ_þre_1oæ_¡ariable(Defsl- ),
rsge¡xccesses (rp,l,bè, Þcls, G:qfi , Ilss, LÊ€d, kocsTn, EÈesln,

ProcsOtt,EÐeÐrt),!. /**/ ne€e-rp (l,bde, Þcls,G€dx, tProcl-Proc2 I 
Restl, ÈÞcsÏn,E*esnx, kocort,EåÊStt) :-

neæe_tp (U¡e,Þcls,@*r, Ræt,, kccsln,Ì'ftÊstr, koc$rt,f.&eúrt) . /*
*,/ rot_bze_1cq>_variable(Usd) :- bar.e_1oç_r,eriable(Used), l,fei1 . ¡**/ rpt_þ:e_1cæ_rnrj¿b1e(_) :- true. /*
* / bare-Jocp_rnrjable ( td ( t ( loA/E\ErÈ / Id, - ) l,- J | 

ætsl ) : -
tr-s_rmtch_1oç (lccp/B¡srt/Id, Def,s) . / *

*/ defslntch_]orFL, tl ) :- Eue. /**/ Cêrsl tdx_r oq) Var, [ö ( [ fi¡ar, _ ) ], _ ) | 
æfsJ ) : -

dds_¡ratch_Ioç (Var,Dds) . /*
Tte pædieÈe 'nege-do¡¡rl(+¡arè,+Ècls,+Gdr,+Cardidatæ,+P3ocsTn,+Eæsln, -PIocott,-Eùeú.È)' sr¡cceeds if
Grdidates csrtai¡¡s ari @e bùeæ tr,o ørpatjble Fracesses, è-ivjrg Procûrt U rçlao¡S thsn by tlei.r
ccrpositict, r¡Èse tl€ cc¡rpcsiticr rçlae tle 'Wstrãn' Proc.
*/ negre_&¡n(l,bde,Dec1s,Gqù, tßbs-Used) IJ,Ðocsnr,ECgesnx,ÐrccútE.,E*ært) :-

fÞ= (hp:eel, J,ts+(Oegreez, J,
( ¡bÈtate -> nÍr_etssible (Ègreel- ), r¡rr_o<tsrsible (Ered)
; M¡Èni¡æd -> r¡Ír_etstsible (Ereel), etgrsible (Þo:ee2)
; Iarèlccal -> ects:-sible(æ9tree1),e<tslsib1e(Dæree2)
),
¡rEge_Froc€sses (&¡rl,ì.Õè, Ðecls, Gq*-i, Ilsed, Ltss, kocsf¡, EÈestrI,

Ðrccúrt,Eùe*rtl ,!. /**/ ne:ge-S1¡¡n(I,bde,ÞcLs,C@, [Prcc1-koc2 lnesE],erocsar,EÐEnr,Þ:rcúrt,,ECgeúrt) :-
neæe_do¡nové, rÈcls,C4h,Rese, Procstr,EÈæIn, kccúrt,ECgætt) . /*

calld b/ngæ_Ì{> æ nage_&n, with diffe¡st larðreteß.*/ nspelrocesses(Dir,Nbde,ÈcLs,Cq11,l-be,LËed,Rccsh,Edgeslri,Ðaúrt,@eúrÈ) :-
rp_ctr¡:atible (Ècls, Cad-r, IFed, Uss, p¡cces3 ), l,
èlete¡roes (Procsl¡, Llss, ProcslnL),
rptace¡rrccess (Prccsh1, Used, kocess3 , ÐræSrt) ,
neçe-eÈes (Dir,l,bde,IÈe, Ilsed, Þocæs3,@esIn, EÈeS:t) . /*

Tte predicaEe 'nege-disjoint (+lede, +Þcls, {(lqf,r,+kocsL, +Prccs2, +EÐ=sIn, -Prccort, -nCçO:t) ' sroceeds if a
pa-ir of pccesses (r¡rcrdeæd) ôiâ^r¡ Ësn tle lists Èoc1 õd Þcc2 ar€ nct ør-etd brt crn¡ntible, dtrivirg
Prcctrt Ðrælacirg ûsnry tlejr ørposiLicn.
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*/ nsge_disjointl,-- (tl, tl ,J ,---) :- l,äil. /* aIl tu€*/ nege_disjoj¡t.06è,Dec1s,G€Fh, (LlPrccsll , Il,prccs2),procstrì,EÈ=sÏ¡r,
PIÞcÐrt,E&E$lt') :- t,

nerge_di-sjoinE (I4r&, Þcls,Gæl, (Procsl-, kocs2,P¡:æ2ll,
Prccsh,Edgesh, Ðîoc$rt,Ejgeúrt) - /* M, l i 

"+- e*nusEed
"/ ngge-disjojnt (Itde,Ècls,GraFh, ( tÈþc l 

p¡ccs1l, tproc l 
ÈÞcs2l, Þ!cs3 ),

Procsnr',F&æf:.Ì,I¡oc*¡t,Eùe6lt) :- l,
neg _disjoint (I'ftè, Ècls,Gq*ì, ( tPrÞc | 

Ðccs1l, kocs2, præs3),
kccsl'l,EdgesTrì,ProcsolE,Ejqeúrt) . /* nct a p_ir*/ nege_disjoint(l,bde,Þcls,G.aEh, (tkæl-lP¿îccsll , Ipîoc2 lÐrocs2l,prccs3) ,

*"o¡1, ragænx, procúrt,EÈeútt) : -
èsødant (P¡ocl-, EèFSLI, Prcc2 ), !,
nerge_disjoint (l,bè,Ècls,Gq*.r, ( tprocl I 

Erccsl_1, kccs2, kocs3),
Ðrccstr,Eåesfrl,P1ocort,Ejgeútt) . /* procl -> prÐc2

*/ nsge_disjoint [,be, Ècls,G?Fh, ( tkÐcl- | 
Èocs1l, tploc2 | 

kccs2l, pras3 ),
Èocsnl'F/rgæfrr, Prcc$lt,E&eúrt) : -

èscs'dant (P¡oc2, EÈlg¡r, p¡cc1), !,
Íe:ge_disjoint (I4rde, Èc]s,Cq:h, ( tkocl I 

Rccsll, kccs2, Þocs3),
PrccsTn,EÈFsln,kccúrt/EÈeútt). /* W2 -> Þrcc1

"/ nsge_disjoint0vtlde,æcls,C?É, ( tprccllprccsll , tPIþc2 lprþcs2l ,PIas3) ,
PrccslrÌ,E*esln, Prrcc$]t.,E&úrt.) : -

cnpatjble (Ècls 
, Giqh, Procl , Prcc2 , Proc3 ) , | ,

èJ-etelxocess (Prccsh, Proc1, ProcsT-nl) ,
rælace_¡zocess (prccsT¡rl, proc2 

, ncd , Þrcc$rC) ,
rege_e&es (disjoinE.tybde, kæ1, Ðrcc2, k@3,EÈæI¡,EÈeSlt) . /* carpatjble*/ nege-di.sjoint (!4cde,Dec1s,C€Fh, (Procsl-, Ll præs21, Èocs3),

PIGlrl,F'þæIn, Procúrt,E&eúrt) :- l,
Íøge_disjojnt. (¡bè,Þc]s,Gd1, (Procs1, Þccs2, kccs3),

kocstr,Etesfft, Þ€c$tt, Ejgúrt) . /* iricorp*ible
tte prdicate 'ngge_dges(+Þoc1,+Proc2,+P¡cc3,+@esll,-@¡eúrt) srcceds Þf ¡e¿irectirg eùes jn EdgeIn to
gi\E E*e$rt so that ary Qe that joird kccl G kcc2 nc^/ jojrs Þoc3. TtE resrntjrg set of dgæ Ís tlsr
scrtd to r<ror,e dplicates.
*/ nsge_eèes (Djr,I,bde, Þocl-, P.cc2, Proc3 , FèesIn E&E*rE) : -

adjut-@es (Prccl, kcc2, koc3, FdgæI¡, ECgesl ),
tr.are_Ísge Þir, I4rde, PrcE1, Prcc2, Proc3 ),
scÉ.(rËbesl,Ete$rt) . /*

Tte prediete 'bace_neçe(+lvtrtÈ,+koc1,+koc2) ' b:¿cæ nerges takiryplace d,u-irg çtimi.eticn. pl¡ce tle rr¡le
for tle dêird 19,e1 of tracirg firstl
*,/ l=ace-regeL-_,-) :- !. /* T:acirg cFF, if plaoed 1st.*/ trace_nerge(Djr,lede,koc1,P¡oc2, Proc3) :- t,

forûa)f(ÍsEe(Di-r,I.4rè,Proc1,Prcc2,Plcc3)). /* ÞtaiÌdb:dcirg, if 1st.*/ trace_nege (Dj-r,Nfcè, Èoc1,koc2, P¡oc.3 ) : - l,
lry¡xccess (kccl-, I-e€sl),
rry¡xccess (koc2,I-æ2\,
l4¡xocess (koc3 , Le€s3 ) ,

trÐrbqf(nsge(Dir,Db'è,Le€s1,I-ø€s2,Lee3)). ,/* DefinitioeII.acirE, if 1st.*/ trace_Ísge(Dj-r,Næ, koc1,Ðoc2, Proc3) :- I .
r@_to_nãres ( koc1, Le€s1 ),
rq)_to_naÉs (tuø-2,Læz),
rq)_to_nares (Prcc3, I-eë3 ),
\¡rite('rrEçe(') ,$/rite(Di-r) ,$E-ite( ,, ),r,,À-jte([bè) ,\^rite(,, '),n1,
vrite( " ) ,\.,/rite(Le€s1) ,\¡Ë-ite(', '),nl,
\^rite( " ),!,rrite(Ie€2),!'r'ite(', ,) ,nl,
wite(' ') ,\^tr-ite(LÐ€s3) ,r¡e-ite(') . '),n1. /* IEre îãcirg, if pJ.aced 1st.*/ b:ace_¡rerge(Djr,Iæ, (ægrel,J ,(Èglæ2,), (Ègrêe3,J) :- t,
\,'rite(nsge(Di.r,l@,Þgree1,ægr€e2,rÞgLeêJ)) ,rù. /* Þgree biace øi, if lst.

Tbe predicate ' adjust-eÈes (+Erccl, +Proc2, +Proc3, rECgesIn, -oC6Ort) ¡ suæ€Êds þy' rd:rætirg dæs in ECgesTrr to
gti\Æ E*eOrt so tlrat a-a¡ erte ÛaE jojred kocl- ø P¡oc2 r¡¡¡r joj¡rs Prcc3. Tfe æsultjrg set of @es n4¡ jrraude
dÐ1icates. Tte fo11o'drg l9+ial cases ræd to b qlsidsed: 1) Tteedp joins Þ:ocs 1 æÈ,2; 2l fte edæ
srters Èc 1, or 2¡ 3) Íæ e&e I€v€ Proc t æ 2¡ 4) ¡ny otls 4e.*/ aöust_eèes(Proc1,Ècc2,koc3, t (Prcc1-proc2) lFdæsnrl ,HgS:t) :- l,

adusE-eÈes (Þ.oc1,Prcc2, PIcc3, F.ftesIrr,@esort) . /**/ adjr:st-4es(Proc1,Proc2,Êcc3, t (Proc2-koc1) lFdæsnll ,@e$:t) :- l,
adjust-4es (koc1,Proc2, Proc3, E&EIrl,F&EsO-1t.) . / **/ adjr:st_etres(Proc1,Ðoc2.Ècc3, [(kocl-Ècc4) lEiæsIrl] , tÞrcc3-proc4lEÐeúrtl ) :-
l,adjust-4res(Procl,Proc2,Prcc3,Fèes¡r,ECgË< ) . /**/ adjust_+æ(Pocl,Iìrcc2,Ècc3, t(FtÞc2-È.æ4) IECgEI_rÌI , tprcc3-prcdlF&e*:cl ) :-
!,adi:st_eÈes(ÈocL,Þcc2,Prcc3,FdæsIr,EÈes ) . /**/ adjust_eÈes(Proc1,P¡oc2,Êcc3, I (Proc4-prcc1) IECæstnl , tproc4-prcc3 lE*es¡el ) :-
l,adust_e*es(Þ€c1,Præ2,PrÞc3,EèesÏr,Fdges ) . /**/ adjr.rst_dgæ(FtÞcl,IÌoc2,kcc3, t(Prcc4-tucc2) lEiæshl , tÈcc4-prcc3 lE&ÊSrEl) :-
I,adjust_4es(Prccl,Prcc2,Ðrcc3,EÈesÏì,Edæ< ) . /**/ adjust-4ræ (Fuoc1, Proc2, Èæ3, tECge lHæs]nl, tEdæ I 

ElqÐrrl ) : -
adjlrst_4ps (Ðrccl-,Proc2, Proc3, ¡*esnr,E&eú¡t) . /**/ adjusE-eèresL-,- tl , []) :- rue. /*
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lte prediete 'delete¡rces(+Procsln,+Prcc,-ÈÞcútt) ' s¡cceds if Èoc$rt is ki\d ftqn Prccsl¡ tV rqrwirg
aÌI instãDes of Proc.
*/ deleteSxocess ( Il ,- Il ) :- t¡¡e. /*
*,/ deletelxccess ( ip¡oc I 

eræ,f¡:], Prcc, P¡oc$rt) :-
| , èletelrocess ( ProcsÏ'I, kcc , P¡oc*rt) . / *

"/ delete¡xocess ( IPræ1 I 
kcc¡xl, Prcc, tProcl I 

ercc$:tl ) : -
delete_¡xææs (ÞrccsIn,Prcc, kcc*rt) . /*

The ¡xdicate 'rælace-¡xccess(+kccslrÌ,+Proc1,+Hcc2,-Prcc*¡t)' sr:oæds if koc$rt is dtri\Ed ftqn PrccsInb/
rçlairg all j¡rstarces of P¡æL b! tu:æ2.
*,/ rq>1are_¡rccess(ll ,_,- []) :- rrre. /**/ rq>lacel¡ocess ( tÐoc1 | 

PrcsTrll, Procl-, Ðrcc2, teoc2 | Proc*rt] ) : -
!,qlacelxocess (P¡ccsTn,koc1.Prcc2, kocs0rt) . /**/ rq>lacelxoes ( tProc I 

PrceTrrl, Prccl-, Þ.cc2, Inoc I 
ProcúrtJ ) : -

rqJ¡æ¡¡oes (kocsTrt Proc1, P¡oc2, P¡ocÐuÈ.) . /*
T1æ predicate 'ccrpatible(+Þds,+Gqj1,+Þ.ccl-,+Ð!c2,-Èocttt) sr¡ccds if P¡ccl ard pre2 cær be ørbi¡æd
\^¡ithf,rt. lcss of paralleli.sû, ætLirg Þrcctrt to tle cqrpæiticn of Pral õd Prcc2. tF lst rule is èfæsiræ
¡læEãmirg.
*/ ccrpatibleL_, L,Èfs), LÞfs) ,_) :- l,pøUq¿(øæatjble_errorÞefs) ) ,fajl,. /**,/ cqrpadble (bls, GrêFh, PrcD1, P¡oc2, Ðrcctrt) : -

rp-ccçatJble(Ècls,Gqfr,kccl-, Prcc2,tuært.l, I . /**/ ccnpatible (Decls, GæSh, Prcl, Præ2, Proctrt) : -
p_carpatible (recls, Gql1, Proc2, Þæc1, ÐrúrE) .,/*

*/ tp-capatible(ÈcLs,Gqf1, (Eree1,Þfs1), (Þ€e2,Defs2), P¡octrt) :-
s:bgtnes (Þcls, C¡afh, (Þæe1.æfs1), (ægee2, ¡efs2), Proútt), I . /**/ q>-cupatible(Ècls,G:aFh, (De$æel-,Èúsl-), (Ègree2,Èfs2), P¡oórt) :-
pcrotable (æcls,Cqil, (Þ€e2, Þfs2 ), (ÈgreeL, r¡-rq1), Proót), I . /*

Tte p:edicaEe 'prcnotable(+ÞcL,+P¡oc2,-kcú¡t) ' srcoeeds if tle @Eee of kccl- can be e<tsrr-d to tire dÊr€e
of Proc2.
*/ ¡xqroÞlc1e(D=c1s,G€Fh, (¡qree1,Defs1) , (Degred,Þfs2), (Þgeú¡t,Èf-*¡t) ) :-

ete:¡s_Uo (ægræf ,@re2), !,
æsd(ÞfsL, Þfs2, Þf.Ðrt),
c] ¡qsi[Flzæs (Þc]s, Gæh, Def$¡t, ÞgreÐrt), !,
nc_r^rrse_furee (DæÈeÐtt, Þrce2 ) . /*

*/ ectsÈ_Eo(t"1 , tl) :- !. f*/ e<t<è_co(t"l , tEnlDgpsl ) :- l,e'<tgds_:to([*],ErE) . /*x/ octa:è_Eo([], [] ) :- l. /**/ ecEgè-Eo(thnlErsll , tDrnlÈrs2l ) :- easds_þ(D:rrs1,Èns2) . /t
*/ state¡rocs(t(Ègtree,Þfs) |PocsInl , [(Þree,rcr") |Ftccsortl) :-

rn'r_e<tgrsij¡1e (ryed, l,
*atelxocs (ProcsTn, Ercc$rt) . /**/ statelrocs(LlPrccsTrÌl ,hc*rt) :- l,
statelulccs (ÐocsT.rl, Þcc*.È) . /**/ state¡rocs(tl, tl ). /*

*/ locaJ.-¡rocs(t (ryee,-) lProcshl ,P¡oc$rt) :-
rsr_ectsrsible(Þæ, !,
Loca1¡xocs (kccsûr, Erccú¡t) . /**/ lccallxccs ( tPrcc lÞrccslrrJ, trrccleroc*rtl ) :- l,
locat¡rocs (kocsIrr, Bcc$rt) . /**/ locallxccs( tl, tl ) . /*

*/ e<Esrsible([*]) :- I. /*
"/ octsrsible(LlTl) :- e<tgsible(T) . /*
*/ n:rr_eËsrsible(X) :- ectssible(X), !,rait . ¡**/ r¡:rr_e€ssjbleL-) . /*

The predicate 's.¡bsLnes(+kccl-,+Ð:oc2,-kcct¡t) ' s:æds if kocL has less par¿l1eH-sn tlan kcc2, brt Ðroc2
accesses cùy irdices a}eady accessed þr/ P¡æL, æ tllat, alttlo-Eür tle r€sÍLirg pardf-leilisn is crùy tlnt of
Prcc1, Prc2 is acesd 'free' ; all po\¡ided that. tlej-r ørpositicn hes par:alleli.sn as go€at as tlrat of P¡cc1.
*/ sr¡bsures(Èc]s,Gqjx, (ægoæe1,Þfsl-) , (Degeez,Oefs2), (DæpreÐrt,Ddútt) ) :-

less_cr_eqral_degree(æged., æEæe2 ),
e<factlaùscipts (Èfs1, grbsl) 

. scrt (S.r1s1, Set-L) ,

e<b:-acE-rs¡bÊsj{¡ts (r€fs2 , $b62 ) , scrt ($b2 , Set2 ) ,
cüq_subêet(Set2,Set1), !,
æsd(Defs1, Oefs2. Þf-O¡t),
cl ^..iÊy'l¡rccess (Èds,G4h, Þfsort,ÞgreÐJt), l,
ro_raorse_d4ree (Dego€úrt,, æreel) . /*

the prdiete 'e<trãct_subÊæbts(+Þfs,-Slbslist)' collects all- tte srbscjpts usd b/ tle set of èfinitiøs
Þfs in tlp lie! Srbslist, v/iüx Ure ecçticn of sinple locaÌ vari¿lcle.
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*/ e<b:ad_subsciprs( td(t (91èa1/J--J l$bs1l ,-J lDefsl , tst¡bs2 l$br,isrl ) :-
l, sirçlifl2_to-lecs ($bsL, S¡b62) ,

eô:dct5ùsæipts (Ðds, SlbLi.st) . /**/ ectrad_.5ubsæþrs(td( Ll il1,_J lÞfsl ,sùsl,isr) :

l, e<Þ.act_strb6€ipts Þfs, $rbs[,jst), /**/ e<Eract-.sr¡bsæþEs(td(Llslb€l1 ,-J lÞtsl , ¡s.'bs2|s'¡er,iq¡¡ ¡ I-
siÍp1iqr/_to_Is€s (SiLsl-, $b2) ,
e<bract_$bscipts (Dds, Srbslist) , ,/**/ ecb:act_.9:beøþts(tl , tl) :- true. /*

*/ stup1i4/-to-1s€s(tl, tl) :- true. /**/ sinplisT_to_lees(t(rd,I-eçJ ls.Í^J61l , [(rd,r-edls:bs2] ) :-
siÍplify_to_Ie€s (SrlsL, S-lb62) . /*

Tte ¡zedicate 'less_!rr-.1:r¡ul-.ltgree(+X,+Y) ' succæÈ if X is a lædirg subÊqus.tæ of y, jgr-rcrirg v,¡ild carls.*/ 1æs_c_eg.:al-_degree(tl,_) :- true. /**/ leos_.¡-1=qr¡¡l¡{ocree([*],J :- true. /**/ less-ø-qrn1-d4oæe(tHlTtl , tulr2l I '- les_..l-lr¡:r$alJÊEee EL¡rÐ. /t
TtE Fredicate '1ook_r.p¡rocess(+Defs,+Prccs,-koc)' succeeds if prcc is the parccess @ltainj¡E Èfs in tte li.*Þæ
*/ lcok-Wlrocess(Þfs, t(DegEee,Èfs) l_l , tryeeoeesl) :- !. /**/ lcok_rplroes(Þfs, LlÐocsl .koc) :-

look_rp¡xccess (ÞÊ, Procs, proc) . /*
Tte ¡redicate 'rn_r,orse_degree(+Degqæel-,+Deg0€e2) ' sr¡æeds if ægreel_ æd Eree2 a¡e tle sare qr if øre is tle
sarEastleotlse<Egdedlc"lt*t, cR.if tlq¡ag0etottepointvtErecrEhasan*, eg, [a,*],[a] .
*,/ nc_r,,,use_@ree( tl , tl) :- rue. /**/ nc_rrose_deoneeL [*] ) :- Eue. /*
*,/ nc_r,nse_@ree( [*],J :- true. /**/ nc-rnnse-@ree( tHlTll , tHlT21 ) :- ro_r.^rcrse_@ree (TI,T2) . /*

Tte ¡xediete 'r€rove-subs€ifts(+Srbs,+nqh,-¡:4rt) ' dsir,es n@Jt by èLetirg a-¡¿ 1ædirg teÍs of IyqTrl
tìat are erHd in Slb.
*,/ rarorc_g¡bsaipts(tl,Èeq,Flq) :- tn:e. /**/ ren¡.e_s¡bseþrs( t$bl$hsl , t$blFreqrnl ,Fb@rt) :

rsrE\¡e_subÊGjBts (SÈs, fYeqnr, Ilg:t) . /*
*,2 r<rore_sr:bsej¡lts ( Ll Sj.sl,FTeq]¡,lyeS:t) : -

rerove_subscþts (S-bs, ltqtrr, Fteqf,:t) . /*
M. of Qtirnise. */

13.6 The Generator

The Generator may be invoked by a goal of the form:

gee:ate(QUnal ,lÞxf,).

where Optimal is the file containing the output of the Optimiser, and Text is the file that should
contain the annotated specification created by the Generator.

,/* The Gs¡gra.tcr.
*/ gsE æe(f¡prtL, Trprt2,Orþ:t) :-

r€d_fee ( I.tFrtJ-, free),
red_¡rcæsses ( Tr¡rrt2, ÈÞcs, Cq:h),
ggE'ate-q.¡Þ.lt (OrÞrt,Itee, Prccs,Cqh) . /*

*/ red_tree(lr{¡it,lÞ:n) :- æeiry((Ëer) ,see(f¡pt') ,rcad(Tìeln) ,sesr,æe(Ilse). /*
*/ red¡rccesses (Îrg:t, nocs,G@r) : -

see(¡¡g:t) ,read(hþcs) ,ræd(Gæ1) ,segr,sæ(use) . /*
*/ gBrsæe_grq).¡t (OrttrIt,Træ, Procs,G@r) :-

' EÞtsrfu:stl$di.æ14¿' (¡ressage, lefc,'CsgraËry labelled c*.
te1ljrg (tbe), teLl (OrÞ]t) .
rn¡bælzocesses L ProG, Prccsl),
''I ¡tel cr4h(ProcsL,O@,IafceJ-led),
irridgæ_rmEix (tãbelld),
gErË-¿te_qÞEsn ('Ilæe, Prccsl-),
told,tell(I.Iss) ,
'qFEsTSþA$di-æ1Ar'' (nesage) . /*

*/ gsieäe-iÐæten(qÞtsn(SlÉsn, padcaæs,Cgsie, Stat€,Evglts), soIt)
al'-olish (ct¡r¡st_.¡rum, 2 ),
rù,r^/ritse (' pacl€æ body' ), \^rj.te (SlÞtsrì),urile ( is, ), rù,
gsEiate_states (States,Scrt),
geËaEerã,Ðts (E\Erts,Scrt),
rrr-jte(,sd ,) ,rar-ite(g¿Éan) ,¡¡z-ite(, ì') ,rf-,ttr. /*
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*,/ ggede_.¡states(tl ,). /**/ gsrsde-states( lstate(LeçOcdan) lstates] ,Scrt) :-
t¿b(l-), sg¡e:aterlecl (I€(, oo&n, sort, Proc),
Ì,'ù:lijl€('i -'),ütr'ite(Proc),r!-,gEE ate_rstates (SEates,Sc[t.) . /*

*/ gee*e]bl (1o<( tldl t I I N),Ccen,ScrE, ÞccrQ : - l,
IèJ-A6re, urite (t'hre), \,rite (' :' ),r,,¡rite (O&n),
1od<-ræ¡zocess_id ( Iec ( t Id I I I l, N), SorE, ÈocTd) . / **/ gExs*e-¡lecl (1e( ( tId I 

Dml,I0, ccdon, ScrE., ÐocId) : -
rèJ-AÞre, urite (IEre), \,'rite (' : an:a!¡ (' ),
glge:ate-ddrE(Þn) ,
urile(' ) of ' ),r^E-ite(oaddrù,
d¡!ry_Li-st. ( *, Drn, Stars),
1cd<-rp¡¡ocess-id (1e< ( tfdl Starsl,N), Scrt, ÈccId) . /*

*/ gsieäe-.¡lqrs(tbfll tll) :- r¡z-ite(D¡n) . /**/ geeæe-.¡lcns ( tD:nrl,o:rn2 lÞrsl ) :-
\¡¿-jle (D:rn1) ,v¿-ite ( ' , ' ) ,9rge:ate-dars ( tDcr¿ lDJrEl ) . /*

*/ gs:e:de_.gisÌts (l) ) . /**/ grsrsÉe-gerts ( tE\EltlE\Ertsl,SoÉ.) :-
gsErate-q/srt. (E\Ert, Sot ),
gEËrateJ5,Elts (E\,Erts,ScrÈ) . /*

*/ gÐete_-gisÉ (e¿glt (Et/grt, Þrars,Iocals,Body),ScrÈ) :-
\¡À^jle(' tr¡ocAæ ') ,r¡Eite(E\ErÈ) ,
gee-atelnrlaretãs (Þ¡ars, Søt),
æerate_loca:-s ( 2 , Locals , Sort) ,
\,È-jte(' bqrin,),rù,
gsErateJstrrË-fist (2, @r/, SorE),
u¡:|:jte(' sd' ),\,,L-ite(E\Ðt),\^Ë-ite(' ¡' ),rù. /*

*/ gøer&e_tr¡raretss ( tl ,J :- \¡/riÈe(' is') ,n1. /**/ gg:søÈe-tr¡raretss (Þrars, Sct) :-
r^rile (' (' ), Ssrs-atel)arans (Parars, SorÈ) . /*

*/ ge¡gÉelxrars(tpardn(feçOcdon) | tl l,scrtl r-
gsEr-ate_ful (I-o(, oc,&Q scrE., Prcc),
vÈ-ite(') is -- ') ,\^tr-j-te(Plcc),tí. /**/ gsra:*elnrars ( tpar:an(I.oç Ocddn) lnar:arsJ , ScnE) : -
gserateJkl (Lec, OodcnÌ Scrt, Proc) ,

vÈ-ile('í - '),vrite(ÈÞc) ,ri-,tab(15),
glgêratel)arars (Èrars,Scnt.), /*

*/ gerg:æe_J.ocals L, ll ) . f*/ ge:sde-Jocal-s (N, [toel (lé<, Ccdcrn) 
| 
I¡caf-s], Søt) : -

tab(N) , gÐeLæerjecl (Le<, coùn, Sort, Prcc) ,
\'È-ile( ; - '),\¡rite(Þ1cc),ri-,
gse atejocaf-sN,I¡cals,Sort) . /*

*/ grseÊe-surÈ(N, tl,J :- tab(N) ,r^¡rite('ru11;'),n1. /**/ gB:@sffi(N, tHlTl ,Scr$ :-
tab(N) ,!,/rite( 'bæÉn' ) ,ri-,
N]- is I+¡l-, g|glerate-rsffi-list (Nl, tHlTl, Scrt),
tab(N),v'rite('sd;' ),n1. /*

*/ gts sffi.-llst(N, tl ,J :- tab(N),r¡Ë-ite('r¡¡11;') ,rí. /**/ gmeáe-.istnÈ-1istN, tHlTl, scnt) :-
gseratejtrnE. (N, H. Sort) ,
gEE atejtr¡E-tail(N,T,Scrt) . /*

*/ gtægate-.,isffi_tai1L,Íl ,). /**/ gs:erte-.istÍÈ-tai1 (N, tltlTJ,Scrt) :-
gslel:ate-lstrnÈ (N, H, Sort),
geeate_gtnL_tail (N, T,Scrt) . /*

*/ gerg*e-.ist¡na (N, if (1o< ( tÐ{lHrel, 1), ÐA, TYue, Êlse), Scnt) : -
lodc-W¡zocess-j.d(1e<(to'qlwrel , 1) , Scrt, PlccId) ,
têb(N),ri¡rite(' if ' ),æerate_.9çressiør(Bp),
vÈ-ite(' thgt --'),urite(Pocld)¡1,
Nt is N+1,
gaæate-¡strnÈ_list (Nl, Eile, ScùÌ),
gse:ate_-elselÞrt (N, FÞlse, SøE),
tab(N),$rrite('sd if;' Lr:f-. /*

*/ ge:sde-.¡e1sel¡rtL, tl ,J :- !. /**/ gsisde-dse_¡=rt (N,IÞlse Søt) :-
tab,0J),\,,/rite (' eLse' ),nI,
Nl is N+1,
gsÞiate_tsffi._1ist (Nl,ËLse, Scùî) . /*
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*,¡ gerer*e_..isfr, (N,vfri1e(Var,Ðç.Body),Sort) :-
lodc_ræ¡¡rces_id(Var,SoÈ-t, Þ¡ccId),
talc(N) ,u'-ite( ,uÈrile , 

) ,gÊ.re.ate_rÐçressicnEp) ,
vE-jte(' 10æ - 

,),$E-ite(procld) 
,n1,

NI- is Nr1, gs¡sate_.,1sÞrE-1ist Nl,Body, Sorf ),
tab(N),urite('<d locp;'l ,rù. /*

*/ gelsÉe-..Stnt. (N, all (Var, Un, Bodf), Søt) : -
1od<_W¡¡rccess_id (Var,Scrt, ÞocId),
Va:=1o<( UJfd),) ,

talc(N),\^E-ite (' aJ.1' ),!Ëite (Id),r¡¡rite(, jn'),\'Ëite(Þn),
r¡rite( ' Icæ - 

,) ,Ì¡rite(proilö ,rù,
Nl- is tr+L, gg¡era.tersu^rË_l-ist (NI, Bcdy, Scùi),
teb(N) ,r¡¿-ite('sd 1oæ;') ,r:f-. /*

*/ gs:eÉe_.jstÍrÈ. (N. fcr(Var,Èn,Body),Sori) :-
lodc_rp¡xocesç_id (Var,Sori, prccld),
varlec(UJrdl ,) ,
tab(N) ,¡¡È:ite( 'for ' ) ,v¡rite(Id) ,\¡E-ite(, in ,) ,\rr-ite(Þn) ,
rau-jte( locp -- ,),uriÈe(prÐctd) 

^rù,Nl- is N¡1, gsteate_rsffi_list (}ú_, Bcdy, Scrt),
talc(N),\,,rite('<d 1oç;, ),nI. /*

*/ gmede_.9ffi.(N, assign(var,Ðç),Scnt) :-
lod<_rp¡zccess_id (Var,ScrE, p¡æId),
talc(N),ggreãte vâr(Var),r¡r-ite(' :=' ),
gøer-ate_rÐg€siør (Eç),
r^Âite(' ),\¡rite@rÞcrd) ,nJ. /**/ gse:&e_.istrnt(N,calIS/ar,øç),Sort) :-
Va=le< ( L/mdcee/E\Etl, J,
lod<-læ¡rccess-_id (Var,Scaf , ProcId),
tab(N), ur-ite ( Pac-]ege), t¡rite (, ., ),ÍL-ite (E\Et'),
urjte(' (' ),Wg-ate_.¡eqgessicn(Þç),
vE.il'e('); -- '),r'urite(Þrcild) ,n]-. /*

*/ ggìeræe-isffi,(N,rull,J :- tab(N) ,v/rite('n¡11;,) ,rJ. /**/ getø*e-.gtrnt (N, retu:n( [] ),J : - tâb(N),\¡Ë-ite (, æh:rn;' ),rù. /**/ gøeäe_.gurt (N, fu1are(Væs,Eodf),Søt) :-
tab(N),vÈ-ite ('.r-cbrc' ),n1,
Nl is Ñr1,
Weate_lccafs (Nl, Vars, Sor{.),
talc(N) ,\,'rit-e( 'begrin, ) ,ri-,
gseate--.Sffi-f ist 0ú-, bdy, SorE),
talc(N),r^Ê-ite('sd;' ),rù. /*

*/ gareræe¡=qressicn(tl ) :- l,gsErate_fri(Fh),r^riteGh) . /**/ geæ:4e_.gq¡ressicn(Þç) :-
ggælate_ftr(rn),r¡e-ite(Ffl),!,È-ite(' (, ),
gsE-aterÐçn(Elg)),r¡L-iÞ(' ), \ . /*

*,¡ gs:eæte_.-eqn([]) :- l. /**/ gs:e:&e--egr(tvarltll) :- t,
gsærate_r¡ar(Var). /**/ gslerÉe--¡¡{n(lvarlopl ¡ .- t,
ggætate \,¡ar(Var),!'¿-ite(',' ),
ggeaterÐgn(Oç¡ . ¡*

*/ gmsÊe_:r,ar(1e<(L/JIdl il LJ ) :- t,urite(Id . /**/ gqrsÊ,e_:iar(1o( LJJra¡o'lt l,J ) :-
ur-ite(rd) ,vr-ite( , (,),gssratejubs(s¡bs) ,r¡rite(, )'l . /"r/ gÊre:te-jnÈs( L/Jsrbl tll) :- $E-ire(sJb) . /**/ gsleÉe-.¡sr¡b ( tJJS,fcl-,S-bA I S:bsJ ) :-
\^r-jte(srbl_) ,vËire(' , ,) ,æe-ate_.s¡bs( tsùA l$b6l ) . /**/ label_grruh(Èocs,G@:In,G@tÈ) :-
I +Þì_\,etioes (prccs,Gqd-r¡r,Gtad.l1),
soüt(G4*ú,Gds.rt) . /*

*/ 1abe1-r,etieL, tl, tl ) :- t. /**/ 1abel_rerices (PIocs, tvsbe<-Eå€s I 
cdnrl, trôbel-rÈet abef-s 

l 
o@ort J ) : -

'1 alæ]_\iÊrEo< (prÞcs, Veþ<, Lâbel),
I aþrFþÊs (Þrccs, F&es, f^abeLs),
s6st (r al-Êl e, E&eLabels),
r,+er-vstic€s (nccs,G@:fn, Gæçf,û:t) . /**/ label-rete<( [ (N,P,Vg.te<) ltuocs], (P,Vqte<), 0f,p) ) :- t. /"*/ ìabel_vato<( Ll Ðocsl,VsÈÐ<,I¡bel) :-
'I ahel_r,etec(p¡ocs,VsÞ{, I¡beI) . /*

*/ label-eÈes L, tl , tl I :- | . /**/ label_e&es(Èccs, tEÈelFèBl , tlabeJ-lrabelsJ ) :-
''I âtÞr_riete,r ( procs, Eåe, I¡bel ),
I a]-pl¡:Cgq (p¡pçs, Fftes, IabeJs) . /*
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*/ lool<-rp-¡roæs_id(Var, [(NP,Vars) lgrccs], (N,Ð) :- nerbø(Var,Vars),1. /*
* / loolç-tp-¡zooess-id(Var, LlÐocsl, N) : - 1æk_ræ_¡res_id(Var, Èc,N), ! . /**/ 1æk_rn:¡oes_id(var, tl,' (trlassigrrd) ') . /*
*/ gø:g.êæ:þt(Fh) :-

urirye(frt-N) ,nare(N,DjgÉts) ,qxgrd( "frr-" ,Dlgits,Ibre) ,r¡ane(lbÀE¡e) . /*
*,2 rubq¡xccesses(O, [], [] ) . /"*,/ n¡bs.'prææses(N, t(Ègræ,Þfs) |pocsf¡rl , [(Rocld,Ègre,Þfs) |BocúrtJ) :-

n¡te_gccesses (Nl, Ðasnr, koc$¡t),N is NI+1,
r¡ae (N, S¡ffix),æsr1('Poc€ss-',S.rffix, Iö,nare(ÞþCld, Id) . /*

Þd of @æt¡r. */
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-A-
Access

independent. 
^See Independent access

random. S¿¿ Random access

sequential. See Sequential access

Access time, 59, 68

ACID properties,4

Ada programming language, 9, 20, 25, 26,

33, 34, 35, 36, 37 , 39, 23r
Aho & Ullman 1912a,19

Aho & Ullman 1912b,178

Aho et al. 1972,94,238
Aho et al. 1986,190
Algorithm

Eve and Kurki-Suonio. See Eve and

Kurki-Suonio algorithm
parallel update. S¿¿ Parallel update

algorithm

random access. S¿¿ Random access

algorithm

sequential update. See Sequentiai update

algorithm

Tarjan's. See Ta,rjan's algorithm
all statement,37, 38,39, 40, 56,86, 109,

III, I2I, 167, T68, 17I, T72, L73,

I97, ).98, I99, 232, 233, 234, 244, 245

Allocating statements to processes, 157

Analyser program, 227 ,233, 234,235,
236, 237 , 238, 244, 247 , 250, 25r,
305,3r2

Andrews t981,23
Assignment statement,3T , 86, 87 , 89, I02,

110, 118, L2r, r24, J.25, 146, I57,
158, 159, 160, 165, I72,173, I77,
178, r79,180, 191, 196, 1gg, 1gg,

190, 191, r99, 2I4, 234, 237, 24I,
242,243,244, 264,267

Atomicity, 4, 2I, 22, II3, lI4
Attribute
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database, ).0, I54, 256, 273

hidden, 26,l3I
Audit event. SeeBvent, global

-B-
Back end, 752, I53, I55,207
Bacon et aI. 1994,109, 110

Barnes 1989,9,26
Batch processing, 45, 70, 72, 134, I5I,

L52, I53, 155, 201, 227, 257, 259,
259,275
defined,4
example,6

introduced, 1

Bernstein et aI. 1986,69
Bertziss J.986,24

Bidoit & Amo 1995,17
Bill of Materials Problem,I28,274
Booch I99I,26I
Brady 1997,290
Branch and Bound Search, 20I,2I4,2L5,

216, 2I7, 2I8, 2I9, 220, 22I
Break-even point, 60

Bubenko 1986, 17

Buffer, L, 56,60, 68, 70, I79, l8l

-c-
C programming language, 45

Cameron I983a,I7
Cameron 1983b, 17

Cameron 1986,17

Canonical Decomposition Metho d, 13, 17,

25, 7 I, 83, L21, 128, 253, 256, 251,

259, 26r, 262, 263,264,277
introduced, 8

Canonical Process Graph, 14, 94, 96, 97,

202, 208,227 , 238,263,277
definition,94
example,203,207
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Index

Canoniser program, 227 ,236,231 ,238,
239,3r2,3I3

Cartesian product, 170, 17 I
Casati et al- 1995,13

Case analysis method, 190

case statement

absence of,37
CASE tool, 154, 157, 177, 225, 227, 253
CDM. S¿¿ Canonical Decomposition

Method

Chandy & Misra 1988,109,122
Chapin 1981,256

Chart of Accounts Problem, 128

Chen 1976, I7,253
Chikofsky, 1989,154
Clocksin & Mellish 1984,221

Close coupling, 89, 90, 92,709,I38,263
CM-5 parallel processor, 45, 62, 63, 65, 68

CMML message passing library,45
Cobol programming language, 2, 45, 48,

52

Codd 1970,24

Collection phase, 46, 47, 48, 63, 64, 65,
T67, L7I

Colouring vertices, I24, I34, 225

Colter 1982,256
Communicating Sequential Processes, 1 7,

278

Compatibilrty, L20, LzI, I22, I23, I24,
r25, 165, 169, I77, I7g, r1g, Ig0,
rgJ, r99, 20r, 209, 2r0, 2r2, 2I4,
222,223, 224, 225, 227 , 233, 234,
242,244, 246, 247, 276

many-one,223

many-one, 12I,225
partial, I2L, L22

Compatible processes, 207, 208, 209, 2I0,
2II,2I3,222,224

Complexity, computati onal, 72, 84, 87, 98,
19I,212, 2r3, 214, 250,25I,269

Component process, L3, 19, 40,75,77,
81, 83, 86, 90, r2g, r57, I72,20r,
202,220

defined,22

description, 22

example,2T

introduced,2

Component specification, 34, I04, 237,

243

example, 28,42,1.04
Composite key,62,70
Composite Process Graph, 97 ,202

definition,94
Composition problem, 201, 209, 2I3, 2I4,

276

defined, 14

Compound statement, 186

Computational complexity, 155

Concurrency,4, I0, 19

Conditional context, 185, 188

Conflict. Søe Incompatibility
Connor I98I,256
Consistency,4
Contention, 2, II, 2I, ll}, 263, 272, 273,

274,215

Control network, 62,63
Conway 1963, 10

Coroutine, 10

Correctness, 3, 13, 2I,22,75, J6,77,
277,279

Cost function, 8, L7, 201, 203, 206, 209,
2r3,219,223,263

CSP. S¿¿ Communicating Sequential

Processes

Cycle, data-dependence, 80, 89, 9I,93,
95,96,109, 138, L39, I4I,146, I47,
L52, I83, 204, 206, 207, 216, 2I7, 225

-D-
Data Flow Theorem, 80, 91, I35,202
Data network,62

Data type, 34

Database, 2, 3, 4, L3,24, 35, 46, 59, J0,
87, r3r, I43, I5r, 152, 253, 254, 255,
259,267, 269, 272, 273, 274

Database management system, IL, 69, 272
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Data-flow, 80, 91, 164,257,258,261
introduced, I

Data-flow Diagram, 256, 257, 258, 260

introduced, 6
Datastream,259,262
Date 1993,255
Deadlock, Il, 69, 212, 273, 27 4

Deadlock free database, 273

Decision free, 2I4, 2I5, 216, 219, 220

declare block
example,39

Decomposition, 2, 10, 13, 18,42,62, I57,
I6L, 162, 163, 164,20L,275,276
canonical, 2,3,8, I0, L8,276

example, 23,27,3I
Definition

dynamic. See Dynamic definition
lexical. S e e Lexical definition
Iive. See Live definition

Degree of independence, l2I, 168,223,

227, 239, 240, 24I, 242, 243, 244,

245, 246, 247 , 248, 250
Delayed call. See Delayed procedure call

Delayed procedure caLL,23,34,52, 56, 59,
77,78,79,82,83, 84, 86, 88, 89, 90,

9I,104,106, 109, ll4, lI8, rI9, 126,

I53, I57, 164, I9I, I93,20J,224,
243,245, 263, 268, 278

introduced, 15

Deletions, 8

Delisle et al. 1982,256

DeMarco I9J8, 2, 6, 8, I'7, 256, 258
Dependence

hatd. See Hard dependence

soft. Se¿ Soft dependence

Dependence Theorem, 82, 89, 9 I
Depends on reiation, 82, 84,85, 86, 87,

88, 89, 90, 101, r02, n 0, 114, 115,

lI9, I22, I33,135, I37, I44, 169,

I7I,179,180, 182, 184, 187, 188,

r89, r92, r93, r94, r97,223,240,
24L,243, 245, 247 , 267 , 273

lndex

Design methodolo gies, 253, 255, 259, 263,

264,277
dominant, S

introduced, 2

overview, 17

Designer program, 84, I54, 155, I57 , 160,

168, r72, r17, r7g, I93,799,225,
227 , 228, 243, 249,25r, 276, 279, 290
introduced, 14

DeVirmis & Ulusoy 1996, 110

DFD. See Data-f7ow Diagram

Dijkstra 1968,259

Dijkstra 1976,54,275
Disks, magnetic, 5

Distribution phase, 46, 47, 63, 64, 67, 17 I
Durability,4
Dwyer 198la, 54,275
Dwyer 198lb, 54,I5I
Dwyer 1992,8,278
Dwyer 1995,275

Dwyer 1998,8
Dynamic definition, I92, I95, 196, 233,

234, 237, 238, 239, 25I, 27 5, 21 8

-E-
Early evaluation, I59, 165, 247

Eich 1992,68

Entity, 253, 254, 255, 259, 260,26I,262,
264

external, 6

model, S

Entity-Relationship Modelling, lJ, 253,

255,256,260
E-R Modelling. S e e Entity-Relationship

Modelling

Error detection, 152

Eve & Kurki-Suonio 1997, 100, 238

Eve and Kurki-Suonio algorithm, 100,251

Event, 1.8, 34, 47, 72, 75, 76, 79, 82, 87,
94,101,106, 109, 113, 114, r25, r38,
139,152,168, 181, Ig4, Ig7, r9r,
233, 243,245, 255, 259, 260,26I,
264,267,275
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Index

global, 47,52,55, 56, 65,70, ILI, II2,
118

introduced, 8
invalid, 151

order. Se¿ Order ofevents
Transfer. See Transfer event

Event loop, 9, 13,20,48, 55

Event procedure, 20, 2I, 22, 23,35, 36,

3J,41,56,82,87, 88, L20, I2r, I22,
I24, 136, I57, 166, 16g, I73, I77,
180, 183, 185, 186, r92,209,2I4,
232,234, 24r,243, 244, 251 ,263
example, 26,39, 48, 56,88, 171

Event specification, 34, 83, 154, I57, I70,
247,264
example, 20, 82, 85, 89, 90, 101, 111,

LI4, T23, I27, T39, L4I, L5L, I52,
167, 16g, r72, I73, r75, L90,243,
267

Event specification problem, 19

Expression,3T, 40,87, 101, 102, 158,

159, 160, 171, 181, 196, 197, 1gg,

189, 191, I92, I94,224,229,232,
233, 234, 244,249, 264

-F_
Feasible composition, 204, 208, 209, 2I0,

2rr,2r4,220,22r
Feasible process graph, 204, 209

File,25, 59, I2l, I83,275
master. S¿¿ Master file

Finite-state automaton, 184, 264, 268

Flores et al. 1993,13

Floyd 1986,253
for statement,37,38, 40, 86, 165, 166,

L72, r97, r99,244
Frankel 1979,24
Frequency, 168, 172, I73, 233, 234, 244,

245

Friberg 1984,3
Front end, L52,153, I55,207
Functional dependency, 24, 25, 26, I54,

253,254,264

-G-
Gabber 1990,221
Gane & Sarson L979, 17 ,258
Garcia-Molina & Salem 1992,68

Garey & Johnson 1979,213

Generator program, 228, 248, 249, 32O

Global variable. S¿¿ State variable

Grammar, 19, I84,268
Grant 1987,24

Granularity,63

Gray & Reuter 1992,4

Gray 1981,90

Greedy Heuristic method, 20I, 220, 222,

227,240
Groupware, 13

-H-
Haerder & Reuter L983,4
Hard dependence, 180, 181

Hawryszkiewycz 1994, 258
Heuristic, 2, 8, 15, I59, 209, 212, 223,

240,276
Hillis 1985, 38

Hoare 1974,259

Hoare 1978,17

Hoare 1985, 17

Hopcroft & Ullman L979a,268
Hopcroft & Ullman 1979b,19,268
Host processor, 65

I
if statement, 37 , 86,89, 101, I02, 146,

160, 165, l'78, 187,199, 1gg, lg0,
r9r, r92, I94, 196,232,236,237,
243,244

Implementation, system, 6, 7, 13, 18, 26,

35,52,75,83,91,94, 104, I2I, L2g,
l3r, r47, 160, rg7, I99,207,222,
224,233,244, 259, 268, 274

example, 52,63,I03
Incompatibility, I2I, I22, L23, 124, I25,

130, 165, 169, r7r, r75, r7g, rgl,
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r90, L92, 196, 225, 233, 24I, 242,

245,263
Inconsistent database, 46, 262

Independence, T, 10, 12, 15, 83, 103, 109,

111, 1I7, II9,120, l2I, I2l, I30,
146,152,164, 166, I7L, I72, r73,

I78, I79,180, 183, 193, r91,20J,
208, 222, 223, 224, 225, 239,244,
246,263, 275, 277 , 278
introduced, I
limired, 121

Independent access, 14,30,46, 106, LlL,
rr7, rr9, L20, 125, 126, r30, r34,
L47, r54, r5l, t66, 167, 16g, L6g,

I70, L7I, I72, I73, 174, I75, 176,

L90, 203, 205, 206, 207, 209, 2lI,
2L2, 2I5, 2L6,2Il , 222, 223, 240,
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