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Summary 
 

The rapid settling nature of some industrial mineral slurries can cause problems in the 

measurement of their rheological properties. To address this problem a flow 

rheometer based on the principles of helical flow was developed. The rheometer 

designed, is a modified Couette flow system, whereby slurries are circulated through 

the concentric cylinders by the addition of an axial flow. The purpose of this axial 

flow is to prevent particles from settling and to maintain a homogeneous suspension. 

However, the addition of an axial flow component to Couette flow complicates the 

analysis procedure for non-Newtonian fluids particularly in wide gap geometries. 

Thus a specific emphasis in this study was placed on developing a correct analysis 

procedure for helical flow that eliminated the need for rudimentary calibration 

procedures. 

 

Experimental measurements with different liquids, including those with Newtonian 

and non-Newtonian flow properties showed good agreement between data obtained 

from the flow rheometer and data obtained using other standard laboratory 

instruments. Typical differences between the results from the flow rheometer and 

results from other laboratory instrument varied between 1-2%, with standard 

deviations in the flow rheometer data of between 2-4%. The flow properties of several 

non-Newtonian slow settling slurries were examined using the flow rheometer and 

also with a specially modified tube rheometer. As with the pure liquid results good 

agreement was obtained between the results from the flow rheometer and those 

obtained with the modified tube rheometer. Several rapid settling slurries were 

examined using the flow rheometer, but due to the rapid settling nature of these 

slurries they could not be examined with any other laboratory instruments. However, 

internally consistent results were obtained from different tests with the flow 

rheometer using different values of axial flow rate. These results demonstrate that the 

correct data analysis method was developed for the helical flow of non-Newtonian 

fluids  

 

Particle migration is a phenomenon known to affect the results of both rotational and 

axial flow rheological equipment. Whilst the motion of particles within the helical 
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flow geometry could not be directly observed, careful examination of the results from 

several experiments with slurries showed that the effects of particle migration were 

minimal or non-existent within the flow rheometer. It is presumed that the circulation 

of the fluid through the geometry minimises the residence time in the geometry, 

which reduces the likelihood of particle migration.  

 

The development of Taylor vortices in a Couette type geometry can cause substantial 

errors in any rheological measurements. The flow rheometer is based on helical flow, 

which is a combination of both Couette and axial flow and as such may also suffer 

from measurement errors if instabilities develop in the flow. A stability criterion for 

the helical flow of non-Newtonian fluids is therefore required to ensure measurements 

from the flow rheometer were obtained in the laminar flow region. The stability 

criterion for laminar Couette flow of a Newtonian fluid was well known, as was the 

effect of imposing axial flow on Newtonian Couette flow. However, the effect of the 

rate of acceleration of the inner cylinder and the effect of non-Newtonian fluids on the 

onset of Taylor vortices was unknown. An increase in the rate of acceleration of the 

inner cylinder was found to have a destabilising effect on Couette flow. A modified 

Taylor number was developed for non-Newtonian fluids using the power-law model 

and was experimentally validated for a range of non-Newtonian fluids. These results 

were then used to develop a laminar flow stability criterion for rheological 

measurements of non-Newtonian fluids in the flow rheometer. 

 

To test the suitability of the results from the flow rheometer for use in the design and 

optimisation of process units, the power requirements to turn an impeller in a small 

baffled mixing vessel were investigated.  Good agreement was obtained in the laminar 

and turbulent flow regions for a variety of Newtonian and non-Newtonian fluids 

between measured values of impeller power and those predicted using rheological 

measurements from the flow rheometer. 

 

Altering the density of the solid particles in a slurry is known to affect the overall 

rheological properties of the slurry. However, the effects of changing the liquid 

density were not so clearly defined and thus several artificial slurries of PMMA (poly-

methylmethacrylate) spheres in water/NaCl and water/glycerol solutions were used to 

investigate this phenomenon. It was found that the slurry rheology was altered by 
___________________________________________________________________________________ 
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changes in the suspending liquid density, however, these changes could be entirely 

attributed to changes in the liquid viscosity associated with the changes in liquid 

density. 

 

To summarise, the work presented in this Thesis provides a fundamental approach for 

the absolute measurement of the rheological properties of settling slurries, under 

conditions that more accurately represent those found in actual mineral processing 

operations. 
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Nomenclature 

 

English Letters 
A  pre-exponential parameter, power-law model  Pasn

a  shear stress calculation parameter, vane 

ax  Shi and Napier-Munn (1996) model parameters  mV(s/rad)x

b  constant of integration 

C  height of the impeller above the base of the tank  m 

c  differential pressure parameter    kg/(m2s2) 

DT  turbine diameter      m 

dx  x% of particles have a smaller diameter   m 

dv  particle diameter (volume average)    m 

ELF  entrance length parameter 

e  displacement of inner cylinder axis from centre axis  m 

g  gravitational acceleration     m/s2

H  axial length of a Taylor vortex    m 

He  Headstrom number 

h  gap width between parallel plates    m 

IP  impeller blade pitch      m 

J  width of baffles      m 

k  ratio of cylinder speeds (inner/outer) 

k1  Krieger and Maron model parameter  

k2  Krieger and Maron model parameter 

kn  mixing parameter used by Sinevic et al. (1986) 

L  length        m 

LB  length of impeller blade     m 

Le  entrance development length     m 

M  torque        Nm 

NB  number of baffles in a tank 

NI  number of impeller blades 

n  exponential parameter, power-law model 

P  Taylor’s turbulence parameter 

p  pressure       Pa 
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Q  flow rate       m3/s 

R  outer cylinder radius      m 

Re  Reynolds number 

Re’  modified Reynolds number for mixing tank systems 

S  radius ratio (outer/inner) (=1/κ) 

SC  stability criterion 

Ta  Taylor number 

Ta’  Taylor number    (= Ta2) 

Tac  critical Taylor number 

v  velocity       m/s 

vm  minimum velocity to maintain homogeneous conditions m/s 

〈vz〉  average annular axial velocity    m/s 

W  width of an impeller blade     m 

z  axial length       m 

 

Greek Symbols 

α  angle between cone and plate     rad 

∆  difference 

ε  eccentric Ratio (= e / average gap width(R-κR)) 

η  apparent viscosity      Pas 

Φ  solids volume concentration 

ΦP  power number 

φ  fluidity function (=1/η)     1/Pas 

γ&   shear rate       1/s 

ϕ  co-axial cylinder shape factor 

κ  radius ratio (inner/outer) (=1/S) 

λ  radius ratio (axial velocity peak/outer) 

Ω  angular velocity      rad/s 

℘  combined pressure (= p + ρgz)    Pa 

µ  viscosity       Pas 

ν  kinematic viscosity      m2s 

ρ  density        kg/m3
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τ  shear stress       Pa 

τy  yield stress       Pa 

θ  cone and plate angle (= π/2-α/2)    rad 

υ  acceleration of the inner cylinder    rad/s 

Ψ  wave number        

 

Subscripts 

b  property at bob (inner cylinder) wall 

l  property of the liquid 

p  property of the solid fraction (particle) 

r  radial direction, cylindrical co-ordinates 

w  property at the system wall 

s  property of the slurry 

z  axial direction, cylindrical co-ordinates 

θ  annular direction, cylindrical co-ordinates 

 

Superscripts 

c  CMC solution 

g  glucose-water solution 

m  moderate gap geometry 

n  narrow gap geometry 

p  polyox (PEO) solution 

w  wide gap geometry 

 

___________________________________________________________________________________ 

xxi 


