Continuous Flow Rheometry for Settling Slurries

by

Timothy James AKROYD

Thesis submitted for the degree of Doctor of Philosophy

School of Chemical Engineering Faculty of Engineering, Computer and Mathematical Science The University of Adelaide

November 2004

It's kind of fun to do the impossible. *Walt Disney*

Declaration

This work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent to this copy of my thesis, when deposited in the University Library, being available for loan and photocopying.

SIGNED :

DATE :

Acknowledgements

I am extremely grateful to my supervisor A/Professor Dzuy Nguyen for his guidance, support and advice throughout the entirety of this project.

This work is supported by a grant from the Australian Research Council under the Strategic Partnership with Industry- Research and Training Scheme, in conjunction with Rio Tinto Technical Services. I also would like to acknowledge and thank the involvement of Mark Coghill and Nick Vagias in this project and their kind hospitality during my visits to Melbourne.

I would like to thank Dr Denier from the Department of Applied Mathematics for some invaluable discussions on instabilities in fluid flow.

I would also like to extend my sincere appreciation to the Chemical Engineering workshop staff; Brian, Peter and Jason, for their assistance in the construction and development of the numerous pieces of experimental apparatus which I required for this project. I cannot thank you enough. To Mary and Elaine thank you for your assistance in all non-technical matters and to Andrew thank you for your assistance in laboratory matters.

To Peng thank you for your assistance, advice and friendship over the years we worked together in room A309, though I'll never look at coal in the same way again!

To all my friends, thank you for your friendship, support and numerous creative diversions during the course of this project. It was much appreciated!

Finally I would especially like to thank my Parents, Philip and Sarah for their endless support and assistance throughout this entire project. I could not have done this without you.

To my much-loved family I dedicate this thesis.

Publications

Akroyd, T.J. and Nguyen, Q.D., (1999), 'Continuous On-Line Rheological Measurements for Mineral Slurries', *Chemeca '99*, Newcastle.

Akroyd, T.J., Nguyen, Q.D. and Vagias, N., (2001), 'Rheological Characterisation of Rapid Settling Slurries', *Aust. Korean Rheol. Conference*, Melbourne.

Akroyd, T.J. and Nguyen, Q.D., (2001), 'Rheological Characterisation of Heavy Mineral Slurries', *Chem. Eng. World Congress 2001*, Melbourne.

Akroyd, T.J. and Nguyen, Q.D., (2001), 'Continuous Rheometry for Industrial Slurries', *14 Aust Fluid Mech Conference*, Adelaide.

Akroyd, T.J., Nguyen, Q.D., and Denier, J.P., (2003), 'The Stability of Helical Flow of Pseudoplastic Fluids', *Chemeca* '03, Adelaide.

Akroyd, T.J. and Nguyen, Q.D., (2003), 'Effect of Density Difference between the Solids and Suspending Liquid on the Rheological Properties of Settling Slurry', *Chemeca* '03, Adelaide.

Papers

Akroyd, T.J. and Nguyen, Q.D., (2003), 'Continuous On-line Rheological Measurements for Rapid Settling Slurries', *Minerals Eng.*, **16**, pp. 731-738.

Akroyd, T.J. and Nguyen, Q.D., (2003), 'Continuous rheometry for industrial slurries', *Exp. Thermal and Fluid Science*, **27**, pp. 507-514.

Summary

The rapid settling nature of some industrial mineral slurries can cause problems in the measurement of their rheological properties. To address this problem a flow rheometer based on the principles of helical flow was developed. The rheometer designed, is a modified Couette flow system, whereby slurries are circulated through the concentric cylinders by the addition of an axial flow. The purpose of this axial flow is to prevent particles from settling and to maintain a homogeneous suspension. However, the addition of an axial flow component to Couette flow complicates the analysis procedure for non-Newtonian fluids particularly in wide gap geometries. Thus a specific emphasis in this study was placed on developing a correct analysis procedure for helical flow that eliminated the need for rudimentary calibration procedures.

Experimental measurements with different liquids, including those with Newtonian and non-Newtonian flow properties showed good agreement between data obtained from the flow rheometer and data obtained using other standard laboratory instruments. Typical differences between the results from the flow rheometer and results from other laboratory instrument varied between 1-2%, with standard deviations in the flow rheometer data of between 2-4%. The flow properties of several non-Newtonian slow settling slurries were examined using the flow rheometer and also with a specially modified tube rheometer. As with the pure liquid results good agreement was obtained between the results from the flow rheometer and those obtained with the modified tube rheometer. Several rapid settling slurries were examined using the flow rheometer, but due to the rapid settling nature of these slurries they could not be examined with any other laboratory instruments. However, internally consistent results were obtained from different tests with the flow rheometer using different values of axial flow rate. These results demonstrate that the correct data analysis method was developed for the helical flow of non-Newtonian fluids

Particle migration is a phenomenon known to affect the results of both rotational and axial flow rheological equipment. Whilst the motion of particles within the helical

flow geometry could not be directly observed, careful examination of the results from several experiments with slurries showed that the effects of particle migration were minimal or non-existent within the flow rheometer. It is presumed that the circulation of the fluid through the geometry minimises the residence time in the geometry, which reduces the likelihood of particle migration.

The development of Taylor vortices in a Couette type geometry can cause substantial errors in any rheological measurements. The flow rheometer is based on helical flow, which is a combination of both Couette and axial flow and as such may also suffer from measurement errors if instabilities develop in the flow. A stability criterion for the helical flow of non-Newtonian fluids is therefore required to ensure measurements from the flow rheometer were obtained in the laminar flow region. The stability criterion for laminar Couette flow of a Newtonian fluid was well known, as was the effect of imposing axial flow on Newtonian Couette flow. However, the effect of the rate of acceleration of the inner cylinder and the effect of non-Newtonian fluids on the onset of Taylor vortices was unknown. An increase in the rate of acceleration of the inner cylinder destabilising effect on Couette flow. A modified Taylor number was developed for non-Newtonian fluids using the power-law model and was experimentally validated for a range of non-Newtonian fluids. These results were then used to develop a laminar flow stability criterion for rheological measurements of non-Newtonian fluids in the flow rheometer.

To test the suitability of the results from the flow rheometer for use in the design and optimisation of process units, the power requirements to turn an impeller in a small baffled mixing vessel were investigated. Good agreement was obtained in the laminar and turbulent flow regions for a variety of Newtonian and non-Newtonian fluids between measured values of impeller power and those predicted using rheological measurements from the flow rheometer.

Altering the density of the solid particles in a slurry is known to affect the overall rheological properties of the slurry. However, the effects of changing the liquid density were not so clearly defined and thus several artificial slurries of PMMA (poly-methylmethacrylate) spheres in water/NaCl and water/glycerol solutions were used to investigate this phenomenon. It was found that the slurry rheology was altered by

changes in the suspending liquid density, however, these changes could be entirely attributed to changes in the liquid viscosity associated with the changes in liquid density.

To summarise, the work presented in this Thesis provides a fundamental approach for the absolute measurement of the rheological properties of settling slurries, under conditions that more accurately represent those found in actual mineral processing operations.

Table of Contents

SECTION A INTRODUCTORY CONCEPTS AND TECHNIQUES	1
CHAPTER 1 INTRODUCTION	2
1.1 Background	2
1.2 Research Objectives	4
1.3 Thesis Outline	5
1.3.1 Section A: Introduction and Introductory Concepts and Techniques	6
1.3.2 Section B: The Flow Rheometer	6
1.3.3 Section C: Instabilities in Helical Flow	7
1.3.4 Section D: Applications of the Flow Rheometer	8
1.3.5 Section E: Conclusions and References	9
CHAPTER 2 BASIC RHEOLOGY	10
2.1 Introduction	10
2.2 Rheology of Slurries and Suspensions	11
2.2.1 Viscous Fluids	11
2.2.2 Yield Stress Behaviour	15
SECTION B THE FLOW RHEOMETER	19
CHAPTER 3 RHEOLOGICAL INSTRUMENTATION	20
3.1 Introduction	20
3.2 Standard Rotational Type Rheological Instruments	21
3.2.1 Plate Type	21
3.2.2 Concentric Cylinders	24
3.3 Generic Tube Type Rheometer	31
3.4 Rheological Instruments for Settling Slurries	34
3.4.1 The Impeller Geometry	35
3.4.2 Modified Coaxial-Cylinders	37
3.4.3 Addition of Axial Flow to Concentric Cylinder Geometries	39
3.4.4 Modified Tube Rheometers	46
3.4.5 Other Instruments	46
3.5 Statement of Purpose	49

CHAPTER 4 THEORY AND ANALYSIS OF LAMINAR HELICAL FLOW	
4.1 Introduction	50
4.2 Summary of Variables	51
4.3 Rheological Measurements from Helical Flow	52
4.4 Theory of Analysis	53
4.4.1 Determining the Shear Stress	54
4.4.2 Determining the Shear Rate	56
4.4.3 Determining the Rheological Properties without determining the Shear Rate	56
4.4.4 Optimisation Procedure	60
4.4.5 Determination of b for a Non-Newtonian Fluid in a Wide Gap	62
4.5 Summary of the Data Reduction Procedure	63
4.6 Computer Analysis	65
CHAPTER 5 THE FLOW RHEOMETER - DESIGN AND DEVELOPMENT	66
5.1 Introduction	66
5.2 Description of the Flow Rheometer	67
5.3 The Helical Flow Geometry	69
5.3.1 Pressure and Flow rate Measurement	72
5.3.2 Critical Design Issues	73
5.3.3 Sizing the Geometry	76
5.4 Pump Selection	83
5.5 Computer Control and Interface / Data Acquisition Program	84
CHAPTER 6 GENERAL EXPERIMENTAL APPARATUS AND TECHNIQUES	85
6.1 Introduction	85
6.2 Preparation of Experimental Fluids	86
6.2.1 Liquid Solutions	86
6.2.2 Slurries	89
6.2.3 Determining the Solution Density	90
6.2.4 Determining the Settling Rate	90
6.3 Particle Size Analysis	91
6.3.1 Experimental Apparatus	91
6.3.2 Experimental Results	92
6.4 Generic Rheological Instruments	95
6.4.1 Bohlin CVO-50	95

6.4.2	Haake VT 550 – Controlled Rate Viscometers	100
6.5	Tube Rheometer	107
6.5.1	Experimental Apparatus	107
6.5.2	Experimental Techniques	111
6.5.3	Analysis of Results	111
6.5.4	Experiments Involving Standard Fluids	112
6.6	Summary	115
СНА	PTER 7 EXPERIMENTAL VALIDATION OF THE FLOW RHEOMETER	116
7.1	Introduction	116
7.2	Experimental Procedures	117
7.3	Results from the Flow Rheometer	119
7.3.1	Non – Yield Stress Materials	119
7.3.2	Yield Stress Fluids	124
7.4	Conclusions	131
СНА	PTER 8 EXAMINATION OF THE AXIAL FLOW COMPONENT OF HELICAL FLOW	132
8.1	Introduction	132
8.2	Errors in Ignoring the Axial Flow Component	133
8.2.1	Newtonian Fluids	133
8.2.2	Non-Newtonian Fluids	133
8.3	8.3 The Apparent Independence of Rheological Results on the Measured Value of	
	Axial Flow Rate	137
8.4	4 Calculating the Rheological Properties of a Fluid Without Measuring the Axial	
	Flow Rate	140
СНА	PTER 9 PARTICLE MIGRATION	141
9.1	Introduction	141
9.2	Literature Review	142
9.2.1	Modes of Migration	142
9.2.2	The Influence of the Physical Properties of the Suspension on Particle Migration	144
9.2.3	Migration in Rheological Instruments	145
9.2.4	Statement of Purpose	148
9.3	Migration in the Flow Rheometer	149

153
153
154
154
156
157
157
158

CHAPTER 11 LITERATURE REVIEW - INSTABILITIES IN COUETTE, AXIAL AND HELICAL		
FLOW	159	
11.1 Introduction	159	
11.2 Annular Pipe Flow	160	
11.2.1 Stability Criteria	160	
11.2.2 Entrance Effects	161	
11.3 Rotational Couette Flow	163	
11.3.1 The Effect of the Onset of Taylor Vortex Flow on Rheological Measurements	164	
11.3.2 Experimental Methods to Determine the Onset of Taylor Vortex Flow	164	
11.3.3 Stability Criterion for Couette Flow – The Narrow Gap	166	
11.3.4 The Effect of Radius Ratio or Gap Width	167	
11.3.5 The Effect of Acceleration	169	
11.3.6 The Effect of Eccentricity	172	
11.3.7 The Effect of Aspect Ratio or End Effects	173	
11.3.8 The Effect of non-Newtonian Fluids	174	
11.4 Helical Flow	175	
11.4.1 The Effect of Axial Flow on the Development of Taylor Vortices	176	
11.5 Statement of Purpose	178	
CHAPTER 12 EXPERIMENTAL EQUIPMENT	179	
12.1 Introduction	179	
12.2 Flow Visualisation	180	
12.2.1 Experimental Apparatus	180	
12.2.2 End Effects	185	
12.2.3 Experimental Techniques	186	

12.2.4 Analysis of Results	187
12.3 Torque Method	190
12.3.1 Experimental Apparatus	190
12.3.2 Experimental Techniques	190
12.3.3 Analysis of Results	191
CHAPTER 13 INSTABILITIES IN COUETTE FLOW	192
13.1 Introduction	192
13.2 Experimental Study With Newtonian Fluids	193
13.3 The Effect of Acceleration	196
13.4 Non-Newtonian Fluids	198
13.5 Summary	201
CHAPTER 14 INSTABILITIES IN NON-NEWTONIAN HELICAL FLOW	202
14.1 Introduction	202
14.2 The Effect of Axial Flow on the Onset of Taylor Vortices in Newtonian and	
non-Newtonian Fluids	204
14.3 Stability Criterion for Helical Flow	207
14.3.1 Axial Flow Stability	207
14.3.2 Rotational Flow Instability	208
14.3.3 Prediction of Instabilities in Helical Flow	215
CHAPTER 15 INSTABILITIES IN HELICAL FLOW - CONCLUSIONS	217
SECTION D APPLICATIONS OF THE FLOW RHEOMETER	220
CHAPTER 16 PREDICTING THE POWER REQUIREMENTS OF A MIXING IMPELLER	221
16.1 Introduction	221
16.2 Literature Review	222
16.3 Experimental System - Mixing Tank	224
16.3.1 Experimental Apparatus	224
16.3.2 Experimental Technique	226
16.4 Determination of the Experimental System Parameters	226
16.5 Prediction of Power Requirements in a Slurries System	229
16.6 Conclusions	021

CHAPTER 17 EFFECT OF CHANGES IN THE DENSITY OF THE SUSPENDING MEDIUM	ON
THE RHEOLOGY OF SETTLING SLURRIES	232
17.1 Introduction	232
17.1.1 Altering the Density of the Solid Particles	233
17.1.2 Altering the Suspending Liquid Viscosity	234
17.1.3 Slurry Models – Suspensions of Spheres	235
17.2 Experimental slurries	237
17.3 Modifications to the Experimental System	240
17.4 Experimental Procedure	241
17.5 Particle Migration	241
17.6 Experimental Results	243
17.6.1 Analysis of the Results for the 41 vol% PMMA - NaCl Slurry	243
17.6.2 Results for all Slurries	244
17.7 Conclusions	247
SECTION E CONCLUSIONS AND REFERENCES	248
SECTION E CONCLUSIONS AND REFERENCES	<u> 470</u>
CHAPTER 18 CONCLUSIONS AND RECOMMENDATIONS	249
18.1 Conclusions and Major Outcomes	249
18.1.1 Development of the Flow Rheometer	250
18.1.2 Instabilities in Helical Flow	251
18.1.3 Predicting Mixing Impeller Power Requirements	253
18.1.4 Effect of Changes in the Density of the Suspending Medium on the Rheology of	
Settling Slurries	253
18.2 Implications of the Present Work	254
18.3 Recommendations for Future Work	256
CHAPTER 19 REFERENCES	258

CHAPTER 17 FEFECT OF CHANCES IN THE DENSITY OF THE SUSPENDING MEDIUM ON

APPENDICIES

APPENDIX A	PROOF THAT PARAMETER B IS CONSTANT	A-2
APPENDIX B	SAMPLE CALCULATION – SIMULATION OF INSTABILITIES IN THE FLO RHEOMETER	W A-5
APPENDIX C	SAMPLE CALCULATIONS FOR THE DETERMINATION OF RHEOLOGICA PROPERTIES FROM MEASUREMENTS WITH THE FLOW RHEOMETER	L A-9
APPENDIX D	MANIPULATION OF THE TAYLOR NUMBER	A-20
APPENDIX E	SAMPLE CALCULATIONS – PREDICTION OF THE INSTABILITIES IN HELICAL FLOW	A-23

List of Figures

FIGURE 2.2-1 FLOW CURVES FOR PURELY VISCOUS FLUIDS	12
FIGURE 2.2-2 FLOW CURVES FOR YIELD STRESS FLUIDS	15
FIGURE 3.2-1 PARALLEL PLATE GEOMETRY	22
FIGURE 3.2-2 CONE AND PLATE GEOMETRY	23
FIGURE 3.2-3 CONCENTRIC CYLINDER GEOMETRY	24
FIGURE 3.2-4 AUTOMATIC IMMERSION DEPTH CONCENTRIC CYLINDER GEOMETRY	28
FIGURE 3.2-5 SCHEMATIC OF A VANE GEOMETRY	30
FIGURE 3.3-1 SCHEMATIC OF A GENERIC TUBE RHEOMETER	31
FIGURE 3.4-1 RHEOLOGICAL MEASUREMENTS OF A FLY ASH SLURRY USING A	
STANDARD BOB AND CUP GEOMETRY	35
FIGURE 3.4-2 MODIFIED CONCENTRIC CYLINDER GEOMETRY, WITH THE BOB IN THE	
HINDERED SETTLING ZONE	37
FIGURE 3.4-3 CONCENTRIC CYLINDER – BOB IN A MIXING VESSEL	38
FIGURE 3.4-4 CONCENTRIC CYLINDER – WITH SHIELDED MIXING IMPELLER	40
FIGURE 3.4-5 SCHEMATIC OF A CONCENTRIC CYLINDER GEOMETRY, WITH AN	
EXTERNAL PUMPING SOURCE	42
FIGURE 3.4-6 COMPLETE EXPERIMENTAL SYSTEM FOR A HELICAL FLOW RHEOMETE	R
	44
FIGURE 3.4-7 SCHEMATIC OF A HELICAL FLOW RHEOMETER	45
FIGURE 3.4-8 SCHEMATIC OF THE MODIFIED PARALLEL PLATE GEOMETRY PROPOSE	D
BY VLACHOU AND PIAU (2000).	48
FIGURE 4.2-1 SCHEMATIC OF HELICAL FLOW	51
FIGURE 4.4-1 BASIC DATA ANALYSIS PROCEDURE FOR HELICAL FLOW	59
FIGURE 4.4-2 PLOT OF THE VALUES OF EQUATION (4.4-26) VERSUS B	63
FIGURE 4.5-1 DATA ANALYSIS PROCEDURE	64
FIGURE 5.2-1 SCHEMATIC OF THE FLOW RHEOMETER	68
FIGURE 5.2-2 PHOTOGRAPH OF THE FLOW RHEOMETER (COOLING COIL IS NOT SHOW	VN)
	68
FIGURE 5.3-1 SCHEMATIC OF THE HELICAL FLOW GEOMETRY	70
FIGURE 5.3-2 PHOTOGRAPH OF THE HELICAL FLOW GEOMETRY	71
FIGURE 5.3-3 PRESSURE TRANSDUCER (IMT, GERMANY)	72
FIGURE 5.3-4 A: AXIAL FLOW IMPACTS ON THE BASE OF THE BOB; B: AXIAL FLOW	
DIRECTED AROUND THE BOB	75
FIGURE 5.3-5 THE EFFECT OF GAP WIDTH ON THE PRESSURE DROP OF A FLOW IN AN	
ANNULUS	78
FIGURE 5.3-6 OPERATING RANGE OF THE FLOW RHEOMETER	82
FIGURE 5.4-1 SCHEMATIC OF THE MODIFIED HELICAL ROTOR PUMP	83
FIGURE 6.3-1 MALVERN PARTICLE SIZE ANALYSER	92

FIGURE 6.3-2 RESULTS - MALVERN PARTICLE SIZE ANALYSER, CUMULATIVE UNDER	R
SIZE – GLASS BEADS	93
FIGURE 6.3-3 CUMULATIVE UNDER SIZE PLOT – VARIOUS DIFFERENT SOLID PARTIC	LES
	94
FIGURE 6.4-1 CORRECTLY LOADED - CONE AND PLATE GEOMETRY	96
FIGURE 6.4-2 RHEOLOGICAL RESULTS FOR THE STD OIL S200	99
FIGURE 6.4-3 A: AUTOMATIC IMMERSION DEPTH BOB; B: VANE IN CUP	101
FIGURE 6.4-4 RHEOLOGICAL RESULTS FOR THE STD. OIL S200	105
FIGURE 6.4-5 RHEOLOGICAL RESULTS FOR THE CMC 0.5WT% (C600)	105
FIGURE 6.4-6 RHEOLOGICAL RESULTS FOR THE POLYOX 1.2 WT%	106
FIGURE 6.4-7 RHEOLOGICAL RESULTS FOR THE XANTHAN GUM 0.25WT%	106
FIGURE 6.5-1 SCHEMATIC OF THE TUBE RHEOMETER	109
FIGURE 6.5-2 PHOTOGRAPH OF THE TUBE RHEOMETER	110
FIGURE 6.5-3 RHEOLOGICAL RESULTS FOR THE GLYCEROL SOLUTION	113
FIGURE 6.5-4 RHEOLOGICAL RESULTS FOR THE CMC 1.5 WT% SOLUTION	113
FIGURE 6.5-5 RHEOLOGICAL RESULTS FOR THE 1.5WT% CARBOPOL SOLUTION, PH 2	.7
	114
FIGURE 7.2-1: EXPERIMENTAL PROCEDURE FOR THE FLOW RHEOMETER	118
FIGURE 7.3-1 RHEOLOGICAL RESULTS FOR THE GLYCEROL SOLUTION	122
FIGURE 7.3-2 RHEOLOGICAL RESULTS FOR THE 1.5WT% CMC SOLUTION	122
FIGURE 7.3-3: RHEOLOGICAL RESULTS FOR THE 68WT% FLY ASH - WATER SLURRY	123
FIGURE 7.3-4 RHEOLOGICAL RESULTS FOR THE 36WT% GOLD MINE TAILINGS	123
FIGURE 7.3-5 REPRESENTATION OF THE ERROR IN PREDICTING PROPERTIES OF A	
YIELD-STRESS FLUID USING THE POWER-LAW MODEL	124
FIGURE 7.3-6 ERROR IN PREDICTING YIELD-STRESS FLUID PROPERTIES USING TWO	
POWER-LAW MODELS	125
FIGURE 7.3-7: EXPERIMENTAL AND DATA ANALYSIS PROCEDURES FOR YIELD STRE	SS
FLUIDS	127
FIGURE 7.3-8: RHEOLOGICAL RESULTS FOR THE 1.5WT% CARBOPOL SOLUTION, PH 2	2.7
	129
FIGURE 7.3-9: RHEOLOGICAL RESULTS FOR THE 71WT% CLAY - WATER SLURRY	130
FIGURE 7.3-10: RHEOLOGICAL RESULTS FOR THE 49WT% DIAMOND MINE TAILINGS	130
FIGURE 8.2-1 HELICAL FLOW ANALYSIS OF 1 WT% CMC SOLUTION	134
FIGURE 8.2-2 COUETTE ANALYSIS OF 1 WT% CMC SOLUTION	135
FIGURE 8.2-3 ERROR IN SHEAR RATE BETWEEN FLOW RHEOMETER DATA ANALYSE	D
USING HELICAL FLOW AND COUETTE FLOW THEORY FOR THE 1 WT% CMC	
SOLUTION.	136
FIGURE 8.3-1 RHEOLOGICAL PROPERTIES OF THE 0.7 WT% CMC SOLUTION	137
FIGURE 8.3-2 COMPUTED VERSUS EXPERIMENTAL VALUES OF AXIAL FLOW RATE	138
FIGURE 8.3-3 COMPUTED VERSUS EXPERIMENTAL VALUES OF ANGULAR VELOCITY	7139

FIGURE 9.3-2 EFFECT OF PARTICLE MIGRATION – FLY ASH SLURRY151FIGURE 11.2-1 THE VELOCITY DEVELOPMENT IN AN ANNULAR DUCT WITH A RADIUS RATIO OF 0.1 (SPARROW AND LIN 1964)162FIGURE 11.3-1 TAYLOR VORTICES163FIGURE 11.3-2 THE ONSET OF TAYLOR VORTICES IN A NEWTONIAN FLUID165FIGURE 11.3-3 LITERATURE DATA FOR THE ONSET OF TAYLOR VORTICES AT VARVING GAP WIDTHS168FIGURE 11.3-4 WAVELENGTH AS A FUNCTION OF SUPER-CRITICAL TAYLOR VORTICES AFTER SUDDEN STARTS (BURKHALTER AND KOSCHMIEDER 1974)170FIGURE 11.3-5 MEASUREMENT OF SUB-CRITICAL TAYLOR VORTICES IN COUETTE FLOW (MOBBS AND OZOGAN 1984), WHERE G IS A FUNCTION OF THE MEASURED TORQUE171FIGURE 11.3-6 NORMALISED CRITICAL TAYLOR NUMBER VERSUS ECCENTRICITY RATIO.173FIGURE 11.4-1 FLOW REGIMES IN HELICAL FLOW (DI PRIMA 1960)175FIGURE 11.4-2 EFFECT OF AXIAL FLOW ON THE ONSET OF TAYLOR VORTICES I 170173FIGURE 11.4-2 EFFECT OF AXIAL FLOW VISUALISATION APPARATUS183FIGURE 12.2-3 ENTRANCE DEVELOPMENT LENGTH FOR A GLUCOSE WATER SOLUTION NEWTONIAN GLUCOSE-WATER SOLUTION189FIGURE 12.2-4 GRAPH OF TAYLOR NUMBER VERSUS WAVE NUMBER FOR A NEWTONIAN GLUCOSE-WATER SOLUTION189FIGURE 12.3-1 THE ONSET OF TAYLOR VORTICES IN A NON-NEWTONIAN FLUID191FIGURE 13.2-1 COMPARISON BETWEEN EXPERIMENTAL AND LITERATURE TAYLOR194
FIGURE 11.2-1 THE VELOCITY DEVELOPMENT IN AN ANNULAR DUCT WITH A RADIUS RATIO OF 0.1 (SPARROW AND LIN 1964)162FIGURE 11.3-1 TAYLOR VORTICES163FIGURE 11.3-2 THE ONSET OF TAYLOR VORTICES IN A NEWTONIAN FLUID165FIGURE 11.3-3 LITERATURE DATA FOR THE ONSET OF TAYLOR VORTICES AT VARYING GAP WIDTHS168FIGURE 11.3-4 WAVELENGTH AS A FUNCTION OF SUPER-CRITICAL TAYLOR VORTICES AFTER SUDDEN STARTS (BURKHALTER AND KOSCHMIEDER 1974)170FIGURE 11.3-5 MEASUREMENT OF SUB-CRITICAL TAYLOR VORTICES IN COUETTE FLOW (MOBBS AND OZOGAN 1984), WHERE G IS A FUNCTION OF THE MEASURED TORQUE171FIGURE 11.3-6 NORMALISED CRITICAL TAYLOR NUMBER VERSUS ECCENTRICITY RATIO.173FIGURE 11.4-1 FLOW REGIMES IN HELICAL FLOW (DI PRIMA 1960)175FIGURE 11.4-2 EFFECT OF AXIAL FLOW ON THE ONSET OF TAYLOR VORTICES I 77173FIGURE 12.2-1 SCHEMATIC OF THE FLOW VISUALISATION APPARATUS183FIGURE 12.2-2 PHOTOGRAPH OF THE FLOW VISUALISATION APPARATUS183FIGURE 12.2-4 GRAPH OF TAYLOR NUMBER VERSUS WAVE NUMBER FOR A NEWTONIAN GLUCOSE-WATER SOLUTION189FIGURE 12.3-1 THE ONSET OF TAYLOR VORTICES IN A NON-NEWTONIAN FLUID191FIGURE 13.2-1 COMPARISON BETWEEN EXPERIMENTAL AND LITERATURE TAYLOR194
RATIO OF 0.1 (SPARROW AND LIN 1964) 162 FIGURE 11.3-1 TAYLOR VORTICES 163 FIGURE 11.3-2 THE ONSET OF TAYLOR VORTICES IN A NEWTONIAN FLUID 165 FIGURE 11.3-3 LITERATURE DATA FOR THE ONSET OF TAYLOR VORTICES AT VARYING 668 FIGURE 11.3-4 WAVELENGTH AS A FUNCTION OF SUPER-CRITICAL TAYLOR VORTICES 170 AFTER SUDDEN STARTS (BURKHALTER AND KOSCHMIEDER 1974) 170 FIGURE 11.3-5 MEASUREMENT OF SUB-CRITICAL TAYLOR VORTICES IN COUETTE 171 FLOW (MOBBS AND OZOGAN 1984), WHERE G IS A FUNCTION OF THE MEASURED 171 FIGURE 11.3-6 NORMALISED CRITICAL TAYLOR NUMBER VERSUS ECCENTRICITY 173 FIGURE 11.4-1 FLOW REGIMES IN HELICAL FLOW (DI PRIMA 1960) 175 FIGURE 11.4-2 EFFECT OF AXIAL FLOW ON THE ONSET OF TAYLOR VORTICES 173 FIGURE 12.2-1 SCHEMATIC OF THE FLOW VISUALISATION APPARATUS 183 FIGURE 12.2-2 PHOTOGRAPH OF THE FLOW VISUALISATION APPARATUS 183 FIGURE 12.2-4 GRAPH OF TAYLOR NUMBER VERSUS WAVE NUMBER FOR A NEWTONIAN GLUCOSE-WATER SOLUTION 189 FIGURE 12.3-1 THE ONSET OF TAYLOR VORTICES IN A NON-NEWTONIAN FLUID 191 FIGURE 13.2-1 COMPARISON BETWEEN EXPERIMENTAL AND LITERATURE TAYLOR 194
FIGURE 11.3-1 TAYLOR VORTICES163FIGURE 11.3-2 THE ONSET OF TAYLOR VORTICES IN A NEWTONIAN FLUID165FIGURE 11.3-3 LITERATURE DATA FOR THE ONSET OF TAYLOR VORTICES AT VARYING168FIGURE 11.3-4 WAVELENGTH AS A FUNCTION OF SUPER-CRITICAL TAYLOR VORTICES170AFTER SUDDEN STARTS (BURKHALTER AND KOSCHMIEDER 1974)170FIGURE 11.3-5 MEASUREMENT OF SUB-CRITICAL TAYLOR VORTICES IN COUETTE171FLOW (MOBBS AND OZOGAN 1984), WHERE G IS A FUNCTION OF THE MEASURED171FIGURE 11.3-6 NORMALISED CRITICAL TAYLOR NUMBER VERSUS ECCENTRICITY173FIGURE 11.4-1 FLOW REGIMES IN HELICAL FLOW (DI PRIMA 1960)175FIGURE 11.4-2 EFFECT OF AXIAL FLOW ON THE ONSET OF TAYLOR VORTICES182FIGURE 12.2-1 SCHEMATIC OF THE FLOW VISUALISATION APPARATUS183FIGURE 12.2-2 PHOTOGRAPH OF THE FLOW VISUALISATION APPARATUS183FIGURE 12.2-3 ENTRANCE DEVELOPMENT LENGTH FOR A GLUCOSE WATER SOLUTION185FIGURE 12.2-4 GRAPH OF TAYLOR NUMBER VERSUS WAVE NUMBER FOR A NEWTONIAN GLUCOSE-WATER SOLUTION189FIGURE 12.3-1 THE ONSET OF TAYLOR VORTICES IN A NON-NEWTONIAN FLUID191FIGURE 13.2-1 COMPARISON BETWEEN EXPERIMENTAL AND LITERATURE TAYLOR NUMBERS194
FIGURE 11.3-2 THE ONSET OF TAYLOR VORTICES IN A NEWTONIAN FLUID165FIGURE 11.3-3 LITERATURE DATA FOR THE ONSET OF TAYLOR VORTICES AT VARYING GAP WIDTHS168FIGURE 11.3-4 WAVELENGTH AS A FUNCTION OF SUPER-CRITICAL TAYLOR VORTICES AFTER SUDDEN STARTS (BURKHALTER AND KOSCHMIEDER 1974)170FIGURE 11.3-5 MEASUREMENT OF SUB-CRITICAL TAYLOR VORTICES IN COUETTE FLOW (MOBBS AND OZOGAN 1984), WHERE G IS A FUNCTION OF THE MEASURED TORQUE171FIGURE 11.3-6 NORMALISED CRITICAL TAYLOR NUMBER VERSUS ECCENTRICITY RATIO.173FIGURE 11.4-1 FLOW REGIMES IN HELICAL FLOW (DI PRIMA 1960)175FIGURE 11.4-2 EFFECT OF AXIAL FLOW ON THE ONSET OF TAYLOR VORTICES182FIGURE 12.2-1 SCHEMATIC OF THE FLOW VISUALISATION APPARATUS183FIGURE 12.2-2 PHOTOGRAPH OF THE FLOW VISUALISATION APPARATUS185FIGURE 12.2-4 GRAPH OF TAYLOR NUMBER VERSUS WAVE NUMBER FOR A NEWTONIAN GLUCOSE-WATER SOLUTION189FIGURE 12.3-1 THE ONSET OF TAYLOR VORTICES IN A NON-NEWTONIAN FLUID191FIGURE 13.2-1 COMPARISON BETWEEN EXPERIMENTAL AND LITERATURE TAYLOR NUMBERS194
FIGURE 11.3-3 LITERATURE DATA FOR THE ONSET OF TAYLOR VORTICES AT VARYING GAP WIDTHS168FIGURE 11.3-4 WAVELENGTH AS A FUNCTION OF SUPER-CRITICAL TAYLOR VORTICES AFTER SUDDEN STARTS (BURKHALTER AND KOSCHMIEDER 1974)170FIGURE 11.3-5 MEASUREMENT OF SUB-CRITICAL TAYLOR VORTICES IN COUETTE FLOW (MOBBS AND OZOGAN 1984), WHERE G IS A FUNCTION OF THE MEASURED TORQUE171FIGURE 11.3-6 NORMALISED CRITICAL TAYLOR NUMBER VERSUS ECCENTRICITY RATIO.173FIGURE 11.4-1 FLOW REGIMES IN HELICAL FLOW (DI PRIMA 1960)175FIGURE 11.4-2 EFFECT OF AXIAL FLOW ON THE ONSET OF TAYLOR VORTICES177FIGURE 12.2-1 SCHEMATIC OF THE FLOW VISUALISATION APPARATUS182FIGURE 12.2-2 PHOTOGRAPH OF THE FLOW VISUALISATION APPARATUS183FIGURE 12.2-3 ENTRANCE DEVELOPMENT LENGTH FOR A GLUCOSE WATER SOLUTION185FIGURE 12.2-4 GRAPH OF TAYLOR NUMBER VERSUS WAVE NUMBER FOR A NEWTONIAN GLUCOSE-WATER SOLUTION189FIGURE 12.3-1 THE ONSET OF TAYLOR VORTICES IN A NON-NEWTONIAN FLUID191FIGURE 13.2-1 COMPARISON BETWEEN EXPERIMENTAL AND LITERATURE TAYLOR194
GAP WIDTHS 168 FIGURE 11.3-4 WAVELENGTH AS A FUNCTION OF SUPER-CRITICAL TAYLOR VORTICES 170 FIGURE 11.3-5 MEASUREMENT OF SUB-CRITICAL TAYLOR VORTICES IN COUETTE 170 FLOW (MOBBS AND OZOGAN 1984), WHERE G IS A FUNCTION OF THE MEASURED 171 FIGURE 11.3-6 NORMALISED CRITICAL TAYLOR NUMBER VERSUS ECCENTRICITY 173 FIGURE 11.4-1 FLOW REGIMES IN HELICAL FLOW (DI PRIMA 1960) 175 FIGURE 11.4-2 EFFECT OF AXIAL FLOW ON THE ONSET OF TAYLOR VORTICES 177 FIGURE 12.2-1 SCHEMATIC OF THE FLOW VISUALISATION APPARATUS 183 FIGURE 12.2-2 PHOTOGRAPH OF THE FLOW VISUALISATION APPARATUS 183 FIGURE 12.2-3 ENTRANCE DEVELOPMENT LENGTH FOR A GLUCOSE WATER SOLUTION 189 FIGURE 12.2-4 GRAPH OF TAYLOR NUMBER VERSUS WAVE NUMBER FOR A 189 FIGURE 12.3-1 THE ONSET OF TAYLOR VORTICES IN A NON-NEWTONIAN FLUID 191 FIGURE 13.2-1 COMPARISON BETWEEN EXPERIMENTAL AND LITERATURE TAYLOR 194
FIGURE 11.3-4 WAVELENGTH AS A FUNCTION OF SUPER-CRITICAL TAYLOR VORTICES AFTER SUDDEN STARTS (BURKHALTER AND KOSCHMIEDER 1974)170FIGURE 11.3-5 MEASUREMENT OF SUB-CRITICAL TAYLOR VORTICES IN COUETTE FLOW (MOBBS AND OZOGAN 1984), WHERE G IS A FUNCTION OF THE MEASURED TORQUE171FIGURE 11.3-6 NORMALISED CRITICAL TAYLOR NUMBER VERSUS ECCENTRICITY RATIO.173FIGURE 11.4-1 FLOW REGIMES IN HELICAL FLOW (DI PRIMA 1960)175FIGURE 11.4-2 EFFECT OF AXIAL FLOW ON THE ONSET OF TAYLOR VORTICES177FIGURE 12.2-1 SCHEMATIC OF THE FLOW VISUALISATION APPARATUS183FIGURE 12.2-2 PHOTOGRAPH OF THE FLOW VISUALISATION APPARATUS183FIGURE 12.2-3 ENTRANCE DEVELOPMENT LENGTH FOR A GLUCOSE WATER SOLUTION185FIGURE 12.2-4 GRAPH OF TAYLOR NUMBER VERSUS WAVE NUMBER FOR A NEWTONIAN GLUCOSE-WATER SOLUTION189FIGURE 12.3-1 THE ONSET OF TAYLOR VORTICES IN A NON-NEWTONIAN FLUID191FIGURE 13.2-1 COMPARISON BETWEEN EXPERIMENTAL AND LITERATURE TAYLOR194
AFTER SUDDEN STARTS (BURKHALTER AND KOSCHMIEDER 1974) 170 FIGURE 11.3-5 MEASUREMENT OF SUB-CRITICAL TAYLOR VORTICES IN COUETT FLOW (MOBBS AND OZOGAN 1984), WHERE G IS A FUNCTION OF THE MEASURE TORQUE 11.3-6 NORMALISED CRITICAL TAYLOR NUMBER VERSUS ECCENTRICITY RATIO. 173 FIGURE 11.4-1 FLOW REGIMES IN HELICAL FLOW (DI PRIMA 1960) 175 FIGURE 11.4-2 EFFECT OF AXIAL FLOW ON THE ONSET OF TAYLOR VORTICES 177 FIGURE 12.2-1 SCHEMATIC OF THE FLOW VISUALISATION APPARATUS 183 FIGURE 12.2-2 PHOTOGRAPH OF THE FLOW VISUALISATION APPARATUS 183 FIGURE 12.2-3 ENTRANCE DEVELOPMENT LENGTH FOR A GLUCOSE WATER SOLUTION ISS FIGURE 12.2-4 GRAPH OF TAYLOR NUMBER VERSUS WAVE NUMBER FOR A NEWTONIAN GLUCOSE-WATER SOLUTION 189 FIGURE 12.3-1 THE ONSET OF TAYLOR VORTICES IN A NON-NEWTONIAN FLUID NUMBERS 194
FIGURE 11.3-5 MEASUREMENT OF SUB-CRITICAL TAYLOR VORTICES IN COUETTE FLOW (MOBBS AND OZOGAN 1984), WHERE G IS A FUNCTION OF THE MEASURE TORQUE 11.3-6 NORMALISED CRITICAL TAYLOR NUMBER VERSUS ECCENTRICITY RATIO. 173 FIGURE 11.4-1 FLOW REGIMES IN HELICAL FLOW (DI PRIMA 1960) 175 FIGURE 11.4-2 EFFECT OF AXIAL FLOW ON THE ONSET OF TAYLOR VORTICES 177 FIGURE 12.2-1 SCHEMATIC OF THE FLOW VISUALISATION APPARATUS 182 FIGURE 12.2-2 PHOTOGRAPH OF THE FLOW VISUALISATION APPARATUS 183 FIGURE 12.2-3 ENTRANCE DEVELOPMENT LENGTH FOR A GLUCOSE WATER SOLUTION I ST FIGURE 12.2-4 GRAPH OF TAYLOR NUMBER VERSUS WAVE NUMBER FOR A NEWTONIAN GLUCOSE-WATER SOLUTION 189 FIGURE 12.3-1 THE ONSET OF TAYLOR VORTICES IN A NON-NEWTONIAN FLUID 191 FIGURE 13.2-1 COMPARISON BETWEEN EXPERIMENTAL AND LITERATURE TAYLOR NUMBERS 194
FLOW (MOBBS AND OZOGAN 1984), WHERE G IS A FUNCTION OF THE MEASURE TORQUE171FIGURE 11.3-6 NORMALISED CRITICAL TAYLOR NUMBER VERSUS ECCENTRICITY RATIO.173FIGURE 11.4-1 FLOW REGIMES IN HELICAL FLOW (DI PRIMA 1960)175FIGURE 11.4-2 EFFECT OF AXIAL FLOW ON THE ONSET OF TAYLOR VORTICES177FIGURE 12.2-1 SCHEMATIC OF THE FLOW VISUALISATION APPARATUS183FIGURE 12.2-2 PHOTOGRAPH OF THE FLOW VISUALISATION APPARATUS183FIGURE 12.2-3 ENTRANCE DEVELOPMENT LENGTH FOR A GLUCOSE WATER SOLUTION185FIGURE 12.2-4 GRAPH OF TAYLOR NUMBER VERSUS WAVE NUMBER FOR A NEWTONIAN GLUCOSE-WATER SOLUTION189FIGURE 12.3-1 THE ONSET OF TAYLOR VORTICES IN A NON-NEWTONIAN FLUID191FIGURE 13.2-1 COMPARISON BETWEEN EXPERIMENTAL AND LITERATURE TAYLOR NUMBERS194
TORQUE 1/1 FIGURE 11.3-6 NORMALISED CRITICAL TAYLOR NUMBER VERSUS ECCENTRICIT 1/3 RATIO. 1/3 FIGURE 11.4-1 FLOW REGIMES IN HELICAL FLOW (DI PRIMA 1960) 1/5 FIGURE 11.4-2 EFFECT OF AXIAL FLOW ON THE ONSET OF TAYLOR VORTICES 1/7 FIGURE 12.2-1 SCHEMATIC OF THE FLOW VISUALISATION APPARATUS 1/8 FIGURE 12.2-2 PHOTOGRAPH OF THE FLOW VISUALISATION APPARATUS 1/8 FIGURE 12.2-3 ENTRANCE DEVELOPMENT LENGTH FOR A GLUCOSE WATER SOLUT 1/8 FIGURE 12.2-4 GRAPH OF TAYLOR NUMBER VERSUS WAVE NUMBER FOR A 1/8 FIGURE 12.2-4 GRAPH OF TAYLOR NUMBER VERSUS WAVE NUMBER FOR A 1/8 FIGURE 12.3-1 THE ONSET OF TAYLOR VORTICES IN A NON-NEWTONIAN FLUID 1/9 FIGURE 13.2-1 COMPARISON BETWEEN EXPERIMENTAL AND LITERATURE TAYLOR 1/9
FIGURE 11.3-6 NORMALISED CRITICAL TAYLOR NUMBER VERSUS ECCENTRICITY RATIO.173FIGURE 11.4-1 FLOW REGIMES IN HELICAL FLOW (DI PRIMA 1960)175FIGURE 11.4-2 EFFECT OF AXIAL FLOW ON THE ONSET OF TAYLOR VORTICES177FIGURE 12.2-1 SCHEMATIC OF THE FLOW VISUALISATION APPARATUS182FIGURE 12.2-2 PHOTOGRAPH OF THE FLOW VISUALISATION APPARATUS183FIGURE 12.2-3 ENTRANCE DEVELOPMENT LENGTH FOR A GLUCOSE WATER SOLUT185FIGURE 12.2-4 GRAPH OF TAYLOR NUMBER VERSUS WAVE NUMBER FOR A NEWTONIAN GLUCOSE-WATER SOLUTION189FIGURE 12.3-1 THE ONSET OF TAYLOR VORTICES IN A NON-NEWTONIAN FLUID191FIGURE 13.2-1 COMPARISON BETWEEN EXPERIMENTAL AND LITERATURE TAYLOR194
RATIO. 173 FIGURE 11.4.1 FLOW REGIMES IN HELICAL FLOW (DI PRIMA 1960) 175 FIGURE 11.4.2 EFFECT OF AXIAL FLOW ON THE ONSET OF TAYLOR VORTICES 177 FIGURE 12.2-1 SCHEMATIC OF THE FLOW VISUALISATION APPARATUS 182 FIGURE 12.2-2 PHOTOGRAPH OF THE FLOW VISUALISATION APPARATUS 183 FIGURE 12.2-3 ENTRANCE DEVELOPMENT LENGTH FOR A GLUCOSE WATER SOLUTION 185 FIGURE 12.2-4 GRAPH OF TAYLOR NUMBER VERSUS WAVE NUMBER FOR A 189 FIGURE 12.3-1 THE ONSET OF TAYLOR VORTICES IN A NON-NEWTONIAN FLUID 191 FIGURE 13.2-1 COMPARISON BETWEEN EXPERIMENTAL AND LITERATURE TAYLOR 194
FIGURE 11.4-1 FLOW REGIMES IN HELICAL FLOW (DI PRIMA 1960)175FIGURE 11.4-2 EFFECT OF AXIAL FLOW ON THE ONSET OF TAYLOR VORTICES177FIGURE 12.2-1 SCHEMATIC OF THE FLOW VISUALISATION APPARATUS182FIGURE 12.2-2 PHOTOGRAPH OF THE FLOW VISUALISATION APPARATUS183FIGURE 12.2-3 ENTRANCE DEVELOPMENT LENGTH FOR A GLUCOSE WATER SOLUTION185FIGURE 12.2-4 GRAPH OF TAYLOR NUMBER VERSUS WAVE NUMBER FOR A NEWTONIAN GLUCOSE-WATER SOLUTION189FIGURE 12.3-1 THE ONSET OF TAYLOR VORTICES IN A NON-NEWTONIAN FLUID191FIGURE 13.2-1 COMPARISON BETWEEN EXPERIMENTAL AND LITERATURE TAYLOR194
FIGURE 11.4-2 EFFECT OF AXIAL FLOW ON THE ONSET OF TAYLOR VORTICES177FIGURE 12.2-1 SCHEMATIC OF THE FLOW VISUALISATION APPARATUS182FIGURE 12.2-2 PHOTOGRAPH OF THE FLOW VISUALISATION APPARATUS183FIGURE 12.2-3 ENTRANCE DEVELOPMENT LENGTH FOR A GLUCOSE WATER SOLUTION185FIGURE 12.2-4 GRAPH OF TAYLOR NUMBER VERSUS WAVE NUMBER FOR A NEWTONIAN GLUCOSE-WATER SOLUTION189FIGURE 12.3-1 THE ONSET OF TAYLOR VORTICES IN A NON-NEWTONIAN FLUID191FIGURE 13.2-1 COMPARISON BETWEEN EXPERIMENTAL AND LITERATURE TAYLOR194
FIGURE 12.2-1 SCHEMATIC OF THE FLOW VISUALISATION APPARATUS182FIGURE 12.2-2 PHOTOGRAPH OF THE FLOW VISUALISATION APPARATUS183FIGURE 12.2-3 ENTRANCE DEVELOPMENT LENGTH FOR A GLUCOSE WATER SOLUTION185FIGURE 12.2-4 GRAPH OF TAYLOR NUMBER VERSUS WAVE NUMBER FOR A NEWTONIAN GLUCOSE-WATER SOLUTION189FIGURE 12.3-1 THE ONSET OF TAYLOR VORTICES IN A NON-NEWTONIAN FLUID191FIGURE 13.2-1 COMPARISON BETWEEN EXPERIMENTAL AND LITERATURE TAYLOR194
FIGURE 12.2-2 PHOTOGRAPH OF THE FLOW VISUALISATION APPARATUS183FIGURE 12.2-3 ENTRANCE DEVELOPMENT LENGTH FOR A GLUCOSE WATER SOLUTION185FIGURE 12.2-4 GRAPH OF TAYLOR NUMBER VERSUS WAVE NUMBER FOR A NEWTONIAN GLUCOSE-WATER SOLUTION189FIGURE 12.3-1 THE ONSET OF TAYLOR VORTICES IN A NON-NEWTONIAN FLUID191FIGURE 13.2-1 COMPARISON BETWEEN EXPERIMENTAL AND LITERATURE TAYLOR194
FIGURE 12.2-3 ENTRANCE DEVELOPMENT LENGTH FOR A GLUCOSE WATER SOLUTION 185 FIGURE 12.2-4 GRAPH OF TAYLOR NUMBER VERSUS WAVE NUMBER FOR A 189 FIGURE 12.3-1 THE ONSET OF TAYLOR VORTICES IN A NON-NEWTONIAN FLUID 191 FIGURE 13.2-1 COMPARISON BETWEEN EXPERIMENTAL AND LITERATURE TAYLOR 194
185FIGURE 12.2-4 GRAPH OF TAYLOR NUMBER VERSUS WAVE NUMBER FOR A NEWTONIAN GLUCOSE-WATER SOLUTION189FIGURE 12.3-1 THE ONSET OF TAYLOR VORTICES IN A NON-NEWTONIAN FLUID191FIGURE 13.2-1 COMPARISON BETWEEN EXPERIMENTAL AND LITERATURE TAYLOR194NUMBERS194
FIGURE 12.2-4 GRAPH OF TAYLOR NUMBER VERSUS WAVE NUMBER FOR A NEWTONIAN GLUCOSE-WATER SOLUTION189FIGURE 12.3-1 THE ONSET OF TAYLOR VORTICES IN A NON-NEWTONIAN FLUID191FIGURE 13.2-1 COMPARISON BETWEEN EXPERIMENTAL AND LITERATURE TAYLOR194NUMBERS194
NEWTONIAN GLUCOSE-WATER SOLUTION189FIGURE 12.3-1 THE ONSET OF TAYLOR VORTICES IN A NON-NEWTONIAN FLUID191FIGURE 13.2-1 COMPARISON BETWEEN EXPERIMENTAL AND LITERATURE TAYLOR194NUMBERS194
FIGURE 12.3-1 THE ONSET OF TAYLOR VORTICES IN A NON-NEWTONIAN FLUID191FIGURE 13.2-1 COMPARISON BETWEEN EXPERIMENTAL AND LITERATURE TAYLOR194NUMBERS194
FIGURE 13.2-1 COMPARISON BETWEEN EXPERIMENTAL AND LITERATURE TAYLOR NUMBERS 194
IVENIDERS 174
FIGURE 13.3-1 FEFECT OF THE RATE OF ACCELERATION ON THE ONSET OF TAVI OR
VORTICES (GAP: 27.7 % OF R)
FIGURE 13 4-1 EFFECT OF THE POWER-I AW PARAMETER N ON THE ONSET OF TAYLOR
VORTICES 200
FIGURE 14 1-1 FLOW REGIMES IN HELICAL FLOW (DI PRIMA 1960) 203
FIGURE 14 2-1 COMBINED RESULTS FOR THE EFFECT OF AXIAL FLOW ON THE ONSET
OF TAYLOR VORTICES IN BOTH NEWTONIAN AND NON-NEWTONIAN FLUIDS 206
FIGURE 14.3-1 EFFECT OF THE RATE OF ACCEL ERATION ON THE ONSET OF TAYLOR
VORTICES (GAP: 27.7 %) 211
FIGURE 14.3-2 EFFECT OF THE RATE OF ACCELERATION ON THE ONSET OF TAYLOR
VORTICES (GAP: 27.7 %) 213
FIGURE 14.3-3 THE ONSET OF TAYLOR VORTICES IN NEWTONIAN AND NON-
NEWTONIAN FLUIDS – EXPERIMENTAL RESULTS (TOROUE MEASUREMENTS) AND
PREDICTED VALUES 216

FIGURE 16.3-1 SCHEMATIC OF THE MIXING TANK SYSTEM	225
FIGURE 16.3-2 PHOTOGRAPH OF THE MIXING TANK AND HAAKE RHEOMETER	225
FIGURE 16.4-1 POWER CURVES FOR IDEAL FLUIDS IN THE EXPERIMENTAL MIXING	
TANK SYSTEM	228
FIGURE 16.5-1 COMPARISON BETWEEN PREDICTED AND MEASURED POWER FOR A	
VARIETY OF DIFFERENT SLURRIES	230
FIGURE 17.3-1 SCHEMATIC OF THE MODIFIED FLOW RHEOMETER SYSTEM	240
FIGURE 17.5-1 TORQUE READINGS FROM A COUETTE TEST WITH A PMMA –NACL	
SLURRY, SOLID CONCENTRATION 41VOL%, LIQUID DENSITY 1170 KG/M ³	242
FIGURE 17.6-1 RHEOLOGICAL DATA FOR 41 VOL% PMMA SLURRY AT A VARIETY OF	
DIFFERENT LIQUID DENSITIES	243
FIGURE 17.6-2 VISCOSITY DATA FOR PMMA SLURRIES AT A VARIETY OF DIFFERENT	
LIQUID DENSITIES	244
FIGURE 17.6-3 EFFECT OF SUSPENDING LIQUID VISCOSITY WITH NORMALISED	
SUSPENDING LIQUID VISCOSITY	245

List of Tables

TABLE 5.3-I SUMMARY OF THE DIMENSIONS OF THE HELICAL FLOW GEOMETRY	81
TABLE 6.2-I SETTLING RATE OF SLURRY PARTICLES	90
TABLE 6.3-I MALVERN SIZE ANALYSER -LENSES	91
TABLE 6.3-II PARTICLE SIZE – GLASS BEADS	93
TABLE 6.4-I STANDARD OIL PROPERTIES AT VARIOUS TEMPERATURES	99
TABLE 6.4-II EXPERIMENTAL FLUIDS	104
TABLE 6.5-I EXPERIMENTAL FLUIDS	112
TABLE 7.3-I EXPERIMENTAL FLUIDS	120
TABLE 7.3-II COMPARISON BETWEEN A SINGLE POWER-LAW MODEL AND A TWO-P.	ART
POWER-LAW MODEL	125
TABLE 7.3-III EXPERIMENTAL FLUIDS	128
TABLE 9.3-I NUMBER OF ROTATIONS EXPERIENCED BY THE FLUID OR A PARTICLE	IN
THE FLOW RHEOMETER – FLY ASH SLURRY	152
TABLE 12.2-I LIST OF COMPONENTS OF THE FLOW VISUALISATION APPARATUS	184
TABLE 12.2-II POWERLAW MODEL PARAMETERS FOR A CMC SOLUTION	187
TABLE 12.2-III UPDATED POWERLAW MODEL PARAMETERS FOR A CMC SOLUTION	188
TABLE 13.2-I TABLE OF EXPERIMENTAL WAVE NUMBERS AT DIFFERENT GAP SIZES	\$ 195
TABLE 14.3-I SUMMARY OF THE PHYSICAL PROPERTIES OF THE EXPERIMENTAL	
FLUIDS	215
TABLE 16.4-I: EXPERIMENTAL FLUIDS	227
TABLE 16.5-I: EXPERIMENTAL SLURRIES	229
TABLE 17.2-I: PHYSICAL PROPERTIES OF PMMA - NACL SLURRIES AT 25°C	238
TABLE 17.2-II: PHYSICAL PROPERTIES OF PMMA - GLYCEROL SLURRIES AT 25°C	239

Nomenclature

English Letters

А	pre-exponential parameter, power-law model	Pas ⁿ
a	shear stress calculation parameter, vane	
a _x	Shi and Napier-Munn (1996) model parameters	mV(s/rad) ^x
b	constant of integration	
С	height of the impeller above the base of the tank	m
c	differential pressure parameter	$kg/(m^2s^2)$
D _T	turbine diameter	m
d _x	x% of particles have a smaller diameter	m
dv	particle diameter (volume average)	m
ELF	entrance length parameter	
e	displacement of inner cylinder axis from centre axis	m
g	gravitational acceleration	m/s ²
Н	axial length of a Taylor vortex	m
He	Headstrom number	
h	gap width between parallel plates	m
I_P	impeller blade pitch	m
J	width of baffles	m
k	ratio of cylinder speeds (inner/outer)	
\mathbf{k}_1	Krieger and Maron model parameter	
k_2	Krieger and Maron model parameter	
k _n	mixing parameter used by Sinevic et al. (1986)	
L	length	m
L _B	length of impeller blade	m
L _e	entrance development length	m
М	torque	Nm
N _B	number of baffles in a tank	
NI	number of impeller blades	
n	exponential parameter, power-law model	
Р	Taylor's turbulence parameter	
р	pressure	Pa

Q	flow rate	m^3/s
R	outer cylinder radius	m
Re	Reynolds number	
Re'	modified Reynolds number for mixing tank systems	
S	radius ratio (outer/inner) (= $1/\kappa$)	
SC	stability criterion	
Та	Taylor number	
Ta'	Taylor number $(= Ta^2)$	
Ta _c	critical Taylor number	
v	velocity	m/s
v _m	minimum velocity to maintain homogeneous conditions	m/s
$\langle v_z \rangle$	average annular axial velocity	m/s
W	width of an impeller blade	m
Z	axial length	m

Greek Symbols

α	angle between cone and plate	rad
Δ	difference	
3	eccentric Ratio (= e / average gap width(R- κ R))	
η	apparent viscosity	Pas
Φ	solids volume concentration	
Φ_P	power number	
φ	fluidity function (=1/ η)	1/Pas
γ̈́	shear rate	1/s
φ	co-axial cylinder shape factor	
κ	radius ratio (inner/outer) (=1/S)	
λ	radius ratio (axial velocity peak/outer)	
Ω	angular velocity	rad/s
$\langle \mathcal{O} \rangle$	combined pressure (= $p + \rho gz$)	Pa
μ	viscosity	Pas
ν	kinematic viscosity	m ² s
ρ	density	kg/m ³

τ	shear stress	Pa
τ_y	yield stress	Pa
θ	cone and plate angle (= $\pi/2-\alpha/2$)	rad
υ	acceleration of the inner cylinder	rad/s
Ψ	wave number	

Subscripts

b	property at bob (inner cylinder) wall
1	property of the liquid
р	property of the solid fraction (particle)
r	radial direction, cylindrical co-ordinates
W	property at the system wall
S	property of the slurry
Z	axial direction, cylindrical co-ordinates
θ	annular direction, cylindrical co-ordinates

Superscripts

c	CMC solution
g	glucose-water solution
m	moderate gap geometry
n	narrow gap geometry
р	polyox (PEO) solution
W	wide gap geometry