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ABSTRACT

Traditional means of controlling sound radiated by electrical power transformers involve

the construction of large expensive barriers or full enclosures, which cause maintainability

and cooling problems. One promising alternative is to use active noise control to cancel the

noise.

This thesis is concerned with one of the many problems which need to be investigated to

develop a practical active noise cancellation system for transformers. This work, in

particular, is concerned with the physical system design which includes the selection of the

control source types and the evaluation of the near-field sensing strategies.

Loudspeakers have been widely used in the past as an acoustic source for canceling

transformer noise. The principal disadvantage of using loudspeakers is that to achieve

global noise control, a large number, driven by a multi-channel controller, are required.

However, if large panels are used in place of loudspeakers as control sources, it is possible

that the number of the control sources and complexity of the controller could be reduced

substantially. In addition to reducing the number of control sources and simplifying their

application, panel sound sources could also overcome some disadvantages of the

loudspeakers, such as limited life and deterioration due to the weather. Thus, part of the

work described in this thesis is concerned with the development of a resonant curved panel

with a backing cavity as an acoustic type source. The advantages of using a curved panel

rather than a flat panel are twofold: first a curved panel is more easily excited by the

extensional motion of the piezoelectric patch actuators; and second, it is more difficult to

adjust the resonance frequencies of the efficient modes of a flat panel than of a curved
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panel. The analytical models for the design of the panel cavity systems have been

developed. As an example, a resonant curved panel with a backing cavity system was

constructed and the sound radiation of the system was measured. Results show that a

resonant panel-cavity sound source could be used as an alternative to a number of

loudspeakers for active cancellation of electric power transformer noise. Due to the

advantages of using the vibration type control sources, two types of vibration control

sources (inertial electrodynamic shakers and piezoelectric patch actuators) were considered

and the mechanical output of the inertial shakers has been compared with that of the

piezoelectric actuators. In contrast with the piezoelectric actuators, the resonance

frequencies of the inertial shakers can be tuned to the frequencies of interest using simple

tuning procedures, so that the output efficiency of the shakers can be increased. The output

performance was evaluated for two types of actuators by measuring the structural response

of either a panel or a transformer when excited by the actuators at half their rated voltage

input. Results demonstrated that a much larger output amplitude at the frequency of

interest can be achieved by the tuned inertial type actuators.

Two near-field sensing strategies, the minimization of the sum of the sound intensities and

the minimization of the sum of the squared sound pressures, have been studied. A

quadratic expression was derived for the minimization of the sum of the sound intensities

in the near-field. To evaluate the control performances achieved using both sensing

strategies, a flat-panel was modelled with a harmonic point force disturbance and several

point force control sources. Simulation results show that the control performance could be

improved by minimizing the sum of the sound intensities in the hydrodynamic near-field,

provided that a very large number of error sensors were used, otherwise better results were

achieved using near-field squared pressure sensing.
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Both sensing strategies were used to predict the noise reductions that resulted for the active

noise control of a small transformer in the laboratory environment and for a large electrical

power transformer on site. To optimize the locations of the control sources (for the large

transformer on site) and the locations of the error sensors (for the small transformer in the

laboratory environment), a genetic algorithm (GA), which is an evolutionary optimization

technique, was employed as a search procedure to optimize the control source and error

sensor locations. The results showed that the control source locations and/or the error

sensor locations must be optimized to achieve the maximum sound reduction for either

error sensing strategy, especially for the sound intensity minimization; otherwise, the

sound field level may increase after control due to the character of the cost function (the

sum of the sound intensities).

The simulation results were experimentally validated for the small transformer in the

laboratory environment. Due to the limitation of the number of controller channels, the

control performance was only evaluated for squared pressure minimization. The results

demonstrated that for the case of 8 control sources and 8 error sensors, at 100 Hz, an

average sound pressure reduction of 15.8 dB was achieved when evaluated at 528

monitoring locations at 0.25 m intervals on a surface that surrounded the transformer.
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