

PHYSICAL SYSTEMS FOR THE ACTIVE CONTROL OF TRANSFORMER NOISE

Xun Li

This thesis is presented for the degree of Ph.D. of Engineering of The University of Adelaide, Department of Mechanical Engineering

November 2000

CONTENTS

AB	STRA	CT	vi			
DE	CLAR	ATION	ix			
AC	KNOW	VLEDGMENTS	X			
LIS	LIST OF FIGURES					
LIS	ST OF 7	ΓABLES	xxi			
1	GEN	ERAL INTRODUCTION	1			
	1.1	Introduction	1			
	1.2	Control sources for active control of noise radiated by structures	2			
		1.2.1 Curved panel sources	2			
		1.2.2 Tunable inertial shakers	3			
	1.3	Error sensing in the near-field for active control of noise radiated by				
		structures	3			
	1.4	Applications of active noise control techniques to transformer noise				
		control	4			
	1.5	What is new in this thesis	6			
2	PRE	VIOUS WORK	7			
	2.1	Introduction	7			
	2.2	Active control of structurally radiated noise	7			
		2.2.1 Near-field sensing strategies	7			
		2.2.2 Control actuators	15			
	2.3	Active control of noise radiated by electrical transformers				
	2.4	Physical system optimization for active noise and vibration control	24			

3	CURVED PANEL SOURCES FOR ACTIVE NOISE CONTROL				29		
	3.1	Introdu	luction				
	3.2	Model	el of the curved panel with a backing cavity				
	3.3	Examp	Example design				
		3.3.1	1 Specification of the geometry size of the system				
		3.3.2	Verificat	Verification of theoretical model by means of Finite Element			
			Analysis	(FEA)	36		
		3.3.3	Tuning the resonance frequencies of the system		40		
			3.3.3.1	Mass attached to the curved panel	40		
			3.3.3.2	Adjusting the depth of the backing cavity	41		
		3.3.4	Resonan	ce frequency tests	42		
			3.3.4.1	Experimental set-up	42		
			3.3.4.2	Experimental results	43		
	3.4	Optim	mization of sizes and locations of piezoelectric actuators for curved				
		panel sound sources					
		3.4.1	Responses of the coupled structural/acoustic system				
		3.4.2	Distribut	Distributed external load produced by the piezoelectric actuator			
		3.4.3	Numeric	al simulations	50		
			3.4.3.1	Optimal perimeter of piezoelectric actuators	50		
			3.4.3.2	Optimal locations of piezoelectric actuators on the			
				panel	56		
			3.4.3.3	Optimal thickness of piezoelectric actuators	59		
	3.5	Sound	Sound radiation of the curved panel with a backing cavity				
		3.5.1	5.5.1 Experimental set-up				
		3.5.2	Experim	ental results	61		
	3.6	Conclu	onclusions				

4	VIBE	RATION CONTROL SOURCES	63	
	4.1	Introduction	63	
	4.2	Piezoelectric patch type actuators	63	
	4.3	Inertial shaker		
	4.4	Tuning the resonance frequency of the inertial shaker	67	
		4.4.1 Modification of the spring arrangement	68	
		4.4.2 Modification of the thickness of the diaphragm	70	
		4.4.3 Effect of the temperature on the resonance frequency of the shake	r 71	
	4.5	Comparison of the vibration performance of the inertial shaker with the		
		piezoelectric patch type actuator	73	
		4.5.1 Experimental set-up	73	
		4.5.2 Results	74	
		4.5.2.1 Evaluation of vibration on a panel	74	
		4.5.2.2 Evaluation of vibration on a transformer tank	78	
		4.5.3 Harmonic distortion in actuators	82	
	4.6	Conclusions	84	
5	SENS	SING STRATEGIES FOR THE ACTIVE NOISE CONTROL IN THE		
	NEA	R-FIELD	85	
	5.1	Introduction		
	5.2	Minimization of the sum of the sound intensities in the near-field	86	
		5.2.1 Derivation of the theoretical model	86	
	5.3	Minimization of the sum of the squared sound pressures	94	
	5.4	Numerical simulation	95	
		5.4.1 Transfer functions from control inputs to error sensing outputs	96	
		5.4.2 Simulation results	99	
	5.5	Conclusions	113	

ACT	ACTIVE CONTROL OF SOUND RADIATION FROM A SMALL					
TRA	ANSFORMER					
6.1	Introdu	uction		115		
6.2	sound field reduction at discrete locations using					
	measu	red data		116		
	6.2.1	6.2.1 Measurement of sound field				
	6.2.2	Predicted	d results	119		
		6.2.2.1	Control achieved by intensity minimization	121		
		6.2.2.2	Control achieved by squared pressure minimization	128		
		6.2.2.3	Effect of error sensing strategies on the control			
			performance	129		
6.3	Experimental results			132		
	6.3.1	Evaluati	on of control performance at monitor sensors	132		
	6.3.2	Effect of	the number of the control sources on the control			
		results		137		
6.4	Contro	ontrol mechanisms				
6.5	Conclu	usions				
PRE	DICTIO	N OF TH	E SOUND FIELD RADIATED FROM A LARGE			
ELE	ELECTRICAL TRANSFORMER IN THE NEAR-FIELD					
7.1	Introdu	uction				
7.2	Measu	leasurement of transfer functions between control source inputs and				
	error s	ensor outp	uts	145		
7.3	7.3 Predicted results at the error sensors					
	7.3.1	Results ₁	predicted by squared sound pressure minimization in			
		the near-	field	151		
		7.3.1.1	Force type control sources	151		
		7.3.1.2	Loudspeaker type control sources	156		
		7.3.1.3	Curved panel type control sources	157		
	7.3.2	Effect of	the number and the locations of the control sources on			
		the contr	ol performance	160		
	ACT TRA 6.1 6.2 6.3 6.3 6.4 6.5 PRE ELE 7.1 7.2 7.3	ACTIVE COTRANSFOR 6.1 Introduction 6.2 Predictionmeasu $6.2.1$ $6.2.1$ $6.2.2$ 6.3 Experi $6.3.1$ $6.3.2$ 6.4 Control 6.5 ConcluPREDICTIOELECTRICA 7.1 Introduct 7.2 Measuerror s 7.3 $7.3.1$ $7.3.2$	ACTIVE CONTROL O TRANSFORMER 6.1 Introduction 6.2 Prediction of the measured data 6.2.1 Measure 6.2.1 Measure 6.2.2 Predicted 6.2.2.1 6.2.2.2 6.2.2.3 6.3 Experimental ress 6.3.1 Evaluation 6.3.2 Effect of results 6.4 Control mechanis 6.5 Conclusions PREDICTION OF THE ELECTRICAL TRANS 7.1 Introduction 7.2 Measurement of error sensor outp 7.3 Predicted results 7.3.1 Results p the near- 7.3.1.1 7.3.1.2 7.3.1.3 7.3.2 Effect of the control	ACTIVE CONTROL OF SOUND RADIATION FROM A SMALL TRANSFORMER 6.1 Introduction 6.2 Prediction of the sound field reduction at discrete locations using measured data 6.2.1 Measurement of sound field 6.2.2 Predicted results 6.2.2.1 Control achieved by intensity minimization 6.2.2.2 Control achieved by squared pressure minimization 6.2.2.3 Effect of error sensing strategies on the control performance 6.3 Experimental results 6.3.1 Evaluation of control performance at monitor sensors 6.3.2 Effect of the number of the control sources on the control results 6.4 Control mechanisms 6.5 Conclusions PREDICTION OF THE SOUND FIELD RADIATED FROM A LARGE ELECTRICAL TRANSFORMER IN THE NEAR-FIELD 7.1 Introduction 7.2 Measurement of transfer functions between control source inputs and error sensor outputs 7.3 Predicted results at the error sensors 7.3.1 Results predicted by squared sound pressure minimization in the near-field 7.3.1.1 Force type control sources 7.3.1.2 Loudspeaker type control sources 7.3.1.3 Curved panel type control sources 7.3.2 Effect of the number and the locations of the control sources on the control performance		

Contents

		7.3.3 Results predicted by sound intensity minimization in the near-			
			fiel	d	163
	7.4	7.4 Estimation of the global sound power reduction			165
	7.5	Conclu	usions		168
8	CON	CLUSI	ONS A	AND FUTURE WORK	171
	8.1	Conclu	usions		171
	8.2	Future	work		180
REF	EREN	ICES			182
APP	ENDI	CES			
		A RESPONSE OF SHELLS TO EXCITATION BY PZT			
		ACTUATORS			
			A.1	Equations of motion	191
			A.2	Bending moments generated by piezoelectric actuators bond	led to
				cylindrical shells	195
		В	CAI	IBRATION OF A SOUND INTENSITY PROBE	
			CON	ISTRUCTED USING ELECTRET MICROPHONES	200
			B.1	Introduction	200
			B.2	Principle	200
			B.3	Calibration procedures	201
		С	FOR	CE SENSITIVITY OF INERTIAL SHAKERS	204

ABSTRACT

Traditional means of controlling sound radiated by electrical power transformers involve the construction of large expensive barriers or full enclosures, which cause maintainability and cooling problems. One promising alternative is to use active noise control to cancel the noise.

This thesis is concerned with one of the many problems which need to be investigated to develop a practical active noise cancellation system for transformers. This work, in particular, is concerned with the physical system design which includes the selection of the control source types and the evaluation of the near-field sensing strategies.

Loudspeakers have been widely used in the past as an acoustic source for canceling transformer noise. The principal disadvantage of using loudspeakers is that to achieve global noise control, a large number, driven by a multi-channel controller, are required. However, if large panels are used in place of loudspeakers as control sources, it is possible that the number of the control sources and complexity of the controller could be reduced substantially. In addition to reducing the number of control sources and simplifying their application, panel sound sources could also overcome some disadvantages of the loudspeakers, such as limited life and deterioration due to the weather. Thus, part of the work described in this thesis is concerned with the development of a resonant curved panel with a backing cavity as an acoustic type source. The advantages of using a curved panel rather than a flat panel are twofold: first a curved panel is more easily excited by the extensional motion of the piezoelectric patch actuators; and second, it is more difficult to adjust the resonance frequencies of the efficient modes of a flat panel than of a curved

Abstract

panel. The analytical models for the design of the panel cavity systems have been developed. As an example, a resonant curved panel with a backing cavity system was constructed and the sound radiation of the system was measured. Results show that a resonant panel-cavity sound source could be used as an alternative to a number of loudspeakers for active cancellation of electric power transformer noise. Due to the advantages of using the vibration type control sources, two types of vibration control sources (inertial electrodynamic shakers and piezoelectric patch actuators) were considered and the mechanical output of the inertial shakers has been compared with that of the piezoelectric actuators. In contrast with the piezoelectric actuators, the resonance frequencies of the inertial shakers can be tuned to the frequencies of interest using simple tuning procedures, so that the output efficiency of the shakers can be increased. The output performance was evaluated for two types of actuators by measuring the structural response of either a panel or a transformer when excited by the actuators at half their rated voltage input. Results demonstrated that a much larger output amplitude at the frequency of interest can be achieved by the tuned inertial type actuators.

Two near-field sensing strategies, the minimization of the sum of the sound intensities and the minimization of the sum of the squared sound pressures, have been studied. A quadratic expression was derived for the minimization of the sum of the sound intensities in the near-field. To evaluate the control performances achieved using both sensing strategies, a flat-panel was modelled with a harmonic point force disturbance and several point force control sources. Simulation results show that the control performance could be improved by minimizing the sum of the sound intensities in the hydrodynamic near-field, provided that a very large number of error sensors were used, otherwise better results were achieved using near-field squared pressure sensing.

vii

Abstract

Both sensing strategies were used to predict the noise reductions that resulted for the active noise control of a small transformer in the laboratory environment and for a large electrical power transformer on site. To optimize the locations of the control sources (for the large transformer on site) and the locations of the error sensors (for the small transformer in the laboratory environment), a genetic algorithm (GA), which is an evolutionary optimization technique, was employed as a search procedure to optimize the control source and error sensor locations. The results showed that the control source locations and/or the error sensor locations must be optimized to achieve the maximum sound reduction for either error sensing strategy, especially for the sound intensity minimization; otherwise, the sound field level may increase after control due to the character of the cost function (the sum of the sound intensities).

The simulation results were experimentally validated for the small transformer in the laboratory environment. Due to the limitation of the number of controller channels, the control performance was only evaluated for squared pressure minimization. The results demonstrated that for the case of 8 control sources and 8 error sensors, at 100 Hz, an average sound pressure reduction of 15.8 dB was achieved when evaluated at 528 monitoring locations at 0.25 m intervals on a surface that surrounded the transformer.

DECLARATION

The work presented in this thesis has not been submitted, in full or in part, for another degree at this or any other institution. The contribution of others to the content of this thesis and all previously published material has been fully acknowledged. I give consent to this copy of my thesis, when deposited in the University Library, being available for loan and photocopying.

Xun Li

ACKNOWLEDGMENTS

Firstly, I would like to thank my supervisor, Professor Colin H Hansen, for his supervision, encouragement and guidance throughout this entire project.

I am also very grateful to the Electricity Supply Association of Australia Ltd, the Australian Research Council and Electricity Trust of South Australia for financial support.

I am thankful to Mr. Ron Jager, Anthony Sherry and George Osborne, the workshop technicians, for support of my experiments. I am appreciative to Dr. Xiaojun Qiu and Mr. Yianting Ai for help carrying out the experiments and willingness and interest to discuss areas of work.

I would also like to express gratitude my son, John C Li, for helping with programming.

Last but not the least, I would like to thank my wife for encouraging me to finish my thesis.

LIST OF FIGURES

Figure 3.1	Curved panel with a backing cavity	29
Figure 3.2	Front view of the curved panel	31
Figure 3.3	Variation of the resonance frequency of the panel-cavity system as a function of cavity depth, associated with cavity length of 0.985 m and width of 0.418 m	34
Figure 3.4	Variation of the resonance frequency of the panel-cavity system as a function of cavity width, associated with cavity length of 0.985 m and depth of 0.25 m	34
Figure 3.5	Variation of the resonance frequency of the panel-cavity system as a function of cavity length, associated with cavity width of 0.42 m and width of 0.25 m	35
Figure 3.6	Curved panel with a backing cavity modeled by means of FEA (ANSYS R5.5)	37
Figure 3.7	1,1 mode shape of the curved panel with a backing cavity modeled by means of FEA (ANSYS R5.5)	38
Figure 3.8	1,3 mode shape of the curved panel with a backing cavity modeled by means of FEA (ANSYS R5.5)	39
Figure 3.9	Mode shapes in 1,1 mode and 1,3 mode with attached masses	41
Figure 3.10	Experimental set-up for modal analysis testing	42
Figure 3.11	Frequency response of the curved panel with a backing cavity	43
Figure 3.12	The effect of variations in backing cavity depth on the panel resonance frequency	44

List of figures

Figure 3.13	Frequency response of the adjusted curved panel with a backing cavity	45
Figure 3.14	Extensions of a thin piezoelectric actuator under an applied voltage	46
Figure 3.15	Curved panel driven by line moments	48
Figure 3.16	Variation of the structural response as a function of PZT actuator size for the 1,3 mode, using one pair of PZT actuators	52
Figure 3.17	Variation of the structural response as a function of PZT actuator size for the 1,1 and 3,3 modes, using one pair of PZT actuators	53
Figure 3.18	Variation of the structural response as a function of PZT actuator size for the 1,3 mode, using two pairs of PZT actuators	55
Figure 3.19	Top view of the configuration for optimization of locations of actuators	56
Figure 3.20	Variations of the structural response as a function of positions of PZT actuators on the panel for a fixed actuator excitation voltage of 100 V	58
Figure 3.21	Bending moment induced in a structure as a function of the ratio of actuator thickness to shallow shell thickness	59
Figure 3.22	Comparison of sound pressure level of the panel-cavity system with a transformer, the microphone at 0.5 m from sound sources, the panel being driven by 6 actuators	61
Figure 4.1	Inertial shaker	64
Figure 4.2	A photograph of the test shaker mounted on a 50 kg mass	66
Figure 4.3	Frequency response of the inertial shaker for an input voltage of $1 V_{rms}$	67

List	of figures
Lasi	oj jigures

Figure 4.4	Spring-mass system	68
Figure 4.5	Two springs in parallel	68
Figure 4.6	Frequency response of the inertial shaker before and after adding two additional diaphragms	69
Figure 4.7	Frequency response of the inertial shaker before and after modifying the diaphragm thickness	71
Figure 4.8	Influence of the temperature of the shaker on the resonance frequency (after Cordioli (1999))	72
Figure 4.9	Block diagram of the experimental set-up	73
Figure 4.10	Locations of the accelerometers and the actuator on the panel	74
Figure 4.11	Comparison of the acceleration levels of the panel excited by the inertial shaker and piezoelectric actuator at half the rated input (the resonance frequency of the shaker is 44.5 Hz)	76
Figure 4.12	Comparison of the acceleration levels of the panel excited by the inertial shaker and piezoelectric actuator at half the rated input (the resonance frequency of the shaker is 84 Hz)	78
Figure 4.13	A photograph of a small transformer	79
Figure 4.14	Vibration control sources	79
Figure 4.15	Frequency response of inertial shakers	80
Figure 4.16	Locations of the accelerations and actuator on the transformer wall	81
Figure 4.17	Comparison of the acceleration level of the transformer excited by the inertial shakers and the piezoelectric actuator at half the rated maximum voltage of the actuators	82

List of figures

Figure 5.1	Sound intensity probe set up	88
Figure 5.2	Physical system arrangement	96
Figure 5.3	Coordinate system of a vibrating plate	97
Figure 5.4	Distribution of sound pressure level without control; error sensors at 441 points at 0.2 m intervals on a plane γ =0.17 above the panel	100
Figure 5.5	Distribution of sound intensity level without control; error sensors at 441 points at 0.2 m intervals on a plane γ =0.17 above the panel	101
Figure 5.6	Distribution of sound intensity level after point force control (4 control force); error sensors at 441 points at 0.2 m intervals on a plane γ =0.17 above the panel	101
Figure 5.7	Variation of the sound power reduction in the far-field as a function of the distance between the error sensors and panel for 441 error sensors; $\kappa = 1.2$	103
Figure 5.8	Comparison of the sound field reduction in the far-field and at the error sensors; 441 error sensors; $\kappa = 1.2$	104
Figure 5.9	Variation of the sound power reduction as a function of the distance between the error sensors and the panel for 36 error sensors; $\kappa = 1.2$	105
Figure 5.10	Variation of the sound power reduction as a function of the number of the error sensors associated with $\kappa = 1$	107
Figure 5.11	Variation of the sound power reduction as a function of the distance between the error sensor plane and the panel for 441 error sensors; $\kappa = 3.77$	108
Figure 5.12	The radiation field of a source (after Bies and Hansen (1996))	109

List of figures

Figure 5.13	Comparison of the sound field reduction in the far-field and at the error sensors; 441 error sensors; $\kappa = 3.77$	110
Figure 5.14	Variation of the sound power reduction as a function of the distance between the error sensor plane and the panel for 36 error sensors; $\kappa = 3.77$	111
Figure 5.15	Variation of the sound power reduction as a function of the number of error sensors associated with κ =3.77	112
Figure 5.16	Distribution of the primary sound intensity field on a plane above the panel, $\gamma = 0.33$	113
Figure 6.1	A test transformer in the anechoic room	116
Figure 6.2	The experimental set-up in the control room	117
Figure 6.3	Block diagram of the experimental set-up	117
Figure 6.4	A photograph of the sound intensity probe constructed by two electret microphones	118
Figure 6.5	A photograph of an inertial shaker	119
Figure 6.6	Variation of the noise reduction level with the number of the error sensors, (sound intensity minimization at evenly spaced error sensors)	123
Figure 6.7	Variation of the average intensity reduction at the error sensors as a function of the number of error sensors, associated with the optimum error sensor locations that correspond to the maximum noise reduction at the error sensors	124
Figure 6.8	Variation of the noise reduction level as a function of the number of the error sensors, associated with the optimum error sensor locations the correspond to the maximum noise reduction	10-
	at the monitor sensors (sound intensity minimization)	126

Figure 6.9	Variation of the noise reduction level as a function of the number of the error sensors, associated with the optimum error sensor locations that correspond to the maximum noise reduction at the monitor sensors (squared pressure minimization)	129
Figure 6.10	Comparison of the noise reduction achieved by the intensity minimization with that achieved by the squared pressure minimization at monitor sensors (associated with optimum error sensor locations)	131
Figure 6.11	Coordinate system for monitor microphones	132
Figure 6.12	A Graphic User Interface of the controller	133
Figure 6.13	Experimental set-up for evaluating global control performance	134
Figure 6.14	Sound pressure level reduction at monitor microphones at 100 Hz in the near-field (8 control sources and 8 error sensors)	135
Figure 6.15	Distribution of sound pressure level at monitor microphones at 100 Hz before and after control (8 control sources and 8 error sensors)	136
Figure 6.16	Variation of the average noise reduction at error sensors as a function of the number of the control sources associated with 8 error sensors	138
Figure 6.17	Vibration reduction level of the transformer tank at 100 Hz corresponding to the minimization of the sum of the squared sound pressure using 8 control sources and 8 error sensors	140
Figure 6.18	Distribution of velocity level on the transformer tank (top panel) corresponding to the minimization of the sum of the squared sound pressure using 8 control sources and 8 error sensors, at 100 Hz	140

xvi

Figure 6.19	Distribution of velocity level on the transformer tank (west panel) corresponding to the minimization of the sum of the squared sound pressure using 8 control sources and 8 error sensors, at 100 Hz	141
Figure 6.20	Distribution of velocity level on the transformer tank (south panel) corresponding to the minimization of the sum of the squared sound pressure using 8 control sources and 8 error sensors, at 100 Hz	141
Figure 6.21	Distribution of velocity level on the transformer tank (east panel) corresponding to the minimization of the sum of the squared sound pressure using 8 control sources and 8 error sensors, at 100 Hz	142
Figure 6.22	Distribution of velocity level on the transformer tank (north panel) corresponding to the minimization of the sum of the squared sound pressure using 8 control sources and 8 error sensors, at 100 Hz	142
Figure 7.1	A photograph of the test transformer located at Cherry Gardens, South Australia	146
Figure 7.2	Sound intensity probe constructed using two electret microphone	146
Figure 7.3	A picture of the experimental set-up	147
Figure 7.4	A picture of a swing hammer	147
Figure 7.5	A block diagram of the experimental set-up of force source test	147
Figure 7.6	The experimental set-up of acoustic source test	148

- Figure 7.7Distribution of sound pressure level without control, one meterfrom the transformer150
- Figure 7.8Sound pressure reduction level for 100 Hz at a distance of 1
meter from the transformer after force type source control (80
control source at optimized locations)151
- **Figure 7.9** Predicted distribution of sound pressure level for 100 Hz at a distance of 1 meter from the transformer without control and after force-source control (80 control sources at optimized locations)
- Figure 7.10Comparison between the average sound pressure reductions at
the error sensors using optimal control source locations and
'compromised' control source locations, (80 force type control
sources and 96 error sensors)153

152

154

155

- Figure 7.11Sound pressure reduction level at the error sensors for 200 Hz at
a distance of 1 meter from the transformer after force type
source control (80 control source at 'compromised' locations)154
- **Figure 7.12** Predicted distribution of sound pressure level for 200 Hz at a distance of 1 meter from the transformer without control and after force-source control (80 control sources at 'compromised' locations)
- Figure 7.13 Sound pressure reduction level at the error sensors for 300 Hz at a distance of 1 meter from the transformer after force type source control (80 control source at 'compromised' locations) xviii

- Figure 7.14
 Predicted distribution of sound pressure level for 300 Hz at a distance of 1 meter from the transformer without control and after force-source control (80 control sources at 'compromised' locations)

 155
- Figure 7.15 Comparison between the average sound pressure reductions at the error sensors using optimal control source locations and 'compromised' control source locations, (80 loudspeaker type control sources and 96 error sensors) 156
- Figure 7.16Average sound pressure reductions at the error sensors obtained
using the vibration control sources and the loudspeakers, (80
control sources and 96 error sensors)157
- **Figure 7.17** Comparison of the average sound pressure level reductions at the error sensors achieved using the curved panels with those achieved using the loudspeakers for the larger transformer noise control (using evenly spaced control sources and 24 error sensors)
- Figure 7.18 Average sound pressure reductions at the error sensors using both curved panels and loudspeakers for the large transformer noise control (at optimal control source locations and 24 error sensors)
- Figure 7.19 Variation of the average sound pressure reductions at 96 error sensors with the number of control sources; (a) force control force, (b) loudspeaker sources

159

161

158

- Figure 7.20
 Comparison of control results associated with optimum

 locations of control sources with those associated with

 arbitrarily selected locations; (80 vibration control sources and

 96 error sensors)
 162
- Figure 7.21 Comparison of control results associated with optimum locations of control sources with those associated with arbitrarily selected locations; (80 loudspeaker control sources and 96 error sensors) 162
- Figure 7.22Average sound intensity reduction at the error sensors
corresponding to the optimal control source locations, (80
control sources and 96 error sensors)163

Figure 7.23	Sound pressure reduction at the monitor sensors before and after	
	intensity minimization in the near-field	164

- Figure A.1A curvilinear coordinate system192
- Figure B.1
 Configuration of UA 0914 sound intensity coupler for calibrating electret microphones
 202

A block diagram for calibration of the electret microphones

Figure B.2

202

Figure B.3A block diagram for measurement of sound pressure level in the
calibration system203Figure C.1Force sensitivity of the inertial shakers209

LIST OF TABLES

Table 3.1	System property parameters	35
Table 3.2	Resonance frequencies of the curved panel with a backing cavity (Hz)	36
Table 3.3	Velocity (dB re 10^{-9} m/s) of the system for the 1,3 mode (<i>f</i> =207 Hz) corresponding to a PZT input of 100 V, one pair of actuators	52
Table 3.4	Velocity (dB re 10^{-9} m/s) of the system for the 1,1 mode (<i>f</i> =107 Hz) corresponding to a PZT input of 100 V, one pair of actuators	54
Table 3.5	Velocity (dB re 10^{-9} m/s) of the system for the 3,3 mode (<i>f</i> =257 Hz) corresponding to a PZT input of 100 V, one pair of actuators	54
Table 3.6	Velocity (dB re 10^{-9} m/s) of the system for the 1,3 mode (<i>f</i> =207 Hz) corresponding to a PZT input of 100 V, two pairs of actuators	56
Table 4.1	Piezoelectric actuator specifications	64
Table 4.2	Inertial shaker specifications	65
Table 4.3	Mechanical properties of the piezoelectric patch actuator	74
Table 4.4	Total harmonic distortion (%) for the PZT actuator	83
Table 4.5	Total harmonic distortion (%) for the inertial shaker tuned to 100 Hz	83
Table 4.6	Total harmonic distortion (%) for the inertial shaker tuned to 200 Hz	83

Table 4.7	Total harmonic distortion (%) for the inertial shaker tuned to	
	300 Hz	83
Table 5.1	Coordinates of forces on the panel	99
Table 7.1	The characteristics of the sound fields radiated from	1
	transformers at error sensing locations	166
Table 7.2	Average sound intensity reduction at the monitors sensors for	
	the small transformer, using 8 force type control sources (dB)	166
Table D 1	Calibration regults of the system	202
Table D.1	Canoration results of the system	203