Phosphorus retention and metabolism: indicators of stream deterioration across a rural-urban gradient?

by

Kane Thomas Aldridge

School of Earth and Environmental Sciences, The University of Adelaide Cooperative Research Centre for Freshwater Ecology

A thesis submitted to The University of Adelaide for the degree of Doctor of Philosophy

October 2005

Contents

COL	tents		i
List	of table	5	iv
List	of figur	es	vii
List	of abbr	eviations	xi
Dec	laration		xii
Ack	nowledg	ements	xiii
Sun	nmary		xiii
For	eword		xvi
1	Gene	ral introduction	1
	1.1	Ecosystem services and functions and biological diversity	1
	1.2	Impacts of changes in land-use on stream ecosystems	2
	1.3	Stream resource interception and transformation	3
	1.3.1	Nutrient retention	
	1.3.2	Stream metabolism	4
	1.4	The project	5
2	Study	site and general methods	9
	2.1	Study site	9
	2.1.1	Landscape	10
	2.1.1 2.1.2	Channel structure	11
		Channel structure General methods	11 12
	2.1.2 2.2 2.2.1	Channel structure General methods Filterable reactive phosphorus and dissolved organic carbon	11 12 12
	2.1.2 2.2 2.2.1 2.2.2	Channel structure General methods Filterable reactive phosphorus and dissolved organic carbon Benthic organic matter and chlorophyll <i>a</i>	11 12 12 13
	2.1.2 2.2 2.2.1 2.2.2 2.2.2 2.2.3	Channel structure General methods Filterable reactive phosphorus and dissolved organic carbon Benthic organic matter and chlorophyll <i>a</i> Phosphorus, nitrogen and carbon tissue concentrations	11 12 12 13 13
	2.1.2 2.2 2.2.1 2.2.2 2.2.3 2.2.3 2.2.4	Channel structure General methods Filterable reactive phosphorus and dissolved organic carbon Benthic organic matter and chlorophyll <i>a</i> Phosphorus, nitrogen and carbon tissue concentrations Rock surface area	11 12 12 13 13 14
	2.1.2 2.2 2.2.1 2.2.2 2.2.3 2.2.4 2.2.5	Channel structure General methods Filterable reactive phosphorus and dissolved organic carbon Benthic organic matter and chlorophyll <i>a</i> Phosphorus, nitrogen and carbon tissue concentrations Rock surface area Light intensity and water temperature	11 12 13 13 13 14 14
	2.1.2 2.2 2.2.1 2.2.2 2.2.3 2.2.4 2.2.5 2.2.6	Channel structure General methods Filterable reactive phosphorus and dissolved organic carbon Benthic organic matter and chlorophyll <i>a</i> Phosphorus, nitrogen and carbon tissue concentrations Rock surface area Light intensity and water temperature Hydrology	11 12 13 13 13 14 14 14
	2.1.2 2.2 2.2.1 2.2.2 2.2.3 2.2.4 2.2.5	Channel structure General methods Filterable reactive phosphorus and dissolved organic carbon Benthic organic matter and chlorophyll <i>a</i> Phosphorus, nitrogen and carbon tissue concentrations Rock surface area Light intensity and water temperature	11 12 13 13 13 14 14 14
3	2.1.2 2.2 2.2.1 2.2.2 2.2.3 2.2.4 2.2.5 2.2.6 2.2.7	Channel structure General methods Filterable reactive phosphorus and dissolved organic carbon Benthic organic matter and chlorophyll <i>a</i> Phosphorus, nitrogen and carbon tissue concentrations Rock surface area Light intensity and water temperature Hydrology	11 12 13 13 13 14 14 14
-	2.1.2 2.2 2.2.1 2.2.2 2.2.3 2.2.4 2.2.5 2.2.6 2.2.7 Phosp	Channel structure General methods Filterable reactive phosphorus and dissolved organic carbon Benthic organic matter and chlorophyll <i>a</i> Phosphorus, nitrogen and carbon tissue concentrations Rock surface area Light intensity and water temperature Hydrology Day number	11 12 12 13 13 14 14 14 14
-	2.1.2 2.2 2.2.1 2.2.2 2.2.3 2.2.4 2.2.5 2.2.6 2.2.7 Phosp	Channel structure General methods Filterable reactive phosphorus and dissolved organic carbon Benthic organic matter and chlorophyll <i>a</i> Phosphorus, nitrogen and carbon tissue concentrations Rock surface area Light intensity and water temperature Hydrology Day number Day number	11 12 12 13 13 14 14 14 14 15

3.2.1	Phosphorus-addition experiments	28
3.2.2	Solute transport modelling	29
3.2.3	Statistical analyses	31

5.3.1

5.3.2

5.3.3

5.3.4

5.3.5

5.4

	3.3	Results	32
	3.3.1	Environmental conditions	
	3.3.2	Solute behaviour	
	3.3.3	FRP retention properties	
	3.3.4	Causes of differences in FRP uptake and retention	34
	3.4	Discussion	34
4	Abiot	ic and biotic benthic phosphorus uptake in stream reaches	with
vai	rying c	hannel structure across a rural-urban gradient	49
	4.1	Introduction	49
	4.2	Methods	51
	4.2.1	Phosphorus uptake experiments	51
	4.2.2	Statistical analyses	52
	4.3	Results	53
	4.3.1	Environmental conditions	53
	4.3.2	Benthic organic matter	53
	4.3.3	Benthic FRP uptake	53
	4.3.4	Total benthic FRP uptake rates	54
	4.3.5	Biotic benthic FRP uptake rates	55
	4.3.6	Abiotic benthic FRP uptake rates	55
	4.3.7	Summary	56
	4.4	Discussion	56
5	Chan	ges in metabolism of stream reaches with varying channel	
str	ucture	across a rural-urban gradient	71
	5.1	Introduction	71
	5.2	Methods	72
	5.2.1	Stream metabolism	72
	5.2.2	Statistical analyses	74
	5.3	Results	75

	urban gradient	
6.1	Introduction	
6.2	Methods	
6.2		
	2.2 Scaling to level of the reach	
	2.3 Pelagic metabolism	
	2.4 Environmental conditions	
	2.5 Statistical analyses	
6.3	Results	
6.3		
-	3.2 Reach metabolic rates	
	3.3 Rock-pelagic metabolic rates	
	3.4 Gravel-pelagic metabolic rates	
6.4	3.5 Pelagic metabolic rates Discussion	
Res	toration of two ecosystem functions in a degraded-urb	oan stream
	toration of two ecosystem functions in a degraded-urb ng the addition of coarse particulate organic matter	
		109
lowir	ng the addition of coarse particulate organic matter	109
lowir 7.1	ag the addition of coarse particulate organic matter Introduction Methods	109 110 111
1 lowir 7.1 7.2 7.:	ag the addition of coarse particulate organic matter Introduction	109 110
10win 7.1 7.2 7.: 7.:	ng the addition of coarse particulate organic matter Introduction Methods	109 110 111
1.1 7.1 7.2 7.: 7.: 7.:	ag the addition of coarse particulate organic matter Introduction	109 110
1.1 7.1 7.2 7.: 7.: 7.:	 ag the addition of coarse particulate organic matter Introduction	109 110111111111111111111112113
1 lowir 7.1 7.2 7.: 7.: 7.: 7.:	ag the addition of coarse particulate organic matter Introduction	
llowir 7.1 7.2 7.: 7.: 7.3 7.3	ag the addition of coarse particulate organic matter Introduction	109 110111111111112113113113
llowir 7.1 7.2 7.: 7.: 7.3 7.3	ag the addition of coarse particulate organic matter Introduction	109 110111111111111111113113113113114
llowin 7.1 7.2 7.3 7.3 7.3 7.3 7.3 7.3 7.4	ag the addition of coarse particulate organic matter Introduction Methods 2.1 Coarse particulate organic matter 2.2 Stream metabolism 2.3 Phosphorus retention 2.4 Statistical analysis Results	
llowin 7.1 7.2 7.3 7.3 7.3 7.3 7.3 7.3 7.4	ag the addition of coarse particulate organic matter Introduction Methods 2.1 Coarse particulate organic matter 2.2 Stream metabolism 2.3 Phosphorus retention 2.4 Statistical analysis Results	
llowir 7.1 7.2 7.3 7.3 7.3 7.3 7.4 Ger	ag the addition of coarse particulate organic matter Introduction Methods 2.1 Coarse particulate organic matter 2.2 Stream metabolism 2.3 Phosphorus retention 2.4 Statistical analysis Results	
llowir 7.1 7.2 7.: 7.: 7.3 7.3 7.3 7.4 Ger 8.1	ag the addition of coarse particulate organic matter Introduction Methods 2.1 Coarse particulate organic matter 2.2 Stream metabolism 2.3 Phosphorus retention 2.4 Statistical analysis Results Results 3.1 Stream metabolism 3.2 Phosphorus retention Discussion Discussion Changes in ecosystem functions across a rural-urban gradient	
llowir 7.1 7.2 7.: 7.: 7.3 7.3 7.3 7.4 Ger 8.1 8.2	ng the addition of coarse particulate organic matter Introduction Methods 2.1 Coarse particulate organic matter 2.2 Stream metabolism 2.3 Phosphorus retention 2.4 Statistical analysis Results Results 3.1 Stream metabolism 3.2 Phosphorus retention Discussion Discussion Changes in ecosystem functions across a rural-urban gradient Implications for management of ecosystem functions	

List of tables

Table 2.1. Land-use of rural areas of First and Fourth Creek sub-catchments in 2003. Land-use
Australia16
Table 2.2. Geomorphic measurements of un-modified (Un-mod), degraded (Deg) and engineered
(Eng) reaches of First and Fourth Creeks17
Table 3.1. Dates, times and period of continuous flow during FRP addition experiments in un-
modified (Un-mod), degraded (Deg) and engineered (Eng) reaches of First and Fourth Creeks
in winter 2003 (W03), spring 2003 (S03) and winter 2004 (W04)
Table 3.2. Environmental parameters in un-modified (Un-mod), degraded (Deg) and engineered
(Eng) reaches of First and Fourth Creeks in winter 2003 (W03), spring 2003 (S03) and winter
2004 (W04)
Table 3.3. Hydrological and FRP retention properties in un-modified (Un-mod), degraded (Deg)
and engineered (Eng) reaches of First and Fourth Creeks in winter 2003 (W03), spring 2003
(S03) and winter 2004 (W04)
Table 3.4. Statistics and relationships obtained for effects of environmental parameters on percent
FRP retention, uptake length and mass transfer coefficient40
Table 4.1. Dates, times and period of continuous flow in autumn-winter (AW), winter-spring (WS)
and late spring (S) in un-modified (Un-mod), degraded (Deg) and engineered (Eng) reaches of
First and Fourth Creeks during 200459
Table 4.2. Environmental parameters in autumn-winter (AW), winter-spring (WS) and late spring
(S) in un-modified (Un-mod), degraded (Deg) and engineered (Eng) reaches of First and
Fourth Creeks60
Table 4.3. Benthic organic matter and benthic chlorophyll a on un-sterilised and sterilised rocks in
autumn-winter (AW), winter-spring (WS) and late spring (S) in un-modified (Un-mod),
degraded (Deg) and engineered (Eng) reaches of First and Fourth Creeks61
Table 4.4. Benthic total phosphorus (TP), total carbon (TC) and total nitrogen (TN) and molar ratios
in autumn-winter (AW), winter-spring (WS) and late spring (S) in un-modified (Un-mod),
degraded (Deg) and engineered (Eng) reaches of First and Fourth Creeks62
Table 4.5. P-values obtained for effects of reach, season and creek (and interactions) on total,
abiotic and biotic benthic FRP uptake rates63
Table 4.6. Statistics and relationships obtained for influence of environmental parameters on
benthic FRP uptake rates64
Table 5.1. Date and period of continuous flow at time of stream metabolism measurements in
winter 2003 (W03), spring 2003 (S03), autumn-winter 2004 (AW04) and winter-spring 2004
(WS04) in un-modified (Un-mod) and degraded (Deg) reaches of First and Fourth Creeks and
engineered (Eng) reach of Fourth Creek80

Table 5.2. Environmental parameters in winter 2003 (W03), spring 2003 (S03), autumn-winter
2004 (AW04) and winter-spring 2004 (WS04) in un-modified (Un-mod) and degraded (Deg)
reaches of First and Fourth Creeks and engineered (Eng) reach of Fourth Creek81
Table 5.3. P-values obtained for effects of reach, season and the interaction between reach and
season on community respiration (CR), gross primary production (GPP) and net ecosystem
production (NEP) in First and Fourth Creeks
Table 5.4. Statistics and relationships obtained for the influence of environmental parameters on
community respiration (CR), gross primary production (GPP) and net ecosystem production
(NEP)
Table 6.1. Dates and period of continuous flow at time of measurements of stream metabolism in
autumn-winter (AW) and winter-spring (WS) in un-modified (Un-mod) and degraded (Deg)
reaches of First and Fourth Creeks and engineered (Eng) reach of Fourth Creek
Table 6.2. Morphological parameters during measurements of stream metabolism in autumn-winter
(AW) and winter-spring (WS) in un-modified (Un-mod) and degraded (Deg) reaches of First
and Fourth Creeks and engineered (Eng) reach of Fourth Creek
Table 6.3. Environmental parameters during measurements of rock, gravel and pelagic metabolism
in autumn-winter (AW) and winter-spring (WS) in un-modified (Un-mod) and degraded (Deg)
reaches of First and Fourth Creeks and engineered (Eng) reach of Fourth Creek
Table 6.4. P-values for the effect of reach (R), season (S) and the interaction between reach and
season (R*S) on community respiration (CR), gross primary production (GPP) and net
ecosystem production (NEP)
Table 6.5. Percent of reach community respiration (CR) and gross primary production (GPP)
attributed to rock-pelagic and gravel-pelagic CR and GPP in autumn-winter (AW) and winter-
spring (WS) in un-modified (Un-mod) and degraded (Deg) reaches of First and Fourth Creeks
and engineered (Eng) reach of Fourth Creek
Table 6.6. Statistics and relationships obtained for effects of environmental parameters on reach
community respiration (CR), gross primary production (GPP) and net ecosystem production
(NEP)
Table 6.7. Statistics and relationships obtained for effects of environmental parameters on rock-
pelagic, gravel-pelagic and pelagic community respiration (CR), gross primary production
(GPP) and net ecosystem production (NEP)104
Table 7.1. Dates of stream metabolism and phosphorus-addition experiments and in the
manipulated and control reaches
Table 7.2. Environmental parameters during measurements of stream metabolism in manipulated
and control reaches, before and after leaf addition119

$\textbf{Table 7.3.} \ \textbf{P-values obtained for effects of reach, time and reach^{\star} time on stream gross primary$		
production, community respiration and net ecosystem production, following the addition of		
coarse particulate organic matter to a manipulated reach120		
Table 7.4. P-values obtained for effects of substrate, time and substrate*time on leaf and rock gross		
primary production, community respiration and net ecosystem production, following the		
addition of coarse particulate organic matter to a manipulated reach120		
Table 7.5. P-values obtained for effects of reach, time and reach*time on rock gross primary		
production, community respiration and net ecosystem production, following the addition of		
coarse particulate organic matter to a manipulated reach120		
Table 7.6. Environmental parameters during phosphorus-addition experiments in manipulated and		
control reaches, before and after leaf addition121		
Table 7.7. Hydrological and filterable reactive phosphorus (FRP) retention properties during		
phosphorus-addition experiments in manipulated and control reaches of Fourth Creek before		
and after leaf addition		
Table 7.8. Statistics and relationships obtained for effects of environmental parameters on FRP		
uptake length, FRP mass transfer coefficient and percent FRP retention		

List of figures

Figure 1.1. Conceptual diagram of solute processes in streams
Figure 1.2. Conceptual diagram of resource dynamics in un-modified and developed catchments
(Brookes et al. In press)
Figure 2.1. Location of South Australia within Australia (A), Torrens River Catchment within
South Australia (B) and studied stream reaches within First and Fourth Creeks (C, modified
from Tonkin Consulting (2002)18
Figure 2.2. Photo of the un-modified reach of First Creek
Figure 2.3. Photo of the degraded reach of First Creek
Figure 2.4. Photo of the engineered reach of First Creek
Figure 2.5. Photo of the stream bed (aerial view) of the engineered reach of First Creek20
Figure 2.6. Photo of the un-modified reach of Fourth Creek
Figure 2.7. Photo of the degraded reach of Fourth Creek
Figure 2.8. Photo of the engineered reach of Fourth Creek
Figure 2.9. Photo of the stream bed (aerial view) of the engineered reach of Fourth Creek
Figure 2.10. Photo of one of three pools within the engineered reach of Fourth Creek23
Figure 2.11. Photo of the upstream end of the urban reach of Fourth Creek studied in chapter seven
(looking west)
Figure 2.12. Photo of the downstream end of the urban reach of Fourth Creek studied in chapter
seven (looking east)24
Figure 2.13. Daily flow in the (A) un-modified reach of First Creek and (B) downstream of the
engineered reach of First Creek during 200325
Figure 3.1. Influence of changes in (A) stream velocity, v, and (B) dispersion, D, on the modelled
fit of observed conductivity in the un-modified reach of First Creek, winter 2004
Figure 3.2. Influence of changes in (A) retardation factor, R , (B) production rate, \bullet , and (C) decay
coefficient, $ullet$, on the modelled fit of observed FRP concentrations in the un-modified reach of
First Creek, winter 2004
Figure 3.3. Expected and observed filterable reactive phosphorus (FRP) concentrations in (A) un-
modified, (B) degraded, and (C) engineered reaches of First Creek during winter 2003. Black
observed-FRP concentrations at 35 m (triangles) and 100 m (squares)43
Figure 3.4. Expected and observed filterable reactive phosphorus (FRP) concentrations in (A) un-
modified, (B) degraded, and (C) engineered reaches of Fourth Creek during winter 200344
Figure 3.5. Two-dimensional NMS ordination of FRP retention properties
Figure 3.6. Percent filterable reactive phosphorus (FRP) retention and uptake length at 100 m in un-
modified (Un-mod), degraded (Deg) and engineered (Eng) reaches of First and Fourth Creeks.

Figure 3.7. Influence of background dissolved organic carbon (DOC) to filterable reactive
phosphorus (FRP) molar ratio on percent FRP retention at 100 m in un-modified, degraded and
engineered reaches of First and Fourth Creeks46
Figure 3.8. Influence of period of continuous flow on percent filterable reactive phosphorus (FRP)
retention at 100 m in un-modified, degraded and engineered reaches of First and Fourth
Creeks47
Figure 3.9. Influence of contact time on percent filterable reactive phosphorus (FRP) retention at
100 m in un-modified, degraded and engineered reaches of First and Fourth Creeks47
Figure 3.10. Influence of background filterable reactive phosphorus (FRP) concentration on FRP
uptake length in un-modified, degraded and engineered reaches of First and Fourth Creeks48
Figure 3.11. Conceptual model of phosphorus cycling in the (A) un-modified and (B) impacted
reaches of First Creek
Figure 4.1. Total, abiotic and biotic benthic FRP uptake in First Creek during autumn-winter in (A)
un-modified, (B) degraded and (C) engineered reaches.
Figure 4.2. Total, abiotic and biotic benthic FRP uptake in Fourth Creek during autumn-winter in
(A) un-modified, (B) degraded and (C) engineered reaches
Figure 4.3. Two-dimensional NMS ordination of total, abiotic and biotic benthic FRP uptake rates.
Figure 4.4. Total benthic FRP uptake rates in un-modified (Un-mod), degraded (Deg) and
engineered (Eng) reaches of First and Fourth Creeks during autumn-winter (dark shaded),
winter-spring (un-shaded) and late spring (light shaded).
Figure 4.5. Biotic benthic FRP uptake rates in un-modified (Un-mod), degraded (Deg) and
engineered (Eng) reaches of First and Fourth Creeks during autumn-winter (dark shaded),
winter-spring (un-shaded) and late spring (light shaded).
Figure 4.6. Abiotic benthic FRP uptake rates in un-modified (Un-mod), degraded (Deg) and
engineered (Eng) reaches of First and Fourth Creeks during autumn-winter (dark shaded),
winter-spring (un-shaded) and late spring (light shaded).
Figure 4.7. Influence of background dissolved organic carbon (DOC) to filterable reactive
phosphorus (FRP) molar ratio on total benthic FRP uptake rate in un-modified, degraded and
engineered reaches of First and Fourth Creeks69
Figure 4.8. Influence of period of continuous flow on biotic benthic FRP uptake rate in un-
modified, degraded and engineered reaches of First and Fourth Creeks70
Figure 4.9. Influence of benthic total carbon to total phosphorus molar ratio on abiotic benthic FRP
uptake rate in un-modified, degraded and engineered reaches of First and Fourth Creeks70
Figure 5.1. Change in dissolved oxygen levels in a re-circulating benthic chamber after sunset in
the un-modified reach of First Creek, spring 200384

Figure 6.2. A two-dimensional NMS ordination of reach (Tot) community respiration (CR), gross primary production (GPP) and net ecosystem production (NEP).....106

- **Figure 6.5.** Pelagic community respiration (dark shaded), gross primary production (un-shaded) and net ecosystem production (light shaded) in un-modified and degraded reaches of First and

Fourth Creeks and engineered reach of Fourth Creek during autumn-winter (AW) and winter-
spring (WS)108
Figure 7.1. Stream community respiration (dark shaded), gross primary production (un-shaded) and
net ecosystem production (light shaded) in manipulated (M) and control (C) reaches, before,
one day and eight days after the addition of leaf litter126
Figure 7.2. Influence of total attached organic matter per unit rock surface area on community
respiration in manipulated and control reaches of Fourth Creek following the addition of leaf
litter
Figure 7.3. Rock and leaf community respiration (dark shaded), gross primary production (un-
shaded) and net ecosystem production (light shaded) in control (C) and manipulated (M)
reaches, one and eight days after the addition of leaf litter127
Figure 7.4. Influence of number of days since leaf addition on FRP uptake length in manipulated
reach127
Figure 7.5. Percent FRP retention in manipulated (dark shaded) and control (un-shaded) reaches of
Fourth Creek and the difference between manipulated and control reaches (light shaded)
before and after the addition of leaf litter128
Figure 7.6. Influence of leaf total phosphorus concentration on percent FRP retention in
manipulated reach following the addition of leaf litter
Figure 8.1. Conceptual diagram of resource processing in pristine streams
8

List of abbreviations

Benthic organic matter	BOM
Coarse particulate organic matter	CPOM
Community respiration	CR
Decay coefficient	•
Dispersion coefficient	D
Dissolved organic carbon	DOC
Filterable reactive phosphorus	FRP
Fine particulate organic matter	FPOM
Gross primary production	GPP
Mass transfer coefficient	Vf
Net ecosystem production	NEP
Net primary production	NPP
Production rate	•
Retardation factor	R
Stream velocity	v
Total carbon	ТС
Total nitrogen	TN
Total phosphorus	TP
Uptake length	S_w

Declaration

This thesis contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. I consent to the thesis being made available for photocopying and loan if accepted for the award of the degree.

••••••

Kane Thomas Aldridge

27th October 2005

Acknowledgements

Thank you to the following institutions for financial support, which made this project possible; The Cooperative Research Centre for Freshwater Ecology; School of Earth and Environmental Sciences, The University of Adelaide; Department of Water, Land and Biodiversity Conservation, the Government of South Australia; The River Basin Management Society. Thanks also to National Parks and Wildlife, South Australia and the Botanic Gardens of Adelaide for access to field sites.

Thanks to the 'limnos' that I have worked and laughed with over the past 3 years. Special thanks to Todd (Widdles) for being a great resource for various techniques, Brian (Paddy) for hours of entertainment and for all of your last minute help in the field, Dave for your endless technical support, my G24a office mates Rudi and Paul, Jason for all the stories, Ben, Leon, Sue, Melissa and Sean. Also thanks to Nick, Alex, Brian, Todd, Ben, Sue and Alys for field/lab assistance. A very special thanks to Marilyn Saxon for her wonderful assistance that was always given with a smile. I would also like to acknowledge the founding members of the *EB men's club*; Matty, Scotte and Paddy, certainly a cause that has made significant improvements to society. Also thanks to *triple J*, for getting me through several repetitious tasks, such as wrapping my 'pet' rocks in aluminium foil.

A huge thanks to my supervisors, George Ganf and Justin Brookes. You have always encouraged me to keep learning and provided me with great insight and wisdom. George, I have always enjoyed our meetings, with your knowledge and broad perspective always challenging me to look beyond my initial thoughts. Justin, you give us all something to aim for and your enthusiasm for research is inspiring. Also, special thanks to Sebastien Lamontagne who provided me with many of his valuable hours and always responded to my cries for help.

Thank you to my friends and family for providing me with the support and outlet that I needed to get through my PhD. To my 'Bennett Street Team', thanks for providing me with plenty of good times. To the Payne family, thanks for providing me with the family life away from home. Your generosity is second to none. To my family, thanks for supporting me with whatever path I have decided to take and for being some of my closest friends, as well as family. And of course, Anna, thank you for reminding me what life is all about. Your love, support and approach to life are, and always will be an inspiration for me.

Summary

Much attention has been paid to the effects of anthropogenic impacts upon physical and chemical conditions in freshwater ecosystems. However, impacts upon the functioning of these ecosystems and services that they provide remain relatively unknown. The objective of this thesis was to examine the validity of the general hypothesis that the deterioration of ecosystems may be reflected in their capacity to process resources.

Changes in stream phosphorus retention and metabolism were investigated across a rural-urban gradient in the Torrens River Catchment, South Australia, where channel structures of rural reaches are less modified than urban reaches. In a stream with an intact upper rural catchment (First Creek), a reach with an un-modified channel structure retained $60\% \pm 12.1$ filterable reactive phosphorus (FRP) and had an average uptake length of 79 m \pm 3.4. In comparison, degraded and engineered reaches of First Creek retained less FRP and had longer uptake lengths. In Fourth Creek, which is influenced by agriculture, there were no differences in FRP retention between the reaches. Reduced FRP retention in impacted reaches were a result of decreased contact time, reduced period of continuous flow and increased nutrient availability. Although abiotic benthic FRP uptake rates (up to 6.8 • g m⁻² s⁻¹ \pm 0.36) were consistently greater than biotic uptake rates (up to 3.6 • g m⁻² s⁻¹ \pm 0.52), decreased total benthic uptake rates in impacted reaches were mainly due to decreased biotic uptake.

Metabolic rates were measured within benthic chambers containing rocks and gravel and scaled up to the stream reach. At chamber and reach scales, metabolic rates in the unmodified reach of First Creek were consistently low (community respiration (CR) up to 113 mg $O_2 m^{-2} day^{-1} \pm 47.4$ and gross primary production (GPP) up to 234 mg $O_2 m^{-2} day^{-1} \pm$ 89.5), with a positive net ecosystem production (NEP). In comparison, the degraded reach of First Creek switched between having a negative and positive NEP. Reaches of Fourth Creek also experienced considerable variation and had higher metabolic rates than First Creek (CR up to 371 mg $O_2 m^{-2} day^{-1} \pm 62.1$ and GPP up to 847 mg $O_2 m^{-2} day^{-1} \pm 66.1$). Increased metabolic rates in impacted reaches were attributed to increased light availability and reduced grazing by higher trophic levels, promoting autotrophic organisms.

The altered ecosystem functions were considered to reflect a reduced capacity of deteriorated streams to process resources. However, the addition of coarse particulate organic matter to a degraded-urban stream reach increased CR and reduced NEP to levels more akin to those experienced within pristine streams. Furthermore, percent FRP retention increased, primarily through increased demand for phosphorus of the microbial community.

Although this demonstrated that rehabilitation of in-stream attributes might restore important ecosystem functions in impacted streams, successful restoration will only be achieved if the over-riding causes of in-stream degradation are addressed.

Foreword

This thesis has been prepared as a series of chapters in a format that will be suitable for future publication in scientific journals. To maintain the sense of individual chapters, this has inevitably led to some repetition between chapters.