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Abstract

Generalized geometry is a recently discovered branch of differential geom-
etry that has received a reasonable amount of interest due to the emergence
of several connections with areas of Mathematical Physics. The theory is
also of interest because the different geometrical structures are often gener-
alizations of more familiar geometries. We provide an introduction to the
theory which explores a number of these generalized geometries.

After introducing the basic underlying structures of generalized geometry
we look at integrability which offers some geometrical insight into the theory
and this leads to Dirac structures. Following this we look at generalized
metrics which provide a generalization of Riemannian metrics.

We then look at generalized complex geometry which is a generalization
of both complex and symplectic geometry and is able to unify a number of
features of these two structures. Beyond generalized complex geometry we
also look at generalized Calabi-Yau and generalized Kähler structures which
are also generalizations of the more familiar structures.
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Chapter 1

Introduction

Generalized geometry was created by Nigel Hitchin [15] originally as a way
of characterizing special geometry in low dimensions [13],[14], and has been
further developed by Hitchin’s students M. Gualtieri [11], G. Cavalcanti [5]
and F. Witt [20]. The initial motivations for the subject have since been
overshadowed by the remarkable appearance of certain concepts from string
theory and supergravity such as B-field symmetries, 3-form flux, D-branes,
and connections with skew torsion.

This thesis is an introduction to generalized geometry with the intention
of organizing the different geometrical structures encountered in generalized
geometry into a consistent framework. In Chapter 2 we introduce the the
fundamental structure underpinning all further structures, the so-called gen-
eralized tangent bundle.

The various structures of generalized geometry can often be described as
a reduction of structure of the generalized tangent bundle together with an
integrability condition. In Chapter 3 we look at the integrability of subbun-
dles which naturally leads to the concept of Dirac structures, introduced by
Courant and Weinstein [8],[9].

In Chapter 4 we investigate a natural way in which Riemannian geometry
extends to generalized geometry. The result is that a number of related
concepts such as the Levi-Civita connection and Hodge star also have natural
extensions.

Chapter 5 looks at generalized complex structures, one of the most impor-
tant structures in generalized geometry. These structures are simultaneously
a generalization of complex structures and symplectic structures. Also in this
chapter we consider the deformation theory for generalized complex struc-
tures as well a look at generalized Calabi-Yau manifolds which may possibly
be an appropriate setting for mirror symmetry with torsion.
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In Chapter 6 we look at generalized Kähler structures which are a natu-
ral extension of Kähler manifolds to generalized geometry. The remarkable
feature of generalized Kähler manifolds is that there structure can be equiv-
alently described by a bi-hermitean structure first discovered by Gates, Hull
and Roc̆ek [10] arising from non-linear sigma models with N = (2, 2) super-
symmetry.

Generalized geometry has developed rapidly into a considerably large
subject. There are numerous topics which this thesis does not touch upon
such as generalized submanifolds [11],[1] and their relation to D-branes, T-
duality in generalized geometry [5] following the framework of T-duality in
[3],[2],[4] and moduli spaces [21] to name just a few.
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Chapter 2

Generalized tangent bundle

Generalized tangent bundles play a role in Generalized Geometry that resem-
bles the tangent bundle in more familiar geometries. In particular they come
equipped with a naturally defined inner product as well as a skew-symmetric
bracket acting on sections; moreover the exterior algebra of the cotangent
bundle plays the role of spinors with the generalized tangent bundle acting
on the exterior bundle by a naturally defined Clifford action. The untwisted
generalized tangent bundle is simply the direct sum of the tangent and cotan-
gent bundles. Beyond this there are the twisted generalized tangent bundles,
so named because they are formed by twisting by a gerbe.

2.1 The generalized tangent bundle

2.1.1 Introduction

We present the fundamental structure of Generalized Geometry. Let M be
a smooth manifold. The generalized tangent bundle is the bundle EM =
TM ⊕ T ∗M over M . When the manifold in question is understood we will
often simply write T and T ∗ for the tangent and cotangent bundles and E
for EM . There is a naturally defined bilinear form on this bundle arising
from the pairing of dual vector spaces and is given by

(X + ξ, Y + η) =
1

2
(η(X) + ξ(Y )) (2.1)

Where X,Y are tangent vectors and ξ,η are cotangent vectors, all over the
same base point. This bilinear form has signature (n, n) where n = dim M .

Each fibre of the generalized tangent bundle has an action on the corre-
sponding fibre of the exterior bundle ∧T ∗ given by
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(X + ξ) · ω = ξ ∧ ω + ιXω (2.2)

where ιX denotes contraction by X. It then follows that

(X + ξ) · ((X + ξ) · ω) = ξ(X)ω = (X + ξ, X + ξ)ω

and thus the exterior algebra is given the structure of a bundle of Clifford E
modules with respect to the natural bilinear form on E. The corresponding
bundle of Clifford algebras generated by the relation (X + ξ)2 = ξ(X) is
denoted Cliff(E).

The form ( , ) on E allows one to reduce the structure group of E to
O(n, n); in fact by considering first Stiefel-Whitney classes we can further
reduce the structure to SO(n, n) since w1(T ⊕ T ∗) = w1(T ) + w1(T

∗) = 0.
As SO(n, n)-bundles we have the isomorphism Cliff(E) ' ∧E ' ∧T ⊗ ∧T ∗.
A spin structure for E is then a lift of the transition functions of E from
SO(n, n) to Spin(n, n) with the cocycle condition preserved. In the case of
an SO(n)-bundle, the obstruction to such a lift is the second Stiefel-Whitney
class w2. However for an indefinite metric, as is the case here the obstruction
is different. Given a bundle E with SO(p, q) structure we can always reduce
structure to the maximal compact subgroup S(O(p) × O(q)) which corre-
sponds to decomposing the bundle E into a sum of positive and negative sub-
bundles, E = E+ ⊕E− (this can be done by the Gram-Schmidt procedure).
Then as worked out by Karoubi in [17], the obstruction to finding a lift of
the structure of E from SO(p, q) to Spin(p, q) is precisely w2(E

+)−w2(E
−).

In the case of the generalized tangent bundle, E = T ⊕ T ∗, we find that if
E is decomposed as E = E+ ⊕ E−, then the projection π : E → T induces
isomorphisms π : E+ ' T , π : E− ' T and thus w2(E

+) − w2(E
−) = 0

showing that a lift of the structure of E to Spin(n, n) is always possible.

The Clifford algebra Cliff(n, n) corresponding to a vector space of signa-
ture (n, n) has a unique irreducible representation. Then since Spin(n, n) <
Cliff(n, n) one can use this representation combined with a spin structure for
the generalized tangent bundle E to construct the spin bundle S(E) for this
spin structure. It is shown in [11] that there is a lift of the GL(n) < SO(n, n)

structure of T ⊕T ∗ to a spin structure such that S(E) ' ∧T ∗⊗|detT | 12 , i.e.,
the forms tensored by a trivial line bundle. The effect of tensoring by the
|detT | factor can be thought of as a change in how the transition functions
act on ∧T ∗ by a multiplicative factor. However this line bundle is trivial
so by an appropriate choice of transition functions it has no effect at all.
Therefore we shall always consider ∧T ∗ as the space of spinors in generalized
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geometry. The representation of the Clifford algebra used to construct the
spin bundle S(E) also defines Clifford multiplication, a bundle homomor-
phism c : Cliff(E) ⊗ S(E) → S(E) which is nothing more than the action
(2.2).

The decomposition of S(E) into its two irreducible Spin(n, n) representa-
tions S(E)± corresponds to the splitting of ∧T ∗ into ∧T ev\odd, the even and
odd forms which follows since the Clifford action (2.2) changes the parity of
forms.

2.1.2 The Mukai pairing

The spinors have a bilinear form 〈 , 〉 : S ⊗ S → detT ∗ known as the Mukai
pairing. Let α denote the main anti-automorphism of the Clifford algebra
Cliff(E) given by α(e1e2 . . . ek) = ek . . . e2e1. Then the form is given by

〈s, t〉 = [α(s) ∧ t]top (2.3)

where [ ]top denotes taking the top degree part of the form.

Proposition 2.1.1. The bilinear form on spinors satisfies

〈vs, vt〉 = (v, v)〈s, t〉. (2.4)

where v ∈ E acts on spinors by Clifford multiplication.

Proof. For v = X + ξ and s a form of degree k we have

α(vs) = α(ιXs + ξ ∧ s) = (−1)k−1ιXα(s) + α(s) ∧ ξ

and so if t has degree n− k where n is the top degree then

[α(vs), vt]top = (−1)k−1ιXα(s) ∧ ξ ∧ t + α(s) ∧ ξ ∧ ιXt.

Also

0 = ιX(α(s) ∧ ξ ∧ t)

= ιXα(s) ∧ ξ ∧ t + (−1)kα(s) ∧ ξ(X) ∧ t + (−1)k+1α(s) ∧ ξ ∧ ιXt.

Combining these two gives

〈vs, vt〉 = ξ(X)〈s, t〉 = (v, v)〈s, t〉. (2.5)

as required.

We also have that 〈s, t〉 = (−1)
n(n−1)

2 〈t, s〉. Recall that Spin(E) =
{e1e2 . . . e2k | (ej, ej) = ±1}. It follows that 〈 , 〉 is invariant under the
connected component Spin+(E).
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2.2 The Courant bracket

The third important piece of structure to be introduced is the Courant
bracket, a bilinear, skew-symmetric bracket on the sections of E:

Definition 2.2.1. The Courant bracket is the bilinear form [ , ] on sections
of E given by

[u, v] = [X + ξ, Y + η] = [X,Y ] + LXη − LY ξ − 1

2
d(η(X)− ξ(Y )) (2.6)

where u = X + ξ and v = Y + η.

2.2.1 Motivation and properties

The Courant bracket is skew-symmetric but it does not satisfy the Jacobi
identity and as such it may appear unnatural at first. The bracket was first
introduced in [8],[9] in the study of Dirac structures. We will introduce Dirac
structures in section (3.4), but here we will derive the form of the bracket
using spinors. First recall the following relations

LX = dιX + ιXd (2.7)

ι[X,Y ] = [LX , ιY ] (2.8)

where the bracket in (2.8) is the ordinary Lie bracket. Combining (2.7) and
(2.8) we have

ι[X,Y ] = dιXιY + ιXdιY − ιY dιX − ιY ιXd. (2.9)

Equation (2.9) uniquely defines the Lie bracket. Now just as vector fields
have the natural action of contraction on forms, we have an extension of
this action to generalized tangent vectors given by Clifford multiplication
(2.2). Replacing the contractions in (2.9) by the Clifford action of sections
of E will then uniquely define a bracket operation on sections of E. Skew
symmetrization of this bracket will yield the Courant bracket. To determine
this bracket we first determine

LX+ξdω = (X + ξ)dω + d((X + ξ)ω)

= ιXdω + ξ ∧ dω + d(ιXω + ξ ∧ ω)

= LXω + dξ ∧ ω.
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So we obtain

[X + ξ, Y + η] · ω = [LX+ξ, (Y + η)·]ω
= LX(ιY ω + η ∧ ω) + dξ ∧ (ιY ω + η ∧ ω)

−(Y + η)(LXω + dξ ∧ ω)

= ι[X,Y ]ω + LX(η ∧ ω)− η ∧ LXω + dξ ∧ ιY ω

−ιY (dξ ∧ ω)

= ι[X,Y ]ω + LX(η) ∧ ω − ιY dξ ∧ ω.

This defines a bracket operation called the Dorfman bracket

[X + ξ, Y + η]D = [X, Y ] + LXη − ιY dξ. (2.10)

The Dorfman bracket is not skew symmetric; its skew-symmetrization [u, v] =
1
2
[u, v]D− 1

2
[v, u]D is the Courant bracket. We now establish some properties

of the Courant bracket. Actually it is easier to work out the properties of
the Dorfman bracket first. First we have the relation

[u, v] = [u, v]D − d(u, v) (2.11)

which follows from

[u, v]D + [v, u]D = LXη + LY ξ − ιXdη − ιY dξ = d(ιXη + ιY ξ) = 2d(u, v)

where u = X + ξ and v = Y + η. This relation shows that if u and v
are orthogonal with respect to ( , ) then [u, v]D = [u, v]. If π : E → T is
projection onto the first factor then

π([u, v]D) = [π(u), π(v)] (2.12)

and similarly for the Courant bracket

π([u, v]) = [πu, πv]. (2.13)

Proposition 2.2.1. [11] For sections u,v,w of E we have

π(u)(v, w) = ([u, v]D, w) + (v, [u,w]D). (2.14)

Proof. Let u = A + α, v = B + β, w = C + γ. We start with the right hand
side

([A,B] + LAβ − ιBdα,C + γ) + (B + β, [A,C] + LAγ − ιCdα)

= 1
2
(ι[A,B]γ + ιC(LAβ − ιBdα) + ι[A,C]β + ιB(LAγ − ιCdα))

= 1
2
([Lα, ιB]γ + ιCLAβ + [LA, ιC ]β + ιBLAγ)

= 1
2
(LAιBγ + LAιCβ)

= A(ιBγ + ιCβ)

= π(u)(v, w)

as required.

11



Corollary 2.2.1.1. For sections u,v,w of E we have

π(u)(v, w) = ([u, v] + d(u, v), w) + (v, [u,w] + d(u, w)). (2.15)

Let u, v be sections of E and f be a function. Then one verifies

[u, fv]D = f [u, v]D + (π(u)f)v (2.16a)

[fv, u]D = f [v, u]D + (π(u)f)v − 2(u, v)df (2.16b)

and it follows directly that

[u, fv] = f [u, v] + (π(u)f)v − (u, v)df. (2.17)

2.2.2 Failure of the Jacobi identity

We have already mentioned that the Courant bracket fails to satisfy the
Jacobi identity, but it will be useful for later to determine exactly what the
failure is. Therefore we define the Jacobiator

Jac(u, v, w) = [[u, v], w] + [[v, w], u] + [[w, u], v] (2.18)

defined for sections u, v, w of E. To find an expression for the Jacobiator we
first establish the following identity for the Dorfman bracket

[u, [v, w]D]D = [[u, v]D, w]D + [v, [u,w]D]D. (2.19)

This identity says that [u, ]D acts as a derivation of the Dorfman bracket.
If the Dorfman bracket were skew-symmetric this would be equivalent to the
Jacobi identity. To establish (2.19) let u = X + ξ, v = Y + η, w = Z + φ.
Then

[[u, v]D, w]D + [v, [u,w]D]D

= [[X,Y ] + LXη − ιY dξ, Z + φ] + [Y + η, [X, Z] + LXφ− ιZdξ]

= [[X,Y ], Z] + [Y, [X, Z]] + L[X,Y ]φ− ιZd(LXη − ιY dξ)

+LY (LXφ− ιZdξ)− ι[X,Z]dη

= [X, [Y, Z]] + LXLY φ− LYLXφ− ιZLXdη − ιZLY dξ

+LYLXφ− LY ιZdξ − ι[X,Z]dη

= [X, [Y, Z]] + LXLY φ− ι[Y,Z]dξ − LXιZdη

= [X, [Y, Z]] + LX(LY φ− ιZdη)− ι[Y,Z]dξ

= [u, [v, w]D]D.
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Next we relate [[u, v]D, w]D to [[u, v], w]:

[[u, v]D, w]D = [[u, v] + d(u, v), w]D

= [[u, v], w]D

= [[u, v], w] + d([u, v], w)

where we have used the fact that [a, b]D = 0 when a is a closed 1-form. Now
we can finally calculate

Jac(u, v, w) = [[u, v], w] + cyclic permutations

= 1
4
([[u, v]D, w]D − [[v, u]D, w]D − [w, [u, v]D]D + [w, [v, u]D]D + cp)

= 1
4
(([u, [v, w]D]D − [v, [u,w]D]D) + (−[v, [u,w]D]D + [u, [v, w]D]D)

−[w, [u, v]D]D + [w, [v, u]D]D + cp))

= 1
4
(−[v, [u, w]D]D + [u, [v, w]D]D + cp)

= 1
4
([[u, v]D, w]D + cp)

= 1
4
([[u, v], w] + d([u, v], w) + cp)

= 1
4
Jac(u, v, w) + 1

4
d(([u, v], w) + ([v, w], u) + ([w, u], v)).

We thus have
Jac(u, v, w) = d(Nij(u, v, w)) (2.20)

where we define Nij(u, v, w), the Nijenhuis operator by

Nij(u, v, w) = 1
3
(([u, v], w) + ([v, w], u) + ([w, u], v)). (2.21)

The reason behind the nomenclature will become clear later. Note however
that the Nijenhuis operator is not tensorial.

2.3 Symmetries

Before we can extend the structure of section (2.1) to the more general set-
ting we need to understand some symmetry properties of the natural pairing
and of the Courant bracket. The issue of symmetries is further clarified in
section (2.5).

We are interested in maps that preserve the structure of the generalized
tangent bundle. We first turn to the linear theory. Given a vector space V
one can form the vector space E = V ⊕ V ∗ with the natural bilinear form
of signature (n, n). The linear endomorphisms of E preserving the bilinear
form is the orthogonal group O(E) = O(n, n). The Lie algebra so(E) of
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O(E) (and SO(E)) is the Lie algebra of endomorphisms of E which are skew
adjoint with respect to the bilinear form. Any such endomorphism L can
be viewed as a skew-symmetric bilinear form via u, v 7→ (Lu, v). Under this
identification so(E) ' ∧2E = ∧2(V ⊕ V ∗) ' ∧2V ⊕ End(V ) ⊕ ∧2V ∗. We
now establish how these three components act on E. First consider a 2-form
B ∈ ∧2V ∗. Then B acts as an endomorphism of E via

B(X + ξ) = BX = ιXB. (2.22)

The exponential eB ∈ SO(E) then acts as

eB(X + ξ) = (1 + B)(X + ξ) = X + ξ + ιXB. (2.23)

The transformation 2.23 is known as a B-transformation. Similarly consider
β ∈ ∧2V . Then β acts on E via

β(X + ξ) = ιξβ (2.24)

and its exponential by

eβ(X + ξ) = X + ιξβ + ξ (2.25)

known as a β-transformation. Lastly consider A ∈ End(V ). Then its action
on E is

A(X + ξ) = AX − Atξ, (2.26)

where the minus sign is used to yield a skew-symmetric action of A on E.
The exponential is

eA(X + ξ) = eAX + e−At

ξ = eAX + ((eA)t)−1ξ. (2.27)

More generally for any P ∈ GL(V ) we have a SO(E) action

P (X + ξ) = PX + (P t)−1ξ. (2.28)

We now return to setting of a smooth manifold M with generalized tan-
gent bundle π : E → M . The transformations established above still apply,
only they become bundle endomorphisms, i.e., sections of End(T ⊕ T ∗). For
example a B-transform now involves using a section of ∧2T ∗, a 2-form. These
transformations preserve the bilinear form ( , ) on each fibre. Nevertheless,
it will turn out that B-transformations play a much more important role than
the other 2 types of transformations. This fact will be established in section
(2.5) but at present the following proposition will give an indication as to
why this is so.
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Proposition 2.3.1. [11] Let u = X + ξ and v = Y + η be two sections of
T ⊕ T ∗ and B a 2-form. Then

[eBu, eBv] = eB[u, v]− ιXιY dB. (2.29)

Proof.

[eBu, eBv] = [X + ξ + ιXB, Y + η + ιY B]

= [u, v] + [X, ιY B] + [ιXB, Y ]

= [u, v] + LXιY B − 1

2
dιXιY B − LY ιXB +

1

2
dιY ιXB

= [u, v] + (LXιY − LY ιX + dιY ιX)B

= [u, v] + (LXιY − ιY dιX)B

= [u, v] + (LXιY − ιY dιX)B − ιY ιXdB + ιY ιXdB

= [u, v] + (LXιY − ιYLX)B + ιY ιXdB

= [u, v] + ι[X,Y ]B − ιXιY dB

= eB[u, v]− ιXιY dB.

Notice in particular that for B a closed 2-form, the Courant bracket is
preserved.

2.4 Gerbes and twisting

We present two extensions to the theory of the generalized tangent bundle
presented in section (2.1). In the first extension the generalized tangent
bundle is twisted by a gerbe, while the second involves a modification to the
Courant bracket and exterior derivative to twisted versions. The relation
between the two types of twisting is shown.

2.4.1 Twisting by a gerbe

First we examine twisting by a gerbe. A gerbe is one of a number of objects
in a hierarchy. Let M be a smooth manifold. The first object is a function
g : M → U(1). Given an open cover {Uα} of M . We can also view it as
a collection of functions gα : Uα → U(1) such that on Uα ∩ Uβ, gα = gβ,
i.e., a 0-cocycle in H0(M, U(1)). The second object in the hierarchy is a
U(1) line bundle which can also be viewed as a 1-cocycle in H1(M, U(1))
or by the U(1) transition functions gαβ, and the third object is a gerbe, a
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2-cocycle in H2(M, U(1)), a collection of U(1) valued functions gαβγ defined
on the triple intersection Uαβγ = Uα ∩ Uβ ∩ Uγ satisfying gβγδg

−1
αγδgαβδg

−1
αβγ =

1 on Uαβγδ. Continuing the analogy between these objects, one defines a
connective structure on such a gerbe as a collection of 1-forms Aαβ defined
on double intersections such that Aαβ = −Aβα and on triple intersections
satisfying

Aαβ + Aβγ + Aγα = g−1
αβγdgαβγ (2.30)

taking exterior derivative gives

dAαβ + dAβγ + dAγα = 0. (2.31)

A standard argument using a partition of unity shows that (possibly after
passing to a refinement of the cover) we can find 2-forms Bα defined on the
Uα such that on double intersections

Bβ −Bα = dAαβ (2.32)

and finally we have the globally defined 3-form H = dBβ = dBβ called the
curvature of the gerbe. Notice that 1

2πi
[H] is integral.

Given a gerbe G with connective structure Aαβ we can twist E = T ⊕ T ∗

to produce a new vector bundle E(G). Over each Uα, the fibres of E(G) are
the same as T ⊕ T ∗ however in the transition from Uα to Uβ the fibres are
related via a B-transform

X + ξ 7→ X + ξ + ιXdAαβ. (2.33)

Thus a section of E(G) is given by a collection {X + ξα} such that on double
intersections they satisfy ξβ = ξα + ιXdAαβ. Note that by equation (2.31)
this construction satisfies the cocycle condition, furthermore the transitions
are B-transforms by the closed 2-forms dAαβ so both the form ( , ) and
Courant bracket [ , ] are well defined for E(G). The bundle E(G) is called a
generalized tangent bundle or twisted generalized tangent bundle to emphasize
the twisting.

Now we consider the relation between gerbe twisting and the spinors
∧T ∗. In order for the Clifford action (2.2) to remain well-defined under B-
transformations it needs to be equivariant, i.e., the bundle map

∧E ⊗ ∧T ∗ → ∧T ∗

given by Clifford multiplication is equivariant under B-transforms. Given a
2-form B, its action as a map B : T → T ∗ is an element of so(E) and so
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uniquely lifts to an element of spin(E) and then exponentiates to an element
of Spin(E) covering the B-transformation eB ∈ SO(E). As an element of
Spin(E) the action of B on a spinor ω is

ω 7→ e−B ∧ ω (2.34)

where the exponential is e−B = 1 − B + 1
2
B ∧ B + . . . and this makes the

Clifford action invariant as can be verified directly. Also, since this element
of the spin group is in the connected component of the identity it leaves the
form 〈 , 〉 on spinors invariant.

Given a gerbe G with connective structure Aαβ, one wishes to have a
well-defined Clifford action of the twisted generalized tangent bundle E on a
spinor bundle. Recall E is constructed by patching together T ⊕ T ∗ over Uα

to T ⊕ T ∗ over Uβ by a B-transformation using dAαβ. In exactly the same
way we can use the corresponding action of B-fields on ∧T ∗ to construct a
bundle of twisted spinors S(E). Equivariance of the Clifford action under B-
transforms implies that there is a well defined Clifford action of E on S(E).
A section of S(E) is a collection of forms ωα defined on Uα such that on the
double intersection

ωβ = e−dAαβωα. (2.35)

As the form 〈 , 〉 is invariant under B-transforms the spinors S(E) still retain
this form. In addition the exterior derivative is well defined on sections of
S(E) for we have

d(ωβ) = d(e−dAαβωα) = e−dAαβdωα

Thus after twisting by a gerbe we still retain all the structure of section 2.1.
To summarize we have

• A vector bundle π : E → T

• A symmetric bilinear form ( , ) on E of signature (n, n)

• A skew-symmetric bracket [ , ] on sections of E

• A Clifford action of E on a bundle of spinors S(E)

• A bilinear form 〈 , 〉 on the spinors

• A differential operator for spinors d̃ : Γ(S±(E)) → Γ(S∓(E)).

Note that the bracket on E still satisfies equations (2.13), (2.15) and
(2.17) (in (2.15) and (2.17), d is still the exterior derivative ).
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2.4.2 The twisted Courant bracket

We now show how all of this structure can be related back to the untwisted
tangent bundle. Given a gerbe G with connective structure Aαβ we can find 2-
forms Bα such that on the double intersection Bβ−Bα = dAαβ. Such 2-forms
yield an isomorphism φ : T ⊕ T ∗ ' E which over Uα is given by φ : X + ξ 7→
X + ξ + ιXBα. However we will see that E is distinguished from T ⊕ T ∗ by
the additional structures. Locally the isomorphism φ is a B-transform by Bα.
Thus for sections u = X + ξ and v = Y + η of E, (φ(u), φ(v)) = (u, v) and
[φ(u), φ(v)] = φ([u, v])− ιXιY dBα = φ([u, v])− ιXιY H where H = dBα over
Uα is the curvature of the connective structure. Thus under the identification
of E(G) with E, the bracket [ , ] on E(G) does not get identified with the
Courant bracket but rather with a modified bracket which we now define.

Definition 2.4.1. Let H be a closed 3-form. The twisted Courant bracket
is the bracket on sections u = X + ξ and v = Y + η of E given by

[u, v]H = [u, v]− ιXιY H. (2.36)

Note that we require H to be closed but it is not necessary that 1
2πi

[H]
is integral. The isomorphism φ now gives

[φ(u), φ(v)] = φ[u, v]H .

The twisted Courant bracket allows us to rewrite equation 2.29 as

[eBu, eBv]H = eB[u, v]H+dB. (2.37)

Before examining the twisted Courant bracket any further, let us consider
the spinors S(E). Recall that a section of S(E) is a collection of forms ωα

defined on Uα such that on the double intersection

ωβ = e−dAαβωα.

Then we have eBβωβ = eBαωα is a globally defined form ω with ωα = e−Bαω.
This gives as isomorphism S(E) ' ∧T ∗. Under this isomorphism we have
that the exterior derivative on S(E) becomes eBαde−Bα = d− dBα = d−H
where H is the curvature of the connective structure. We use the notation
dH = d−H. Thus spinors for E can be thought of as differential forms but
with the exterior derivative d replaced by dH .

Thus we have transported all the structures of the twisted generalized
tangent bundle back to E = T ⊕ T ∗. In summary we have

• The bundle π : E = T ⊕ T ∗ → T
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• A symmetric bilinear form ( , ) on E of signature (n,n)

• The twisted Courant bracket [ , ]H on sections of E

• A Clifford action of E on a bundle of spinors S(E) = ∧T ∗

• A bilinear form 〈 , 〉 on the spinors

• A differential operator for spinors, dH : Γ(S±(E)) → Γ(S∓(E)).

The twisted bracket [ , ]H still satisfies equations (2.13), (2.15) and (2.17),
however it no longer agrees with the Lie bracket on vector fields as there is
an additional term. Thus at times we will need to distinguish between the
twisted Courant bracket and the Lie bracket.

The twisted Courant bracket means that ultimately one can avoid using
gerbes and use only the untwisted tangent bundle E = T ⊕ T ∗ but with
a twisted Courant bracket and twisted exterior derivative on spinors. The
point of view we adopt will usually be the latter, as it does not require the
3-form H to be integral and it avoids having to introduce a local cover.

2.5 Courant automorphisms

At this point one is tempted to ask if there is a natural way to define mor-
phisms for generalized tangent bundles so that they form a category, presum-
ably with a forgetful functor back to the category of smooth manifolds. It
is not clear if there is a fruitful definition of such morphisms between differ-
ent manifolds yet there is a natural concept of automorphism which we call
Courant automorphism. The definition and characterization of these maps is
the subject of this section.

We are interested in diffeomorphisms of E which preserve all the structure
of E. In particular this means that such a map ϕ must act on any given fibre
as a linear map to another fibre, i.e., there is an underlying diffeomorphism
f of M such that πϕ = fπ. The map ϕ must also preserve the inner prod-
uct and the twisted Courant bracket, [ϕu, ϕv]H = ϕ[u, v]H . The following
proposition characterizes such maps:

Proposition 2.5.1. [11]
Let f : M → M be a diffeomorphism and let ϕ : E → E be a diffeomor-

phism of the generalized tangent bundle E = TM ⊕T ∗M such that restricted
to the fibre over any x ∈ M , ϕ : Ex → Ef(x) is a linear map from Ex to Ef(x)

and such that ϕ preserves ( , ) and [ , ]H . Then ϕ is a composition of the
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map f∗ ⊕ (f−1)∗ : E → E with a B-field transformation by a closed 2-form
B.

Proof. The map f∗⊕ (f−1)∗ : E → E satisfies the assumptions in the propo-
sition. Thus we may compose ϕ with the inverse of f∗ ⊕ (f−1)∗, hence it
suffices to assume f is the identity, in which case ϕ is simply a section of
End(E). We now use equation 2.17 to proceed. Let u, v be sections of E and
h be a function. Then

ϕ[u, hv] = [ϕu, hϕv]

= h[ϕu, ϕv] + (πϕ(u)h)ϕv − (ϕu, ϕv)dh

= hϕ[u, v] + (πϕ(u)h)ϕv − (u, v)dh.

Yet also

ϕ[u, hv] = ϕ(h[u, v] + (π(u)h)v − (u, v)dh)

= hϕ[u, v] + ϕ((π(u)h)v)− (u, v)ϕ(dh)

= hϕ[u, v] + (π(u)h)ϕv − (u, v)ϕdh.

So equating these we have

(πϕ(u)h)ϕv − (u, v)dh = (π(u)h)ϕv − (u, v)ϕdh. (2.38)

First consider the case when u = X and v = Y are vector fields. Substituting
and applying π to equation (2.38) gives

(πϕ(X)h)πϕY = (Xh)πϕY.

Note that πϕ : T → T is an endomorphism of T which by (2.13) preserves the
Lie bracket. So πϕ can not completely vanish and it follows that πϕX = X.
Now letting u = X and v = η, a 1-form and substituting into (2.38) gives

(Xh)ϕη − η(X)dh = (Xh)ϕη − η(X)ϕdh

which implies that ϕ acts as the identity on 1-forms. As a matrix ϕ must
therefore have the form

ϕ =

(
1 0
B 1

)

and moreover since ϕ preserves the form ( , ) it follows that B is skew-
symmetric. Thus ϕ is a B-transform and as it preserves [ , ]H we must also
have dB = 0.
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Thus we define a Courant automorphism as the composition of a diffeo-
morphism and a closed B-transform. There is however a larger class of maps
which will sometimes be useful. If we transform by a B-field then equation
(2.37) shows that when B is not closed then one twisted Courant bracket
is mapped onto another twisted Courant bracket. In this sense such a B-
transform is a morphism carrying the structure of one twisted bracket to
another.
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Chapter 3

Integrability

The Frobenius integrability theorem is a remarkable result because it con-
nects the geometric notion of foliations to the analytic notion of involutive
subbundles of the tangent space. It is natural therefore to question whether
there is a geometric interpretation of subbundles of T ⊕ T ∗ which are invo-
lutive with respect to the Courant bracket. This is indeed the case and is
a topic of considerable importance to generalized geometry. The Chapter is
largely influenced by the [11].

Definition 3.0.1. Let V be a subbundle of T ⊕T ∗ we say that V is Courant
involutive or Courant integrable if the sections of V are closed under the
Courant bracket.

We shall similarly use the terms Frobenius involutive or Frobenius inte-
grable for subbundles of T that are involutive with respect to the Lie bracket.

3.1 Involutive subbundles

It turns out that Courant integrable subbundles are divided into two classes.
This classification is closely related to the notion of isotropic subbundles
which we now define.

Definition 3.1.1. Let V be a subbundle of T ⊕ T ∗. We say that V is
isotropic if the restriction of the bilinear form ( , ) to V completely vanishes.
An isotropic subbundle is further called maximal isotropic if it has the same
rank as the tangent bundle which is the largest possible rank for an isotropic
subbundle.

We argue that n = rk(T ) is the maximal rank for an isotropic subbundle
as follows: let I be an isotropic subbundle of E. Non-degeneracy of ( , )
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gives an isomorphism E ' E∗ and upon restriction a surjective map δ : E →
I∗. The inclusion ι : I → E maps into the kernel of δ implying rk(E) =
rk(ker(δ)) + rk(δ) ≥ rk(I) + rk(I∗), hence 2 rk(I) ≤ rk(E) = 2 rk(T ) = 2n.
On the other hand we know that T and T ∗ are isotropics of dimension n so
this is the maximal rank attained. We can now state a classification result
for Courant involutive subbundles.

Proposition 3.1.1. [11] Let V be a Courant involutive subbundle of E =
T ⊕ T ∗. Then either V is isotropic or V has the form V = U ⊕ T ∗ where U
is a non-zero subbundle of T which is Frobenius involutive.

Proof. Suppose V is involutive but not isotropic, so there is a section X + ξ
such that at some point m ∈ M , ξ(X)m 6= 0. But then for any function
f , [X + ξ, f(X + ξ)] = (Xf)(X + ξ) − ξ(X)df so by integrability of V
we have dfm ∈ Vm for every f and so T ∗

m ⊆ Vm. The inclusion must be
proper since T ∗

m is an isotropic subspace. This shows that the rank of V
exceeds the maximal rank for isotropics and hence every fibre of V fails to be
isotropic. Therefore the above argument applies to every fibre of V showing
that T ∗ = ker (πT : V → T ) is a smooth subbundle of V . Then since T ∗ is
isotropic the inclusion must be proper. Hence V can be written V = U ⊕ T ∗

where U us a non-zero subbundle of T . Lastly U must be Frobenius integrable
since the Courant bracket agrees with the Lie bracket on vector fields.

We see that there are essentially two types of Courant integrable subbun-
dles. Those of type V = U ⊕ T ∗ are uniquely determined by U = πT (V ),
a Frobenius integrable subbundle and as such they do not give us any new
types of geometry. This leaves the second, more interesting type of Courant
integrable subbundle, those that are isotropic. The most interesting case is
when we have an integrable, maximal isotropic subbundle for we have the
following proposition:

Proposition 3.1.2. [11] Let V be a maximal isotropic subbundle of E. Then
the following are equivalent:

• V is involutive

• Jac|V = 0

• Nij|V = 0.

Remark 3.1.1. This also holds for maximal isotropic subbundles of T ⊗ C.
These will be of particular interest later.

23



Proof. Suppose V is involutive. Then since V is also isotropic it follows from
(2.21) that Nij|V = 0.

Now suppose Nij|V = 0. This immediately implies that Jac|V = 0. Lastly
suppose Jac|V = 0. It remains to show V is involutive. Suppose to the
contrary that there are sections u, v of V such that [u, v] is not a section of
V . Then since V is maximal isotropic there is a third section w of V such
that ([u, v], w) 6= 0. Note that by (2.15) we have that for any three section
a, b, c of V

0 = π(a)(b, c) = ([a, b], c) + (b, [a, c]).

from which it follows that

Nij|V (u, v, w) = 1
3
(([u, v], w) + ([v, w], u) + ([w, u], v)

= 1
3
(([u, v], w)− ([v, u], w)− ([u,w], v))

= 1
3
(([u, v], w)− ([v, u], w) + ([u, v], w))

= ([u, v], w).

Then for any function f we have

0 = Jac|V (u, v, fw)

= dNij|V (u, v, fw)

= d(fNij|V (u, v, w))

= dfNij|V (u, v, w) + fJac|V (u, v, w)

= df([u, v], w).

This is a contradiction and therefore V is integrable.

Note that in this proof we discovered that the Nijenhuis operator, when
restricted to an isotropic subbundle V takes the form

Nij|V (u, v, w) = ([u, v], w) = ([v, w], u) = ([w, u], v) (3.1)

and in particular its restriction to an isotropic bundle is tensorial, indeed it
is a section of ∧3V ∗. The interesting conclusion to draw from this result is
that for a maximal isotropic subbundle V , integrability is equivalent to the
Courant bracket satisfying the Jacobi identity on sections of V .

3.2 Lie algebroids

We have seen that for integrable maximal isotropics, the Courant bracket sat-
isfies the Jacobi identity on its sections. In addition equation (2.17) simplifies
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to
[u, fv] = f [u, v] + (π(u)f)v.

Bundles with such structure play an important role in generalized geometry
so we now examine a suitable abstraction of this data.

Definition 3.2.1. Let M be a smooth manifold. A Lie algebroid is a vector
bundle V over M equipped with the following structures:

• a bundle morphism a : V → TM called the anchor

• a bilinear form [ , ] : Γ(V ) ⊗ Γ(V ) → Γ(V ) making (Γ(V ), [ , ]) a Lie
algebra

such that a : Γ(V ) → Γ(TM) is a Lie algebra homomorphism and

[u, fv] = f [u, v] + (a(u)f)v (3.2)

where u, v are sections of V and f is a function on M .

Note that we can also consider complex Lie algebroids where TM is re-
placed by its complexification. The generalized tangent bundle E fails to be
a Lie algebroid as it fails to satisfy two conditions in the definition, however
when restricted to an integrable maximal isotropic subbundle both of these
conditions are satisfied and provides the key example of a Lie algebroid. An-
other example is given by Frobenius integrable subbundles of T with the
anchor being inclusion. Lie algebroids generalize the structure of the tangent
bundle and keeping with this analogy we now devolop their differential ge-
ometry.

First we define the differential dV : Γ(∧kV ∗) → Γ(∧k+1V ∗) by

dV ω(u0, u1, . . . , uk) =
k∑

i=0

(−1)ia(ui)ω(u0, . . . , ûi, . . . , uk)

+
∑
i<j

(−1)i+jω([ui, uj], u0, . . . , ûi, . . . , ûj, . . . , uk).

(3.3)

It should be noted that dV ω is tensorial because of property (3.2) and further-
more this satisfies d2

V = 0 and dV ◦a∗ = a∗◦d where d is the ordinary exterior
derivative. Next we have contraction ι : Γ(V )⊗Γ(∧k+1V ∗) → Γ(∧kV ∗) which
for u ∈ Γ(V ) is written ιu : Γ(∧k+1V ∗) → Γ(∧kV ∗) and is given by

(ιuω)(u1, . . . , uk) = ω(u, u1, . . . , uk). (3.4)
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Naturally this leads to defining a Lie derivative L : Γ(V ) ⊗ Γ(∧kV ∗) →
Γ(∧kV ∗) given by

Lu = dV ιu + ιudV . (3.5)

These three types of operators span a graded Lie algebra satisfying

[dV ,Lu] = 0 (3.6a)

{dV , ιv} = Lv (3.6b)

[Lu, ιv] = ι[u,v] (3.6c)

where { , } denotes an anti-commutator. The graded algebra Γ(∧V ∗) is
then a representation of this algebra. Furthermore we have that dV , ιv,Lu

are graded derivations of the wedge product of degrees 1,−1, 0. That is we
have:

dV (α ∧ β) = dV α ∧ β + (−1)|α|α ∧ dV β (3.7a)

ιv(α ∧ β) = ιvα ∧ β + (−1)|α|α ∧ ιvβ (3.7b)

Lu(α ∧ β) = Luα ∧ β + α ∧ Luβ. (3.7c)

We define the cohomology of a Lie algebroid to be the cohomology of the dif-
ferential complex (Γ(∧V ∗), dV ) and shall be denoted Hk(V ). Given a function
f and section u of V we have by definition (dV f)(u) = (a(u))(f) = (df)(a(u))
so that dV f = a∗df . Now given a section w of ∧V ∗ we have that [dV , f ]w =
dV (fw)−fdV w = dV (f)∧w = a∗(df)∧w. This shows that dV is a first order
differential operator with principal symbol s : T ∗M → End(∧V ∗) given by
s(ξ) = a∗(ξ)∧ , moreover it is clear that if s(ξ)w = a∗(ξ) ∧ w = 0, where
ξ 6= 0 then w has the form w = a∗(ξ) ∧ v and so the complex (Γ(∧∗V ∗), dV )
is elliptic and in particular for compact manifolds Lie algebroid cohomology
is finite dimensional.

There is another particularly useful construction for Lie algebroids which
is an extension of the bracket [ , ] to a graded skew-symmetric bracket on
sections of ∧V called the Schouten bracket defined by

[u1∧ · · · ∧ up, v1 ∧ · · · ∧ vq]

=
∑
i,j

(−1)i+j[ui, vj] ∧ u1 ∧ · · · ∧ ûi ∧ · · · ∧ up ∧ v1 ∧ · · · ∧ v̂j ∧ · · · ∧ vq

(3.8)

and [u, f ] = −[f, u] = a(u)f . This bracket makes Γ(∧V ) a graded Lie algebra
with the degree k part being Γ(∧k+1V ). That is, we have the following
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identities:

[u, v] = −(−1)(u−1)(v−1)[v, u] (3.9a)

[u, [v, w]] = [[u, v], w] + (−1)(u−1)(v−1)[u, [v, w]] (3.9b)

where we use the notation (−1)u = (−1)k to denote the sign of the degree
of u ∈ Γ(∧kV ). The second relation says that adu = [u, ] is a derivation of
[ , ] of degree deg(u)− 1. We also have that adu is a derivation of the wedge
product of degree deg(u)− 1, that is

[u, v ∧ w] = [u, v] ∧ w + (−1)(u−1)vv ∧ [u,w]. (3.10)

3.3 Generalized foliations

We have seen that isotropic Courant integrable subbundles of the generalized
tangent bundle are Lie algebroids. In this section we explain the geometric
implications of Lie algebroids on the underlying manifold.

We need the concept of a generalized foliation. A leaf of M is an injective
immersion l ⊆ M such that for each point x ∈ l there is an open neighborhood
U of x in M such that the connected component of x in U∩M is an embedded
submanifold of M . A generalized foliation of M is a collection of leaves which
form a disjoint cover for M . In the usual definition of a foliation the leaves
all have the same dimension but for generalized foliations they are allowed
to vary. A distribution 4 is a collection of subspaces {4(x)|x ∈ M} such
that 4(x) is a subspace of TxM . We say that a distribution 4 is of finite
type if for any x ∈ M there is a neighborhood U of x in M such that over
U there exist smooth vector fields X1, X2, . . . Xk such that for any y ∈ U ,
4y is the space spanned by X1(y), . . . Xk(y). Note that we are not assuming
pointwise linear independence of the X1, . . . Xn so that the dimensions of the
4y may vary. Note that a generalized foliation gives rise to a distribution by
taking the tangent spaces of the leaves; however it need not be a finite type
distribution. This is clear from the fact that the dimension of the leaves of a
finite type distribution must be lower semi-continuous which in turn follows
from the fact that the dimension of the span of vector fields X1, . . . Xk is
lower semi-continuous. The importance of finite type distributions is that,
as worked out by Sussmann [19], the Frobenius theorem generalizes:

Proposition 3.3.1. [19] Let 4 be a distribution of finite type. Then 4 is the
distribution arising from a generalized foliation if and only if it is involutive,
that is if X, Y are vector fields with values in 4 then so is [X, Y ].
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We now show how Lie algebroids give rise to generalized foliations. Let
V be a real Lie algebroid. Associated to V is the distribution 4 = a(V )
where a : V → T is the anchor. Let X1, . . . Xk be a local frame for V . Then
a(X1), . . . a(Xk) locally span a(V ) = 4 so we have that 4 is of finite type.
Moreover, since [a(u), a(v)] = a([u, v]) it follows that 4 is involutive and
therefore gives rise to a generalized foliation.

Now consider a complex Lie algebroid V with anchor a : V → T⊗C. This
time we can not just take a(V ) so first we define K = {X ∈ V |a(X) = a(X)}
and we let 4 = a(K) ⊆ T . We have that 4 is involutive using [a(u), a(v)] =
[a(u), a(v)]. However we can not so easily conclude that 4 is of finite type.
To proceed note that K is the kernel of i(a− a) : V → T so when this map
is surjective, K is a smooth subbundle of V and we can use a local frame of
K to show 4 is of finite type. But i(a− a) : V → T is surjective if and only
if a(V ) + a(V ) = T ⊗ C.

To summarise, a real Lie algebroid V always gives rise to a distribution
4 = a(V ) which arises from a generalized foliation. A complex Lie algebroid
V gives rise to a distribution4 = {a(X)|a(X) = a(X)} and in the case when
a(V ) + a(V ) = T ⊗ C we have that 4 arises from a generalized foliation.

There is an additional feature for complex Lie algebroids. As before we
assume a(V ) + a(V ) = T ⊗C. Let us also assume we are in a neighborhood
in which the dimension of 4 ⊗ C = a(V ) ∩ a(V ) is constant. Thus a(V )
has constant dimension as well. Note that a(V ) is a complex integrable
subbundle of T ⊗C and that since a(V ) + a(V ) is integrable we can use the
Newlander-Nirenberg theorem to conclude that in a neighborhood there are
complex valued functions {z1, . . . zm} such that {dz1, . . . dzm} are pointwise
linearly independent and such that they annihilate a(V ). That is, if a(V )
has codimension k, then there are k transverse complex coordinate functions
{z1, . . . , zk}.
Definition 3.3.1. Let4 be a generalized distribution on M . A point x ∈ M
is called a regular point of the distribution if x has a neighborhood in which
the dimension of 4 is constant.

Thus we have that a complex Lie algebroid V such that a(V ) + a(V ) =
T ⊗ C, then we have a generalized distribution such that in a neighborhood
of a regular point there are transverse complex coordinates.
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3.4 Dirac structures

We have seen that amongst the integrable subbundles, a particularly inter-
esting class are those that are maximal isotropic. Therefore we make the
following definition:

Definition 3.4.1. An almost Dirac structure is a maximal isotropic subbun-
dle of the generalized tangent bundle. An almost Dirac structure is said to
be integrable to a Dirac structure if it is Courant integrable.

Note that we can also define complex Dirac structures by considering
subbundles of the complexified generalized tangent bundle. These will play
a substantial role later on. Given an almost Dirac structure V , it follows
from (3.1.2) that V is a Dirac structure if and only if the Nijenhius operator
completely vanishes on V and moreover since V is isotropic the Nijenhius
operator restricted to V is given by (3.1).

We give some examples of Dirac structures:

Example 3.4.1 (Foliations). Let U ⊆ T be a smooth distribution of constant
rank. Then U determines a maximal isotropic bundle V = U ⊕Ann(U). We
claim that V is Courant involutive if and only if U is Frobenius involutive,
i.e., if and only if U arises from a foliation of the manifold. First it is clear
that if V is Courant involutive then U is Frobenius involutive. Conversely
assume U is Frobenius involutive. From (3.3) it is clear that if ξ ∈ Γ(Ann(U))
then dξ ∈ Γ(Ann(U)). This clearly implies V is involutive.

Example 3.4.2 (Pre-symplectic geometry). The tangent bundle is a Dirac
structure. If we use a 2-form ω ∈ Γ(∧2T ∗) to B-transform T we have that

eωT = {X + ωX| X ∈ T}
is an almost Dirac structure. In fact, using (2.29) we see that eωT is integrable
if and only if dω = 0. More explicitly, we calculate Nijenhius operator for
sections eωX, eωY, eωZ ∈ Γ(eωT ).

Nij(eωX, eωY, eωZ) = ([eωX, eωY ], eωZ)

= (eω[X, Y ]− ιXιY dω, eωZ)

= ([eω[X, Y ], eωZ)− (ιXιY dω, Z + ωZ)

= ([X, Y ], Z)− 1
2
ιZιXιY dω

= 1
2
dω(X,Y, Z)

where we have used the fact that eωT is isotropic so that we may use the
simpler expression for the Nijenhius operator on eωT .
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Example 3.4.3 (Poisson geometry). In contrast to the last example we can
start with T ∗ which is also a Dirac structure and then perform a β-transform
(see equation 2.25) by a bi-vector field β ∈ Γ(∧2T ). Thus we have that

eβT ∗ = {ξ + βξ| ξ ∈ T ∗}

is an almost Dirac structure. The bi-vector β determines a bracket operation
on functions f, g given by

{f, g} = β(df, dg). (3.11)

We determine when this space is integrable by determining Nij|eβT ∗ . Since
Nij|eβT ∗ is tensorial, it suffices to consider three sections of the form eβdf, eβdg, eβdh
for functions f, g, h. We find that

Nij|eβT ∗(e
βdf, eβdg, eβdh)

= ([df + βdf, dg + βdg], dh + βdh)

= ([{f, }+ df, {g, }+ dg], {h, }+ dh)

= ([{f, }, {g, }] + d{f, g} − d{g, f} − 1
2
d({f, g} − {g, f}), {h, }+ dh)

= ([{f, }, {g, }] + d{f, g}, {h, }+ dh)

= 1
2
(dh([{f, }, {g, }]) + {h, {f, g}})

= 1
2
({f, {g, h}} − {g, {f, h}}+ {h, {f, g}})

= 1
2
({f, {g, h}}+ {g, {h, f}}+ {h, {f, g}}).

Therefore we find that the almost Dirac structure eβT ∗ is integrable if and
only if the bracket { , } defined by β satisfies the Jacobi identity, i.e., β is
a Poisson structure. One can also rephrase this using the Schouten bracket.
Using (3.8) we find that

[β, β](df, dg, dh) = 2{f, {g, h}}+ 2{g, {h, f}}+ 2{h, {f, g}} (3.12)

and it follows that

Nij|(eβξ, eβη, eβφ) = 1
4
[β, β](ξ, η, φ) (3.13)

so eβT ∗ is integrable if and only if [β, β] = 0.

Suppose we are given two transverse Dirac Structures V and V ′, that is
E = V ⊕V ′. Then the form ( , ) allows us to identify V ′ with V ∗ so we have
E = V ⊕ V ∗. This generalizes the splitting E = T ⊕ T ∗. Notice that the
bilinear form on E given by the pairing of V and V ∗ is the same as the form
obtained by pairing T and T ∗.
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Proposition 3.4.1. [18] Let E = V ⊕ V ∗ be a splitting of the generalized
tangent bundle into transverse Dirac structures. Given sections u, v of E
write them as u = X + ξ and v = Y + η where X, Y ∈ Γ(V ), ξ, η ∈ Γ(V ∗).
Then the Courant bracket of u and v is given by

[X + ξ, Y + η] = [X, Y ] + LXη − LY ξ − 1
2
dV (ιXη − ιY ξ)

+ [ξ, η] + LξY − LηX − 1
2
dV ∗(ιξY − ιηX).

(3.14)

Proof. It is clear that when u, v are sections of V then (3.14) simplifies to
[u, v] and similarly for sections of V ∗. Thus we assume u = X ∈ Γ(V )
and v = η ∈ Γ(V ∗). Note that since X ∈ Γ(V ) we have π(X) = a(X)
where a : V → T is the anchor of the Lie algebroid V . Furthermore if
a∗ : V ∗ → T is the anchor for V ∗ then a⊕ a∗ : V ⊕ V ∗ → T is the projection
π : T ⊕ T ∗ → T . We have seen that for a function f , we have dV f = f ◦ a so
that (df, ) = 1

2
df ◦ π = (dV f + dV ∗f, ). Using (2.15) we thus find

π(X)(η, Y ) = a(X)(η, Y )

= ([X, η] + d(X, η), Y ) + (η, [X, Y ] + d(X, Y ))

= ([X, η], Y ) + (dV (X, η), Y ) + (η, [X,Y ])

= 1
2
ιY [X, η] + 1

4
ιY dV η(X) + 1

2
η([X,Y ])

= 1
2
ιY [X, η] + 1

4
a(Y )η(X) + 1

2
η([X,Y ]).

Therefore

ιY [X, η] = a(X)η(Y )− 1
2
a(Y )η(X)− η([X, Y ])

= (dV η)(X, Y ) + 1
2
a(Y )ιXη

= ιY ιXdV η + 1
2
ιY dV (ιXη)

= ιY (LXη − 1
2
dV (ιXη)).

Thus the V ∗ part of [X, η] is LXη − 1
2
dV (ιXη). Interchanging V and V ∗ we

have that the V part of [η, X] is LηX − 1
2
dV ∗(ιηX). Thus we have found

[X, η] = LXη − 1
2
dV (ιXη)− LηX + 1

2
dV ∗(ιηX)

which completes the proof.

Now that we have the general formula for the Courant bracket we are
ready to prove a key result for Dirac structures:

Proposition 3.4.2. [18] Let E = V ⊕ V ∗ be a splitting of E into Dirac
strucures and let ε ∈ Γ(∧2V ∗). Then Vε = {X + εX| X ∈ V } is an almost
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Dirac structure. Vε is integrable if and only if ε satisfies the generalized
Maurer-Cartan equation

dV ε + 1
2
[ε, ε] = 0 (3.15)

where dV : Γ(∧2V ∗) → Γ(∧3V ∗) is the differential of V and [ , ] : Γ(∧2V ∗) →
Γ(∧3V ∗) is the Schouten bracket for V ∗.

Proof. It is clear that Vε is an almost Dirac structure. We will complete the
proof by showing that for sections u, v, w of V we have

Nij(eεu, eεv, eεw) = 1
2
(dV ε + 1

2
[ε, ε])(u, v, w). (3.16)

Using (3.14) we may write the Courant bracket as [ , ] = [ , ]V + [ , ]V ∗
where

[X + ξ, Y + η]V = [X, Y ] + LXη − LY ξ − 1
2
dV (ιXη − ιY ξ) (3.17)

[X + ξ, Y + η]V ∗ = [ξ, η] + LξY − LηX − 1
2
dV ∗(ιξY − ιηX). (3.18)

Thus

Nij|Vε(e
εu, eεv, eεw) = ([eεu, eεv], eεw) = ([eεu, eεv]V , eεw)+([eεu, eεv]V ∗ , e

εw).

Thus we need only show

([eεu, eεv]V , eεw)|Vε = 1
2
(dV ε)(u, v, w)

and
([eεu, eεv]V ∗ , e

εw)|Vε = 1
4
[ε, ε](u, v, w).

But we have already seen this in the examples (3.4.2) and (3.4.3). The
algebra here is essentially the same and so we have completed the proof.

3.5 Integrability in the twisted case

So far in this chapter we have only considered using the untwisted Courant
bracket. Generalizing the results to the twisted Courant bracket is straight-
forward and we summarise here. In this section we consider twisting as the
modification of the Courant bracket by a closed 3-form H.

First of all one defines the Jacobiator and Nijenhuis operators by the
same equations (2.18) and (2.21) and and one finds that

NijH(u, v, w) = Nij(u, v, w) + 1
2
H(π(u), π(v), π(w)) (3.19a)

JacH(u, v, w) = Jac(u, v, w)− 1
2
d(ιπ(u)ιπ(v)ιπ(w)H) (3.19b)
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where the subscript denotes that the operator corresponds to the twisted
bracket. We have that Proposition (3.1.2) still holds in the twisted case.
On isotropic subbundles we still have that NijH is tensorial and given by
the simpler formula (3.1). Now twisted Courant involutive subbundles, just
like the untwisted case are Lie algebroids. We can define a twisted Dirac
structure, noting however that there is no difference between almost Dirac
structures in the twisted and untwisted case. We now re-examine two of our
examples of Dirac structures in the twisted case.

Example 3.5.1 (Twisted pre-symplectic geometry). Let ω ∈ Γ(∧2T ∗) and
consider the almost Dirac structure V = eω = {X + ωX| X ∈ T}. With the
aid of example (3.4.2) we see that

NijH |V (eωX, eωY, eωZ) = 1
2
(dω + H)(X, Y, Z).

Therefore V is twisted Courant integrable if and only if dω = −H.

Example 3.5.2 (Twisted Poisson geometry). Let β ∈ Γ(∧2T ) and consider
the almost Dirac structure V = eβT ∗ = {ξ + βξ| ξ ∈ T ∗}. Once again we
refer back to the untwisted case, example (3.4.3) to see that

NijH |V (eβξ, eβη, eβφ) = 1
4
[β, β](ξ, η, φ) + 1

2
H(π(eβξ), π(eβη), π(eβφ))

= 1
4
[β, β](ξ, η, φ) + 1

2
H(βξ, βη, βφ)

= 1
2
(1

2
[β, β] + β∗H)(ξ, η, φ),

where the bracket is the (untwisted) Schouten bracket and β∗H is the pull-
back of H by β : T ∗ → T . Therefore by equation (3.12), we see that V is a
twisted Dirac structure if and only if

{{f, g}, h}+ {{g, h}, f}+ {{h, f}, g} = −β∗H(df, dg, dh). (3.20)

Finally, we can combine these two examples just as we did in the untwisted
case to prove the following:

Proposition 3.5.1. Let H ∈ Γ(∧3T ∗) be a closed form used to twist the
Courant bracket. Let E = V ⊕ V ∗ be a splitting of E into twisted Dirac
strucures and let ε ∈ Γ(∧2V ∗). Then Vε = {X + εX| X ∈ V } is an almost
Dirac structure. Vε is twisted Courant integrable if and only if ε satisfies the
twisted generalized Maurer-Cartan equation

dV ε + 1
2
[ε, ε] = −π∗H (3.21)

where dV : Γ(∧2V ∗) → Γ(∧3V ∗) is the (untwisted) differential of V , [ , ] :
Γ(∧2V ∗) → Γ(∧3V ∗) is the (untwisted) Schouten bracket for V ∗ and π : V →
T is the anchor.

Proof. Using π(eεu) = π(u) the proposition follows from equation (3.19a)
and equation (3.16) of Proposition (3.4.2).
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Chapter 4

Generalized metrics

The addition of further structures associated to a generalized tangent bun-
dle leads to various geometries. The first such structure is a generalization
of a Riemannian metric and is thus called a generalized metric. One could
therefore describe this geometry as generalized Riemannian geometry. From
a generalized metric one produces generalizations of the Levi-Civita connec-
tion, the Hodge star, the inner product on forms and the Laplace-de Rham
operator.

4.1 Generalized metrics

We motivate the definition of a generalized metric by the following obser-
vation. Suppose we have a Riemannian manifold (M, g). The metric g is
completely determined by its graph G = {X + gX|X ∈ TM} ⊂ TM ⊕ T ∗M
where g is viewed as the map g : TM → T ∗M given by X 7→ g(X, ). One
then finds that (X+gX, Y +gY ) = g(X,Y ), i.e., the restriction of the natural
form ( , ) to G is positive definite.

Definition 4.1.1. Let E be a generalized tangent bundle for M . A gener-
alized metric V is a positive definite subbundle of rank n = dim M , that is,
the restriction of the form ( , ) to V is positive definite.

Given a generalized metric V ⊂ E, we define V + = V and V − = V ⊥,
the orthogonal complement of V . Thus E = V + ⊕ V −, the form ( , ) is
positive definite on V +, negative definite on V −. Thus a generalized met-
ric is equivalent to a reduction of the structure group of E from O(n, n) to
O(n) × O(n). To proceed further let us first consider the untwisted case
E = T ⊕ T ∗. Note that as T ∗ ⊂ E is isotropic, T ∗ ∩ V + = 0. So just as
in the motivating example one can write V + as a graph {X + tX|X ∈ T}
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where t : T → T ∗. Splitting t into symmetric and anti-symmetric parts,
t = g + B we have that V + consists of elements of the form X + gX + BX
while V − consists of elements of the form X − gX + BX. One finds that
(X + gX + BX, Y + gY + BY ) = g(X,Y ) and since V + is positive definite,
g is an ordinary Riemannian metric. So in the untwisted case a generalized
metric is equivalently given by a Riemannian metric g and a 2-form B which
is known as the B-field.

In the twisted case one can still locally write V + as a graph X+gαX+BαX
which under the transition between coordinate patches Uα → Uβ changes to
X + gαX +BαX + ιXdAαβ = X + gβX +BβX. Thus on equating symmetric
and skew-symmetric parts gα = gβ = g still defines a Riemannian metric
while Bβ = Bα + dAαβ so in the gerbe twisted case a generalized metric is
equivalently given by a Riemannian metric g and a collection of 2-forms Bα

transforming under Bβ = Bα + dAαβ. Notice that we have a globally defined
3-form H given locally as H = dBβ = dBα, the curvature of the gerbe.

4.1.1 Generalized isometries

We now consider which Courant isomorphisms preserve the structure of a
generalized metric. More generally we can consider the action of Courant
automorphisms on generalized metrics. Suppose we have a generalized met-
ric V + and a Courant automorphism ϕ which is the combination of a diffeo-
morphism f followed by a B-transform by the 2-form B. Thus the action of
ϕ is given by

X + ξ 7→ f∗X + (f−1)∗ξ + ιf∗XB. (4.1)

Since ϕ preserves the form ( , ), the image ϕ(V +) is also a generalized
metric. We write V + as a graph X + gX + B+X and the image under ϕ is
f∗X + (f−1)∗(gX + B+X) + ιf∗XB. Letting Y = f∗X we see that a generic
element of ϕ(V +) has the form Y + ((f−1)∗(g + B+))Y + BY . Thus the
metric g and B-field B+ transform under ϕ according to

ϕ∗g = (f−1)∗g (4.2a)

ϕ∗B+ = (f−1)∗B+ + B. (4.2b)

Definition 4.1.2. Let V + be a generalized metric, ϕ a Courant automor-
phism. Then ϕ is a generalized isometry if ϕ(V +) = V +.

From the transformations (4.2), it follows that ϕ is a generalized isometry
if and only if g = (f−1)∗g and B+ = (f−1)∗B++B. In particular a generalized
isometry always has an underlying isometry, in fact given any isometry f we
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could combine it with the B field B = B+−(f−1)∗B+ to produce a morphism
that carries V + onto itself, however we might not have that B is closed.

4.2 Connections

Associated to every generalized metric V + is a connection on V + compatible
with the metric. Recall equation (2.15), a relation reminiscent of the condi-
tion for a connection to be compatible and will be used as motivation. We
assume v and w are sections of V + and X = π(u) is a vector field. If we
choose u = X− to be the extension of X to V − then (2.15) simplifies to

X(v, w) = ([X−, v], w) + (v, [X−, w]). (4.3)

Therefore we tentatively define

∇Xv = [X−, v]+

where we use a superscript ± to denote extension to V ± and a subscript ± to
denote orthogonal projection onto V ±. We now verify this defines an affine
connection on V +. From equation (2.17) we see that

∇Xfv = (f [X−, v] + (Xf)v)+ = f∇Xv + (Xf)v

and also that

∇fXv = [fX−, v]+ = f [X−, v]+ − ((π(v)f)X−)+ + (X−, v)df+ = f∇Xv

hence ∇ defines a connection on V +. Furthermore it follows from (4.3) that
∇ is compatible with the metric on V +. Although ∇ is a connection on V +

we can use the projection π to identify V + with the tangent bundle T and
we obtain a corresponding connection which will also be denoted ∇ on T
defined by

(∇XY )+ = ∇XY + = [X−, Y +]+. (4.4)

Observe that (4.4) does define a compatible connection on T . Now [X−, Y +]+ =
([X−, Y +] − [X, Y ]−)+. The benefit of writing this is that π([X−, Y +]) =
π([X, Y ]−) = [X, Y ] so that [X−, Y +]− [X, Y ]− is a 1-form. Thus it has the
form 2gZ for some vector field Z. Thus (∇XY )+ = (2gZ)+ = Z+. The last
equality holds since 2gZ = (Z + gZ + BZ)− (Z − gZ + BZ) = Z+ − Z− is
the decomposition of 2gZ. Thus ∇XY = Z. Hence

2g∇XY = [X−, Y +]− [X,Y ]−. (4.5)
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In fact we can repeat the above using the twisted Courant bracket [ , ]H ,
in which case the connection is given by

2g∇XY = [X−, Y +]H − [X, Y ]−. (4.6)

Note that the second bracket is a Lie bracket.

Proposition 4.2.1. [16] The connection ∇ on T has torsion T = −(dB+H).

Proof. We have

2g(∇XY −∇Y X − [X, Y ]) = [X−, Y +]H − [Y −, X+]H − 2[X,Y ]−− 2g[X, Y ].
(4.7)

Note that the omission of the subscript H indicates the Lie bracket. To
simplify this expression first observe that as the Courant bracket of two 1-
forms is zero then [X+ −X−, Y + − Y −]H = 0, so expanding gives

[X+, Y +]H + [X−, Y −]H = [X+, Y −]H + [X−, Y +]H .

Thus [X+, Y −]H + [X−, Y +]H = 1
2
([X+ + X−, Y + + Y −]H). But X+ + X− =

2(X + ιXB) and the properties of the Courant bracket imply

[X + ιXB, Y + ιY B]H = [X, Y ]H + ι[X,Y ]B − ιXιY dB

= [X, Y ] + ι[X,Y ]B − ιXιY (dB + H).

Thus

[X+, Y −]H + [X−, Y +]H = 2[X, Y ] + 2ι[X,Y ]B − 2ιXιY (dB + H). (4.8)

Substituting (4.8) into the (4.7) we find the right hand side becomes

2[X,Y ] + 2ι[X,Y ]B − 2ιXιY (dB + H)− 2[X, Y ]− − 2g[X, Y ]

= 2[X,Y ] + 2ι[X,Y ]B − 2ιXιY (dB + H)− [X, Y ]− − [X,Y ]+

= 2[X,Y ] + 2B[X, Y ]− 2ιXιY (dB + H)− 2([X,Y ] + B[X, Y ])

= −2ιXιY (dB + H).

Thus the torsion is given by

g(∇XY −∇Y X − [X, Y ]) = −ιXιY (dB + H). (4.9)

Remark 4.2.1. One can similarly define a connection using the orthogonal
complement V −. All the algebra is the same except that g is replaced by −g
and so equation (4.9) shows that the connection obtained on T has torsion
+(dB + H). Thus there are actually two compatible connections ∇± arising
from a generalized metric, with torsion ∓(dB +H). Thus 1

2
(∇+ +∇−) is the

Levi-Civita connection.
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4.3 The Born-Infeld metric

4.3.1 Induced metric on the generalized tangent bun-
dle

A generalized metric V + decomposes the (untwisted) generalized tangent
bundle E = V + ⊕ V − into positive and negative definite subbundles. By
switching the sign of the metric on V − we obtain a positive definite metric
on E. Another way to view this is by defining the bundle endomorphism
G ∈ End(E) which is defined as multiplication by ±1 on V ±. Then we have
that the bilinear form (G , ) on E is positive definite and symmetric
and thus defines a metric on E. By restricting to T we obtain a Riemannian
metric. Our presentation of this metric and the Hodge theory that follows is
greatly influenced by [12].

The map G can be expressed in terms of the metric g and B-field B. First
consider the case when B = 0. Then for a tangent vector X, 2X = X++X−,
so 2GX = X+ −X− = 2gX. Similarly G(gX) = X so in matrix form G is

G =

(
0 g−1

g 0

)
. (4.10)

Now we suppose there is a B-field B. Then V ± = eBV ±
0 where V ±

0 are the
corresponding subbundles when B = 0. It follows that G = eBG0e

−B, where
G0 is as given in equation (4.10). In matrix form this is

G =

(
1 0
B 1

)(
0 g−1

g 0

)(
1 0
−B 1

)
=

( −g−1B g−1

g −Bg−1B Bg−1

)
. (4.11)

The restriction of the metric (G , ) to T is thus (GX, Y ) = (−g−1BX +
(g − Bg−1B)X, Y ) = (gX, Y )− (Bg−1BX, Y ) = g(X,Y ) + (g−1BX, BY ) =
g(X,Y )+g−1(BX, BY ), where we have used the fact that B is skew adjoint.
We thus have

(GX, Y ) = g(X,Y ) + g−1(BX, BY ). (4.12)

Note that we can also write g−Bg−1B = (g−B)g−1(g + B). So (GX, Y ) =
((g−B)g−1(g+B)X, Y ) = (g−1(g+B)X, (g+B)Y ) = g−1((g+B)X, (g+B)Y )
is another expression for this new metric. We let dvolG denote the volume
form corresponding to this metric.

4.3.2 The Born-Infeld metric

The next construction is a generalization of the Hodge star which in turn
will allow us to define a metric called the Born-Infeld metric on spinors. Let
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∗ = e1e2 . . . en where e1, . . . en is an oriented orthonormal basis for V +. Then

∗ acts on ∧T ∗ by Clifford multiplication and we have that ∗2 = (−1)
n(n−1)

2 .
Consider first the case when B = 0. Then an oriented orthonormal basis for
V + is {∂1 + dx1, . . . ∂n + dxn} where {∂µ} is an oriented orthonormal basis
for T and {dxµ} the dual basis. So ∗ = (∂1 + dx1) · · · (∂n + dxn). Then if σ
denotes the main anti-automorphism of the Clifford algebra then we have

σ(∗)ω = σ(?ω)

where ? is the ordinary Hodge star for g. Let us also define α̃ = ? ? α so if α
has degree k then α̃ = (−1)k(n−k)α. Now we see

[α ∧ ?β]top = [?α ∧ ? ? β]top

= [?α ∧ β̃]top

= (−1)
n(n−1)

2 [σ(?α ∧ β̃)]top

= (−1)
n(n−1)

2 [σ(β̃) ∧ σ(?α)]top

= (−1)
n(n−1)

2 [σ(β̃) ∧ σ(∗)α]top

= [σ(β̃) ∧ ∗α]top

= 〈β̃, ∗α〉
= 〈∗β̃, ∗ ∗ α〉
= 〈α, ∗β̃〉

where we have used σ(∗) = (−1)
n(n−1)

2 ∗. So we have

g(α, β)dvolg = 〈α, ∗β̃〉

where g(β, α) denotes the metric on forms induced by g. In the general case
where we have a B-field we define a bilinear form G on spinors by

G(α, β)dvolG = 〈α, ∗β̃〉. (4.13)

Now let V + = eBV +
0 , where V +

0 is the corresponding generalized metric
when B = 0. If {eµ} is an oriented orthonormal basis for V +

0 then {eBeµ}
gives such a basis for V + and hence ∗ = eB∗0. Recall equivariance of the B-
field on the Clifford action (eBu)(e−Bω) = e−B(uω) where u is in the Clifford
algebra of E and ω is a spinor. Thus (eBu)(ω) = e−B(ueBω). Therefore as
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spinor endomorphisms we have ∗ = e−B ∗0 eB. Now we find that

G(α, β)dvolG = 〈α, ∗β̃〉
= 〈α, e−B ∗0 eBβ̃〉
= 〈eBα, ∗0e

Bβ̃〉
= 〈eBα, ∗0ẽBβ〉
= g(eBα, eBβ)dvolg

where we have used the invariance of 〈 , 〉 under B-transforms. Thus in
particular we find that G(α, β) is symmetric and positive definite. By inte-
gration we have a metric on differential forms which, following [12] we define
as the Born-Infeld metric.

Definition 4.3.1. Let M be compact. The Born-Infeld metric is the metric
h on differential forms given by

h(α, β) =

∫
G(α, β)dvolG =

∫
〈α, ∗β̃〉 =

∫
g(eBα, eBβ)dvolg. (4.14)

4.3.3 Hodge theory for generalized metrics

Associated with the spinors is a differential complex

dH : Γ(S+) → Γ(S−) (4.15)

where S± = ∧en\oddT ∗. The main distinction compared to the de Rham
complex is that in the generalized case we only have a Z2 grading. We now
turn to the question of finding an adjoint for dH . First some properties of
the ∼ operation, α̃ = ∗ ∗ α.

α̃ ∧ β = α̃ ∧ β̃ (4.16a)

σ̃(ω) = σ(ω̃) (4.16b)

d̃Hω = dH̃ ω̃ (4.16c)

ẽBω = eBω̃ (4.16d)

?̃ω = ?ω̃ (4.16e)

∗̃ω = ∗ω̃ (4.16f)

〈α̃, β̃〉 = 〈α, β〉. (4.16g)
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Note that (4.16f) follows from (4.16d) and (4.16e) since ∗ = e−B ∗0 eB. Now
if s has degree k then

dHs ∧ t + (−1)ks ∧ d−Ht = ds ∧ t−H ∧ s ∧ t

+(−1)ks ∧ dt + (−1)ks ∧H ∧ t

= d(s ∧ t)

So on replacing s by σ(s) and noting that d(σ(s)) = (−1)kσ(ds), we find that
the expression 〈dHs, t〉+ 〈s, d−Ht〉 is exact. Now we have

∫
〈dHs, ∗β̃〉 =

∫
〈d̃Hs, ∗β〉

= −
∫
〈s̃, d−H̃(∗β)〉

= −
∫
〈∗s̃, ∗d−H̃(∗β)〉

= −
∫
〈σ(∗)d−H̃(∗β), ∗s̃〉.

So the adjoint of dH is d∗H = − ∗−1 d−H̃∗. Note that in even dimensions

−H̃ = H.

We can form the operator D+ = dH + d∗H . Now the principal symbol s(ξ)
of D+ is given by

s(ξ)ω = ξ ∧ ω − ∗−1(ξ ∧ ∗ω).

But using ∗ = e−B ∗0 eB we find that

eBs(ξ)(e−Bω) = ξ ∧ ω − ∗−1
0 (ξ ∧ ∗0ω) = ξ ∧ ω + ξxω.

This last expression is just the principal symbol for d + d∗ and shows that
D+ is elliptic and therefore so is ∆dH

= D2
+ = dHd∗H + d∗HdH . The index for

dH : Γ(S+) → Γ(S−) is clearly the Euler characteristic.
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Chapter 5

Generalized complex geometry

Generalized complex structures are of central importance in generalized ge-
ometry. They are simultaneously a generalization of complex and symplec-
tic geometry. Generalized complex complex manifolds have at each point
an integer called the type which can jump discontinuously throughout the
manifold. Symplectic manifolds have type zero throughout while complex
manifolds have maximal type throughout equal to their complex dimension.
More generally in an open set with constant type k, a generalized complex
manifold admits a foliation, the leaves of which are symplectic and there are
2k transverse coordinates which have a complex structure.

5.1 Generalized almost complex structures

Just as in complex geometry there are generalized almost complex structures
and an integrability condition for them to be generalized complex structures.
In this section we focus on generalized almost complex structures.

5.1.1 Linear generalized complex structures

First we consider the linear theory consisting of E = V ⊕ V ∗ where V is a
vector space. A complex structure on V is an endomorphism J : V → V
satisfying J2 = −1. A symplectic structure on V is a linear homomorphism
ω : V → V ∗ such that ω is skew-symmetric (ωX)Y = −(ωY )X and non-
degenerate which translates to ω being invertible. Alternatively we can use
the natural form ( , ) on E to rephrase this as (ωX, Y ) + (X, ωY ) = 0. We
can generalize both of these structures with the following definition
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Definition 5.1.1. Let V be a vector space. A linear generalized complex
structure is a linear homomorphism J : T ⊕ T ∗ → T ⊕ T ∗ such that

• J is a complex structure J2 = −1

• J is skew-adjoint (JX, Y ) + (X, JY ) = 0

where ( , ) is the natural bilinear form on T ⊕ T ∗.

Equivalently, the condition that J is skew-adjoint can be replaced with
requiring J to be orthogonal for we have JJ∗ = 1 ⇔ J2J∗ = J ⇔ J∗ = −J .

A complex structure J : V → V canonically defines a generalized complex
structure

J =

(−J 0
0 J t

)
(5.1)

where J t denotes the dual map J t : V ∗ → V ∗. Likewise a symplectic structure
ω : V → V ∗ canonically defines a generalized complex structure

J =

(
0 −ω−1

ω 0

)
. (5.2)

5.1.2 Relation to isotropics

We now consider alternative descriptions of generalized complex structures.
Just as in the ordinary complex case we have that the complexification E⊗C
splits into the ±i eigenspaces of a generalized complex structure J :

E ⊗ C = V+i ⊕ V−i

with the projections being P±i = 1
2
(1 ∓ iJ). In addition we also have that

the form ( , ) extended to E⊗C vanishes when restricted to the eigenspaces
V±i for we have for u, v ∈ Vi

(u, v) = (Ju, Jv) = (iu, iv) = −(u, v).

Recall that we call such subspaces isotropic. Moreover since the eigenspaces
have the same dimesion as V , they are maximal isotropics. Therefore we have
that a generalized complex structure gives a splitting of E ⊗ C = W ⊕ W
where W is a maximal isotropic subspace. Conversely, given a maximal
isotropic W of E ⊗ C such that W ∩W = {0} then we can define a gener-
alized complex structure J simply by specifying W to be the +i eigenspace
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of J and W to be the −i eigenspace. Therefore we have found an equivalent
description of generalized complex structures, a maximal isotropic subspace
W of E ⊗ C with W ∩W = {0}.

A generalized complex structure J defines the group U(n, n) = GL(2n,C)∩
O(2n, 2n) where GL(2n,C) is the group of linear automorphisms commuting
with J . Notice that this shows that generalized complex structures only ex-
ist in even dimensions. The eigenspaces W, W of J are GL(2n,C)-invariant.
Thus the splitting of E⊗C into U(n, n)-irreducible representations is simply
the splitting E ⊗ C ' W ⊕ W given by J . Now O(2n, 2n) acts transi-
tively on the space of maximal isotropics with real index zero by W 7→ TW
and consequently there is also a transitive action of O(2n, 2n) on generalized
complex structures given by conjugation J 7→ TJ T−1. The stabilizer of this
action on a given J is the group U(n, n). Therefore a generalized complex
structure is equivalent to a coset of U(n, n) in O(2n, 2n) and the space of
generalized complex structures is the homogeneous space O(2n, 2n)/U(n, n).
This shows that a generalized complex structure is equivalent to a reduction
from the group O(2n, 2n) to U(n, n). Note however that the generalized
complex structures J and −J lead to the same reduction of structure.

5.1.3 Description of maximal isotropics

We consider now the task of classifying the maximal isotropic subspaces. If
U is a subspace of V then U ⊕Ann(U) is a maximal isotropic where Ann(U)
is the Annihilator of U , Ann(U) = {ξ ∈ V ∗ | ξ(U) = 0}. We denote the
space U ⊕ Ann(U) by L(U). We can also perform a B-transform to L(U)
to obtain eBL(U), which is also maximal isotropic. In fact eBL(U) only
depends on the restriction of B to U . For any ε ∈ ∧2U∗ we can form the
space L(U, ε) = {X + ξ | ξ|U = εX}. Then if ι : U → V is inclusion and
ι∗B = ε we have that L(U, ε) = eBL(U) so that the space L(U, ε) is maximal
isotropic. In fact we now show every maximal isotropic has this form.

Proposition 5.1.1. [11] Every maximal isotropic subspace of V ⊕ V ∗ is of
the form L(U, ε), where U is a subspace of V , ε ∈ ∧2U∗ and U , ε are unique.

Proof. Let W be an isotropic space. Let π1 : V ⊕ V ∗ → V be projection
onto the first factor and similarly π2 for the second factor. Let U = π1(W ).
We define ε : U → U∗ ' V ∗/Ann(U) as follows. Given X ∈ U , let ξ be any
element of V ∗ such that X + ξ ∈ W . We let εX = ξ|U . To show this is well
defined suppose that X + ξ1 and X + ξ2 are both elements of W lying above
X. Then for any Y ∈ U , choose Y +η ∈ W . Now W is an isotropic subspace
so 0 = ((X + ξ1)− (X + ξ2), Y + η) = (ξ1 − ξ2)(Y ). Thus ξ1 − ξ2 ∈ Ann(U)
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as required. Also (εX)(X) = ξ1(X) = 0 showing skew-symmetry ε ∈ ∧2U∗.
Thus we have shown that W is a subspace of {X +ξ | ξ|U = εX} = L(U, ε).
Finally, when W is maximal we must have W = L(U, ε) since L(U, ε) is also
maximal. In this case U and ε are uniquely determined.

So we have an alternative characterization of maximal isotropics, as a
subspace U of V (or V ⊗C in the complex case) together with a 2-form ε on
U , ε ∈ ∧2U∗.

Definition 5.1.2. Let W be a maximal isotropic subspace of V ⊕ V ∗. Let
U = π(W ) be the projection of W onto V . The type of W is the codimension
of U in V .

Note that if W is a complex subspace of the complexification E ⊗ C
of E = V ⊕ V ∗ then the above definition still holds, taking the complex
codimension of (π⊗1)(W ) in V ⊗C. Also note that if ι : U → V is inclusion
then

eBL(U, ε) = L(U, ε + ι∗B) (5.3)

and as such B-transforms preserve the type of maximal isotropics. We are
lead to ask what the condition W ∩W = {0} for a maximal isotropic trans-
lates into in terms of U and ε.

Definition 5.1.3. Let W be a maximal isotropic subspace of E ⊗ C. The
real index of W is the complex dimension of W ∩W .

This definition is such that generalized complex structures are equivalent
to maximal isotropics W of E ⊗ C of real index zero.

Proposition 5.1.2. [11] The maximal isotropic W = L(U, ε) of E ⊗ C has
real index zero if and only if U + U = V ⊗ C and ω = Im(ε)|U∩U is non-
degenerate.

Proof. If W has index zero then E ⊗ C = W ⊕ W and hence U + U =
V ⊗ C. Let B ∈ ∧2V ∗ be such that ι∗B = ε. Suppose there exists a
real 0 6= X ∈ U ∩ U such that ωX = 0. Then (B − B)X|U+U = 0.

Hence (B − B)X = α + β where α ∈ Ann(U) and β ∈ Ann(U). Since
U + U = V ⊗ C, then Ann(U) ∩ Ann(U) = {0}. Then as (B − B)X is
imaginary we have β = −α. Thus BX − α = BX − α = ξ, say. Then ξ
is real, ξ|U = BX|U = εX and ξ|U = εX. Thus 0 6= X + ξ ∈ W ∩ W , a
contradiction so ω must be non-degenerate.

Conversely suppose U + U = V ⊗ C and ω is non-degenerate. Suppose
X + ξ ∈ W ∩ W . Then ξ|U = εX and ξ|U = εX. Thus ωX = 0 so by
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non-degeneracy, X = 0. This in turn implies ξ|U = 0 and ξ|U = 0 hence
ξ = 0 and thus W has real index zero.

Thus we have determined precisely the conditions for an isotropic L(U, ε)
to define a generalized complex structure.

5.1.4 Relation to spinors

There is a connection between isotropic subspaces and spinors and it will
lead to another description of generalized complex structures. Given a spinor
φ ∈ ∧T ∗ consider the subspace of E defined by

Lφ = {v ∈ E | vφ = 0}. (5.4)

If u, v ∈ Lφ then
0 = uvφ + vuφ = 2(u, v)φ

so if φ 6= 0 then (u, v) = 0 and thus Lφ is an isotropic subspace. Now the
Clifford action is Spin(V ⊕V ∗) equivariant so for any element g ∈ Spin(V ⊕
V ∗) we have (gv)(gφ) = g(vφ). It follows that Lgφ = gLφ. In particular for
a B-transform we have eBLφ = Le−Bφ.

Definition 5.1.4. A spinor φ is called pure if Lφ is a maximal isotropic
subspace.

Now consider the maximal isotropic W = L(U) = U ⊕ Ann(U).

Proposition 5.1.3. The spinor φ satisfies Lφ = W = U ⊕ Ann(U) if and
only if φ is a non-zero multiple of e1 ∧ · · · ∧ ek where {ei} is a basis for
Ann(U).

Proof. Let {ui}t
1 be a basis for U and let {vj}k

1 be a basis for a complement of
U in V . Let {u∗i }t

1 ∪ {v∗j}k
1 be a dual basis so in particular {v∗j} is a basis for

Ann(U). Suppose the spinor φ satisfies Lφ = W . Then for each j, 0 = v∗j φ =
v∗j ∧ φ and so φ = v∗1 ∧ · · · ∧ v∗k ∧ ω = Ω∧ ω where ω is a form involving only
the {u∗i } and Ω = v∗1 ∧ · · · ∧ v∗k. Furthermore 0 = uiφ = ιui

φ = (−1)kΩ∧ ιui
ω

for all i so that ω = c a non-zero constant. The converse is trivial.

Corollary 5.1.3.1. The spinor φ satisfies Lφ = W = L(U, ε) if and only if
φ is a non-zero multiple of e−BΩ where B ∈ ∧2V ∗ is any 2-form such that
ι∗B = ε and Ω = e1 ∧ · · · ∧ ek is an orientation for Ann(U).

Proof. Suppose φ is such that Lφ = W . Then LeBφ = e−BW = L(U, 0) =
U ⊕ Ann(U). Thus eBφ = cΩ where c is a non-zero constant. Similarly the
converse holds.
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Corollary 5.1.3.2. Every maximal isotropic W has, up to non-zero multi-
ples, a unique pure spinor ρ such that W = Lρ. If W = L(U, ε) and B is any
2-form with ι∗B = ε then ρ = ce−BΩ where c is a non-zero scalar and Ω is
an orientation for Ann(U). The type of W is the degree of Ω.

Proof. This follows since every maximal isotropic has the form L(U, ε). Also
note that the type of W is the codimension of U which is the dimension of
Ann(U), the degree of Ω.

Thus a spinor ρ is pure if and only if it has the form ρ = eBΩ, where
Ω = e1 ∧ · · · ∧ ek. In the case of complex maximal isotropics we write
ρ = eB+iωΩ where B and ω are real.

We have established the relation between pure spinors and maximal isotrop-
ics. Now we wish to describe which pure spinors correspond to a generalized
complex structure. This happens if and only if the maximal isotropic has
real index zero.

Proposition 5.1.4. Let ρ1 and ρ2 be pure spinors. Then Lρ1 ∩Lρ2 = {0} if
and only if 〈ρ1, ρ2〉 6= 0, where 〈 , 〉 is the bilinear form (2.3) on spinors.

Proof. By the invariance of 〈 , 〉 under B-transforms, it suffices to consider
the case where W1 = Lρ1 = L(U1, ε1) and W2 = Lρ2 = L(U2, 0) = U2 ⊕
Ann(U2). Let B be any 2-form such that ι∗B = ε so that W1 = eBL(U1, 0).
After rescaling we can assume ρ1 = e−BΩ1 and ρ2 = Ω2. Then

〈ρ1, ρ2〉 = [σ(e−BΩ1) ∧ Ω2]top

= [σ(Ω1) ∧ σ(e−B) ∧ Ω2]top

= ±[eB ∧ Ω1 ∧ Ω2]top.

Consider first the case where U1+U2 6= V ⊗C. Then Ann(U1)∩Ann(U2) 6=
{0} and so Ω1∧Ω2 = 0, thus 〈ρ1, ρ2〉 = 0. But since Ann(Ui) ⊆ Wi for i = 1, 2
we also have W1 ∩W2 6= {0}, proving the result in this case.

Thus we now assume U1+U2 = V ⊗C. Choose a basis f1, . . . fr for U1∩U2.
Let e1, . . . ek be a basis for a complement of U1∩U2 in U1 and similarly g1, . . . gj

for a complement of U1 ∩ U2 in U2. Let {f ∗1 , . . . f ∗r }, {e∗1, . . . e∗k}, {g∗1, . . . g∗j}
be corresponding dual bases. Then W1 has basis

{eBf1, . . . e
Bfr, e

Be1, . . . e
Bek, g

∗
1, . . . g

∗
j}

and W2 has basis
{f1, . . . fr, g1, . . . gj, e

∗
1, . . . e

∗
k}.
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Then W1 ∩W2 = {0} if and only if the wedge product of these two bases is
a non-zero element of det(V ⊕ V ∗)⊗ C. Their wedge product is

(f1 + Bf1) ∧ . . . (fr + Bfr) ∧ (e1 + Be1) ∧ · · · ∧ (ek + Bek) ∧ g∗1 ∧ · · · ∧ g∗j
∧f1 ∧ · · · ∧ fr ∧ g1 ∧ . . . gj ∧ e∗1 ∧ · · · ∧ e∗k
= ±cf1 ∧ · · · ∧ fr ∧ e1 ∧ · · · ∧ ek ∧ g1 ∧ · · · ∧ gj ∧Bf1 ∧ . . . Bfr ∧ Ω1 ∧ Ω2

where c is a non-zero constant. Therefore this quantity is non-zero if and
only if the quantity

Bf1 ∧ · · · ∧Bfr ∧ Ω1 ∧ Ω2 ∈ detV ∗ (5.5)

is non-zero. We write B = A + C where the two form A involves only the
basis elements {f ∗1 , . . . f ∗r } while C contains all terms of B involving other
basis elements. Then 5.5 is non-zero if and only if

Af1 ∧ · · · ∧ Afr ∧ Ω1 ∧ Ω2

is non-zero. Note that A is a skew-symmetric map from the span of {f1, . . . fr}
to the span of {f ∗1 , . . . f ∗r }. The expression Af1 ∧ · · · ∧ Afr can be thought
of as the determinant of this map. Now as A is a skew-symmetric, we can
instead use the expression [eA]r, which is essentially the Pfaffian of A. It
follows that (5.5) is non-zero if and only if

[eA]r ∧ Ω1 ∧ Ω2 = [eB ∧ Ω1 ∧ Ω2]top

is non-zero. This last quantity is ±〈ρ1, ρ2〉 which completes the proof.

Corollary 5.1.4.1. Let ρ be a pure spinor. Then Lρ has index zero if and
only if 〈 ρ, ρ 〉 6= 0.

Thus we have that a generalized complex structure is equivalently given
by a pure spinor ρ = eB+iωΩ such that 〈 ρ, ρ 〉 6= 0. This in turn is equivalent
to [σ(eB+iωΩ) ∧ eB−iωΩ]top 6= 0, that is [e−2iωΩ ∧ Ω 6= 0]top 6= 0. Note that
this expression is zero unless dim V = 2n is even. This is another way to
see that generalized complex structures exist if and only if dim V is even. If
the generalized complex structure has type k then Ω has degree k. Thus we
have further shown that the type satisfies 0 ≤ k ≤ n = 1

2
dim V . And the

condition 〈 ρ, ρ 〉 6= 0 can finally be rewritten as ωn−k ∧ Ω ∧ Ω 6= 0.

5.1.5 Examples

We have seen that generalized complex structures can be described in three
different ways; as an endomorphism J , as a maximal isotropic W and as a
pure spinor ρ. We now illustrate these with our motivating examples.
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In the case of a complex structure J , we have the associated generalized
complex structure J given by (5.1). The +i eigenspace of J is therefore
W = ∧(0,1)V ⊕ ∧(1,0)V ∗. Thus U = πV (W ) = ∧(0,1)V so if dim V = 2n
then U has codimension n and hence W has maximal type k = n. Now the
annihilator of ∧(0,1)V is ∧(1,0)V ∗ so W = L(U, 0). Therefore the pure spinor
ρ is given by ρ = dz1 ∧ dz2 ∧ · · · ∧ dzn = Ω.

In the case of a symplectic structure ω, we have the associated gen-
eralized complex structure J given by (5.2). The +i eigenspace of J is
W = {X − iωX |X ∈ V ⊗ C}. Thus U = πV (W ) = V ⊗ C. So U has codi-
mension 0 and so W has minimal type k = 0. We have W = L(V ⊗C,−iω)
and so the pure spinor ρ is given by ρ = e−iω. Note that non-degeneracy of
ω, ωn 6= 0, is precisely the condition for ρ = e−iω to satisfy 〈 ρ, ρ 〉 6= 0 and
hence define a generalized complex structure.

5.1.6 Generalized almost complex structures

Now that we have worked out the linear theory we can return to the setting
of a manifold.

Definition 5.1.5. Let M be a smooth manifold. A generalized almost com-
plex structure for M is an endomorphism J : T ⊕ T ∗ → T ⊕ T ∗ such that J
is a linear generalized complex structure on each fibre.

As in the linear theory we see that this is equivalent to a bundle splitting
E⊗C = W ⊗W , where W is a maximal isotropic subbundle of E⊗C. Thus
a generalized almost complex structure is equivalent to a maximal isotropic
subbundle W with W ∩W = 0, where 0 denotes the zero bundle. In terms
of spinors, a generalized almost complex structure is equivalent to a line sub-
bundle K of ∧T ∗ consisting of pure spinors, i.e., such that for any non-zero
φ ∈ Kx we have 〈φ, φ〉 6= 0. This line bundle is called the canonical bundle
since in the case of an ordinary almost complex structure it is the canonical
bundle ∧(n,0)T ∗. Note that finding a globally-defined pure spinor φ is equiva-
lent to finding a generalized almost complex structure with trivial canonical
bundle. In particular this is the case for a symplectic manifold M, ω in which
case the globally defined spinor is e−iω. Lastly, a generalized almost com-
plex structure is equivalent to a reduction of the structure group of E from
O(2n, 2n) to U(n, n).
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5.1.7 Topological conditions for almost structures

In this section we show that a manifold admits a generalized almost com-
plex structure if and only if it admits an almost complex structure. Since
any almost complex structure has an associated generalized almost complex
structure it remains to show that given a generalized almost complex struc-
ture J we can construct an almost complex structure. The proof is in two
steps. First we show that we can reduce the structure group of the general-
ized tangent bundle from U(n, n) to U(n) × U(n) and then we identify one
of the U(n) factors with the tangent bundle so that we can transport J to
an endomorphism on T .

The first step is to reduce the structure group from U(n, n) to U(n) ×
U(n); that is we seek a splitting of E into a positive and a negative definite
subbundle E = V + ⊕ V − such that V ± are J -invariant.

Proposition 5.1.5. A principal U(n, n) bundle can always be reduced to a
principal U(n)× U(n) bundle.

Proof. We give two proofs, the first is a local construction using frames while
the second is a more direct proof using algebraic topology.

We may think of a principal U(n, n) bundle as a principal bundle of
frames together with a signature (n, n)-metric and complex structure J pre-
serving the metric. To reduce structure to U(n) × U(n) we must find local
frames of the form {e1,J e1, e2,J e2, . . . , en,J en, f1,J f1, . . . , fn,J fn} such
that (ei, ej) = δij, (fi, fj) = −δij, (ei, fj) = 0. Such a basis is easily con-
structed by a Gram-Schmidt style proces as follows: take an element v1 of
positive norm, then v1,J v1 are linearly independent and since J preserves
the metric, J v1 has positive norm as well. If they do not span a max-
imal positive definite subspace then we can find v2 of positive norm and
v1,J v1, v2,J v2 are linearly independent. Continue in this manner to obtain
v1,J v1, . . . , vn,J vn which span a maximal positive definite subspace. Then
perform Gram-Schmidt on v1, . . . vn to obtain e1,J e1, . . . , en,J en. Now we
have a J -invariant positive definite subspace V +. Take the orthogonal com-
plement V − and repeat the above to obtain f1,J f1, . . . , fn,J fn as required.

For the second proof note that a principal G-bundle P has a reduction
of structure to a subgroup H < G if and only if the fibre bundle P ×H

(G/H) admits a section. In the case of U(n)×U(n) < U(n, n) we have that
U(n)×U(n) is homotopic to U(n, n) and so the quotient space is contractible.
Thus the fibre bundle P ×H (G/H) has contractible fibres and so admits a
section.
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Thus given a generalized almost complex structure J we can find a split-
ting E = V + ⊕ V − of E into positive and negative J -invariant subbundles.
Since V + is positive definite we have that the projection π : E → T gives
an isomorphism π : V + → T . Using this isomorphism we can identify J |V +

with an almost complex structure on T . Thus we have proven the claim of
this section.

5.2 Integrability

A generalized almost complex structure is a purely algebraic struture and
so far there have been no analytic conditions. But just as with ordinary
complex structures or symplectic structures there is an analytic condition.
For complex structures the condition is closure of the space of eigen-sections
of the complex structure while for symplectic structures the condition is that
the symplectic form is closed. We introduce an integrability condition for
generalized almost complex structures and show that this generalizes these
two conditions for complex and symplectic structures.

Definition 5.2.1. Let J be a generalized almost complex structure and let
W be the +i eigenbundle of J . We say J is an integrable generalized almost
complex structure or that J is a generalized complex structure if W is Courant
involutive.

The results on integrability developed in Chapter 3 apply here and in
particular integrability of a generalized almost complex structure is equiv-
alent to the Courant bracket to satisfy the Jacobi identity when restricted
to the corresponding maximal isotropic subbundles. We thus have that the
maximal iostropic subbundles associated to integrable generalized complex
structures are Lie algebroids.

Let us examine the integrability condition for the complex and symplectic
cases to see that this does indeed generalize more familiar conditions. In the
complex case the +i eigenbundle is W = ∧(0,1)T ⊕ ∧(1,0)T ∗. If we take two
vector fields X, Y ∈ ∧(0,1)T then their Courant bracket is just the Lie bracket
so this is the usual integrability condition for almost complex structures. It
should be noted that the only term of a bracket [X + ξ, Y + η] of sections
of W , that might not remain in W is the [X, Y ] term so in fact Courant
integrability is in this case equivalent to the usual integrability condition. In
the symplectic case, the +i eigenbundle is W = {X − iωX |X ∈ T ⊗ C}.
Note that this is the same as in Example (3.4.2) except we are now using
iω in place of ω. Therefore the condition for integrability is that dω = 0.
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The integrability condition in the general case can be viewed as a combina-
tion of the conditions in the complex and symplectic cases as the following
proposition demonstrates:

Proposition 5.2.1. [11] Let V be a subbundle of T ⊗ C and ε ∈ Γ(∧2V ∗).
Then the maximal isotropic subbundle L(V, ε) is Courant integrable if and
only if V is Frobenius integrable and dV ε = 0 where dV : Γ(∧kV ∗) →
Γ(∧k+1V ∗) is the differential associated to V which is a Lie algebroid when
V is Frobenius integrable.

Proof. Since the Courant bracket and Lie bracket agree for vector fields V
must be Frobenius integrable for W = L(V, ε) to be Courant integrable.
Therefore we assume V is Frobenius integrable. Consider now the case ε = 0.
Then W = L(V, 0) = V ⊕Ann(V ). Let u = X + ξ and v = Y + η be sections
of L(V, 0). Since we are assuming V is Frobenius integrable and since 1-forms
Courant commute, we need only consider the case where u = X and v = η.
We have

[u, v] = [X, η] = LXη − 1

2
dη(X) = ιXdη

since η is a section of Ann(V ). Now if Z is any section of V then

ιXdη(Z) = dη(X, Z) = η(X)− η(Z)− η[X, Z] = 0

where we have made use of the Frobenius integrability of V . So we see
that L(V, 0) is Courant integrable if and only if V is Frobenius integrable.
Now consider the case where we have a 2-form ε ∈ Γ(∧2V ∗). Choose a
smooth extension of ε, a smooth 2-form B ∈ Γ(∧2V ∗) with ε = ι∗B. Then
W = L(V, ε) = eBL(V, 0). Any two sections of W have the form eBu, eBv
where u, v are sections of L(E, 0). Then

[eBu, eBv] = eB[u, v]− ιXιY dB.

Thus W is Courant integrable if and only if ιXιY dB = 0 for all vector fields
on V , i.e., dB|V⊗V = 0 or equivalently, dV ε = 0.

Note however that a generalized almost complex structure can only be
written in the form L(V, ε), for V a subbundle of T in a neighborhood where
the type is constant. In the more general case integrability is given by the
vanishing of the Nijenhuis operator, as established in Section (3.4) on Dirac
structures.
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5.2.1 Geometry of regular points

Given an generalized almost complex structure J , consider the i-eigenbundle
V . This is a complex Lie algebroid such that T ⊗ C = π(V ) + π(V ). Let
U = π(V ) so that U + U = T ⊗ C and let 4 = U ∩ U be the corresponding
real distribution.

Recall that for a generalized distribution a regular point is a point with a
neighborhood where the dimensions of the fibres of the distribution does not
vary. In the present situation the dimension of the fibres of 4 = U ∩ U are
2m−2k where T has dimension n = 2m and k is the type of J at that point.
Thus a point is regular if and only the type is constant in a neighborhood.

We are in the situation discussed in Section (3.3) where we have a gen-
eralized foliation corresponding to 4 such that at regular points there are
k transverse complex coordinate functions where k is the codimension of
π(V ) = U , that is k is the type of J at this point. In this sense we can inter-
pret the type of a generalized complex structure as the number of complex
coordinates. However we can conclude even more. In the vicinity of a regular
point we can write V = L(U, ε) and by Proposition (5.2.1) we have that U
is a Frobenius integrable subbundle of the tangent bundle and dUε = 0. By
proposition (5.1.2) we have that the leaves of the foliation around a regu-
lar point inherit a non degenerate 2-form ω = Im(ε)|U∩U . Note that since
dUε = 0 we have that ω restricted to a given leaf is a closed non-degenerate
2-form. Thus the leaves are symplectic manifolds of dimension 2m− 2k.

So far we have found that in a neighborhood of a regular point of type k a
foliation consisting of symplectic leaves and complex transverse coordinates
can be found. In fact even more than this can be said. First we note that
there is a canonical example of a 2m dimensional generalized complex mani-
fold M2m

k of constant type k for 0 ≤ k ≤ m. Let (Cn,J ) denote Cn with the
standard complex structure J and let (Rn, ω) denote R2n with the standard
symplectic form ω = dx0 ∧ dx1 + · · ·+ dx2n−1 ∧ dx2n. The symplectic form ω
induces a generalized complex structure Jω of type 0. Then we define M2m

k

as the generalized complex manifold (Ck×R2m−2k,J ⊕Jω). Likewise we can
construct generalized complex manifolds of dimension 2m and constant type
k by replacing Ck with open subsets of Ck. The following theorem states
that modulo B-tranforms, generalized complex manifolds always take this
canonical form around regular points.

Proposition 5.2.2 (Generalized Darboux Theorem, [11]). Let x be a regular
point of type k in a generalized complex manifold of dimension 2m. Then
there exists a neighborhood U of x such that U is diffeomorphic to the product
of an open set in Ck with the standard symplectic space R2m−2k and such that
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after a B-transform on U , the generalized complex structure on U agrees with
the generalized complex structure on the product space.

The generalized Darboux theorem contains both the ordinary Darboux
theorem and the Newlander-Nirenberg theorem as special cases.

5.2.2 Integrability and spinors

The connection between maximal isotropics and pure spinors furnishes an
alternative description of integrability and moreover a Z-grading to spinors.

Let E = V ⊕ V be the splitting of E into the maximal isotropics of a
generalized almost complex structure and let K be the corresponding canon-
ical bundle. The pairing ( , ) can be used to identify V with V ∗. Clifford
multiplication gives a bundle endomorphism c : Cliff(V ⊕V ∗)⊗K → ∧T ∗. As
a SO(V ⊕ V ∗) bundle Cliff(V ⊕ V ∗) is just the exterior bundle ∧(V ⊕ V ∗) '
∧V ⊗∧V ∗. It is clear that c is surjective and the kernel of c contains the left
ideal generated by V so by dimension considerations c gives an isomorphism
c : ∧V ∗⊗K → ∧T ∗. This provides ∧T ∗ with a new Z-grading ∧T ∗ = ⊕n

j=0Uj

where Uj = ∧jV ∗ · K. Notice that as Clifford multiplication changes the
parity of forms and since pure spinors have either even or odd parity then
this new Z-grading refines the Z2-grading of spinors into even and odd forms.
Also note that Clifford multiplication by elements of V ∗ increases the degree
by 1 while Clifford multiplication by elements of V decreases the degree by 1.

Now we consider how integrability relates to spinors. Let u, v be sections
of V , so u · K = 0 and v · K = 0. We have that [u, v] is a section of V if and
only if [u, v] · K = 0. Let φ be a local trivialization of K, a pure spinor. We
seek to evaluate [u, v] · φ. Recall that the Dorfman bracket was defined as a
generalization of equation (2.9), that is we have

[u, v]Dφ = d(u · v · φ) + u · d(v · φ)− v · d(u · φ)− v · u · dφ. (5.6)

In the case where u and v are sections of V and φ is a pure spinor then we have
[u, v]·φ = [u, v]D ·φ = −v·u·dφ = u·v·dφ = (u∧v)·dφ. Globally, this says that
[u, v] is a section of V if and only if (u∧ v) · d(Γ(K)) = 0. It is clear however
that ⊕k

j=0Uj = ⊕k
j=0 ∧j V ∗ · K is the space of spinors that are annihilated

by ∧k+1V . Thus V is integrable if and only if d(Γ(U0)) ⊆ Γ(U0) ⊕ Γ(U1).
Moreover, since d changes the parity of forms we have that V is integrable if
and only if d(Γ(U0)) ⊆ Γ(U1). We thus have

Proposition 5.2.3. [11] Let K be the canonical bundle of a generalized al-
most complex strucure J . Then J is integrable if and only if

d(Γ(U0)) ⊆ Γ(U1) (5.7)
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where Uj = ∧jV ∗ · K and V is the +i eigenbundle of J . Alternatively, J is
integrable if and only if every local non-vanishing section φ ∈ Γ(K) (i.e., a
pure spinor) satisfies

dφ = v · φ = ιXφ + ξ ∧ φ (5.8)

where v = X + ξ ∈ Γ(V ∗).

Note that in the twisted case d is replaced by dH . We have noted that dH

changes the parity of spinors. Now that we have a finer grading we can split
dH into its constituent parts. In particular we make the following definitions

Definition 5.2.2. Let ∧T ∗ = ⊕n
j=0Uj be the Z-grading on spinors induced

by a generalized almost complex structure. We define differential operators

∂H = πk+1 ◦ dH : Γ(Uk) → Γ(Uk+1)

∂H = πk−1 ◦ dH : Γ(Uk) → Γ(Uk−1)

where πk denotes projection onto Uk.

The utility of this definition is that it allows us to rephrase the integra-
bility condition in a familiar way:

Proposition 5.2.4. [11] Let ∧T ∗ = ⊕n
j=0Uj be the Z-grading on spinors in-

duced by a generalized almost complex structure. Then the generalized com-
plex structure is twisted integrable if and only if

dH = ∂H + ∂H . (5.9)

Proof. Note that by Proposition (5.2.2) we have that integrability is equiv-
alent to dH = ∂H + ∂H as an operator dH : Γ(U0) → Γ(∧T ∗). Therefore
we need only show that this identity remains for all spinors when we have
integrability. We use induction on spinor degree. The result is true for U0.
Now suppose the result is true for Uj for all j < k. Let u, v ∈ Γ(V ) and let
φ ∈ Γ(Uk). Note that it suffices to show v · u · dHφ ∈ Γ(Uk−3) ⊕ Γ(Uk−1).
From (5.6) we have

v · u · dHφ = dH(u · v · φ) + u · dH(v · φ)− v · dH(u · φ)− [u, v]D,Hφ.

Integrability shows [u, v]D,H is a section of V , and since Clifford multiplication
by elements of V reduced the degree by 1, the result follows by induction.

Note that we assumed (5.6) still holds in the twisted case. This is indeed
true and it defines the twisted Dorfman bracket

[X + ξ, Y + η]D,H = [X, Y ] + LXη − ιY dξ − ιXιY H (5.10)

the skew-symmetrization of which is the twisted Courant bracket.

We have the following alternative description of the spinor decomposition:
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Proposition 5.2.5. [5] Let J be a generalized almost complex structure
acting on an n = 2m dimensional space. Then Uk is the i(m− k)-eigenspace
of J , where the action of J is obtained by lifting J from so(n, n) to spin(n, n)
and using Clifford multiplication.

Proof. First recall that the action ρ of Spin(E) on E is given by ρ(x)e =
x ·e ·x−1. This extends to an action of Spin(E) on Cliff(E) given by the same
formula. For x ∈ spin(E) the associated Lie algebra action is the Clifford
commutator dρ(x)e = [x, e] = x · e− e · x. Now if φ is a spinor and w ∈ V ∗

then

J (w · φ) = (J · w)φ

= [J , w]φ + wJ φ.

Now since the action ρ of Spin(E) on Cliff(E) factors through to the funda-
mental representation of SO(E) on E, we have that [J , w] = J (w) = −iw
since V ∗ is the −i-eigenspace of J . Thus it follows that the elements of
V ∗ act as lowering operators sending an eigenvector φ with eigenvalue iλ
to an eigenvector wφ with eigenvalue i(λ − 1), similarly elements of V act
as raising operators. Note that J acting on the complex spinors must
have at least one eigenvector. Then by applying raising and lowering op-
erators we see that Un is an eigenspace of minimal weight while U0 is an
eigenspace of maximal weight. The eigenvalues of J acting on spinors are
say iλ, i(λ + 1), . . . , i(λ + n). We also have that J is a real operator so there
must be symmetry of the eigenvalues under conjugation. Thus λ = n

2
= m

and the result follows.

Note that for an integrable generalized complex structure dH = ∂H + ∂H

and d2
H = 0 so we find ∂2

H = 0, ∂
2

H = 0 and ∂H∂H +∂H∂H = 0. We also define
an operator dJH = i(∂H − ∂H). Then by (5.2.5) we have that dJH = [dH ,J ].

5.2.3 More on the Mukai pairing

We now wish to consider how the Z-grading on spinors relates to the Mukai
pairing. There is an alternative way to understand the Mukai pairing which
will be useful. First note that if ω ∈ ∧T ∗ and X ∈ T then the Clifford
multiplication gives

X · ω + ω ·X = ιXω

which can be shown by induction on the degree of ω. It follows that Xk ∧
· · · ∧X1 ·ω ·X1 ∧ · · · ∧Xk = ιXn . . . ιX1ω ·X1 ∧ · · · ∧Xk. If we let f ∈ det(T )
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be a non-zero determinant form then it follows that α(f) · ω · f = ιfω · f
where α denotes the main anti-automorphism of the Clifford algebra. Thus

ιf〈s, t〉f = ιf [α(s) ∧ t]top · f
= ιf (α(s) ∧ t) · f
= α(f) · α(s) ∧ t · f
= α(s · f) · t · f.

The left ideal in Cliff(T ⊕ T ∗) generated by det(T ) is a Clifford module
isomorphic to ∧T ∗ where the Clifford action is simply left multiplication.
In fact this action is the familiar action (2.2) which we shall denote by c :
Cliff(T ⊕ T ∗) → End(∧T ∗) which is given by

(c(u)ω) · f = u · ω · f.

Thus if s, t ∈ ∧V ∗ and φ is a pure spinor then we have

ιf〈c(s)φ, c(t)φ〉f = α(c(s)φ · f) · c(t)φ · f
= α(s · φ · f) · t · φ · f
= α(φ · f) · α(s) · t · φ · f
= α(φ · f) · (α(s) ∧ t) · φ · f

Now we claim that φ · f has the form λ · θ where λ is a non-zero determinant
form for V and θ ∈ ∧V ∗ is non zero. We have that if v ∈ V then v · φ · f =
c(v)φ · f = 0. Thus we may write λ · θ = φ · f then we have

ιf〈c(s)φ, c(t)φ〉f = α(θ) · α(λ) · (α(s) ∧ t) · λ · θ
= α(θ) · ιλ〈s, t〉λ · θ.

Thus we have related the Mukai pairing on ∧T ∗ with the Mukai pairing on
∧V ∗. Now suppose that s ∈ ∧jV ∗ and t ∈ ∧kV ∗. Then 〈s, t〉 = 0 unless
j + k = n where n = 2m is the top degree. But then c(s)φ ∈ Uj and
c(t)φ ∈ Uk and it follows that the Mukai pairing Uk ⊗ Uj → ∧nT ∗ is zero
unless k + j = n. Now if φ is a pure spinor then 〈φ, φ〉 6= 0 so it follows
that φ ∈ Un or as a global statement, U0 = K = Un. In fact since Clif-
ford multiplication by elements of V lowers spinor degree by 1 while Clifford
multiplication by elements of V ∗ = V raises degree by 1, it follows that
Uj = Un−j. Then since d is a real operator we have that ∂φ = ∂(φ).

The Mukai pairing gives an isomorphism U0 ⊗ Un → det(T ∗) but since
a generalized almost complex structure implies existence of almost complex
structures we have that M is orientable and so det(T ∗) is trivial. We also
have that U0 = K and Un = det(V ∗) ⊗ K so putting it altogether we have
K ⊗K ' det(V ).
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5.3 Generalized Calabi-Yau manifolds

In this section we introduce a special class of generalized complex manifolds
which have been proposed as a setting for mirror symmetry. Different ge-
ometrical structures in generalized geometry can often be understood as a
reduction of structure of the generalized tangent bundle together with an
integrability condition. We use this approach to arrive at a definition of
generalized Calabi-Yau manifolds. However we will only briefly look at the
problem of classifying them.

There actually are a number of inequivalent definitions of Calab-Yau man-
ifolds but the definition we shall take is that a Calabi-Yau manifold is a man-
ifold whose holonomy is contained in SU(n). This in turn is equivalent to
being a Kähler manifold such that the canonical line bundle is holomorphi-
cally trivial.

Recall that a generalized almost complex structure is equivalent to a re-
duction of structure of the generalized tangent bundle to U(n, n). We shall
think of almost Calabi-Yau structures as reductions of structure of the gen-
eralized tangent bundle to SU(n, n). As usual, a generalized almost complex
structure J provides a decomposition E = V ⊕V ∗ of the generalized tangent
bundle. Then the corresponding structure group U(n, n) at a point x consists
of the endomorphisms of Ex commuting with Jx and preserving the duality
pairing. A U(n, n) endomorphism of Ex is then an element of SU(n, n) if
it preserves a volume form on V , that is if its induced action on det(V ) is
trivial. However if K is the canonical bundle of J then we have seen that
K ⊗ K ' det(V ) so that c1(V ) = c1(det(V )) = 2c1(K). A trivialization of
K would imply a trivialization of det(V ), however due to the possibility of
torsion the converse can not be concluded. Nevertheless we have shown that
a generalized almost complex structure with (topologically) trivial canonical
bundle yields a reduction of structure to SU(n, n). A trivialization of the
canonical bundle is equivalent to a nowhere vanishing global section, that is
a nowhere vanishing globally defined pure spinor Ω such that 〈Ω, Ω〉 6= 0 at
all points.

We now seek a suitable integrability condition. First we require that
the generalized almost complex structure is integrable. Now we look for a
condition that generalizes the notion of a holomorphically trivial canonical
bundle. The obvious condition is to require that Ω is ∂-closed, ∂Ω = 0. Note
that since Ω ∈ Γ(U0) we always have that ∂Ω = 0. Thus, assuming J is
integrable, the condition that ∂Ω = 0 is equivalent to dΩ = 0. Conversely,
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if Ω is d-closed then by (5.8) we have that J is integrable. We are therefore
ready to define generalized Calabi-Yau structures.

Definition 5.3.1. A generalized Calabi-Yau structure on a manifold M is
a globally defined, nowhere vanishing, d-closed, pure spinor Ω ∈ Γ(∧T ∗M)
such that 〈Ω, Ω〉 6= 0 at all points of M .

By replacing d with dH we can also define twisted generalized Calabi-Yau
structures. Although in the definition we say Ω ∈ Γ(∧T ∗M), we have that
since Ω is a pure spinor it is either an even or odd form. The type of the
generalized complex structure at any point is the degree of lowest degree
non-zero part of Ω.

The obvious examples of generalized Calabi-Yau manifolds represent the
two extreme cases. First consider a generalized Calabi-Yau whose type is 0 at
all points. Then the trivializing pure spinor must have the form eB+iω with B
and ω real 2-forms. As we have already seen, the condition 〈eB+iω, eB−iω〉 6= 0
at all points implies that ω is a non-degenerate 2-form. Also since eB+iω is
closed we have that B and ω are both closed. Thus we find that generalized
Calabi-Yau manifolds of constant type 0 are precisely B-transformed sym-
plectic manifolds, which also means that topologically they are exactly the
symplectic manifolds.

Moving to the other extreme, consider generalized Calabi-Yau manifolds
M of constant maximal type. Thus if M is 2m dimensional, then their pure
spinor has the form eεΩ, where ε is a complex 2-form and Ω is a complex m-
form. The Mukai-pairing yields the condition Ω∧Ω 6= 0 at all points and since
eεΩ is d-closed, the lowest degree part shows that dΩ = 0. This shows that
Ω on its own is a Calabi-Yau structure and in fact is the Calabi-Yau struture
corresponding to a complex manifold with holomorphically trivial canonical
bundle. All that remains is to determine what possible ε are allowed. The
condition d(eεΩ) = 0 is equivalent to dΩ = 0 and dε ∧ Ω = 0. Note that
the only part of ε that has any effect in eεΩ is the (0, 2)-part, where the
bigrading on forms refers to the grading of the ordinary complex structure
given by Ω. Thus we assume ε is a (0, 2)-form. The condition dε ∧ Ω = 0 is
then equivalent to ∂ε = 0. Thus we have established that generalized Calabi-
Yau manifolds of constant maximal type are complex manifolds with trivial
canonical bundle whose structure is transformed by a ∂-closed (0, 2)-form ε.
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5.4 Deformations of generalized complex struc-

tures

The deformation theory for generalized complex structures is in many ways a
straightforward generalization of ordinary complex deformation theory. De-
formations of a generalized complex structure can be viewed as perturbations
in the defining endomorphism J preserving integrability. However to mea-
sure the distinct deformations one is lead to factor out the actions of diffeo-
morphisms and B-transforms. This leads to the conclusion that infinitesimal
deformations are measured by the second cohomolgy H2(V ) of the Lie alge-
broid V corresponding to J . Moreover, it is shown in [11] that for compact
manifolds, geniune deformations are realized as the zero set of an obstruction
map Φ : H2(V ) → H3(V ).

Let M be a manifold with generalized complex structure J and corre-
sponding splitting E⊗C = V ⊕V into maximal isotropics. We are interested
in changing from J to a new generalized complex structure on M . We can
view this as a change of the isotropic V to a new isotropic V1 and correspond-
ingly V will change to V1. We assume that the deformation from V to V1 is
sufficiently small so that V1 and V intersect only in the zero section. There-
fore we can describe V1 as a graph of a bundle endomorphism ε : V → V ,
or after using the pairing to identify V with V ∗, we view ε as an endomor-
phism from V to V ∗. The graph of ε has the form {X + εX|X ∈ V } that is,
V1 = (1 + ε)V . Now for V1 to define a generalized almost complex structure,
we require that V1 is maximal isotropic. It is clear that V1⊕ V ∗ = E so that
V1 has the right dimension. For V1 to be isotropic it follows that ε must be
skew-adjoint with respect the the pairing, that is ε is a section of ∧2V ∗, a
2-form on V . So far we have that V1 is a generalized almost complex struc-
ture. The integrability condition for V1 follows from Proposition (3.4.2) and
it is that ε satisfies the equation

dV ε + 1
2
[ε, ε] = 0. (5.11)

Consider a smooth family of deformations εt of V with ε0 = 0. Writing
εt = tε + t2ε1 + . . . we see that for εt to satisfy equation (5.11) we require
that the infinitesimal deformation ε must satisfy the linearization of (5.11),
dV ε = 0. In this way we can think of infinitesimal deformations of V as
dV -closed 2-forms on V .

In order to measure distinct deformations we wish to factor out the ac-
tions of diffeomorphisms and closed B-field transformations. These are the
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transformations which we have called Courant automorphisms and we con-
sider them to be the automorphisms of the generalized tangent bundle. In
fact we shall consider only the cases of diffeomorphisms connected to the
identity and B-transforms by exact B-fields. Such a Courant automorphism
can be written as F = eB ◦ eX where B = dξ for some 1-form ξ and etX

represent the 1-parameter subgroup of diffeomorphisms associated to the
vector field X. In fact, as we are interested in infinitesimal deformations we
shall be interested in the family of Courant automorphisms Ft = etB ◦ etX .
The following proposition taken from [11] shows how Ft acts on infinitesimal
deformations:

Proposition 5.4.1. [11] Let V be the i-eigenbundle of a generalized complex
structure, let ε ∈ C∞(∧2V ∗) and X + ξ ∈ C∞(T ⊕T ∗). Then then for all t in
a sufficiently small neighborhood of zero, the action of Ft = etdξ ◦ etX on the
graph of ε satisfies

Ftε = ε + tdV ((X + ξ)|V ∗) + t2R(ε,X + ξ, t) (5.12)

where (X +ξ)|V ∗ is the V ∗ component of X +ξ and R(ε,X +ξ, t) is a smooth
function of ε, X + ξ and t.

Therefore infinitesimal deformations which differ only by the above Courant
automorphisms will differ only by a dV -exact term. Therefore it is reason-
able to regard the second Lie algebroid cohomolgy H2(V ) as representing the
space of infinitesimal deformations of V . The following proposition taken
from [11] makes this more precise:

Proposition 5.4.2. [11] Let M be a compact generalized complex manifold.
There exists an open neighbourhood U ⊂ H2(V ) of zero and an analytic ob-
struction map Φ : U → H3(V ) with Φ(0) = 0, dΦ(0) = 0. There is a smooth

family M̃ = {εu|u ∈ U, ε0 = 0}, M̃ ⊂ C∞(∧2V ) of generalized almost com-

plex deformations such that the integrable deformations in M̃ are precisely
the sub-family M = {εz|z ∈ Z = Φ−1(0)}. Furthermore any sufficiently
small deformation of V is equivalent to at least one member in M. When
the obstruction map vanishes, then M is a smooth, locally complete family,
that is, any family of deformations of V , when restricted to a sufficiently
small open set in in its base, can be obtained by pull-back of a map to M.
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Chapter 6

Generalized Kähler geometry

So far we have seen generalized metrics and generalized complex structures.
By combining these two structures in a compatible way we naturally arrive
at generalized Kähler structures. We then show that generalized Kähler
structures can be equivalently described by a bi-Hermitian geometry, first
discovered by Gates, Hull and Roc̆ek [10] as precisely the structure required
for N = (2, 2) supersymmetric non-linear sigma models. We also prove a
generalized version of the Kähler identities.

6.1 Generalized Kähler Structures

We have seen that for a generalized metric V = V + we can define an endo-
morphism G : E → E which is multiplication by 1 on V and multiplication
by -1 on V − = V ⊥. Then (G , ) is a positive definite metric on E. Moreover
any endomorphism G : E → E such that G2 = 1, G∗ = G and (GX, X) > 0
for X 6= 0 defines a generalized metric and in fact this gives an equivalent
definition of generalized metrics. Now given a generalized almost complex
structure J , we can generalize the concept of a Hermitian metric

Definition 6.1.1. Let J be a generalized almost complex structure and a
generalized metric G, we say G is a generalized Hermitian metric with respect
to J if for all X,Y

(GJX, JY ) = (GX, Y ). (6.1)

That is, the positive definite metric on E defined by G is compatible with
J .

A generalized metric is thus generalized Hermitian if and only if J ∗GJ =
G or since J ∗ = −J , if and only if GJ = JG. So G is generalized Hermitian
if and only if it commutes with J . Let V ± denote the ±1 eigenspaces of G.
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Since G and J commute, we have V ± are J -invariant. It follows that a
generalized Hermitian metric is equivalent to a reduction of structure from
U(n, n) given by J , to U(n) × U(n). We can thus rephrase Proposition
(5.1.5) as follows:

Proposition 6.1.1. Every generalized almost complex structure J has a
compatible generalized Hermitian metric.

Since [G,J ] = 0 we have (GJ )2 = G2J 2 = −1, and (GJ )∗ = J ∗G∗ =
−JG = −(GJ ). Thus (GJ ) is a generalized almost complex structure.
We now have two generalized almost complex structures which we denote as
J1 = J and J2 = GJ . We have [J1,J2] = 0 and note that on V +, J1 = J2

while on V −, J1 = −J2. We also have that J1J2 = −G. To summarise, we
have two commuting generalized almost complex structures J1,J2 such that
G = −J1J2 is a generalized metric.

Example 6.1.1. Let M be a smooth manifold with almost complex structure
J and Hermitian metric g. As usual J defines a generalized almost complex
structure J given by (5.1) and a generalized metric G given by (4.10). We
have

GJ =

(
0 g−1J t

−gJ 0

)
JG =

(
0 −Jg−1

J tg 0

)
.

Let ω(X, Y ) = g(X, JY ) be the associated Hermitian form. As a map ω :
T → T ∗ given by X 7→ ω(X, ) we have ω = J tg. Since g is Hermitian we also
have ω = −gJ . Similarly, ω−1 = Jg−1 = −g−1J t. Thus GJ = JG and is
the generalized almost complex structure associated to ω as in (5.2). Notice
that integrability of J does not imply the integrability condition dω = 0 for
ω. Conversely dω = 0 does not imply J is integrable. The Kähler condition
is precisely that both J and ω are integrable.

Definition 6.1.2. A generalized Kähler structure is a pair J1,J2 of com-
muting, integrable generalized complex structures such that −J1J2 is a gen-
eralized metric.

Alternatively we have that a generalized Kähler structure is an integrable
generalized structure J and a generalized Hermitian metric G, such that GJ
is an integrable generalized complex structure. This last condition that GJ
be integrable generalizes the condition dω = 0 for a complex structure to be
Kähler.

Similarly we define twisted generalized Kähler structures by replacing
Courant integrability by twisted integrability.
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Proposition 6.1.2. Let (J1,J2, G) be a generalized Kähler structure. We
have a splitting

E ⊗ C = V +
i ⊕ V +

−i ⊕ V −
i ⊕ V −

−i

into the simultaneous eigenbundles of J1 and G. Each of the four eigenbun-
dles is isotropic and integrable.

Proof. Since J1 and G commute the above splitting occurs and the eigen-
bundles are isotropic. We show V +

i is integrable with the other bundles
being similar. Let u, v ∈ Γ(V +

i ). So J1u = iu, J1v = iv and since
J1 = J2 on V + the same applies for J2. Now since J1 and J2 are inte-
grable J1[u, v] = J2[u, v] = i[u, v]. So [u, v] is a +i eigensection for both J1

and J2. The +i eigenbundle for J1 is V +
i ⊕ V −

i while for J2 = J1G the +i
eigenbundle is V +

i ⊕ V −
−i. Thus [u, v] is a section of V +

i as required.

6.2 Relation to bi-Hermitian geometry

The projection π : E → T allows us to identify T with either of the V ±

subbundles associated to a generalized metric. This will allow us to describe
generalized Kähler structures in terms of data which describes a bi-Hermitian
geometry.

Since V ± are positive and negative definite subbundles of the same rank
as T we have that π : V ± → T are bundle isomorphisms. Therefore we can
identify J1 on V ± with endomorphisms J± on T . That is, J± : T → T are
defined by

(J±X)± = J1X
±. (6.2)

Which can also be written J±X = π(J1X
±). Note that replacing J1 by J2

in the above simply interchanges J− with −J−. Thus we have two almost
complex structures J±. Recall also that we have connections ∇± defined on
V ± or on T after identification and are given (on T ) by

2g∇±
XY = [X∓, Y ±]− [X,Y ]∓. (6.3)

Recall that a generalized metric gives a metric g on T given by

g(X,Y ) = (X+, Y +). (6.4)

Recall also that ∇± are compatible with g.

Proposition 6.2.1. [11, 16] Let J±,∇±,g be the almost complex structures,
connections and metric arising from a generalized Kähler structure. Then
J± are integrable and covariantly constant with respect to their corresponding
connection ∇±J± = 0. Also g is Hermitian with respect to both J+ and J−.
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Proof. First we show J+ is integrable. Let J+X = iX, J+Y = iY . We thus
have J1X

+ = (J+X)+ = iX+ and similarly J1Y
+ = iY +. Integrability of J1

then implies J1[X
+, Y +] = i[X+, Y +]. By Proposition (6.1.2) we have that

[X+, Y +] is a section of V + and moreover since π[X+, Y +] = [X,Y ] we have
that [X+, Y +] = [X, Y ]+ and so (J+[X, Y ])+ = J1[X, Y ]+ = i[X, Y ]+. Thus
J+[X,Y ] = i[X,Y ] showing J+ is integrable. Similarly J− is integrable.

Now we show g is Hermitian with respect to J+. This is a straightforward
calculation

g(J+X,J+Y ) = ((J+X)+, (J+Y )+)

= (J1X
+,J1Y

+)

= (X+, Y +)

= g(X, Y )

where we have used that G is generalized Hermitian with respect to J1.

Now we show ∇+J+ = 0. That is for vector fields X, Y, Z we have
g(∇+

X(J+Y ), Z) = g(J+∇+
XY, Z) = −g(∇+

XY,J+Z). But using (6.3) this is
equivalent to showing

([X−,J1Y
+], Z+) = −([X−, Y +],J1Z

+). (6.5)

First note that by (2.11) we have that for orthogonal sections the Courant
and Dorfman brackets agree and so (6.5) is equivalent to

([J1Y
+, X−]D, Z+) = −([Y +, X−]D,J1Z

+). (6.6)

Note that by (2.14) we have

0 = ([Y +, X−]D,J1Z
+) + (X−, [Y +,J1Z

+]D) (6.7a)

0 = ([J1Y
+, X−]D, Z+) + (X−, [J1Y

+, Z+]D). (6.7b)

So equation (6.6) is equivalent to

(X−, [J1Y
+, Z+]D) = −(X−, [Y +,J1Z

+]D). (6.8)

Let Y + = Y +
i + Y +

−i and Z+ = Z+
i + Z+

−i be the decomposition of Y + and
Z+ into the eigenbundles of J1. Then

(X−, [J1Y
+, Z+]D) = (X−, [J1Y

+, Z+] + d(J1Y
+, Z+))

= (X−, [iY +
i , Z+

−i] + [−iY +
−i, Z

+
i ] + d(J1Y

+, Z+))
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where we have used Proposition (6.1.2) to drop terms orthogonal to X−. We
also have

(X−, [Y +,J1Z
+]D) = (X−, [Y +,J1Z

+] + d(Y +,J1Z
+))

= (X−, [Y +
−i, iZ

+
i ] + [Y +

i ,−iZ+
−i]− d(J1Y

+, Z+))

which proves (6.6) as required.

Note that all the results in this section apply equally well in the twisted
and untwisted cases. If we only consider the untwisted case then the torsion
of the connections ∇± will be an exact 3-form while in the twisted case the
torsion is closed but need not be exact.

6.3 Hodge Theory for generalized Kähler struc-

tures

We have seen that a generalized almost complex structure provides spinors
with a Z-grading and that a generalized metric yields the Born-Infeld metric
on spinors. If the generalized metric is Hermitian with respect to a gen-
eralized almost complex structure then we get a second generalized almost
complex structure and consequently a bi-grading on spinors.

Although we have already introduced the Born-Infeld metric, no rea-
son for considering this metric was given. Now we can show that for a
generalized Hermitian metric the Z-grading on spinors is an orthogonal de-
composition under the Born-Infeld metric. Let J be a generalized almost
complex structure and G a generalized Hermitian metric with respect to J .
Let ∗ = e1e2 . . . en be the product of an oriented orthonormal basis of V +.
Then V + ⊗ C = V +

i ⊕ V +
−i and since V +

i and V +
−i have the same rank, the

action of ∗ on spinors preserves the grading because for every basis element
that raises degree there is a corresponding one that lowers it. So we have
∗ : Uk → Uk. Recall that to define the Born-Infeld metric we also needed the
map˜: ∧T ∗ → T ∗ defined by α̃ = (−1)k(n−k)α on a spinor of (form) degree k
and with n the top degree and in this case n = 2m is even so α̃ = (−1)kα.
Then for a pure spinor ρ of type k we have ρ̃ = (−1)kρ and so for s ∈ Uj

we have s̃ = (−1)k+js. So in particular˜ : Uj → Uj preserves the grading.
Therefore if s ∈ Uj and t ∈ Uk then s ∈ Un−k and so 〈s, ∗t̃〉 is non-zero
only when j + (n − k) = n, that is j = k. Thus the space of sections of
spinors Γ(∧T ∗) decomposes orthogonally under the Born-Infeld metric into
the Γ(Uj). Moreover, since we have a second generalized almost complex
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structure J2 = GJ which also commutes with G then we have a bi-grading
on spinors which is orthogonal under the Born-Infeld metric.

Let the two almost complex structures be denoted J1 and J2. Then let
Uj,k = U1

j ∩ U2
k where the superscripts denotes to which generalized almost

complex structure the grading belongs. Since the generalized almost complex
structures commute these are the simultaneous eigenbundles and we have the
orthogonal decomposition T ∗ = ⊕n

j,k=0Uj,k. Note however that not all of these
spaces are non-empty. The action of any element of E on spinors will must
either raise or lower the J1-grading and also the J2-grading. Thus the parity
of j + k must always be the same. Now we shall show that the parity of
j + k must match that of m where n = 2m is the dimension of the space
involved. Let φ be a pure spinor for J1 let E = V +

i ⊕ V +
−i ⊕ V −

i ⊕ V −
−i be the

simultaneous decomposition of E into J1, G eigenspaces. Note that each of
these four spaces has dimension m. Let w ∈ ∧mV −

−i be non-zero and consider
ρ = w · φ. Now ρ is annihilated by V +

i ⊕ V −
−i which is the −i-eigenspace for

J2. But since the kernel of a spinor is isotropic it can not exceed dimension
n so we have that ρ is indeed a pure spinor for J2. This shows U2

0 ⊆ U1
m and

thus Uj,k is non-zero only when j + k ≡ m(mod(2)). The bi-grading allows
the differential dH to be divided into constituent operators, in particular we
define

∂1,2
H = πj+1,k+1 ◦ dH : Γ(Uj,k) → Γ(Uj+1,k+1)

∂1,2
H = πj+1,k−1 ◦ dH : Γ(Uj,k) → Γ(Uj+1,k−1)

∂1,2
H = πj−1,k+1 ◦ dH : Γ(Uj,k) → Γ(Uj−1,k+1)

∂1,2
H = πj−1,k−1 ◦ dH : Γ(Uj,k) → Γ(Uj−1,k−1)

where πj,k denotes projection onto Uj,k.

Proposition 6.3.1. [12] Let J1,J2 be commuting generalized almost complex
structures such that G = −J1J2 is a generalized metric. Then (J1,J2, G) is
a generalized (twisted) Kähler structure if and only if

dH = ∂1,2
H + ∂1,2

H + ∂1,2
H + ∂1,2

H .

Proof. We have that (J1,J2, G) is Kähler if and only if J1 and J2 are inte-
grable, that is if and only if dHΓ(U1

j ) ⊆ Γ(U1
j−1) ⊕ Γ(U1

j+1) and dHΓ(U2
k ) ⊆

Γ(U2
k−1) ⊕ Γ(U2

k+1). This is equivalent to dHΓ(Uj,k) ⊆ Γ(U1
j−1 ⊕ U1

j+1) ∩
Γ(U2

k−1 ⊕ U2
k+1) = Γ(Uj−1,k−1 ⊕ Uj−1,k+1 ⊕ Uj+1,k−1 ⊕ Uj+1,k+1).
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Chapter 7

Closing remarks

In this thesis we have seen that many familiar structures in differential ge-
ometry have a natural generalization in generalized geometry. In this way
generalized geometry is able draw connections between seemingly different
structures, as well as provide instances of new geometrical structures. How-
ever, it remains to be seen if this will offer any deep insights into the familiar
structures like complex and symplectic geometry or whether it will simply
yield generalizations. For example one can ask if generalized complex struc-
tures will prove useful in classifying smooth 4-manifolds. For example in [7],

3CP2#19CP2 is shown to have a generalized complex structure, but admits
no complex or symplectic structures.

As mentioned in the Introduction, there are many further topics is gener-
alized geometry; submanifolds, group actions, deformation theory for general-
ized Kähler or Calabi-Yau structures, T-duality and other generalized struc-
tures arising from reduction of structure of the generalized tangent bundle.
Much of the current interest in generalized geometry however is due to the
emergence of connections with areas of Mathematical Physics, in particular
Mirror Symmetry. The first step in this direction is the adaptation of T-
duality to generalized geometry, as seen in [5]. Another step in this direction
is seen in [21] where it is shown that an analog of the Tian-Todorov theo-
rem holds for twisted generalized Calabi-Yau manifolds, that is, the moduli
space of compact generalized complex structures is unobstructed and smooth.

In any case, generalized geometry has expanded into an interesting sub-
ject in its own right with many further questions to be answered.
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