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Abstract

Generalized geometry is a recently discovered branch of differential geom-
etry that has received a reasonable amount of interest due to the emergence
of several connections with areas of Mathematical Physics. The theory is
also of interest because the different geometrical structures are often gener-
alizations of more familiar geometries. We provide an introduction to the
theory which explores a number of these generalized geometries.

After introducing the basic underlying structures of generalized geometry
we look at integrability which offers some geometrical insight into the theory
and this leads to Dirac structures. Following this we look at generalized
metrics which provide a generalization of Riemannian metrics.

We then look at generalized complex geometry which is a generalization
of both complex and symplectic geometry and is able to unify a number of
features of these two structures. Beyond generalized complex geometry we
also look at generalized Calabi-Yau and generalized Kähler structures which
are also generalizations of the more familiar structures.
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