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SUMMARY

1. The 2',3'-dialdehyde derivative of ATP (oATP) was prepared by
periodate oxidation, and on the following criteria was considered to be
an affinity label of the MgATPz- binding site of sheep liver pyruvate
carboxylase. The magnesium complex of this inhibitor (Mg—oATPZ—) was
shown to be a linear competitive inhibitor with respect to MgATPZ- in
both the acetyl CoA-dependent and -independent activities of the enzyme
but was a non-competitive inhibitor with respect to bicarbonate and an
un-competitive inhibitor with respect to pyruvate. Mg—oATPZ- was
covalently bound to pyruvate carboxylase by reduction using sodium
borohydride with concurrent irreversible inactivation of the enzyme.
Although pyruvate, oxaloacetate, and bicarbonate were ineffective, both
acetyl CoA and MgATPz— protected the enzyme against this chemical
modification. Mg2+ enhanced the extent of chemical modification. At
100% inactivation, 1.1 * 0.1 moles of Mg-oATPz- were bound to the enzyme
per mole of biotin. The presence or absence of acetyl CoA had no affect
on this stoichiometry. Chromatography of samples of an enzymic digest
of Mg-o[14C]ATP2--1abelled enzyme revealed one major band of radioactivity

which co-chromatographed with authentic 1ys-oATP markers.

2. In order to further characterise the lysyl residue(s) in the
biotin carboxylation site, the use of cyanate as a potential affinity
label of the bicarbonate binding site was investigated. Cyanate was
shown to chemically modify sheep liver pyruvate carboxylase, with con-
current inactivation of the enzyme. The rate of loss of acetyl CoA-
independent catalytic activity was not pseudo first-order with respect

to time. When the inactivation data were analysed assuming that modified



enzyme retains some residual acetyl CoA-independent activity, it was
found that only one kinetically significant residue per active site

was medified, but cyanage appeared to form a reversible complex with
the enzyme prior to modifying this residue.

Acetyl CoA, pyruvate and oxaloacetate were found to have no
affect on the rate of modification of the enzyme. Bicarbonate, MgADP,
and MgATPz- all afforded protection against inactivation of the enzyme.
MgATPZ- afforded almost éomplete protection against loss of both the
acetyl CoA-dependent and -independent catalytic activities. Analysis

. . . 2-
of the concentration dependence of protection by bicarbonzte and MgATP

suggested that cyanate could not inactivate the enzyme-MgATPz_ and
enzyme-bicarbonate complexes. The enzyme MgADP was found to be
inactivated at about 30% of the rate of free enzyme.

Modification of the enzyme with cyanate was found to inactivate
the ATP/Pi isotopic exchange reaction, but to enhance the pyruvate/
oxaloacetate isotopic exchange reaction. Inactivation of pyruvate
carboxylase with {14C]cyanate was shown to be associated with modifi-
cation of at least six amino acid residues per mole of biotin. Chromato-
graphy of samples of an enzyme digest of [14C]cyanate—1abe11ed enzyme
revealed that only amino groups in the enzyme had been modified. A major
band of radioactivity was shown to co-chromatograph with authentic homo-

citrulline.

3. The stoichiometry of the products of the pyruvate carboxylase
reaction was shown to vary as the concentration of pyruvate was altered.
At high concentrations of pyruvate, the ratio of orthophosphate liberated
to oxaloacetate produced approached one, but, as the pyruvate concentrat-

ion decreased, the ratio increased. On the basis of this evidence, a



model for the reaction pathway was proposed in which the carboxybiotin-
enzyme complex could react either with pyruvate to produce oxaloacetate,
Oor water to regenerate emzyme-biotin and bicarbonate. The non-productive
breakdown of the enzyme-substrate complex provides an explanation for
the non-linear double reciprocal plots obtained for both the overalil
reaction and the pyruvate/oxaloacetate exchange reaction. Since neither
the rate of breakdown of the isolated carboxybiotin-enzyme complex, nor
the rate of decarboxylation of oxaloacetate in the absence of pyruvate
could account for the difference in the amounts of the two products
formed in the overall reaction, it was postulated that the presence of
pyruvate was necessary for hydrolysis to occur. Rate equations were
derived describing the dependence of the initial velocity release of
oxaloacetate in the overall reaction, and the rate of the pyruvate/
oxaloacetate exchange reaction, on pyruvate concentration. By assigning
appropriate values to the various rate constants, theoretical curves
were obtained and fitted to the experimental data.

The reaction pathway of the pyruvate carboxylase catalysed
reaction was re-examined using two independent experimental approaches
not previously applied to this enzyme. To avoid the variable
stoichiometry associated with oxaloacetate formation, the reaction rate
was measured by following orthophosphate release. Initial velocities,
when plotted as a function of varying concentrations of either MgATPz-
or bicarbonate, at fixed levels of pyruvate, gave, in double reciprocal
form, families of straight, intersecting lines. Furthermore, when the
reaction was determined as a function of varying MgATPZ_ concentration,
using pyruvate, 2-ketobutyrate, and 3-fluoro-pyruvate as alternative
keto-acid substrates, the slopes of the double reciprocal plots were

significantly different. Both results suggest that the pyruvate



carboxylase reaction has a sequential pathway, at least at high keto-
acid substrate concentrations. However, an analysis of the slope replots
of the initial velocity orthophosphate release data suggested that the
reaction via a non-sequential pathway at low keto-acid substrate con-
centrations. Rate equations describing the dependence of initial
velocity release of oxaloacetate and orthophosphate on the concentrations
of substrates were derived and were shown to be consistent with the
initial velocity kinetic data presently available. Possible extensions

of the concept of hydrolytic breakdown of an intermediate enzyme complex

to other enzymes were discussed.

4, The interaction of acetyl CoA with sheep liver pyruvate carboxy-
lase was investigated using two independent experimental approaches.
Evidence consistent with lack of co-operativity of acetyl CoA binding
under initial velocity assay conditions was obtained from an analysis

of the protection afforded by acetyl CoA against TNBS modification of

the enzyme. Furthermore, the dependence of the rate of acetyl CoA
deacylation on acetyl CoA concentration was found to be consistent with
lack cf co-operativity of binding of acetyl CoA.

Evidence was obtained which suggested that the observed non-
classical initial-velocity acetyl CoA profile arose because of acetyl CoA-
dependent changes in the saturation of the enzyme with pyruvate and
bicarbonate, and in the rate of dilution inactivation of the enzyme.

The n, value obtained from an analysis of the dependence of initial
velocity oxaloacetate synthesis on acetyl CoA concentration using the
Hill equation was shown to depend on the fixed concentrations of pyruvate
and bicarbonate in the assay solutions. The fixed concentrations of
MgATPZ— and XK were found to have no affect on the Ny value. The time

period over which the reaction rate was linear with time was found to



depend on the acetyl CoA concentration in the assay solution. At high
concentrations of acetyl CoA, the process of dilution inactivation was
prevented, and hence the reaction was linear with time for a longer
period than at low concentrations of acetyl CoA. Dilution inactivation
was shown not to involve formation of catalytically active pyruvate
carboxylase dimers or monomers.

When an experiment was designed in which all substrates and
activators were present at saturating levels regardless of the acetyl
CoA concentration, and the enzyme concentration was raised to a level
where dilution inéﬁtivation did not occur, the dependence of the rate
of oxaloacetate synthesis on acetyl CoA concentration was found to be
consistent with lack of co-operativity of binding of acetyl CoA to

pyruvate carboxylase.
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viii.

ABBREVIATIONS

In addition to those accepted for use in the Journal of

Biological Chemistry, the following abbreviations are used in this

thesis

DTE

FDNB

OATP

OAA

pyT
TNBS

dithiocerythritol
1-fluoro-2,4-dinitrobenzene

Hill n coefficient

2',3" dialdehyde oxidation product of ATP.
oxaloacetate

pyruvate

2,4,6-trinitrobenzene sulphonic acid

internaticnal enzyme unit



