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To my family



“Whatever you do will be insignificant,

but it is very important that you do it.”

M. K. Gandhi



Abstract

Electromagnetic properties of the octet and decuplet baryons are calculated in quenched
QCD on a 203 ×40 lattice with a lattice spacing of 0.128 fm using the fat-link irrelevant
clover (FLIC) fermion action.

FLIC fermions enable simulations to be performed efficiently at quark masses as
low as 300 MeV. By combining FLIC fermions with an improved conserved vector cur-
rent we ensure that discretization errors occur only at O(a2) while maintaining current
conservation.

Magnetic moments, charge radii and magnetic radii are extracted from the electric
and magnetic form factors for each individual quark sector. From these the correspond-
ing baryon properties are constructed.

Our results for the octet baryons are compared with the predictions of Quenched
Chiral Perturbation Theory (QχPT) and experimental values where available. Results
for the charge radii and magnetic moments of the octet baryons are in accord with the
predictions of the QχPT, suggesting that the sum of higher order terms makes only a
small contribution to the chiral expansion. The regime where chiral physics dominates
remains to be explored. We establish the non-analytic behavior of the charge radii and
magnetic moment in the case of octet baryons. The neutron charge radius suggests that
the chiral regime is still far away. We establish substantial environment sensitivity in
the quark behavior in the low mass region. We establish that the u and d quarks make
substantial and important contribution to the magnetic moment of the Λ contradicting
the predictions of the Simple Quark Model.

We present the E0 and M1 form factors of the decuplet baryons and the charge
radii and magnetic moments. We compare the decuplet baryon results with the lattice
calculation of charge radii and magnetic moments of octet baryons. We establish that
the environment sensitivity is far less pronounced in the case of the decuplet baryons
compared to that in the octet baryons. A surprising result is that the charge radii of the
decuplet baryons are generally smaller than that of the octet baryons.
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Magnetic moment of the ∆+ shows a turn over in the low quark mass region, making
it smaller than the proton magnetic moment. This is consistent with the expectations
of the Quenched Chiral Perturbation Theory. A similar turn over is also noticed in
the magnetic moment of the Σ∗0, but not for Ξ∗ where only kaon loops can appear in
Quenched QCD.

We present results for the higher order moments of the decuplet baryons, i.e., the
electric quadrupole moment E2 and the magnetic octupole moment M3. With these
results we provide the first conclusive analysis which shows that decuplet baryons are
deformed. The electric quadrupole moment of the Ω− baryon is positive when the
negative charge factor is included, and is equal to 0.014 ± 0.005 fm2, indicating an
oblate shape.
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Chapter 1

Introduction

Quantum Chromodynamics (QCD) is part of the fundamental theory known as the Stan-
dard Model that explains particle interactions at the most elementary quark level. QCD
describes the Strong Interactions that bind the hadrons together. It is formulated in
terms of quarks and gluons, the main players of the Strong Interactions. QCD can be
studied perturbatively at short distances. However, at long distances QCD is a non-
perturbative theory in which the gauge-fields, viz., gluons are self-interacting making it
impossible to calculate analytically the non-perturbative properties of QCD from first
principles. The complexity of the QCD vacuum is evident in the non-vanishing vacuum
expectation values of quark gluon operator products having vacuum quantum numbers.
Numerical simulation is the only known first principle method for obtaining the proper-
ties of the strongly interacting particles. Using numerical simulations, one can calculate
observables directly from the QCD Lagrangian, fully accounting for non-perturbative
interactions.

The lattice formulation of QCD is widely accepted as the best tool for the calculation
of non-perturbative properties of the QCD. Lattice QCD is formulated by discretizing
the continuum QCD action on a space-time lattice of finite spacing a. The finite lat-
tice spacing and finite volume of the total lattice cause systematic uncertainties in the
calculated observables. Direct simulation of QCD for light current quark masses, near
the chiral limit (m2

π → 0) is computationally expensive. Vast computer resources and
advanced techniques in formulation of lattice actions greatly reduced these errors. The
FLIC fermion action is one such improved action. Apart from minimizing errors due
to finite lattice spacing it also provides improved access to the light quark mass regime,
hitherto unexplored.

We present here the results of the lattice calculation of electromagnetic properties
of the octet and the decuplet baryons. The electric and magnetic form factors are cal-
culated as ratios of the three point and two point correlation functions. From the form
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factors so calculated we can subsequently extract quantities such as charge radii, mag-
netic moments and magnetic radii.

A brief primer on Elementary Particle Structure with focus on the octet and decuplet
baryon properties is given in Chapter 2. Chapter 3 contains essential features of QCD.
Lattice QCD is introduced in Chapter 4.

Since we compare our results with the prediction of Quenched Chiral Perturbation
Theory, a brief introduction of this is given in Chapter 5. The simulation details and
lattice calculation of the form factors is discussed in Chapter 6 . Results for the octet
and the decuplet baryons are discussed in Chapters 7 and 8 respectively. We summarize
our conclusions and future directions in Chapter 9.

The numerical values of all the properties calculated are listed in tables in Ap-
pendix A. We use the natural units in which ~ = 1 and c = 1.



Chapter 2

Elementary particles

Three quarks for Muster Mark......
- James Joyce (Finnegan’s Wake)

2.1 Introduction

Matter is composed of atoms which consist of a nucleus and surrounding electrons. The
nucleus further contains protons and neutrons, together denoted as the nucleons. Many
new particles have been created and observed in scattering experiments of fundamental
particles following the advent of particle accelerators. These are currently classified
depending on the type of interactions in which they play a role. The four fundamen-
tal types of interaction in which the particles interact are the Strong, Electromagnetic,
Weak and Gravitational interactions.

Of these, Electromagnetism (EM), Weak Interactions (WI), and Strong Interactions
(SI) are described by gauge field theories. EM and WI together manifest themselves as
Electroweak interactions. The strong interactions originate in the color charge of the
quarks. The strong force is mediated by exchange of gluons, the electromagnetic force
by exchange of photons, and the weak force via the W±, Z0 bosons which acquire a
mass via the Higgs mechanism.

Broadly the particles are grouped into hadrons (that interact via the strong interac-
tions), leptons (that are insensitive to the strong interactions) and gauge bosons (that
interact via the electromagnetic and weak interactions).

Hadrons are further classified into baryons and mesons. Baryons (for eg, nucleons)
are fermions while the mesons are bosons. There are a number of hadrons, while the
number of leptons and gauge bosons is limited. Hadrons are further made of fundamen-
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tal particles, viz., the quarks, which are limited in number like the leptons.

The structure of hadrons suggests a multiplet structure similar to irreducible repre-
sentations of an internal symmetry group SU(3). Electron scattering and deep inelastic
scattering experiments confirm the existence of an internally symmetric structure of the
hadrons.

Leptons and quarks are fermionic spin-1/2 particles forming the fundamental con-
stituent matter. The gauge bosons which are spin-1 particles act as “force carriers”
facilitating the interactions between the leptons and quarks.

There is no experimental evidence of existence of any internal structure of the lep-
tons and the gauge bosons.

The “Standard Model” is an attempt to explain all the particle physics phenomena
using three distinct types of elementary particles, viz., the leptons, quarks and the gauge
bosons [1].

The Standard Model treats the leptons and quarks as point particles, without in-
ternal structure or excited states. Groups of six leptons and six quarks form the basic
constituents of matter. These are arranged into three generations of families and they
interact exchanging the vector bosons, in the four types of interactions. In addition,
each quark comes in three colors while the leptons are colorless.

2.2 Quark Model

Hadrons fall into multiplets, suggesting underlying internal symmetries. Each multiplet
can be viewed as a realization of an irreducible representation of an internal symmetry
group. Elements of each multiplet have very nearly equal masses. Hadrons are bound
states of quarks and hence the strong interactions are basically interactions between the
quarks.

Quarks, like leptons fall into six flavors,viz, the up, down, strange, charmed, top and
bottom (u, d, s, c, t, b) quarks. These are grouped into three generations, denoted as

(
u
d

)
,

(
c
s

)
,

(
t
b

)
.

(2.1)

The properties of quarks are listed in the table below. There is no experimental evidence
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Table 2.1: Properties of the quarks. Data from Particle Data Group 2005 [2].

Flavor Charge Mass

up (u) 2
3 1-5 MeV

down (d) − 1
3 3-9 MeV

strange (s) − 1
3 75-170 MeV

charm (c) 2
3 1.15-1.35 GeV

bottom (b) − 1
3 4.0 - 4.4 GeV

top (t) 2
3 174.4 ± 5.1 GeV

of isolated quarks.

Hadrons are characterized by a set of quantum numbers, B (baryon number), Q
(charge), S (strangeness), C (charm), B̃ (Beauty) and T (truth). Eight f old way intro-
duced by Murray Gell-Mann and Yuval Ne’eman [3] in 1961 classified the baryons and
mesons into geometrical patterns depending upon their charge and strangeness. Thus
strange (S , 0) and non-strange baryons (S = 0) form groups of octets, singlets and
decuplets. The structure of these families indicates a SU(3)flavor symmetry. However,
this symmetry of the u, d, s quarks is broken due to the heavy mass of the s quark. This
results in large mass splittings among hadrons within each multiplet. Mesons on the
other hand form super multiplets of nine particles each called nonets.

Baryons are hadrons with baryon number B = 1. In the non-relativistic quark mod-
els baryons are bound states of three quarks qqq, implying that the quarks carry a baryon
number of 1/3.

Mesons are quark-anti quark pairs qq with baryon number B = 0. The pseudo scalar
nonet indicated in Fig. 2.1 consists of negative parity states. The spins of the quark-anti-
quark pair are anti-parallel making the net spin zero. The pseudo-scalar meson nonet is
also a zero angular momentum state making the total angular momentum J = 0.

The baryon octet and decuplet particles are shown in figs. 2.2 and 2.3. The diagrams
show the particle state’s hyper charge (Y) and Isospin projection I3. Hyper charge is de-
fined as the sum of the strangeness S and the baryon number B. The zero strangeness
baryons like the nucleons and ∆ resonances have hyper charge 1, while the states with
one strange quark (Σ,Σ∗) have zero hyper charge and states with two strange quarks
(Ξ,Ξ∗) have Y = −1.



6 2. Elementary particles

Figure 2.1: The Meson Octet.

The lightest baryon super multiplets that are experimentally observed are the octet
(JP = 1/2+) and the decuplet (JP = 3/2+) particles. The octet includes the nucleons,
the Λ, Σ and Ξ particles. The two nucleons,viz., proton and the neutron form an isospin
1/2 state, the three Σ particles form an isospin 1 state, Λ is an isospin 0 singlet and the
two Ξ particles form an isospin 1/2 state. The Λ and the Σ0 are both composed of uds
quarks. However, the u − d system in the Σ+ is a spin-1 system with the u and d spins
aligned parallel to each other, while that in the Λ is a spin-0 state, the u and d spins
being anti-parallel states.

The decuplet 3/2+ states are all resonances except the Ω− which decays through the
weak interactions with a life time of nearly 10−10s.

2.2.1 Color charge of quarks

Quarks have an additional degree of freedom, i.e., the color. Consider the pion-nucleon
resonance ∆++ which has spin J = 3/2 and the Ω− particle, which has Jz = 3/2. The
spin wave function is symmetric with all the three quark spins aligned. The quantum
numbers of ∆++ suggest that it is made up of three u quarks, while the Ω− is made up
of three s quarks. This implies that the total spin, flavor and space function is symmet-
ric with respect to interchange of quarks, unless the orbital part of the wave function
were antisymmetric. But both ∆++ and Ω− are the lowest lying states with their inter-
nal quantum numbers. They correspond to the three-quark ground state, which should
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Figure 2.2: The Baryon Octet.

Figure 2.3: The Baryon Decuplet.
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have both total angular momentum and relative angular momentum equal to zero and
hence a symmetric orbital wave function. But the quarks are spin-1/2 particles and obey
Fermi-Dirac statistics, with an antisymmetric wave function. Therefore the antisymme-
try in the total wave function of the ∆++ and Ω− must be arising out of another hidden
quantum number, color. Assigning three states to this color quantum number allows the
three u quarks to stay in spins aligned state, in the case of ∆++ and the three s quarks in
Ω−.

The three quark colors are called red, blue and green, forming the representation of
a SU(3)color symmetry. Since the color degrees of freedom are not observed experimen-
tally, the hadronic particles are color singlets.

Similarly no mesons carrying color quantum number have been experimentally de-
tected, implying that a quark and an anti quark system with same color forms a color
singlet.

2.2.2 Baryon mass splittings

The baryon members of the same isospin multiplet exhibit small mass differences, while
those in different isospin multiplets show large mass differences. Thus all the Σ parti-
cles, which form an isospin 1 multiplet have nearly same mass, but they show a large
mass difference with the nucleons, which form an isospin 1/2 system. The heaviest
isospin multiplets are those that have s quarks, suggesting that the mass differences
arise due to the difference in the heavy s quark and the light u/d quarks. Tables 2.2 and
2.3 list the experimentally measured masses of the octet and decuplet baryons.

Table 2.2: Masses of the octet baryon states L = 0, JP = 1/2+. Data from Particle Data
Group 2005 [2].

Baryon Mass (MeV) I3 I

p(uud) 938 1/2 1/2
n(udd) 940 -1/2 1/2
Λ(uds) 1116 0 0
Σ+(uus) 1189 1 1
Σ0(uds) 1193 0 1
Σ−(uds) 1197 -1 1
Ξ0(uss) 1315 1/2 1/2
Ξ−(dss) 1321 1/2 1/2
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Table 2.3: Masses of the decuplet baryon states L = 0, JP = 3/2+. Data from Particle
Data Group 2005 [2].

Baryon Mass (MeV) I3 I

∆++(uuu) 1232 3/2 3/2
∆+(uud) 1232 1/2 3/2
∆0(udd) 1232 -1/2 3/2
∆−(ddd) 1232 -3/2 3/2
Σ∗+(uus) 1383 1 1
Σ∗0(uds) 1384 0 1
Σ∗−(dds) 1387 -1 1
Ξ∗0(uss) 1532 1/2 1/2
Ξ∗−(dss) 1535 1/2 1/2
Ω−(sss) 1672 0 0

2.2.3 Baryon Magnetic Moments

Magnetic moments of all the members of 1/2+ octet baryons except the Σ0 have been
experimentally measured Σ0 [2].

If the quarks are in zero orbital angular momentum state, the baryon magnetic mo-
ments are just the sum of the quark magnetic moments. The magnetic moment of a
quark of charge eq and mass mq is given as [1]

µq =

(
eqMp

mq

)
µN , (2.2)

where Mp is the mass of the proton and µN = e/2Mp is the nuclear magneton.

In the 1/2+ baryons B with quark composition xxy, the two x quarks are in a sym-
metric spin-1 state with with parallel spins and anti parallel to the y quark. Magnetic
moment of such a baryon is given by the Simple Quark Model(SQM) as

µB =
4
3
µx −

1
3
µy . (2.3)

Hence the proton (uud) magnetic moment is

µp =
4
3
µu −

1
3
µd . (2.4)
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Neglecting the small mass difference between the u and d quarks, the proton magnetic
moment is

µp =
Mp

mu
µN . (2.5)

If the experimentally measured value of the proton magnetic moment, 2.79µN is substi-
tuted in the above relation, the mass of the u or d quark mass turns out to be approxi-
mately 336MeV. In the case of Λ (uds), the ud pair is in a spin-0 state and hence makes
no contribution to the Λ spin and magnetic moment. The entire magnetic moment of
the Λ arises from that of the s quark and is given by

µΛ = µs = −
1
3

Mp

ms
µN . (2.6)

Substituting the experimental value for the µΛ as −0.613µN , the s quark mass turns
out to be nearly 510MeV. There is a wide disagreement between the experimentally
measured values of the quark masses with the above suggestions. The experimen-
tally measured values of magnetic moment of Ξ− is −0.651 ± 0.003µN and that of Λ
is −0.613 ± 0.004µN , making their ratio to be 1.062 ± 0.012. Using Eq. (2.3), the mag-
netic moment of the Ξ−(dss) is 4

3µs − 1
3µd , where µs and µd are the magnetic moments

of the s and d quarks respectively. With the assumption that the entire magnetic mo-
ment of the Λ is due to the s quark alone (Eq. (2.6)), the ratio of the magnetic moments
µΞ−/µΛ turns out to be 0.836, in disagreement with the experiment.

Simple quark model assumes the three quark baryon states to be zero angular mo-
mentum states. But in reality, the ground states of strongly interacting systems are
not pure S-waves but might contain small admixtures of non-zero angular momentum
states. This could be a reason for the discrepancy in the predicted values of the SQM
and experimentally measures values.



Chapter 3

Quantum Chromodynamics

3.1 Gauge Field Theories

Gauge theories are theories with a particular type of symmetry, called gauge invariance.
The principle of gauge invariance requires that the theory be invariant under a particular
gauge transformation [4].

An example of a gauge field theory is the Quantum Electrodynamics (QED) which
describes the dynamics of charged fermions. QED is an abelian gauge field theory with
local invariance under the unitary abelian group of transformations, U(1). Imposing
local gauge invariance gives rise to the electromagnetic vector potentials Aµ. Current
conservation and the zero mass of the photon are the consequences of gauge invariance
of the electromagnetic field. The QED Lagrangian density is given by

LQED = ψ(x)(i /D − m)ψ(x) − 1
4

FµνF
µν , (3.1)

where the kinetic term Fµν
µν is gauge invariant and is given by

Fµν(x) = ∂µAν(x) − ∂νAµ(x) . (3.2)

The covariant derivative Dµ is defined as

Dµ = ∂µ − ieQAµ(x) , (3.3)

where Q is a real arbitrary constant defining the unitary transformations as U(1) =
exp(iQθ).

Yang-Mills theory is a theory of a multicomponent field invariant under a non-
abelian group of transformations, SU(2).
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The number of gauge fields in a theory is equal to the number of generators of the
gauge group. Therefore QED has one gauge field, the photon. The relevant groups for
the weak, electromagnetic and strong interactions are SU(2), U(1) and SU(3) respec-
tively. The electromagnetic and weak interactions can be combined as unified gauge
theory, invariant under a gauge group SU(2) × U(1).

QED and QCD describe interactions of different strengths, which are mediated by
massless spin-1 bosons which couple to conserved charges.

3.2 Quantum Chromodynamics

QCD is a quantized non-abelian gauge field theory, describing the strong interactions.
It is formulated in terms of the quarks and gluons, the bosons that mediate the strong
interactions. It demands local gauge invariance under an SU(3) gauge group.

Quarks carry the color charge with three degrees of freedom. Any gauge trans-
formation on such a system inter-mixes the three colors. The photons that mediate
the electromagnetic interactions between electrically charged particles do not carry any
electric charge themselves. In contrast, the gluons carry color charge themselves and
hence interact among themselves. SU(3) has eight generators and hence the gauge fields
gluons come in eight colors. The gluon-gluon interaction of QCD has no QED analogue
and is the cause of the main differences between the QED and QCD.

All bound states of quarks are color singlets and have integral electric charges. Iso-
lated quarks with fractional electric charges and color are not observed in nature. This
is the property of “color confinement” exhibited by the strong interactions. It further
implies that gluons too cannot be observed as isolated free particles with non-zero color
charges.

The strong interaction gets weaker at short distances. An isolated electric charge
polarizes the vacuum around it and surrounds itself with electron positron pairs. Sim-
ilarly an isolated color charge surrounds itself with quark-anti quark pairs. The virtual
cloud of qq pairs increases the coupling constant at short distances. In addition to quark
anti-quark pairs an isolated color charge can surround itself with gluons, decreasing
the coupling constant at short distances (large momentum scales). The quarks at short
distances behave like free particles, known as the property of “asymptotic freedom”.
At low energies the coupling constant is nearly equal to 1 making it impossible to use
methods of perturbation theory.

The third property of QCD that is of interest is the “Dynamical Chiral Symmetry
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Breaking” which is discussed more in subsequent chapters. The chiral symmetry is
spontaneously broken by the QCD interactions. This is indicated by the non-zero pro-
ton mass even under the assumption of massless quarks. The fact that the baryons do
not occur in degenerate parity doublets is also a direct consequence of the chiral sym-
metry breaking by the QCD.

3.2.1 QCD Lagrangian

The Lagrangian describing the interaction among quarks and gluons is given as

LQCD = −
1
4

F(a)
µν F(a)µν + i

∑

q

ψ
i
qγ

µ(Dµ)i jψ
j
q −

∑

q

mqψ
i
qψ

i
q , (3.4)

where
F(a)
µν = ∂µAa

ν − ∂νAa
µ + gs fabcA

b
µAc

ν , (3.5)

and

(Dµ)i j = δi j∂µ − igs

∑

a

λa
i j

2
Aa
µ . (3.6)

Here gs is the QCD coupling constant, fabc are the structure constants of the SU(3)
algebra, ψi

q(x) are four-component Dirac spinors associated with each quark field of
color i and flavor q and Aa

µ are the eight gluon fields. The eight 3 × 3 Gell-Mann
matrices λa are the generators of the SU(3) and obey the Clifford algebra,

[
λa, λb

]
= 2i fabcλc . (3.7)

The kinetic term (Eq. 3.5) in QCD has an extra term compared to the kinetic term in
QED (Eq. 3.2) due to the non-abelian nature of the gauge group SU(3). This term im-
plies that the gluons themselves carry the color charge. The Euler-Lagrangian equation
corresponding to the free gluon fields produces the source terms when the Lagrangian
is varied with respect to the gluon fields Aµ. In QED Lagrangian on the other hand, the
free photon field Lagrangian depends solely on the derivatives of the photon fields.

All quarks and gluons couple to each other with the same coupling constant gs,
which depends on energy through renormalization.

The QCD Lagrangian is invariant under local non-abelian gauge transformations
that transform its fields according to

ψi(x) → ψ′j(x) = Ui j(x)ψ j(x) , (3.8)
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where
U(x) = exp−i

gs

2
λaθa(x) . (3.9)

To ensure gauge invariance of the QCD theory the vector gluon fields transform as

Aa
µ(x) → A′aµ (x) = Aa

µ(x) + ∂µθ
a(x) − gs fabcθ

b(x)Ac
µ . (3.10)

Here θa are the local parameters depending on x. The QCD Lagrangian includes the
self-interactions among the gluon fields Aa

µ through the term g fabcAb
µAc

ν in the Fµν defi-
nition. This is the main source of asymptotic freedom in the QCD Lagrangian.

At large separations, the coupling constant increases due to the self-interacting glu-
ons and gives rise to confinement. Vacuum polarization effects in QCD are very strong
due to the massless gluons and the strong coupling constant. The QCD vacuum contains
continuously appearing, interacting and disappearing gluons of virtual quark-anti quark
pairs. This non-vanishing quark and gluon condensate does not render to a perturbative
analytical treatment.

At high energies (short distances) experiments probe perturbative QCD success-
fully. At low and intermediate energies Lattice Gauge Theory is the only known first-
principles technique for studying QCD.

The Chiral symmetry properties of QCD and their implications are discussed in
Chapter 5.



Chapter 4

Lattice QCD

4.1 Introduction

The Lattice Gauge Theory provides a framework to study QCD non-perturbatively from
first principles [5, 6]. The lattice formulation of QCD, based on path integral formal-
ism is now well established. Different formulations of the lattice action have greatly
reduced systematic uncertainties like errors associated with finite lattice spacing and
volume. Lattice QCD uses the Euclidean space, which is obtained by a Wick rotation
on Minkowski space,

tM → −itE . (4.1)

This makes the trace of the evolution operator look like the partition function, en-
abling one to use the standard techniques of Statistical Mechanics to extract physically
relevant information.

In lattice QCD the space-time system is discretized into a four-dimensional grid.
The quark fields ψ(x) reside on the lattice sites designated as x. The quark fields carry
the properties of the quarks viz., color, flavor and Dirac indices. The gluon fields are
defined through the link variables Uµ(x) that connect the adjacent sites on the lattice.
The Feynman path integral approach is used to calculate the physical observables [7].
The ground state that dominates the path integral is the QCD vacuum. Excitations of
the ground state correspond to the hadrons.

4.2 Gluon Field Action

The gluon fields Aµ(x) of the QCD field are related to the link variables through

Uµ(x) = P exp ig
∫ a

0
Aµ(x + λµ̂)dλ , (4.2)
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Figure 4.1: The smallest plaquette on lattice.

where the operator P path-orders the gluon fields along the integration path, a is the
lattice spacing and g is the coupling constant and µ denotes the space-time directions.
Note that µ = 1, 2, 3 forms the three dimensional space while µ = 4 refers to the time
direction.

Under a gauge transformation Λ(x), the various fields transform as

ψ(x) → Λ(x)ψ(x) ,

Uµ(x) → Λ(x)Uµ(x)Λ(x + µ̂)−1 ,

ψ(x) → ψ(x)Λ(x) . (4.3)

Gauge invariant objects can be constructed on the lattice out of closed loops of gluon
fields or strings of gluon fields with quark fields at one end and an anti quark field at
the other. The simplest non-trivial gauge invariant object on the lattice is the plaquette
(Fig. 4.1) which is constructed as the product of four link variables enclosing a unit
square on the lattice,

Pµν(x) =
1
3
ReTr

(
Uµ(x)Uν(x + µ̂)U†µ(x + ν̂)U†ν (x)

)
. (4.4)

Using the relation between the link variables and the gluon fields the above equation
can be rewritten as

Pµν(x) =
1
3
ReTrPeig

∫
�

A·dx . (4.5)

The box at the foot of the integral indicates that the integral is over the closed pla-
quette loop. On expanding the exponential the above equation becomes

Pµν(x) =
1
3
ReTrP

1 + ig
∫

�

A · dx − 1
2

(
g
∫

�

A · dx

)2

+ O(A3)

 . (4.6)
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In the above integral path-ordering is essential in a non-abelian theory to ensure the ac-
tion has errors which are O(a2g2). Since we wish to remove classical O(a2) errors from
the action, it is sufficient to work with the abelian theory.

From the Stokes’ theorem we have for an abelian theory,

∫

�

A · dx =
∫ a/2

−a/2
dxµdxν

[
∂µAν (x0 + x) − ∂νAµ (x0 + x)

]

=

∫ a/2

−a/2
dxµdxνFµν (x0 + x)

= a2Fµν(x0) +
a4

24

(
∂2
µ + ∂

2
ν

)
Fµν(x0) + O

(
a6, A2

)
, (4.7)

where x0 is the centre of the loop. In the above equation the definition of the abelian
field strength tensor Fµν is used and is Taylor expanded to give the final equation.

The above expression simplifies the plaquette operator as

Pµν(x) = 1 − 1
6

g2a4TrF2
µν −

1
72

g2a6TrFµν(∂
2
µ + ∂

2
ν)Fµν + O(a8) + O(g4a6) . (4.8)

Using the above plaquette operator, one arrives at the traditional Wilson action [8] for
the gluons on lattice, viz.,

S Wil = β
∑

x,µ>ν

(1 − Pµν(x)); β =
6
g2
. (4.9)

The sum in the Eq. (4.9) runs over all the plaquettes of all orientations in the lattice.
β is the single input parameter for QCD calculations involving only gluon fields. The
value of the lattice spacing a depends on the bare coupling constant g2. Larger values
of β gives smaller lattice spacing. The bare coupling constant g2 tends to zero at small
distances or high energies which is equivalent to taking β to infinity.

The S Wil term is gauge invariant and hence the lattice QCD calculations using Wil-
son action do not need any gauge fixing. The calculations are done with a non-zero
lattice spacing a and a finite lattice volume V . Hence corrections must be applied to
account for the fact that lattice spacing should be zero and volume infinite ideally.

The purely gluonic part of the continuum QCD action (first term in Eq. (3.4)) is

S cont = −
1
4

FµνF
µν . (4.10)
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Figure 4.2: Rectangular plaquettes Rµν on lattice.

The Wilson action differs from the continuous gluon action by terms which are O(a2)
and O(g2a2). The O(a2) terms can be removed by adding other products of links that
form closed loops, known as Wilson loops. Considering the rectangular 1 × 2 loops
(Fig. 4.2), they would have the expansion

R1×2
µν = 1 − 4

6
g2a4TrF2

µν −
4

72
g2a6Tr(Fµν(4∂

2
µ + ∂

2
ν)Fµν) − . . .

R2×1
µν = 1 − 4

6
g2a4TrF2

µν −
4

72
g2a6Tr(Fµν(∂

2
µ + 4∂2

ν)Fµν) − . . . . (4.11)

Adding the Rµν and Pµν terms gives the improved lattice action as, [9, 10]

S Imp = β
∑

x,µ>ν

{
5
3

(1 − Pµν) −
1

12
(1 − R1×2

µν ) +
1

12
(1 − R2×1

µν )

}

= a4
∑

x,µ>ν

[
1
2

TrF2
µν + O(a4) + O(a2g2)

]
. (4.12)

In the continuum limit, the improved lattice action reduces to the continuum gluon
action.

4.2.1 Mean Field Improvement

The link variables Uµ represent the gauge fields Aµ on the lattice related as shown by
Eq. (4.2). The link variable can be Taylor-expanded about x to obtain

Uµ(x) ≈ 1 + iagAµ(x) − a2g2

2
A2
µ(x) + . . . . (4.13)

The first two terms are lattice artifacts in the QCD action and give rise to quark-gluon
vertices with two or more gluons. Contracting the two gluons in the third term produces
tadpole diagrams.
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For quantum fields, pairs of Aµ fields contracted with each other generate ultraviolet
divergent factors of 1

a2 that precisely cancel the factors a [11]. As a result the contri-
butions generated by the tadpole loops are suppressed only by powers of g2, resulting
in large renormalisations. Mean field improvement or tadpole improvement helps to
largely compensate for these artifacts. Since the tadpole contributions are process inde-
pendent, they can be measured in one quantity and then corrected for in all others.

Assuming that the lattice fields can be split into ultraviolet (UV) and infrared (IR)
parts, mean field improvement suggests integrating out the UV part, i.e,

eiagAµ(x) = eiag(AIR
µ (x)+AUV

µ (x)) ∼ u0eiagAIR
µ ≡ uOŨµ(x) . (4.14)

The link variables can be scaled by a constant u0 ≤ 1, leaving the theory gauge invari-
ant. In such a case, every link variable U gets replaced by Ũ in all the lattice operators.
These u0’s cancel a large part of the tadpole contributions, thus making the lattice oper-
ators and perturbation theory closer to the continuum behavior.

The mean link u0 can be chosen to be real, since only the real part of the correlation
functions is needed.

Generally the mean-field improvement parameter u0 is chosen to be either the fourth
root of the plaquette or the expectation value of the link in the Landau gauge. Both
choices give nearly identical results on typical lattices and identical results in the con-
tinuum limit. In cases where gauge fixing is not needed, the mean-link is defined as

u0 = (ReTr 〈U�〉)1/4 . (4.15)

Hence the gluon action given in Eq. (4.12) can be tadpole improved by dividing each
link Uµ by the mean link u0 to yield [12]

S Imp = β
∑

x,µ>ν


5
3

(
1 −

Pµν

u4
0

)
− 1

12

1 −
R1×2
µν

u4
0

 +
1

12

1 −
R2×1
µν

u4
0


 . (4.16)

To determine the mean-link u0 self-consistently, it is computed numerically by initial-
izing it to 1, then measuring it in a simulation and fine tuning the value used in action
depending on the measured value. The mean-links are solely dependent on the lattice
spacing and converge to 1 as the lattice spacing vanishes.

Introducing the mean links u0 largely compensates for the tadpole contributions
which spoil the weak-coupling perturbation theory. Without the tadpole improvement
only approximately half of the O(a2) are canceled [12].
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4.3 Lattice Fermion Action

4.3.1 Naive Fermion Action

In Euclidean space-time the total QCD action is given by

S [Aµ, ψ, ψ] =
∫

d4x
(
− 1

4
FµνF

µν + ψ
(
/D + m

)
ψ
)
= S G + S F . (4.17)

The quantity /D + m is the Dirac operator and the action is a sum of the gluonic and
fermionic actions, S G and S F.

The gluonic and fermionic fields are made dimensionless on the lattice. The lattice
points (x + aµ̂) will become (x + µ̂), since the fields are measured in units of lattice
spacing a.

The Dirac (fermionic) action viz., ψ( /D + m)ψ is discretized on lattice by replacing
the covariant derivative with a symmetrised finite difference and including appropriate
gauge links to give the lattice action. The gauge links Uµ contain the gluon fields Aµ and
satisfy gauge invariance. Under such a scheme, the first term in the fermionic action
becomes

ψ /Dψ =
1

2a
ψ(x)

∑

µ

γµ
[
Uµ(x)ψ(x + µ̂) − U†(x − µ̂)ψ(x − µ̂)

]
. (4.18)

Here a is the lattice spacing and the continuum Dirac action can be recovered in the
limit a → 0 by Taylor expansion of Uµ and ψ(x + µ̂) about x. The simplest fermion
action, retaining only the leading terms in a is evaluated to be [5]

S N = mq

∑

x

ψ(x)ψ(x)

+
1

2a

∑

x,µ

ψ(x)γµ
[
Uµ(x)ψ(x + µ̂)ψ − U†µ(x − µ̂)ψ(x − µ̂)]

≡
∑

x

ψ(x)Mxy[U]ψ(y) . (4.19)

The interaction matrix Mi j is

Mi j[U] = mqδi j +
1

2a

∑

µ

[γµUi,µδi, j−µ − γµU†i−µ,µδi, j+µ] . (4.20)

The γ matrices are Hermitian, γ = γ† and satisfy the anti-commutator relation
{γµ, γν} = 2δµν. The naive fermion action has errors of the order of O(a2). It pre-
serves chiral symmetry. In the continuum limit it gives rise to 2d fermions instead of
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1. This “doubling problem” makes the action phenomenologically unacceptable. Vari-
ous improvement schemes are available in literature [5, 6] to get around this doubling
problem.

4.3.2 Wilson Fermion Action

Wilson [8] originally introduced an irrelevant dimension-five operator (“Wilson term”)
to the naive fermion action (Eq. 4.19) which explicitly breaks the chiral symmetry at
O(a). The irrelevant operator is given by − 1

2 ra4µ. Adding this to the standard lattice
fermion action gives the Wilson fermion action as

S W = ψ(x)


∑

µ

(
/D − 1

2
ra4µ

)
+ m

ψ(x) , (4.21)

where 4µ is defined by

4µψ(x) =
1
a2

[
Uµ(x)ψ(x + µ̂) + U†µ(x − µ̂)ψ(x − µ̂) − 2ψ(x)

]
. (4.22)

The Wilson action in terms of link variables is written as

S W =
(
mq +

4r
a

)∑

x

ψ(x)ψ(x) +
1

2a

∑

x,µ

ψ(x)
[
(γµ − r)Uµ(x)ψ(x + µ̂)

−(γµ + r)U†µ(x − µ̂)ψ(x − µ̂)
]

≡
∑

x,y

ψ
L
x MW

xyψ
L
y . (4.23)

MW
xy is the interaction matrix for the Wilson action and is written as

MW
xy[U]a = δxy − κ

∑

µ

[
(r − γµ)Ux,µδx,y−µ + (r + γµ)U

†
x−µ,µδx,y+µ

]
, (4.24)

with a field renormalization

κ = 1/(2mqa + 8r)

ψL = ψ/
√

2κ . (4.25)

The Wilson parameter r is generally taken as 1 and the quark mass is then given as

mqa =
1
2

(
1
κ
− 1
κc

)
. (4.26)
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κc is the “critical” value of κ where the quark mass vanishes.

In the continuum limit the Wilson action becomes

S W =

∫
d4xψ(x)

 /D + m − ar /D2

2

ψ(x) + O(a2) . (4.27)

While lifting the doubling problem with a second derivative, the Wilson term intro-
duces O(a) errors into the fermionic action. Though computationally inexpensive, its
approach to the continuum is slow. The introduction of O(a) errors makes it necessary
for the simulations to be performed at lattice spacing typically less than 0.1 fm and
usage of very large four dimensional lattices in order to provide reasonable physical
simulation volumes.

4.4 FLIC Fermion Action

4.4.1 Clover Action

The computational expense of lattice calculations increases with decrease in lattice
spacing. Many improvements to quark action are suggested and implemented [13, 14].

The “clover” action introduced by Sheikhholaslami and Wohlert [14] introduces an
additional irrelevant dimension-five operator to the standard Wilson action (Eq. 4.23).
The clover action is given as

S SW = S Wil −
iaCSWr

4
ψ(x)σµνFµνψ(x) . (4.28)

In the above equation, S Wil is the standard Wilson equation and CSW is the clover
coefficient which can be tuned to remove O(a) errors. Nonperturbative (NP) O(a) im-
provement tunes the clover coefficient to all powers in g2 and displays excellent scal-
ing [15, 16]. The linear behavior of the NP-improved clover actions with a2 indicates
that O(a) are removed.

However this formulation of the clover action is susceptible to problems due to ex-
ceptional configurations at low quark masses. Chiral symmetry breaking in the clover
fermion action introduces an additive mass renormalization into the Dirac operator
that can give rise to singularities in quark propagators at small quark masses. This
prevents simulation at low quark masses and limits the clover action to coarse lattice
sizes [17, 18]. The plaquette version of Fµν in the clover action has O(a2) errors, which
can lead to errors of the order of 10% in the topological charge even on very smooth
configurations [19].
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4.4.2 Fat Link Irrelevant Clover Action

The idea of using fat links in the fermion action was explored by many groups [20, 17].
DeGrand et al [21, 22] showed that the exceptional configurations problem can be sig-
nificantly reduced by using a fat-link (FL) clover action. J. M. Zanotti et al have used
fat links to develop fermion actions with O(a) improvement [23, 24].

Fermion doublers of the naive theory are removed by the Wilson term at tree level.
Instead of applying techniques to estimate the renormalization of the improvement co-
efficients induced by the gauge fields of QCD the gauge fields can be modified to sup-
press renormalizations such that tree-level knowledge of improvement coefficients is
adequate.

There are many methods for minimizing short-distance fluctuations from gauge field
configurations including APE smearing and HYP-smearing [25, 26].

The central feature of FLIC fermions is to construct the fermion action using two
sets of gauge fields. In the lattice operators providing the relevant dimension-four op-
erators of the continuum action, one works with the untouched gauge fields generated
directly by Monte Carlo methods. The smoothed gauge fields are introduced only in the
purely irrelevant lattice operators having dimension five or more.

The FLIC fermion action reduces the exceptional configuration problem of fat-link
actions, while retaining short-distance quark interactions in the relevant operators of the
fermion action. The improvement in the condition number of the FLIC fermion matrix
allows more rapid calculations of fermion propagators and more efficient access to the
chiral limit of full QCD [27].

Fat links [17, 21] are created by averaging or smearing links on the lattice with
their nearest neighbors in a gauge covariant manner (APE smearing). The smearing
procedure replaces a link Uµ with a sum of the link and α times its staples, i.e.,

Uµ(x) → U′µ(x) = (1 − α)Uµ(x) +
α

6

4∑

ν=1,ν,µ

[
Uν(x)Uµ(x + νa)U†ν (x + µa)

]

+U†ν (x − να)Uµ(x − νa)Uν(x − νa + µa) , (4.29)

followed by projection back to SU(3). A unitary matrix UFL
µ is chosen to maximize the

trace
ReTr(UFL

µ U
′†
µ ) , (4.30)

by iterating over the three diagonal SU(2) subgroups of SU(3). Performing iterations
over these subgroups gives gauge invariance up to seven significant figures. The com-
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bined procedure of smearing and projection is repeated to create a fat link. The mean-
field improved FLIC action [23] now is

S FL
SW = S FL

W −
igCSWκr

2(uFL
0 )4

ψ(x)σµνFµνψ(x) . (4.31)

In the above equation Fµν is constructed using fat links, uFL
0 is the mean-field improve-

ment parameter or mean-link defined as the fourth root of the plaquette,

u0 =
(1
3
Rtr 〈U�〉

)4

. (4.32)

The mean-field improved Fat-link Irrelevant Wilson action is

S FL
W =

∑

x

ψ(x)ψ(x) + κ
∑

x,µ

ψ(x)
[
γµ

(Uµ(x)

u0
ψ(x + µ̂) −

U†µ(x − µ̂)

u0
ψ(x − µ̂)

)

− r
(UFL

µ (x)

uFL
0

ψ(x + µ̂) +
UFL†
µ (x − µ̂)

uFL
0

ψ(x − µ̂)
)]
, (4.33)

with κ = 1/(2m + 8r). The standard value for r is taken as 1. The notation used is the
Sakurai representation of the Dirac matrices, which are hermitian.

The FLIC fermion action has very impressive convergence rates for matrix inver-
sion, providing cost effective access to light quark mass region, closer to physical val-
ues. This will give valuable insight into the chiral behavior of hadron properties.

4.5 Expectation Values Of Observables

Expectation values of observables are calculated on the lattice by creating an ensemble
of lattice gauge field configurations {U [i]} using Monte Carlo methods [5]. A configu-
ration U[i] is generated from the preceding one using Monte Carlo probability methods.
The probability of generating a configuration U

′
from another U depends on the value

of β = 6/g2, the parameter that fixes the lattice spacing. The initial configuration is
chosen to be “cold” when all the links are set to unity, or ”hot” when each link is set
randomly from a SU(3) matrix.

Physical observables are obtained via expectation values

〈 O (....)
〉
=

1
Z

∫
DAµOe−S ' 1

N

∑

i

O
(
...[U[i]]

)
, (4.34)
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where N is the number of configurations generated. The operator O can be any com-
bination of operators expressed as time-ordered product of the quark and gluon fields.
Wick’s theorem can be used to contract fields. Hence the quark fields can be re-written
in terms of quark propagators, removing any dependence on the quark fields as dynam-
ical variables. Extraction of physical observables on lattice is discussed in more detail
in Chapter 6.

The standard lattice definition of QCD implies that the chance of selecting two
gauge-equivalent configurations is negligible. Hence calculation of physical observ-
ables is unaffected by arbitrary gauge transformations on the configurations. As a result
there is no need for any gauge fixing while computing physical or gauge-invariant quan-
tities on the lattice.

Physical quantities that are extracted like mass and form factors are renormalization
point independent. For the calculation of form factors we work with a conserved vector
current and ensure that its lattice version is also strictly conserved. Hence the form
factors do not need any renormalization. Therefore for all of the lattice QCD calculation
results considered here, we do not require any renormalization procedure.
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Chapter 5

Chiral Perturbation theory

5.1 Introduction

Chiral Perturbation theory (χPT) is a model independent tool to study QCD at low
energies. It is an effective field theory with low-energy degrees of freedom. The elec-
tromagnetic properties of baryons have been studied extensively using χPT, both in
quenched and partially quenched approximations [28, 29].

χPT provides a framework for understanding the low energy manifestation of the
strong interactions. It predicts the leading non-analytic quark mass dependence in the
chiral limit of the hadron observables in terms of phenomenological parameters. In χPT
one constructs an effective Lagrangian for the low energy sector which has hadronic de-
grees of freedom, and contains all the symmetries of the QCD Lagrangian. Electromag-
netic properties like charge radii and magnetic moments are expanded about vanishing
quark mass with coefficients that can be determined phenomenologically. We compare
our lattice simulation results for the octet baryons with the predictions of the Quenched
chiral perturbation theory (QχPT).

5.2 Chiral Symmetry

The QCD Lagrangian (Eq. 3.4) can be written in a compact form as

LQCD = −
1
4

Fµν
a Fa

µν + ψ(x)(i /D − m)ψ(x) . (5.1)

The QCD Lagrangian which contains all dynamical content of the theory is invariant
under local SU(3)color transformations. It is renormalizable, i.e., infinities which arise
in QCD calculations can be handled in a systematic manner to give a finite result.



28 5. Chiral Perturbation theory

The quark wave function ψ can be written in terms of left and right handed wave
functions, ψL and ψR, defined as

ψL =
1
2

(1 − γ5)ψ

ψR =
1
2

(1 + γ5)ψ . (5.2)

The Lagrangian written in terms of the left and right handed quark wave functions is

LQCD = −
1
4

Fµν
a Fa

µν+ψL(x)i /DψL(x)+ψR(x)i /DψR(x)−ψL(x)mψR(x)−ψR(x)mψL(x) . (5.3)

The left and right handed terms are mixed only through the quark mass matrix m. When
the mass is zero, the Lagrangian is invariant under SU(N f )L⊗SU(N f )R transformations,
N f being the number of quark flavors. The quark wave functions under such transfor-
mations mix among themselves,

ψL(x)→ gLψL(x)

ψR(x)→ gRψR(x) , (5.4)

where (gL, gR) is an element of the group SU(N f )L ⊗ SU(N f )R.

The invariance of the Lagrangian under such a transformation is called “chiral sym-
metry”. It is an approximate symmetry useful for very low quark masses. In two flavor
QCD this is a good symmetry since the masses of the u and d quarks are small. Three
flavor QCD includes the strange quark with larger mass, hence the chiral expansions
must be treated cautiously. In 3-flavor QCD, chiral symmetry of the massless QCD
Lagrangian gives rise to 16 conserved Noether currents, viz.,

Jµa
X = ψX(x)γµ

λa

2
ψX(x) , (5.5)

where a = 1...8 and X = L,R. The 16 conserved currents can be written in terms of
conserved Vector and Axial currents, i.e.,

Jµa
V = Jµa

L + Jµa
R

Jµa
A = Jµa

L − Jµa
R . (5.6)

Corresponding to the conserved Vector and Axial currents, there are 16 conserved
charges,

Qa
V =

∫
d3xJ0a

V

Qa
A =

∫
d3xJ0a

A . (5.7)



5.3 Chiral Lagrangian 29

These charges are the generators of the vector and axial symmetries of the QCD
Lagrangian.

The massless QCD vacuum is not chirally symmetric. The vacuum state |0〉 contains
an arbitrary number of massless pseudo-scalar particles known as Goldstone bosons.
The SU(N f )L ⊗ SU(N f )R symmetry of the QCD Lagrangian is dynamically broken to
SU(N f )V by the vacuum state |0〉 and this produces massless Goldstone bosons. For
the three flavor symmetry there are 16 generators of the chiral symmetry, 8 of which
are broken in the dynamical breaking to SU(3)V . Hence a (nearly massless) octet of
pseudo-scalar Goldstone bosons appears. These eight particles are created by the axial
currents and obey

〈0|Jµa
A (0)|πb(p)〉 = i fπpµδa

b , (5.8)

where πa is the ath Goldstone boson field and fπ is the pseudoscalar decay constant.
Experimentally fπ is found to be 93 MeV [30].

If the quarks were massless the chiral symmetry would be an exact symmetry of
the QCD Lagrangian and the Goldstone bosons produced by chiral symmetry breaking
would be completely massless. The small quark masses result in the eight pseudo-scalar
Goldstone bosons acquiring small masses (meson-octet).

5.3 Chiral Lagrangian

The chiral Lagrangian is constructed to represent all the symmetries of the QCD La-
grangian. Hence it contains both the symmetric and symmetry breaking terms. In the
chiral Lagrangian, written as sum of the right and left handed quark wave functions,
Eq. (5.3), the first three terms are the symmetric terms while the last two are the sym-
metry breaking terms. The symmetric part is symmetric under the chiral Lie group
SU(N f )L ⊗ SU(N f )R. The chiral symmetry is spontaneously broken, which gives rise to
massless Goldstone bosons (eight mesons for SU(3) f symmetry).

The full chiral Lagrangian is written as a sum of the Lagrangians of the Meson-
Baryon sector and the Meson sector [31], i.e.,

Leff = LMB + LM . (5.9)

To construct the effective chiral Lagrangian for the meson-octet, it is necessary to in-
troduce the unitary matrix U that contains the 8 Goldstone boson (meson-octet) fields.
This matrix is defined as [32]

U = e2iφ/ f , (5.10)
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where f is the pseudoscalar decay constant with the dimensions of mass and φ is a 3×3
matrix, defined in terms of the eight Gell-Mann matrices, λa as

φ =
1
2
λaπ

a =
1
√

2



1√
6
η + 1√

2
π0 π+ K+

π− 1√
6
η − 1√

2
π0 K0

K− K
0 − 2√

6
η


. (5.11)

In the above equation, πa represent the eight Goldstone boson fields. U transforms
linearly under SU(3)L ⊗ SU(3)R. Under the global chiral transformation of the fermion
fields of the type in Eq. (5.4), the boson fields U transform as

U → U′ = e−iαa
Lλa/2Ueiαa

Rλa/2 = gLUg†R . (5.12)

In the low energy sector of QCD, meson momenta and quark masses are assumed to
be small. Hence the effective Lagrangian can be expressed as a Taylor expansion about
pM/Λχ and µm/Λχ. Here pM is the momenta of the meson and Λχ is the scale of chiral
symmetry breaking. Generally Λχ ' 4π f ' 1GeV from renormalization arguments.

Expanding about the mass term µm/Λχ produces the symmetry breaking terms giv-
ing rise to the Goldstone boson masses. The parameter µ is determined phenomenolog-
ically and relates the quark and meson masses.

The chiral Lagrangian for the meson sector retains only terms with even numbers of
derivatives to ensure Lorentz invariance. Hence the effective Lagrangian for the meson
sector can be expressed as,

LχM = L(2)
M +L

(4)
M + L

(6)
M + ..... . (5.13)

where L(d)
M contains terms with d derivatives (or d powers of momentum) and d/2 pow-

ers of the quark mass matrix.

The first term in the above equation includes the kinetic energy of the mesons
and meson-mass terms and can be expressed as a sum of symmetric and a symmetry-
breaking terms [33], i.e.,

L(2)
M =

f 2

4
Tr

[
∂µU†∂µU

]
+

f 2

2
Tr

[
µm

(
U + U†

)]
. (5.14)

The second term in the above equation is the symmetry breaking term and gives rise
to leading contribution to the pseudo-Goldstone boson masses.

The chiral Lagrangian for the meson-baryon interaction, LMB can be obtained by
defining a matrix B containing the octet baryon fields and a tensor field T µ

abc to represent
the decuplet baryon fields. The octet baryon field B is given by [34]
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B =
1
√

2
λaBa =



1√
6
Λ + 1√

2
Σ0 Σ+ p

Σ− 1√
6
Λ − 1√

2
Σ0 n

Ξ− Ξ0 − 2√
6
Λ


, (5.15)

where Ba represent the 8 baryon fields.

The Rarita-Schwinger field tensor T µ

abc contains the decuplet baryon fields and obeys
the relation γµT

µ

abc = 0. The 3 × 3 × 3 matrix Tabc is given by [35]



∆++ 1√
3
∆+ 1√

3
Σ∗+

1√
3
∆+ 1√

3
∆0 1√

6
Σ∗0

1√
3
Σ∗+ 1√

6
Σ∗0 1√

3
Ξ∗0





1√
3
∆+ 1√

3
∆0 1√

6
Σ∗0

1√
3
∆0 ∆− 1√

3
Σ∗−

1√
6
Σ∗0 1√

3
Σ∗− 1√

3
Ξ∗−





1√
3
Σ∗+ 1√

6
Σ∗0 1√

3
Ξ∗0

1√
6
Σ∗0 1√

3
Σ∗− 1√

3
Ξ∗−

1√
3
Ξ∗0 1√

3
Ξ∗− Ω−


.

(5.16)
In the above tensor, the three matrices indicate the values of c being equal to 1, 2 and 3.
In each matrix, the rows are labeled by a = 1, 2, 3 and the columns by b = 1, 2, 3.

It is more convenient to use an alternative representation of the Goldstone bosons,
given by

ξ ≡ (U)1/2 = eiφ/ f . (5.17)

Under chiral transformation, this field transforms as

ξ → gLξg†H , (5.18)

where gH is a member of the chiral group given by

gH =

√
gRUg†LgL

√
U† =

√
gLU†g†RgR

√
U . (5.19)

The matrix gH is a function of the pseudo-Goldstone boson fields, U(x). The octet
and decuplet fields transform under SU(3)L ⊗ SU(3)R according to

B → gHBg†H ,

T abc → gaa′
H gbb′

H gcc′
H T a′b′c′ . (5.20)

The axial vector current Aµ transforms under the action of the same group as

Aµ → gHAµg
†
H . (5.21)

A generalization of the free Dirac Lagrangian allows one to write the free field
Lagrangian for the octet and the decuplet fields as

Loct = Tr
[
B

(
iγµ∂µ −MB

)
B
]
, (5.22)

Ldec = Tr
[
T
µ (

iγµ∂µ −MT

)
Tµ

]
, (5.23)
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whereMB andMT are the octet and decuplet masses respectively, which are degenerate
in the SU(3) limit.

The complete χPT Lagrangian for the low energy sector looks like

Lχ = L(2)
M +L

(4)
M + ....... + L

(1)
MB + L

(2)
MB +L

(3)
MB +L

(4)
MB + ....... . (5.24)

The lowest order chiral Lagrangian for octet-decuplet baryons interacting with the
Goldstone bosons is given by [33, 36]

L(1)
MB = L(1)

oct +L
(1)
dec

= Tr
(
B(iγµ∂µ −MB)B

)
+ D Tr

(
Bγµγ5{Aµ, B}

)

+F Tr
(
Bγµγ5 [Aµ, B]

)

+T
µ
(iγµ∂µ −MT )Tµ + C

(
T
µ
AµB + BAµT

µ
)

+H
(
T
µ
γνγ5AνTµ

)
. (5.25)

In the above equation the first and the fourth terms are the free octet and decuplet field
Lagrangians respectively. The second and third terms represent the meson-octet inter-
action. The axial vector-coupling gA is the sum of the axial coupling constants D and F.
The fifth term is the octet-decuplet interaction term with coupling constant C. The last
term with coupling constantH is the meson-decuplet interaction term. All the coupling
constants must be determined phenomenologically.

The symmetry breaking terms in the meson-baryon sector due to non zero quark
masses appear only in the higher order LMB terms. These terms include the quark mass
matrix m and hence the baryon masses are no longer degenerate.

5.4 Form Factors in Chiral Perturbation Theory

The calculation of electromagnetic properties using the chiral Lagrangian is discussed
in detail in the literature [37, 38, 39].

Generally the Sachs forms of the electric and magnetic form factors, GE(q2) GM(q2)
are calculated. The 4-vector q is the momentum transfer. The charge radius and mag-
netic moment can be extracted from the form factors using the following relations,

〈r2
E〉 = −6

d
dq2
GE(q2)

∣∣∣∣∣
q2=0

,

~µ = GM(0)
e

2MB
, (5.26)
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where MB is the mass of the baryon. In the Breit frame the energy part of the four
vector momentum, q0 is zero. Hence in this frame the photon interactions with mesons
and baryons transfer only momentum and not energy. In this frame G(q2) is the Fourier
transform of the charge distribution.

The form factors are related to the electromagnetic current derived from the chiral
Lagrangian. For the baryons with SU(3) symmetry, the chiral expansions for the charge
radius and magnetic moment are given by [38, 37]

〈r2
B〉 = δB +

∑

X=π,K

6αX
B

16π2 f 2
π

ln
(mX

λ

)
+ .... ,

µB = γB +
∑

X=π,K

βX
B

mN

8π2 f 2
π

mX + .... . (5.27)

In the above set of equations B labels the baryon, λ is the scale of the dimensional
regularization and mN is the nucleon mass. δB and γB contain the analytic part of the
chiral expansion. Coefficients of the analytic terms are not constrained by chiral sym-
metry. The summation in the non-analytic part of the chiral expansion is over all the
possible virtual meson-baryon transitions.

The meson cloud that surrounds a baryon has its origin in the short lived meson-
baryon intermediate states. For example,the proton can have a short-lived virtual tran-
sitions in any of the following channels, p → nπ+, p→ ∆++π− or p → Σ0K+ as well as
many others illustrated in Fig. 5.1. It is the presence of the meson cloud that gives rise to
the non-analytic behavior of the electromagnetic observables. For a proper understand-
ing of the chiral behavior, the chiral coefficients in the chiral expansion of observables
have to be computed for each of the virtual transition channels.

5.5 Quenched Chiral Perturbation Theory

Separation of the valence and sea quark-loop contributions to the meson cloud enables
one to compare with the quenched approximation where the contribution from the sea
quarks is ignored. Diagrammatic methods to calculate the meson cloud contributions
and the formal theory of the quenched chiral perturbation theory are well discussed in
literature. [40, 41, 42]. Calculation of quenched chiral coefficients for charge radii in
terms of phenomenologically fixed constants is done by Arndt et al for both the octet
and the decuplet baryons [28, 29]. Quenched chiral coefficients have been calculated
by Leinweber and Savage [43, 46] for the individual quark sector contributions and
at the baryon level. We use the chiral coefficients in [43] to compare our results with
theoretical predictions. Here we give a brief review of the calculation and interpretation
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Figure 5.1: The pseudo-Goldstone meson cloud of the proton and associated quark flow
diagrams.

of the chiral coefficients.

The effective field theory formalism of quenched chiral perturbation theory (QχPT)
predicts significant contributions to the charge radii which have their origin in virtual
meson-baryon loop transitions. These loops give rise to contributions which have a
non-analytic dependence on the quark mass or squared pion mass. While the absence
of sea-quark loops generally acts to suppress the magnitude coefficients of these terms
(and occasionally the sign is reversed), there are several channels in which these contri-
butions remain significant.

The leading nonanalytic (LNA) and next-to-leading nonanalytic (NLNA) behavior
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of charge distribution radii in full QCD are

〈r2
E〉 =

1
16 π2 f 2

∑

i

[
5 βi log

(
m2

i

µ2

)
− 10 β′i G(mi,∆, µ)

+c0 + c2 m2
i + c4 m4

i . . .
]
. (5.28)

Here the sum over i includes the π and K pseudoscalar mesons. The contributions
of the various charge states of these mesons are contained in the coefficients β and β′

reflecting electric charge and SU(3) axial couplings, D, F and C. In quenching the the-
ory, the coefficients β and β′ are modified to reflect the absence of sea-quark loops.

The first term arises from octet baryon to octet-baryon – meson transitions. Thus
charge radii are characterized by a logarithmic divergence [44] in the chiral limit (m2

π →
0). In this simple form, the mass splittings between baryon octet members is neglected.

The second term of Eq. (5.28) arises from octet baryon to decuplet-baryon – meson
transitions. As the splitting between the baryon octet and decuplet does not vanish in the
chiral limit, the mass splitting, ∆ = M∆ − MN , between the nucleon and ∆ for example,
plays an important role. The function G(mi,∆, µ) is

G(m,∆, µ) = log

(
m2

i

µ2

)
−

∆√
∆2 − m2

i

log
∆ −

√
∆2 − m2

i + iε

∆ +

√
∆2 − m2

i + iε
. (5.29)

(5.30)

As the tadpole graph contributing to the LNA term of charge radii in full QCD van-
ishes in quenched QCD [28], the coefficients β and β′ for charge radii are identical to
those for magnetic moments in quenched QCD [45, 46]. Figure 5.2 displays the non-
analytic contributions from QχPT as given in Eq. (5.28), plotted for the sample case of
the proton. In this case, the values of β and β′ are − 4

3 D2 and − 1
6C2 respectively [45, 46].

Here the axial couplings D and C are related by C = 2D and D is taken as 0.76. The
scale µ2 is taken to be 1 GeV2 and serves only to define c0.

Because these nonanalytic contributions are complemented by terms analytic in the
quark mass or pion-mass squared, the slope and curvature at large m2

π of these contribu-
tions is not significant. What is significant is the curvature at small m2

π and we see that
this curvature is dominated by the LNA term. Here there is no mass splitting to mask
the effects of dynamical chiral symmetry breaking. Thus, we will examine the extent to
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Figure 5.2: The leading (upper curve) and next-to-leading (lower curve) nonanalytic
contributions to the charge radius of the proton as given by quenched chiral perturbation
theory in Eq. (5.28).

which our simulation results are consistent with the LNA behavior of QχPT.

The coefficient β is related to the coefficient of the leading non-analytic (LNA) con-
tribution to the magnetic moment, χ, via the relation [45]

β
mN

8π f 2
π

= χ . (5.31)

The coefficients χ have been determined for octet baryons and their individual quark
sector contributions in Ref. [45] and numerical values are reproduced in Tables A.38
and A.39 for ready reference.

Since m2
π < 1 GeV2 in our simulations, the logarithmic term is negative for all quark

masses considered here. Hence, the charge radius will exhibit a logarithmic divergence
in chiral limit to either positive or negative infinity, depending on the whether β (or χ)
is negative or positive respectively.

In the quenched approximation, the flavor-singlet η′ meson remains degenerate with
the pion and makes important contributions to quenched chiral nonanalytic behavior.
The neutrality of its charge prevents it from contributing to the coefficients of Ta-
bles A.38 and A.39. However, the double hair-pin diagram in which the vector current
couples to the virtual baryon intermediary does give rise to chirally-singular behavior.
However the relatively small couplings render these contributions small at the quark
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masses probed here.

Similarly, it is interesting to compare our results with the LNA and NLNA terms of
χPT which survive to some extent in QχPT. The expansion of baryon magnetic moment
about the chiral limit can be written as [47]

µB = aB
0 + aB

2 m2
π + aB

4 m4
π + . . .

χBIπ + . . . . (5.32)

(5.33)

As for the charge radii, the NLNA contributions provide little curvature [47] and we
turn our attention to the LNA contributions [45]. These LNA contributions to baryon
magnetic moments have their origin in couplings of the electromagnetic current to the
virtual meson propagating in the intermediate meson-baryon state.

For virtual pion transitions, the LNA terms have the very simple form χmπ ∼ mq
1/2,

with values for χ as summarized in Tables A.38 and A.39. While this contribution is
finite in the chiral limit, the rate of change of this contribution does indeed diverge in
the chiral limit. The less singular nature of this contribution should allow its contri-
butions to be observed at larger pion masses, making magnetic moments an excellent
observable to consider in searching for evidence of chiral curvature. Kaon contributions
take on the same form in the limit in which baryon mass splittings are neglected.

As for the charge radii, negative values of χ provide curvature towards more pos-
itive values as the chiral limit is approached, and vice versa for positive values of χ.
However, the reason for this is more subtle than in the case of the charge radii and is
due to the dependence of µ on χmq

1/2. In this case µ is a parabolic function of mq with
two wings as seen in Fig. 5.3. Since mq being the quark mass is always positive, the two
wings of the parabola arise due to the positive and negative values of χ. The upper wing
with χ positive has a negative curvature towards the chiral limit and the lower wing with
negative χ has a positive curvature towards the chiral limit.

As emphasized earlier in our discussion of charge radii, the flavor-singlet η′ meson
remains degenerate with the pion in the quenched approximation and makes impor-
tant contributions to quenched chiral nonanalytic behavior. The neutrality of its charge
prevents it from contributing to the coefficients of Tables A.38 and A.39. However,
the double hair-pin diagram in which the vector current couples to the virtual baryon
intermediary does give rise to a logarithmic divergence in baryon magnetic moments.
However the relatively small couplings of the η′ render these contributions negligible at
the quark masses probed here [47].
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Figure 5.3: LNA behavior of µ.

The decuplet magnetic moments in χPT have been studied extensively, [48, 29, 49].
Cloet et al [49] gave expressions for the magnetic moments of the decuplet baryons in
terms of phenomenological constants and established relations between magnetic mo-
ments of various decuplet baryons. The leading loop contributions seen in χPT and
Partially Quenched Chiral Perturbation Theory (PχPT) are not seen in QχPT [50].

The meson cloud can never carry a direct contribution to the decuplet magnetic mo-
ments unlike the octet case and hence any chiral non-analytic behavior is not expected
to a first order.

In the current study we compare the results of octet baryons with the QχPT.



Chapter 6

Form Factors on the Lattice

6.1 Introduction

The calculation of the electric and magnetic form factors is the first step in understand-
ing the electromagnetic structure of hadrons. Charge radii, magnetic moments and
magnetic radii can then all be extracted from the electric and magnetic form factors
once known.

The octet baryons, being spin 1/2 particles, have two form factors, F1(q2) and
F2(q2), called the Pauli and Dirac form factors, defined at momentum transfer q2. These
are related to the Sachs form of electromagnetic form factors, viz., GE(q2), and GM(q2)
via the relations

GE(q2) = F1(q2) − q2

(2M)2
F2(q2) ,

GM(q2) = F1(q2) + F2(q2) . (6.1)

The decuplet baryons being spin 3/2 particles have four form factors designated as
GE0(q2), GE2(q2), GM1(q2) and GM3(q2).

The charge radius of a baryon depends on the electric form factor GE(q2) and is
given by

〈r2
E〉 = −6

d
dq2
GE(q2)

∣∣∣∣∣
q2=0

. (6.2)

The magnetic radius has a similar relation with the magnetic form factor and is given
by

〈r2
M〉 = −6

d
dq2
GM(q2)

∣∣∣∣∣
q2=0

. (6.3)
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Magnetic moment is the magnetic form factor calculated at zero momentum transfer
i.e.,

~µ = GM(0) . (6.4)

The extraction of baryon mass and electromagnetic form factors proceeds through the
calculation of the ensemble average (denoted

〈 · · · 〉
) of two and three-point Green

functions. The two-point function is defined as

〈
GBB(t; ~p, Γ)

〉
=

∑

~x

e−i~p·~xΓβα
〈
Ω

∣∣∣ T
(
χα(x)χβ(0)

) ∣∣∣ Ω 〉
. (6.5)

Here Ω represents the QCD vacuum, Γ is a 4 × 4 matrix in Dirac space and α, β are
Dirac indices.

Similarly the three-point correlation function for the electromagnetic current, jµ(x),
is defined as

〈
GB jµB(t2, t1; ~p′, ~p; Γ)

〉
=

∑

~x2, ~x1

e−i ~p′ · ~x2e+i( ~p′−~p)· ~x1Γβα
〈
Ω

∣∣∣ T
(
χα(x2) jµ(x1)χβ(0)

) ∣∣∣ Ω 〉
.

(6.6)
The electric and magnetic form factors can be expressed as ratios of the three point to
two point correlation functions, which will be explained in the following sections.

6.2 Interpolating Fields

In this analysis we work with the standard established interpolating fields commonly
used in lattice QCD simulations. The notation adopted is similar to that of [51].

6.2.1 Octet Interpolating Fields

To access the proton we use the positive parity interpolating field

χp+(x) = εabc
(
uaT (x) Cγ5 db(x)

)
uc(x) , (6.7)

where the fields u, d are evaluated at Euclidean space-time point x, C is the charge con-
jugation matrix, a, b and c are color labels, and the superscript T denotes the transpose.
This interpolating field transforms as a spinor under a parity transformation. That is, if
the quark fields qa(x) (q = u, d, · · · ) transform as

P qa(x)P† = +γ0 qa(x̃) , (6.8)

where x̃ = (x0,−~x), then
P χp+(x)P† = +γ0 χ

p+(x̃) . (6.9)
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The neutron interpolating field is obtained via the exchange u↔ d, and the strangeness
−2, Ξ interpolating fields are obtained by replacing the doubly represented u or d quark
fields in Eq. (6.7) by s. Similarly, the charged strangeness −1, Σ interpolating files are
obtained by replacing the singly represented u or d quark fields in Eq. (6.7) by s. For
the Σ0 hyperon one uses [51]

χΣ
0
(x) =

1
√

2
εabc

{ (
uaT (x) Cγ5 sb(x)

)
dc(x)

+
(
daT (x) Cγ5 sb(x)

)
uc(x)

}
. (6.10)

Note that χΣ
0

transforms as a triplet under SU(2) isospin. An SU(2) isosinglet interpo-
lating field for the Λ can be constructed by the replacement “+” −→ “−” in Eq. (6.10).
For the SU(3) octet Λ interpolating field used exclusively in the following, one has

χΛ(x) =
1
√

6
εabc

{
2
(
uaT (x) Cγ5 db(x)

)
sc(x) +

(
uaT (x) Cγ5 sb(x)

)
dc(x)

−
(
daT (x) Cγ5 sb(x)

)
uc(x)

}
. (6.11)

6.2.2 Decuplet Interpolating Fields

The commonly used interpolating field for exciting the ∆++ resonance from the QCD
vacuum takes the long established [52, 53] form of

χ∆
++

µ (x) = εabc
(
uTa(x)Cγµu

b(x)
)

uc(x) . (6.12)

The generalization of this interpolating field for the ∆+ composed of two u quarks
and one d quark has the form

χ∆
+

µ (x) =
1
√

3
εabc

[
2

(
uTa(x)Cγµd

b(x)
)

uc(x)

+
(
uTa(x)Cγµu

b(x)
)

dc(x)
]
. (6.13)

Other decuplet baryon interpolating fields are obtained with the appropriate substi-
tutions of u(x), d(x) → u(x), d(x) or s(x). The interpolating field for Σ∗0 is given by
the symmetric generalization

χΣ
∗0

µ (x) =

√
2
3
εabc

[ (
uTa(x)Cγµd

b(x)
)

sc(x)

+
(
dTa(x)Cγµsb(x)

)
uc(x)

+
(
sTa(x)Cγµu

b(x)
)

dc(x)
]
. (6.14)
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The SU(2)-isospin symmetry relationship for the Σ∗ form factors is given by

Σ∗0 =
Σ∗+ + Σ∗−

2
, (6.15)

which may be easily seen from the Σ∗0 interpolating field by noting

εabc
(
sTa(x)Cγµu

b(x)
)

dc(x) =

εabc
(
uTa(x)Cγµsb(x)

)
dc(x). (6.16)

6.3 Correlation functions at the hadronic level

As discussed earlier, extraction of baryon masses and electromagnetic form factors pro-
ceeds through the calculation of the ensemble average (denoted as

〈 · · · 〉) of two and
three-point correlation functions.

The two-point function is defined as

〈
GBB(t; ~p, Γ)

〉
=

∑

~x

e−i~p·~x Γβα
〈
Ω

∣∣∣ T
(
χα(x) χβ(0)

) ∣∣∣ Ω 〉
. (6.17)

Here Ω represents the QCD vacuum, Γ is a 4 × 4 matrix in Dirac space and α, β are
Dirac indices.

6.3.1 Octet Correlation Functions

At the hadronic level we insert a complete set of states
∣∣∣ B, p, s

〉
and define

〈
Ω

∣∣∣ χ(0)
∣∣∣ B, p, s

〉
= ZB(p)

√
M
Ep

u(p, s) , (6.18)

where ZB(p) represents the coupling strength of χ(0) to baryon B, and E p =
√
~p2 + M2.

A momentum dependence for ZB(p) is included for the case where a smeared sink is
employed. The spin 1/2 Dirac matrices obey

∑

p

∑

s

u(p, s)u(p, s) = γ · p − M . (6.19)

For large Euclidean time the ground state dominates and we find

〈
GBB(t; ~p, Γ)

〉' ZB(p)ZB(p)
2Ep

e−Ept tr
[
Γ(−iγ · p + M)

]
. (6.20)
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Here ZB(p) is the coupling strength of the source χ(0) to the baryon. The momen-
tum dependence allows for the use of smeared fermion sources in the creation of the
quark propagators and the differentiation between source and sink allows for our use of
smeared sources and point sinks in the following.

Similarly the three-point correlation function for the electromagnetic current, jµ(x),
is defined as

〈
GB jµB(t2, t1; ~p′, ~p; Γ)

〉
=

∑

~x2, ~x1

e−i ~p′ · ~x2e+i( ~p′−~p)· ~x1Γβα
〈
Ω

∣∣∣ T
(
χα(x2) jµ(x1)χβ(0)

) ∣∣∣ Ω 〉
.

(6.21)
For large Euclidean time separations t2−t1 >> 1 and t1 >> 1, the three-point function

at the hadronic level is dominated by the contribution from the ground state
〈

GB jµB(t2, t1; ~p′, ~p; Γ)
〉
=

∑
s,s′ e−Ep′ (t2−t1)e−Ep t1Γβα

〈
Ω

∣∣∣ χα
∣∣∣ p′, s′

〉
〈

p′, s′
∣∣∣ jµ

∣∣∣ p, s
〉〈

p, s
∣∣∣ χβ

∣∣∣ Ω 〉
. (6.22)

The matrix element of the electromagnetic current has the general form

〈
p′, s′

∣∣∣ jµ
∣∣∣ p, s

〉
=

(
M2

EpEp′

)1/2

u(p′, s′)

(
F1(q2)γµ − F2(q2)σµν qν

2M

)
u(p, s) , (6.23)

where q = p′ − p. To eliminate the time dependence of the three-point functions we
construct the following ratio,

R(t2, t1; ~p′, ~p; Γ, Γ′; µ) =


〈

GB jµB(t2, t1; ~p′, ~p; Γ)
〉〈

GB jµB(t2, t1;−~p,−~p′; Γ) 〉
〈

GBB(t2; ~p′; Γ′)
〉〈

GBB(t2;−~p; Γ′)
〉


1/2

.

(6.24)
We further define a reduced ratio R(~p′ , ~p; Γ, Γ

′
; µ) as

R(~p′ , ~p; Γ, Γ
′
; µ) =

[
2Ep

Ep + M

]1/2 [
2Ep′

Ep′ + M

]1/2

R(t2, t1; ~p′, ~p; Γ, Γ
′
; µ) , (6.25)

from which the Sachs forms for the electromagnetic form factors

GE(q2) = F1(q2) − q2

(2M)2
F2(q2) , (6.26)

GM(q2) = F1(q2) + F2(q2) , (6.27)

may be extracted though an appropriate choice of Γ and Γ′. A straight forward calcula-
tion reveals

GE(q2) = R(~q, ~0; Γ4, Γ4, 4) , (6.28)

|εi jkqi| GM(q2) = (Eq + M) R(~q, ~0; Γ j, Γ4, k) , (6.29)

|qk| GE(q2) = (Eq + M) R(~q, ~0; Γ4, Γ4, k) , (6.30)
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where

Γ j =
1
2

(
σ j 0
0 0

)

Γ4 =
1
2

(
I 0
0 0

)
. (6.31)

For large time separations t2 − t1 >> 1 and t1 >> 1 these ratios are constant in time and
are proportional to the electromagnetic form factors.

6.3.2 Decuplet Correlation Functions

For the spin-3/2 decuplet case one proceeds by inserting a complete set of states∣∣∣ B, p, s
〉

and defining

〈
Ω

∣∣∣ χσ(0)
∣∣∣ B, p, s

〉
= ZB(p)

√
M
Ep

uσ(p, s) , (6.32)

where ZB represents the coupling strength of χ(0) to baryon B. Momentum is denoted
by p, spin by s, and uα(p, s) is a spin-vector in the Rarita-Schwinger formalism. E p =√
~p2 + M2 and Dirac indices have been suppressed. Using the Rarita-Schwinger spin

sum,

∑

s

uσ(p, s)uτ(p, s) = −γ · p + M
2M

{
gστ −

1
3
γσγτ −

2pσpτ
3M2

+
pσγτ − pτγσ

3M

}
,(6.33)

≡ Λστ,

and ~p = (p, 0, 0), the large Euclidean time limit of the two point function takes the form

〈
GBB
στ (t; ~p, Γ4)

〉
= ZB(p)ZB(p)

M
Ep

e−Ept tr [ Γ4 Λστ ] , (6.34)

where

〈
GBB

00 (t; ~p, Γ4)
〉
= ZB(p)ZB(p)

2
3
|~p|2
M2

B

(
Ep + MB

2Ep

)
e−Ep t, (6.35)

〈
GBB

11 (t; ~p, Γ4)
〉
= ZB(p)ZB(p)

2
3

E2
p

M2
B

(
Ep + MB

2Ep

)
e−Ept, (6.36)

〈
GBB

22 (t; ~p, Γ4)
〉
= ZB(p)ZB(p)

2
3

(
Ep + MB

2Ep

)
e−Ep t, (6.37)

〈
GBB

33 (t; ~p, Γ4)
〉
= ZB(p)ZB(p)

2
3

(
Ep + MB

2Ep

)
e−Ep t. (6.38)
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In determining the appropriate forms suitable for calculations using Sakurai’s conven-
tions the definitions of the γ-matrices used in the interpolating fields are taken into
account. Since the non vanishing terms of GBB

στ are diagonal in σ and τ, the γ-matrices
are paired with their Hermitian conjugates. Since the γ-matrix notations differ only by
factors of i and −1, there are no required alterations for calculations using the notation
of Sakurai.

Equations (6.35) through (6.38) provide four correlation functions from which a
baryon mass may be extracted. All baryon masses extracted from the different selec-
tions of Lorentz indices agree within statistical uncertainties. The combination pro-
viding the smallest statistical fluctuations is

〈
GBB

22 (t; ~p, Γ4) + GBB
33 (t; ~p, Γ4)

〉
and these

results are presented in Chapter (8).

It should be noted that the spin-3/2 interpolating field also has overlap with spin-1/2
baryons. For the ∆ baryons and Ω− this poses no problem as these baryons are the low-
est lying baryons in the mass spectrum having the appropriate isospin and strangeness
quantum numbers. However, Σ∗ and Ξ∗ correlation functions may have lower lying
spin-1/2 components and therefore it is desirable to use the spin-3/2 projection operator
[54]

P3/2
µν (p) = gµν −

1
3
γµγν −

1
3p2

(
γ · p γµ pν + pµ γν γ · p

)
. (6.39)

However, to use this operator, one must calculate the full 44 matrix in Dirac and
Lorentz spaces of GBB

στ (t; ~p, Γ) which exceeds the computation time of our current anal-
ysis of 4 Lorentz terms and 2 Dirac terms by a factor of 32.

QCD sum rule investigations of Σ∗ and Ξ∗ hyperons suggest that the spin-1/2 com-
ponent of the spin-3/2 interpolating field is small relative to the spin-3/2 component
[55]. However, the analysis does not determine whether the spin-1/2 component lies
above or below the lowest lying spin-3/2 state. Our lattice results for baryon two-point
functions give no indication of a low-lying spin-1/2 component being excited by the
spin-3/2 interpolating fields.

6.4 Correlation functions at the quark level

Here the two and three-point functions of Sec. 6.3 are calculated at the quark level by
using the explicit forms of the interpolating fields of Sec. 6.2 and contracting out all
possible pairs of quark field operators. These become quark propagators in the ensem-
ble average. For convenience, we introduce the shorthand notation for the correlation
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functions G of quark propagators S

G(S f1 , S f2 , S f3) ≡ εabcεa′b′c′
{

S aa′

f1 (x, 0) tr
[
S bb′ T

f2 (x, 0)S cc′

f3 (x, 0)
]

+S aa′

f1
(x, 0) S bb′ T

f2
(x, 0) S cc′

f3
(x, 0)

}
, (6.40)

where S aa′

f1−3
(x, 0) are the quark propagators in the background link-field configuration

U corresponding to flavors f1−3.This allows us to express the correlation functions in a
compact form.

The quark level correlation function for χp+ can be written as

Gp+(t, ~p; Γ) =

〈∑

~x

e−i~p·~xtr
[
Γ G

(
S u, C̃S dC̃−1, S u

)]〉
, (6.41)

where 〈· · · 〉 is the ensemble average over the link fields, Γ is the Γ± projection operator
that separates the positive and negative parity states, and C̃ = Cγ5. For ease of notation,
we will drop the angled brackets, 〈· · · 〉, and in the following all correlation functions
will be understood to be ensemble averages.

Two-point correlation functions for other octet baryons composed of a doubly-
represented quark flavor and a singly-represented quark flavor follow from Eq. (6.42)
with the appropriate substitution of flavor subscripts. The correlation function for the
neutral member Σ0 is given by the average of correlation functions for the charged states
Σ+ and Σ−. Finally the correlation function for Λ obtained from the octet-interpolating
field of Eq. (6.11) is

GΛ
8
(t, ~p; Γ) =

1
6

∑

~x

e−i~p·~xtr
[
Γ

{
2G

(
S s, C̃S uC̃

−1, S d

)
+ 2G

(
S s, C̃S dC̃−1, S u

)

+ 2G
(
S d, C̃S uC̃

−1, S s

)
+ 2G

(
S u, C̃S dC̃−1, S s

)

− G
(
S d, C̃S sC̃

−1, S u

)
− G

(
S u, C̃S sC̃

−1, S d

)}]
.

(6.42)

Considering the ∆+ correlation function at the quark level and contracting out pairs
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Figure 6.1: Diagrams illustrating the two topologically different insertions of the current
within the framework of lattice QCD.

of quark field operators gives the two-point function as

〈
T

(
χ∆
+

µ (x), χ∆
+

ν (0)
)〉
=

1
3
εabcεa′b′c′

{

4S aa′
u γν CS Tbb′

u C γµ S cc′

d

+ 4S aa′
u γν CS Tbb′

d C γµ S cc′
u

+ 4S aa′

d γν CS Tbb′
u C γµ S cc′

u (6.43)

+ 2S aa′
u tr

[
γν CS Tbb′

u C γµ S cc′
d

]

+ 2S aa′
u tr

[
γν CS Tbb′

d C γµ S cc′
u

]

+ 2S aa′

d tr
[
γν CS Tbb′

u C γµ S cc′
u

]}

where the quark-propagator S aa′
u = T

(
ua(x), ua′(0)

)
and similarly for other quark fla-

vors. SU(3)-flavor symmetry is clearly displayed in this equation.

6.4.1 Three-point Functions at the quark level - Octet

In determining the three point function, one encounters two topologically different ways
of performing the current insertion. Figure 6.1 displays skeleton diagrams for these two
insertions. These diagrams may be dressed with an arbitrary number of gluons (and
additional sea-quark loops in full QCD). Diagram (a) illustrates the connected insertion
of the current to one of the quarks created via the baryon interpolating field. This sim-
ple skeleton diagram does indeed contain a sea-quark component, as upon dressing the
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diagram with gluon exchange, quark-loop and Z-diagrams flows become possible. It
is here that “Pauli-blocking” in the sea contributions, central to obtaining violation of
the Gottfried sum rule, are taken into account. Diagram (b) accounts for an alternative
quark-field contraction where the current first produces a disconnected q q loop-pair
which in turn interacts with the valence quarks of the baryon via gluons. Thus, the
number of terms in the three-point function is four times that in Eq. (6.41).

The correlation function for proton matrix elements obtained from Eq. (6.7) is

T
(
χp+(x2) jµ(x1) χ p+(0)

)
=

G
(
Ŝ u(x2, x1, 0), C̃S d(x2, 0)C̃−1, S u(x2, 0)

)

+ G
(
S u(x2, 0), C̃S d(x2, 0)C̃−1, Ŝ u(x2, x1, 0)

)

+ G
(
S u(x2, 0), C̃Ŝ d(x2, x1, 0)C̃−1, S u(x2, 0)

)

+
∑

q=u, d, s

eq
∑

i tr
[
S ii

q(x1, x1) γµ
]
G

(
Ŝ u(x2, 0), C̃S d(x2, 0)C̃−1, S u(x2, 0)

)
, (6.44)

where
Ŝ aa′

q (x2, x1, 0) = eq

∑

i

S ai
q (x2, x1) γµ S ia′

q (x1, 0) , (6.45)

denotes the connected insertion of the electromagnetic current to a quark of charge eq.

The first two terms of Eq. (6.44) provide the connected insertion contribution of the
u-quark sector to the proton’s electromagnetic properties, whereas the third term pro-
vides the connected d-quark contribution. The latter term of Eq. (6.44) accounts for the
“disconnected” loop contribution depicted in Fig. 6.1b. Here, the sum over the quarks
running around the loop has been restricted to the flavors relevant to the ground state
baryon octet. In the SU(3)-flavor limit the sum vanishes for the electromagnetic current.
However, the heavier strange quark mass allows for a nontrivial result.

The “disconnected” current insertion requires a numerical estimate of S ii
q(x1, x1) for

the lattice volume of diagonal spatial indices at q2
1 , 0. As this requires numerous

source vectors in the fermion-matrix inversion, determination of this propagator is nu-
merically intensive [56, 57, 58]. Indeed, an indirect method using experimental results,
chiral effective field theory and the lattice results from the connected current insertion
presented herein, provides the most precise determinations of these quark loop contri-
butions to the nucleon’s electromagnetic structure [59, 60, 61] at present. However, this
approach should be viewed as complementary to an ab initio determination via lattice
QCD which awaits a next-generation dynamical-fermion simulation of QCD [45].
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It is interesting to examine the structure of the connected insertion contributions to
the proton’s structure. Here, we see very different roles played by u and d quarks in
the correlation function, in that only the d-quark appears in the second position of G.
The absence of equivalence for u and d contributions allows the connected quark sector
to give rise to a nontrivial neutron charge radius, a large neutron magnetic moment,
or a violation of the Gottfried sum rule. As each term of Eq. (6.44) can be calculated
individually, it is a simple task to isolate the quark sector contributions to the baryon
electromagnetic properties.

Another interesting point to emphasize, is that there is no simple relationship be-
tween the properties of a particular quark flavor bound in different baryons. For ex-
ample, the correlator for Σ+ is given by Eq. (6.44) with d → s. Hence, a u-quark
propagator in Σ+ is multiplied by an s-quark propagator, whereas in the proton the u-
quark propagators are multiplied by a d-quark propagator. The different mass of the
neighboring quark gives rise to an environment sensitivity in the u-quark contributions
to observables[51, 62, 63, 64, 65, 66, 59]. This point is sharply in contrast with the
naive concept of an intrinsic quark property which is independent of the quark’s envi-
ronment. This concept of an intrinsic quark property is a fundamental foundation of
many constituent based quark models and is not in accord with real QCD calculations.

The correlation function relevant to the ∆+ current matrix element is

T
(
χ∆
+

µ (x2) jµ(x1) χ∆
+

ν (0)
)
=

1
3
εabcεa′b′c′

{

4Ŝ aa′
u γν CS Tbb′

u C γµ S cc′

d + 4Ŝ aa′
u γν CS Tbb′

d C γµ S cc′
u + 4Ŝ aa′

d γν CS Tbb′
u C γµ S cc′

u

+4S aa′
u γν CŜ Tbb′

u C γµ S cc′

d + 4S aa′

d γν CŜ Tbb′
u C γµ S cc′

u + 4S aa′
u γν CŜ Tbb′

d C γµ S cc′
u

+4S aa′
u γν CS Tbb′

d C γµ Ŝ cc′
u + 4S aa′

d γν CS Tbb′
u C γµ Ŝ cc′

u + 4S aa′
u γν CS Tbb′

u C γµ Ŝ cc′
d

+2Ŝ aa′
u tr

[
γν CS Tbb′

u C γµ S cc′

d

]
+ 2Ŝ aa′

u tr
[
γν CS Tbb′

d C γµ S cc′
u

]
+ 2Ŝ aa′

d tr
[
γν CS Tbb′

u C γµ S cc′
u

]

+2S aa′
u tr

[
γν CŜ Tbb′

u C γµ S cc′
d

]
+ 2S aa′

d tr
[
γν CŜ Tbb′

u C γµ S cc′
u

]
+ 2S aa′

u tr
[
γν CŜ Tbb′

d C γµ S cc′
u

]

+2S aa′
u tr

[
γν CS Tbb′

d C γµ Ŝ cc′
u

]
+ 2S aa′

d tr
[
γν CS Tbb′

u C γµ Ŝ cc′
u

]
+ 2S aa′

u tr
[
γν CS Tbb′

u C γµ Ŝ cc′

d

]}

+
∑

q=u, d, s

eq

∑

i

tr
[
S ii

q(x1, x1) γµ
] 1

3
εabcεa′b′c′

{

4S aa′
u γν CS Tbb′

u C γµ S cc′

d + 4S aa′
u γν CS Tbb′

d C γµ S cc′
u + 4S aa′

d γν CS Tbb′
u C γµ S cc′

u

+2S aa′
u tr

[
γν CS Tbb′

u C γµ S cc′

d

]
+ 2S aa′

u tr
[
γν CS Tbb′

d C γµ S cc′
u

]
+ 2S aa′

d tr
[
γν CS Tbb′

u C γµ S cc′
u

]}

(6.46)
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where
Ŝ aa′

q (x2, x1, 0) = eq

∑

i

S ai
q (x2, x1) γµ S ia′

q (x1, 0) , (6.47)

denotes the connected insertion of the probing current to a quark of charge eq. Here we
have explicitly selected the electromagnetic current. However, the following discussion
may be generalized to any quark-field-based conserved current operator bilinear in the
quark fields.

The latter term of Eq. (6.46) accounts for the loop contribution depicted in Fig. 6.1b.
The sum over the quarks running around the loop has been restricted to the flavors rel-
evant to the ground state baryon octet and decuplet. In the SU(3)-flavor limit the sum
vanishes for the electromagnetic current. However, the heavier strange quark mass al-
lows for a nontrivial result. Due to the technical difficulties of numerically estimating
M−1 for the squared lattice volume of diagonal spatial indices at q2

, 0, these contribu-
tions have been omitted from previous lattice calculations of electromagnetic structure.
For other observables such as the scalar density or forward matrix elements of the axial
vector current relevant to the spin of the baryon, the “charges” running around the loop
do not sum to zero. In this case the second term of Eq. (6.46) can be just as significant
as the connected term [67, 68].

An examination of Eq. (6.46) reveals complete symmetry among the quark flavors
in the correlation function. For example, wherever a d quark appears in the correlator, a
u quark also appears in the same position in another term. An interesting consequence
of this is that the connected insertion of the electromagnetic current for ∆0 vanishes. All
electromagnetic properties of the ∆0 have their origin strictly in the disconnected loop
contribution. Physically, what this means is that the valence wave function for each of
the quarks in the ∆ resonances are identical.

6.4.2 Three-point functions and multipole form factors - Decuplet

Here we begin with a brief overview of the results of Ref. [69], where the multipole form
factors are defined in terms of the covariant vertex functions and in terms of the current
matrix elements. The Dirac representation of the γ-matrices as defined in Itzykson and
Zuber [70] continues to be used to facilitate calculations of the γ-matrix algebra. Fi-
nally, the results are reported in Sakurai’s notation in a form suitable for calculation in
lattice field theory.

The electromagnetic current matrix element for spin-3/2 particles may be written as

〈
p′, s′

∣∣∣ jµ(0)
∣∣∣ p, s

〉
=

√
M2

B

EpEp′
uα(p′, s′)Oαµβuβ(p, s). (6.48)
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Here p, p′ denote momenta, s s′ spins, and uα(p, s) is a Rarita-Schwinger spin-vector.
The following Lorentz covariant form for the tensor

Oαµβ = −gαβ
{

a1γ
µ +

a2

2MB
Pµ

}
− qαqβ

(2MB)2

{
c1γ

µ +
c2

2MB
Pµ

}
, (6.49)

where P = p′ + p, q = p′ − p and MB is the mass of the baryon, satisfies the standard
requirements of invariance under time reversal, parity, G-parity and gauge transfor-
mations. The parameters a1, a2, c1 and c2 are independent covariant vertex function
coefficients which are related to the multipole form factors.

The multipole expansion of the electromagnetic current matrix element, defined in
terms of angular momentum recoupling algebra, has the following form

〈
p′, s′

∣∣∣ j0(0)
∣∣∣ p, s

〉
=

A
〈 3

2
s′

∣∣∣ GE0(q2) + 2
√

5τGE2(q2)
[
Σ(2) × [̂q × q̂](2)

](0) ∣∣∣ 3
2

s
〉
, (6.50)

〈
p′, s′

∣∣∣ ~j(0)
∣∣∣ p, s

〉
=

√
τ
〈 3

2
s′

∣∣∣
{
GE0(q2) + 2

√
5τGE2(q2)

[
Σ(2) × [̂q × q̂](2)

](0)
}

P̂

+ i

{
1
3

GM1(q2)Σ(1) + 3τGM3(q2)
[
Σ(3) × [̂

q × q̂
](2)

](1)
}
× q̂

∣∣∣ 3
2

s
〉
,(6.51)

where τ = −q2/(2MB)2 (≥ 0), and P̂ and q̂ are unit vectors. A =
√

1 + τ in the laboratory
frame (~p = 0) and A = 1 in the baryon Breit frame (~P = ~p ′ + ~p = 0). The spin matrix
elements are defined by Clebsch-Gordan coefficients,

〈 3
2

s′
∣∣∣ 3

2
s
〉
= δs′ s , (6.52)

〈 3
2

s′
∣∣∣ Σ(1)

m

∣∣∣ 3
2

s
〉
=
√

15

(
3
2

s′1m
∣∣∣∣∣

3
2

1
3
2

s

)
, (6.53)

〈 3
2

s′
∣∣∣ Σ(2)

m

∣∣∣ 3
2

s
〉
= −

√
5
6

(
3
2

s′2m
∣∣∣∣∣

3
2

2
3
2

s

)
, (6.54)

〈 3
2

s′
∣∣∣ Σ(3)

m

∣∣∣ 3
2

s
〉
= −7

6

√
2
3

(
3
2

s′3m
∣∣∣∣∣

3
2

3
3
2

s

)
, (6.55)

where the Condon and Shortley phase convention has been used [71].
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The multipole form factors are defined in terms of the covariant vertex function
coefficients a1, a2, c1 and c2 through the following Lorentz invariant expressions [69],

GE0(q2) = (1 +
2
3
τ) {a1 + (1 + τ)a2} −

1
3
τ(1 + τ) {c1 + (1 + τ)c2} , (6.56)

GE2(q2) = {a1 + (1 + τ)a2} −
1
2

(1 + τ) {c1 + (1 + τ)c2} , (6.57)

GM1(q2) = (1 +
4
5
τ)a1 −

2
5
τ(1 + τ)c1 , (6.58)

GM3(q2) = a1 −
1
2

(1 + τ)c1 . (6.59)

The multipole form factors GE0, GE2, GM1 and GM3 are referred to as charge (E0),
electric-quadrupole (E2), magnetic-dipole (M1) and magnetic-octupole (M3) multipole
form factors, respectively.

In a manner similar to that for the two-point function, the three-point Green function
for the electromagnetic current is defined as

〈
GB jµB
στ (t2, t1; ~p′, ~p; Γ)

〉
=∑

~x2, ~x1

e−i ~p′ · ~x2e+i( ~p′−~p)· ~x1Γβα
〈
Ω

∣∣∣ T
(
χασ(x2) jµ(x1)χβτ(0)

) ∣∣∣ Ω 〉
. (6.60)

Once again, the subscripts σ, τ are the Lorentz indices of the spin-3/2 interpolating
fields. For large Euclidean time separations t2 − t1 >> 1 and t1 >> 1 the three-point
function at the hadronic level takes the limit

〈
GB jµB
στ (t2, t1; ~p′, ~p; Γ)

〉
=

∑

s,s′
e−Ep′ (t2−t1)e−Ept1

Γβα
〈
Ω

∣∣∣ χασ
∣∣∣ p′, s′

〉〈
p′, s′

∣∣∣ jµ
∣∣∣ p, s

〉〈
p, s

∣∣∣ χβτ
∣∣∣ Ω 〉

, (6.61)

where the matrix element of the electromagnetic current is defined in Eq. (6.48), and
the matrix elements of the interpolating fields are defined by Eq. (6.32).

In Ref. [69] it was noted that the time dependence of the three-point function may be
eliminated by use of the two-point functions. However the appropriate combination of
the two-point function Lorentz indices was not specified. Maintaining the lattice Ward
identity, which guarantees the lattice electric form factor reproduces the total charge of
the baryon at q2 = 0, provides an indispensable guide to the optimum ratio of Green
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functions. The preferred ratio of two- and three-point Green functions is

Rσ
µ
τ(t2, t1; ~p′, ~p; Γ) =


〈

GB jµB
στ (t2, t1; ~p′, ~p; Γ)

〉〈
GB jµB
στ (t2, t1;−~p,−~p′; Γ) 〉

〈
GBB
στ (t2; ~p′; Γ4)

〉〈
GBB
στ (t2;−~p; Γ4)

〉


1/2

, (6.62)

'
(

Ep + M

2Ep

)1/2 (
Ep′ + M

2Ep′

)1/2

Rσ
µ
τ(~p′, ~p; Γ) , (6.63)

where we have defined the reduced ratio Rσ
µ
τ(~p′, ~p; Γ). Note that there is no implied

sum over σ and τ in Eq. (6.62). In the continuum limit the approximate equality in
Eq. 6.63 becomes an exact equality.

Using our standard definitions for Γ given in Eq. (6.31) and the Rarita-Schwinger
spin sum of Eq. (6.33), the multipole form factors may be isolated and extracted. The
appropriate combinations of Rσ

µ
τ(~p′, ~p; Γ) suitable for calculations employing the γ-

matrix and metric conventions of Sakurai are

GE0(q2) =
1
3

(
R1

4
1(~q1, 0; Γ4) + R2

4
2(~q1, 0; Γ4) + R3

4
3(~q1, 0; Γ4)

)
, (6.64)

GE2(q2) = 2
M(E + M)
|~q1|2

(
R1

4
1(~q1, 0; Γ4) + R2

4
2(~q1, 0; Γ4) − 2 R3

4
3(~q1, 0; Γ4)

)
,(6.65)

GM1(q2) = − 3
5

E + M
|~q1|

(
R1

3
1(~q1, 0; Γ2) + R2

3
2(~q1, 0; Γ2) + R3

3
3(~q1, 0; Γ2)

)
, (6.66)

GM3(q2) = − 4
M(E + M)2

|~q1|3

(
R1

3
1(~q1, 0; Γ2) + R2

3
2(~q1, 0; Γ2) − 3

2
R3

3
3(~q1, 0; Γ2)

)
,

(6.67)

where ~q1 = (q, 0, 0). Equation (6.65) for GE2 isolates the spin matrix element〈 3
2 s′

∣∣∣ Σ(2)
0

∣∣∣ 3
2 s

〉
. Smaller statistical uncertainties may be obtained by using the

symmetry
R2

4
2(~q1, 0; Γ4) = R3

4
3(~q1, 0; Γ4) . (6.68)

We define an average R
4
avg as

R
4
avg(~q1, 0; Γ4) =

1
2

[
R2

4
2(~q1, 0; Γ4) + R3

4
3(~q1, 0; Γ4)

]
. (6.69)

With this definition the expression for GE2(q2) used in our simulations is

GE2(q2) = 2
M(E + M)
|~q1|2

(
R1

4
1(~q1, 0; Γ4) − R

4
avg(~q1, 0; Γ4)

)
. (6.70)
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6.5 Lattice Techniques

The simulations are performed using the mean-field O(a2)-improved Luscher-Weisz
[10] plaquette plus rectangle gauge action on a 203 × 40 lattice with periodic bound-
ary conditions. The lattice spacing a = 0.128 fm is determined by the Sommer scale
r0 = 0.50 fm [72]. This large volume lattice ensures a good density of low-lying mo-
menta which are key to giving rise to chiral nonanalytic behavior in the observables
simulated on the lattice [59, 60, 61].

We perform a high-statistics analysis using a large sample of 400 configurations for
our lightest eight quark masses. We also consider a subset of 200 configurations for
our three heaviest quark masses to explore the approach to the heavy-quark regime. A
subensemble bias correction is applied multiplicatively to the heavy quark results, by
matching the central values of the ensemble averages at κ = 0.12780.

The error analysis is performed by a third-order, single-elimination jackknife.

For the quark fields, we use the Fat-Link Irrelevant Clover fermion action discussed
in Chapter 4. Our notation uses the Pauli representation of the Dirac γ-matrices [73],
where the γ-matrices are hermitian and σµν = [γµ, γν]/(2i). Fat links are constructed
by performing nAPE = 6 sweeps of APE smearing, where in each sweep the weights
given to the original link and the six transverse staples are 0.3 and (0.7/6) respectively.
The FLIC action is closely related to the mean-field improved clover (MFIC) fermion
action in that the latter is described by Eqs. (4.31) and (4.33) with all fat-links replaced
by untouched thin links and Fµν defined by the 1 × 1-loop clover definition.

For fat links, the mean link u0 ≈ 1, indicating that perturbative renormalizations are
small for smeared links and are accurately accounted for by small mean-field improve-
ment corrections. As a result, mean-field improvement of the coefficients of the clover
and Wilson terms of the fermion action is sufficient to accurately match these terms and
eliminate O(a) errors from the fermion action [24]. An added advantage is that access
to the light quark mass regime is enabled by the improved chiral properties of the FLIC
fermion action [74].

Time slices are labeled from 1 to 40, and a fixed boundary condition at t = 40 is
used for the fermions. An analysis of the pion correlator indicates that the effects of this
boundary condition are negligible for t ≤ 30, and all of our correlation-function fits are
performed well within this regime.

Gauge-invariant Gaussian smearing [75, 76] in the spatial dimensions is applied at
the source at t = 8 to increase the overlap of the interpolating operators with the ground
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Table 6.1: Hadron masses in appropriate powers of GeV for various values of the hop-
ping parameter, κ. Experimental values are indicated at the end of the table.

κ m2
π N Λ Σ Ξ

0.12630 0.9972(55) 1.829(8) 1.728(10) 1.700(9) 1.612(11)
0.12680 0.8947(54) 1.763(9) 1.681(10) 1.656(10) 1.586(12)
0.12730 0.7931(53) 1.695(9) 1.632(11) 1.566(11) 1.558(12)
0.12780 0.6910(35) 1.629(10) 1.584(10) 1.570(10) 1.531(10)
0.12830 0.5925(33) 1.554(10) 1.530(10) 1.521(10) 1.502(10)
0.12885 0.4854(31) 1.468(11) 1.468(11) 1.468(11) 1.468(11)
0.12940 0.3795(31) 1.383(11) 1.406(11) 1.417(11) 1.435(11)
0.12990 0.2839(33) 1.301(11) 1.347(11) 1.371(11) 1.404(11)
0.13205 0.2153(35) 1.243(12) 1.303(12) 1.341(12) 1.382(11)
0.13060 0.1384(43) 1.190(15) 1.256(13) 1.313(12) 1.359(11)
0.13080 0.0939(44) 1.159(21) 1.226(16) 1.296(14) 1.346(11)

experiment 0.0196 0.939 1.116 1.189 1.315

state while suppressing excited state contributions.

Tables 6.1 and 6.2 provide the kappa values used in our simulations, together with
the calculated π, octet and the decuplet baryon masses. While we refer to m2

π to in-
fer the quark masses, we note that the critical value where the pion mass vanishes is
κcr = 0.13135.

We select κ = 0.12885 to represent the strange quark in this simulation. At this κ the
s s̄ pseudoscalar mass is 0.697 GeV, which compares well with the experimental value
of 2 m2

K − m2
π = (0.693 GeV)2, motivated by leading order chiral perturbation theory.

6.5.1 Improved Conserved Vector Current

For the construction of the O(a)-improved conserved vector current, we follow the tech-
nique proposed by Martinelli et al. [77]. The standard conserved vector current for
Wilson-type fermions is derived via the Noether procedure

jC
µ ≡ 1

4
[
ψ(x)(γµ − r)Uµ(x)ψ(x + µ̂)

+ ψ(x + µ̂)(γµ + r)U†µ(x)ψ(x)

+ (x → x − µ̂)
]
. (6.71)
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Table 6.2: Decuplet baryon Masses in GeV for different quark masses indicated by the
values of m2

π in GeV2. Experimental values are indicated at the end of the table.

κ mπ
2 ∆ Σ∗ Ξ∗

0.12630 0.9972(55) 1.999(9) 1.908(10) 1.815(12)
0.12680 0.8947(54) 1.944(9) 1.871(11) 1.797(12)
0.12730 0.7931(53) 1.890(10) 1.834(11) 1.778(13)
0.12780 0.6910(35) 1.845(10) 1.807(11) 1.770(11)
0.12830 0.5925(33) 1.791(11) 1.771(11) 1.752(12)
0.12885 0.4854(31) 1.732(12) 1.732(12) 1.732(12)
0.12940 0.3795(31) 1.673(14) 1.693(13) 1.712(13)
0.12990 0.2839(33) 1.622(16) 1.659(15) 1.695(13)
0.13205 0.2153(35) 1.592(17) 1.638(15) 1.685(13)
0.13060 0.1384(43) 1.565(18) 1.620(16) 1.676(14)
0.13080 0.0939(44) 1.549(19) 1.609(16) 1.670(13)

experiment 0.0196 1.232 1.382 1.531

The O(a)-improvement term is also derived from the fermion action and is constructed
in the form of a total four-divergence, preserving charge conservation. The O(a)-
improved conserved vector current is

jCI
µ ≡ jC

µ (x) +
r
2

CCVC a
∑

ρ

∂ρ
(
ψ(x)σρµψ(x)

)
, (6.72)

where CCVC is the improvement coefficient for the conserved vector current and we
define

∂ρ
(
ψ(x)ψ(x)

) ≡ ψ(x)
(←−∇ρ +

−→∇ρ
)
ψ(x) , (6.73)

where the forward and backward derivatives are defined as

−→∇µψ(x) =
1

2a

[
Uµ(x)ψ(x + µ̂)

−U†µ(x − µ̂)ψ(x − µ̂)
]
,

ψ(x)
←−∇µ =

1
2a

[
ψ(x + µ̂) U†µ(x)

−ψ(x − µ̂) Uµ(x − µ̂)
]
.

The terms proportional to the Wilson parameter r in Eq. (6.71) and the four-divergence
in Eq. (6.72) have their origin in the irrelevant operators of the fermion action and van-
ish in the continuum limit. Nonperturbative improvement is achieved by constructing
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these terms with fat-links. As we have stated, perturbative corrections are small for
fat-links and the use of the tree-level value for CCVC = 1 together with small mean-
field improvement corrections ensures that O(a) artifacts are accurately removed from
the vector current. This is only possible when the current is constructed with fat-links.
Otherwise, CCVC needs to be appropriately tuned to ensure all O(a) artifacts are re-
moved.

In order to suppress contributions from excited states, large Euclidean times are re-
quired, both following the source at t0, and following the current insertion at t1. Our
two-point function analysis indicates that the ground state is isolated well by t = 14,
largely due to an excellent selection for the source smearing parameters. Therefore the
current insertion is performed at t1 = 14.

6.5.2 Improved Unbiased Estimators

The two and three-point correlation functions are defined as averages over an infinite
ensemble of equilibrium gauge field configurations, but are approximated by an average
over a finite number of configurations.

To minimize the noise in the results, we exploit the parity of the correlation func-
tions [78]

G(~p′, ~p, ~q; Γ) = sP G(−~p′,−~p,−~q; Γ), sP = ±1, (6.74)

and calculate them for both ~p, ~p′, ~q and −~p, −~p′, −~q.
While this requires an extra matrix inversion to determine Ŝ (x2, 0; t1,−~q, µ), the ra-

tio of three- to two-point functions is determined with a substantial reduction in the
statistical uncertainties. The improvement is better than that obtained by doubling the
number of configurations.

Similarly, the link variables {U} and {U∗} are gauge field configurations of equal
weight, and therefore we account for both sets of configurations in calculating the cor-
relation functions [79].

With the fermion matrix property

M({U∗}) =
(
C̃M({U})C̃−1

)∗
, (6.75)

it follows that
S (x, 0; {U∗}) =

(
C̃S (x, 0; {U})C̃−1

)∗
, (6.76)

Ŝ (x, 0; t, ~q, µ; {U∗}) =
(
C̃Ŝ (x, 0; t,−~q, µ; {U})C̃−1

)∗
, (6.77)



58 6. Form Factors on the Lattice

and therefore the correlation functions are purely real provided

Γ = sC

(
C̃ΓC̃−1

)∗
and sC = sP. (6.78)

These conditions are satisfied with the selections for Γ indicated in Eq. (6.31).

In summary, the inclusion of both {U} and {U∗} configurations in the calculation
of the correlation functions provides an improved unbiased estimate of the ensemble
average properties incorporating parity symmetry and significantly reducing statistical
fluctuations.

6.5.3 Fit Regime Selection Criteria

In fitting the correlation functions, the covariance-matrix based χ2 per degree of free-
dom (do f ) plays a central role. The correlated χ2/do f is given by

χ2

dof
=

1
Nt − M

Nt∑

i=1

Nt∑

j=1

(6.79)

(y(ti) − T (ti)) C−1(ti, t j)
(
y(t j) − T (t j)

)
,

where, M is the number of parameters to be fitted, Nt is the number of time slices con-
sidered, y(ti) is the configuration average value of the dependent variable at time ti that
is being fitted to a theoretical value T (ti), and C(ti, t j) is the covariance matrix.

The elements of the covariance matrix are estimated via the jackknife method [80]

C(ti, t j) =
Nc − 1

Nc

Nc∑

m=1

(6.80)

[
ym(ti) − y(ti)

] [
ym(t j) − y(t j)

]
,

= (Nc − 1) × (6.81)
1

Nc

Nc∑

m=1

ym(ti) ym(t j) − y(ti) y(t j)



where Nc is the total number of configurations and ym(ti) is the jackknife ensemble
average of the system after removing the mth configuration. y(ti) is the average of all
such jackknife averages, given by

y(ti) =
1

Nc

Nc∑

m=1

ym(ti) . (6.82)



6.5 Lattice Techniques 59

In the process of selecting the fit regimes, numerous fits are performed over a variety
of start times and a variety of time durations. The following criteria are taken into
account in selecting the preferred fit regime:

1. The χ2/do f is monitored and plays a significant role in determining the start time
of the fit. Values within the range 0.5 to 1.5 are preferred and it is often possible
to select a regime providing a perfect fit measure of 1. Start times for which
the χ2/do f increases significantly as the duration of the regime is increased are
discarded. In practice, the χ2/do f sets a lower bound for the start time, and other
criteria may lead to a later start time for the fit.

2. In some cases a monotonic systematic drift can be observed in the ratio of cor-
relation functions Eq. (6.62) which otherwise should be constant in time. Often
the drift is sufficiently small to provide a χ2/do f < 1.5. In these few cases, a
later start time is selected to ensure that sufficient Euclidean time evolution has
occurred to accurately isolate the ground state, suppressing systematic errors at
the expense of larger statistical errors.

3. As the quarks become lighter, the spacing between the ground and first excited
states of the baryon spectrum becomes larger [79, 81], due to the more rapid re-
duction in the mass of the lower-lying state. This provides improved exponential
suppression of excited-state contaminations. Hence, as one approaches the light
quark mass regime, a monotonic reduction in the starting time-slice of the fit
regime may be possible.

4. As the quark masses become lighter, the signal is lost to noise at earlier times.
Hence the final time slice of the fit window is also monotonically decreased as
the quarks become lighter. We typically consider fit regimes of three to five time
slices and preferably the latter when the signal is not obviously lost to noise.

5. For quark masses lighter than the strange quark mass, the splittings between ad-
jacent quark masses are calculated and fit using the same techniques. By consid-
ering adjacent splittings, excited-state contributions which are less dependent on
the quark mass (see item 3 above) are suppressed. In practice, good χ2/do f are
found one to two time slices earlier.

A precise examination of the environment sensitivity of quark-sector contributions
to baryon electromagnetic properties lies at the core of this investigation.

For example, the doubly-represented u quark in the proton is to be compared with
the doubly-represented u quark in Σ+; the singly-represented u quark in the neutron with
the u quark in Ξ0. Similarly, it is interesting to compare the strange and light quark sec-
tors of Ξ− with those of Λ. Conventional models reverse the ordering of the observed
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magnetic moments.

After the consideration of the preceding criteria, the fit regimes are unified for each
of the quark sector contributions wherever possible.

This comparison is done for each value of κ governing the quark mass, reducing sys-
tematic errors associated with choosing different time-fitting regimes for similar quan-
tities.

For example, for the case of the doubly-represented u quark in the proton and Σ+, it
is possible to equate the fit regimes for all but the two lightest quark masses where the
χ2/do f insists on different fit regimes.



Chapter 7

Results-Octet baryons

7.1 Form Factors

In general, the baryon form factors are calculated on a quark-sector by quark-sector
basis with each sector normalized to the contribution of a single quark with unit charge.
Hence to calculate the corresponding baryon property, each quark sector contribution
should be multiplied by the appropriate charge and quark number. Under such a scheme
for a generic form factor f , the proton form factor fp is obtained from the u- and d-quark
sectors normalized for a single quark of unit charge via

fp = 2 × 2
3
× fu + 1 ×

(
−1

3

)
× fd . (7.1)

The electric form factor of the proton and contributions from the u- and d-quark
sectors are plotted in Fig. 7.1 as a function of Euclidean time at the SU(3)-flavor limit.
Here, charge and quark number factors have been included such that the proton result
is simply the sum of the illustrated quark sectors. The lines indicate the time slices
selected for the fit using the considerations of Sec. 6.5.3.

We find that substantial Euclidean time evolution is required following the current
insertion to obtain acceptable values of the χ2/do f ; in this case seven time slices fol-
lowing the current insertion at t1 = 14.

For light quark masses lighter than the strange quark mass, we fit the change in the
form factor ratios of Eq. (6.62) from one quark mass to the next and add this to the
previous result at the heavier quark mass. All the data that is used to calculate the form
factors is originating from the same system and hence the data is highly likely to be
extremely correlated. Taking difference of successive quark masses removes the corre-
lated errors and leaves a clean signal to fit. This is more important in the lower quark
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Figure 7.1: Electric form factor of the proton and its quark sectors (including charge
and quark number factors) at Q2 = 0.227(2) GeV2 as a function of Euclidean time (t2)
for m2

π = 0.4854(31) GeV2, which corresponds to the SU(3)-flavor limit. The lines
indicate the fitting windows and the best fit value.

Figure 7.2: Quark sector contributions (including charge and quark number factors) to
the electric form factor of the proton at Q2 = 0.227(2) GeV2 as a function of Euclidean
time, t2, for the ninth quark mass where m2

π = 0.2153(35) GeV2. The correlator is
obtained from the splitting between the ninth and eighth quark mass states. The lines
indicate the fitting windows and the best fit value.
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Figure 7.3: Magnetic form factors of Ξ0 and its quark sectors (including charge and
quark number factors) at Q2 = 0.227(2) GeV2 as a function of Euclidean time (t2) for
m2
π = 0.4854(31) GeV2, which corresponds to the SU(3)-flavor limit. The lines indicate

the fitting windows and the best fit value.

masses where it is more difficult to realize a reasonable flattening of data conducive for
fitting. Therefore we used this technique for quark masses lighter than the strange quark
mass.

Figure 7.2 shows the fitting of the electric form factor splitting for the proton be-
tween the eighth and ninth quark masses, the latter having m2

π = 0.2153 GeV2. The
improvement of the plateau is apparent in Fig. 7.2. Still, substantial Euclidean time
evolution is required to obtain an acceptable χ2/do f . The onset of noise at this lighter
quark mass is particularly apparent at time slice 24 for the d sector. Tables A.1 to A.4
list the electric form factors for all the octet baryons at the quark level for the eleven
quark masses considered. In the tables, the selected time frame, the fit value and the
associated χ2/do f are indicated.

Turning now to the magnetic form factors, Fig. 7.3 shows the magnetic form factor
of Ξ0 and its quark sectors (including charge and quark number factors) as a function
of Euclidean time at the SU(3)-flavor limit. Preferred fit windows following from the
criteria of Sec. 6.5.3 and best fit values are indicated.

Here the conversion from the natural magneton, e/(2 mB) where the mass of the
baryon under investigation appears, to the nuclear magneton, e/(2 mN) where the phys-
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Figure 7.4: Quark sector contributions (including charge and quark number factors) to
the magnetic form factor of Ξ0 at Q2 = 0.227(2) GeV2 as a function of Euclidean time,
t2, for the ninth quark mass where m2

π = 0.2153(35) GeV2. The correlator is obtained
from the splitting between the ninth and eighth quark mass states. The lines indicate
the fitting windows and the best fit value.

ical nucleon mass appears, has been done by multiplying the lattice form factor results
by the ratio mN/mB. In this way the form factors are presented in terms of a constant
unit i.e. the nuclear magneton.

The negative contribution of the u quark to the total form factor indicates that its
spin is on average opposite to that of the doubly represented s quarks. This, as well
the relative magnitude of the contributions, is in qualitative agreement with simple con-
stituent quark models based on SU(6) spin-flavor symmetry.

In Fig. 7.4 we present the Euclidean time dependence of the the magnetic form fac-
tors of Ξ0 calculated at the ninth quark mass where m2

π = 0.2153(35) GeV2. Again the
early onset of acceptable plateau behavior is apparent here.

Results for the quark-sector contributions to the magnetic form factors of octet
baryons are summarized in Tables A.5 to A.8.

7.2 Charge Radii

To make contact with the extensive phenomenology of the field, our results for the
electric form factors are expressed in terms of charge radii. It is well known that the
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experimentally measured electric (and magnetic) form factor of the proton is described
well by a dipole ansatz at small Q2

GE(Q2) =
GE(0)

(
1 + Q2/m2

)2
; Q2 ≥ 0 , (7.2)

where m characterizes the size of the proton. This behavior has also been observed in
recent lattice calculations [82] where many momentum transfers have been considered.
Using this observation, together with

〈
r2

E

〉
= −6

d
dQ2
GE(Q2)

∣∣∣∣∣
Q2=0

, (7.3)

we arrive at an expression which allows us to calculate the electric charge radius of a
baryon using our two available values of the Sachs electric form factor (GE(Q2

min), GE(0)),
namely 〈

r2
E

〉

GE(0)
=

12
Q2



√
GE(0)
GE(Q2)

− 1

 . (7.4)

While Eq. (7.2) is suitable for a charged baryon, alternative forms must be consid-
ered for neutral baryons where GE(0) = 0.

However, we have direct access to the charge distributions of the individual quark
sectors, a subject receiving tremendous experimental attention in the search for the role
of hidden flavor in baryon structure. In this case Eq. (7.4) may be applied to each quark
sector providing an opportunity to determine the charge radii on a sector by sector basis.

For neutral baryons it becomes a simple matter to construct the charge radii by first
calculating the charge radii for each quark sector. These quark sectors are then com-
bined using the appropriate charge and quark number factors as described in Sec. 7.1
to obtain the total baryon charge radii. Indeed, all baryon charge radii including the
charged states are calculated in this manner.

Tables A.9 to A.12 provide the electric charge radii of the octet baryons and their
quark sector contributions normalized to single quarks of unit charge.

7.2.1 Quark sector charge radii

We begin with an examination of the quark contributions to baryon charge radii. The
results are reported for single quarks of unit charge. Of particular interest are the con-
tributions of similar quarks experiencing different environments. Traditionally, quark
models of hadron structure neglected such environment sensitivity. However, such en-
vironment sensitivity is manifest in chiral effective field theory. The finite kaon mass
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Figure 7.5: Electric charge radii of up, and uΣ+ as a function of m2
π representing the

quark masses considered in the simulation. The results for up are offset for clarity.

in the chiral limit renders the kaon’s contributions to curvature almost trivial relative to
the pion.

Figure 7.5 displays the charge radii of the u-quark distribution in the proton and
compares this with the u-quark distribution in Σ+. The SU(3)-flavor limit is manifest at
m2
π ∼ 0.5 GeV2. The replacement of a d-quark in the proton, by an s quark in Σ+ gives

rise to only a small environment sensitivity in the u-quark properties.

Referring to the chiral coefficients of Table A.38, the negative value of χ for up in-
dicates that the charge radius of the u quark distribution in the proton should diverge to
positive infinity in the chiral limit. A physical understanding of this is made obvious by
considering the virtual transition p → nπ+, which at the quark level can be understood
as (uud)→ (udd)(du). In the chiral limit, the π+ carries the u quark to infinity such that
u-quark charge distribution radius in the proton diverges.

In the case of the u quark in Σ+, the coefficient of the logarithmic divergence is zero
in the π channel and hence no divergence is expected. While there is a significant co-
efficient for transitions to ΞK, the increased mass of the Ξ baryon makes this channel
unfavorably suppressed.

The results in Fig. 7.5 for up exhibit an upward trend and increasing curvature with
reducing quark mass. The uΣ+ rises more slowly. Hence these results are in qualitative
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Figure 7.6: Charge radii of un and uΞ0 as a function of m2
π. The data for the un are offset

for clarity.

agreement with the LNA expectations of chiral effective field theory.

Figure 7.6 displays the electric charge radii of the u quark in the neutron (un) and in
Ξ0 (uΞ0) as a function of m2

π.

Here we observe that the charge radii of un and uΞ0 are nearly equal at heavy quark
masses, but in the approach to the chiral limit they differ. The light d-quark environ-
ment of the u quark in the neutron provides enhanced chiral curvature as the chiral limit
is approached.

The true nature of the underlying physics is much more subtle. From Table A.38,
we see that the quenched coefficient (last column) for the u quark in the neutron is pos-
itive in the π channel, from which we can deduce that the charge radius should actually
diverge to negative infinity in the chiral limit.

Physically this can be understood by looking at the quark contributions to the vir-
tual transition n → pπ− which gives rise to this divergence. In this case one has
(ddu) → (duu)(ud). In the chiral limit, the mass of the pion approaches zero such
that the π− carries a u quark to infinity. Since the d quark is ignored while calculating
the u quark contribution (i.e. the electric charge of the d quark may be thought of as
zero), the entire charge of the pion comes from the u quark, thus taking the u-quark
charge distribution radius to negative infinity. However, Fig. 7.6 shows no such trend.
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Figure 7.7: Charge radius of uΛ0 as a function of m2
π.

The coefficient χ for uΞ0 is zero in the π channel, indicating that there should be
no logarithmic divergence in the chiral limit. However it does have a substantial pos-
itive coefficient in the favorable ΣK channel, indicating the possibility of downward
curvature as the chiral limit is approached. Again, Fig. 7.6 shows no hint of downward
curvature.

While the statistical error bars are sufficiently large to hide such a turn over, there
are other interpretations. One possibility is that we are not yet in the true chiral regime
where such physics is manifest. Indeed, the divergence of the u-quark charge distribu-
tion to negative infinity may only reveal itself at quark masses lighter than the physical
quark masses.

Alternatively, one might regard this particular case to be somewhat exceptional. It is
the only channel in which chiral-loop physics is expected to oppose the natural broad-
ening of a distribution’s Compton wavelength. On the lattice, the finite volume restricts
the low momenta of the effective field theory to discrete values. It may be that this
lattice artifact prevents one from building up sufficient strength in the loop integral to
counter the Compton broadening. In this case it would be impossible to observe the
divergence of un → −∞ at any quark mass. It will be interesting to resolve this discrep-
ancy with quantitative effective field theory calculations.

Figure 7.7 reports our results for the charge distribution radius of a u quark in Λ as
a function of m2

π. The chiral coefficient for this is zero in the π channel and hence no
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Figure 7.8: Charge distribution radii of sΛ, sΞ0 and sΣ0 as a function of m2
π. The data for

sΞ0 and sΛ are plotted for shifted m2
π values.

divergence is expected. However, there is significant strength for downward curvature
in the energetically favorable NK channel. Indeed, the approach to the chiral limit is
remarkably linear and contrasts the upward curvature observed for other light quark
flavor s. Hence our results are in qualitative agreement with the expectations of QχPT.
Figure 7.8 illustrates the charge distribution radius of strange quarks in Λ0, Ξ0 and Σ0.
In our simulations the strange quark mass is held fixed and therefore any variation ob-
served in the results is purely environmental in origin. All three distributions suggest a
gentle dependence on the mass of the environmental light quarks.

However, the environmental flavor -symmetry dependence of the strange quark dis-
tributions is quite marked. When the environmental quarks are in an isospin 0 state in
the Λ, the strange quark distribution is broad. On the other hand, when the environmen-
tal quarks are in an isospin 1 state in Σ baryons, the distribution radius is significantly
smaller.

In the case of strange quark distributions, the LNA contributions are exclusively
from transitions involving the kaon. Therefore significant curvature is not expected. On
the other hand, one might expect broader distributions in cases where a virtual transi-
tion is possible in quenched QCD. Referring to Table A.38, one sees that both sΛ and
sΞ have strong transitions to the energetically favorable KN and KΣ channels respec-
tively. The coefficients are negative such that the virtual transitions will act to enhance
the charge distributions. This is not the case for sΣ where the sign is positive and the
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Figure 7.9: Charge radii of Σ0 and Λ0 as a function of m2
π. The data for Σ0 is offset to

the right for clarity.

transition is to the energetically unfavored KΞ channel. In summary, QχPT suggests
the charge distributions for sΛ and sΞ will be larger than for sΣ. This is exactly what is
observed in Figure 7.8.

7.2.2 Baryon charge radii

The flavor -symmetry dependence of uds-quark distributions in Σ0 andΛ0 is particularly
manifest in Fig. 7.9. Here the interplay between the light-quark sector with effective
charge 1/3 and the strange sector with charge −1/3 is revealed.

At the SU(3) flavor -symmetric point (m2
π ∼ 0.5 GeV2) where the strange and light

quarks have the same mass and the Λ and Σ are degenerate in mass, neither charge ra-
dius is zero. This very nicely reveals different charge distributions for the quark sectors
described in the previous section.

In constituent quark models, this flavor dependence would be described in terms of
spin-dependent forces. In the Λ0 where a scalar diquark can form between the non-
strange pair, the charge radius is dominated by the broader strange-quark distribution
at the SU(3)-flavor symmetric point. This is contrasted by the Σ0 where scalar-diquark
pairing would occur between strange and non-strange quarks, acting to constrict the
strange quark distribution in Σ as seen in Fig. 7.8. In addition, hyperfine repulsion in
the non-strange quark sector leads to a broader distribution for the light quark sector
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Figure 7.10: Charge radii of Σ+, Σ− and Ξ− as a function of m2
π. The Ξ− and Σ− are offset

to the left and right respectively. For the Σ− and Ξ− the magnitudes are plotted without
considering the negative charge factor.

as indicated in Tables A.11 and A.10. As compelling as this discussion is, this line of
reasoning suggests the decuplet baryon states should have broader quark distributions
[65] as scalar-diquark clusters do not dominate there. However, the results from anal-
ysis of decuplet baryon structure on the same lattice configurations explored here and
discussed in Chapter 8, do not reveal broader quark distributions. For this reason, we
consider our discussion of virtual transitions in the context of effective field theory in
the previous section to be a more relevant description of the underlying physics.

Ultimately, as the chiral limit is approached, the light quark distribution broadens
and dominates the charge radii for both baryons. However, the charge distribution of
the Σ0 is much broader and reflects our discussion of the quark sector contributions. In
particular, the LNA contributions of QχPT act to suppress the distribution of uΛ and
enhance sΛ, whereas the LNA contributions to Σ0 are relatively suppressed either by
having small coefficients or having energetically unfavorable transitions in the kaon
channel. This suppression of uΛ and enhancement sΛ combines to give a strong net
effect of suppressing the charge radius of the Λ0.

The hyperon charge states, Σ− and Ξ− have chiral coefficients which vanish in
quenched QCD. Similarly, Σ+ has no contributions from virtual pion transitions. The
one case, where there is a substantial coefficient, is suppressed energetically. Fig-
ure 7.10 displays our simulation results for the electric charge distribution radii of these
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Figure 7.11: Charge radii of the proton and Σ+ as a as a function of m2
π. Σ

+ charge radius
is offset for clarity.

hyperons as a function of m2
π. The ordering of the charge radii as the chiral limit is

approached is explained by the more localized strange quark distribution.

Figures 7.9 and 7.10 show our results for the electric charge radius of Σ0, Λ0, Σ+, Σ−

and Ξ− charge radii as a function of m2
π. The quenched chiral coefficients for these

baryons are zero in the π channel, and hence we expect no divergence in the chiral
limit. None of them show any tendency to diverge, and they exhibit a monotonic in-
crease with decreasing quark mass.

The quenched chiral coefficients for Σ− and Ξ− are identically zero in all channels,
so they should ideally have no non-analytic behavior and should be completely analytic
functions of m2

π.

Experimentally measured value of 〈r2
E〉 for Σ− is 0.608 ± 0.12 fm2. The magnitude

of the lattice result for the same at the lightest quark mass is 0.410(37) fm2. The charge
radius needs a lot of curvature to reach the experimental value in the chiral limit. This
loss of information would be mainly due to the quenching effects.

Figure 7.11 compares the charge radii of Σ+ with the proton. The charge radii of
these baryons match at the SU(3) flavor limit where m2

π ∼ 0.5 GeV2 as required. As
the chiral limit is approached, the smaller charge distribution of the heavier negatively-
charged strange quark acts to make the Σ+ larger. This is manifest in the simulation
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Figure 7.12: Charge radii of the neutron and Ξ0 as a function of m2
π. Charge radius of

the Ξ0 are shifted to the right for clarity. Diamonds at the lowest two quark masses
denote the neutron charge radii calculated using slightly different time slices for fitting.
Asymmetric error bars for the neutron charge radius are described in the text.

results.

While the Σ+ is not expected to display chiral curvature, the proton charge radius
presents one of the more favorable opportunities to observe a hint of the logarithmic di-
vergence to be encountered in the chiral and infinite-volume limits of quenched QCD.
However, there is no hint of chiral curvature in favor of the proton over the Σ+.

The origin of this discrepancy is once again traced to the singly-represented u-quark
in the neutron, or more specifically in this case, the singly-represented d-quark in the
proton. As highlighted in the discussion surrounding Fig. 7.5, there is a hint of in-
creased curvature for the doubly-represented u-quark in the proton over that in Σ, in
accord with chiral effective field theory. But this is hidden in the proton charge radius
due to the absence of the anticipated curvature of the singly-represented quark in the
nucleon, as highlighted in the discussion surrounding Fig. 7.6.

Similarly, the ultimate divergence of the neutron charge radius to negative infinity
via n → pπ− is not yet manifest. Rather a crossing of the central values into positive
values of squared charge radii is revealed in Fig. 7.12. Still, the statistical errors remain
consistent with negative values.

The crossing of the central values of the squared neutron charge radius into positive
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values led us to further examine our selection of fit regime in our correlation function
analysis. Our concern is that noise in the correlation function may be distorting the fit.
Hence, we have also considered fits including t = 15, immediately following the point-
split current insertion centered at t = 14. While we prefer to allow some Euclidean time
evolution following the current insertion, this systematic uncertainty is reflected in the
asymmetric error bar of Fig. 7.12 for the lightest two neutron charge radii.

To summarize, we have explored the electric form factors of the baryon octet and
their quark sector contributions at light quark masses approaching the chiral regime.
The unprecedented nature of our quark masses is illustrated in Fig. 7.13 which com-
pares the present results for the proton charge radius with the previous state of the art
[51, 83]. Here the static quark potential has been used to uniformly set the scale among
all the results. The small values of the early results are most likely due to the small phys-
ical lattice volumes necessitated at that time. The precision afforded by 400 203 × 40
lattices is manifest.

We have discovered that all baryons having non-vanishing energetically-favorable
couplings to virtual meson-baryon transitions tend to be broader than those which do
not. This qualitative realization provides a simple explanation for the patterns revealed
in our quenched-QCD simulations.

Still, evidence of chiral curvature on our large-volume lattice is rather subtle in gen-
eral and absent in the exceptional case of the singly-represented quark in the neutron
or Ξ. In this case, it is thought that the restriction of momenta to discrete values on the
finite-volume lattice prevents the build up of strength in the loop integral of effective
field theory. Without sufficient strength, the Compton broadening of the distribution
will not be countered as the chiral limit is approached.

7.3 Magnetic Moments

The magnetic moment µ is provided by the magnetic form factor at Q2 = 0, GM(0),
with units of the natural magneton, µB = e/(2 MB), where MB is the mass of the baryon

µ = GM(0)
e

2MB
. (7.5)

While we could present a detailed discussion of the magnetic form factors summarized
in Sec. 7.1, a more interesting discussion of the results is facilitated via the magnetic
moment where chiral nonanalytic behavior takes on a simple functional form and a vast
collection of phenomenology is available to provide a context for our results.
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Figure 7.13: The proton charge radius is compared with previous state of the art lattice
simulation results in quenched QCD. The solid squares indicate current lattice QCD re-
sults with FLIC fermions. The stars indicate the lattice results of [51] while the crosses
indicate the results of [83], both of which use the standard Wilson actions for the gauge
and fermion fields.

Since the magnetic form factors must be calculated at a finite value of momentum
transfer, Q2, the magnetic moment must be inferred from our results, GM(Q2), obtained
at the minimum non-vanishing momentum transfer available on our periodic lattice.
The Q2 dependence of lattice results from the QCD-SF collaboration [82] are described
well by a dipole. Phenomenologically this is a well established fact for the nucleon at
low momentum transfers.

However, we will take an even weaker approximation and assume only that the
Q2 dependence of the electric and magnetic form factors is similar, without stating an
explicit functional form for the Q2 dependence. This too is supported by experiment
where the proton ratio GM (Q2)

µGE (Q2) ' 1 for values of Q2 similar to that probed here. In this
case

GM(0) =
GM(Q2)
GE(Q2)

GE(0) . (7.6)

The strange and light sectors of hyperons will scale differently, and therefore we
apply Eq. (7.6) to the individual quark sectors. Octet baryon properties are then re-
constructed as described in the discussion surrounding Eq. (7.1) in Sec. 7.1. Results
for baryon magnetic moments and their quark sector contributions are summarized in
Tables A.13 through A.16.
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Figure 7.14: Magnetic moment contributions of up and uΣ+ as a function of m2
π. The

contribution of up is plotted at shifted quark masses.

7.3.1 Quark Sector Magnetic Moments

The u-quark contribution to the proton and Σ+ magnetic moments are illustrated in
Fig. 7.14. The contribution up was described as the most optimal channel for directly
observing chiral nonanalytic curvature in quenched lattice QCD simulations [45] and
this curvature is evident in Fig. 7.14.

The value of χ for up is large and negative predicting LNA curvature towards pos-
itive values as the chiral limit is approached. The value of χ for uΣ+ vanishes in the π
channel. Similarly, strength in the ΞK channel is energetically suppressed. Hence the
chiral curvature is predicted to be negligible for uΣ+ and will contrast the upward cur-
vature for up. This is observed in our lattice simulations. Figure 7.14 reveals curvature
in up relative to a rather linear approach for uΣ+ to the chiral limit.

The results for up and uΣ+ are highly correlated and therefore the enhancement of the
magnetic moment of u in the proton over the Σ+ provides significant evidence of chiral
nonanalytic behavior in accord with the LNA predictions of chiral perturbation theory.
The strong correlation of these results is evident in the SU(3) flavor-symmetric point at
m2
π ' 0.5 GeV2 where the results are identical. To expose the significance of this result,

we present Fig. 7.15 illustrating the correlated ratio of magnetic moment contributions
up/uΣ+. There, the significance exceeds two standard deviations for quark masses be-
tween the lightest quark mass considered and the SU(3) flavor limit at m2

π ' 0.5 GeV2.
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Figure 7.15: Ratio of u-quark contribution to the magnetic moments of the proton to that
of u quark in Σ+. Chiral curvature in the u-quark contribution to the proton’s moment
gives rise to significant enhancement in up.

Figure 7.16: The u-quark contribution (single quark of unit charge) to the magnetic
moments of the neutron, un, and Ξ0, uΞ0 . The magnetic moment of un is shifted to the
right for clarity.
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Figure 7.16 illustrates the magnetic moment contribution of the single u quark in
the neutron and the Ξ0, normalized to unit charge. The magnetic moments match at the
SU(3)-flavor limit where m2

π ' 0.5 GeV2 as required. The environment sensitivity of
the u quark contribution is subtle and is most evident in the size of the statistical error
bar.

The chiral coefficient, χ, of the nonanalytic term ∼ mπ for un is large and greater
than zero, predicting curvature towards negative values as the chiral limit is approached.
While the coefficient for uΞ0 vanishes in the π channel, a substantial coefficient resides
in the energetically favored ΣK channel and therefore some curvature towards negative
values are again predicted as the chiral limit is approached. Fig. (7.16) is in accord with
these predictions for the chiral curvature.

We note that for this case of magnetic moments, the anticipated chiral curvature
is indeed observed for this sector. This contrasts the case of charge distribution radii,
where chiral curvature was to oppose the Compton-broadening of the distribution and
was not manifest in the simulation results.

It is interesting to examine the ratio of of singly (un) and doubly (up) represented
quark contributions (for single quarks of unit charge) to nucleon magnetic moments
[51]. The SU(6) spin-flavor symmetry of the simple quark model provides

µp =
4
3
µu −

1
3
µd (7.7)

=
2
3

2
2
3
µQM

q − 1
3

1

(
−1

3

)
µQM

q (7.8)

where µQM
q is the constituent quark moment. The quark moment pre-factors in Eq. (7.8)

are respectively, SU(6), quark number and charge factors. Discarding quark number
and charge factors, one arrives at the SU(6) prediction for un/up for single quarks of
unit charge of −1/2. This prediction is to be compared with Fig. 7.17 which reveals
this ratio is substantially smaller than the SU(6) prediction, even at the SU(3) flavor
-symmetry limit where m2

π ' 0.5 GeV2. This result is in accord with Ref. [51] where
this effect was first observed in lattice QCD.

The gentle slope of the results in Fig. 7.17 at larger quark masses suggests that the
SU(6) spin-flavor symmetric quark model prediction of −1/2 will be realized only at
much heavier quark masses than that examined here.

Figure 7.18 shows the magnetic moment contribution of the u-quark sector (or
equivalently the d-quark sector) to the Λ0 magnetic moment, normalized for a single
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Figure 7.17: The ratio of singly (un) and doubly (up) represented quark contributions
for single quarks of unit charge to nucleon magnetic moments. In the simple SU(6)
spin-flavor symmetric quark model the predicted ratio is constant at −1/2.

quark of unit charge. In simple quark models, this contribution is zero as the u and d
quarks are in a spin-0, isospin-0 state. Our simulation results reveal that the dynamics
of QCD, even in the quenched approximation, are much more complex. The contri-
bution of uΛ differs from zero by more than 8 standard deviations at the SU(3) flavor
-symmetric point and confirms earlier findings [51] of a non-trivial role for the light
quark sector in the magnetic moment of Λ0.

The chiral coefficient for uΛ vanishes in the pion channel and has only small strength
in the energetically favored NK channel. Hence little curvature is anticipated and this
is supported by our findings in Fig. 7.18.

Turning our attention to the strange quark sectors, Figs. 7.19 and 7.20 present re-
sults for sΛ, sΞ and sΣ magnetic moments. In our simulations the strange quark mass is
held fixed and therefore any variation observed in the results is purely environmental in
origin. While sΞ and sΣ display only a mild environment sensitivity, sΛ shows signifi-
cant dependence on its light quark environment.

Recall that in our examination of the environmental flavor -symmetry dependence
of the strange quark distribution, a strong sensitivity is found. When the environmental
quarks are in an isospin-0 state in the Λ, the strange quark distribution is broad. On the
other hand, when the environmental quarks are in an isospin-1 state in Σ baryons, the
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Figure 7.18: Magnetic moment contribution of the u-quark sector (or equivalently the
d-quark sector) to the Λ0 magnetic moment as a function of m2

π.

Figure 7.19: Magnetic moments of sΛ and sΞ0 as a function of m2
π. Results for sΞ0 are

shifted to the right.
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Figure 7.20: Magnetic moment contribution of sΣ, as a function of m2
π as a function of

m2
π.

distribution radius is significantly smaller. It appears that the broad distribution of the
strange quark in Λ makes it sensitive to the dynamics of its neighbors.

In the case of strange-quark moments, the LNA contributions are exclusively from
transitions involving the kaon. Referring to Table A.38, one sees that both sΛ and sΞ
have strong transitions to the energetically favorable KN and KΣ channels respectively.
The coefficients are negative such that the virtual transitions will act to provide cur-
vature towards positive values, enhancing the magnetic moments in these cases. This
is not the case for sΣ where the sign is positive and the transition is to the energeti-
cally unfavored KΞ channel. In summary, QχPT suggests the magnetic moments for sΛ
and sΞ will display curvature that acts to enhance the magnetic moment whereas sΣ will
display little curvature. These predictions are exactly as observed in Figs. 7.19 and 7.20.

7.3.2 Baryon Magnetic Moments

Figure 7.21 depicts the magnetic moments of Λ0, Σ− and Ξ−. As the magnetic moments
of Λ0, and Ξ− are dominated by the strange quark contribution, these moments show
only a gentle dependence on the quark mass. These contrast Σ− where the light d quarks
dominate the moment.

The hyperon charge states, Σ− and Ξ− have LNA chiral coefficients which vanish in



82 7. Results-Octet baryons

Figure 7.21: Magnetic moments of Σ−, Λ0 and Ξ− as a function of m2
π. Results for Λ0

and Ξ− are offset left and right respectively for clarity.

quenched QCD. On the other hand, theΛ0 magnetic moment has some positive strength
in the energetically favored NK channel, suggesting curvature towards negative values
as the chiral limit is approached. These features are manifest in the Λ0 and Ξ− moments
of Fig. 7.21 where the curvature in the Λ0 moment towards negative values contrasts
the invariance of the Ξ− moment.

Figure 7.22 presents results for the Σ0 baryon where chiral curvature is anticipated
to be small. However, a comparison of p and Σ+ magnetic moments provides a favor-
able opportunity to observe chiral curvature. The proton has a strong negative coupling
to the pion channel, predicting curvature towards positive values as the chiral limit is
approached. This contrasts the Σ+ where the strong coupling is to the energetically un-
favorable ΞK channel suggesting a more linear approach to the chiral limit.

Figure 7.23 depicts the variation of these moments with quark mass. These results
are highly correlated and therefore the enhancement of the magnetic moment of the
proton over the Σ+ provides significant evidence of chiral nonanalytic behavior in ac-
cord with the LNA predictions of chiral perturbation theory. The strong correlation of
these results is evident in the SU(3) flavor-symmetric point at m2

π ' 0.5 GeV2 where the
results are identical.

Figure 7.24 reports the magnetic moments of the neutron and Ξ0. The neutron pro-
vides a favorable case for the observation of chiral curvature associated with the pion



7.3 Magnetic Moments 83

Figure 7.22: Magnetic moment of Σ0 as a function of m2
π.

Figure 7.23: Magnetic moments of the proton and Σ+ as a function of m2
π. The Σ+

moments are offset to the right for clarity.
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Figure 7.24: Magnetic moments of the neutron and Ξ0 as a function of m2
π. Ξ

0 moments
are offset to the right for clarity.

channel. Similarly the Ξ0 has significant strength in the energetically favored ΣK chan-
nel. In both cases the chiral coefficient, χ is positive, predicting curvature towards
negative values as the chiral limit is approached. These predictions are in accord with
the observations of Fig. 7.24.

In summary, we have performed an unprecedented exploration of the light quark-
mass properties of octet-baryon magnetic moments in quenched QCD. Figure 7.25
presents our results in the context of recent state of the art results from lattice QCD
[51, 83, 82]. The precision afforded by 400 203 × 40 lattices and the efficient access to
the chiral regime enabled by our use of the FLIC fermion action is clear. In every case,
the LNA curvature predicted by chiral perturbation theory is manifest in our results.

7.3.3 Ratio of µΞ− to µΛ

The experimentally measured value of magnetic moment of Ξ− is −0.651 ± 0.003µN

and that of Λ is −0.613 ± 0.004µN, making their ratio greater than 1 at 1.062 ± 0.012.
This has presented a long-standing problem to constituent quark models which predict
the magnetic moment ratio, Ξ−/Λ0 to be less than one.

In the simple SU(6) spin-flavor quark model, the magnetic moment of Ξ− is

µΞ− =
4
3
µs −

1
3
µd , (7.9)
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Figure 7.25: Proton magnetic moment in nuclear magnetons is compared to a variety
of lattice simulations. The solid squares indicate our current lattice QCD results with
FLIC fermions. The stars indicate the early lattice results of Ref. [51]. The crosses
(only one point) indicate the results of Ref. [83]. The open symbols describe the QCD-
SF collaboration results [82]. Open squares indicate results with β = 6.0, open triangles
indicate those with β = 6.2 while the open diamonds indicate their results with β = 6.4.
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Figure 7.26: Ratio of the magnetic moment of µΞ− and µΛ as a function of quark mass.
Experimental value of the ratio is indicated by the solid line. The dashed line is the
value suggested by the SQM.

where µs and µd are the magnetic moments of the constituent s and d quarks respec-
tively. Since the u-d pair in Λ forms a spin-0 state, the magnetic moment of the Λ has a
sole contribution from the s quark

µΛ = µs . (7.10)

Taking the ratio yields
µΞ−

µΛ
=

4
3
− 1

3
µd

µs
. (7.11)

Now since, the magnetic moment of a charged Dirac particle goes inversely as its mass,
and since the s and d quarks have identical charge, the ratio may be written

µΞ−

µΛ
=

4
3
− 1

3
ms

md
, (7.12)

where md and ms are the constituent masses of the d and s quarks respectively. Given
that ms > md it is inescapable that this ratio is less than 1 in the simple quark model.
Indeed, the accepted values of d and s constituent quark masses place this ratio at 0.836.

Figure 7.26 shows the µΞ−/µΛ ratio as a function of quark mass as observed in our
quenched lattice calculations. Remarkably, the ratio is greater than one at all quark
masses.
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There are two important aspects of our previous discussion that give rise to a result
exceeding 1. First, as illustrated in Fig. 7.17, we have found that the singly represented
quarks give a contribution to the magnetic moment that is much smaller in magnitude
than that of the SU(6) quark model prediction. This gives rise to a 40% reduction in the
contribution of the second term of Eq. (7.12).

While this is sufficient to correct the ratio to ∼ 1, there is a second effect. Namely,
the light quark sector makes a nontrivial contribution to the Λ magnetic moment. As
illustrated in Fig. 7.18, this contribution is positive for unit charge quarks. Since the
net charge of the u-d sector is +1/3, the contribution of the s quark in Λ0 must have
a negative value whose magnitude exceeds the observed Λ moment. This is seen in
Fig. 7.19. There, chiral curvature in sΛ makes the ratio of magnetic moment contri-
butions sΛ/sΞ ∼ 3/2 as opposed to the SU(6) suggestion of 4/3. This resolves the
long-standing discrepancy.

7.4 Magnetic Radii

Using the values for the magnetic moments obtained by scaling the individual quark
sector contributions to Q2 = 0, and our values for the form factors at finite Q2, mag-
netic radii may be determined in exactly the same fashion as the electric radii.

Analogous to the charge radius, we adopt a dipole form for the Q2 dependence and
define the magnetic radius as

〈r2
M〉

GM(0)
=

12
Q2



√
GM(0)
GM(Q2)

− 1

 . (7.13)

The magnetic radii, 〈r2
M〉/GM(0) of the octet baryons are tabulated in Tables A.17 and

A.18.

Figure 7.27 depicts the magnetic radii of the proton and Σ+ as a function of input
quark mass. The somewhat subtle differences have a simple explanation in terms of the
more localized strange quark in Σ.

In the proton, the long-range nature of the light-quark distributions means that their
contributions to the magnetic form factor reduce quickly for increasing momentum
transfers. In the case of Σ+, which has a broadly distributed u quark distribution and
a narrowly distributed s quark distribution, the reduction in magnitude of the form fac-
tor is less. Here, the s-quark distribution contributes positively and remains relatively
invariant with increased resolution. Thus the Σ+ has a larger form factor than the proton
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Figure 7.27: Magnetic radii of the proton and Σ+ at different m2
π values. Σ+ magnetic

radius is plotted at shifted quark mass values.

Figure 7.28: Magnetic radii of the neutron and Ξ0 at different m2
π. Ξ

0 magnetic radius is
offset for clarity.

at finite Q2 and hence a smaller magnetic radius.

Figure 7.28 reports the magnetic radii of the neutron and Ξ0. Following a similar
argument as above, the neutron is expected to have a larger magnetic radius than the Ξ0,
and this is confirmed in the plot.
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Figure 7.29: Magnetic radii of Σ0 and Λ as a function of m2
π. The Λ magnetic radius is

plotted at shifted quark mass.

Figure 7.30: Magnetic radii of Σ+,Σ− and Ξ− as a function of m2
π. The data for Σ+ and

Ξ− is plotted at shifted quark mass values.

Figure 7.29 illustrates the magnetic radii ofΛ and Σ0 as a function of the input quark
mass. In Λ, most of the magnetic moment has its origin in the s quark and therefore the
magnetic radius will be relatively small. In the Σ0 the u-d sector is major contributor to
the form factor. As a result, the form factor reduces more at finite momentum transfer,
which in turn implies that the magnetic radius of the Σ0 will be relatively large.
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Figure 7.30 illustrates the magnetic radii of Σ−, Σ+ and Ξ−. Σ+ is replotted here to
facilitate comparison with the other two members of the baryon octet.

Σ− has the largest magnetic radius among the octet baryons and this is to be ex-
pected based on our considerations of the origin of the baryon magnetic moment. Here,
the doubly represented d quark contributes to the total baryon form factor with the same
sign, whereas the strange sector acts to reduce the magnitude of the total form factor.
Upon increasing the momentum transfer resolution, the d-sector is reduced dramatically
whereas the strange sector, acting to reduce the total form factor, is relatively preserved.
this gives rise to a large drop in the total form factor at finite Q2 and thus a large mag-
netic radius.

On the other hand, the singly represented d quark in the Ξ− makes only a small
contribution to the Ξ− form factor, and therefore the magnetic radius reflects the small
distribution of the strange quark.

7.5 Summary

The electromagnetic properties of octet baryons have been investigated extensively in
a numerical simulation using the FLIC fermion action. This efficient fermion operator
with excellent scaling properties [24] and vastly improved chiral properties [74] has
enabled the first exploration of the electromagnetic form factors at light quark masses
approaching the physical values. The unprecedented nature of our quark masses is
illustrated in Figs. 7.13 and 7.25 for the proton charge radii and magnetic moments re-
spectively.

Central to our discussion of the results is the search for evidence of chiral non-
analytic behavior as predicted by chiral perturbation theory. We have discovered that
all baryons having non-vanishing energetically-favorable couplings to virtual meson-
baryon transitions tend to be broader than those which do not. This qualitative real-
ization provides a simple explanation for the patterns revealed in our quenched-QCD
simulations.

Of particular mention is the environmental isospin dependence of the strange quark
distributions in Λ0 and Σ0. When the environmental quarks are in an isospin-0 state in
the Λ, the strange quark distribution is broad. On the other hand, when the environmen-
tal quarks are in an isospin-1 state in Σ baryons, the distribution radius is significantly
smaller.
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Still, evidence of chiral curvature on our large-volume lattice is rather subtle in gen-
eral and absent in the exceptional case of the singly-represented quark in the neutron
or Ξ. In this case, the chiral loop effects act to oppose the Compton broadening of the
distribution. However, it is thought that the restriction of momenta to discrete values on
the finite-volume lattice prevents the build up of strength in the loop integral sufficient
to counter the natural broadening of the distribution as the quark becomes light. It will
be interesting to explore this quantitatively in finite-volume chiral effective field theory.

In contrast, chiral curvature is evident in the quark-sector contributions to baryon
magnetic moments. In every case, the curvature predicted by chiral perturbation the-
ory is manifest in our results. Of particular mention is the comparison of the u-quark
contribution to the proton and Σ+ illustrated in Figs. 7.14 and 7.15. The environment
sensitivity of the s quark in Λ0 depicted in Fig. 7.19 is particularly robust.

We find it remarkable that the leading nonanalytic features of chiral perturbation
theory are observed in our simulation results. Naively, one might have expected a non-
trivial role for the higher order terms of the chiral expansion which might have acted to
hide the leading behavior. However, the smooth and slow variation of our simulation re-
sults indicate that these higher order terms must sum to provide only a small correction
to the leading behavior. These observations indicate that regularizations of chiral effec-
tive field theory which resum the chiral expansion at each order, to ensure that higher
order terms sum to only small corrections, will be effective in performing quantitative
extrapolations to the physical point. Indeed work in this direction [47, 59, 61] has been
very successful.

Comparison of our quenched QCD results with experiment is not as interesting. The
chiral physics of quenched QCD differs from the correct chiral physics of full QCD and
our results do not explore sufficiently light quark masses to reveal these discrepancies.
The simulation results do not agree with experiment, particularly for light quark baryons
where chiral physics makes significant contributions. However, methods have been dis-
covered for quantitatively estimating the corrections to be encountered in simulating
full QCD and we refer the interested reader to Refs. [47, 59, 61] for further discussion.

In future simulations it will be interesting to explore the utility of boundary condi-
tions which allow access to arbitrarily small momentum transfers, providing opportuni-
ties to map out hadron form factors in detail. Similarly, by calculating near Q2 = 0 one
would have more direct access to the magnetic moment. Nevertheless, such boundary
conditions cannot be seen to substitute for larger volume lattices, as the discretization
of the momenta due to the finite volume of the lattice acts to suppress chiral nonanalytic
behavior. Only with increasing lattice volumes will the continuous momentum of chiral
loops be approximated well on the lattice.
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Chapter 8

Results-Decuplet baryons

8.1 Form Factors

The baryon form factors are calculated on a quark-sector by quark-sector basis with
each sector normalized to the contribution of a single quark with unit charge, as ex-
plained in Chapter 7. To calculate the corresponding baryon property, each quark sector
contribution should be multiplied by the appropriate charge and quark number.

Under such a scheme for a generic form factor f , the ∆+ form factor, f∆+, is obtained
from the u- and d-quark sectors normalized to a single quark of unit charge via

f∆+ = 2 × 2
3
× fu + 1 ×

(
−1

3

)
× fd . (8.1)

Figure. 8.1 depicts the electric form factor E0 of the u quark in the ∆ as a function
of time at the SU(3) flavor limit. The u and d quarks in the ∆ states are identical, being
identical spin states. The straight lines indicate the time-slices which were selected us-
ing the χ2/do f considerations explained in Chapter 6.

For light quark masses lighter than the strange quark mass, we fit the change in the
form factor ratios of Eq. (6.62) from one quark mass to the next and add this to the
previous result at the heavier quark mass.

Figure 8.2 shows the fitting of the electric form factor splitting for the ∆+ between
the eighth and ninth quark masses, the latter having m2

π = 0.2153 GeV2. The improve-
ment of the plateau is apparent in Fig. 8.2. Still substantial Euclidean time evolution is
required to obtain an acceptable χ2/do f . The onset of noise at this lighter quark mass
is particularly apparent at time slice 21.
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Figure 8.1: E0 electric form factor of the u quark in ∆ at Q2 = 0.230(1)GeV2 as a
function of Euclidean time (t2) for m2

π = 0.4854(31) GeV2, the SU(3)-flavor limit. The
line indicates the fitting window and the best fit value.

Figure 8.2: E0 electric form factor of the u quark in ∆ at Q2 = 0.230(1) GeV2 as a
function of Euclidean time(t2) at the ninth quark mass where m2

π = 0.2153(35) GeV2.
The correlator is obtained from the splitting between the ninth and eighth quark mass
results. The line indicates the fitting window and the best fit value.
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Figure 8.3: M1 magnetic form factor of the u or d quark in the ∆ at Q2 = 0.230(1) GeV2

as a function of Euclidean time (t2) for m2
π = 0.4854 GeV2, the SU(3)-flavor limit. The

line indicates the fitting window and the best fit value.

Tables A.19 to A.21 list the E0 form factors for all the decuplet baryons at the quark
level for the eleven quark masses considered. In the tables, the selected time frame, the
fit value and the associated χ2/do f are indicated.

The magnetic form factor M1 for the u quark sector in the ∆ at the SU(3) limit is
plotted in Fig. 8.3 as a function of Euclidean time. Here the conversion from the natural
magneton, e/(2 mB) where the mass of the baryon under investigation appears, to the
nuclear magneton, e/(2 mN) where the physical nucleon mass appears, has been done
by multiplying the lattice form factor results by the ratio mN/mB. In this way the form
factors are presented in terms of a constant unit; i.e. the nuclear magneton.

In Fig. 8.4 we present the Euclidean time dependence of the the M1 magnetic form
factors of ∆ calculated at the ninth quark mass where m2

π = 0.2153(35) GeV2. The
splittings analysis provides an early onset of acceptable plateau behavior. Results for
the quark-sector contributions to the M1 magnetic form factors of decuplet baryons are
summarized in Tables A.22 to A.24.
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Figure 8.4: M1 form factor of the u quark in ∆ at Q2 = 0.230(1) GeV2 at the ninth
quark mass where m2

π = 0.2153(35) GeV2. The correlator is obtained from the splitting
between the ninth and eighth quark mass results. The line indicates the fitting window
and the best fit value.

8.2 Charge Radii

We use the expression described in Chapter 7 which allows us to calculate the electric
charge radius of a baryon using our two available values of the Sachs electric form
factor (GE(q2

min), GE(0)), namely
〈
r2

E

〉

GE(0)
=

12
q2



√
GE(0)
GE(q2)

− 1

 . (8.2)

However to calculate the charge radii of the neutral baryons, the above equation
cannot be used, due to the fact that in those cases GE(0) = 0. As in the case of octet
baryons, for the neutral baryons we first calculate the charge radii for each quark sector
which are then combined using the appropriate charge and quark number factors as de-
scribed in Sec. 7.1 to obtain the total baryon charge radii. We use the same procedure
to calculate the charge radii of all the baryons. Tables A.25 to A.27 provide the electric
charge radii of the decuplet baryons and the quark sector contributions. At the SU(3)
limit (sixth quark mass) the quark contribution is identical in all cases as expected. The
quark contributions in the baryons are close to each other and do not show substantial
environment sensitivity.
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Figures 8.5 and 8.6 depict plots of the quark contributions to the decuplet charge
radii. Figures 8.7 and 8.8 indicate charge radii of the quark sectors in the decuplet
baryons and the octet baryons at the ninth quark mass. From the figures it is evident that
the contribution of the quarks is very much baryon dependent in the octet case, while
it is less sensitive to the environment in the decuplet case. The charge radius of the u
quark distribution in the decuplet baryons is smaller than that in the octet baryons. The
u quark charge radius in the octet baryons decreases with the inclusion of the s quark.
The u quark charge radius in the nucleon, Σ and Ξ are in decreasing order due to the
inclusion of additional s quarks. Such an influence of the s quark on u quark charge
radius is absent in the decuplet behavior.

From Fig. 8.7 it is evident that the charge radius of the u quark in proton (up) is
higher than that of the u quark in ∆+ (u∆+). To remove the overlapping errors in com-
parison we computed the ratios of charge distribution of similar quarks in the octet
to that in the decuplet. The ratio 〈r2〉(up)/〈r2〉(u∆+) is calculated at all configurations
and averaged using jack-knife methods. Figures 8.9 and 8.10 depict the ratio of the
quark contributions in the octet baryons to that in the decuplet baryons at the SU(3)-
flavor limit and the ninth quark mass respectively. In the figures up/∆+ denotes the ratio
〈r2〉(up)/〈r2〉(u∆+). In both the cases, the u quark contribution to charge radius in the
proton is higher than that in the ∆+ at the SU(3) limit. At the SU(3) limit all the quarks
have equal mass, equal to that of the strange quark and one would expect the quark
model picture to dominate. This suggests that the u∆ should have a broader distribution
than the distribution of up. Our results contrast this prediction. The smaller charge ra-
dius of u∆ compared to that of up also rules out any suggestion of a hyperfine attraction
leading to u − d diquark clustering in the nucleon or the hyperon states [65].

Figures 8.11, 8.12 and 8.13 are plots of the decuplet baryon charge radii as a func-
tion of quark mass. The charge radius of ∆− is numerically equal to that of the ∆+ with a
negative sign. This makes the charge radius of ∆0 identically equal to zero. The charge
radius of Ω− is taken as that of the ∆− at the SU(3) limit, and is numerically equal to
−0.31 ± 0.01fm2.

The decuplet baryon form factors are dominated by the net charge of the light
quarks. For the ∆0 the symmetry of the u and d quarks makes the form factors van-
ish. In the neutron however the three quarks are in mixed symmetric states giving rise
to a non-zero form factor and charge radius. Charge radii of the neutral Σ∗ and Ξ∗ too
are close to zero and are dominated by the light quark sectors. The presence of the s
quark as one moves from ∆ to Σ∗ and Ξ∗ reduces the magnitude of the charge radius as
indicated in the figures for the charged baryons.

Figure 8.14 depicts the ratio of charge radii of the octet to decuplet baryons. Here
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Figure 8.5: Charge radii of u∆, uΣ∗ and uΞ∗ as a function of m2
π. The values for ∆ are

plotted at m2
π while that of the uΣ∗ and uΞ∗ are plotted at shifted m2

π for clarity.

Figure 8.6: Charge radii of sΣ∗ and sΞ∗ as a function of m2
π. The values for sΣ∗ are plotted

for shifted m2
π values for clarity.
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Figure 8.7: Charge radii of u quark in the octet and decuplet baryons at the ninth quark
mass where m2

π = 0.2153(35) GeV2.

Figure 8.8: Charge radii of s quark in the octet and the decuplet baryons at the ninth
quark mass where m2

π = 0.2153(35) GeV2.
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Figure 8.9: Ratio of charge radii of the quark sector contributions in the octet/decuplet
baryons at the SU(3)-flavor limit where m2

π = 0.4854(31) GeV2. The SU(3)-flavor
symmetry is manifest in the results.

Figure 8.10: Ratio of charge radii of the quark sector contributions in the octet/decuplet
baryons at the ninth quark mass where m2

π = 0.2153(35) GeV2.
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Figure 8.11: Charge radii of ∆+ and Σ∗+ as a function of m2
π. The values for Σ∗ are

plotted at shifted m2
π for clarity.

Figure 8.12: Charge radii(magnitude) of Σ∗− and Ξ∗− as a function of m2
π. The values

for Ξ∗− are plotted at shifted m2
π for clarity.
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Figure 8.13: Charge radii of Σ∗0 and Ξ∗0 as a function of m2
π. The values for Σ∗0 are

plotted at shifted m2
π for clarity.

Figure 8.14: Ratio of charge radii of the octet baryons to decuplet baryons at the ninth
quark mass where m2

π = 0.2153(35) GeV2.

too the octet baryons display a slightly larger charge radius than their decuplet counter-
parts. The charge radii of the decuplet baryons with the quark sector contribution are
listed in tables A.25-A.27.
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8.3 Magnetic Moments

The magnetic moment is defined as the value of the magnetic form factor at zero mo-
mentum transfer, q2 = 0,

µ =
e

2MB
GM(0) , (8.3)

where MB is the mass of the baryon. We calculate magnetic form factors at the smallest
finite value of q2 available on our lattice, hence we must scale our results from GM(q2)
to GM(0). We assume a scaling of electric and magnetic form factors in q2. In hyperons,
the strange and light quarks are scaled separately by

GM(Q2)
GM(0)

' GE(Q2)
GE(0)

. (8.4)

We use the above relation to scale the individual quark-sector contributions and then
reconstruct the baryon magnetic moments as

GB
M(0) = Gl

M(0) + Gs
M(0), (8.5)

where l labels the light quarks and s labels the strange quark. Similar calculations are
performed for the u and d sectors of the ∆.

Figures 8.15, 8.16 and 8.17 depict magnetic moments of the quark sectors in the
decuplet baryons. The contributions of all the quarks are equal at the sixth quark mass
indicating SU(3) symmetry. The quark contributions in the Σ∗ and Ξ∗ are very similar
to each other and there is not much evidence of any environment sensitivity. It is inter-
esting to note the turn around in the magnetic moment contribution of the u quark in ∆
at low quark mass.

To compare the decuplet moments with our octet moments, we plot the effective
moments of the octet and the decuplet in Figs. 8.18 and 8.19.

Effective moments have been defined by equating the lattice quark sector contribu-
tions to the same sector of the SU(6)-magnetic moment formula derived from SU(6)-
spin-flavor symmetry wave functions.

The simple quark model formula from SU(6)-spin-flavor symmetry gives the mag-
netic moment of the proton as

µp =
4
3
µu −

1
3
µd , (8.6)

where µu and µd are the magnetic moments per single quark of the doubly represented
u quarks and singly represented d quarks. This can be generalized for any baryon with
two doubly represented quarks D and one singly represented quark S .
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Figure 8.15: Magnetic moments of the u∆ and uΞ∗ as a function of m2
π. The values for

uΞ∗ are plotted at shifted m2
π for clarity.

Figure 8.16: Magnetic moments of the uΣ∗ and uΞ∗ as a function of m2
π. The values for

uΞ∗ are plotted at shifted m2
π for clarity.
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Figure 8.17: Magnetic moments of the sΣ∗ and sΞ∗ as a function of m2
π. The values for

sΞ∗ are plotted at shifted m2
π for clarity.

Focusing on the proton and using the charge factors of the doubly represented and
singly represented quarks as 2/3 and (-1/3) respectively, the above equation is modified
to

µp =

(
4
3

) (
2
3

)
µEff

D −
(
1
3

) (
−1

3

)
µEff

S , (8.7)

where µEff
D and µEff

S are the magnetic moments of a single quark of unit charge, for the
doubly and singly represented quarks respectively. The factors 2/3 and -1/3 account for
the charge factors separately.

On the lattice we calculate the baryon magnetic moments from the quark sectors
using

µp = 2

(
2
3

)
µLatt

D + 1

(
−1

3

)
µLatt

S . (8.8)

In the above equation the factors 2 and 1 in the first and second term account for the
doubly and singly represented quarks, for single quarks of unit charge. Equating quark
sectors in Eqs. (8.7) and (8.8) yields for the effective moments respectively,

µEff
S = −3µLatt

S ,

µEff
D =

3
2
µLatt

S , (8.9)
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Figure 8.18: Effective moments of the u quark sector in the octet and the decuplet
baryons at the ninth quark mass where m2

π = 0.2153(35) GeV2 .

in the spirit of a constituent quark moment, e~/2mEff
q .

For the decuplet baryons the magnetic moment is the sum of the individual quark
contributions. Hence Eq. (8.7) for the ∆ baryons becomes

µ∆+ = 2

(
2
3

)
µEff

D + 1

(
−1

3

)
µEff

S . (8.10)

On the lattice this is exactly the equation we use to build the decuplet baryon moments
from the quark sector contributions. Therefore the quark level magnetic moments that
we calculate are the effective moments of the quarks for both the doubly and singly
represented quarks, i.e.,

µEff = µLatt . (8.11)

From the figures of the effective moments, it is evident that the quarks in the octet
baryons show far more environmental sensitivity than their counterparts in the decuplet
baryons.

The baryon magnetic moments are plotted in Fig. 8.20, Fig. 8.21 and Fig.8.22. For
the magnetic moment of Ω− we take the value of µ∆− at the SU(3) limit viz.,−1.70 ±
0.06 µN . This is smaller than the value given by the Particle Data Group (−2.02 ±
0.05 µN). The mass of the Ω− from the lattice calculation (1.73 ± 0.012 GeV) over
estimates the experimental value (1.67 GeV). The higher calculated mass may yield a
lower magnetic moment in magnitude. This could be one of the reasons for a lower
magnitude of the magnetic moment.
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Figure 8.19: Effective moments of the s quark sector in the octet and the decuplet
baryons at the ninth quark mass where m2

π = 0.2153(35) GeV2.

The other reason for this discrepancy probably lies in the absence of K-Ξ loops in
the virtual transition of Ω−. The virtual transition Ω → ΞK requires the presence of a
light sea-quark flavor, whereas in QQCD, only the heavy strange flavor is present in the
quenched Ω. In reality this would have significant contribution, since Ξ is a lower mass
state than Ω−. Such absence of important loops in QQCD represents missing physics in
QQCD and causes the discrepancy from the values of Full QCD.

Figure 8.23 compares the magnetic moment of the ∆+ with that calculated for the
proton on the lattice. The simple quark model predicts that the proton and the ∆+ have
equal magnetic moments. However the interplay between the different pion-loop con-
tributions to the ∆+ magnetic moments indicate that the proton magnetic moment will
be greater than that of the ∆+ in Full QCD [49]. The ∆+ magnetic moment shows a turn
over as the quark mass becomes lighter.

In fact, all the decuplet baryons show to some extent, a turn over in the low quark
mass region, in our quenched simulations. The magnitude of the turn over is dampened
by the presence of s quark. Σ∗ has a smaller turn over than ∆. The Ξ baryons with two
s quarks show hardly any turn over.

As the light quarks get replaced by the heavier s quarks, some pion loops are re-
placed by kaon loops which are suppressed. These important contributions are sup-
pressed in QQCD causing such a turnover of the decuplet baryon magnetic moments in
the light quark mass region. Magnetic moments of the decuplet baryons are listed in
Tables A.28 to A.30.
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Figure 8.20: Magnetic moments of ∆+ and Σ∗+ as a function of m2
π. The values for Σ∗+

are plotted at shifted m2
π for clarity.

Figure 8.21: Magnetic moments of Σ∗− and Ξ∗− as a function of m2
π. The values for Ξ∗−

are plotted at shifted m2
π for clarity.
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Figure 8.22: Magnetic moments of Σ∗0 and Ξ∗0 as a function of m2
π. The values for Ξ∗0

are plotted at shifted m2
π for clarity.

Figure 8.23: Magnetic moments of ∆+ and the proton as a function of m2
π.
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8.4 Electric Quadrupole Form Factors

The E2 form factors of the spin-3/2 decuplet baryons give interesting information about
the spherical symmetry of the charge distribution and hence is the subject of theoreti-
cal scrutiny. Figure 8.24 depicts the quadrupole form factor E2 of the u quark in ∆ at
the SU(3)-flavor limit, in units of e/M2

N , as a function of time. Figure 8.25 indicates
the quadrupole form factor of the u quark in ∆ at the ninth quark mass. Here too the
employment of splittings technique facilitates an earlier plateau. As mentioned in Sec-
tions 6.4.2 and 6.5.3, we considered the symmetry of the last two terms in Eq. (6.70)
as the deciding factor in selecting the upper limit of the fit-window.

The quark sector contributions to the form factors in units of e/M2
N of all the decuplet

members are indicated in Tables A.31 to A.33. For an axially deformed object the
quadrupole form factor is related to the charge distribution through [63]

GE2(0) = M2
B

∫
d3rψ(r)(3z2 − r2)ψ(r) , (8.12)

where 3z2 − r2 is the standard operator used for quadrupole moments. A positive
quadrupole moment for a positively charged baryon indicates a prolate charge distri-
bution, while a negative quadrupole moment indicates an oblate charge distribution. In
non-relativistic models E2 form factor vanishes unless some configuration mixing is
included in the baryon ground state.

The E2 form factors of the charged decuplet baryons in units of fm2 for different
values of m2

π are listed in table A.34. The E2 form factor of the ∆0 is identically equal to
0 and other neutral baryons is close to zero. The value for the charged decuplet baryons
is non-zero indicating a deformed shape.

From our simulation we conclude that the E2 form factor of the Ω− baryon (the
value of the ∆− form factor at SU(3) flavor limit) in units of 10−2 fm2 is 0.85 ± 0.12.
The small error limits show that the value is definitely on the positive side. Ω− is a
negatively charged baryon and hence this implies an oblate shape, with the equatorial
axis being larger than the polar axis.

Similarly the E2 form factor for the ∆+ is −0.85 ± 0.12 in units of 10−2 fm2. Again,
it is worth noting the small error bar, making the lattice calculation a very precise one.
The negative E2 moment of a positive ∆+ baryon implies an oblate shape.

The E2 form factor of ∆++ is twice that of the ∆+ E2 form factor and hence it is
equal to −1.17 ± 0.23, indicating an oblate shape.



8.4 Electric Quadrupole Form Factors 111

Figure 8.24: E2 electric form factor of the u or d quark sector in ∆ at the SU(3) flavor
limit as a function of Euclidean time.

Figure 8.25: E2 electric form factor (splitting) of the quark sector in ∆ as a function of
Euclidean time at the ninth quark mass where m2

π = 0.2153(35)GeV2.
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Figure 8.26: M3 Magnetic form factor of the u or d quark in ∆ at the SU(3) flavor limit
as a function of time.

8.5 Magnetic Octupole Moments

The magnetic octupole form factors (M3) are consistent with zero. Like E2, the M3
transitions require nonzero orbital angular momentum admixtures in the ground state
wave function [63]. Our statistics are not sufficient to reveal such admixtures.

Figure 8.26 is a plot of the M3 form factor of quark sector in the ∆ as function of
time at the sixth quark mass. Figure 8.27 is the M3 form factor at the ninth quark mass,
where a reasonable plateau is realized due to the splittings method. Tables (A.35) to
(A.37) list the quark sector M3 form factors.

8.6 Summary

We have performed an extensive calculation of the electromagnetic properties of the
decuplet baryons at the quark level and the baryon level, including the quadrupole and
octupole form factors of the spin-3/2 baryons. The splittings technique makes the ex-
traction of form factors more reliable, with lower uncertainties. We find that the quarks
in the decuplet are not as sensitive to the environment as their octet counterparts are. We
have discovered that the decuplet baryon radii are smaller than that of the octet baryons,
contradicting the simple quark model. The suppression of loop contributions in QQCD
reduces the decuplet magnetic moment considerably. With the help of the E2 form
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Figure 8.27: M3 Magnetic form factor (splitting) of the u or d quark in ∆ as a function
of time at the ninth quark mass where m2

π = 0.2153(35)GeV2..

factors and the quadrupole moments we predict an oblate shape for the ∆+, ∆++ and
the Ω− baryons. It will be interesting to confront this prediction with an experimental
measurement of the Ω− quadrupole form factor.
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Chapter 9

Conclusions

This thesis reports details of the work I have done to calculate electromagnetic proper-
ties of the octet and decuplet baryons using numerical simulations of Lattice QCD. In
Chapter 2 the fundamental concepts of elementary particles are given with special em-
phasis on the properties of octet and decuplet baryons. Chapter 3 captures the essential
features and symmetries of Quantum Chromodynamics.

In Chapter 4, the role and methodology of Lattice QCD in calculation of observables
is discussed. Finite volume and lattice spacing are the main causes for the artifacts and
a number of innovative methods are used to reduce the errors. We have touched upon
the various actions used.

For the current simulation we use the FLIC fermion action which offers reduced
errors, of the order O(a2) while maintaining current conservation. Another major ad-
vantage of using the FLIC fermion action is the access it provides to very light quark
mass regime. We have succeeded in performing calculations efficiently at pion masses
as low as 300 MeV.

In Chapter 5 a Chiral Perturbation Theory perspective of the baryon properties is
given, since we compare our results with Quenched Chiral Perturbation theory for the
octet baryons. The meson cloud around the baryons causes a non-analytic divergence in
charge radii and magnetic moments of the baryons. Considering different pion loops in
virtual decays of baryons, chiral coefficients for different baryons for all possible virtual
transition channels are given. The charge radii and magnetic moments are expanded in
terms of chiral coefficients. Hence the value of chiral coefficients gives a prediction of
the non-analyticity of the charge radii and magnetic moments. For quick reference we
have included the tables of chiral coefficients at the quark level and the baryon level for
the octet baryons that is available from the literature.
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Charge radii, magnetic radii and magnetic moments are calculated from the elec-
tric and magnetic form factors, which are calculated on the lattice. A detailed formal-
ism with the required equations is given in Chapter 6, for the octet and the decuplet
baryons. The form factors can be expressed as ratios of three-point correlation func-
tions to two-point correlation functions. These ratios are calculated on the lattice for
400 configuration generated using Monte-Carlo methods. The data is then fit using the
normal curve-fitting methods and averaging methods to extract the ratio of correlation
functions with Jack-knifed errors.

We have calculated χ2-per-degree-of-freedom to select the fit regime. We used co-
variance matrix methods to calculate the χ2-per-degree-of-freedom. The details of the
selection criteria are listed in Chapter 6, along with other techniques usually employed
in Lattice QCD. Detailed results and discussions are given in Chapters 7 and 8.

We observe a non-analytic behavior in the charge radii and magnetic moments of
the proton. The results are consistent with the predictions of the Quenched Chiral Per-
turbation theory, for the charged octet baryons.

We calculate the properties of the baryons from the properties of the quarks, using
the appropriate charge factors. In the case of neutron, made of u and d quarks, the
charge radii in the quark sectors are very close to each other. Combined with the proper
charge factors, these contributions nearly cancel each other, leaving only their errors.
Moreover, the cancellation is extremely sensitive to the selection of the fit-window.
Hence for the neutron properties, it is necessary to approach the physical quark mass
more closely to understand the chiral behavior.

We have held the strange quark mass fixed in our simulations. But the strange quark
contribution to the properties of baryons depends upon the surrounding u and d quarks.

Our results exhibit the SU(3)-flavor symmetry at the ninth quark mass when m2
π =

0.2153(35)GeV2, as expected. The quarks in octet baryons exhibit environmental sen-
sitivity, which increases with decrease in quark mass.

Simple quark model assumes that the contribution of u and d quarks to the magnetic
moment of Λ0 is zero and the entire magnetic moment of Λ0 arises from the s quark.
Our results prove that u and d quark contribute the magnetic moment of Λ0, though
much smaller than the contribution of the s quark.

The decuplet baryon results are analyzed and discussed in Chapter 8. Quarks in
the decuplet baryon exhibit far less environmental sensitivity than those in the octet
baryons.
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The charge radii of the decuplet baryons are smaller than that of the octet baryons,
which is a surprising result. The quarks in the decuplet baryons are identical states and
one expects a small repulsion between them, causing a higher charge distribution. The
fact that they are consistently lower than that of the octet baryons questions the validity
of any such hyperfine repulsion model.

The magnetic moments of the decuplet baryons exhibit a small turn over as the
quark mass reduces. This is a purely quenching effect. The magnitude of turn over is
larger for baryons with lighter quarks. As the heavier s quark replaces the lighter u or d
quarks, the turn over gets smaller. For the Ξ∗ with two s quarks there is no visible turn
over in the low quark mass regime.

The Ω− baryon consists of three s quarks. Hence its properties must be equal to
those of the other baryons in the SU(3)-flavor limit, when the masses of u and d quarks
equal that of the s quark. For charge consistency, we took the values of ∆− at the SU(3)-
flavor limit as the properties of Ω−.

The Ω− is the only decuplet baryon that is stable against the strong interactions and
hence any theoretical prediction of its properties is of interest. Our result for the mass of
Ω− overestimates the experimental value, while the magnetic moment underestimates
the experimental value.

The K-Ξ loops are absent in the virtual decays of the Ω− in quenched calculations
while this would make non-trivial contributions in full QCD. This is one of the reasons
for the underprediction of the magnetic moment of the Ω−.

The decuplet baryons being spin-3/2 particles have four electromagnetic properties.
We have presented E2 form factor results for the decuplet baryons which give impor-
tant information about the symmetry of the charge distribution. A zero E2 form factor
would mean a spherically symmetric distribution while a non-zero value implies a pro-
late or an oblate distribution.

Our results for E2 are with an unprecedented precision which helps us to establish
that the decuplet baryons are indeed deformed. The value of E2 form factor for ∆+ and
∆++ is negative while that of Ω− is positive. Considering thatΩ− is a negatively charged
baryon, this would mean that all of them have an oblate charge distribution.

The results for M3 form factor are consistent with zero.

The next step in this direction would be the calculation of the decuplet to octet tran-
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sition moments.

It would also be quite interesting to explore if the lattice results showed any depen-
dence on the volume of the lattice and lattice spacing. Reducing the lattice spacing and
increasing the volume might remove errors and show any missing physics.

Lattice simulations with increased number of configurations should improve the
statistics. Any improvement in actions that could give further access to the lower quark
masses will greatly enable to study the chiral curvature of the properties.
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Tables

Table A.1: Quark sector contributions to the electric form factors of the nucleon at
Q2 = 0.227(2) GeV2. Sector contributions are for a single quark having unit charge.
The fit windows are selected using the criteria outlined in Sec. 6.5.3.

m2
π up dp

(GeV2) fit value fit window χ2/dof fit value fit window χ2/dof

0.9972(55) 0.798(5) 21 − 25 1.02 0.805(4) 21 − 25 2.36
0.8947(54) 0.789(5) 21 − 25 0.89 0.796(5) 21 − 25 2.53
0.7931(53) 0.779(6) 21 − 25 0.64 0.788(5) 21 − 25 2.21
0.6910(35) 0.768(6) 21 − 25 0.86 0.780(5) 21 − 25 1.57
0.5925(33) 0.756(7) 21 − 25 0.80 0.769(6) 21 − 25 1.42
0.4854(31) 0.740(9) 21 − 25 0.62 0.755(12) 21 − 25 1.19
0.3795(31) 0.725(10) 19 − 23 1.23 0.741(11) 19 − 23 0.77
0.2839(33) 0.708(12) 19 − 23 1.37 0.723(14) 19 − 23 1.31
0.2153(35) 0.693(15) 19 − 23 0.82 0.700(20) 19 − 23 1.23
0.1384(43) 0.682(17) 16 − 20 1.02 0.678(25) 16 − 20 0.89
0.0939(44) 0.666(25) 16 − 19 1.47 0.644(38) 16 − 19 1.28
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Table A.2: Quark sector contributions to the electric form factors of Σ baryons at Q2 =

0.227(2) GeV2. Sector contributions are for a single quark having unit charge. The fit
windows are selected using the criteria outlined in Sec. 6.5.3.

m2
π uΣ or dΣ sΣ

(GeV2) fit value fit window χ2/dof fit value fit window χ2/dof

0.9972(55) 0.793(6) 21 − 25 0.91 0.759(6) 21 − 25 1.70
0.8947(54) 0.785(7) 21 − 25 0.86 0.758(7) 21 − 25 1.71
0.7931(53) 0.776(7) 21 − 25 0.66 0.757(8) 21 − 25 1.59
0.6910(35) 0.766(6) 21 − 25 1.00 0.757(6) 21 − 25 1.40
0.5925(33) 0.755(7) 21 − 25 0.90 0.756(7) 21 − 25 1.36
0.4854(31) 0.740(9) 21 − 25 0.62 0.755(9) 21 − 25 1.19
0.3795(31) 0.726(10) 19 − 23 1.46 0.754(10) 19 − 23 0.37
0.2839(33) 0.711(12) 19 − 23 1.78 0.753(11) 19 − 23 0.58
0.2153(35) 0.700(14) 19 − 23 0.73 0.752(13) 19 − 23 0.39
0.1384(43) 0.680(18) 19 − 21 0.73 0.754(17) 19 − 21 0.18
0.0939(44) 0.670(23) 19 − 21 1.30 0.750(26) 19 − 21 0.25

Table A.3: Quark sector contributions to the electric form factors of Λ at Q2 =

0.227(2) GeV2. Sector contributions are for a single quark having unit charge. The
fit windows are selected using the criteria outlined in Sec. 6.5.3.

m2
π uΛ or dΛ sΛ

(GeV2) fit value fit window χ2/dof fit value fit window χ2/dof

0.9972(55) 0.803(5) 21 − 25 1.20 0.745(8) 21 − 25 0.64
0.8947(54) 0.794(6) 21 − 25 1.23 0.744(9) 21 − 25 0.58
0.7931(53) 0.785(7) 21 − 25 1.06 0.744(10) 21 − 25 0.54
0.6910(35) 0.775(6) 21 − 25 1.17 0.738(8) 21 − 25 0.55
0.5925(33) 0.765(7) 21 − 25 1.12 0.737(9) 21 − 25 0.48
0.4854(31) 0.750(8) 21 − 25 1.02 0.735(10) 21 − 25 0.74
0.3795(31) 0.736(9) 19 − 23 0.94 0.734(11) 19 − 23 0.88
0.2839(33) 0.720(11) 19 − 23 1.17 0.730(12) 19 − 23 1.05
0.2153(35) 0.704(13) 19 − 23 1.23 0.727(13) 19 − 23 0.55
0.1384(43) 0.694(13) 16 − 19 3.79 0.727(13) 16 − 17 0.62
0.0939(44) 0.686(13) 16 − 17 2.43 0.729(14) 16 − 17 0.29
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Table A.4: Quark sector contributions to the electric form factors of Ξ baryons at Q2 =

0.227(2) GeV2. Sector contributions are for a single quark having unit charge. The fit
windows are selected using the criteria outlined in Sec. 6.5.3.

m2
π sΞ uΞ or dΞ

(GeV2) fit value fit window χ2/dof fit value fit window χ2/dof

0.9972(55) 0.747(9) 21 − 25 0.34 0.804(8) 21 − 25 1.60
0.8947(54) 0.747(9) 21 − 25 0.36 0.794(8) 21 − 25 1.53
0.7931(53) 0.746(10) 21 − 25 0.37 0.785(9) 21 − 25 1.52
0.6910(35) 0.742(8) 21 − 25 0.54 0.778(7) 21 − 25 1.38
0.5925(33) 0.741(8) 21 − 25 0.55 0.768(8) 21 − 25 1.24
0.4854(31) 0.740(9) 21 − 25 0.62 0.755(9) 21 − 25 1.19
0.3795(31) 0.739(9) 19 − 23 0.70 0.740(10) 21 − 25 1.45
0.2839(33) 0.738(10) 19 − 23 1.18 0.723(13) 21 − 25 1.22
0.2153(35) 0.736(10) 19 − 23 1.42 0.709(16) 21 − 25 0.81
0.1384(43) 0.733(10) 19 − 22 0.52 0.690(19) 20 − 23 0.71
0.0939(44) 0.725(11) 19 − 23 1.21 0.672(22) 20 − 23 0.59

Table A.5: Quark sector contributions to the magnetic form factors of the nucleon at
Q2 = 0.227(2) GeV2. Sector contributions are for a single quark having unit charge.
The fit windows are selected using the criteria outlined in Sec. 6.5.3.

m2
π (GeV2) up (µN) dp (µN)

fit value fit window χ2/dof fit value fit window χ2/dof

0.9972(55) 0.765(12) 19 − 23 1.78 −0.295(7) 18 − 22 0.61
0.8947(54) 0.785(14) 19 − 23 1.33 −0.298(8) 18 − 22 0.51
0.7931(53) 0.804(16) 19 − 23 1.01 −0.301(9) 18 − 22 0.43
0.6931(51) 0.817(13) 19 − 23 1.00 −0.301(8) 18 − 22 0.91
0.5944(51) 0.838(15) 19 − 23 0.73 −0.304(10) 18 − 22 0.79
0.4869(50) 0.861(20) 19 − 23 0.64 −0.306(12) 18 − 22 0.86
0.3795(31) 0.893(24) 17 − 21 0.14 −0.314(15) 16 − 18 1.64
0.2839(33) 0.932(31) 17 − 21 0.14 −0.313(19) 16 − 19 1.24
0.2153(35) 0.967(42) 17 − 21 0.61 −0.313(31) 16 − 20 0.53
0.1384(43) 1.034(52) 16 − 20 1.12 −0.309(40) 15 − 19 0.49
0.0939(44) 1.024(72) 15 − 17 0.82 −0.335(54) 15 − 17 2.92



122 A. Tables

Table A.6: Quark sector contributions to the magnetic form factors of Σ baryons at
Q2 = 0.227(2) GeV2. Sector contributions are for a single quark having unit charge.
The fit windows are selected using the criteria outlined in Sec. 6.5.3.

m2
π (GeV2) uΣ or dΣ (µN) sΣ (µN)

fit value fit window χ2/dof fit value fit window χ2/dof

0.9972(55) 0.775(14) 19 − 23 1.22 −0.316(10) 18 − 22 0.73
0.8947(54) 0.793(16) 19 − 23 1.10 −0.314(11) 18 − 22 0.63
0.7931(53) 0.810(18) 19 − 23 0.96 −0.312(11) 18 − 22 0.55
0.6910(35) 0.821(14) 19 − 23 0.98 −0.309(9) 18 − 22 0.94
0.5925(33) 0.840(16) 19 − 23 0.82 −0.308(10) 18 − 22 0.86
0.4854(31) 0.861(20) 19 − 23 0.64 −0.306(12) 18 − 22 0.86
0.3795(31) 0.886(23) 17 − 21 0.19 −0.308(13) 16 − 18 0.42
0.2839(33) 0.914(27) 17 − 21 0.26 −0.310(15) 16 − 18 0.03
0.2153(35) 0.941(32) 17 − 21 0.61 −0.317(19) 16 − 18 0.04
0.1384(43) 0.964(33) 15 − 20 1.57 −0.317(24) 16 − 18 0.92
0.0939(44) 0.969(41) 15 − 17 0.11 −0.322(28) 16 − 18 1.08

Table A.7: Quark sector contributions to the magnetic form factors of Λ at Q2 =

0.227(2) GeV2. Sector contributions are for a single quark having unit charge. The
fit windows are selected using the criteria outlined in Sec. 6.5.3.

m2
π (GeV2) uΛ or dΛ (µN) sΛ (µN)

fit value fit window χ2/dof fit value fit window χ2/dof

0.9972(55) 0.069(9) 19 − 23 1.26 1.200(22) 18 − 22 1.38
0.8947(54) 0.072(9) 19 − 23 1.20 1.207(22) 18 − 22 1.17
0.7931(53) 0.075(10) 19 − 23 1.07 1.214(24) 18 − 22 0.99
0.6910(35) 0.079(8) 19 − 23 1.08 1.217(17) 18 − 22 0.95
0.5925(33) 0.083(9) 19 − 23 1.00 1.228(18) 18 − 22 0.80
0.4854(31) 0.087(11) 19 − 23 0.88 1.241(21) 18 − 22 0.75
0.3795(31) 0.091(12) 17 − 21 0.55 1.259(22) 16 − 20 0.59
0.2839(33) 0.097(13) 17 − 21 0.29 1.277(25) 16 − 20 0.42
0.2153(35) 0.099(17) 17 − 21 0.36 1.293(28) 16 − 20 0.42
0.1384(43) 0.105(18) 15 − 16 1.79 1.308(33) 16 − 18 0.94
0.0939(44) 0.105(22) 15 − 16 0.19 1.315(37) 15 − 16 1.98
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Table A.8: Quark sector contributions to the magnetic form factors of Ξ baryons at
Q2 = 0.227(2) GeV2. Sector contributions are for a single quark having unit charge.
The fit windows are selected using the criteria outlined in Sec. 6.5.3.

m2
π (GeV2) sΞ (µN) uΞ or dΞ (µN)

fit value fit window χ2/dof fit value fit window χ2/dof

0.9972(55) 0.846(27) 19 − 23 0.60 −0.290(10) 18 − 22 0.19
0.8947(54) 0.849(27) 19 − 23 0.67 −0.294(11) 18 − 22 0.21
0.7931(53) 0.851(28) 19 − 23 0.75 −0.299(12) 18 − 22 0.21
0.6931(51) 0.855(19) 19 − 23 0.41 −0.300(10) 18 − 22 0.59
0.5944(51) 0.858(19) 19 − 23 0.49 −0.303(11) 18 − 22 0.68
0.4869(50) 0.861(20) 19 − 23 0.64 −0.306(12) 18 − 22 0.86
0.3795(31) 0.866(21) 16 − 20 0.84 −0.311(13) 16 − 20 1.77
0.2839(33) 0.871(21) 16 − 20 0.78 −0.316(14) 16 − 20 1.66
0.2153(35) 0.875(22) 16 − 20 1.04 −0.322(15) 16 − 20 0.77
0.1384(43) 0.879(22) 16 − 20 1.16 −0.328(17) 15 − 19 0.86
0.0939(44) 0.879(23) 16 − 20 0.55 −0.333(18) 15 − 19 1.00

Table A.9: Electric charge radii of the nucleons with individual quark contributions,in
fm2 for different m2

π values in GeV2.

m2
π up dp p n

0.9972(55) 0.243(7) 0.231(6) 0.247(8) −0.007(3)
0.8947(54) 0.256(8) 0.245(7) 0.259(9) −0.007(3)
0.7931(53) 0.270(9) 0.257(8) 0.273(10) −0.008(4)
0.6910(35) 0.288(9) 0.270(9) 0.293(10) −0.012(4)
0.5925(33) 0.307(11) 0.286(10) 0.313(12) −0.014(5)
0.4854(31) 0.332(14) 0.309(14) 0.339(16) −0.015(7)
0.3795(31) 0.358(17) 0.332(17) 0.367(19) −0.017(8)
0.2839(33) 0.389(22) 0.362(24) 0.397(23) −0.017(11)
0.2153(35) 0.416(27) 0.403(36) 0.420(29) −0.008(16)
0.1384(43) 0.437(30) 0.444(46) 0.435(32) 0.005(21)
0.0939(44) 0.467(48) 0.510(77) 0.452(52) 0.029(40)
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Table A.10: Electric charge radii of the Σ baryons with individual quark contributions
in fm2 for different m2

π values in GeV2.

m2
π uΣ sΣ Σ+ Σ0 Σ−

0.9972(55) 0.249(9) 0.301(10) 0.233(10) −0.017(3) −0.266(9)
0.8947(54) 0.262(10) 0.302(11) 0.249(12) −0.013(3) −0.275(9)
0.7931(53) 0.276(11) 0.304(12) 0.266(15) −0.010(3) −0.285(11)
0.6910(35) 0.291(10) 0.304(10) 0.286(11) −0.005(2) −0.295(9)
0.5925(33) 0.309(11) 0.306(11) 0.309(13) 0.001(3) −0.308(11)
0.4854(31) 0.332(14) 0.309(14) 0.340(16) 0.008(4) −0.324(13)
0.3795(31) 0.356(16) 0.310(15) 0.371(19) 0.015(4) −0.341(15)
0.2839(33) 0.382(19) 0.312(18) 0.405(23) 0.023(5) −0.359(18)
0.2153(35) 0.401(25) 0.315(21) 0.430(29) 0.029(6) −0.372(22)
0.1384(43) 0.437(32) 0.311(26) 0.480(40) 0.042(8) −0.395(28)
0.0939(44) 0.457(43) 0.318(41) 0.503(57) 0.046(15) −0.410(37)

Table A.11: Electric charge radii of the Λ0 baryon with individual quark contributions
in fm2 for different m2

π values n GeV2.

m2
π uΛ sΛ Λ0

0.9972(55) 0.235(8) 0.322(13) −0.029(3)
0.8947(54) 0.248(9) 0.323(14) −0.025(3)
0.7931(53) 0.262(10) 0.324(15) −0.021(3)
0.6910(35) 0.276(9) 0.335(13) −0.019(3)
0.5925(33) 0.293(10) 0.336(15) −0.014(3)
0.4854(31) 0.316(13) 0.339(16) −0.008(4)
0.3795(31) 0.340(15) 0.343(17) −0.001(5)
0.2839(33) 0.367(18) 0.350(19) 0.006(5)
0.2153(35) 0.395(23) 0.357(22) 0.013(6)
0.1384(43) 0.414(24) 0.356(22) 0.019(63)
0.0939(44) 0.428(25) 0.354(23) 0.025(71)
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Table A.12: Electric charge radii of the Ξ baryons with individual quark contributions
in fm2 for different m2

π values in GeV2.

m2
π sΞ uΞ Ξ− Ξ0

0.9972(55) 0.319(14) 0.235(11) −0.290(12) −0.056(7)
0.8947(54) 0.320(15) 0.249(12) −0.296(13) −0.047(7)
0.7931(53) 0.322(16) 0.262(13) −0.301(14) −0.039(8)
0.6910(35) 0.329(13) 0.273(11) −0.310(11) −0.037(6)
0.5925(33) 0.329(14) 0.288(12) −0.316(12) −0.028(7)
0.4854(31) 0.332(14) 0.309(14) −0.324(13) −0.015(7)
0.3795(31) 0.334(15) 0.333(17) −0.333(14) −0.0003(8)
0.2839(33) 0.337(15) 0.361(21) −0.345(16) 0.016(10)
0.2153(35) 0.340(16) 0.385(27) −0.355(18) 0.029(13)
0.1384(43) 0.345(16) 0.419(34) −0.369(19) 0.049(19)
0.0939(44) 0.358(18) 0.451(41) −0.389(23) 0.062(22)

Table A.13: Magnetic moment of the nucleons with individual quark contributions in
nuclear magnetons for different values of m2

π in GeV2.

m2
π up dp p n

0.9972(55) 0.960(13) −0.366(8) 1.401(18) −0.883(11)
0.8947(54) 0.995(15) −0.373(9) 1.451(21) −0.913(12)
0.7931(53) 1.032(18) −0.382(10) 1.503(25) −0.943(14)
0.6910(35) 1.063(14) −0.386(10) 1.547(19) −0.967(12)
0.5925(33) 1.108(17) −0.395(12) 1.609(24) −1.002(15)
0.4854(31) 1.163(23) −0.406(16) 1.686(33) −1.046(20)
0.3795(31) 1.231(29) −0.424(20) 1.783(41) −1.103(25)
0.2839(33) 1.317(41) −0.433(28) 1.900(57) −1.167(36)
0.2153(35) 1.394(62) −0.447(47) 2.010(86) −1.227(56)
0.1384(43) 1.517(79) −0.456(59) 2.17(11) −1.315(71)
0.0939(44) 1.54(11) −0.521(87) 2.22(15) −1.372(92)
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Table A.14: Magnetic moments of the Ξ baryons with individual quark contributions in
nuclear magnetons for different values of m2

π in GeV2.

m2
π sΞ uΞ Ξ0 Ξ−

0.9972(55) 1.132(33) −0.361(13) −0.996(23) −0.635(22)
0.8947(54) 1.137(34) −0.371(14) −1.005(24) −0.634(23)
0.7931(53) 1.141(35) −0.381(15) −1.014(25) −0.634(24)
0.6910(35) 1.152(21) −0.385(13) −1.024(18) −0.640(14)
0.5925(33) 1.157(22) −0.395(14) −1.034(19) −0.640(15)
0.4854(31) 1.163(24) −0.406(16) −1.046(20) −0.640(16)
0.3795(31) 1.171(24) −0.421(18) −1.062(21) −0.642(17)
0.2839(33) 1.181(25) −0.437(20) −1.079(23) −0.642(17)
0.2153(35) 1.189(26) −0.454(23) −1.095(25) −0.642(18)
0.1384(43) 1.199(29) −0.475(27) −1.115(29) −0.641(20)
0.0939(44) 1.211(29) −0.496(31) −1.138(32) −0.643(20)

Table A.15: Magnetic moment of the Σ baryons with individual quark contributions in
nuclear magnetons for different values of m2

π in GeV2.

m2
π uΣ sΣ Σ+ Σ0 Σ−

0.9972(55) 0.976(15) −0.416(13) 1.444(21) 0.464(7) −0.512(10)
0.8947(54) 1.000(18) −0.414(14) 1.484(24) 0.474(8) −0.535(12)
0.7931(53) 1.044(20) −0.412(15) 1.530(28) 0.485(9) −0.559(14)
0.6910(35) 1.072(15) −0.408(12) 1.565(21) 0.493(7) −0.579(11)
0.5925(33) 1.113(18) −0.407(13) 1.620(26) 0.507(8) −0.607(13)
0.4854(31) 1.163(24) −0.406(16) 1.686(33) 0.522(10) −0.640(16)
0.3795(31) 1.221(27) −0.409(18) 1.764(38) 0.543(12) −0.678(18)
0.2839(33) 1.286(34) −0.412(21) 1.852(47) 0.566(14) −0.720(22)
0.2153(35) 1.344(42) −0.421(27) 1.932(58) 0.588(18) −0.756(28)
0.1384(43) 1.418(50) −0.421(34) 2.031(72) 0.613(23) −0.805(32)
0.0939(44) 1.446(77) −0.429(42) 2.07(10) 0.625(30) −0.821(53)



127

Table A.16: Magnetic moment of the Λ0 in nuclear magnetons with quark contributions
for different values of m2

π in GeV2.

m2
π uΛ sΛ Λ0

0.9972(55) 0.086(10) 1.611(29) −0.509(9)
0.8947(54) 0.091(12) 1.621(20) −0.510(10)
0.7931(53) 0.095(13) 1.631(32) −0.512(10)
0.6910(35) 0.102(11) 1.650(21) −0.516(8)
0.5925(33) 0.109(12) 1.666(24) −0.519(8)
0.4854(31) 0.117(14) 1.689(28) −0.524(10)
0.3795(31) 0.124(16) 1.715(32) −0.530(11)
0.2839(33) 0.135(18) 1.749(37) −0.538(13)
0.2153(35) 0.140(24) 1.780(43) −0.547(16)
0.1384(43) 0.151(27) 1.799(49) −0.549(18)
0.0939(44) 0.153(31) 1.804(53) −0.550(20)
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Table A.17: Magnetic radii of the nucleons and Σ baryons measured in fm2 for different
quark masses in GeV2.

m2
π p n Σ+ Σ0 Σ−

0.9972(55) 0.241(7) 0.240(6) 0.254(9) 0.264(9) 0.236(10)
0.8947(54) 0.255(8) 0.252(7) 0.265(10) 0.273(9) 0.252(10)
0.7931(53) 0.269(9) 0.266(9) 0.278(10) 0.283(10) 0.269(12)
0.6910(35) 0.286(9) 0.283(8) 0.292(10) 0.294(9) 0.287(11)
0.5925(33) 0.305(10) 0.301(10) 0.309(11) 0.308(11) 0.309(12)
0.4854(31) 0.330(14) 0.326(13) 0.330(14) 0.326(13) 0.337(15)
0.3795(31) 0.356(17) 0.351(16) 0.352(16) 0.344(15) 0.365(18)
0.2839(33) 0.387(21) 0.382(21) 0.377(20) 0.364(18) 0.396(22)
0.2153(35) 0.415(27) 0.413(28) 0.395(24) 0.380(22) 0.418(27)
0.1384(43) 0.438(30) 0.439(32) 0.429(32) 0.407(29) 0.462(36)
0.0939(44) 0.470(48) 0.478(50) 0.446(42) 0.423(38) 0.483(48)

Table A.18: Magnetic radii of the Λ0 and Ξ baryons measured in fm2 for different quark
masses in GeV2.

m2
π Λ Ξ0 Ξ−

0.9972(55) 0.328(14) 0.298(13) 0.337(16)
0.8947(54) 0.328(14) 0.302(13) 0.335(17)
0.7931(53) 0.328(16) 0.306(13) 0.334(17)
0.6910(35) 0.339(14) 0.314(11) 0.340(14)
0.5925(33) 0.339(15) 0.319(12) 0.339(13)
0.4854(31) 0.342(17) 0.326(13) 0.337(15)
0.3795(31) 0.343(18) 0.333(14) 0.333(16)
0.2839(33) 0.348(20) 0.343(16) 0.332(16)
0.2153(35) 0.353(22) 0.352(17) 0.330(16)
0.1384(43) 0.351(22) 0.365(19) 0.328(17)
0.0939(44) 0.347(24) 0.384(22) 0.336(18)
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Table A.19: Quark sector contributions to the electric form factor E0 of ∆ at Q2 =

0.227(2) GeV2. Sector contributions are for single quark having unit charge. The fit
windows are selected using the criteria outlined in Sec. 6.5.3.The quark contribution at
the SU(3) limit when m2

π = 0.4854GeV2 provides the s quark contribution in Ω−.

m2
π u∆ d∆

(GeV2) fit value fit window χ2/dof fit value fit window χ2/dof

0.9972(55) 0.800(5) 20 − 24 1.47 0.800(6) 20 − 24 1.47
0.8947(54) 0.794(6) 20 − 24 0.95 0.794(6) 20 − 24 0.95
0.7931(53) 0.788(7) 20 − 24 0.79 0.788(7) 20 − 24 0.79
0.6910(35) 0.773(6) 20 − 24 1.46 0.773(6) 20 − 24 1.46
0.5925(33) 0.764(7) 20 − 24 1.07 0.764(7) 20 − 24 1.07
0.4854(31) 0.755(10) 20 − 24 0.53 0.755(10) 20 − 24 0.53
0.3795(31) 0.744(11) 17 − 20 0.73 0.744(11) 17 − 20 0.73
0.2839(33) 0.733(13) 17 − 20 0.79 0.733(13) 17 − 20 0.79
0.2153(35) 0.725(16) 17 − 19 0.46 0.725(16) 17 − 19 0.46
0.1384(43) 0.717(22) 17 − 19 0.23 0.717(22) 17 − 19 0.23
0.0939(44) 0.693(33) 17 − 19 0.34 0.693(33) 17 − 19 0.34

Table A.20: Quark sector contributions to the electric form factor E0 of Σ∗ at Q2 =

0.227(2) GeV2. Sector contributions are for a single quark having unit charge. The fit
windows are selected using the criteria outlined in Sec. 6.5.3.

m2
π uΣ∗ sΣ∗

(GeV2) fit value fit window χ2/dof fit value fit window χ2/dof

0.9972(55) 0.804(6) 20 − 24 0.85 0.759(9) 20 − 24 0.54
0.8947(54) 0.798(7) 20 − 24 0.65 0.761(9) 20 − 24 0.50
0.7931(53) 0.792(8) 20 − 24 0.63 0.763(10) 20 − 24 0.49
0.6910(35) 0.774(6) 20 − 24 1.15 0.752(8) 20 − 24 0.97
0.5925(33) 0.764(8) 20 − 24 0.91 0.753(8) 20 − 24 0.79
0.4854(31) 0.755(10) 20 − 24 0.53 0.755(10) 20 − 24 0.53
0.3795(31) 0.744(11) 17 − 20 0.89 0.754(10) 17 − 20 0.22
0.2839(33) 0.733(12) 17 − 20 0.81 0.754(11) 17 − 20 0.37
0.2153(35) 0.727(14) 17 − 19 0.15 0.753(11) 17 − 19 0.21
0.1384(43) 0.719(18) 17 − 19 0.07 0.753(12) 17 − 19 0.05
0.0939(44) 0.710(23) 17 − 19 0.22 0.746(14) 17 − 19 0.63
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Table A.21: Quark sector contributions to the electric form factor E0 of Ξ∗ at Q2 =

0.227(2) GeV2. Sector contributions are for a single quark having unit charge. The fit
windows are selected using the criteria outlined in Sec. 6.5.3.

m2
π sΞ∗ uΞ∗

(GeV2) fit value fit window χ2/dof fit value fit window χ2/dof

0.9972(55) 0.765(10) 20 − 24 0.47 0.809(8) 20 − 24 0.66
0.8947(54) 0.766(11) 20 − 24 0.47 0.802(8) 20 − 24 0.58
0.7931(53) 0.767(11) 20 − 24 0.49 0.795(9) 20 − 24 0.61
0.6910(35) 0.753(9) 20 − 24 0.73 0.775(7) 20 − 24 0.89
0.5925(33) 0.754(9) 20 − 24 0.66 0.765(8) 20 − 24 0.75
0.4854(31) 0.755(10) 20 − 24 0.53 0.755(10) 20 − 24 0.53
0.3795(31) 0.754(10) 17 − 20 0.19 0.744(10) 17 − 20 1.19
0.2839(33) 0.754(10) 17 − 20 0.22 0.734(11) 17 − 20 0.77
0.2153(35) 0.754(10) 17 − 19 0.03 0.727(13) 17 − 19 0.09
0.1384(43) 0.755(11) 17 − 19 0.11 0.720(14) 17 − 19 0.10
0.0939(44) 0.754(11) 17 − 19 0.66 0.714(11) 17 − 19 0.19

Table A.22: Quark sector contributions to the magnetic form factor M1 of ∆ at Q2 =

0.227(2) GeV2. Sector contributions are for a single quark having unit charge. The fit
windows are selected using the criteria outlined in Sec. 6.5.3. The quark contribution at
the SU(3) limit when m2

π = 0.4854GeV2 provides the s quark contribution in Ω−.

m2
π (GeV2) u∆ (µN) d∆ (µN)

fit value fit window χ2/dof fit value fit window χ2/dof

0.9972(55) 1.173(25) 19 − 24 1.45 1.173(25) 19 − 24 1.45
0.8947(54) 1.201(29) 19 − 24 1.14 1.201(29) 19 − 24 1.14
0.7931(53) 1.230(33) 19 − 24 0.95 1.230(33) 19 − 24 0.95
0.6910(35) 1.248(32) 19 − 24 1.25 1.248(32) 19 − 24 1.25
0.5925(33) 1.269(41) 19 − 24 0.79 1.269(41) 19 − 24 0.79
0.4854(31) 1.280(56) 19 − 24 0.31 1.280(56) 19 − 24 0.31
0.3795(31) 1.301(64) 17 − 21 1.37 1.301(64) 17 − 21 1.37
0.2839(33) 1.312(75) 17 − 19 1.14 1.312(75) 17 − 19 1.14
0.2153(35) 1.309(89) 17 − 19 0.91 1.309(89) 17 − 19 0.91
0.1384(43) 1.28(12) 17 − 18 1.26 1.28(12) 17 − 18 1.26
0.0939(44) 1.11(22) 17 − 18 1.79 1.11(22) 17 − 18 1.79
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Table A.23: Quark sector contributions to the magnetic form factor M1 of Σ∗ at Q2 =

0.227(2) GeV2. Sector contributions are for a single quark having unit charge. The fit
windows are selected using the criteria outlined in Sec. 6.5.3.

m2
π (GeV2) uΣ∗ or dΣ∗ (µN) sΣ∗ (µN)

fit value fit window χ2/dof fit value fit window χ2/dof

0.9972(55) 1.191(31) 19 − 24 1.07 1.268(40) 19 − 24 0.51
0.8947(54) 1.216(35) 19 − 24 0.90 1.275(42) 19 − 24 0.49
0.7931(53) 1.242(39) 19 − 24 0.82 1.282(45) 19 − 24 0.47
0.6910(35) 1.254(37) 19 − 24 0.94 1.275(41) 19 − 24 0.69
0.5925(33) 1.272(45) 19 − 24 0.64 1.278(47) 19 − 24 0.51
0.4854(31) 1.280(56) 19 − 24 0.31 1.280(56) 19 − 24 0.31
0.3795(31) 1.297(62) 17 − 21 1.72 1.289(60) 17 − 21 0.70
0.2839(33) 1.306(68) 17 − 19 1.88 1.299(65) 17 − 19 0.04
0.2153(35) 1.305(76) 17 − 19 1.84 1.309(69) 17 − 19 0.08
0.1384(43) 1.299(89) 17 − 19 3.44 1.330(74) 17 − 19 0.44
0.0939(44) 1.249(12) 17 − 18 2.55 1.303(88) 17 − 18 0.16

Table A.24: Quark sector contributions to the magnetic form factor M1 of Ξ∗ at Q2 =

0.227(2) GeV2. Sector contributions are for a single quark having unit charge. The fit
windows are selected using the criteria outlined in Sec. 6.5.3.

m2
π (GeV2) sΞ∗ (µN) uΞ∗ or dΞ∗ (µN)

fit value fit window χ2/dof fit value fit window χ2/dof

0.9972(55) 1.286(50) 19 − 24 0.45 1.208(39) 19 − 24 0.84
0.8947(54) 1.289(52) 19 − 24 0.46 1.231(42) 19 − 24 0.79
0.7931(53) 1.293(54) 19 − 24 0.46 1.254(46) 19 − 24 0.76
0.6910(35) 1.278(48) 19 − 24 0.48 1.260(44) 19 − 24 0.68
0.5925(33) 1.280(51) 19 − 24 0.40 1.274(49) 19 − 24 0.52
0.4854(31) 1.280(56) 19 − 24 0.31 1.280(56) 19 − 24 0.31
0.3795(31) 1.285(58) 17 − 21 0.70 1.293(60) 17 − 21 2.56
0.2839(33) 1.289(60) 17 − 19 0.04 1.300(63) 17 − 19 2.66
0.2153(35) 1.293(62) 17 − 19 0.02 1.303(66) 17 − 19 1.44
0.1384(43) 1.302(64) 17 − 18 0.73 1.303(72) 17 − 18 2.36
0.0939(44) 1.301(67) 17 − 18 0.23 1.313(81) 17 − 18 0.56
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Table A.25: Charge radius of the ∆ with individual quark contributions in fm2 for dif-
ferent m2

π in GeV2. The quark contributions at the SU(3) flavor limit provide the s quark
contributions per unit quark charge in theΩ−. Charge radius of ∆− is equal to that of ∆+

with a negative sign and that of ∆0 is 0.

m2
π u∆ d∆ ∆

0.9972(55) 0.238(7) 0.238(7) 0.238(7)
0.8947(54) 0.247(8) 0.247(8) 0.247(8)
0.7931(53) 0.256(10) 0.256(10) 0.256(10)
0.6910(35) 0.279(9) 0.279(9) 0.279(9)
0.5925(33) 0.293(10) 0.293(10) 0.293(10)
0.4854(31) 0.307(15) 0.307(15) 0.307(15)
0.3795(31) 0.324(17) 0.324(17) 0.324(17)
0.2839(33) 0.343(21) 0.343(21) 0.343(21)
0.2153(35) 0.355(26) 0.355(26) 0.355(26)
0.1384(43) 0.370(37) 0.370(37) 0.370(37)
0.0939(44) 0.410(57) 0.410(57) 0.410(57)

Table A.26: Charge radii of the Σ∗ states with individual quark contributions in fm2 for
different values of m2

π in GeV2.

m2
π uΣ∗ sΣ∗ Σ∗+ Σ∗0 Σ∗−

0.9972(55) 0.233(8) 0.299(13) 0.212(8) −0.022(3) 0.255(10)
0.8947(54) 0.242(10) 0.296(14) 0.224(9) −0.018(2) 0.260(11)
0.7931(53) 0.251(11) 0.293(15) 0.237(10) −0.014(2) 0.265(12)
0.6910(35) 0.278(10) 0.311(12) 0.267(9) −0.011(1) 0.289(10)
0.5925(33) 0.292(12) 0.309(13) 0.286(11) −0.006(1) 0.298(12)
0.4854(31) 0.307(15) 0.307(15) 0.307(15) 0.000(0) 0.307(15)
0.3795(31) 0.324(17) 0.308(16) 0.329(17) 0.0006(1) 0.319(16)
0.2839(33) 0.341(20) 0.309(17) 0.353(21) 0.011(1) 0.330(19)
0.2153(35) 0.352(23) 0.309(17) 0.367(25) 0.014(2) 0.338(21)
0.1384(43) 0.365(29) 0.310(18) 0.384(34) 0.018(5) 0.347(26)
0.0939(44) 0.380(39) 0.321(22) 0.400(46) 0.019(7) 0.360(32)
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Table A.27: Charge radii of the Ξ∗ states with individual quark contributions in fm2 for
different values of m2

π in GeV2.

m2
π sΞ∗ uΞ∗ Ξ∗− Ξ∗0

0.9972(55) 0.291(16) 0.227(11) 0.269(14) −0.042(5)
0.8947(54) 0.289(16) 0.236(12) 0.271(14) −0.035(5)
0.7931(53) 0.287(17) 0.246(13) 0.273(15) −0.027(4)
0.6910(35) 0.309(13) 0.276(11) 0.298(12) −0.022(3)
0.5925(33) 0.308(14) 0.291(12) 0.302(14) −0.011(2)
0.4854(31) 0.307(15) 0.307(15) 0.307(15) 0.0(e − 14)
0.3795(31) 0.307(15) 0.324(16) 0.313(16) 0.011(1)
0.2839(33) 0.307(16) 0.340(19) 0.318(17) 0.022(3)
0.2153(35) 0.307(16) 0.351(21) 0.322(17) 0.029(4)
0.1384(43) 0.307(16) 0.363(24) 0.325(19) 0.037(7)
0.0939(44) 0.308(17) 0.372(29) 0.329(20) 0.043(10)
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Table A.28: Magnetic moment of the ∆ in nuclear magnetons with individual quark
contributions for different m2

π in GeV2. Magnetic moment of ∆− is equal to that of ∆+

with a negative sign and that of ∆0 is 0. Magnetic moment of ∆++ is equal to twice that
of ∆+. Magnetic moment of Ω− is that of ∆− at the SU(3) flavor limit.

m2
π u∆ d∆ ∆

0.9972(55) 1.466(31) 1.466(31) 1.466(31)
0.8947(54) 1.512(36) 1.512(36) 1.512(36)
0.7931(53) 1.559(42) 1.559(42) 1.559(42)
0.6910(35) 1.615(38) 1.615(38) 1.615(38)
0.5925(33) 1.662(48) 1.662(48) 1.662(48)
0.4854(31) 1.697(65) 1.697(65) 1.697(65)
0.3795(31) 1.749(74) 1.749(74) 1.749(74)
0.2839(33) 1.792(87) 1.792(87) 1.792(87)
0.2153(35) 1.80(10) 1.80(10) 1.80(10)
0.1384(43) 1.78(15) 1.78(15) 1.78(15)
0.0939(44) 1.60(28) 1.60(28) 1.60(28)

Table A.29: Magnetic moments of Σ∗ in nuclear magnetons with individual quark sector
contributions for different values of m2

π in GeV2 .

m2
π uΣ∗ sΣ∗ Σ∗+ Σ∗0 Σ∗−

0.9972(55) 1.482(38) 1.671(51) 1.418(36) −0.063(7) −1.545(42)
0.8947(54) 1.524(43) 1.675(54) 1.474(41) −0.050(6) −1.574(46)
0.7931(53) 1.568(48) 1.680(57) 1.531(47) −0.037(6) −1.606(51)
0.6910(35) 1.621(44) 1.695(48) 1.596(43) −0.025(3) −1.646(45)
0.5925(33) 1.664(52) 1.697(54) 1.653(51) −0.011(2) −1.675(53)
0.4854(31) 1.697(15) 1.697(65) 1.697(65) 0.000(0) −1.697(65)
0.3795(31) 1.744(17) 1.709(69) 1.755(72) 0.012(2) −1.732(71)
0.2839(33) 1.781(20) 1.724(75) 1.800(82) 0.019(5) −1.762(78)
0.2153(35) 1.796(23) 1.738(80) 1.816(95) 0.020(10) −1.777(85)
0.1384(43) 1.807(29) 1.766(86) 1.82(12) 0.013(21) −1.793(97)
0.0939(44) 1.759(39) 1.747(10) 1.76(18) 0.004(40) −1.75(12)
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Table A.30: Magnetic moments of Ξ∗ in nuclear magnetons with individual quark sector
contributions for different values of m2

π in GeV2.

m2
π sΞ∗ uΞ∗ Ξ∗− Ξ∗0

0.9972(55) 1.681(63) 1.494(48) −1.619(57) −0.124(18)
0.8947(54) 1.683(65) 1.534(52) −1.633(60) −0.099(16)
0.7931(53) 1.685(66) 1.576(56) −1.649(63) −0.073(14)
0.6910(35) 1.697(56) 1.626(51) −1.674(54) −0.047(6)
0.5925(33) 1.698(59) 1.666(57) −1.687(58) −0.021(4)
0.4854(31) 1.697(65) 1.697(65) −1.697(15) 0.0(e − 14)
0.3795(31) 1.703(67) 1.738(69) −1.714(68) 0.023(1)
0.2839(33) 1.709(69) 1.772(73) −1.730(70) 0.042(9)
0.2153(35) 1.714(71) 1.792(78) −1.740(73) 0.052(16)
0.1384(43) 1.725(73) 1.811(86) −1.753(75) 0.057(31)
0.0939(44) 1.725(77) 1.84(10) −1.763(79) 0.076(48)

Table A.31: Quark sector contributions to the electric form factor E2 of ∆ at Q2 =

0.227(2) GeV2. Sector contributions are for a single quark having unit charge. The fit
windows are selected using the criteria outlined in Sec. 6.5.3. The quark contribution at
the SU(3) limit when m2

π = 0.4854GeV2 provides the s quark contribution in Ω−.

m2
π (GeV2) u∆ (e/M2

N) d∆ (e/M2
N)

fit value fit window χ2/dof fit value fit window χ2/dof

0.9972(55) −0.117(16) 16 − 20 1.63 −0.117(16) 16 − 20 1.63
0.8947(54) −0.123(18) 16 − 20 1.39 −0.123(18) 16 − 20 1.39
0.7931(53) −0.130(22) 16 − 20 1.16 −0.130(22) 16 − 20 1.16
0.6910(35) −0.163(17) 16 − 20 0.76 −0.163(17) 16 − 20 0.76
0.5925(33) −0.177(21) 16 − 20 0.75 −0.177(21) 16 − 20 0.75
0.4854(31) −0.194(27) 16 − 20 0.86 −0.194(27) 16 − 20 0.86
0.3795(31) −0.218(40) 16 − 19 1.03 −0.218(40) 16 − 19 1.03
0.2839(33) −0.263(67) 16 − 19 1.57 −0.263(67) 16 − 19 1.57
0.2153(35) −0.32(11) 16 − 19 1.20 −0.31(11) 16 − 19 1.20
0.1384(43) −0.52(20) 16 − 18 0.72 −0.52(20) 16 − 18 0.72
0.0939(44) −0.68(26) 15 − 16 1.06 −0.68(26) 15 − 16 1.06
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Table A.32: Quark sector contributions to the electric form factor E2 of Σ∗ at Q2 =

0.227(2) GeV2. Sector contributions are for a single quark having unit charge. The fit
windows are selected using the criteria outlined in Sec. 6.5.3.

m2
π (GeV2) uΣ∗ or dΣ∗ (e/M2

N) sΣ∗ (e/M2
N)

fit value fit window χ2/dof fit value fit window χ2/dof

0.9972(55) −0.132(19) 16 − 20 1.52 −0.113(29) 16 − 20 0.75
0.8947(54) −0.136(22) 16 − 20 1.36 −0.118(31) 16 − 20 0.64
0.7931(53) −0.145(25) 16 − 20 1.20 −0.124(33) 16 − 20 0.66
0.6910(35) −0.172(18) 16 − 20 0.91 −0.170(22) 16 − 20 0.48
0.5925(33) −0.183(22) 16 − 20 0.89 −0.180(24) 16 − 20 0.61
0.4854(31) −0.194(27) 16 − 20 0.86 −0.194(27) 16 − 20 0.86
0.3795(31) −0.208(36) 16 − 20 0.48 −0.211(32) 16 − 20 1.89
0.2839(33) −0.225(51) 16 − 17 0.41 −0.231(38) 16 − 17 0.61
0.2153(35) −0.233(73) 16 − 19 1.08 −0.257(48) 16 − 19 1.84
0.1384(43) −0.29(11) 16 − 17 1.71 −0.300(67) 16 − 17 1.07
0.0939(44) −0.42(16) 16 − 17 0.94 −0.325(88) 16 − 17 0.31

Table A.33: Quark sector contributions to the electric form factor E2 of Ξ∗ at Q2 =

0.227(2) GeV2. Sector contributions are for a single quark having unit charge. The fit
windows are selected using the criteria outlined in Sec. 6.5.3.

m2
π (GeV2) sΞ∗ (e/M2

N) uΞ∗ or dΞ∗ (e/M2
N)

fit value fit window χ2/dof fit value fit window χ2/dof

0.9972(55) −0.127(36) 16 − 20 0.64 −0.157(25) 16 − 20 1.75
0.8947(54) −0.131(37) 16 − 20 0.64 −0.157(27) 16 − 20 1.52
0.7931(53) −0.136(39) 16 − 20 0.64 −0.159(30) 16 − 20 1.35
0.6910(35) −0.180(24) 16 − 20 0.65 −0.184(20) 16 − 20 1.17
0.5925(33) −0.186(25) 16 − 20 0.73 −0.190(23) 16 − 20 1.04
0.4854(31) −0.194(27) 16 − 20 0.86 −0.194(27) 16 − 20 0.86
0.3795(31) −0.201(29) 16 − 17 0.82 −0.198(33) 16 − 21 0.62
0.2839(33) −0.208(31) 16 − 17 0.59 −0.200(41) 16 − 17 0.23
0.2153(35) −0.214(34) 16 − 17 0.80 −0.191(52) 16 − 17 0.06
0.1384(43) −0.222(38) 16 − 17 0.92 −0.184(71) 16 − 18 0.34
0.0939(44) −0.222(41) 15 − 16 0.17 −0.183(82) 15 − 16 0.70
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Table A.34: Electric form factor E2 of the charged decuplet baryons in units of 10−2fm2

for different m2
π values.The E2 form factor of the ∆− at the SU(3) flavor limit is the E2

form factor of Ω−.

m2
π (GeV2) ∆++ ∆+ ∆− Σ∗+ Σ∗− Ξ∗−

0.9972(55) −1.03(14) −0.515(68) 0.515(68) −0.610(77) 0.553(97) 0.60(14)
0.8947(54) −1.08(16) −0.539(80) 0.539(80) −0.626(87) 0.57(11) 0.62(15)
0.7931(53) −1.15(19) −0.573(95) 0.573(95) −0.65(10) 0.60(12) 0.63(16)
0.6910(35) −1.43(15) −0.716(75) 0.716(75) −0.762(77) 0.754(85) 0.80(10)
0.5925(33) −1.56(18) −0.779(90) 0.779(90) −0.810(92) 0.801(98) 0.83(11)
0.4854(31) −1.17(23) −0.85(12) 0.85(12) −0.85(12) 0.85(12) 0.85(12)
0.3795(31) −1.92(35) −0.96(17) 0.96(17) −0.91(17) 0.92(15) 0.88(13)
0.2839(33) −2.31(59) −1.16(29) 1.16(29) −0.98(24) 0.99(20) 0.90(15)
0.2153(35) −2.78(95) −1.39(47) 1.39(47) −0.99(37) 1.06(28) 0.91(17)
0.1384(43) −4.6(1.8) −2.30(88) 2.30(88) −1.27(58) 1.29(41) 0.92(21)
0.0939(44) −6.0(2.2) −3.0(1.1) 3.0(1.1) −1.99(85) 1.71(56) 0.92(22)

Table A.35: Quark sector contributions to the magnetic form factor M3 of ∆ at Q2 =

0.227(2) GeV2. Sector contributions are for a single quark having unit charge. The fit
windows are selected using the criteria outlined in Sec. 6.5.3. The quark contribution at
the SU(3) limit when m2

π = 0.4854GeV2 provide the s quark contribution in Ω−.

m2
π (GeV2) u∆ d∆

fit value fit window χ2/dof fit value fit window χ2/dof

0.9972(55) 0.32(53) 18 − 20 0.19 0.32(53) 18 − 20 0.19
0.8947(54) 0.34(63) 18 − 20 0.22 0.34(63) 18 − 20 0.22
0.7931(53) 0.35(76) 18 − 20 0.76 0.35(76) 18 − 20 0.76
0.6910(35) −0.01(69) 18 − 20 0.90 −0.01(69) 18 − 20 0.90
0.5925(33) −0.09(87) 18 − 20 1.00 −0.09(87) 18 − 20 1.00
0.4854(31) −0.2(1.2) 18 − 20 0.92 −0.2(1.2) 18 − 20 0.92
0.3795(31) −0.4(1.4) 16 − 18 0.44 −0.4(1.4) 16 − 18 0.44
0.2839(33) −0.8(1.8) 16 − 18 0.16 −0.8(1.8) 16 − 18 0.16
0.2153(35) −1.4(2.4) 16 − 18 0.01 −1.4(2.4) 16 − 18 0.01
0.1384(43) −2.6(3.0) 15 − 17 0.28 −2.6(3.0) 15 − 17 0.28
0.0939(44) −3.8(3.8) 15 − 17 0.32 −3.8(3.8) 15 − 17 0.32
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Table A.36: Quark sector contributions to the magnetic form factor M3 of Σ∗ at Q2 =

0.227(2) GeV2. Sector contributions are for a single quark having unit charge. The fit
windows are selected using the criteria outlined in Sec. 6.5.3.

m2
π (GeV2) uΣ∗ or dΣ∗ sΣ∗

fit value fit window χ2/dof fit value fit window χ2/dof

0.9972(55) 0.30(75) 18 − 20 0.34 0.74(75) 18 − 20 0.07
0.8947(54) 0.31(84) 16 − 20 0.37 0.75(84) 18 − 20 0.07
0.7931(53) 0.28(96) 18 − 20 0.39 0.73(96) 18 − 20 0.09
0.6910(35) −0.08(82) 18 − 20 0.99 0.01(83) 18 − 20 0.78
0.5925(33) −0.15(96) 18 − 20 1.03 −0.09(97) 18 − 20 0.41
0.4854(31) −0.2(1.2) 18 − 20 0.92 −0.2(1.2) 18 − 20 0.92
0.3795(31) −0.3(1.3) 16 − 18 0.43 −0.3(1.3) 16 − 18 0.55
0.2839(33) −0.5(1.5) 16 − 18 0.10 −0.4(1.5) 16 − 18 0.56
0.2153(35) −0.7(1.7) 16 − 18 0.03 −0.5(1.7) 16 − 18 0.13
0.1384(43) −1.1(1.9) 15 − 16 1.91 −0.8(1.9) 15 − 16 0.02
0.0939(44) −1.2(2.2) 15 − 16 0.004 −1.1(2.1) 15 − 16 1.33

Table A.37: Quark sector contributions to the magnetic form factor M3 of Ξ∗ at Q2 =

0.227(2) GeV2. Sector contributions are for a single quark having unit charge. The fit
windows are selected using the criteria outlined in Sec. 6.5.3.

m2
π (GeV2) sΞ∗ uΞ∗ or dΞ∗

fit value fit window χ2/dof fit value fit window χ2/dof

0.9972(55) 0.8(1.1) 18 − 20 0.10 0.1(1.1) 18 − 20 0.46
0.8947(54) 0.7(1.1) 18 − 20 0.12 0.1(1.2) 18 − 20 0.50
0.7931(53) 0.7(1.2) 18 − 20 0.15 0.1(1.2) 18 − 20 0.60
0.6910(35) −0.08(98) 18 − 20 0.85 −0.21(99) 18 − 20 1.06
0.5925(33) −0.2(1.1) 18 − 20 0.92 −0.2(1.1) 18 − 20 1.03
0.4854(31) −0.2(1.2) 18 − 20 0.92 −0.2(1.2) 18 − 20 0.92
0.3795(31) −0.3(1.3) 16 − 18 0.55 −0.4(1.3) 16 − 18 0.15
0.2839(33) −0.3(1.3) 16 − 18 0.99 −0.4(1.4) 16 − 18 0.05
0.2153(35) −0.3(1.4) 16 − 17 0.80 −0.4(1.4) 16 − 17 0.06
0.1384(43) −0.3(1.4) 15 − 17 0.23 −0.6(1.5) 15 − 17 0.47
0.0939(44) −0.4(1.5) 15 − 17 0.44 −0.3(1.6) 15 − 17 0.82



Table A.38: Coefficients, χ, providing the LNA contribution to baryon magnetic mo-
ments and charge radii in quenched QCD. Coefficients for magnetic moments in full
QCD are also indicated. Here the coefficients for quark sector contributions to baryon
properties are indicated for quarks having unit charge. Note that up for example denotes
the coefficient for the two u quarks of the proton, each of which have unit charge. Inter-
mediate (Int.) meson-baryon channels are indicated to allow for SU(3)-flavor breaking
in both the meson and baryon masses. The coefficients are calculated from the expres-
sions of Ref. [45] with the axial couplings F = 0.50 and D = 0.76 with fπ = 93 MeV.

q Int. Full QCD Quenched QCD

up | dn Nπ −6.87 −3.33
ΛK −3.68 0
ΣK −0.15 0

dp | un Nπ +6.87 +3.33
ΣK −0.29 0

sp | sn ΛK +3.68 0
ΣK +0.44 0

uΣ+ | dΣ− Σπ −2.16 0
Λπ −1.67 0
NK 0 −0.29
ΞK −6.87 −3.04

dΣ+ | uΣ− Σπ +2.16 0
Λπ +1.67 0
NK +0.29 0

sΣ NK −0.29 +0.29
ΞK +6.87 +3.04
Σηs 0 0

uΣ0 | dΣ0 Σπ 0 0
Λπ 0 0
NK +0.15 −0.15
ΞK −3.43 −1.52

uΛ | dΛ Σπ 0 0
Ληl 0 0
NK +3.68 +1.23
ΞK −0.40 +0.44

sΛ Ληs 0 0
NK −7.36 −2.45
ΞK +0.79 −0.88

uΞ0 | dΞ− Ξπ −0.29 0
ΛK 0 −0.40
ΣK +6.87 +3.43
ΩK 0 +0.29

dΞ0 | uΞ− Ξπ +0.29 0
ΛK +0.40 0
ΣK +3.43 0

sΞ ΛK −0.40 +0.40
ΣK −10.3 −3.43
ΩK 0 −0.29
Ξηs 0 0
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Table A.39: Coefficients, χ, providing the LNA contribution to baryon magnetic mo-
ments and charge radii in quenched QCD. Coefficients for magnetic moments in full
QCD are also indicated. Intermediate (Int.) meson-baryon channels are indicated to
allow for SU(3)-flavor breaking in both the meson and baryon masses. The coefficients
are calculated from the expressions of Ref. [45] with the axial couplings F = 0.50 and
D = 0.76 with fπ = 93 MeV.

Baryon Channel Full QCD Quenched QCD
p Nπ −6.87 −3.33

ΛK −3.68 0
ΣK −0.15 0

n Nπ +6.87 +3.33
ΛK 0 0
ΣK −0.29 0

Σ+ Σπ −2.16 0
Λπ −1.67 0
NK 0 −0.29
ΞK −6.87 −3.04
Σηs 0 0

Σ0 Σπ 0 0
Λπ 0 0
NK +0.15 −0.15
ΞK −3.43 −1.52
Σηs 0 0

Σ− Σπ +2.16 0
Λπ +1.67 0
NK +0.29 0
ΞK 0 0
Σηs 0 0

Λ Σπ 0 0
Ληl 0 0
NK +3.68 +1.23
ΞK −0.40 +0.44
Ληs 0 0

Ξ0 Ξπ −0.29 0
ΛK 0 −0.40
ΣK +6.87 +3.43
ΩK 0 +0.29
Ξηs 0 0

Ξ− Ξπ +0.29 0
ΛK +0.40 0
ΣK +3.43 0
ΩK 0 0
Ξηs 0 0
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Gamma Matrices

We use the usual definition of Pauli matrices given as

σ1 =

(
0 1
1 0

)
σ2 =

(
0 −i
i 0

)
σ3 =

(
1 0
0 −1

)
.

B.1 Dirac Representation

In the Dirac representation the γ matrices are given by

γi =

(
0 σi

−σi 0

)

γ0 =

(
I 0
0 −I

)

γ5 = γ
5 = −

(
0 I
I 0

)

γ5γi =

(
−σi 0
0 σi

)

γ5γ0 =

(
0 −I
I 0

)

σ0i = i

(
0 σi

σi 0

)

σi j = εi jkΣk = εi jk

(
σk 0
0 σk

)
.

In the Dirac, Majaronna and Chiral representation the γ matrices satisfy

{γµ, γν} = γµγν + γνγµ = 2gµν .



142 B. Gamma Matrices

The γ5 matrix is defined as

γ5 = γ
5 = iγ0γ1γ2γ3 = − i

4!
εµνρσγ

µγνγργσ ,

and satisfies

{
γ5, γµ

}
= 0

γ2
5 = I , γ5 = γ5

† .

The γ matrix commutators are

σµν =
i
2

[
γµ, γν

]

γµγν = gµν − iσµν

γ5σ
µν =

i
2
εµνρσσρσ

γ5γ
0γi = Σi,where Σi =

1
2
εi jkσ

jk .

Hermitian conjugates of the γ matrices are

γµ
† = γ0γµγ0

γ5
† = γ5 = −γ0γ5γ

0

(γ5γ
µ)† = γ0 (γ5γ

µ) γ0

(σµν)† = γ0 (σµν) γ0 .
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B.2 Sakurai Representation

In the Sakurai representation [73] the γ matrices are given by

γi =

(
0 −iσi

iσi 0

)

γ4 =

(
I 0
0 −I

)

γ5 = −
(

0 I
I 0

)

iγ5γi = i

(
σi 0
0 −σi

)

iγ5γ4 = i

(
0 I
−I 0

)

σ4i =

(
0 σi

σi 0

)

σi j = εi jkΣk = εi jk

(
σk 0
0 σk

)
.

In this representation the γ matrices satisfy
{
γµ, γν

}
= 2δµν

σµν =
1
2i

[
γµ, γν

]
= −iγµγν

γ5 = γ1γ2γ3γ4 =
1
4!
εµνρσγµγνγργσ

{γ5, γν} = 0

γ2
5 = I , γ5 = γ

†
5 .
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