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Notre Dame Journal of Formal Logic
Volume 24, Number 1, January 1983

The Validity of Disjunctive Syllogism
Is Not So Easily Proved

CHRIS MORTENSEN*

J. This note is prompted by John Burgess’s “Relevance: A Fallacy?” (21,
whlch offers an argument in favour of the deductive validity of the argument
form Disjunctive Syllogism, DS (4,not-A or B/..B). The kind of argument he
Bives.is not so unusual, and can be encountered around the literature (e.g., (3],
Bt 666). and not infrequently in the verbal pronouncements of philosophers.
“The.Gones of the reply I will give to Burgess can also be found in a number of
“blaces and as.long ago as 1972 (e.g., [41-[6]), though I do not think it has been
systematlcally developed anywhere. Since Burgess’s argument is representative
oF & widespread kind of mistake about relevant logics, it is worthwhile to try to
'say| clearly what is wrong with it.

Burgess disclaims any attempt to discuss the extensive llterature on
relevant logics other than Anderson and Belnap’s 1975 * ‘masterwork”’ Em‘azl—
-ment’ Hence, his argument is best viewed as a piece of internal criticism of. that

;mghts are on more general targets, and are intended to apply to all “self-sty
! '-televant logicians. Let me therefore concede straight away that in my" v1ew.
‘Anderson and Belnap s discussion .of DS in Em‘azlment is inadequate. It W. ud’,

irrelevant pnnmple of Ex Falso Quodlibet, there had better be.
) Burgess says that the issue as far as he is concerned is whether. rcle"" Ay
logics. “‘are in better agreement with common sense ‘than classical loglc A

- *Ewish.tn thank Bob Meyer, Graham Priest, and Stephen Read for helpful comments.
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36 CHRIS MORTENSEN

not whether some other intuitively comprehensible modeling for the relevant
logics can be found elsewhere. So be it. Beyond the mild caveat that common
sense might be strained somewhat by our investigation, let me agree with this
demarcation of the area of contention. It is worth noting, though, that while
Anderson and Belnap obviously thought their logics were in better agreement
with common sense logic (or natural logic, or natural language, or some such
thing), that might not be the only reason that could be advanced for adopting a
relevant rather than a classical logic. Instead, one might appeal to pragmatic
criteria such as overall simplicity of the foundations of mathematics or science
as grounds for a reconstruction of natural logic along relevant lines.

One final piece of clarification. In all the standard relevant logics, a
distinction is made between extensional, truth functional ‘or’, 'v’, and inten-
sional ‘or’, ‘“+’. The extensional form of DS (4, ~A4 v B/..B), is not generally
valid in these logics (even in their purely truth functional, “zero degree” frag-
ments), whereas the intensional form (4, ~A4 + B/..B) is. Burgess wants to show
that certain valid natural language examples of DS have to be understood as of
the extensional kind, so that extensional DS must be deductively valid. He
represents the relevance position as having to hold that valid natural language
examples of DS involve appeal to the (valid) intensional form of DS, either by
virtue of direct translation of ‘or’ into.*+’ or because in such cases the crucial
premiss using ‘+° is always ‘available. I think that questions about intensional
disjunction cloud the issue here, something for which Anderson and Belnap are
at least partly to blame. I will be concerned to show where Burgess goes astray
by agreeing that his examples use ‘or’ extensionally but arguing that they do
not show that extensional DS is deductively valid; so I want to set aside
questions about “+ altogether. Throughout this paper, then, ‘or’ is taken as ‘v’.

2 1 begin by offering an explication of the useful intuitive idea of a deductive
situation. Human beings are often in the position of deducing sentences from
other sentences. Disputes as to the validity of a deduction from certain
premisses can, I propose, be thought of as disputes as to the exact nature of the
deductive situation containing those premisses. To make this more precise, we
can introduce the idea of an L-theory (relative to a logic L). Consider a language
L closed under conjunctions (a), disjunctions (v), implications or entailments -
(-), and negations (~). A logic in L is a subset L of L closed under the rule of
uniform substitution. Now we can define the notion of an L-theory relative to a
logic L (e.g., a PC-theory, or an S5-theory, or an E-theory). An L-theory is a set
of sentences containing all the consequences of all the members of the tlleofy
which the logic L says are consequences. More formally, a subset X of L is an
L-theory iff: (1)if AeXand FpA—>BthenBe X,and (2)ifAeXand Be X
then A A B € X. (The second of these requirements is reasonable, but does not
in general follow from the first, so needs independent specification.) I propose
to explicate the idea of .a deductive situation by identifying it with that of an
L-theory where L is “natural” or “common sense” or “correct” logic. '

We will say that an L-theory X is a DS-theory (written DS(X)) iff if 4 ¢ X
and ~4 v B € X then B € X. Suppose, as Burgess believes, that DS is a uni-
versally valid principle of common sense or natural logic. Then it must be that
- every deductive situation is a DS-theory: whichever natural logic L is, it must
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“slways be that B is in every deductive situationi which contains both 4 and

“s4 v B. Furthermore, if Burgess is wrong and Anderson and Belnap are right
"‘fA'and DS is not universally valid, then for some A, B, it must be that B fails to be
“ b4 some deductive situation containing A and ~4 v B. (Any reasonable com-
“pleteness theorem for L will deliver that result.) And that is what any putative
‘jfcounterexample to DS must evidently achieve: to produce a deductive situation
'm w}uch A and ~A4 v B hold (belong) but B does not.

; -3 In the terminology of this paper, Burgess’s strategy is to produce ex-
","amples of deductive situations, claim that the examples are not special in any
) way which vitiates the generality of his argument, and claim that the situations
"':are DS( theories). This is to show that the validity of DS is required for com-
mon sense thinking. Now it is 1mportant for such a strategy that the deductive
: s1tuat10n be correctly identified, for it might be that further information about
'the deductive situation is covertly imported which is sufficient to ensure that
the deductive situation is DS. We would then be dealing, in effect, with a
1arger deductive situation and so the demonstration that B holds in it does
fiothing to show that the universal validity of DS is what is solely responsible
';fdi' B's holding. It is this error which I claim Burgess has made.
fam - The position [ propose is that although DS is not universally valid, it is an
_acceptable mode of reasoning under certain circumstances. The situation seems
* 15 be like this. Many relevance people feel suspicious of DS because it seems to
break down in what might be called “abnormal” deductive situations, particu-
larly inconsistent situations. It is not infrequently claimed by relevance logi-
&ans that theories such as naive set theory, classical pre-Cauchy calculus, the
-Bohr theory of the atom, quantum theory, natural language with its own truth
predicate, and Peano arithmetic are or might well be non-DS. If this claim is
“correct, ‘then some logic for which DS fails is a better model of natural logic
_than classical logic is. On the other hand, DS does seem to be a natural mode of
mfcrence in ‘normal’ deductive situations, the kind encountered every day.
T!\ese two intuitions about DS can be reconciled if we can give an account of
dec?uctwe validity according to which DS holds only in normal situations, and
fl'lat is what I claim.
Some more definitions. An L-theory X is consistent iff for no 4 are both
A and ~A in X. X is trivial iff X is the whole language L. X is nonprime with
péct to AvVBiff AvBeXbut A ¢ Xand B ¢ X. X is nonprime iff X is
’;ﬁnonpnme with respect to some disjunction. X is prime iff it is not nonprime.
}Il’l ie failure of primeness is no mystery, even for truth-functional disjunction.
Con51der Peano arithmetic formulated with a base of classical logic (i.e.,
.:classacal Peano arithmetic, PA). Let G be its Godel sentence. Then certamly
i 24 G v ~G. But, by Godel’s first Incompleteness Theorem, if P4 is consistent,
;nelther Fpa G nor bpsq~G. Hence if PA 1s consistent it is nonpnme (with
:!;respect to Gv ~G).
.+ Now some things are known about conditions under which L- theorles are,
,?,_and fail to be DS:

_ (1) Any inconsistent but nontrivial L-theory fails to be DS (under very
Weak assumptions about the logic L). Reason: If X is inconsistent, then for
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some A A eX and ~A4 € X. Since ~A € X, if - ~A ~ (~Av B), we have
~A v B € X, for arbitrary B. If DS held for X, we could deduce that BelX,
for arbitrary: B, i.e., X would be trivial. Ex hypothesi, X is not trivial, so DS fails
for X. In particular, all the usual relevant logics have inconsistent and nontrivial
theories. - '

(2) If X is nonprime with respect to any disjunction ~A4 v B while 4 € X,
then DS fails for X. Reason: While A € X, and ~A4 v B € X, the failure of prime-
ness ensures that B ¢ X.

(3) If, on the other hand, X is consistent and prime, then DS holds for X.
Reason: Let A € X, ~A v B ¢ X. Since X is prime, at least one of ~4 € X and
B e X. But X is consistent, so ~4 ¢ X. Hence B € X.

(4) For certain choices of logic L, such as classical logic and intuitionism,
DS holds for all L-theories.

A point to note about the proof under (3) that consistency and primeness
implies DS is that it seems to appeal to a metalinguistic principle of DS as it
were. However, it is not being claimed that DS is never legitimate. On the
contrary, in normal well-behaved situations DS is to be expected to hold, and
there does not seem to be anything untoward about the metalinguistic situa-
tion here. For example, we might formalize the metatheory and prove it to be
consistent and prime. The foregoing considerations, then, enable us to conclude
that a necessary and sufficient condition for a nontrivial deductive situation to
be DS is that it be consistent and, for all subsets {4, ~A v B}, prime with
respect to ~A v B. A special case sufficient for DS is where the deductive
situation is consistent and complete (as Kripke’s possible worlds are), since it is
easy to show that, given De Morgan’s Laws, consistency and completeness
imply primeness. '

4 This preamble enables me to make my main point against Burgess. Il,f the
deductive situations he describes patently contain extra information sufficient
to guarantee that DS holds of them no matter what logic L is involved—such as
the information that they are consistent and prime—then his argument cannot
show that the (universal) validity of DS is required by those situations. I claim
that this is what has happened. To see this, let us look at the examples Burgess
gives. [ simplify drastically for brevity.

In the first example, we are presénted with a deck of cards and the
information that a certain card in question is not both card A and card B, and
that it is card 4. Burgess claims that it is legitimate to conclude that it is not
card B. Clearly this can be recast as an example of DS. But, unfortunately for
relevant logic:

Had Wyberg been a relevantist, unwilling to make a deductive step not licenced
by the Anderson-Belnap systems E and R, he would have been unable to
eliminate the queen of clubs from his calculations, and would have lost the game.
A relevantist would fare badly in this game and others, and in game-like situa-
tions in social life, diplomacy, and other areas—unless, of course, he betrayed in
practice the relevantistic principles he espoused in theory. ([2], p. 100)
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. However, now we are in a position to see that the deductive situation as
‘:Burgess presents it—a deck of ordinary playirig cards, not card 4 or not card B,
“Aetc _is certainly consistent and prime. It would be quite absurd to say that the
‘situation is one where we have both card A and not card 4. Equally, if it is
':"e1ther not card A or not card B, then at least one of tiiose options obtains. So
;'of .course DS may be legitimately used. Relevant logicians are- still worth
"-employmg as wargamers. The assumption of consistency and primeness here is
"so obvious as to be invisible. That is why it must be regarded with suspicion as
poss1bly an operative factor in the situation. If it is, then nothing follows about
, the valldlty of DS.

“In the second example, we are presented with a hypothetical discovery i in
number theory of the form (n)(4(n) v B(n)), and invited to conclude from a
"proof of ~A(1), that B(1). (Again, to recast as an instance of DS, instantiate

and ‘use ‘double negation.) What could be more harmless? Quite a bit: the
r"assumptlon of consistency and primeness is, again, present. But here it is,
‘mstructwely, much less obviously true, Suppose that number theory is incon-
sistent, and in particular that A() v B(1) holds because A(1) holds. Do we
f*éaliy want to conclude, if we come into possession of a proof of ~A(1), that
,'B(i)" Of course, if it is already believed that classical logic is true, so that DS
holds of number theory, then we will be prepared to conclude that B(1), by the
'prmc1plc that everything can be deduced from a contradiction. But that begs
the question. Again, suppose that arithmetic failed to be prime at-A(1) v B(1).
-Then from a proof of ~A(1) it would be quite illegitimate to conclude B(1).
=But this is not what Burgess is supposing to be the case; in fact he quite
'."exphmt[y supposes that a proof of B(1) exists. The extra mformatmn Burgess
needs to make his case for DS work is clearly present. But the presence of the
extra information destroys his case. :

7 -One final quick example Burgess gives is that of someone once told that
‘A or B but cannot remember which. Finally, he establishes ~A4, and so con-
.cludes that B.

Such examples . . . show that, as far as negation, conjunction and disjunction are

..concerned, ‘classical’ logic . . . is far closer to common sense and accepted
. mathematical practice than is the ‘relevant’ logic of Anderson and Belnap.
(2], 9. 102)

‘;Certam[y here the presupposition of consistency and primeness is less obvious.
._Butlﬂ. is there all the same, I submit, in virtue of the “presupposition of nor-
ity”. Consistency and primeness are normal, nice, well-behaved. People are
not ordinarily confronted with inconsistent or nonprime situations, so find
;'-%g}'oires like DS natural to make. [f the situation were abnormal, say a mathe-
-Tatical one where primeness were in coubt, then it would be a more dubious
‘move to deduce B. Thus, again, the kind of argument one often hears in-
'i.;_f'ormally: ‘DS must hold. Look, if [ know that today is Monday or Tuesday,
‘and I know that it isn’t Monday, I must conclude that it is Tuesday’. But what
‘:_,'more normal a deductive situation can one imagine?

A final point against Burgess. He accuses the relevance programme of
'confusmg logical implication with reasoning or inferring, a distinction of
-ﬁggrman S. 'I claim, to the contrary, that he is guilty of premsely that confusion.
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In those terms, the issue is whether DS captures a logical 1mpllcat10n w1t]1
Anderson and Belnap denying it and Burgess claiming it. In the light of the -
previous discussion, however, the examples he provides are nothing that a-
relevant logician need deny to be useful reasoning or inferring. It is quite proper
to import extra facts about the deductive situation in order to extract all the
useful information out of it. In thinking that he has raised a difficulty for the
relevantist position, Burgess shows that he has precisely not appreciated the
difference between usefully reasoning and universally valid deduction.

5 A consequence of the position of this paper is that the claim of the rele-
vance programme, that DS is not universally valid, entails the claim that not all
nontrivial deductive situations are consistent and prime. In order to show that
to be incorrect, one must plainly adopt a different strategy from Burgess’s.
What must be considered, instead, are putative examples of nontrivial incon-
sistent deductive situations. Clearly these will be decidedly of the unusual type.
But if a rule such as DS is to be valid, then it needs to hold in all deductive
situations, not just normal ones. It is precisely the relevantist claim that
abnormal, unusual situations where DS fails need to be taken into account. It
is pointless to dispute this by concentrating on condmons in which it is known
that DS holds.
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Reply to Burgess and to Read

CHRIS MORTENSEN

I Introduction Either John is foaming at the mouth or John is biting the
carpet. John is not foaming at the mouth. Therefore, John is biting the carpet.
iSuch an instance of Disjunctive Syllogism (DS) is undoubtedly intuitive, but a
form of inference which is intuitive is not thereby valid. There are (at least) three
ositions which can be taken concerning the validity of DS. First: DS is valid,
and the “or” in it is the two-valued extensional “or”. Thus, the argument form
‘Extensional Disjunctive Syllogism (EDS), i.e., Av B, ~A/..B, is valid. Sec-
wind: EDS is invalid. There is a valid argument form, Intensional Disjunctive Syl-
%glsm (IDS), namely A + B, ~A/.".B, where “+" is intensional disjunction.
' thnever you have a valid example of DS, it is because it is an instance of IDS.
;Thrm‘ The examples of DS which seem intuitive are often instances of EDS; but
tl'us does not make EDS valid, and it is not. Whenever it seems intuitive to infer
usmg EDS, it is because there is an extra assumption, that things are “normal”,
%ﬂhlch ensures the truth of the conclusnon and which explains the apparent intui-
iveness of EDS.

Recently (in [8]), I defended the third of these. Read (in [9]) defended the
(Second In the course of my argument, I made the further claim that there are
,precxse sufficient conditions for when the truth of the premises of EDS would
i#hsure the truth of the conclusion and that these conditions obtained whenever
There was an intuitive example of EDS. Both Read and Burgess ([4], see also his
[5] and [6]) understood me to be trying to prove my claim by appeal to the valid-
Jlty of EDS in the metatheory, an appeal which they took to be circular. In Sec-

* {fion 2 of this note, I will argue that there is no circularity in my position. In
‘Skction 3, [ will argue that my position is a stable one, in that no collapse into
na* generally valid EDS follows from it. In Section 4, I will brlefly respond to
some of Burgess's other points from [4]. .

2\ The appeal to normality We need some definitions. A theory for a logic

Liis a set of sentences closed under the consequence relation . It is useful to
igonsider the situation we find ourselves in when deducing according to “natu-

Réceived November 16, 1984
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ral” logic, as a theory closed under the natural consequence relation |. This
has the virtue that actual deductive behavior in the course of theory construc-
tion in the sciences can be seen as data about how propositions-are related
by }. Closely connected with the question ‘of whether 4 | B, is the question of
whether B belongs to all natural theories to which 4 belongs. Read objects to
my too-quick 1dent1f1cat10n of these two questions; but I do not rely on it in
what follows.

A theory will be said to be consistent iff for every sentence A, not both A
is in the theory and ~A is in the theory (or —what is equivalent given metalin-
guistic laws of De Morgan, Double Negation and Commutation hereafter
assumed —either A is not in the theory or (extensionally) ~A is not in the the-
ory). A theory will be said to be prime iff for every extensional disjunction
A v B in the theory, either 4 is in the theory or (extensionally) B is in the
theory.

' I claimed that theories which are intuitively well behaved or normal are
closed under EDS, and that counterexamples to EDS are to be found in abnor-
mal theories only, though that should hardly daunt the fearless logician. I then
claimed that a sufficient condition for a theory to be closed under EDS is that
it be consistent and prime. In proving this, I appealed to something looking like
"EDS in the metatheory. Both Read and Burgess objected that I had no right to -
such an appeal.

But this is not so. Let me make clear what my contention is. I claim that .
(given a normal metatheory which we should be able to ensure), for any con-
sistent prime theéory Th and for any propositions A, B, from A v B € Th and
~A € Th it is deducible that B € Th. My argument is in two stages. The first
stage is in the metametatheory.!

From the premises that a theory is normal and that A v B and
~A are in the theory, it is deducible that B is in the theory.

The metatheory (of this paper) is normal.

.. The metatheory is such that it is deducible that B i‘s in it from
the premise that A v B and ~A are in it.

The premises of this argument were not justified by any appeal to EDS, but to
the pretheoretic data available to us. There do seem to be intuitive examples of
EDS, and the metatheory needed to put through the argument to follow is min-
imal: first-order logic with a single binary relation € with quite weak proper-
ties and a relation } which is also quite weak. No reason for suspicion of
abnormality or paradox here. That is, I don’t claim to prove the truth of the
above two premises. Proof will have to stop somewhere, especially in the episte-
mology of logic. I offer support for them, of a reasonable kind.-

Now for the second stage of my argument, “drop down a level” to the
metatheory. For suppose that Th is consistent and prime; I claim that from this
fact together with Av B € Th and ~A € Th it is deducible that B € Th. For
from ~A € Th (i.e., not—not— ~ A € Th) together with the consistency of Th
(either not ~A € Th or not A € Th) it is deducible that not A € Th (by appeal
to the conclusion of the Stage I argument). Then from A v B € Th by prime-
ness, either A € Th or B € Th; hence it is deducible that B-€ Th (by appeal to
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Stage I again). It is apparent that.-no question-begging appeal to the validify of
EDS has been made here. A version of-EDS has been used, but only as a prop-
erty of a particular theory, and support has been given for that.

3 Formalizing the argument It is evident that a formal version of the fore-
going argument can be written down in a straightforward way, taking a single
binary predicate €, the usual extensional connectives, and, wherever “it is deduc-
ible that” occurs, }. Or, instead of |, use a metatheoretic —. For the conclu-
sion (Con(Th) & Pr(Th) & (AvB) € Th& ~A € Th) = (B € Th), the extra
properties needed for — are substitutivity with respect to the equivalences of De
Morgan, Double Negation and Commutation, and the two rules (a) Transitiv-
ity for »,and (b)) A—B,C—D/.". A & C— B & D. A special case is where we
take Th = The True, so that “€ Th” is a truth predicate. I presume that this
constitutes an answer to Burgess’ demand ([4], pp. 49, 51) for a theorem for-
malizing the principle (Consistency & Primality & (A v B) & ~A) = B. Of
course this is not to say that the — in question is entailment, since, for exam-
ple, an enthymematic — would do (e.g., [1], p. 259, or [2]). On the other hand,
even if we take the — of the metatheory to be entailment, it does not follow that
.all theories are classical. To see this, just note that the logical structure of the
- object language theories has been left unspecified. Nothing prevents them, there-
"fore, from being theories of any of the usual relevant logics. The first stage of
the argument delivers the conclusion that B may be deduced from 4 v B and
~A only for instances of 4 and B from the particular metatheory. Nothing fol-
' lows about unrestricted theoremhood of ((Av B) & ~A) — B, so it is open to
us to invest the — with unrestricted substitution instances corresponding to a
-weaker logic than classical.
This is far from eclecticism. As defined by Burgess, that is the view that
‘rélevant logic is only “appropriate for certain extraordinary abnormal situa-
tions. . .no logic provides canons of validity that are necessary and sufficient
for all situations.. . . logics have to be local, . . . different situations have differ-
cent logics” ([4], p. 50). If this means that there are no logical truths and no valid
.arguments,? then I am certainly not committed to it. The view advocated here
is consistent with the position that there are some universally valid argument
forms, and some argument forms which in more restricted circumstances take
«us from truths to truths. It would be confusion to describe this as the thesis that
relevant logic is only appropriate in abnormal situations. One might hold instead
;that relevant logic describes the correct universal validities, while classical logic
1s a special case, holding only over a restricted domain.
't Itake it that the fact that nonclassical object-language theories are describ-
‘able by weak metatheory (and any supertheory) in the fashion of this paper dem-
.onstrates the logical stability of my position. So one is led to ask what kinds of
epistemic considerations Read and Burgess would severally appeal to in support
‘of their own differing positions. I suspect that Read’s view brings him danger-
Jously close to logical skepticism.? He seems to think that unless some kind of
“sproof of the unrestricted validity of an argument form is forthcoming, then one
E}Wbul_d never be justified in moving from its premises to its conclusion in a par-
ticular case. But if any argument form is valid, then some inference rules are
:f1ot justified by being proved from others. Burgess, on the other hand, might



198 ' CHRIS MORTENSEN

"be making a much stronger demand than I attributed to him at the beginning

of this section, namely, the demand to produce a fully developed relevant meta-
logic, truth theory, model theory, set theory, the lot ([4], p. 51). This ploy is
sufficiently common to deserve a name, so let us call it The Fallacy of the Con-
servative Theorist: Unless My Opponents Have a Fully Developed Counter-
theory, All Their Arguments Against Me are Unsound. But, of course, the above
result holds in any supertheory of our metatheory, no matter how much extra
baggage it gets.

4 Sundry loose ends This brings me to the question of who has mis-
represented whom. I have already argued that Burgess and Read have misun-
derstood me. Burgess claims that I misrepresented him, and that his intent was
all innocence itself: only to show against Anderson and Belnap that common
sense employs EDS. As I said in [8], Burgess’s first paper is best understood as
an attack on Anderson and Belnap, but some remarks suggest that his aims are
more general. I do not think that anyone could read his paper and not get that
impression. Here are just a few points. The aim of the card game example was
not just to show that common sense goes his way, but also that “the relevan-
tist” would do “badly” and “in social life, diplomacy, and other areas”. I deny
this. Notice, too, the inference from “not common sense” to “bad”. Again, his
arithmetical example insinuates the less-than-innocent conclusion that “the honor
of priority goes to Wyberg”, the implication being that Wyberg’s argument was
valid ([6], p. 102). I claim that if arithmetic is inconsistent, then Wyberg’s argu-
ment is invalid, so the “commonsense” presumption that Wyberg’s argument
is valid masks the presupposition of consistency. I take it that in disputing the
implication of validity, I was meeting Burgess’s “challenge” “to explain away
some apparent examples of commonsense instances of DS” ([4], p. 45). Need-
less to say, to fail to take up such a challenge is to lose some presumed com-
petition by default. The debate might at this point degenerate into semantic
trivialities about how narrow in application were Burgess’s phrases like “the
relevantist” and “the Anderson-Belnap systems E and R”, and he hastens to tell
us how big is the gulf between Anderson and Belnap, and Routley ([4], p. 45).
I think, in fact, that Burgess’s first paper was written largely in ignorance of
what had been published about E and R by others, an impression his second
paper certainly hastens to counteract. Again, his assurance ([6], p. 104) that he
was concerned “solely with the original Anderson-Belnap account of ‘relevant’
logic and with their claim that their systems E, R, etc., are in better agreement
with common sense than is classical logic”, would have helped him better had
he not contrasted it with “the discovery of serendipitous applications” such as
logics of ambiguity; instead of a contrast with, say, Meyer’s work.

Burgess uses so many rhetorical devices that his papers read like a list of
textbook examples of informal fallacies. I do not propose to catalog all of these,
but let me caution readers against fallaciously reasoning on the basis of Burgess’
second paper according to the Fallacy of Divide-and-Conquer: The Opponents
are in Disagreement about Some Issues, Therefore All Their Theses are False.
Certainly there is disagreement on some issues, but it is simply distortion to say
that “Routleyism and Andersonianobelnapism are so dissimilar that it is mis-
leading to apply a single label ‘relevantism’ to both” ([4], p. 45). Routley, who
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describes himself as a relevantist; ([10], pp. 21-23), is hardly a mere paracon-
sistentist: it is not possible to read Routley’s published work since [13] without
grasping the quite central role played in it by relevance (e.g., [12]). Far from
there being huge dissimilarity, the point of the Fine-Meyer-Plumwood-Routley-
Urquhart semantics was that it offered an explanatory account of the Anderson-
Belnap systems, and particularly the prized property of relevance (e.g., [13], or
[11], p. 394). For that matter, the generality of that semantics, particularly the
move to inconsistent and nonprime or incomplete theories, offered an explana-
tory account of the intuitions; and the limitations of those intuitions, behind
relevantism, classicalism, paraconsistentism, intuitionism, connectivism, and
modal logic. The particular application here, that the semantics made it clearer
what were the options in dealing with DS and that one might propose a seman-
tically based explanation of the illusory intuitiveness of EDS, seems to me to rep-
resent considerable progress over the original Anderson-Belnap account of DS.

The simple point against both Burgess and Read is this. Logic does not
operate in a vacuum, but on deductive theories. While all the theories of a logic
need to be closed under the deducibility relation of the logic, it is possible for
-some theories of the logic to be closed under addijtional rules as well, for instance
EDS; and it would be surprising if we could not sometimes know this and exploit
it. My further point against Burgess still stands: that the conditions under which
EDS holds might be so normal that there is produced the illusion, even in intel-
ligent and expert deducers, that it is valid. This is not to be disposed of by the

:methods of medieval Christianity invoked by Burgess in the opening quotation
of [4]. '

NOTES

l I do not rely on a rigid distinction between object language and metalanguage, which
is one of the less satisfactory aspects of the classical paradigm. The distinction is used
here only for expository purposes.

2 In point of fact this is a view with which I have recently become more sympathetic
[7]. But Burgess was in no position to conclude this on the basis of my paper.

‘3. Cf. also Belnap and Dunn [3]. In the spirit of Belnap and Dunn, we might object:
“But what if your metatheory is abnormal?” But what if? That does not count
against the claim that if a theory is normal, EDS holds for it. And I take it that it
is not so hard to believe that the present metatheory is normal.
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ANYTHING IS POSSIBLE

ABSTRACT. This paper criticises necessitarianism, the thesis that there is at least one
necessary truth; and defends possibilism, the thesis that all propositions are contingent,
or that anything is possible. The second section maintains that no good conventionalist
account of necessity is available, while the third section criticises model theoretic
necessitarianism. The fourth section sketches some recent technical work on nonclassi-
cal logic; with the aim of weakening necessitarian intuitions and strengthening possibilist
intuitions. The fifth section considers several a prioristic. attempts at demonstrating that
there is at least one necessary proposition and finds them inadequate. The final section
emphasises the epistemic aspect of possibilism.

1. POSSIBILISM

I begin with the thesis of possibilism, by which I mean the group of
theses ‘that all propositions are possible, or possibly true, that all
propositions are contingent, that no proposition is necessary. The
denial of the latter is the thesis of necessitarianism, the thesis that at
least one proposition is necessarily true. It will be maintained in. this
paper that necessitarianism is false and that possibilism is true.

One might postulate a link between possibilism and the idea of
epistemic monism, that there is only one basic epistemic method for
investigating the world. It is invariably difficult to say what is monistic
about monisms, since there can be disagreement about what is a
‘basic’ category. Again, within good scientific method (of which there
are many different accounts) one can discern distinct roles for theory
and sensory experience; though it is common currency these days to
acknowledge a unity within scientific method between adjusting
theory to sensory information, and adjusting the interpretation of the
senses to well-constructed theory. But philosophers have usually
shown a preference for monisms over dualisms, a preference which I
share and which I think should be recognized in the theory of method,
epistemology, as much as anywhere else. When Popper, for example,
strayed from his general fallibilism, it was because he. supposed a
fundamentally different method for establishing logical truth; and
Lakatos’ criticism of Popper’s conventionalism about both logic and
mathematics was in the name of a properly general fallibilism.”

Erkenntnis 30: 319-337, 1989.
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The first question to ask is about the sources of necessitarianism,
and this will be pursued in the following sections. I postulate two
sources of necessitarianism, conventionalist necessitarianism and
- model theoretic necessitarianism, and in the next two sections these
are discussed and rejected. In later sections, [ endeavour to persuade
the reader to abandon necessitarianism altogether. In the final section,
I return to the question of the link between possibilism and epis-
temology, and maintain that only possibilism is the natural epis-
temological direction to take. One final point: intuitions about pos-
sibility seem to be rather easier to come by than intuitions about
necessity. It seems to me that we have a strong sense that some
falsehoods are yet possible, and that is my starting point.

2. CONVENTIONALIST NECESSITARIANISM

Popper and Lakatos objected to the strategy of conventionalism, by
which they meant the method of preserving a thesis come what may
from empirical refutation or criticism. Thus, qua strategy, con-
ventionalism about any proposition violates correct fallibilist practice.
But conventionalism, particularly conventionalism about logical truth,
lends itself to -a group of deeper semantical theses as well. The
distinctive appeal to convention is an appeal which following Popper,>
we can characterise as controllability in principle by decision. We need
to understand the effect this has on necessitarianism. In maintaining
‘that necessary proposxtlons form-a nonnull class, conventionalist
necessitarianisms have held that a convention can sometimes suffice to
make a proposition true, and sometimes not. This evidently raises the
question of how such a thing could be and that is discussed presently.
Contrary to Wachbr01t 3 some version of conventionalist necessitari-
anism seems still to be believed by many philosophers, who were
taught it as twentieth century orthodoxy. On the other hand, I would
agree with Wachbroit that many philosophers do seem to think that
Quine’s ‘Truth by Convention’ is decisive against conventlonallst
necessitarianism, and that the latter is not obviously so. 4 Susan Haack
argues that Quine’s changmg views on the status of the laws of logic
are far from satisfactory;® and certainly Quine’s strategy in “Truth by
Convention® of requiring conformity to the ordinary language mean-
ings of the connectives is as conservative and conventionalist in
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strategic effect as his later arguments in Word and Object.® Con-
ventionalism needs re-killing. .

It is important not to confuse'.conventionalism here with what
Griinbaum called trivial semantic conventionalism. A simple dis-
tinction between sentences and propositions serves to make the point.
Evidently the relationship between symbols and their meanings is in
some sense controllable by a decision to associate a word with one
semantic item rather than another. But this fact is entirely compatible
with all propositions enjoying an equal epistemic status, since indeed it
is a common feature of-all sentences. Such semantically based con-
ventionalism is thus trivial. It does not suffice to sustain a distinction
between logical truths and fallible, empirical truths. Trivial semantic
conventionalism seems to be behind the view of many philosophers
that you can create logical trutlis simply by stipulations or resolutions
that words have one meaning rather than another. But it should be
apparent that it precisely does not serve to make a difference between
logical and contingent truth. What would be needed for that would be
a prior distinction between those ‘kinds of ‘meanings or propositions
which, when fixed, ipso facto have a truth value; as opposed to those
propositions whose truth value also varies with, or is determined by,
the world. Griinbaum himself, as is well known, espoused metric
conventidnalism, which he explicitly denied was trivial. (See [4]). He
argued that even given satisfactory semantics for metric propositions,
a continuous space is indeterminate with respect to those metrical
features, as demonstrated by the existence of alternative, incompatible
metrical descriptions of it. Note the distinctive indeterminateness
thesis. If a decision beyond a trivial semantic convention is needed to
(or able to) determine truth, then the world must not determine the
truth of the proposition in question.” We should be clear that it is not
simply that there is something wrong with an indeterminateness thesis
about a class of propositions, since presumably a thesis such as
Griinbaum’s is at least intelligible.® But it is the coupling of an
indeterminateness thesis with the further claim that such propositions can
have their truth determined by decisions. It is not easy to understand in
what the truth of a proposition, with respect to which the world played
no determining role, could consist. I take it that this objection applies
particularly severely to conventionalisms about the propositions- of
logic and mathematics. After all, how could. a :decision (more
generally, a convention) conceivably make something true if the world
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plays no determinative role? One might feel inclined to wonder
whether it was like printing several copies of the morning paper in
order to make it true. Hilary Putnam puts this nicely: “To put it
_ bluntly, you can’t make the Principle of Contradiction true by con-
vention unless it’s already true’.’ Again, one might ask of any con-
ventionalism including Griinbaum’s, what could justify the use of the
word ‘true’ of propositions with respect to which the underlying
universe is indeterminate. If such are controllable by decision and
escape control by an indeterminate world (while other propositions do
not), then it seems odd that the word ‘true’ would be worth using of
them at all. That way lies pragmatism.

Quine’s changing views on logical truth mean that one must be
careful in specifying just which parts ene disagrees with. First, for all
his apparent gradualism and fallibilism, Quine usually did give classi-
cal first order logic a unique role to play in theory, a role which I think
has actually served to stifle inquiry into nonclassical logics in the
recent past. This is, simply, conventionalist strategy. In fairness to
"Quine, his views on the conservation of classical logic were supported
by the well-known arguments about radical translatability which I will
. not discuss here; though to the extent that they amount to a sophisti-
cated version of the philosopher’s ‘I do not understand’, more will be
said in the next section. Second, while I do not deny that there can be
an intelligible decision never to give up a certain class of propositions,
that is a very different matter.'® With this, my quarrel is rather
different, namely that it is silly to make such decisions. Unless
differences in the world under-determine differences in the truth value
of the proposition in question, then to make a decision to believe a
proposition in advance of ordinary epistemic investigation is to close
one’s eyes to the possibility of revision, as Quine the fallibilist insisted
on other matters. Third, while Quine shied away from the notions of
necessity, possibility and analyticity, he certainly thought early and
late that conformity to classical logic and in particular to classical
consistency was a rigid constraint on theory. That is some kind of
impossibility thesis: it is one thing to hold that a proposition is
inconsistent but something stronger to assert with Quine that this is
invariably sufficient for its prohibition. On the other hand, I do not
propose an account here of whatever it is that possibility consists in.
The aim is, rather; to remain neutral on various of the going accounts,
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for instance various realisms, and to argue for lifting bounds on the
extent of possibility.

The earlier distinction between propositions which escape control
by the world and propositions which do not, sat uncomfortably with
the positivist-conventionalists, who often tried to deal with it with
some version of the thesis that analyticities were not ‘cognitively
meaningful’. A typical conventionalist manoeuvre here is to deny that
analyticities are in any straightforward sense true or false, that neces-
sary truth is a kind of truth.!! Popper’s positivist links show here, for
example, with his descriptions of them as ‘truisms’ and ‘empty’; though
his most favoured terminology is that also favoured by intuition, that
‘All cats are cats’ and its ilk are, simply, true. The problem of the
nature of necessity arises just because some truths have seemed t
have a special status. '

I conclude that conventionalist necessitarianism is in serious trou-
ble, both epistemically, and with its semantic underpinnings. However,
mention of the matter of the literal truth of necessary truths brings me
to my second classification of necessitarians. If necessary truth really is
truth, then what sort of literal truth is it? One answer which many
have been inclined to give, is that it is in virtue of being true in all
members of some class of models that propositions are necessary. I
call this model-theoretic necessitarianism, and in the next section it
will be criticised and rejected.

3. MODEL THEORETIC NECESSITARIANISM

The view considered in this section is that necessity (and, let it be
added, validity'®) arises in virtue of playing a distinctive role in all
models or semantical assignments. To avoid conventionalist problems
about ‘truisms’, it is frequently claimed that the existence of models
and truth preservation is a perfectly objective phenomenon, prior to
mere syntax.-Now one quick point to make is that this is frequently in
an even worse position than conventionalism over its epistemology. At
least conventionalism makes a semblance of squaring itself with its
own epistemology, in that declaring a word to have a meaning is an
event we seem to be able to get into epistemic contact with, even if
the latter saddles us with the magical power of a decision to make
something true when the world is supposedly unable to. But if neces-
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sary truth and validity reside in timeless objective models (for instance
the possible worlds of the modal realists), then we should want to
know with which faculty we are able to get an. inkling into - their
_existence. More will be said on this in the next section. Here I want to
put the criticism that model-theoretic necessitarians either take too
simplistic a picture of what structures are available to them, or saddle
themselves with an unarguable and uncriticisable metaphysies.

The fact is, that modern semantics has gone far beyond the simple
models of classical first-order- logic. Intuitionist models give up
Excluded Middle, Paraconsistentist models give up the law of Non-
contradiction, the various models of Relevant Logics and their Rivals
[25] split apart vast numbers of logical theses which are equivalent in
the context of classical logic, showing how to maintain one without the
other. Some of these are considered in more detail in the next section.
The semantics of classical first order logic is very much a special case
of a much wider semantical framework, many of the details of which

_have only become apparent recently. I do not maintain the thesis that
the mere existence of alternative models suffices to demonstrate that
propositions refuted therein are not really necessary- truths. I am
making the weaker point that a model-theoretic necessitarian is in no.
position to say that various theses are logically true’ solely on the
grounds that they hold in all models. Therefore, the model-theoretic
necessitarian is in the position of having to argue that certain models
have a preferred status over others. But it is not easy to see how this is
to be done short of metaphysical dogmatism. The model theory by
itself does not provide this. As a case in point, consider a dispute
between two modal logicians defending, respectively, S4 and the
Brouweresche system BR. The former maintains that S4 gets necessity
right because it contains exactly the theses valid in all models consis-
ting of possible worlds related by an accessibility relation which is
reflexive and transitive. The latter begs to differ, saying that relative
possibility is reflexive and symmetric. How is this to be resolved?
Don’t say:- by looking at how the sentences match their ordinary
language counterparts. We are considering here a dispute between
model-theoretic necessitarians; that is, people who maintain that
necessity is to be explained by the models. Needless to say, the attack
on model-theoretic necessitarianism should not be construed as an
attack on the discipline of model theory as such. If there is a nonnull
class of necessary truths, then presumably there will be some class C
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of models such that A is necessary iff A is true in all members of C;
and it is the business of model theory to uncover such facts. My
concern has been to cast doubt on the belief that the ‘iff’ suffices to
furnish an explanation of the left hand side by the right hand side.
My broad point is recognised in a discipline close to modal logic,
namely tense logic. The history of philosophy has seen many mar-
vellous claims as to the necessary structure of time. Arthur Prior’s
pioneering work on the expressability of alternative classes of tem-
poral structures by different classes of tense-logical theses, led
naturally to the thought that none captured a necessary structure for
time, so much as presented an alternative way time might be. The
analogy isn’t perfect; but it suggests not only that model theory does
not by itself prove necessitarianism, but also that the existence of
alternative models ought to make us less confident that any of them
expresses necessary truth. The next section amplifies this last point.

4. UNDERSTANDING AND INTUITIONS

It is important to avoid the bewilderment response here: ‘But I simply
don’t understand what ‘true’ and ‘false’ could amount to, if it is being
proposed that there are models where one and the same linguistic item
can be both, or various other logical laws are violated’. The short
response is to urge the reader not to give way to such semantic
dogmatism. There should of course be no quarrel with honest bewil-
derment, but that is far from dogmatic. The undogmatic response
would be to consider seriously that such semantics amount to
metaphysical proposals, of a highly general and theoretical kind, as to
how the world might be.!® The situation in ‘logical physics’ is simply
no different from that in theoretical physics, only newer and more
abstract. Uncriticisable dogmatism is as out of place in the former as
the latter. Thus Popper: ‘An argument that proceeds from in-
conceivability is, like other self evident arguments, always suspect’.!*

It is all very well to make this point generally, but it'seems to me
that it helps noncomprehension to see some recent nonclassical logic.
Model theory has a useful epistemic role to play, like that of mathe-
matical physics; or differently, of fiction. It can feed into whatever
faculty it is which enables us to conceive of false possibilities and
contingencies, to expand those intuitions. So in this section I digress
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into some recent techmical work, and consider how it might aid
incomprehension. .

The Law of Excluded Middle and its relatives such as the Law of
. Bivalence, have come under a lot of pressure lately. Philosophers have
often not found it so difficult to believe that some propositions might
be neither true nor false. Brouwer and Heyting felt the same about
mathematics, and Dummett has recently advanced a similar view
about a broader class of propositions. My aim here is not to defend
these views, so much as to invite the reader to ask himself or herself
the question what if they are right? Good philosophy always attempts
to understand one’s opponent; and these writers have provided exten-
sive descriptions of how they see the world, how the world would be if
they were right. Needless to say, it is open to believe that the Law of
Excluded Middle is true, without holding the extra thesis that it is
necessary. And I suggest that in the presence of descriptions of how
intuitionists imagine the world to be, it is difficult to feel confident
about the impossibility of their view. _

Recently, in the work of da Costa, Meyer, Priest, Routley, Rescher
and Brandom and others, the truth of the Law of Noncontradiction has
come under much fire. Like Excluded Middle, the Law of Noncon-
tradiction is a group of theses, a representative being: no proposition
is both true and false. Philosophers on the whole seem to find the
breakdown of Noncontradiction harder to swallow than the break-
down of Excluded Middle, though it is well-known that the former in
the form ~(A & ~ A) is equivalent to the latter in the form Av ~A,
given only the independently plausible laws of Double Negation and
de Morgan. A common case for giving up Noncontradiction is that it
provides the most natural and unified treatment of the set-theoretic
and semantic paradoxes, and logics exist which tolerate and contain
the effect of contradictions by giving up the classical law Ex Contra-
dictione Quodlibet (A & ~ A)/..B. In the course of the development of
such logics it became clear that there is more than one position one
could adopt. Strong paraconsistentism holds that some contradictions
are true. Weak paraconsistentism holds that no contradictions are true,
but that inconsistent ‘worlds’ need to be admitted to one’s model. A
version of weak paraconsistentism holds  that inconsistent ‘worlds’
describe possibilities, so that while no contradictions are- true, some
contradictions are possible. The proof theory and model theory for
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large classes of such logics is well developed and ‘well discussed by
now. :

Now a common response by philosophers to the suggestion that a
contradiction might be true, is I don’t understand. The noncompre-
hension may be genuine, but it does not justify the often-accompany-
ing rejection of the suggestion. One is reminded of philosophers’
noncomprehension of the idea that space might be four-dimensional,
or curved. There is, of course, a quick argument against noncompre-
henders who also hold that contradictions are necessarily false: if you
think they are false, then presumably you understand them. To be fair,
the noncomprehension often unpacks as ‘I don’t know what it would
be like for a contradiction to be true’. The remedy might well be to
read the literature and to think about the way paraconsistentists
imagine the world to be. '

Sometimes, noncomprehension is accompanied by a manoeuvre
which I call the Three Monkeys’ Decision: the decision to use negation
in such a way that contradictions cannot be true. I do not think that
this decision is any more plausibly motivated than its conventionalist
cousins. One such motivation is that one can determine meanings by
decision, but the meanings of linguistic items are also linked to the
role those items play in theory. So, it might be thought, there is a sense
in which some propositions -are impossible: the sense that if the
accompanying theory is false then it needs terms with different mean-
ings to describe that fact.'> But this odd-sounding incommensurability
thesis ought to alert us that something is wrong. For if the accom-
panying theory is false, then surely it is false as it is, with all its terms
having whatever meanings their theoretical roles are capable of giving
them. The trouble is, as it so often is, that a distinction has already
been imported between the status-of putatively necessary propositions
and ordinary scientific propositions. Supposing that the meaning of
ordinary scientific terms like ‘electron’ is tied to the role they play in
theory, this does not ensure that the theories are true. They might be
false, with no change in the meaning of ‘electron’; and what then
would we make of the ‘decision’ to use ‘electron’ such- that the
electronic theory of matter is true? This analogy has a further use. Let
it be conceded that if .a certain proposition turns out unexpectedly to
be false, the new theory needed to describe the world might employ
terms with sufficiently different theoretical roles to make it worth
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saying that they have different meanings. Commensurability has not
been sacrificed, however, since we still assert that the old theory is
false. But also if.the old theory were not too bad, if it got things fairly
_right in a limited domain even down to its theoretical concepts, then
we might find sufficient analogies between corresponding theoretical
roles in the old and new theories to be worth using the same term for
both. This goes as much for negation as for electrons.

Perhaps the reader is comforted by the thought that there is at least
one proposition which is absolutely irrefutable, the Law of . Pro-
positional Identity, A— A. This brings me to the topic.of Martin’s
Theorem. Martin’s Theorem says that in a certain weak propositional
calculus, no instance of A—> A is provable.’® The proof of the
theorem proceeds by showing for given any instance of A— A, how
to construct a model in which it is false. The models are very abstract
structures, as is not uncommon in algebraic and operational semantics,
and do not on the face of it look much like the spacetime manifolds
some have imagined possible worlds to be. And that is a significant
feature of the present position: why couldn’t what there is be an
abstract structure? Philosophers have-not found so much difficulty in
supposing that abstract entities exist, though obviously ‘I am not
claiming that they do.exist. Furthermore, some recent theorists have
suggested that the existence. of universals might be contingent,'” and
have proposed an account of contingent laws of nature on that basis.
If you are one of these, then give serious conmsideration to the
possibility that contingent, abstract entities might have been all that
exist. If a way for A— A to be false is that the world be very different
from the way it is now, then why not? Why couldn’t the world have
been nothing but (say) some three-valued semantical algebra? This
point is reinforced by the observation that it is important not.to
confuse generality with abstractness. Our world has very general
structural features too, for instance very general -aspects of its
differential topology. It is possible to present General Relativity,
Quantum Mechanics, Gauge Theory, even Newtonian Dynamics in
very abstract fashion. Considered in isolation from the concrete uni-
verse out of which they arise, it can be difficult to ‘grasp their
connection with our world. I suggest that things might well be that
way with abstract-looking logical countermodels too. Something
might be a universe not-too-dissimilar from our own, yet have struc-
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tural aspects which render false all manner of propositions such as
" ~(A& ~A) or A—> A. There is, I suggest, no reason why such very
general or abstract structures should not be realised. And if so, then
they represent false-but-possible states of affairs.

" The importance of Martin’s Theorem is considerable, I think, since
it bears on well-entrenched intuitions about analyticity. It is seduc-
tively easy to believe that ‘If Smith is a bachelor, then Smith is an
unmarried man’ can be made true by the. decision to use ‘bachelor’
interchangeably with ‘unmarried man’. But it would take more than
that to make it necessary. It needs ‘If Smith is a bachelor then Smith is
a bachelor’ to be necessary also, and that is a substitution instance of
A— A. Indeed, it seems to me that the intuitive solidity of mathema-
tics rests on the same foundation. Short, quite obvious inferences in
mathematics often derive, like the previous bachelor case, from some
definitional decision to use terms interchangeably applied to A— A,
(or to (A& B)—> A or A—>(Av B)).'"®* Mathematical connections
established by longer chains of reasonings appealing to more complex
deductive principles are to that extent less evidently necessary. I am
not suggesting here that it is easy to understand how standard
mathematics might have been false. But then we should beware of
projecting the limitations of our imaginations onto the world. The
easiest understanding I am able to offer here is of the order of
difficulty of whatever would make A— A false; and that, as has
already been noted, looks to be pretty strange stuff.

I trust that these examples have been sufficient to shake the reader’s
confidence that any proposition is impossible. But note that they share
the feature of arising at the level of propositional logic. So we should
also look inside atomic propositions, to see if necessity might arise
from sub-atomic structure. Here, as elsewhere in -this paper, the
weakness of the imagination limits consideration of every candidate
for necessity which might be put up. But I do want to show some
possibilities connected with the Law of Identity, everything is self-
identical. I report here the work of various theorists, including Brady,
da Costa, Meyer and others. :

For instance, what would it be like for everythmg to be self-identical
but also some things to be non-self-identical? That would be an
inconsistent universe, but that should be the last of our worries: by
now. We can take set theory as our model for this possibility. Suppose
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we take identity to be: every member of the one is a member of the
other and vice versa; and non-identity to be: x # yar (3x)
(z € x & ~z € y). Now consider an inconsistent set theory®® containing
_ the Law of Identity (x)(x = x) and containing in addition the Russell
set R. It takes only a few principles to show, as Russell did, that Re R
& ~Re R. Whence (3z) (ze R& ~z € R), i.e. R# R. There are
variants of this for different accounts of identity, which exploit vari-
ants of the Russell Paradox, e.g. (i) x =y =q4(V2) (xe z=ye z) and
x#yy=a(32) (x € z & ~y € 2). Again, the Russell Set with R'€.R &
~R e R gives R# R, (ii) x=y=ua(VF) (Fx=Fy) and x # yar(3F) (Fx
& ~Fy). For F, take ‘e R’, (iii) x =y =ac (V1) (x participates in u=y
participates in u). Then, supposing it were true (why not!) that
(Fu)(Vx) (x participates in u= Fx), we have u=u& u # u. A some-
what different approach develops inconsistent number theories,?® ac-
cording to which (x) (x = x) but also O # n for some n. This produces
O # O and, indeed, n# n for every n so that (x) (x # x) as well.
These structures do not have every proposition true in them, since
O =1 is true in none of them. Indeed in some such structures, distinct
numbers are distinct so that n# m for distinct n, m. In fact it is
possible to produce such structures in which the domain is divided into
two disjoint classes, those for which n=n but not also n #n, and
those for which n # n but not also n.= n; which gives a universe in
which some things are self-identical and some (other) things are
non-self-identical. Again, a different approach might take self-identity
as the criterion of existence. This is not uncommon; recall the
definition of the null set A =4 {x: x # x}. This gives the possibility of a
universe in which nothing is self-identical and everything is non-self-
identical. Indeed, this universe seems to be consistent. At least, it is
consistent if it is consistent that nothing exists, which has seemed a
desirable proposition to some. . :

The aim in this section has been to outline recent technical experi-
mentation which, at the very least, has to be recognised as exploring
the limits of conceivability. In the absence of successful general
arguments for setting those limits narrowly, one has to take a tolerant
attitude to which abstract and general theories count as possible, a
practice which is entirely uniform with theoretical science. Needless to
say, it is the aim of this paper to criticise attempts at such general
arguments; and in the next section, a group of such arguments are
considered.
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5. A PRIORI ARGUMENTS FOR NECESSITARIANISM, AND
MINIMAL METALINGUISTIC CONSISTENCY

In ‘There Is At Least One A Priori Truth’, Hilary Putnam tries out,
then rejects, an argument to the effect that logical truth is needed to
constitute rationality.?! Since he is attracted by the epistemic link
between fallibilism and possibilism, he proposes the view that every
statement is revisable in the sense of ‘challenging a concept it con-
tains’, but that it is not the case that the rational revision of every
statement permits denying it. Evidently this is an attempt to save some
logic. Putnam notes that it echoes Quine’s well-known translatability-
of-the-connectives argument, which I take to be a sophisticated ver-
sion of the ‘I don’t understand’ argument criticised earlier. Putnam is
inclined to believe the argument that it would follow that it is a
necessary truth that if the relevant concepts are not revised, then P,
for suitable P. The correct strategy against Putnam here would seem
to be to deny the premiss of the argument, that the rational revision of
some statements does not permit denying them. It has already been
argued that such denial can be intelligible, and there does not seem to
be any obvious methodology to force us to admit that it is irrational.

Putnam is also worried by the thought that it looks pretty necessary
to assert that not every proposition is both true and false. In a similar
vein, it used to puzzle me whether the following might be a candidate
for necessity: at least one proposition fails to be true. But I do not think
so. What would the universe be like for that not to hold? That is easy
to describe: every proposition would be true. Needless to say, that is
not how things are. But necessarily so? We can say easily enough
what it would be for every proposition to be true. It has to be admitted
that it is not always easy to understand the claim that P is possible, for
selected extreme P’s, but it is good advice not to trust one’s noncom-
prehensions, especially when there is comprehension here of a sort.
Again, consider the proposition that at least one proposition is true. Of
course that is true, but consider the following argument which might
be made out for its necessity. Suppose it were false that at least one
proposition is true. Then the proposition that it is false that at least
one -proposition is true, would be true. Hence at least one proposition
is true. Hence, it is necessary. What I think can be said against this
argument is that it turns on the principle ~A— A/.-[JA. While this
would be plausible if the — in question were entailment, it should not
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tempt anyone if the — is some ordinary (nonentailmental) ‘if . . . then’.
It fails, for instance, if the — is . One would need a further
necessitarian premiss if one is not to be accused of simply pulling a
_ necessitarian conclusion out of the hat.

One might wonder whether there is a transcendental argument for
some sort of metalinguistic controls which amount to necessity. With
any assertion we make, for instance the assertions in this paper, we
presumably also do not wish to put forward its denial. This suggests a
principle of minimal metalinguistic consistency** as a constraint on
assertibility or perhaps rationality; or at the very least minimal meta-
linguistic nontriviality, that is that one could hardly intelligibly enter-
tain all one’s assertions and all their denials. Now I do not think that
this is an easy argument to come to grips with, though it must be
agreed that it touches on very deep intuitions about assertibility and
intelligibility. The situation is complicated by the fact that, pace
Tarski, it is. notoriously difficult to make out a case for a rigid
distinction between object language and metalanguage for useful
natural languages, only for artificial languages which fall short of
reality. So one might be inclined to conclude that asserting any
contradiction violates- a metalinguistic constraint on assertibility and
so intelligibility. The further conclusion is thus that contradictions are
unassertible, thus unintelligible, and so their denials are necessarily
true.

I think that the argument here is better off aiming for the weaker
conclusion that one’s theory should be minimally nontrivial, rather
than the stronger conclusion that it should be consistent. As to the
latter, I would agree that in asserting A one does not also typically
intend to deny it, but it might be that one’s conceptual discoveries can
surprise one. One might find that there are isolated instances where
one is forced to contemplate incomsistency: consider recent paracon-
sistentist work on inconsistent solutions to the Liar Paradox and
Russell’s Paradox, or on the possibility that the empirical science of
motion might need to be inconsistent. Consistency, even metalin-
guistic consistency, is one among many theoretical desiderata, and
fallibilism should recognise that consistency might occasionally best be
sacrificed in the interests of overall theoretical economy. That is to
say, our concepts escape our control: we may seek to quarantine the
true from the false, but discover that this is not entirely achieved in
the best theory available. To repeat an earlier point, this does not
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mean that ‘true’ and ‘false’ have lost all their meaning, since they may
well retain strong theoretical links and parallels with the Tarskian
concepts, sufficient for it to be worth viewing as a theoretical dis-
covery about the concepts of truth and falsity. The same observations
apply to minimal metalinguistic nontriviality. Remember that it is not
being maintained that every proposition and its denial are true, only
that it might have been so. It would be hard to make out a case for
such a universe to be interésting, and just-as hard to envisage anyone
seriously asserting that it is our universe. .On the other hand, it would
seem to be that in owr universe the conditions for the minimal
intelligibility and assertibility of the proposition of the nontriviality of
the world are fulfilled, and thus the conditions for the intelligibility of
the denial of that proposition would also seem to be met. The latter
does seem to be in accord with intuition.

6. CONCLUSION

We have seen that some, though not all, of the considerations urged
against various versions of necessitarianism are. epistemological in
spirit. Now Susan Haack has pointed out that the doctrines of falli-
bilism and necessitarianism are formally consistent.”> Whatever one
makes of fallibilism, it is easy to assent to the proposition that good
scientific method is consistent with the existence of at least one
necessary truth. However, I maintain that one can sidestep these
points by holding that a properly general epistemic monist conception
of scientific method, fallibilist or not, gives no reason to think that any
proposition is necessary and every reason to think not.

After all, consider what theoretical function fallibilist necessitari-
anism might serve. Why should one believe that at least one pro-
position is necessary? In the first place, it is hard to make sense of how
our perceptions of the world might make for a difference between two
different sorts of truths, sufficient to dignify one kind as necessary and
the other not. We do not perceive, with any sense organ, anything
more than that propositions are true, certainly not that they are
necessary. There is no epistemic dualist split in pcrceptlon

Thus if necessity is to get an epistemic foot in the door at all, it
should be conjectural or postulational. One would in one’s theory
conjecture of certain propositions not merely that they are true, but
also that they are necessarily true. I suggest that the role of such
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necessitarian elements in the theory would be, indeed is, to erect a
barrier to legitimate criticism of the theory, to avoid having to back
up one’s position against critical scrutiny.
_ Ask yourself how often you encounter necessitarian elements in
philosophical theory. I think that they.are frustratingly ubiquitous.
Philosophers are hooked on a priori certitudes like logical junkies,
unable to discard the necessitarian needle. No doubt this is partly a
hangover from the not-so-distant past when philosophy was thought of
as discontinuous from science, as second order and essentially a
prioristic. But such dualism ought to be seen to be as undesirable- as it
is unnecessary. I submit that necessitarian explanations are simply never
needed in theorising about reality. Putnam nibbles at this:

Nor do we really need a proof that a statement is a priori in this sense (rationally
revisable) very often. If a statement has the property that we cannot now describe any
circumstances under which it would be rational to give it up, that will surely suffice for
most purposes of philosophical argument.?*

So I suggest that the present position would seem to have many
interesting ramifications as epistemology is naturalised throughout
philosophy, abolishing the hydra of necessitarianism. 'If a chain of
responses to requests for reasons is stopped with the claim that a
particular premiss is necessarily and self-evidently true, then nothing is
added and no light is shed. ‘P because Q' may be helpful, but ‘P
because necessarily P’ is useless. ‘P because I can prove it’ only
invites the request to do so. Certainly human debate stops, but Putnam
showed the correct stopping point: we stop when imagining an alter-
native is beyond us. ' _

Summing up, nothing ensures that the principles that the formal
logician chooses to follow are necessarily true, but then nothing
prevents us from error in any case. A properly general and unified
theory of the world is to be desired, and the present view seems to be
the only candidate around.

NOTES

! In defence of these claims, see my paper with Tim Burgess [15]; see Popper [20] and
Lakatos [8, 9]. On the term ‘possibilism’ see Naess’ excellent [16] and Nerlich’s [17].

2 See Popper [20] p: 78, or [15]. Also in accord is Putnam’s [22]. The point of the ‘in
principle’ is to allow for the fact that not all conventions originate in actual decisions.
3 See Wachbroit [28], pp. 48-9.
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4 Wachbroit [28], p. 50; Quine [23].

5 Haack’s [5] is a good account of these changing views.

6 Quine [24]. Wachbroit presses Quine’s objection in ‘Truth by Convention’ that no
finite set of conventions can determine an infinite set of logical truths, and argues that
the attempt to salvage this by allowing self-referring conventions falls foul of a diagonal
argument. But if even one necessary truth is determined by a convention, ‘neces-
sitarianism is established; so that needs prevention, see [28], pp. 51-3.

7 popper: ‘It is not the properties of the world which determines this construction [of
science]; on the contrary it is this construction which determines the properties of an
artificial world’, [20], p. 79. For a discussion of indeterminateness in conventionalist
semantics, see Nerlich [18] p. 100.

8 Even so, it would be a distinctly odd thesis: in what sense would the world be
indeterminate about whether all cats are cats?

9 Putnam [22], p. 163. ' .

10 Eyen here, though there is- a difficulty if ‘not give up’ amounts to ‘continue to
believe’; for then the idea that beliefs be decision-controlled amounts to the thesis that
beliefs are actions, which is controversial.

1 Cognate views are evidently the indeterminateness thesis discussed earlier, or some
‘no proposition expressed’ thesis.

12 The remarks here are intended to apply as much to those necessitarians for whom
proof precedes truth, as the other way around.

13 See e.g. Routley, [26].

14 [21], p. 207. .

15 Haack [5] argues against the thesis that there may be truths which are ‘analytique’ in
the sense that everyone learns that they are true by learning the words, attributing it to
the later Quine. : . :

16 proved by Errol Martin in [10]; see also Martin and Meyer [11]. It constituted
positive answer to Belnap’s Conjecture, that in the logic S, consisting of rule transitivity
and axioms and rules of prefixing and suffixing, no instance of A—> A is provable.
Martin and Meyer have exploited the result to defend the view that Propositional
Identity is not a logical law and that validity is captured exactly by the theory of the
syllogism, but it seems to me that the latter conclusion is uwarranted. -

17 Armstrong [1], Tooley [27]. : . :

18 Tt goes without saying that the latter two have been questioned: A & B— A is denied
in connexivism on which the litérature is considerable, e.g. McCall [12]. Many find
A—> Av B of doubtful value, contrary to Haack; see Parry [19].

19 Brady [2] or da Costa [3].

20 [13] or [14].

21 Putnam [22]. Popper runs a similar line, that logic is needed as an ‘organon of
criticism’, and that classical logic is the preferred logic since it alone maximises
retransmission- of falsity. This argument is discussed and rejected in [15].

22 | am indebted for raising these points to Dr. Rainer Trapp, and a referee of this
journal.

23 Haack [6] and [7].

24 [22], p. 170.
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First, we consider an argument due to Popper for maximal strength in choice of logic. We dispute this
argument, taking a lead from some remarks by Susan Haack; but we defend a set of contrary
considerations for minimal strength in logic. Finally, we consider the objection that Popper presupposes
the distinctness of logic from science. We conclude from this that all claims to logical truth may be in equal
epistemological trouble. '

1. Introduction

Good cautious epistemology ought to ask for reasons why one should believe in
one logic rather than another. Much recent theorising has pursued this question in the
particular so to speak, by considering individual theses and various arguments for
and against their logical truth. No doubt this is symptomatlc of the -fact that the
epistemology of logic seems still to be in a fairly unsettled state. In this paper, we aim
to do several things. In the second section, we consider an argument due to Popper for
maximal strength in choice of logic. We dispute this argument, taking a lead from
some remarks by Susan Haack but adding further considerations. We then defend a
set of contrary considerations, for minimal strength in logic. In the third section, we
consider the objection that Popper presupposes the distinctness of logic from science,
and caution about how easy it is to do the same, arguing that both Haack and
Grattan-Guinness can be viewed as doing so. We conclude from this that all claims to
logical truth may be in equal epistemological trouble.

2. Logical strength and logical weakness

Popper the fallibilist argues for a particular logic as a deductive tool in empirical
science, classical two valued logic. He distinguishes between the use of logic as a proof
tool in mathematics, and its use as an organon of criticism in empirical science. Of the
former he says that minimal logic is best since it represents a sceptical attitude toward
what is to be proved. We concentrate in this paper on the latter. His argument
proceeds from a principle of maximum uncharity in criticism of empirical theories.
The best kind of criticism is the one which makes it hardest for the defence. The
logical organon most suited to this is one which retransmits the most falsity backward
along deductive chains, and that one must be maximal in the sense that it makes valid
the most deductions A/.".B (Popper 1973, 304).

Susan Haack properly objects to this argument for two reasons: first, that it is not
obvious that the strongest logic is the severest critic, since a criticism which only
needed a weaker logic would seem to be more severe; and second, that Popper does
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not apply the argument to the theories of empirical science themselves, so he must be
presupposing a sharp distinction between logic and science which is hard to justify
(Haack 1974, 35-38)."! Grattan-Guinness similarly objects that logical strength can be
‘brute’ when applied to science (1986, 193). We return to these matters later.

One point to make against Popper’s argument is that by itself it would not single
out a unique logic, since it is now known that there are many logics maximal in the
sense of being absolutely complete (where a logic is absolutely complete if the result of
adding any nontheorem and closing under modus ponens and uniform substitution is
that every wif is a theorem). Indeed, since every logic has at least one absolutely
complete extension, the argument would need to maintain that every logic is a
sublogic of classical logic. Perhaps Popper thought this, since his chief example of
nonclassical logic is intuitionism; but it is not so. One can speculate that an attempt
might be made to save the argument with some analysis of ‘true’ and ‘false’ which
showed that the semantics of these terms require a sublogic of classical logic. But
anyone in the business of questioning principles of logic ought not to balk at
reanalysing truth and falsity; plenty of the latter has taken place recently too.

Returning to the earlier point of a distinction between logic and science, Popper’s
argument might also be thought to prove too much, since without a prior distinction
between logical truth and nonlogical truth, the principle of strength would argue
retaining as many propositions of any sort for critical purposes. This gullibilism is at
odds with the healthy caution we emphasised earlier. Both Popper and Lakatos also
emphasised a counterprinciple to criticisability, namely healthy dogmatism. A
healthily dogmatic defence of a thesis is a cautiously sceptical attitude to its criticism.
To hold otherwise seems to introduce an asymmetry between criticism and criticism
of criticism.

Richard Routley objects to an uncritical assumption of -a principle of logical
strength within relevant systems, charging Anderson and Belnap with this error
(1982, 242). His point is that the assumption derives from the mistaken view that what
is wrong with irrelevant systems is principally their irrelevance; instead of seeing that
relevance derives from deeper semantical desiderata which unify and explain not only
relevance but also the fallacy of suppression, and more generally intuitionist,
paraconsistentist and even connexivist insights. While Popper could hardly be
expected to have been addressing himself to such an issue, or even aware of it, it
points to the fact'that a brute monolithic principle of logical strength is quite out of
step with all the theorising over the last fifteen years or so about particular logical
theses. For these various reasons, then, it should be rejected.

Indeed, we propose in its place a principle of logical weakness: prefer the weaker -
logic. In favour of this principle, we offer several related considerations. First, as is
well known, a weaker logic has more theories than a stronger logic. Now the
importance of the study of the theories of a logic cannot be stressed enough. One can
view the theories of a logic as linking logic and science, in that logical theories can be
seen as approximations and precisifications of scientific theories which thus can help
to study the deductive principles on which scientific- arguments proceed.  Indeed,
having more logical theories gives a greater chance at approximating the raw data of
scientific. theory. It is always open to recover extra principles if needed, as postulates
holding over a less-than-fully-general range of subject matter. Philosophers of science
sometimes give the impression that they think scientific theories should be stuffed into

1 The textual evidence in support of the latter, particulaﬂy from Popper 1963, 207-212, as well as his
1973, is pretty decisive.
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the straightjacket of classical logic (see also below on verisimilitude, this section),
when in truth one’s logic should be informed by scientific theory, as the quantum
logicians have long recognised. Needless to say, it is or ought to be a two-way process,
with discoveries in logic and logical theories potentially informing scientists of the
expanded possibilities available to them.

Thus we are taking sides here on the disputed matter of the empirical status of
logic; and, in passing, also on the bearing of quantum theory upon it (though our
argument does not depend on this special case). As to the former, we note that
Haack’s various works mount an admirable defence of the broad principle of the
revisability of logic in the light of empirical science (see also Mortensen 1988). On the
latter, we wish only to digress to point out Dummett’s error in arguing against
quantum logic (in his 1978). He identifies realism with the primeness of the world
(where a theory is prime iff for every disjunction in it, at least one disjunct is also in it).
But a world in which variables take ranges of values without taking any specific value
from that range is arguably (given infinite disjunctions) a nonprime world, and yet
realism would not obviously be impugned. It would, perhaps, be a fuzzy world
(though that term is theory-laden); but it is a world in which the law of Distribution
fails, in which moreover the quantum theory might hold, and, indeed, a world not
known not to be our own. Also against primeness, see Mortensen and Priest /981,
where it is argued that the truthteller paradox ‘This sentence is true’ is best
understood as yielding the nonprimeness of the world.

A second consideration in favour of weakness develops Haack’s point that a
criticism which proceeds from a weaker logical base ought to be accounted as a more
severe criticism. Popper notices this point (1973, 307), but regards it as ‘not very
important’. However, a criticism proceeding from weaker premisses leaves fewer ways
of repairing the damage, so to speak. A recent argument in Tennant 1985 illustrates
the point nicely, by applying it back to Popper’s methods themselves. Tennant shows
that intuitionist logic is adequate for the Popperian schema of refutation of
hypotheses, and indeed that minimal logic suffices if the connective > is dropped.
Thus if the most general description of Popper’s critical epistemology needs only
intuitionism, he is hardly in a position to claim that maximal logic is required by his
methods. But also, as it were, the ‘adequacy’ of the weaker logical base implies that
criticisms which proceed from an unnecessarily strong logic are actually weaker, in
that they permit apparent escape routes which are in fact blocked by the same
criticism. Only if one thought with Popper that change of logic was not a genuine
escape route in empirical science, would one think that this was not very important;
but that is precisely our complaint against him.

A third consideration relates the previous two. The existence of a larger number of
theories for a weaker logic means that a criticism developed on a weaker logical base
leaves the defence without the option of modifying one’s theories to match those of an
intermediate logic. Here, too, we can draw on a recént example. Many philosophers
have expressed the desirability of a theory of nearness to the truth. It is well known,
though, that Popper’s theory of verisimilitude was proved by Miller and Tichy to be
subject to a severe limitation: that no two false theories could stand in the required
verisimilitude relation. However, one of us showed that the limitative proofs
depended on the assumption of classical logic; and depended essentially so, in the
sense that the limitative result fails for the theories of all the usual relevant logics
(Mortensen 1978). Thus it looked for a time as if escape for verisimilitude might be
quite easy: simply flee to one of the independently motivated relevant logics. Before
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general rejoicing breaks out, however, we should warn the reader that in a second
paper it was proved that even for quite weak logics (and any stronger logic), the
Popperian account for verisimilitude is subject to a slightly weaker, but still
intolerably severe, limitation (Mortensen 7983). The moral to draw here is that there
is a general need to examine the extent to which one’s philosophical theories are
invariant over broad classes of logics weaker than or incomparable with classical
logic, and a need to reassess them in the name of overall theoretical neatness if not.

~ The further moral to draw from these considerations is that one should seriously
consider believing in as few necessary truths as one feels one can get away with, or: do
not multiply necessity beyond necessity. This is in line with the ‘Principle of
Conceptual Economy’: postulate as few conceptual connections as possible. (Popper
himself warned that one should have as little to do with conceptual questions as
possible; see 1973, 310.) Like other principles of economy and simplicity, it is easier to
appreciate the above principle as evidently true than it is to justify it. However, in its
defence it can be said that it unifies the earlier points we have made. Conceptual
connections bind in a way that contingent connections do not. They restrict
theoretical freedom. Conversely, arguments, especially criticisms, which do not rely
on unnecessarily binding principles, are more telling in that they derive from weaker
premisses. 1f one’s.method does not otherwise require a logical or conceptual
connection, then to saddle oneself with it is to allow oneself less freedom than one is
entitled to.

We regard the foregoing case for logical weakness as compelling. It rests in part on
the perception of logic as strongly continuous with science, particularly in its
epistemological aspect. In the remainder of the paper, we wish to caution about how
easy it is to slide back into the view that logic is distinct from science.

3. Necessity is More than Truth

" As noted earlier, Haack argues that Popper must be presupposing the distinctness
of logic from science, else no sense is to be made of his failure to be even-handed with
them. But Haack in another place goes to considerable pains to emphasise the
compatibility between the thesis that there is at least one necessary truth (call it
necessitarianism); and the theses that logic and necessary truth are revisable and/or
fallible (1979, especially pp. 60-1). Indeed, she makes it clear that she would like to
hold both necessitarianism-and fallibilism.

Now at this point there would seem to be two ways for a fallibilist-necessitarian to
go: either hold that logic is revisable while enjoying a distinctive epistemology in
which, for example, a priori proof plays a central role; or hold that logic is more
literally a ‘part of science’, in which logic might be revised ‘to save a physical theory”
The former of these has the difficulty of explaining in what its truth ¢onsists and how
it could be of any use to physical theory,? but in any case it is also a strong distinctness
thesis. Lakatos’s Proofs and Refutations might (just) be read as consistent with the
former. Haack favours the latter way (the quoted words are from her 1979, 60), as we
do.

But now, if logic is revisable in the light of physical theory, presumably the
conditions for its rational acceptance are of the same kind, normal scientific
theoretical investigation.’ But then we need to ask how a scientific theory is to issue in

2 On this and other points see Mortensen /988.

3 Haack cautions against easy revision of logic because of its generality (1974, 37). One would have
thought that this was more reason to be sceptical of it: unless one had in mind that it must be replaced
with equally general theses, which looks dangerously like failure of even-handedness.
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a recommendation to believe not only that a proposition is true, but that it is
necessary- truth? This is where we think Haack’s desire to retain necessitarianism
issues in a strong distinctness thesis in spite of her. The necessitarian here presumably
is saying not only that the proposition in question, say of the form Av 1A, is playing a
central role in successful theory, but also that the proposition O(Av T1A) is too. Yet
that is a distinct thesis and thus requires a distinct theoretical role. There would then
be a niche for logic as the outcome of the study of distinctively logical truths or at
least necessary truths, even if what is necessary is to be uncovered by normal scientific
methods and revisable in the light of them. But, we suggest, it is a niche into which
there would be no theoretical point in placing anything. The use of phrases like
‘necessary truth’ or ‘logical truth’ can conceal this distinction, since it might look as if
ordinary investigation of the truth of necessary truths can verify them, and thus show
them to be necessary. In a similar vein, when Grattan-Guinness speaks of bivalent
logic as a ‘refutable theory of applied logic’, (1986, 193) there is a crucial ambiguity:
the words ‘applied logic’ look like they might contrast with ‘pure logic’ and thereby
imply a distinct subject, logic, presumably characterised by a set of proposmons of
the form A which applied methods can uncover. Of course, the intention hcrc might
not to be to make useless conjectures about CJA, but to concentrate on ordinary,
scientific methods for uncovering the truth or falsity of A; in which case we applaud it. =

We do not mean that we think that it is nonsense to speak of necessary truth and
logical truth. Nor do we dispute the claim of the consistency between fallibilism and
necessitarianism. All we wish to draw attention to is the extra task one would have to
accomplish in establishing the necessary truth of any proposition, over and above its
mere truth, and to question whether ordinary scientific methods would be equal to the
task.

Inevitably the- dlscussmn has moved from the question of logical weakness to the
question of whether any propositions are necessary at all, since they share many
aspects particularly epistemological aspects. We do not wish to take the latter any
further, having discussed it elsewhere (Mortensen 1988). However, we do wish to
point out that the difficulty of ﬁndmg a reason to believe that any candidate for
logical truth really is logical as well as true, is shared by all candidates. The moral is,
perhaps, that the principle of logical weakness is an epistemological slippery slope
leading to the zero option of no logical truths. We do not view this with alarm, but
that is another story.
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Abstract

We consider the question of whether paradoxes are essentially verbal. It is argued that
paradoxes have an essentially verbal component, but that there is a special class of paradoxes,
such as the “impossible triangle”, which are not wholly verbal, but partly perceptual as
well, Along the way, attention is paid to explicating the idea of non-verbal content. © 2002
Published by Elsevier Science Ltd.
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1. Introduction

A very common' theme within analytical philosophy has been that philosophy is
essentially second order, i.e. about language. The great Carnap proposed that in
order to solve philosophical problems, it was necessary to re-state them as second
order problems. The solutions were there to be seen as discoveries about the lan-
guage we use. In ordinary language philosophy, Wittgenstein and Austin both
diagnosed the mis-use of language as the source of philosophical perplexity, and
offered the analysis of language as the method of philosophy. Even when this was
successfully challenged by Quine and Smart, who emphasised the continuity between
philosophy and science, insights about language remained central to their methods,
as witnessed by the title of Quine’s (1960) masterwork Word and Object. '

One bona fide traditional area of philosophy has been that of the paradoxes: The
Liar, The Sorites, Grelling’s, Russell’s, the Unexpected Examination and the like.
These have generally seemed to arise from language, at least in that the proposed
solutions and debates have generally been about the conditions for language, and
how it relates to extra-linguistic reality. We consider a couple of these examples
below. Graham Priest (1995) has recently proposed a general schema for paradoxes,
the Inclosure Schema. Paradoxes are postulated to arise from two opposed tendencies
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at the limits of thought: first, the tendency to describe limits to thought, that s,
necessary and sufficient conditions for something to be. thinkable; and second, the
tendency to go beyond those limits (the failure of the necessary conditions is think-
able). This at least suggests a thesis to the effect that all paradoxes are linguistic in
origin. Solutions will thus involve facts about language rather than facts about the
extra-linguistic world.

This speculation is re-inforced by the observation that the mark of a contradiction
is the assertion of p and not-p for some p. But of course “not” is a familiar word in
natural language. Naturally, the p and not-p need to be asserted, not merely present.
It is trivial to write down “p and not-p”. Indeed, mere “assertion” isn’t enough
either, as we will see below: a paradox arises because there are plausible arguments
for the p and the not-p, where it isn’t easy to see what has gone wrong.

Not that non-verbal means of representation could not figure in an argument.
Barwise and Allwein (1996) have convincingly demonstrated the presence of rea-
soning which employs geometrical transformations directly without translation into
any other format such as natural language. This should come as no surprise to
anyone save the die-hard verbalist about philosophy. Reasoning is not wholly reduci-
ble to verbal reasoning, such as is represented by natural language or first order logic.

This observation suggests the further speculation that while paradox needs words
for its demonstration, there may be paradoxes where other modes of representation
and reasoning are employed essentially. Solutions will thus have to take into
account non-verbal representation and contents too. That will be the theme of this
paper. It is proposed to discuss a number of paradoxes involving sensory modalities.
It will be argued that once we accept the need for non-verbal contents, then the way
is clear to see that some paradoxes force us to reach beyond the analysis of natural
language for their statement. This is not to say that there are ready solutions. If one
thing remains, it is the highly puzzling nature of these paradoxes. What one can say
about them falls far short of being satisfying. But at least we have a framework for a
kind of solution, whatever would ultimately count as a “solution” here.

2. Paradoxes in language

There have been many curiosities which have been dubbed paradoxes. Two of the
most important for the philosophy of language are both attributed to the ancient
Greek genius Eubulides. K

First there is The Liar paradox. It seems that Eubulides described Epimenides the
Cretan, who asserted that all Cretans are liars. Its modern stripped-back version
invites us to consider the sentence “This sentence is false”. If it is true then in light of
what it says about itself, it is false. Hence it is false. But then, again in light of what
it says about itself, it is true as well. What makes it paradoxical is that on the face of
it, it proves a true contradiction, that the above sentence is both true and false. It we
alter the paradox to “This sentence is not true” it appears to yield the conclusion
that the latter sentence is both true and not true. I say “appears” though in fact it is
my inclination to say that it is both true and untrue. But there is a considerable
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dialectical gap between the appearance and the reality, and many have thought a
different solution to be preferable. The important point here is that the difficulty of
determining just what is wrong with the argument for the contradictory conclusion
is a necessary part of what makes it worth describing as paradoxical. It isn’t enough
to have a paradox that we have an argument to a contradictory conclusion, even-a
valid argument for that conclusion. Such arguments are simple to construct. To be a
paradox, contradiction must be threatened: it must be that different suggested solu-
tions to the paradox aren’t easy to choose between, they all have drawbacks and
advantages in one way or another. _

I want to describe The Liar as a pure paradox of language. It is here expressed in
the English Language, using just the 26 letters of the English alphabet plus punc-
tuation marks. But more than that, it§ content is exclusively about language: apart
from the syncategorematic words “this” and “is”, its words are only “sentence” and
“false” or “not true”’, which respectively denote a syntactic item of language and
semantic properties of it. It needs nothing extra-linguistic to get going. Mind you, as
Kripke (1975) pointed out, we should beware of attempting to avoid the paradox by
reference to semantics, such as by banning self-reference, if only because there exist
closely related versions of The Liar which need contingent extra-linguistic facts
before being paradoxical. Thus if I write on one side of a piece of paper “The sen-
tence on the other side of this paper is true”, then it is accidental whether the sen-
tence on the other side of the paper happens to be “The sentence on the other side of
this paper is false.” Notice too, that this needs to actually be performed before the
paradox arises. If.no-one ever follows my instructions then there is no sentence or
pair of sentences to threaten to be true and false. After all, unlike the purer forms of
The Liar, I didn’t actually construct the paradoxical sentence in describing it. On the
other hand they are clearly variants of the same paradox, both in some sense invol-
ving circular reference leading to ungrounded proof of both truth values.

Then there is the Sorites paradox. A typical version of The Sorites argues from
two propositions: (1) Anyone having 100,000 hairs on the head is hairy, and (2) (For
all n)( if having n hairs on the head is hairy then having n—1 hairs on the head is
hairy) to the conclusion that anyone having 0 hairs on the head is hairy (or if an
exception is made at the last step, replace 0 by 1). The conclusion is false: by obser-
vation (or maybe linguistic convention) having 0 or 1 hairs on the head is not hairy
but bald. What makes it a paradox is that it isn’t easy to see what is wrong with the
argument for that conclusion. The premises look true, and the reasoning looks valid.
So difficult does it prove to say just what is wrong with the premises, that it becomes
tempting to try to revise the logic. That alone would qualify it for philosophical
importance. But logical revision is no easier, it appears. We can re-represent The
Sorites as an argument for a contradictory conclusion: The Sorites seems to show
that bald is hairy, but by observation (or linguistic convention or whatever) bald is
not hairy. Put like this, it still isn’t easy to see what to say about The Sorites, except
that for sure we know which side of the contradictory pair of statements is true: bald
isn’t hairy.

There are of course many alternative versions. All versions, however, involve
somehow the consequences of having vague language describe a precise world. So



304 C. Mortensen | Language & Communication 22 (2002) 301-311

The Sorites isn’t quite a pure paradox of language. Matching and mismatching
words with the world involves the world. Even more, its content is not exclusively
about language, unlike The Liar. Still, it is a paradox of language in the sense that,
like The Liar, it-is stated entirely by means of words. Many other traditional para-
doxes, including Zeno's, the Unexpected Examination and Grelling’s, share this
feature. But not all, I will argue.

Of course, paradoxes could hardly avoid essential use of languagein part. After all,
demonstrating a paradox cannot but involve use of both p and not-p, for some p.
The word “not” is a natural language word, it is a sentence operator. Thus, if the
mark of any paradox is the demonstration of a contradiction, then the statement of
a paradox must be in language. Here, however, the word “language™ needs extend-
ing somewhat, because “not” is a word of other languages than natural languages. It
is a word in first order logic, for example. Thus it would not be so surprising if
paradoxes could be demonstrated in various formal languages. And so it proves to
be, not only formal versions of semantic paradoxes such as The Liar and Grelling’s,
but also set-theoretic paradoxes such as Russell’s and Curry’s.

Even so, there are various paradoxes which I argue need resources beyond the
linguistic for their statement. As a preliminary, we need to ask how this could even
be. How could it be that a paradox, qua collection of propositions or contents, could
even possibly require for its statement resources beyond those of the typical natural
languages, augmented with the languages of logic and mathematics? We turn to this
next.

3.. Non-verbal representation

It is hardly contentious these days that the human cognitive apparatus employs
more than one representation system. I don’t here mean the difference between spo-
ken natural language and written natural language. These are alternative sign sys-
tems for expressing the same propositions (though of course we should leave open
the possibility that there be some propositional differences between spoken and
written English). Rather, I mean to allude to the difference between a natural lan-
guage description of a person, and a police identikit picture or even better a photo-
graph. The latter are obviously far more useful to us in identifying people. Again,
there is all the difference in the world between a musical score of the first four notes
on Beethoven’s Fifth, and those notes played. Information is stored in us in multiple
modules, with only limited cross-modular communication.

Elsewhere (Mortensen, 1989) I called these beliefs, desires, intentions and the like
that utilise modes of representation beyond those of the words of natural language,
“non-verbal propositional attitudes”. Note that the contrast with verbal beliefs and
desires is in the first instance in the mode of representation, rather than in the content
of the attitude. This thus leaves open that there can be cross-modular equivalents in
contents. The example of the word ““red” versus a red colour chip (used to represent
the colour of paints) indicates that there are some cross-modular semantic connec-
tions. But even here, something stronger is suggested: that the content of the belief
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that her face looked like that, is radically different from that of a verbal description.
There is so much more information in the former, my behaviour is so much more fine
grained if the information is stored in me in the former way. Rough equivalents in
content perhaps, but identity of contents no. -

Beyond verbal contents, then, we have the various non-verbal contents. In this
classification scheme, some linguistic information counts:as non-verbal, the best
examples being formal logic and more generally mathematical text. Note in passing
the predominantly written character of mathematical text: a wholly written mathe-
matical lecture is a commonplace (any journal article), whereas a wholly spoken
mathematical lecture is virtually unthinkable. There is a significant difference here
with philosophy, where both wholly written and wholly spoken presentations of the
same lecture are commonplace.

There is -more to non-verbal content, however. Specifically, beyond natural or
symbolic language there is the non-linguistic. The shape of the face is geometrical,
for example. That is why Euclid had to draw pictures or diagrams: because the
subject matter of geometry is space or shape. Imagine Euclid’s Elements without the
pictures. The mearnings of the propositions and the proofs all of a sudden become
highly non-obvious, to say the least. The point is lost, as it were. We must resist here
the temptation to commit the error that 3-D geometry is about R3, the set of triples
of real numbers discovered for us by Descartes. Descartes certainly discovered a way
to describe geometry by algebra, which greatly extended the proofs available. But
the two aren’t the same thing. In geometrical figure-drawing we represent by exem-
plification, to use Nelson Goodman’s (1981) word: Words (rarely) exemplify what
they represent, pictures always do, at some level of generality at least. In exempli-
fying, pictures show without saying, as Wittgenstein might put it. This further
strengthens the link betweeti the mode of representation and the content: if a geo-
metrical shape is part of the content of a belief, then mere words -do not have the
same contents; they represent without exemplifying. That words represent without
exemplifying is an important representational breakthrough of course: it is what
makes possible cross-modular unification of information. I can use words to repre-
sent both the redness of the cloth and the shrillness of the sounds, but I cannot use
an example of red to represent shrillness by exemplification, nor vice versa.

One more point is that exemplification doesn’t have to be perfect to represent
successfully. Exemplification comes in‘degrees of fit, and perfect exemplification is
an ideal which actual representations might accidently achieve. Pieces of space,
among which are drawings, certainly have their own exact shapes. But identikit
pictures are not exact likenesses, nor do the printed triangles in Euclid have exactly
straight sides. Still, they are not too far off; closer than more distorted pictures for
example. Very wiggly lines are generally much less satisfactory to represent the sides
of a triangle. But there is still exemplification here: the printed straight line exem-
plifies the vague concept of straight or near enough to (or not quite straight, as the
artist Jeffrey Smart, 1996 would say). And there are three of these nearly straight
lines in the representation of a triangle, not 4 or 44. On the other hand, some modes
of exemplification are more exact than others: it is hard to see a crimson patch on a
colour card as anything but red. More on colours later.
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One point to make clear here is that it is hardly being claimed that pictorial
representation is somehow word free. I'm not even sure that there’s a coherent thesis
here, but it is certainly not being claimed that shapes represent without being
embedded in a linguistic context. Dennett (1969, pp. 132-141) wanted to argue that
a shape by itself didn’t represent another shape, it needed some representing con-
ventions. Euclid did not draw only pictures, nor could he have. Euclid’s propositions
and proofs used words. When I believe that her face looks like that, words are used
to express part of that, words like. “her”, “face” etc.

Once we have contents, linguistic or not, we have the capacity for accuracy and
error, truth values in short. I can believe falsely about her face, or lie with a drawing
or a photograph. We thus need a truth predicate, governed by an analog of the T-
schema. At one level, this is trivial: “The shape of the object is: < is true iff the
shape of the object is: «€. More importantly, we also have the capacity for non-lin-
guistic processing. Barwise and Allwein (1996) has convincingly demonstrated pro-
blem solving which essentially uses geometrical transformations. Hence we have the
capacity for a semantics which reflects the non-verbal nature of various contents as
well as the connections between different modes of representation. For example, we
can say that the word “triangle” can refer to a drawn figure, just as we can say that
the drawn figure can represent any triangle by exemplification. This enables us to
explain the natural conclusion that since the drawn figure represents by exemplifi-
cation, the word “triangle” can represent any triangle. Truth conditions also
emerge: “The shape of the figure is a triangle” is true if the shape of the figure is
thus: <. The “only if” clause of this is more problematic, but even the “if”” clause
confers the power of non-verbal modes of representation to confirm linguistic Pro-
tokolsatze. An observation of a figure is sufficient to confirm the truth of a piece of
language: that the shape of an object’s being: < entails that the shape of the object is
a triangle and so that “the shape of the object is a triangle” is true.

Tt is useful to mark this distinction with a definition. We can call the non-linguistic
content of a proposition a percept. Specifically, percepts are contents which arise
from the perceptual apparatus. It is not decided that all percepts represent by
exemplification, but some do. In consequence, percepts are part of the cognitive
apparatus which utilises representation by means of exemplification. Percepts can
figure in deductions, at least geometrical transformations. They also figure in the
justification of linguistic Protokolsatze.

With this somewhat lengthy preamble, we turn back to the theme of paradoxes.

4. Visual paradoxes

Think first about a case which I maintain is not paradoxical: perspective. Per-
spective is not a paradoxical percept. According to the percept, the parallel railway
lines meet, and according to the camera too. What we know about the lines is that
they never meet, of course. But that knowledge does not form part of the percept, it
is not “projected onto” the percept so that there appears to be an impossible situa-
tion in front of our eyes. In passing, there are ways in which we represent parallelism -
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other than having the lines meet at an horizon. We draw finite lines looking parallel,
and then add arrows to indicate that the lines when extended infinitely never meet.
This device is partly an exemplification (the finite lines do not meet as drawn) and
partly conventional non-exemplification (neither the lines nor the arrow heads are
infinitely extended).

Our subject matter here is different, however. Consider these images:

These look impossible. Unlike perspective, we have here paradoxical percepts. Qua
percepts, moreover, the paradoxes are not wholly linguistic, in one important sense.
The paradox cannot be presented entirely with words, you have to look. Try saying
the words: “a three-sided object where each of the three sides recedes clockwise
away from the viewer in a closed loop”. Even if you could understand this descrip-
tion at all, it fails miserably to convey the oddity of the experience, which has to be
seen to be believed.

To reinforce the point, consider the following photograph.
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You can see from the two reflections that the object has an arm out the front, not
joining up to form a closed loop. It only photographs as a closed loop from a single
special direction, when the visual brain “joins up” the arm. When you know what
it’s a photo of, it can be seen as a possible object, with one arm sticking out the
front. Even then, the paradoxical aspect doesn’t go away. The image can still be seen
as an impossible object, indeed that remains the natural way to see it. Elsewhere
(Mortensen, 1997) I argued that the right way to think of the phenomenon is that
the cognitive apparatus, specifically the visual module, projects onto the percept its
expectation that points with a very small angular separation are spatially very close.
Doubtless this is an evolutionarily useful thing to do. This results in the percept
being describable by an inconsistent theory. Only an internalised inconsistency can
account for our feeling that we see it but don’t believe our eyes, I contend. Note too
that the phenomenon here is one of perspective (one eye) rather than of stereoscopy
(two eyes). The depth vision that comes from stereoscopy can serve to disambiguate
images, but that is not available when we are looking at an image on a flat page.

In what sense do we have a paradox here? The impossibility in the image is una-
voidably partly verbal, I think. If you try to describe what is impossible with it, you
will come up with something like the following. “There are a series of points on the
object, p1, p2, p3,...pn, such that p2 is further away that pl, p3 further away than
p2, etc all the way around the figure so that pn—1 is further away than pn. The
relation is further away than is transitive, so pn is further away than pl. But by
inspection pn. is closer than pl, and thus not further away than pl.” This is an
explicit contradiction, unquestionably. I cannot see otherwise how one would
represent the oddity here. If you try to just gaze at the picture without having verbal
thoughts per impossible, it just looks a bit odd. I think it takes the words to
appreciate just how odd it is, its precise oddness. Of course, the reality is not the
words. The words are about the geometrical reality. That is where representation
with and without exemplification have their distinctive differences, both strengths
and weaknesses. But what is odd about it needs negation to be expressed, and
negation is a linguistic operator. Denial took language to be possible.

So we have here the necessary presence of the non-linguistic and the linguistic
entwined together for this paradox to be grasped. It goes without saying that there
are a very large number of other visual paradoxes that have been constructed, par-
ticularly in the twentieth century, ‘starting with the great Oscar Reutersvaard in
1934. It is apparent that there are different classes of geometrical paradoxes to be
described, with different kinds of contradictions. Instead of pursuing this line, how-
ever, I want to draw attention to non-verbal paradoxes in different modalities other
than the geometrical.

5. Other non-verbal paradoxes

One familiar colour paradox is the colour sorites: the non-transitivity of the rela-
tion looks the same colour as. This is a paradox which is visual though not geome-
trical. We don’t have much trouble with this familiar phenomenon. Perhaps we
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should. The air of paradoxicality comes from the use of the word “same”’, in “‘looks
the same”’. What explains our inclination to use “same”? That’s a transitive relation
if ever there was one. Now the paradox tends to go away, if one uses instead the
relation cannot tell the difference between. After all, there seems to be no a priori
semantic reason why that should be transitive. However, that does not tell the whole
story, since one can fail to tell the difference between things in more than one way.
One can be totally blind, for example. Colour experience has a positive content, not
mere negativity. Like the sorites elsewhere, this paradox amounts to the problem of
matching a fuzzy concept of sameness onto the positive aspects of the world. The
problem becomes sharper if we postulate necessarily conscious mental items. That is
- partly why traditional sense data theories lost favour in epistemology: if the reality
exactly matched the conscious experience in its distinctions, then how could looks
the same colour as fail to be transitive?

I think this phenomenon shows something interesting: that colour perception is
partly a default mechanism. The colour brain adds a verbal judgement “same”-to
experiences that it cannot tell apart. But they must be different as percepts because
they interact differently with a third party: the third colour sample. The non-verbal
relations between the percepts are different, even though we cannot tell them apart by
a direct comparison. This, 1 take it, is the verbal aspect of the paradox. As with the
geometrical shapes, it looks to be unavoidable that words are essential in order to
express the paradox. Thus we have here another example of the mixing of language
and non-linguistic aspects to produce a paradox.

The final paradox is auditory: the ever-rising note. If you haven’t ever heard it, I
can assure you that it sounds just like that. How is it done? I don’t krow, but a
reasonable conjecture is that it is a series of rising dominant tones which fade in, are
at their loudest half way up, then fade out again. The perception of risingness is
attentional perhaps: the attention fastens onto the rising tone and follows it up,
shutting out other tones which are fading in and out. The oddness is quite primitive
here, and arguably pre-verbal: there is a perception of constant change, a perception
or memory of non-cyclicity, and at the same time a memory that later percepts are
the same as earlier. :

Even so, this paradox isn’t wholly non-verbal, I would say. The oddity has to be
said to be grasped: “a sound which sounds like it is always rising; while at the samie
time it isn’t rising, because memory says that it’s the same as earlier, and reason tells
us that it can’t be both changing (rising) and unchanging.” On the other hand, as
with all the cases we have been looking at here, it is hardly entirely verbal, if only
because you'd be quite within your rights to doubt this verbal description if that’s all
you had. Only the experience can really justify it.

6. Conclusion

I am conscious of a profound feeling of dissatisfaction at how little one seems to
be able to say in resolution of these puzzles. Still, there are a few general conclusions
which follow from our discussion.
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These examples all raise the question of how the verbal and the non-verbal are
sewn together in our mental lives. This is a question which arises prior to paradoxes,
when we reflect on the twin facts: (1) that we are thoroughly verbal creatures, words
fill our mental social lives and define us as humans embedded in civilisation; and (2)
that we are thoroughly bodily creatures, whose mental lives are saturated with the
sensory. We thus want to know how it is that the verbal and the sensory interact.
That they manage to interact is the power of words: they enable cross-modal
communication and evaluation to take place. To make an unfashionable claim,
words are what give us a CPU to integrate our actions, instead of our being crea-
tures driven by a collection of modularised, non-integrated parallel sensory pro-
cesses. It is plain that this could only be achieved by a mode of representation
which was non-exemplifying. This problem becomes sharper, however, when para-
doxes present themselves which trade on the interaction between words and the
sensory. , :

Of course, a contradiction by itself isn’t particularly interesting. For example,
recall the old story of the Barber of Seville, who shaves all and only those in Seville
who don’t shave themselves. A simple argument takes one to the conclusion that the
Barber shaves themself if and only if they don’t. But this is no news: there simply is
no such barber. They don’t exist, it is a contradiction to say that they do. To be a
serious paradox, as I said earlier, a true contradiction must be threatened: it must be
at a minimum difficult to see what is wrong with the arguments for the opposing
sides. So, for example, Russell’s Paradox, which has an identical form to the Barber,
is much more troublesome. Russell’s Paradox describes the Russell Set, the set of all
sets which are not members of themselves. In parallel with the Barber, the Russell
Set is a member of itself iff it isn’t. The reason why it is more troublesome, is because
we have independent reasons to accept a natural principle which yields its existence:
the principle that to every description (such as “red” or “non-self-membered”) there
is a corresponding set. This is why the presence of the non-verbal gives the percep-
tual paradoxes force: one side of the paradox is manifest in the percept. But how is
that managed? Beyond the foregoing tentative remarks, I don’t know.

Another conclusion is that these paradoxes escape Graham Priest’s (1995) inge-
nious Inclosure Schema. As we noted at the beginning, Priest’s account of paradox
proposes the clash of two general principles, one which seeks to impose limits on
thinkability or expressibility, and the other which seeks to go beyond, to burst.out-
side the conceptual barrier. I find this a very plausible account of many of the thin-
kers described in Priest’s book, though the strength of the paradox generated varies
with the case: again we need to find the premises plausible before we have grounds
to suspect a paradox. But the present non-verbal examples don’t seem to fit at all.
They are highly specific to sensory modalities, they do not seem to be about limits,
and they are not at all about general conditions for conceivability and the like.

One suggestion put to me is that geometrical paradoxes all involve a clash between
the local and the global. Locally we see that each point is further away than the next.
In any local part, the diagram is consistent. But on the other hand, the diagram as a
global gestalt is impossible. This seems right, but I fear it is more to describe the
problem than to solve it.
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Abstract: In his paper “Could Everything Be True?”, Graham Priest argued against
trivialism, the thesis that everything is true. Priest was aiming to show that it is not so
easy to dismiss trivialism, but that in the end it fails. This paper focuses on a different
but related thesis, namely that trivialism is possible. The possibility of trivialism is
indicated by a more general thesis, namely that anything is possible, which is known
as possibilism. Some of Priest’s arguments indicate that he takes his arguments to
refute the latter claim as well. This paper begins by surveying the advantages of
possibilism. It then turns to argue that Priest’s arguments fail against possibilism, and
that trivialism, along with everything else, is possible. Finally, the explanatory
advantages for modal semantics are briefly sketched.
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It Isn’t So, But Could It Be?

1. Introduction

This paper contributes to a defence of the thesis of possibilism.
Possibilism is the thesis that amything is possible. Possibilism is in
opposition to fhe thesis of necessitarianism, namely that there is at least
one necessary truth. Possibilism was named and defended first by Naess
(1972), and later by Mortensen (1989). The present paper discusses the
bearing on possibilism and necessitarianism of arguments due to Graham
Priest (2000). Priest’s arguments were aimed prima facie at a different
thesis, the thesis that everything is true, which he called trivialism.
However, as we will see, possibilism and trivialism are closely
connected, especially given Priest’s way of framing his attack on
trivialism. Thus the present paper principally aims to identify Priest’s
arguments against trivialism, show how they represent a threat to
possibilism, and demonstrate that they are unsuccessful. Before coming
to that, however, it will be necessary to survey existing arguments in
favour of possibilism, to establish its initial plausibility. In the final
section of the paper, it will be seen that this perspective leads to a certain

simplification of the semantics of non-normal modal logics.

2. Necessitarianism and Possibilism

The arguments for possibilism turn on a systematic attack on the
opposition view, necessitarianism. The concept of “necessary” which
applies here is somewhat loosely characterised as a group of notions
around the ideas of logical necessity, metaphysical necessity, model-
theoretic necessity, analyticity, and the like. It is not claimed here that
these notions are all reducible to a single core. It is also not being

claimed, as Quine would, that there are no coherent concepts at all in the



vicinity. Rather it is proposed that various arguments against these
notions have varying weights, depending on where they are directed. All
the same, it is contended that they all have epistemological drawbacks.

The attack against necessitarianism comes from two broad
directions: epistemological and ontological. Of these, the former carries
the greater wéight. We first survey the epistemological problem, then
rehearse ontological arguments.

Arne Naess (1972) seems to have derived his view in turn from
Popper’s (1963) attack on what Popper called “conventionalism™.
According to Popper, conventionalism is the practice or strategy of
defending a theory come what may against contrary empirical evidence or
strong counter-arguments. Popper diagnosed the error as placing
conceptual restrictions on theory-revision. Against this strategy, Popper
and Naess argued that even concepts may need to be revised, and that a
criticism which proceeds from a weaker conceptual base, one with fewer
restrictions, is stronger since there are fewer ways to escape from it.
Conversely, a criticism proceeding from unnecessarily strong conceptual
or principles is actually weaker, in that it is easier to find places to reject.
Now it is well known that when it came down to it, Popper was willing to
exempt the principles of logic from his rejection of conventionalism.
Similar to Quine, Popper ultimately found classical two-valued logic to
be the correct logic. This introduces an ad hoc character into Popper’s
otherwise estimable methodological position. In contrast, Mortensen and
Burgess (1989) argued that this was less than wholly general, and that a
fallibilist like Popper ought to be saying that not even logic is exempt
from revision; that is, that the set of specifically logical truths is null.

Here a cautionary note must be injected. Popper was a fallibilist, a
distinguished tradition deriving from Peirce. Fallibilism is notoriously

difficult to state, and this paper does not attempt to solve that particular



puzzle; nonetheless it amounts to something like the claim that no theory
is rationally unrevisable under the pressure of empirical science, that all
theories can fail for good reasons. It would seem, then, that a fallibilist
ought not to make an exception in the case of logic. However, Susan
Haack (1979) argued persuasively that fallibilism must be regarded as
compatible with necessitarianism. This is surely correct: after all, not
even possibilism should be regarded as unrevisable. Thus, fallibilism
should not claim to have the force of apriori disproof over
necessitarianism.

But the epistemological argument against necessitarianism need
not claim to have the force of apriori disproof, any more than any other
scientific hypothesis. The argument is rather: Are there any reasons to
believe the alternative? If not, possibilism has the virtue of the generality
and economy of epistemic monism. This term, introduced in Mortensen
(1989), refers to a wholly general method for establishing truths, namely
the scientific method of empirical theory-choice using experiment, theory
and observation. There is no need to cater for the knowledge-base of an
entirely distinctive set of necessary truths. The problem here is not that
necessary truths could not be shown to be true by ordinary scientific
means, for they obviously can. The problem is how one would come to
know that they are necessary (in any of the various senses of that term).

Perhaps this is to be done in the ordinary way of scientific theory-
construction, by including a postulate of the form UA in a theory and
appealing to its explanatory power? But it must be apparent at this point
that, as Naess argues, one adds nothing to the explanation of what hits
our sensory surfaces, by putting a necessity box in front of any theoretical
postulate. “B because A” may be sensible, but “B because OA” gains
nothing as an explanation, and even more obviously “A because OA”

adds nothing also. We have no reason to use such statements in our



theories. In sum, epistemic best practice indicates to us that we have no
reason to believe in necessary truths, and the virtues of a uniform
epistemic method are then overwhelmingly attractive in favour of
possibilism and against necessitarianism.

So much for epistemology. But there are ontological currents as
well. The main tide of ontological arguments against necessitarianism is
the challenge to show how various accounts of the necessary could
support a principled distinction between two fundamentally different
kinds of truth, the necessary and the contingent; and to do it in such a way
that the extension of each is non-null. In these waters, arguments tend to
drift apart as different accounts of necessity are canvassed. So take for
example the well-known empiricist reduction of necessity to analyticity,
truth by meaning. This was a brilliant innovation in the theory of
necessity, because it held out a plausible epistemology, namely
knowledge of the meaning-conventions of words, which seems
unproblematic or at least less problematic. But, as Hilary Putnam (1978)
pointed out, there remains a gap: how could it be that having a certain
meaning would be enough to ensure truth, without the world playing a
role? That is not generally the way of it with a truth-making world.
Indeed, if the world played no determinative role, what sense is there in
describing it as true? As Putnam put it, you can’t make something true by
a convention unless it’s already true. In passing, it should not be thought
that these arguments depend on Quine’s repudiation of the concept of
analyticity: they are intended to apply to the extension of that concept
without drawing its meaningfulness into question. In any case, as we have
already noted, Quine retained for himself a core of logical truth, classical
logic.

Or take a different account of necessity which has appealed to

many, namely model-theoretic necessitarianism. Here the idea is that



necessity is truth in all models (such as sets of consistent and complete
worlds). Unfortunately, this does not survive long either, though for other
reasons. It is too easy to construct models in which putative necessary
truths fail. This must of course be accompanied by a survey of the
numerous semantical studies which have produced counter-models, and
this must be regarded as having considerable complexities when dealing
with principles like the Law of Non-Contradiction ~(A&~A), let alone
the Law of Propositional Identity A—>A. These arguments are surveyed in
Mortensen (1989). However, these arguments can be encapsulated briefly
by noting that there is a general theorem covering all cases, due to Meyer-
Routley (1977, 2004): any sentential formula can be refuted in some two-
valued model. That is, model-theoretic necessitarianism must be
accompanied by an argument to select out and privilege a distinguished
subset of models, when it is conceded that the additional models exist.
This is invariably not attempted. Again, the only fully general position is
that which allows the widest class of models. But this yields the
conclusion, not that there is no coherent concept of necessity here, but
that its extension is zero.

These epistemological and ontological considerations are
powerfully inclining, I suggest. But it must be conceded that the
intuitions are ravaged by the denial of the necessity of such propositions
as that at least one thing is true, or that not everything is both true and
false, or simply that not everything is true. Something has to be done to
pump up contrary intuitions, if anyone is to be persuaded. This brings me

to the main topic of this paper.

3. Possibilism and Trivialism.
To recall, trivialism is the thesis that everything is true, so named

by Graham Priest in “Could Everything Be True?” (2000). The name



derives from the usual definition of a theory’s being trivial if it contains
every proposition, which is useful in disputes over the classical principle
Ex Contradictione Quodlibet (from a contradiction everything can be
deduced).

Priest characteristically sets himself to imagine the unimaginable,
by taking trivialism seriously enough to need refuting. He aims to defend
the thesis that not everything is true. Clearly, those of us who are not
deranged agree that not everything is true. But it proves surprisingly
difficult to justify that belief, as Priest ably demonstrates. Nevertheless, in
the end the weight of argument is definitely favourable. We will review
these arguments presently.

Given the main argument of Priest’s paper, then, its fitle is
misleading. For the title asks a different question: is it possible that
everything is true, or perhaps is it impossible? Now of course
philosophers sometimes ask whether something is so by asking whether it
could be so: we’re knee-jerk apriorists after all. And in this context few
would be misled by Priest’s title. Nonetheless, there are important issues
under the surface here.

Possibilism has close connections with trivialism, in that if
possibilism is true then it would seem that trivialism is possible (even if
untrue). It might be thought that this is too much to conclude. After all,
the truth of possibilism would seem to require only that there be, for each
proposition, a world in which it is true. It is a further step to say that there
is a single trivial world, one in which every proposition is true. The
former might be called the “distributive” version of possibilism, and the
latter the “collective” version. The distinction is conceivable enough, it
relies on a traditional difference in two ways of taking the universal
quantifier, which was applied in the analysis of the traditional fallacies of

composition and division. Still, this objection can be sidestepped, I



suggest. Trivialism would seem to be a meaningful position. That is one
of the parameters of this discussion, as Priest would agree: it can be
expressed in the logic of propositional quantifiers as (VA)A.
Consequently, if anything (distributively) is possible, then trivialism is
possible. That is, everything (collectively) is possible.

At any rate, whatever is right here, we can certainly say that if
possibilism is true, then the answer to the title of Priest’s paper is yes. If,
on the other hand, Priest’s arguments have the force of necessity, then
one should conclude that what Priest is arguing against is not just false
but impossible. If anything is impossible, then its negation is a necessary
truth. That is, if possibilism is false then the answer to the title of Priest’s
paper is no.

Priest evidently takes at least some of his argumentation to have

necessary force. For example, he writes:

“It is easy enough to show that trivialism is not true — indeed necessarily
so. For it is either true or it is not. But if it is true, it follows that it is not

true (everything follows). Hence, in either case, it is not true” (P190)

Priest comments that this would not show that there is something true
which is rejected by the trivialist, because trivialism rejects nothing. Yet
Priest himself is no trivialist, and he evidently regards this argument as
successfully establishing the necessary falsehood, the impossibility, of
trivialism. But does it?

Mortensen  (1989) in defending possibilism maintained the
possibility of trivialism. Any argument that trivialism is impossible will
be either invalid or question-begging. Consider for example Priest’s own

argument. It is of the form “Av~A, A—>~A. Hence ~A.” Now suppose we

try to strengthen the conclusion to: O~A. But that would not follow if the



premisses as given are not necessary truths: the form “AvB, A—-B.
Hence OB” is generally invalid if the premisses are contingently true. So
one would at least need to strengthen one or both of the premisses to the
stronger necessary form. But why should one accept that? It would be
blatantly question-begging.

This observation does not establish by itself that trivialism is
possible, nor that possibilism is true. The main aim at present is different,
namely to consider Priest’s arguments. He canvasses three arguments
against trivialism. It is therefore worthwhile to consider how well they
fare against possibilism.

Priest’s first argument is as follows. Surely there are some
propositions that we have to admit there are no good reasons to believe.
Therefore, any trivialist would have to admit that there are parts of their
position which there is no good reason to believe. Thus the belief in
question, which the trivialist has because they believe everything, is
irrational. But Priest allows that the trivialist can reply that there is some
reason to believe any proposition, or at any rate many propositions.
Consider any identity statement, such as that you are a scrambled egg. It
is a familiar argument that by making small enough changes we do not
change the character of a thing. So what began as you remains as you
even when every molecule of your body is replaced by scrambled egg. By
Leibniz Law, furthermore, it then follows that any thing has any property,
since any thing is identical with something which incontestably has that
property.

This is the familiar reasoning of the Sorites paradox. There must be
something wrong with the Sorites, for it is contrary to observation. It is
notoriously difficult to say just exactly what is wrong with the Sorites;
but there must be something fallacious about it, or it would be that hairy

is bald. Thus, any defence of trivialism which relies on the Sorites is



unbelievable. But note that here Priest was trying out an attack on
trivialism and finding it wanting. Thus, the conclusion of his argument
was not intended as a refutation of trivialism. In point of fact, it is easy to
agree with Priest’s premiss that there are some propositions that we have
no reason to believe. For example, there is the phenomenological absence
of an observation or sensation. In the absence of a sensation, we have no
reason to believe its Protokolsatz. But none of this threatens the thesis
that triviality is possible, in any case. Even if the argument succeeded as
an objection to triviality, the conclusion that our own world is not trivial
does not begin to show what another might be.

Priest’s second argument against trivialism is that it implies the
meaninglessness of public language. Public meanings are learned, and
learning implies contrast, some descriptions accepted and some rejected.
But trivialism prevents rejection, since for the trivialist nothing is
rejected.

It is clear that this argument does not succeed as an objection to
possibilism. If trivialism is merely possible, then the meaninglessness of
public language does not follow. If our world has contrasts, which it
surely does, then it is our world in which the contrasts that fix meaning
and learning in this language abound. If the failure of public
communication is merely possible but not actual, then nothing follows
about the inability to learn language in our world.

Priest’s third argument is to the effect that it is phenomenologically
impossible to believe that everything is true. This is because to live we
have to make choices. Choices are goal-directed, they imply rejection of
other alternatives. Since trivialism cannot accommodate rejection, there
are no real trivialists.

Indeed so, but this does not even show that trivialism is untrue, as

Priest acknowledges, let alone that possibilism is untrue:
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“This does not show that trivialism is untrue. As far as the above
considerations go, it is quite possible (sic.) that everything is the case; but

not for me — or for any other person.” (P194)

It might be that the fact that there are no trivialists counts against
trivialism, but it surely does not count against possibilism. We make our
choices, our actions and our rejections in our world, and this world is not
trivial. That is quite compatible with another world being trivial.

The failure of these arguments as objections to possibilism
illustrates a more general point. Defences of necessitarianism typically try
to reduce possibilism to a contradiction. But all such arguments
eventually fail, because possibilism is a consistent position. The simplest
way to see this is to consider the matrices below, which extend classical

logic with possibility and necessity operators.

&| T F|~|0|0

It is obvious that this is consistent if classical logic is. Hence, no
argument that seeks to render possibilism to be a contradiction succeeds:
the matrices tell us which premisses are false or question-begging. For
example, Graham Nerlich argued in conversation that possibilism is
committed to the possibility of necessitarianism. This is true, and indeed
we have already registered the point in connection with Haack in Section
2. The matrices validate 0CJA for every proposition A. Necessitarianism is

thus possible, it is a coherent position (or rather a group of positions for
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various accounts of the nature of necessity). But the matrices also show
that possibilism is not thereby reduced to triviality or inconsistency.
There may be, of course, attempts to demonstrate that something is
necessary other than by showing that possibilism implies a contradiction.
I suggest, though, that they will all need a premiss of the form
“Necessarily A” somewhere along the way, and then one would be
inclined to wonder why this confers some explanatory advantage over A
by itself. To illustrate this point, consider the objection raised in
conversation by John Bigelow, namely that some account should be taken
of our strong intuition that the truths of logic and mathematics are
distinctively susceptible of apriori proof. I agree that this intuition as a
mental state needs accounting for. But how would one progress the
explanation beyond the usual causal explanation in terms of the
occurrences of preceding mental states, by adding in a premiss that one of
the causes of our mental state is necessary? How could necessary truth

improve the explanation of any mental state, intuition or not?

4. Non-normal Worlds

The above matrices do not pop up out of nowhere. It is clear that
they arise from the usual semantical assignment conditions for the modal
connectives when applied to a model structure consisting of a single non-
normal world. A single non-normal world may of course have all the so-
called laws of logic holding true, such as A—>A and so on, but no
necessitated statement holds true. It should be noted in passing here that
the issue of the reality of worlds is not at issue: it is not intended to take
sides on modal realism versus various ersatz reductions of worlds.

This serves to deflect the objection that the matrices are cut loose
from the meaning-constraints of alethic modality. It is plausible that when

studying modal logic one identifies commonality in the concept under
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study (necessity, possibility, conjunction efc.) with commonality in the
assignment conditions, so that variation in the worlds of the model
structure represents varying accounts of the same concept. But that is
exactly so here, the assignment conditions for possibility and necessity
are the same as in the non-normal modal logics, only the case where there
are normal worlds is unsatisfied and thus idle. For the same reason, it is
pointless to object that the semantics of all normal modal logics validates
the rule of necessitation: every theorem is necessary. Of course that is so,
but the rule would need to be independently motivated. Needless to say, it
is part and parcel of possibilism that the rule of necessitation fails.

There is one more point about the explanatory advantage for
semantics in allowing a trivial world. The semantics of non-normal
modal logics is anomalous in the way it treats non-normal worlds. Non-
normal worlds are those (such as ours, if possibilism is right) at which all
propositions of the form “Possibly A” hold. In standard modal semantics,
this is regarded as sui generis, not arising from the accessibility relation
in the way that other modal evaluations do. But that is ad hoc. Now there
are two less ad hoc ways to produce or “explain” the above matrix. One
could postulate a model structure in which our non-normal world had an
infinite collection of accessible worlds, one for each proposition to hold
in, so that OA held on our world, for each A. This would correspond to
the “distributive” sense of possibilism that we identified at the beginning
of Section 3, each proposition would be possible but there would be no
sense in which they were possible together. However, it is clear that a
formally simpler way to improve things is to allow a single trivial world.
Then any world from which the trivial world is accessible, is
automatically a non-normal world. In addition to being technically much
simpler, this would correspond to the stronger “collective” sense of

possibilism which was adopted for preference in Section 3, and which
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was in accordance with Priest’s own understanding of trivialism.
Furthermore, the usual ad hoc assignment to non-normal worlds
disappears in favour of the truth of all the 0A being assured by the

accessibility relation in the usual way.

5. Conclusion

We see, then, that possibilism resists Priest’s arguments against
trivialism, initially threatening though they might have seemed. We also
see that possibilism has independent strengths. It is a consistent position,
and there is no good reason to believe in its rival, necessitarianism. In
positive terms, it is simple and plausibly motivated, being the only
epistemically and ontologically general thesis in the field. Anything is

possible, even triviality.
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CHRIS MORTENSEN AND GRAHAM NERLICH

PHYSICAL TOPOLOGY"

1. INTRODUCTION

This paper is concerned with the ontological status of intervals or stretches’
of physical space.> Some writers® have adopted a view of intervals and
points in space according to which the former are sets of the latter. We are
particularly concerned, in this paper, to deny this claim with respect to
continuous physical intervals in a continuous physical space.

There are at least two motives for treating the intervals. of a continuous
physical space as sets. One motive is topological. If physical space and spatial
intervals are entities different from the bodies which occupy space, and if
the topology of a physical space is a real property of it (in the sense that
the space has exactly one topology), then there will need to be some way of
stating the relations between physical intervals and, perhaps, physical points,
which constitute the topology, or the ordering properties of those intervals.
But the only existing machinery for constructing the topology of the real
line is a set-theoretic one. If, then, spatial intervals ate continuously ordered,
we will need to call them and their orderings sets in order to have any hope
of saying in what their continuity consists. '

In this paper, this position will be disputed. It will be argued that the
existence of certain set-theoretic ordering relations is insufficient by itself
to distinguish between a continuous and a non-continuous physical interval.
It will be argued that intervals in a continuous physical space are not séts
of points. This raises the question: if intervals are not sets, in what does
their continuity consist? An answer to this question will be offered.

As standardly treated, topology is a branch of set theory: topological
spaces are structures of sets. Already, however, we have spoken both of the
topology of the real line, and also the topology of physical spaces and
intervals, which we claim not to be sets. In order to make this difference -
clear, we will (usually) speak of set-theoretic topology as opposed to physical
topology.

Another motive for viewing intervals as point sets is metrical. In measure

Journal of Philosophical Logic 7 (1978) 209-223. All Rights Reserved.
Copyright © 1978 by D. Reidel Publishing Company, Dordrecht, Holland.
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theory, measures are measures of subsets of a set, i.e., measures are measures
of sets. In this connection, it is worth outlining how Gritnbaum commits
himself, for measure-theoretic reasons, to the thesis that intervals are sets.?
Griinbaum argues that continuous space must always have a merely con-
ventional metric, whereas discrete space need not. Very roughly, his argu-
ment is that the cardinal number of points in any continuous interval is the
same as in any other. But the cardinal number of points of an interval of
discrete space is not, in general, the same as in another, so each discrete
interval can be metrically characterised intrinsically, by counting the number
of grains which are members of it. Now, Griitnbaum’s conclusion seems open
to a simple objection, urged by several writers.®> The objection is that he
assigns a size to the smallest granular parts of discrete spacé when he
measures intervals by the number of grains they contain, but this assignment
must be no less a convention than any assignment of measures directly to
intervals of continuous space would be. Grinbaum dismisses this objection,
claiming to be able to avoid it by treating intervals of discrete space as sets
of their grains. This allows him to give a measure to the set (interval) by
way of its cardinal number, without this entailing that the members (grains)
of the set have a size in any sense. In response to Grilnbaum, Nerlich® argues
that in discrete space, the indivisible grains may only be treated as parts of
intervals, and hence as intervals themselves, so the simple objection succeeds.
However, Nerlich further contends that Griinbaum has improperly carried
over to discrete space a set-theoretic notion (membership) which correctly
holds between points and intervals of dense or continuous physicél_spaces,
and it is this last claim we dispute. For these reasons we do not think.that
Gritnbaum could accept our mereological account as the real metaphysical
truth for which his set theoretic description is merely an (accurate) fagon

de parler. Griinbaum needs set theory for his defence of conventionalism
against the simple objection just mentioned. But Nerlich could (and does)
accept our arguments since he is no conventionalist. Later, we will offer an
account of the measure-theoretic properties of physical intervals different
from Griinbaum’s.

2. ANY SETHAS MANY TOPOLOGICAL STRUCTURES

Our basic reason for claiming that the structure of continuous intervals of
physical space cannot be accounted for by treating them as sets with certain
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set-theoretic ordering relations on them is this: too many orderings exist
for any given set. The point can be expressed in the form of a theorem.

Given any set of cardinality 2%¢, there exists a binary
relation on § which is a continuous simple ordering on S.

The proof of this theorem in standard set theory is not difficult. If § has
cardinality 280 then, by definition, there exists a one—one correspondence
f from S to P(V), the power set of the natural numbers V. It is known that
there exists at least one one-one correspondence, say g, from P(V) to (0, 1),
the open interval of the real numbers R between 0 and 1. The natural
ordering, <, on (0, 1), which is a continuous simple ordering, then induces a
continuous s1mp1e ordering O on S, by x0y iff gf(x) < gf(»). The corre-
spondence gf is clearly order-preserving between (0, 1) under <, and §
under O. '

But, of course, § can be any set of the power of the continuum. In par- .
ticular, S under its natural ordering can be disconnected, e.g., the union of.
two disjoint open intervals of real numbers. S can be discontinuously
ordered, e.g., all the irrational real numbers between 0 and 1. Or S can be
some arbitrary set of spatial points. It follows, then, that what makes the
members of a set of spatial points make up a continuous spatial interval can-
not be just the existence of a continuous simple ordering (set of pairs) on
that set because, for any set of the requisite cardinality, there exists such an
ordering.

A topological space in set theory is not simply a set, but rather a set
together with a topology, which is a structure of subsets of that set. But this
is to say that a given set has, in general, many topologies. Enough subsets
either of the set or its Cartesian product, exist to give the set a vanety of
topologies or orderings. Therefore, the ordering properties of intervals of
physical space are not given simply by the existence of certain ordered sets,
for this gives no explanation of why physical intervals should be ordered in
one way, or have one structure, rather than another. But if the topological
motive for identifying physical intervals with sets is to account for their
physical structure in set-theoretic terms, the above argument seems to
remove the temptation from topology to make that identification.
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3. SOME ALTERNATIVE POSITIONS

There are several different positions which might be adopted in order to
deal with the considerations of the previous section. In this section, we out-
line four. In the next section we will outline our own position.

First, we might deny, as Reichenbach’ seems to do, that physical space
has a unique physical topology. This move seems tantamount to denying that
space is real (although it is not obvious that it follows from the denial ofa
unique topology), for the denial of a unique physical topology seems to
remove all motivation for affirming the reality of space. As we see it, the
principal motivation for claiming that space, in addition to bodies, is real,
is to account for the physical topological properties which bodies display.®
Thus, we are disinclined to adopt this alternative.

Second, one might say that only certain ordered sets of spatial points
exist. The ordering properties of a physical interval are accounted for in
terms of an ordering relation, which is a set, on that interval, which is also
a set. What makes the interval ordered one way rather than another is that
only certain ordered sets of its members exist. We might call such sets
Aristotelian sets, an analogy with the difference between Platonic and
Aristotelian universals. The objection'to this approach is, of cqurse, that the
problems of constructing such a set theory are dauﬁting, to sa}" the least.

Third, one might say that an interval is an ordered pair of a set of spatial
points and a suitable set-theoretic ordering. According to this view, the
relation between points and intervals is not, as Gritnbaum holds, that of
being a member of, but that of being a member of a member of. Now this
view does not suffer from the difficulty that any set of the requisite cardin-
ality can be re-ordered so as to have a continuous simple ordering, because
the orderings of intervals and non-intervals are built into them, as it were.
But it suffers from a related difficulty, namely that if a certain pair{S, O)
were, on this view, an interval, an infinite number of different pairs (S, o"
would also exist. Indeed, just two will do, and if O is a continuous simple
ordering, the Axiom of Choice will guarantee us another, well-ordered. Then
we should have the problem of saying why it is that we select just one of the
pairs to be the interval coritaining the members of S. This point is, of course,
a particular instance of the more general argument that a set has in general
many topologies, so that set theory by itself doesn’t tell us why we should
select one topology rather than another as being descriptive of physical
space.
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Fourth, we might try to save the position just mentioned by introducing
into the proposed set-theoretic description of the topology of space and
intervals, a primitive function, which we might designate by ‘#’, which
selects from the set of all pairs {{S, 0): O € §?}just one pair for each S,
which gives the ‘natural’ ordering on S, and which might be.written ‘s#,

. This position was proposed in conversation by David Lewis, who argued
that it would have the advantage of conceptual economy over the position
we advocate, in that if we introduce the idea of non-set-theoretic relations
(as we later do), we involve ourselves in messy metaphysics.

But this view, while in some sense descriptively simpler, leaves one with
the same sort of problem as has been raised earlier. There are many such
functions which select from any set {(S, 0): O €S> }just one member. If U
is the set of all physical points, then repeated applications of the Axiom of
Choice to the set {{{S, 0): 0 € §?}: § € P(U)} shows that many functions
like # exist. Why choose one as giving the natural ordering of points in
physical space rather than another? If space has a unique physical topology,
then the mere existence of the function # will not guarantee that space has
one topology rather than another. Could it be, perhaps, in virtue of some
property of the particular function #? But the attempt to say what that
property is within set theory is clearly leading us into regress. The whole

point is that set-theoretic apparatus by itself here cannot describe in what
~ the physical topology of space consists. Of course, we do not deny that set
theoretical tools may be of the greatest use to us in stating the essentially
mereological facts and we make free use of them in what follows.

/

4. PHYSICAL TOPOLOGY INTERMS OF PARTS AND WHOLES

If physical space is real with a unique physical topology, then this topology
must be constituted by relations which are not sets between spatial entities
(points or intervals). Having said what such relations are not, we wish to
avoid saying what they are, for that would involve us in settling the general
metaphysical problem of how predications are true. They are whatever
makes relational sentences true, though it is our view that such entities

have to be along the lines that Plato described. The point of the two
approaches described in this séction is that in dispensing with a set-theoretic
description of the structure of intervals, we dispense with rhe need to speak
of intervals as sets. This evidently has considerable intuitive advantages. This
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is not to say, however, that we dispense with sets, as will become clear. In
the first approach, points are taken as basic. In the second, intervals are
basic. The relation between points and intervals is that of part-whole. Points
are unique parts, in that they have no proper parts. The two approaches do
not differ substantially since, from an adequate definition of the continuity
of intervals, atomic parts of these intervals (i.e., points) should emerge.

We assume a well-defined part-whole relation, for example along the lines
of the Calculus of Individuals; but we do not attempt to construct analysis
entirely within this framework, but use set theory freely. Success in the

further venture of constructing analysis without set theory would show
* something stronger than we wish to claim, namely that set theory is un-
necessary for physics.

(a) Points

We restrict ourselves in two ways. First, we aim to define only the continuity
of intervals, and not further notions, e.g., openness, which are topological.
Second, we restrict ourselves to one-dimensional space with the ‘topology’
of the real line. Multi-dimensional spaces constitute an important further
problem. For example, evidently multi-dimensioned spaces cannot, con-
sistent with our position, be treated as sets of #-tuples of points. Within
these restrictions, perhaps the simplest way of saying what it is for space to
be continuous is to say that spatial points are so ordered by a (not-set-
theoretic) relation T, that there exists an order-preserving one—one cor-
respondence between the set of points ordered under 7', and the set of real
numbers under its natural ordering, <. Alternatively, one could say that
points are so related by betweenness, that there exists a relation-preserving
one—one correspondence between the set of points related by betweenness,
and the set of real numbers related by betweenness on that set. Clearly, it
follows that there are 2% spatial points, and that T continuously simply
orders them. These definitions have the advantage of underlining the fact
that our approach does not deny sets, and does not prevent the set-theoretic
study of the real number system from being useful to the study of'the struc-
ture of physical space. The above one-one correspondences induce one—one
correspondences between the set of sets of physical points and the set of
sets of real numbers. We can then define a physical interval to be a whole
whose point-parts are all the members of a set which is the image under the
one—one correspondence of some real number interval. This ensures, for
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example, the property that any point between any two points of a physical
interval is a point of the interval.

We now attempt to construct in greater detail such a structure of space,
spatial points and intervals. _

Betweenness defined for points in the one-dimensional universe suggests
itself as a natural starting point with a solid basis in intuition. Betweenness
satisfies various conditions, and we give five (where ‘Bxyz’ stands for ‘y is
between x and z°).

1) @ 0)Boy &~ Biyx

® 0@ E) B

(3) (x) 0) () (Bxyz D Bzyx)

4) (x) @) (@) (x #y #z D (Bxyz = (~ Byxz & ~ Bxzy)))
(5) (x) ) (2) () (Bxyz & Byzu) O (Bxyu & Bxzu))

An interval is a sum of points, such that given any two points part of
that interval, any point between those points is a part of the interval. The
universe is an interval. The universe is the sum of all points, and the sum of
all intervals. A doubly bounded interval is an interval such that there exists
exactly two points, x, y, called the end-points of the.interval, such that
every point part of the interval not identical with x or y is between x and y.
An open doubly bounded interval is a doubly bounded interval such that
every point part of the interval is between its end-points. If x and y are the
end-points of an open doubly bounded interval z, z is denoted by ‘O(x,»).
A closed doubly bounded interval is a doubly bounded interval whose end-
points are parts of it. If x and y are the end-points of a closed doubly
bounded interval z, z is denoted by ‘C(x, ). A half-open doubly bounded
interval is a doubly bounded interval just one of whose end-points is a part.
If x and y are the end-points of a half-open doubly bounded interval z, and
x is a part of z and y is not a part of z, then z is denoted by ‘H(x,»).
Clx,y)=0(x,y)+x+y=H(x,y)+y=Hpy,x) +x.C(x,y) is called
the closure of O(x,y), H(x, y) and H(y, x).

Two points x and y are said to be on the same side of a point z, if z is not
between x and y. A singly bounded interval is an interval x such that there
is a point y, called the end-point of x, such that (i) every pair of points
which are part of x and not identical with y are on the same side of y, and
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(ii), for any point z on the same side of y as some point « which is a part of
x, z is a part of x. An open singly bounded interval is a singly bounded
interval whose end-point is not a part of it. A half-open singly bounded
interval is a singly bounded interval whose end-point is a part of it.

We will not venture into the territory of attempting to describe analogues
of open sets, closed sets, neighbourhoods, etc., in physical space. Clearly,
however, we cannot reproduce exactly the topology of the real numbers.
There is no analogue of the null set to be open or closed. Furthermore,
various of the conditions for closedness and openness break down in the
case of the universe because of the non-existence of a ‘complement’ for the
universe.

Density of an interval is straightforward: between any two points of the
interval is a third. The universe is dense iff every interval is dense.

The test of this approach is continuity. The following seems to be
adequate. A closed doubly bounded interval x is continuous iff three cori-
ditions are satisfied?

) x is dense.

@ -  For any proper subinterval y of x which contains an end-
point of x, either y is a half-open doubly bounded interval
and x-y is a closed doubly bounded interval, or y is a closed
doubly bounded interval and x~y is a half-open doubly
bounded interval.

3) There exists a countably infinite set S of points each of
which is a part of x, such that between any two points
of x is a member of S.

An open or half-open doubly bounded interval is continuous iff its
closure is continuous. The universe is continuous iff every open doubly
bounded interval is continuous. _

It is not difficult to extend this definition of continuity to the singly
bounded intervals. A bounded interval is a singly or doubly bounded inter-
val. The universe is continuous iff every bounded interval is continuous. An
interval is either a bounded interval or the universe. The universe is con-
tinuous iff every interval is continuous.

(b) Intervals
A second approach takes intervals as basic. A reason for doing this is what
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might be called the epistemological priority of intervals over points: separ-
ation and intervals between bodies are somehow visible in a way that points
are not. We suppose that the set of all spatial wholes (constructed by closing
the set of spatial intervals under the relations of part and whole) exists. Then
we can say that space is continuous if there exists a one—one correspondence
between the set of wholes and the set of subsets of the real numbers
(excluding the null set) which maps physical intervals to real number inter-
vals and vice versa; sums, overlaps and parts to unions, intersections and
subsets and vice versa, and preserves betweennesses of wholes in between-
nesses of sets of real numbers and vice versa. (These conditions are not
intended to be independent). We require that any whole which has a proper
part be mapped to a set with a non1erripty proper subset. This gives us
points: those spatial entities whose images are singleton sets have no proper
parts, for, if they did, their images would have proper subsets in the mapping,
which singleton sets do not (the null set is not the image of anything). There
are-2%¢ points. Singleton sets of real numbers have the same betweennesses
- as the real numbers, so, since the one—one correspondence preserves !
betweennesses, we have that points are continuously simply ordered. Physi-
cal intervals, then, are seen, e.g., to have the property that any point '
between any two points of the interval is a part of the interval.
We now attempt, in more detail, to construct continuity from the prim-
itive ideas of intervals, part—whole containment and an ordering on inter-
“vals given by Charles Hamblin®
As a background logic, we take the usual first-order predicate calculus

with identity, suitable axioms for the part-whole relation, and a single two- -
place predicate ‘<’ to be read as ‘precedes’. Quantifiers range over intervals.
Abutment is defined as

Defn 1:  adb =g a<b&~(3c)(@<c&c<b).

We then have the following axioms

Al. ~@<a)
A2. @<c&b<d)D(e<dvb<c)
A3. a<bD(adb v (Ic) (adc & cAD))

A4, (adc &aAd & bAC) D bAd
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AS. (eAb & bAd & adc & cAd)D b =c
A6. (3b)(bisapartofa &b #a)

AT. (3b) @ <b)

A8. (36) (b <a)

Hamblin'! shows that these axioms are sufficient for dense, linear
connected order if points are defined as ordered pairs of abutting intervals.
We go on to construct continuity. We need the notion of proper overlapping
holding between intervals. Following Hamblin, we define

Defn2: aPb =gz ~(a<bvb<a).

This is sufficient to ensure that two intervals which proper overlap do so
in an interval and not just a point.

y is a proper side part of x iff y is a proper part of x and (3z) (p4z &

y + z = x). Take some interval x and order the set of its proper side parts
by the relation, being a part of. This gives us a simple ordering of the proper
side parts. We call this ordered set x*.
~ The density of the interval x may now be stated. The proper side parts of
x are densely nested iff x has a proper part and, for any proper side parts,
u, v of x, if u is a proper side part of v then there is a w such that u is a
proper side part of w and w is a proper side part of v. x is dense iff the
proper side parts of x are densely nested. This corresponds to the condition
on dense intervals that between any two points there is, not merely a third
point, but an interval which, of course, contains non-overlapping
subintervals.

Consider just those proper side parts of x in the simple ordering x*. The
preceding condition ensures that there will be 1-1 functions f*, f%...f"...
each from the rational numbers in the open unit interval (0, 1) into the
proper side parts in x*, such that (i) for any two rationals u, v,€(0, 1)
u<vifff ¥(u) is a proper side part of f i(v). (ii) for any proper side part 2 in
x} there are rational numbers u, v, € (0, 1) such that a is a proper side part
of f}(u) and f(v) is a proper side part of a. This last condition ensures that
the images of the rationals ‘spread end to end’ in x. Functions such as these
permit cuts among the proper side parts in their range. For any such func-
tion f*, a cut among the side parts in its range is a pair of disjoint non-
empty sets A and B such that each side part in the range of f ‘isin A orin B
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and each 2 € 4 is a proper side part of each b € B. We denote an ficutby
[4,B]. :

We now state two conditions on an interval analogous to Dedekind’s
construction of the real numbers from cuts in the rational numbers. The
conditions are necessary and sufficient for continuity. x is continuous iff
(2) x is dense and for every f' cut [4, B] of x there is a proper side part z
of x such that just one of the following holds:

)) zEA4 &eachainA(a * 7) is a proper side part of z.
2 z € B & each b in B(b # z) contains z as a proper side part.
3 z¢A, zIGEB & every a €A is a proper side part of z & zis a

proper side part of every b €B

and (b) there is a non-empty, countable subset S of x* such that for any a
and b in x* such that a is a proper side part of b, there is a C(C €S) such
that a is a proper side part of C and C is a proper side part of b. (Separability
condition.)

This condition ensures that there are 1-1 functions F ', F%... F" from
the set of real numbers in the open interval (0, 1) into the proper side parts
of x which are in x*, such that for any two real numbersa, b €(0, 1)a<b
iff Fi(a) is a proper side part of F!(b). We believe that our use of the proper
side part relation prevents trivial cases where an open interval and its closure
both figure as images of real numbers under the same F ! mapping. Our idea
of proper side part is really the idea of a preceding side part. From all the
devisions of the interval x into pairs of abutting subintervals we chose, in
each case, the abutting (preceding) interval. But we can equally speak of
the second of each of these pairs of subintervals as a succeeding proper side
part. These proper side parts can also be simply ordered by the relation,
being a part of, and we refer to this ordered set of succeed'm'g proper side
parts as x3. -

Now there are functions g, G* from the rational and real numbers
(respectively) of the open unit interval into the succeeding proper side parts
of x which are in x%. The g' and G* clearly resemble the f fand F*, but we
choose, for example, the G so that for any real numbers u, v, €(0, 1),

u < viff G¥(u) contains G(v) as its proper side part. Thus (0, 1) is iso-
morphic under G* with x5 where the inverse of the relation being a proper
side part orders x3 as ‘<’ orders (0, 1).
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Consider the inverses of all these functions from the domain of the reals
into x* and x3. Call them F* and G*.The products of the F! with the G/
map from x* into x}. So there will be infinitely many 1-1 correspondences
between the x* proper side parts of x and the x3 proper side parts of it
which are isomorphic under the part-whole relation and its inverse. Since x
is a continuous interval, there is exactly one such correspondence C with the
following properties. All the proper side parts of x* and x3 paired under C
(a) have a common part (b) do not proper overlap, i.e., have no interval as
common part. Intuitively, for a closed interval x, C yields each pair of closed
left hand and right hand proper side parts of x which overlap in the point
which the two-side parts contain in common. We postulate that the parts
described in (a) and (b) above are points in the sénse of earlier sections.

Clearly, these results can be generalised to spalfces with different global
topologies, for example, to the circle. Without bé;ginning such a construction
from scratch, we might proceed as follows: - i

A cyclic interval is a sum of open intervals eac:,h with the topology
described but such that for any two points whic}{'-_are parts of the cyclic
interval there are two distinct points such that théy pairwise separate the
first pair. Some axioms on pair separation for cyclic intervals follow, where
we write S(x, y/z, w) for “x and y separate z and w’. We take ‘separates’ as a
suitable primitive, analogous to ‘between’. ' '

(@ - S8(x,y/z,w)if and only if S(z, w/x, ¥).
(b) S(x, y/z, w) if and only if S(x, y/w, 2).
" (c) If S(x,y/z, w), then it is not the case that S(x, z/w, v).
(d) If S(x, y/z, w) and S(x; z/y, v), then S(x, z/w, v).
(e) If x, ¥, z, and w are distinct points, then x is separated from

one of the others by the remaining two.'?

5. CONCLUDING REMARKS

Yet another alternative position to ours is as follows. Someone might wish
to hold a ‘mixed’ theory, according to which intervals are sets of points, but
what orders them in nature is a non-set-theoretic relation. Now unless this
view denies the part—whole relation (a drastic step), it seems to us that it
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differs descriptively, but not ontologically, from ours. Both views hold that
physical points are real, so both views will agree that any set constructible
from those points exists. Both views agree that very many sets of ordered
pairs of physical points exist, and both views hold that in addition, what is
responsible for physical topology is the relatedness of points', not the
existence of certain sets of ordered pairs. The difference between the two
views is, basically, in the referénce of the term ‘interval’. We wish to say that
things like this (t’lr\xe thing [ am now passing my hand through) are the .
intervals and regions of physical space, and it does not seem that such
things are sets. This is a whole, whose indivisible parts are points. The
‘alternative view presumably wishes to describe this as.a set, and on that
point we wish to disagree, though perhaps this is not the place to argue it.

The type of argument given in section two has broader ramifications for
the general theory of universals. There is considerable reason for supposing
that properties and relations exist in addition to objects, in order to
account for sameness, change, and why a universe of particulars should be -
one way rather than another. But an identification of properties and
relations with sets, even sets of extensions in all possible worlds, would
seem to be insufficient to determine just which universals are instantiated
in a given world, for instance ours. Every set which can be made up from
existing objects exists, and this seems to show that we need some further
explanation for just why these objects are, for example, red, over and above
the fact that they are members of a particular set in our world, which is in
turn a member of a set of extensions in all possible worlds.

The account we have given of the structure of intervals gives an intuitively
acceptable account of how matter can continuously occupy space. One can
say that a continuous and connected one-dimensional rod is continuous and
connected because (1) it is made up of points of matter, and (2) there is a
continuous and connected physical interval such that every matter-point is
at some spatiai point of the interval, and every point of the interval has a
point of matter at it. It is important to see, though, that the relation of
being at, holding between matter-points and spatial points, is not.a set-
theoretic one—one correspondence. For, if it were, then, as in section two,
any set of matter-points of cardinality 28e could be placed in one—one
correspondence with the set of points of some suitable continuous and"
connected spatial interval. One might try to avoid this by constructing all
over again the physical structure of rods, in parallel with the constructions
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of section four. But an easier way is to take being at as a primitive non-set-
theoretic relation. Then we have the consequence that the topological
properties of rods ride on the back of the topology of spatial intervals. This
seems intuitively correct: the topological properties of rods are derivative
from the topological properties of the space in which the rods are embedded
(which is not to deny that the presence of material rods might not be
causally relevant to topology or metric). '

Finally, we specify an analogue of Lebesgue measure on one-dimensional
intervals. We define a co-ordinate system to be an order-preserving one—one
correspondence between the set of points and the set of real numbers. This
correspondence induces a one—one correspondence between the set of sub-
sets of points and the set of subsets of real numbers. To each set of points,
except tie null set, there corresponds a unique whole, so we have a one—one
correspondence between the set of wholes of points and the set of subsets
of real numbers excluding the null set, as before. Intervals are mapped to
intervals, etc., and it follows that we can assign to the image of any set, the
Lebesgue measure of that set. We have that the measures of points, and any
spatial objects made up of denumerably many points, is zero (and this holds
in any such co-ordinate system). The measures of the objects associated
with-the Borel sets (a, b), (a, b], [a, b) and {a, b] are all b—a. The measures
of the singly bounded physical intervals, and the whole physical line, are
infinity.

Different measures assigning non-zero measure to a finite number of
points can also obviously be constructed.

We note two points about the foregoing. First, a spatial interval can have
an infinite number of unextended parts (unextended in the sense of having
zero measure), and yet be extended. Second, differing co-ordinate systems
confer different measures (in the above sense) on a space. So to that extent
measure is conventional. But on the other hand, not any measure is possible.
In particular, measures which assign non-zero size to points or denumerable
spatial wholes prohibit co-ordinate systems and Lebesgue measures like the
above. -

We take this conclusion that any point, not just its singleton, has a
measure viz. zero, to be directly contradictory to Gritnbaum’s thesis that
measure cannot intelligibly be applied to members of sets of points in any
space (op. cit. p. 575).

This is a point of some importance against Griinbaum. As noted in
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Section 1, Griinbaum’s defence against the objection that the metric ofa
discrete space must.be as conventional as the metric of a continuous space
rests on the claim that measure can only intelligibly be assigned to sets of
points. But here we have specified something closely analogous to measure
but which can be applied directly to the parts of intervals. It is up to
Gritnbaum to show that what has been done here cannot do the job of
measuring the size of the parts of space. It goes without saying that we think
that it can, though we leave the defence of that position for another
occasion. '

University of Adelaide
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SPACETIME AND HANDEDNESS!

Chris Mortensen and Graham Nerlich

I: Preliminary

As it is well known, Kant argued that the difference between aleft
hand and a right hand forces us to conclude that space, considered as
a thing distinct from hands and other bodies in it, exists. Evidently,
this argument is relevant to the dispute between what is sometimes
called ‘absolutism’, according to which space exists as an entity
distinct from matcr1al bodies and the relations between them; and
relationism, for which space consists in nothing but material bodies
and relations between them. (We will presently qualify this
description of the disagreement.) Kant’s argument has glvcn rise toa
fairly extensive literature (see bibliography).. A version of the
argument was defended by Nerlich ( (1973) and (1976) Ch. 2). One
feature of the literature is that it has tended to concentrate on the
implications of Kant’s argument for the existence of space. In the
post-relativistic era of spacetime however, this feature gives the
discussion something of a dated air. In this paper, we propose to
remedy the defect by enlarging the scope and realism of Kant’s
-argument. We will argue that Kant’s argument, set against a
background where the primary ontologlcal commitment should be to
spacetime rather than to space, remains basically correct, at least
when properly quahﬁed Converscly, a proper development of
Kant’s argument in this setting is instructive for understanding the
Special Theory of Relativity. Before we come to this, however, it
seems to us important to sketch briefly and evaluate the broad
outlines of at least some of the issues raised by Kant’s argument, since
our later argument essentially grows out of that discussion. The sketch
will occupy the next section, and our main argument will occupy the

subsequent section.

II: Moves in the Kantian Argument

We begin by entering two immediate warnings about the earlier

characterisation of the dispute between ‘absolutism’ and relationism.

First, as we described it, it is a dispute about the reality of space and its

nature. But the phrase ‘absolute space’ was appropriated by Newton
! We wish to give particular thanks to Ian Hinckfuss, whose persistent criticisms have helped

us to clarify our thoughts on the matters discussed in this paper. Thanks are also due to Jack
Smart.
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to stand for an entity which supplied the standard of nonaccelerated
motion, and with it also an absolute distinction between motion and
rest. It was a major dispute in the history of physics about whether
there is absolute space in this sense. (See e.g. Rindler (1977) Ch. 1).
We have no desire to remove the word ‘absolute’ from long-
established usage, so we will describe the dispute that we are
interested in, as that between ‘realism’ (about space, or spacetime)
and relationism. It will emerge later that there are connections
between the two disputes, however. Second, realism and relationism
are both groups of positions. As is not uricommon in disputes about
ontology, the lines can be drawn in different ways. For example, a
relationist might be found who is prepared to assert the existerice of
space as an entity distinct from, i.e. not identical with, material bodies
and their relations, provided that it is somehow a consiruction out of the
latter, or is somehow not ontologically basic. Looked at like this, the
issue is rather: if space is real, what is its nature? We will take it here
that realism is at least committed to denying that space is a
‘dependent’ entity, in the sense that it is analysable in terms of, or
reducible to, or constructible out of, resources acceptable to
relationism. In particular, realism ought to hold that space is neither
a set-theoretic nor a mereological construct out of material bodiesand
relations between them. This in turn raises the thorny issue of the
nature of constructs and reductions, which, we will ignore on the
principle that you can’t talk about everything, and in the hope that
the examples we select will not get us too caught up in the thorns.

One final preliminary point. We want to make a protest against
physics worship. There is an attitude current, for which Quine has to
take at least some of the blame, that the issue concerning the reality of
space is a straightforward empirical one o be solved by inspecting
successful physical theory to see what it quantifies over. Standard
theoretical physics postulates a spatial or spatiotemporal manifold in
which objects exist or events occur. The manifold looks for all the
world like the realist’s space or spacetime, and so we should conclude
that space is real. We want to brand this ‘physics worship’. What is
wrong with it, is that it does not provide us with a fine enough seive for
discriminating between kinds of entities which are, so to speak,
essentially postulated by theory, and kinds of entities which are there
only at the convenience of the theorist, or, perhaps, because theoretical
practice in the area has not considered the possibility of their
elimination by a reformulation of the theory. The best example we
can think of is the use of set theory by excessively mathematically-
minded theoretical physicists and philosophers. We have argued
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elsewhere (Mortensen and Nerlich (1978) ) that set theory cannot by
itself give a correct description of the structure of physical space, and
that the use of set theory in this area gives a thoroughly misleading
picture of what is really going on. Another example is the metric
tensor. The use of the metric tensor apparently attributes a unique
metrical structure to physicalspace, which uniqueness is incompatible
with the metric conventionalism of Griinbaum and others. It would
be a mistake, we think, to conclude from this alone that metric
conventionalism must be false. Rather, metric conventionalism ought
to be seen as offering a genuine research programme: to rewrite
physics so as to do away with what must, if conventionalism is right,
be a misleading theoretical formalism. We also have some suspicion of
the use of phase spaces and Hilbert spaces in this regard. Our general
point is that it is often not the concern of the theorist to look at possible
reductive accounts of the kinds of entities he or she is interested in, so
that certain kinds might get grabbed in the bag of values of bound
variables when they need not have been. Developing a theory and
taking a critical, reductive look at a successful developed theory are
different games w1th different aims, played by different people. The
latter game is one which might fru1tfully be played by the philosopher
of science. Thus, we want to urge that no matter how realist
theoretical physics might look, relationism might come up w1th an
alternative to realism, and it might even have theoretical advantages
over realism. So, don’t worship the physics that is : after all, it was
made by mere physicists.

Kant’s argument from hands to absolute space runs, very roughly,
as follows: there is a difference between left and right which is neither
intrinsic to hands, nor a relation between the one hand and the other,
nor between a hand and any part of space it fills. The difference lies in
a relation between the hand and space regarded as a whole. Here,
properties which appear to belong to things are derived from space
rather than vice-versa, as is. usually supposed. This gives the
argument its interest for absolutists or spatial realists. The argument
can be extended and enriched by looking at what happens when
handed objects are placed in various (non-Euclidean) spaces (as is
done in Nerlich (1973) and (1976) ). The phenomenon of handedness,
incongruent counterparthood or enantiomorphism (to list some
current expressions) is not confined to hands, of course. Objects with
the sort of asymmetry needed are simply everywhere and this adds
much to the force and interest of this style of argument..

Several relationist responses to these ideas are worth pursuing. We
mention one and offer brief reflections on another. One approach is
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suggested by Lawrence Sklar, in his (1974) article. The relationist is
envisaged as making use of possible as well as actual objects and
motions. Sklar himself expresses reservations about this tactic. We
think that such analyses are either inadequate or circular in ways
spelt out in Nerlich (1976) Ch. 2 § 8.

In point of fact, the idea of congruous counterparthood is not really
a temporal idea at all, and thus only in a Pickwickian sense one
involving motions. Euclid’s geometry was atemporal, but handedness
and counterparthood are certainly possible therein. Handedness is
possible in 4-dimensional spacetime, but in no sense of ‘move’ can
spacetime worms be moved. The congruity of counterparts is a matter
of a continuous function which ‘projects’ counterpart parts of space
for every one of its arguments, and that is not a matter of motion,
except perhaps at an intuitive level.? Rather, it is a matter of the
counterparts being appropriately linked by paths, which are parts of
space.

Another relationist strategy develops out of the observation that so
far in the argument not a great deal has emerged about what kind of
thing the space is which the realist has claimed.We have said that it is
the sort of thing that has a topological structure, with continuous
paths and dimensionality and also affine and metrical relations such
as angle and distance between its parts. Now a relationist might be
found to claim that a space of ‘points’, having all the above features,
can be constructed out of items which are relationistically acceptable.
We are guided here in part by Quine’s discussion in Word and Object.
(Quine (1960) Section 52). If viable, such a possibility at least shows
that the Kantian argument does not establish the falsity of
relationism, even if relationism so construed looks to have been
somewhat extended. We therefore look a little more closely at the
possibility.

Begin with the primitive idea of spatiotemporal distance (we
concentrate on spacetime and not space because Quine does). Select
five particle events, constrained only by the condition that there be no
three-dimensional hypersurface containing all of them. (In passing, it
is not clear to us how to make this constraint relationistically
acceptable). The five events form a reference system, in the sense that
were they to be embedded in a four dimensional manifold of points,

2 Counterparts are incongruous if there is no continuous map from the closed real interval [0,
1] to the space containing the counterparts, whoge values at the endpoints are the two
counterparts respectively and whose value forany argument is a region of the space counterpart
to the end-values.
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any point would be uniquely specified by the quintuple of distances
from each of the events. Reversing this idea, then, let a point be
identified with every such quintuple of distances. ‘With set theory, we
can then set up the idea of a co-ordinate system on such a space; and
also, since we are allowed distances, the metric tensor. Then we are
away, with neighbourhoods, continuity, paths and so on in the usual
fashion.. The point of the story is that distances and set theory are
supposed to be relationistically acceptable, so that even if handedness
forces us to empty space with points, paths and topology, it need not
force us to abandon relationism.

One point to make in connection with this strategy at the outset is
that the mere fact of handedness does not establish that space is
‘concrete’ rather than ‘abstract’. We leave these terms conveniently
undefined, but an example will serve to explain what we mean.
Enantiomorphism is possible in a ‘space’ whose points are n-tuples of
real numbers. That inuch barely needs arguing. The set R™of n-tuples
of real numbers with Euclidean metric with some suitably shaped
subset as the handed region serves as an instance. (In passing, this
reinforces the point that handedness is not a matter of motion, for
there is no sense to motion in such an atemporal abstract space). The
Kantian argument thus has something to say about the reality of
space, and about its structure, but it does not have anything to say
about the nature of the parts of space. So the strategy we are
considering does not count against the proposition: if there are
handed objects, then there is space. What it does is to challenge the
further proposition that if there is space, then realism is true and
relationism is false. We are, however, inclined to belive this further
proposition, and so we want. to consider the scheme on its own
terms. _

We have quite a lot of worries about this kind of scheme, not the
least of which is that it needs to be shown to be entirely adequate to
the concepts of spatiotemporal geometry it is intended to capture. A
second problem is that we are suspicious of the use of set theory in
accounts of the structure of physical space, as we have argued
elsewhere (Mortensen and Nerlich (1978) ). One way to focus this
suspicion is to try to spell out the ontology in more detail. What a

- spacetime point is, on this scheme, is a quintuple of numbers — a
certain set. But can we literally take it that the space time point exists
just if the quintuple does? Now, given standard set theories, the
quintuple certainly does exist. In fact, all quintuples of numbers exist
if any quintuple does. So is the scheme committed to a
‘correspondingly rich array of spacetime points at all these distances?
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That yields an infinite space with unnerving rapidity. We have no
particular reason to believe that this conclusion is at all desirable,
whether we regard it as a relationist or a realist result. Making
spacetime points at distances exist for every quintuple of numbers
enforces an embarrassment of riches on our ontology. However, there
appears to be no principle which might “include out” some
quintuples as spacetime points while “including in” others, and
which is not circular in appealing to the structure of spacetime as
independent of the quintuples.

It might be said that spacetime is some particular set of quintuples
which is a subset (proper or not) of the set of all quintuples of numbers.
Thus Minkowskian space time is a distinct set of quintuples from the
set which makes up some non-flat Riemannian spacetime. But a
similar problem crops up. Too many of these sets of quintipules exist.
So that if a certain spacetime exists just if a certain set of quintuples
exists then there strictly and literally are both flat and curved
spacetimes, Newtonian spacetimes, and (for existing sets of n + 1
~tuples) spacetimes of n dimensions for arbitrary n.

This makes it look judicious to say that the sets are not (the very
same things as) the spacetimes, but only represent them. We think it is
judicious to say so. But saying so says nothing to the ontic purpose for
ijt concedes and independent existence to spacetime.

- We conclude this brief sketch of moves in the Kantian argument
with the observation that we believe that the disease of circularityisa
difficulty for any kind of relationist attempt to construct spatial
hardware using modals, though obviously each attempt needs
individual scrutiny. If e.g. possible relations between possible objects
are claimed to be sufficient for the full paraphernalia of space, then
the range of possibilities needs correct specification without appeal to
the notions it is supposed to be reducing. Otherwise, we have no

guarantee that the full structure of space has been produced without
falsehood. '

III: Spacetime and Enantiomorphism _

As we said in Section I, the proper modern setting for Kant’s
argument are the notions of spacetime and relatiyity. To place it in
that setting, we will pose a problem for it which grows out of
relativistic considerations. - The  solution to the problem and its
implications will occupy the rest of the paper.

We begin by observing, what many have observed, that following
Special Relativity there are various senses in which there is no
absolute space. (This is not to say that either Special or General
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Relativity deny absolute spacetime). One sense, for example, in
which absolute space is denied is that absolute spatial distances are
denied. The end points of the same object will have different distances
between them relative to different (Lorenz) reference frames.
Another sense in which absolute space is absent in relativistic
spacetime, is that is no standard of absolute position over time, as a
hook for Newton to hang absolute acceleration on.

Now here is the problem. The Kantian argument appears to be
intended to have a priori force. It is of the form: if there are handed
things, then there is space. If correct, it would therefore have to hold
no matter what the nature of the possible world being considered.
Equally, then, the Kantian argument must have something wrong
with it if it is possible for there to be a universe in which there are
handed objects but no space. Now here you sit in your spaceship in
our relativistic universe in which, as we have seen, there is no absolute
space. Yet surely you have a left hand and a right hand, and they are
incongruous counterparts of one another?

One way to misunderstand this problem is to take the premiss of the
Kantian argument as being that there are handed or counterpart
spatiotemporal regions. Rclat1v1ty does not deny the existence of
spacetime and so if there are incongruous counterparts in spacetime,
spacetime must be real. Incongruous counterparts in spacetime
would be suitably shaped spacetime worms, and if such worms exist,
so must spacetime. Nevertheless, the problem we posed remains
because left and right hands are incongruous considered as spatial objects.
Hands in this context are not spacetime worms. Rather, they are
timeslices of spacetime worms. What becomes of the space they are in
then?

The beginnings of the answer lies in two things we have already
seen. First, absolute space in the sense of absolute spatial distances is
denied in relativity; that is, spatial distance is relative to choice of
reference frame. Second, counterparthood is in part a matter of
spatial distance, in that counterparthood implies sameness of distance
between corresponding parts. It should come as no suprise then that
congruous and incongrous counterparthood in a relativistic universe
is frame-relative.

We illustrate the frame-relativity of congruous counterparthood by
considering an example which seems to display the essential features
of the matter. Consider a two-dimensional universe and the two-
dimensional material bodies A, B, C, D below, with dimensions as
indicated.
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d, d,
A B
ad, ad,
ad, ad,
d, d,
ad, - ' ad,
C D
ad, ad,
ad, ad,
ad, ad,

Bodies A and B are incongruous counterparts (in fact they look a little
like left and right hands respectively). Thus A and Bare handed, and
opposite to one another. But C is not handed. A little reflection will
convince the reader that any counterpart of G; such as D, is congruous
with it. The number « is arbitrary, except that 0 <a< I.

First consider a reference frame relative to which A and B are at
rest. The dimensions of A and B are above, and relative to the frame A
and B are incongruous counterparts and handed. Now choose a
frame, moving away to the right from A and B. Relative to the second
frame, A and B are moving left (along the negative x-axis). As is well

‘known, in Special Relativity moving bodies undergo a length
‘contraction’ with respect to their rest length (i.e. their length relative
to a frame in which they are at rest), and the length contraction is in
the direction of motion. The length contraction is such that the
gieater the speed the more the length approaches zero. For any q,
0<a<l1, we can choose some speed s such that relative to a frame
moving at speed s any rest dimension d in the direction of motion is
contracted to ad. Hence the rest dimension d;, of A contracts so that
relative to the new frame it is now ad,. Similarly, d; contracts to ad,.
The dimensions at right angles to the motion, i.e. the dimensions up
the page, remain unaffected. Hence the object A becomes, relative to
the new frame, the object C. But whereas A is handed, Cis not. Hence
handedness, at least sometimes, is frame-relative (though we will
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presently see that this result is exceptional). By a similar argument, B
becomes, relative to the second frame, D. A and B are incongruous
counterparts, C and D are counterparts but congruous. Therefore,
incongruous and congruous counterparthood are also frame-relative.

This has been an example where counterparthood is preserved
relative to a suitable reference frame while congruity/incongruity
varies. Commonly, counterparthood varies also. Real life hands,
unless they are very unusual, are liable to be like this. For example,
consider the incongruous counterpart hands E and F.

Choose a frame relative to which E and F are moving away together
in the direction of E’s (left) thumb. Then E’s left thumb is shortened in
length. (There will be other changes in E but we can ignore them).
But F’s thumb is inclined at right angles to the direction of motion, so
it is not shortened. Hence E and F are not counterparts relative to this
frame, and so counterparthood is frame-relative. '

It seems to us straightforward to show that every pair of
incongruous counterparts can have their counterparthood destroyed
for suitable choice of frame. Being incongruous, they will not be
reflections of one another for some choice of direction. Choose a frame
moving in that direction and their dimensions will be modified
differently. Interestingly, some pairs of figures have their congruous
counterparthood invariant with respect to all choices of frame; circles
in two dimensions, spheres and hyperspheres in higher dimensions.
That does not mean that the idea of congruous counterparthood is
sometimes not frame-relative. The basic relativistic notion is
counterparthood-relative-to-a-frame. Only, some things are con-
. gruous relativé to all frames.

However,  while incongruous counterparthood is frame relative,
handedness is, ’in general, not. Subject an actual hand shape to any
Lorentz transformation and it remains left and handed, if it was left
and handed before. A (three dimensional) left handed screw or spring
remains handed' relative to any (Lorentz) reference frame. More
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laboriously, the world-tube which is the 4-object associated with what
is a left hand in some reference frame yields a left hand in the space of
any other frame. So, in some sense, handedness generally 1s an
invariant of Lorentz transformations though incongruous counter-
parthood is not. Thus handedness is not the same concept as
incongruous counterparthood. One exception to the ‘generally’ is
worth noting: the harided objects A and B above transform to the non-
handed objects C and D respectively, so under some Lorentz
transformations the handedness of some objects is not preserved.
Specifically, those transformations which, while preserving the
counterparthood of the particular shapes in question, vary their
incongruence, also vary their handedness.

Incongruous counterparts focus usefully on the fact that enantio-
morphic objects can be counterparts right up to reflection without
ceasing to be oppositely shaped. Counterparthood as we define it,
however, is a relational idea relating objects to objects: for any
incongruous counterpart there is an object which is its incongruent
counterpart. This makes sense of its being a metrical idea: there is
always something to which it is incongruous, and counterparts are so
related by sameness of internal distances. But handedness, though
relative to a space (x ishanded in space y) is not in our usage a relation
of objects to objects. It is not, generally, a metrical notion. Every
handed object is asymmetrical in shape, but how deep this asymmetry
lies is to be gauged by the groups of transformations which preserve it.
The transformations of the Lorentz group in Special Relativity are
affine transformations from the point of view of shape transformations
of spatial objects. Thus they destroy some asymmetries but not others.
The asymmetry of a hand is not destroyed by affine transformations, .
so it is at least an affine asymmetry and we may speak of things that
are affinely handed.

This brings us back, then, to the original problem: invariant spatial
handedness is possible in relativistic spacetime; what becomes of
space in relativistic spacetime’ if the Kantian argument for space is
correct? :

To understand what is going on, we need to-understand what, in
spacetime ontology, a space is, and what a frame is. Minkowski
spacetime is a collection (we prefer ‘whole’, see (1978).) of spacetime
points, with a certain metrical structure. A-(Lorentz) frame is
produced by cutting up that spacetime into:3 spatial dimensions plus
a temporal dimension. For a time-constant, the frame gives us a three
dimensional hypersurface, a spacelike slice of spacetime. In any given
spacelike slice of a frame, the frame specifies spatial distances between



SPACETIME AND HANDEDNESS 11

points. Thus a frame specifies a collection of spacelike slices, one for
each value of the time variable. Now there is a certain ambiguity in
‘space’, between space-at-a-time, and space-which-endures-through-
time. The frame identifies the former as one of its spacelike slices. The
latter is given in the frame by the fact that same spatial position over time
can be defined as those points of the spacelike slices whose spatial co-
ordinate relative to the frame is unchanging over time. Needless to
say, such a space-which-endures-through-time is frame-relative. The
class of all frames produced by the group of Lorentz transformations
defines the class of permissible partitions of spacetime into a space (in
either sense) and a time. Therefore, since spacetime is a collection of
spacetime points, and since a space (in the sense of a spacelike slice or
space-at-a-time) is a part of (or subset of ) spacetime, space is a
collection of spacetime points. Similarly, space-which-endures-
through-time is a collcction of spacelike slices relative to a single
frame, thought of as having a relation of same-spatial-point-at-a-
different-time defined on pairs of spacetime points in different slices:
Thus relativity theory represents a significant ontological shift from
the older Newtonian paradigm. Space though of as made up of points
enduring through time is gone. So has sameness-of-spatial-point-
over-time as a frame-invariant-(real) concept. But space has not.
Spaces as collections of spacetime points are still in the ontology. Not
any collection of spacetime points is a space, of course. Only those
associated with a permissable frame. But they are none the less real for
that.

So the conclusion to draw is that the Kantian argument is not
threatened by relativity, for space is still in the ontology on relativity.
Spaces are made up of different entities (spacetime points) from what
Newton thought. But recall what was said earlier, that the Kantian
argument does not legislate on the nature of the points of the space in
which handed objects are embedded. It is quite consistent with the
Kantian argument that the points of space be fundamentally
spatiotemporal.

As was pointed out before, a handed object is handed relative toan
embedding space. In spacetime, that amounts to saying that a
spacelike slice of spacetime can include a spatially handed slice of.
. spacetime worm, and that the handedness is a matter of the character
of the whole spacelike slice containing it. This means that the concept
of handedness can be used to characterise not just space, but
spacetime. The following can be said of Minkowski spacetime: the
existence of deeply (i.e. affinely, projectively or topologically; in any
case, invariantly) handed objects requires that spacetime has a
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definite character, viz. that every spacelike hypersurface is orientable.
Thus, the space of every inertial frame is orientable too. Every deeply
handed object has its character preserved in the space of every frame
and that character is frame invariant.

Given that the geometry of spaces in SR is Euclidean, these
definitions work and they are rather simple. Two spacetime objects
are absolutely enantiomorphic if no continuous similarity mapping inany
frame allows the space occupied by the one to be mapped onto the
space occupied by the other (here, ‘enantiomorphic’ is a non-mertical
version of ‘incongruous counterpart’). An object is absolutely handed if
for each frame there is a space into which it (or its space) can be
mapped by reflective and similarity mappings but not by continuous
similarity mappings.

These considerations can be applied also to the case of Newtonian
spacetime without Newton’s absolute space: This case enablesa sharp
distinction to be made between the space which is arrived at by
Kant’s argument, and Newtonian absolute space. This in turn
justifies our use of the term ‘realism’ rather than ‘absolutism’, as
discussed earlier. Newtonian spacetime without absolute space is, like
Minkowski spacetime, a collection of spacetime points. It has
however a different metrical structure, and the collection of spacelike
slices associated with an internal frame differ from the SR case. In
particular, incongruous counterparthood is frame-invariant as it is
not in SR. Consequently, invariant incongruous counterparthood
could not establish absolute space. It is thus a misunderstanding of the
scope of Kant’s argument to think that it could. But there is nothing
about the case to suggest that the spaces of Galilean frames (Newton’s
relative spaces), in which incongruent counterparts are to be found,
are not real. They are parts (or subsets) of spacetime; they therefore
consist in spacetime points. The abolition of absolute space is not
inevitably the abolition of space. Nor is it the triumph of relationism.

Whether or not appropriate objects are handed in spacelike
_hypersurfaces of the spacetimes of General Relativity can also be used
to characterise these spacetimes. Sometimes, that style of approach
can be just as illuminating as in previous examples. However, this
seems often to result in laborious, inelegant descriptions. Riemannian
spacetimes are so various, and the spacelike hypersurfaces, when they
can be projected out, may vary so much even within one spacetime,
that it seems not very illuminating to try to characterise them by
means of their spaces and in terms of their orientability. But the style
of argument we have been investigating here does not fail to yield its
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conclusion. Only its pragmatic or heuristic advantages are lost in such
generalisation.
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THE LIMITS OF CHANGE
"~ Chris Mortensen °

1. Introduction. What is an object’s state of motion at the instant when
it begins to move? If it is moving, when was it motionless? If it is motionless,
how can it ever begin to move? If it is both moving and motionless, do we
not have Hegelian. contradictions in nature?

This problem has been discussed by Brian Medlin and by Charles Hamblin"
I will have something to say about their solutions later. I will be concerned
to show that the problem is an interesting one, one not to be set aside by
a brief gesture in the direction of modern analysis and set theory, in fact
one generated by their fruitfulness in physical theory. Nor is the problem
one to be dissolved by analysis of our ordinary concept of motion, as we
will see. One quick caveat however: I want to set aside quantum theory. The
problem considered in this paper is about discontinuities, and quantum theory
is all about discontinuities. Nevertheless, it is easier to make out the problem
in a world not bedevilled by the complexities of quantum theory. Hence,
the physics of this paper is classical. '

5. The Problem. Both Medlin and Hamblin formulate the problem as one
concerning the application of the putatively two-valued concepts of ordinary
language, such as motion or rest, to a world of continua, especially continuous
time and continuous space. Conceived in this way, it is not so surprising that
Medlin wants to solve the problem by saying that at the instant of change
the system is both in motion and at rest, and reject the apparent implication
that such is a contradiction. Keith Campbell also thinks that if velocity could
change discontinuously, then at the instant of change the system would be
both in motion and at rest, though unlike Medlin he finds such-a consequence
uncongenial.? But it is easy to feel unmoved by this way of posing the
problem. After all, if it were inconsistent to say that the system was in motion
and at rest, we might feel that it was so much the worse for those concepts.
What is needed to make the problem sharp is a formulation in terms of the
concepts of the best available physical theory, which nevertheless still threatens
a contradiction. Without such, it is difficult to feel that the attempt to save

! Brian Medlin, ‘The Origin of Motion, Mind 72 (1963), pp. 155-175; Charles Hamblin, ‘Starting

"and Stopping’, The Monist 53 (1969), pp. 410-425; see also his ‘Instants and [rtervals’, Studium

Generale 24 (1971), pp. 127-134, and ‘The Logic of Starting and Stopping’, in C! Pizzi (ed.),
La Logica del Tempo, Torino, Moringhieri, 1974. ) ' o

2 Keith Campbell, Metaphysics: An Introduction, Encino, California, Dickenson, 1976; p. 89.
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our ordinary concepts is an interesting exercise.? This is why, even though
Medlin is patently aware that the problem is quite a general one, it is curious
that he persists with his solution. Even more curious is that he concedes in
_the end that his solution is less than general, and does not apply to parallel
cases.

Parallel cases abound. Let ¢ be any physical quantity which changes with
time, and suppose that it is unchanging up to = 0 and then changes its value
thereafter. What is the state of its rate of change, dg/d¢, at t=0? To fix on
a case directly related to motion and rest, let the velocity v=dx/d¢ of a body
moving along the x-axis be zero up to £=0, and be given by v=¢ thereafter.
Then velocity changes continuously, but acceleration dv/dt or d*x/d# is given
by O up to =0 and ! after £=0. What is the value of dv/dt at t=0? From
the point of view of the equations of physics, it does not seem to matter
whether we say 0 or 1. But what is happening in nature at £=0? If it does
not matter what we say, is nature arbitrary or indeterminate?

Nor is the problem confined to change in the time dimension, as Medlin
notes. Consider the surface of a material object, and let the x-direction be
normal to its surface, with x=0 at the surface. Then is there matter at the
point x=0 and empty space for all x>0? or matter at all for x>07? It might
be arbitrary what we say, but what is there in nature?

3. Hamblin and Intervals. Hamblin is aware of the arbitrariness of saying
that a discontinuously changing quantity has one value rather than the other
at the instant of discontinuous change. His solution is to sidestep the problem
by appeal to time structured only as a collection of temporal intervals rather
than instants. As he notes, this move will of necessity involve appeal to a
certain three valuedness: a quantity may have a value throughout an interval,
or not have that value throughout the interval, or have it throughout some
subintervals and not have it throughout others. But because instants are not
allowed, the problem of discontinuous change at those instants does not arise.

The extent to which it does not arise, however, is the extent to which physics
and common sense, which agree that change can take place af 12 noon, are
rejected. A very simple case, on which physics and intuition agree I think,
is a force function which varies linearly with time, given by d*x/ dr?=2¢. With
suitable adjustment of constants, velocity = £, and so is instantaneously zero
at £=0. Intuition seems to agree that instantaneous motionlessness is possible.
(Consider braking to stop at the stop sign and instantaneously accelerating
away, or an object thrown upward instantaneously pausing before falling
downward.) Perhaps common sense is not worth saving, but physics is notably

3 Thus Hamblin: ‘Our problem is concerned with the systematic description of physical
phenomena. [t arises from the clash of the continuous-variable language of Mathematical
Physics with the discrete two-valued language that we would like to make work as an alternative.
The mathematical description appropriate to an accelerating object does not raise problems
for us; but we would like in addition, to be able to apply the two-valued predicate ‘in motion’,
or its negation, to anything at any time, and this is the project that runs into difficulties.’
(‘Starting and Stopping’, op. cit., p. 414; second emphasis mine.) To the contrary, I claim
that it is the mathematical description where the real problems lie. C
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successful. So Hamblin would have to show, what he does not show, how
enough of the theory of differential equations to describe such physical
systems. can be constructed within his assumptions. Without this, we should
wonder how much physics has to be sacrificed in the interest of saving
Hamblin’s solution. I propose, then, to remain in the framework of time
as a continuum of instants. At least, our discussion will show the optio'ns
for solutions in that framework.

4. Arbitrary Solutions. 1 do not propose to rehearse various bad answers
to the problem. Several of these are detailed by Medlin and by Hamblin.
Instead, I want to focus on what I take to be the key issue, namely that of
avoiding an arbitrary solution to the problem. By an arbitrary solution I mean
one which assigns a particular value to some variable but can give no reason
for preferring it to another, incompatible, assignment. Consider for example
our earlier case of velocity v=0 up to £=0 and v=¢ thereafter. To say that
its acceleration is I-for ¢>0 and 0 for £<0 is arbitrary, if no reason can be
given for preferring this to the description d’x/ d2=0 for t<0 and 1 for ¢=0.
(By a ‘reason’, here, I do not necessarily mean a ‘physical’ or ‘physically
significant’ reason; a reason in the mathematics might suffice, or some pleasing
metaphysical reason.) Now it seems to me that both of these solutions are
arbitrary, though it may be. that there is a pleasing metaphysical reason of
which I am unaware for distinguishing between them. One reason for disliking
arbitrary solutions, is the question of physical determinism. A variable’s
assuming at a time a given value rather than another is an event. So if every
event is causally determined, it is causally determined that discontinuously
changing variables have one value rather than another. But if it is arbitrary
which value is taken, then either our best theories lack the capacity to describe
the causal determinants of events, or such events escape the causal net of
the universe. _ .

There are however, at least four nonarbitrary solutions to our problem,
all of which are either unnoticed or barely noticed by Medlin and Hamblin.
I will discuss their strengths and weaknesses in the next few sections.

S. The Paraconsistent Option. Both Medlin and Hamblin flee from
contradiction. They offer consistent solutions to what they think would
otherwise be a ‘paradox’. But Zeno, and following him Hegel, thought that
motion was inconsistent (though they used this for different ends). Many other
philosophers have been puzzled by change, motion and time. It is a
nonarbitrary solution to say that when we have a discontinuous change in
a physical quantity, the quantity takes both values (or perhaps all intervening
values as well). It is nonarbitrary to say that a material surface is both
occupied and not occupied by matter.

The last few years have seen philosophers beginning to take seriously the
thought that the world might be inconsistent. If the world is inconsistent,
then any logic (such as modern two-valued extensional logic) containing the
law Ex Falso Quodlibet (From A and not-A to deduce every proposition)
must be abandoned, since plainly not every prop6sition is true in our world.
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But logic teachers have to labour hard to convince their ‘ﬁrst-year students
of Ex Falso Quodlibet; so hard that it seems that sometimes this is the sole
source of their own conviction. Alternative logics with natural motivations
now exist.

Nonetheless, the strongest cases for inconsistency seem to exist in the logico-

mathematical area. Various of the paradoxes, such as The Liar, or Russell’s
Paradox, call out for an inconsistent (or ‘paraconsistent’) solution, because
of the unsatisfactoriness of alternatives.* In my opinion a compelling case
for inconsistency in motion has yet to emerge, though it would be foolisti
to rule it out of court without argument. Nevertheless, nobody accepts
inconsistencies easily. Perhaps this can be put in a slogan: do not multiply
contradictions beyond necessity. This dictum implies that we should only go
for the present solution if none of the others are satisfactory. I offer it to
the unconverted in that spirit. Of course, if the other solutions are all
unsatisfactory, and-if we have an exhaustive list here, then there is
- inconsistency somewhere.
6. Indeterminateness. It is perhaps not entirely obvious that a nonarbitrary
solution to the problem is to say that the discontinuously changing variable
has no value at the instant of change. Philosophers have usually felt easier
about accepting truth-value-less propositions than propositions which have
both truth values, so to that extent the solution is to be preferred to the
paraconsistent option.’ Notice that indeterminateness, just because itis a
nonarbitrary solution, does not seem to get into problems with physical
determinism. If the variable assumes no value at ¢, then we do not have to
worry about its being causally undetermined which value is taken. Moreover,
some support might be obtained by considering the time derivative of any
discontinuous quantity. The derivative of such a function is not defined at
the point of discontinuity. It is, so to speak, indeterminate. So we seem to
be stuck with indeterminacy somewhere.

A reply would be to claim that the derivative at a discontinuity is infinite.
I do not wish to legislate that nature can have no infinite magnitudes. It does,
however, seem to be a considerable cost to pay to avoid indeterminateness.
If we do not want to pay the cost, then indeterminateness looks more
reasonable. _ :

On occasion when I have posed this problem to physicists, the reply has
been ‘it doesn’t matter what you say’. This covers a multitude of sins. I take
it that it often amounts to a claim of indeterminateness, since if nature is
not indeterminate at the instant of change, then it surely does matter what
you say. Of course, sometimes it means that it does not make any experimental

4 The literature on paraconsistency is voluminous. Perhaps the best survey is in G. Priest and
R. Routley (eds.) Paraconsistent Logic (forthcoming). See also R. Routley ‘Ultralogic as
Universal’ in his Exploring Meinong’s Jungle, Australian National University, 1980, i
pp. 892-959; or N. Rescher and R. Brandom, The Logic of Inconsistency, Oxford, Blackwell,
1979.

5 To be sure, in the presence of the intuitively natural laws of De Morgan and Double Negation,
the Law of Excluded Middle ~ AvA is equivalent to the Law of Noncontradiction ~ (A&~ A);
so perhaps this easy feeling is misplaced. ' o
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difference what you say. True, but unless one has an instrumentalist view
of physical theory, that only the experimentally detectable is real or
determinate, then it goes no way toward solving our problem. Perhaps it
is a confession of lack of interest. ' _ '

However, it is harder to choose the present option when the surfaces of
bodies are considered. What sort of a surface is it that is neither occupied
nor not occupied by matter? I do not know how to prove that this could
not be so, but intuition seems to protest at it.

7. All Change is Continuous. The description of the problem requires that
some variable, or its time derivative, or . . ., changes discontinuously with
respect to time. But what reason have we to suppose that any such change
occurs in nature? Perhaps all changes, their rates of change, and so on, are
continuous. If this is so, then in our world the problem does not arise. Notice
that this solution is nonarbitrary: velocities, accelerations, and their ntha
derivatives all have definite values at t=0.5

Hamblin gestures at this strategy. His argument against is not very
convincing, however: ‘If no derivative ever changes discontinuously, nothing
ever changes’. (‘Starting and Stopping’, op. cit. p. 412). This seems to be quite
straightforwardly false. There does not seem to be any reason why all physical
quantities couldn’t be described by C” (infinitely differentiable) functions of
time. For example, all physical quantities might be related to time by cosine,
sine, or exponential functions. I do not mean that this is how the world is;
only that such a world is a counterexample to Hamblin’s quoted.claim.

Intuition suggests that it is a contingent matter whether all change is
continuous. So someone might feel disappointed that the present solution -
sidesteps the issue by failing to say what would happen if there were
discontinuous changes. The point is, however, that the issue of whether a
solution is arbitrary is bound up with how much we take the problem to arise
in this world. We feel that there must be a right answer for our world, that
one of the arbitrary alternatives is the correct one in nature; and we feel that
it is unsatisfactory if we can give no reason for why we or nature should
opt for one. In other worlds, however, we are free to say what we like, so
to speak. In some of them there might be always a last moment, never a
first, for discontinuous changes. In others, the reverse. What we say about
other worlds varies with our descriptive whim. This point has to be handled
with some care, since the assumption of classical physics at the beginning
of the paper was an explicit assumption of a false theory. I take it, though, .
that the fact that classical physics was long believed to be true and is even
now sufficiently close to the truth to be used as a good approximation of
the behaviour of middle-sized objects, lends interest to what might otherwise
be thought to be too speculative an exercise in metaphysics. In any case,
quantum theory does seem to be involved in discontinuous changes via the
‘collapse of the wave packet’; so conceivably we have a real problem about
our own world. Of course, it might not be a contingent matter that all change

§ Unquestionably, many phy§icists can be found to go for this option. Boscovich seemed to.
(See Campbell op. cit. p. 89). ‘ '
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is continuous (then, too, quantum theory might break down). If all the other
solutions discussed here have insuperable difficulties, then we have an
argument for the conclusion that necessarily all change is continuous. That
would be an interesting piece of metaphysics.

8. Surfaces and Fractures in a Continuous World. Nevertheless, there does
seem to be a difficulty when we reflect that, as we saw before, any general
solution must apply to all change with respect to any variable, not merely
time. It is not easy to see how to apply it to the surfaces of material objects,
for example. The reply that material objects, being made of atoms, have
bumpy surfaces, only shifts the problem back to the surfaces of atoms. A
special case of this difficulty is the ‘fracture problem’ (which I owe to Medlin
in conversation): if any material object, such as an atom, is a plenum, then,
in thought at least, it could be fractured. If space is continuous, one surface
of the fracture must be topologically open, the other topologically closed.
~ But no reason can be given for which should be closed and which open. Yet
unless matter is composed of unextended points, at least some of it must
be a plenum. In this section, we will see how to deal with these problems
in a C* world.

In such a world, there needs to be some C™ quantity responsible for the
application of the concept being occupied by matter. Let us speculate how
this could come about. Suppose that there is some C” variable, call it density
d, with the property that d=o in empty space, and inside a material surface
density is always greater than zero but continuously approaches zero'as the
surface is approached from the interior. (We need not be concerned at the
possibility of ‘a reduction of density to mass/volume provided that these are
also C”). Approaching the surface from the inside, matter becomes more
and more attenuated as it were, like the edges of a mist. It follows that surfaces
in this world would all be topologically open.

This still leaves the fracture problem. A discontinuous fracture at a point
where d> o0 is a discontinuity logically incompatible with a C* world; or to
put it another way, discontinuous fractures cannot leave us with both new
surfaces being topologically open. But the problem can be met provided that
fractures are all continuous. And it is not difficult to describe density functions
which are also functions of time, and which will produce breaks in surfaces
in a finite time. So fractures in a C” world which leave all surfaces
topologically open are a possibility.

For the technically minded, let us digress briefly to demonstrate this. We
restrict ourselves to two-dimensional objects, but the generalisation to hlgher
dimensions is straightforward. Let density be given by the C” function
d =sin?xsin?y(1 —sin?xsin®*¢) where x and y are spatial co-ordinates and ¢ is
time. We restrict ourselves to the range 0<x,y, <7 and 0<¢<w/2. The
function sin® is chosen over sin because it does not take negative values. At
t=0, the body is a square whose surfaces are x=0, x=m, y=0, y=m. Density
is zero at the edges and rises to a maximum of 1 in the centre (x,y) = (7/2,7/2).
For0<t< /2, the density gradually forms a ‘hollow’ along the line x = x/2.
Parallel to the x-axis, in other words, density begins to look like the two
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humps on a camel. Imagine the body slowly being torn apart, the exterior
surfaces being the same, but density is beginning to decrease around the
fracture line x==/2. Parallel to the y axis, density is still a single humped
function, but its maximum height diminishes to a local minimum along the
fracture plane. At £=m/2, the fracture is complete. The original body has
separated into two with a hairline fracture along the line x==/2. Each of
the two new bodies is a rectangle with sides in the x-direction of length 7/2
and y-directional sides of length . Density for each of the bodies rises from
zero at the edges to a maximum in their centres, just as at £=0. The crucial
property of topological openness of surfaces is thus preserved.

I conclude, then, that surfaces and fractures can be dealt within a natural
way in a world in which all change is continuous. Let us move ontoa fourth
proposal to deal with the problem of the point of change. It has the merit
of being more general than the one in this section.

9. All Real Change is Continuous. It might be held that functions other
than C* functions truly describe some changes, but that when differentiation
proceeds far enough for a discontinuity to be reached, we have arrived at
a quantity with no physical reality. Physically real changes, on the other hand,
are always continuous.

Consider for example, a particle moving according to: for r<0, x=0; and
for t>0, x=£/6. Then dx/d¢ and d*x/d¢? are both continuous, but d*x/d#’
(=0 for <0 and 1 for £>0) is discontinuous. The proposal of this section
would declare d®x/d# not to be a physically real quantity. We can expand
this further along the lines of various modern theories of universals.” It is
arguable that physical quantities are universals. But it should not be thought
that the mere existence of a true linguistic description requires one to suppose
that there is a universal underlying it, responsible for its truth. Indeed, an
unlimited principle of abstraction of the sort: to every predicate there
corresponds a universal possessed by exactly those things of which the
description is true, cannot be consistently maintained. It leads to Russell’s
Paradox. Applying that idea here, we can say that even though certain
linguistic descriptions, such as ‘acceleration’ and ‘time’, might have universals
corresponding to them, it does not follow that any description constructible
out of those descriptions, for instance ‘d*x/d#*, also has a universal. It would
solve our problems if such a quantity were not physically real: when d3x/d#
changes, no change in any real quantity takes place in the world, except in
those real quantities out of which d*x/d# is constructed. Hence, there is no
need to bother about discontinuities in d>x/d#. Nothing real changes, so it
does not matter what you say. I do not mean to single out d*x/d#’ as a general
example of a quantity which is not physically real, only for the purposes of
discussing the above equation of motion. The point is that it is open to us
to describe processes in nature by non-C* functions, and declare
discontinuous derivatives not to be physically real. " .

This proposal has some constraints on it. One is that we might believe

7 For example, D. M. Armstrong’s. See his Universals and Scientific Realism, Cambridge,
Cambridge University Press, 1978. Only a small part of his theory is necessary here though. -~
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that certain physical quantities such as force and mass are real, in virtue of
the fundamental role they play in our explanations. What would we then
say about a position function like: £<0 iff x=0 and £>0 iff x=¢/2, where
d%x/dt? was discontinuous? The answer, obviously, is that if all real change
is continuous, and if force and mass are real quantities, then it follows that
such position functions do not describe any actual processes in nature. SO
the present proposal does not say that continuity is sufficient for physical
reality, only that discontinuity is sufficient for lack of physical reality.

This strategy has the advantage over that of the previous section that it

does not need to commit itself to the strong thesis that only C” functions
are permissible descriptions of dynamic systems. This seems to me to be
behind arother response to the problem I have sometimes heard from
physicists: “Yes, but is the discontinuity physically significant?’ I take this
to mean that a discontinuity in a function involved in basic laws of nature
would be physically significant and so generate a problem; but that
- discontinuities in some functions which might be produced from ‘physically
significant’ functions (by, say, differentiation) need not be physically
significant and so need not be problematic. They would be, so to speak,
‘mathematical fictious’.
10. Surfaces and Fractures as Discontinuities. We saw a couple of sections
back how to deal with surfaces and fractures in a C* world. Needless to say,
when we move to a more general case as in the last section, that solution
is still available to us, since it postulates a C” density function and any such
function is allowed in the generalisation. In a way, though, surfaces and
fractures are intuitively discontinuous structures.® It would be interesting,
then, to see what can be said about them if we dispense with a density function
in favour of discontinuous distributions of matter.

A way into this is via Boscovich. Boscovich thought that matter consisted
of atomic material points, having position but no extension or magnitude,
surrounded by force fields extending out to infinity. Such fields prevent any
pair of material points from touching by becoming arbitrarily large sufficiently
close to the unintended atoms. Keith Campbell points out that this solves
the problem of what to do with surfaces: they are just concentrated but
spatially discrete distributions of materially occupied points.” There is thus
no issue about whether they are topologically open or closed. Again, fractures
are no problem. A point cannot be fractured. Fractures are no more-than
an attenuation of the complex interlocking fields surrounding atoms (and
as such are continuous). , ,

The cost of this solution is that matter is ultimately unextended. That might
be 50, but it would be desirable if a nonarbitrary account of surfaces was avail-
able for an ontology of spatially extended atoms. Is there in this ontology some
reason for preferring, say, closed surfaces to open? I think that there is, or at
least there is if atoms are surrounded by force fields as-in Boscovich’s account.

8 For instance, in explaining topology, transformations which are continuity-preserving
(homeomorphisms) are often intuitively contrasted with tearing or fracturing.
9 Campbell, op. cit., p. 90.



Chris Mortensen ; 9

Suppose that extended material atoms are surrounded by force: fields with
the following properties. They have no value at points occupied by matter,
have a value at all points in empty space, and eventually become arbitrarily
large at sufficiently small distances from the surface. It does not matter here
whether these fields are repulsive (as in Boscovich) or attractive; the same
argument works for both. Now if there were no matter a¢ the surface because
it was topologically open, then -we would have the problem of saying what
is the value of the field at the surface. Continuity suggests that the value of
the field at the surface would be infinite. But now let us appeal to the principle
that infinite values of real quantities in nature are to be avoided where
possible.'® The only way to do so, is for atoms to have topologically closed
surfaces. Then the field simply approaches infinity as it approaches the
surface, but never gets there. Thus, given such fields, the metaphysical
principle that there are no infinite quantities issues in a nonarbitrary account
of the topology of surfaces.

But then fractures are a problem again, for how can a plenum fracture
into two closed surfaces unless matter appears from somewhere? The only
solution, I suggest, is to say that atoms cannot be fractured. Recall how the
fracture problem was first introduced: an extended object can be fractured
in thought, so what nonarbitrary account of the topology ‘of the fracture
can be given? But of course it does not follow from the fact that we can

" imagine that an extended atom be fractured, that it can be fractured in reality.
Indeed, to call it an ‘atom’ is already to imply that it is a simple thing. It
is certainly consistent with an ontology of spatially extended matter that there
be undecomposable atoms, furthermore. Provided, then, that an extended
material thing cannot be fractured, nature need not be said to be arbitrary
about which topology its parts are to have post-fracture.

Now while this gives a solution for atoms, it does not give a solution for
extended nonatoms. By definition, if any continuous nonatoms exist, the
fracture problem arises for them and is not be be solved in this way. But
here I think we can get a clue by considering the time reversal of fracturing,
namely joining. If surfaces of atoms are topologically closed, how can they
join up to form a continuous whole? The answer would seem be be that,
logically, they cannot. Their topology prevents it. Two closed surfaces cannot
be made contiguous. Furthermore if atoms cannot be joined up, it seems
reasonable to say that a thing'cannot be made up of joined atoms. It follows
that continuous extended non-atoms cannot be fractured either, since there
are none. Moreover, this consideration provides reinforcement for the earlier
suggestion that atoms cannot be fractured.!' Were atoms to be fractured into
objects with closed surfaces, then the time reversal of the process would be
a joining of closed surfaces, and that it impossible. Thus, in a world where

10 The principle has intuitive appeal, as noted earlier. In support, it might be argued’ that
functional relationships between infinite quantities amount to am inability of the mathematical
framework of the theory to model the causal relationships in nature, and thus theoretical
inadequacy.

I Indeed, this follows logically for any universe in which the laws are time reversible: a process
is possible iff its time reversal is possible.
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extended things have closed surfaces, it is impossible that there be fractures,
joinings, and continuous extended nonatomic objects. Needless to say, this
does not mean that familiar middle-sized objects could not be broken. Their
‘breakings would simply be through the empty space that surrounds atoms.
They would be pullings-apart of agglomerations of atoms, but not real
fracturings of continua. Of course this is how we break middle-sized things
in our world. You don’t have to split atoms to chop wood.

11. Conclusion. It is clear that the attempt to find nonarbitrary answers

to variants of our general problem has not issued in a blanket solution.
Different things are to be said when different assumptions are made. In a
continuous world changes in motion do not seem to be problematic. With
a continuous density function as well, surfaces are topologically open and
fractures and joinings are continuous. The same can be said for a world where
all real quantities are continuous. When we dispense with continuous
distributions of matter in favour of discontinuous matter/nonmatter surfaces,
‘things become more complex. But under the assumption of Boscovichian
fields surrounding matter there is a ‘pleasing metaphysical reason’ to conclude
that surfaces are topologically closed. With or without that reason, if all
surfaces are topologically closed, then we seem to be forced to say that matter
consists of unfracturable and unjoinable atoms.

It is harder to see what to say when these assumptions are relaxed, for
instance in a world where real discontinuities abound. What if the world is
such that anything can be fractured given enough energy? Perhaps that would
be an indeterministic world whose indeterminateness was not detectable by
experiment. But then it might also be possible to describe a physics which
causally differentiated between two kinds of surfaces, closed and open, thus
avoiding arbitrariness. I do not know how to do this, but I am unable to
prove that it cannot be done. Perhaps that is the best place to stop talking.'?

University of Adelaide k Received December 1983

12 [ am indebted to comments by Philip Cam, Keith Campbell, Alan Lee, Graham Nerlich,
Jack Smart, Joseph Wayne Smith, and a referee of this Journal. :
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I

The problem of why somethmg exists' rather than nothing is doubt-
less as’old as human phllosophlsmg Of comparable antiquity is the
observation that ‘one’cannot hope to- ‘explain why something exists
rathér than nothmg by appealing to the ex1stence of somethmg else
on pain ‘of 'vicious: circularity. '

In this paper, I distinguish between the questlon of why anything
exists; and the question of why particulars exist. These two questions
are, equlvalent only if the only things that exist are particulars. Cer-
tainly ;many-have held that universals as well as particulars exist.! I
take it here'that there is a prima facie distinction between universals
and particulars. It follows that the former question is prima facie more

1 Seée e.g. D.M.-Armstrong, Universals and Scientific Realism -(2 vols.) (Cambridge:
Cambridge University Press 1978).
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general than the latter. I will initially concentrate on the latter, taking
a hint from somé recent theorising about the physics of the Big Bang.
I will argue that, properly understood, there is a sense in which the -
" existence of particulars might be explicable. That, it seems to me,
represents some progress on the problem. For instance, it is arguable
that when people ask why anything exists they have in mind the ques-
tion of why particular things, or one big particular thing such as the
spatiotemporal universe, exist. Insofar as that is the problem, I sug-
gest that we can make inroads into it. I then go on to ask how these
considerations might be applied to the more general question of why
something exists rather than nothing. I will suggest that there are sever-
al ways the world might be, in which even this question might have
an answer of sorts.

II

Current intense levels of theorising about the Big Bang continue to push
explanation closer to t=0. Recently the physicist Edward Tryon has
proposed. a theory of the Big Bang according to which it begins as a
‘quantum fluctuation’ out of nothing. Tryon has described his theory
as a theory of creation ‘ex nihilo.”? Now ‘ex nihilo’ is a loaded phrase
for philosophers, conjuring up debates about whether something could
come out of nothing unless God created it. I do not think that it is neces-
sary to confuse philosophical readers with the technical details of
Tryon'’s, proposal. It should be said, though,. that inspection of those
details reveals that the initial quantum fluctuation takes place in other-
wise empty space and time.? Now it has been argued that empty space
and time, or spacetime, are particular existing things.* If that is true,

2 Edward Tryon, Ts the Universe a Vacuum Fluctuation?’ (héreafter UVF) Na-
ture 246 (1973) 396-7; also "‘What Made the World?’ (hereafter WMW) New Scien-
tist 1400 (1984) 14-16. : e P SR .

3 Tryon: “... some pre-existing true vacuum,” WMW, 15; or ... the vacuum of
some larger space in which ours is embedded,’ UVF, 397. It is fair to say that
much of the physicist’s interest in such a theory is in the accounts of how a
big universe could come out of a little quantum fluctuation and.of how con-
servation principles can be held true, which do not concern us here.

4 See ¢.g. Graham Nerlich, The Shape of Space (Cambridge: Cambridge Univer-
sity Press 1975). e i - :
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then Tryon’s theory is not a theory of particular things beginning out
of literally. nothing, as:the phrase ‘ex nihilo’ suggests.
‘Mind you, ithe situation is complicated by what I take to be an im-
- plied relationism about space:and.time‘in Tryon.> Briefly, relationism
is the doctrine that space and time are mere constructs out of spatiotem-
poral relations between particular material bodies and events. One con-
-sequence of this doctrine is that unless some of the latter exist, space
and time cannot: Thus, if relationism were true, Tryon’s theory would
‘be of a beginnning literally ex#ihilo. But I do not beheve that relationism
is true,. as has been argued elsewhere 6. g .

JII

Even so, Tryon’s theory provides us with the opportunity for specula-
tion. So'let us ask what kind: of theory there could be which: gave an
account of how particular-things: and: events'exist of:occur; in terms
other than by postulating the existence of .other particular things or
events. To avoid the complicating factor of relationism, let us.specu-
late about what a probabilistic theory of Tryon’s kind; but which lacks
commitmernt.to pre-existing space and time, could do in explanation
of particularity. So let us try to postulate a theory wherein all particu-
lars begin to exist a finite time-ago, and wherein there is some initial
state which:has some:likelihood in virtue:of some ‘probabilistic laws
such as those of the quantum theory. It goes without:saying that the
present exercise-is-speculation; I am not.suggesting that it-is true.
I.do.not know how:to describe:this possibility in:the kind- of detail
.physicists go in for; But obviously it would. be desirable;if possible,
to supply more detail about the kinds.of laws which would give a ‘phys-
ics of rionexisterice.” We.will proceed in two stages. First, we will con-

. 5 In addltlon to the use of ex mhzlo, we have, for example, ... some pre-existing
true vacuum, or state of nothingness,” WMW 15, emphasxs mine.

6 See Nerlich, Ch. 2; also his ‘Hands, Knees and Absolute Space,” The Journal
of Philosophy 70 (1973), 337-51; also Chris Mortensen and Graham Nerlich,
‘Spacetime and Handedness,” Ratio 25 (1983) 1-13; and "Physical Topology,”
The Journal of Philosophical Logic 5 (1978) 209-23. Note, toe; that it is not appar-
ent how to'make Tryon’s own words' con51stent here: how ina state of genuine
nothingness could anything pre-éxist?-. 23 et
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sider the possibility of eliminating a pre-existing space but not time,
so that the resulting theory might be regarded as explaining the exis-
tence of both space and also-events.in it. Then we will ;go on to-look
* at the problem of extending the account-to-eliminate pre-existing time
as-well. - L R IT ERRLL TN A K S
In General Relativity, there.are what is known as the ‘vacuum field’
solutions to the field equations.:Informally; these say that in a universe
with no matter and energy, spacetime still has a definite metrical struc-
ture, in some cases.that of Euclidean. flatness. As has been pointed
out by Gritnbaum and others,” the existence of the vacuum field solu-
tions suggests that relationism is false, in that in the absence of mat-
ter, spacetime would continue to be an existing thing. We should avoid
any theory like that here, because of the previous complication that
space, or time, or spacetime, are arguably particulars. But avoiding it
does not look to be in principle impossible. We can suppose that there
is some quantity which isa function -of time and which measures the
distribution of energy or matter:(call it mass M=M]t]), and if M takes
the value zero the theory says that the metrical structure of space (but
not time) is undefined. This:seems:a reasonable way of saying that un-
der. the condition' M =0, space . would mot-exist. ==+ "= = T
So, let us'imagirie that our laws include the:consequence:that if
M=0, then events E;, E,,... have probabilities py; Py .i.irespectively.
My claim is that if the-universe ‘begins’ with event Eq,then this law
will explain-the occurrence of:E;.as well as-anything is explained in
the quantium theory or in Tryon’s theory:: Before getting to that,
however, there are a number of complications‘to explore. One is this.
Arguably, the events Eq, Ey,... wotild be spatial events, in' the sense
that if any: of them occurs at.a time then space exists at that time. So
we might imagine that the condition'M=0 obtains for an interval of
time and then a ‘quantum fluctuation’ occurs, and-space:and matter
are born. That seems to me to be an intelligible possibility. But-the form
of the above law does not require that the possible events Eq, E, have
to occur after the condition M=0. So is it a possibility that we have
alaw ‘M=0— E,, E,,... have probabilities p, pPo,..." where the Eq, Ey
couild simultaneously'with 1\{[——_— 07 It is, Lf the‘events’ Ej, By, ... did not

7 A Griinbaum, The Phﬂ&sophical Retention of,.Ak')sOlute :Sbace in Einstein’s
. General Theory of Relativity,” in J.J.C. Smart, ed., Problems of Space and Time
(New York: Macmillan 1964):313-17. w & -
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need the existence of space; or equivalently, did not need M 0. That
would be possible, for example, if then E; were conditions on the
derivative of M, say- ‘M=0—dM/dt= xl',xz, ;. with- probabilities: p;,
Pyy-:.’.2 Now this form of law allows for various possibilities. If at some
time t, we have-M(t) = 0 while the quantum fluctuation dM/dt=x, #0
occurs, then for an interval of time after ¢, M#0. Thus, the history of
the universe for times when space and matter were present, would
be thie set of times. (t: t<t <now), which has no: first instant. This is
of course, topologically possible. with a-continuous ¢ variable. Again,
one of the finite possibilities: when M=0 at some time ¢ might be
dM/dt=0 also.(Perhaps even this has to be one of the probabilities.)
Then; if dM/dt=0 comes off, we would have the situation-described
earlier, of M =0-for a stretch'of time after ¢ until one of the other p0551-
bilities dM/dt#0.:0eccurs and ‘space begms : :

Since there does not seem to be any contradiction in the supp051-
tion that.laws might be as above; I conclude that at least a pre-existing
space is dispensible from an account somewhat like Tryon’s.: It seems
to me that a theory like the present one would give as good an expla-
nation of the existence of space and particulars (other than times) as
any in probabilistic: physics. The radioactive decay of a single atom is
not explained in‘cutfent theories via prior sufficient causal determina-
tion. But it is .explained nonetheless, to the extent that we demonstrate
how.it is-governed by laws showing that events of that kind are to
be expected with a precise degree of expectation. A somewhat:ran-
dom universe. need not:be:a chaotic one. If our universe is such that
this is the best-kind: of explanation we can ultimately. hope for, then
the origin of space and matter need riot be worse off in this respect
than anything €lse..In Tryon’s words, ‘our-universe is 51mp1y one of
those things which happen from time to time.’1° :

: : e 'S ‘i l. I

8 A mathematlcally more sophlstlcated theory would deal w1th the events E

. and their probablhtles using integrals over finite intervals of time, and would

+" also need to give cond ltlons on higher derivatives of M, which would in turn
"bea tensor quantlty, bul we will not bother abouit these comphcatlons here.

9 'Independentiy, we can consider whether the whole of time stretches mfuute-

"~ “'ly, or only E:mtely, into the past. One way, buf not the only way, in which

. ..the latter could happen, is'if M=0 at a first instant. Time would then be struc-

- »tured isomorphically with a finite closed interval of the real numbers, 0<t=<
now (ignoring future times). -

10 ‘Tryon, UVE, 397
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Can we get rid of pre-existing time as well? I think that we.can.
First, let us strengthen the condition M =0 to mean that in the absence
of mass, neither space nor time exists. This does not, of:course, amount
to relationism;, no matter how a relationist’s heart might be gladdened
if such were the case: the constant conjunction of space, time and mat-
ter does not entail that they are-identical. Now it seems to me that it
could still be a law that M=0->dM/dt=x4, X, :.:-etc. Here, though, .
we might have to understand the ‘obtaining’ of the /initial” condition
M=0 & dM/dt=x, (say) somewhat differently, ‘on the grounds there
would be no instant ‘at’ which M=0. Imagine that time is finite into
the past but lacks a first instant. This would be so if the set of instants
corresponds to some finite. half-open interval of the real numbers,
0<t< now. Then we can understand -the proposition ‘M=0 &
dM/dt=x," as meaning that the limit of M as we go backwards in time
(toward t=0) is zero; and the limit of dM/dt is xq;-or to-piit it differ-
ently, as t approaches zero, M approaches zero and dM/dt approaches
x1-<Things would behave in the early part of the universe-as if dM/dt
really were x; at an eatlier time. = .- o BE 3

‘We might in addition want to regard the: conditiocn M=0 &
dM/dt=x, as a ‘mathematical fiction,’ in the sense that M=0 is not an
event which occurs at a time; I.am not persuaded that-we must do
this, however. An argument that we must, would appeal to the neces-
sity of the principle that whatever obtains, obtains at a time; and it is not
clear how one would argue for its-necessity (its mere truth being in-
sufficient to prevent speculation). Furthermore, against such an argu-
ment we might invoke a counter-principle which has been widely held
in the history-of philosophy, that no particulars exist necessarily. For
then, sinice the previous argument would establish that temporal in-
stants exist necessarily if any proposition is necessarily true, then tem-
poral instants fail to be particulars.

In any case, we seem to have been able to dispense with pre-existing
temporal particulars. So I suggest that a theory something like Tryon's
is conceivable, in which the existence of all particulars is on equal foot-
ing in respect of explanation, and in which the ‘probabilistic explana-
tions are of the sort ordinarily available. in  probabilistic -physics.
Furthermore, conceivably this is just the right way to deal with the
Big Bang. What bothers theorists about the actual instant f =0.s, I sug-
gest, that current theories predict a spatial (perhaps even spatiotem-
poral) singularity there. Tryon trades this in for pre-existing space and
time, and matter/energy singularity. The present suggestion does seem
to allow for at least a spatial singularity, perhaps even a spatiotem-
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poral singularity; but only in the sense that the usual laws of physics
hold on a finite half-open time with no first member. Perhaps then
there is less reason to find singularity at the origin of things perplexing.

Robert Nozick!! also considers the possibility. that the existence of
something rather than nothing be. explained by some kind of probabilis-
tic partitioning of possible states (one state being that nothing exists
and so being satisfyingly egahtanan in hlS  sense). He is.concerned that
-any a priori partitioning of possible states for this purpose would be
arbitrary and so.need explanation, i.e. be megahtanan I think that No-
zick is not.always sufficiently, careful about the, d1fference between ex-
plaining why something exists, and explammg why.a proposition, such
as a universally quantified law, is true.(though he does address ‘him-
self to:the question.of truthmakers for laws). On our present model,
our laws would be responsible for the partlcular probab1hst1c partition-
ing that there is. This seems to be standard scientific practice in more
limited., domams So, too, on the present model it is the truth of laws
which would explain existence, or at least the existence of partlculars
Another of Nozick’s ideas, that there might be certain ‘natural’ states,
including its being a natural state that nothing exists, can be given a
law-based probabilistic gloss natural = high probablhty The present
account also-avoids.a point of Mlchael Burke's.!? Burke argues.that;were
time finite into the, past with no first element; one should not.conclude
- merely from the fact that ‘every event had an ‘explanation in terms.of
prior events, that it had been adequately explamed why t there is some-
thing rather. than nothmg Whether this.is true or, not, mlght be. dis-
puted; and if it-is not, then.the present. model explains existence in
a stronger sense than I have claimed. I am mclmed to agree with Burke;
but even if he is right, it is being claimed here that the extra explana-
tion is prov1ded by (probablhsnc) laws. .

§ ] 11 ilobet't, Nozick, Philosophical Explanatiohs (Oxford: Oxford Ur\i;;rersttty;Press 1981)

- 12° Michael Burke, Hume and Edwards on Why Is There Semething Rather Than
Nothing,” Australasian Journal of Philosophy 62 (1984) 355-62
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v

. We have been considering the possibility of a lawlike explanation of
the existence of particular things and events. It will doubtless have oc-
¢urted to the reader that, whatever the ontic status of a pre-existing
space and time in- Tryon’s account, he is still left with the truth of the
laws of probability physics as unexplained. Now someone might con-
fusedly think that hence such laws would ‘exist,” so that the existence
of some things would remain unexplained. But on the face of it, atleast,
laws are not the right kind of thing to exist. They are, rathet, the kind
of thing which is true or false. The latter does not rulé out the former,
though the claim that laws exist would need an argument. But even
if laws do exist, it might be argued that they would not be particulars;
5o that particularity, at least, remains explained. - ™~ =

A more promising line of argument is this. It might be asked how
a law could be true if nothing exists to ‘ground’ it. We might invoke
a slogafi: no difference without a difference in what exists. If Ly and L, are
different sets of laws, and Li’s being trii€ is a different state of affairs
fromL,’s being true, then some things must exist and have a certain
nature in order to-constitute the difference. S

" Here we see the reason fot'the earlier distinction betwéen explain-
_ing particularity and explaining existence in'general, For there is a cur-
. fent ‘theory, due to Armstrong, Tooley and Dretske;?® according to

which laws are true in virtue of relations between underlying existing
uiivetsals. T do'not propose to discuss the details of the theoty. The
difference between Armstrong and Tooley i interesting for our pur-
poses, though. Armstrong’s universals are Aristotelian, Tooley’s are
Platonic. For Tooley, the reason why a law or counterfactual can-be
true even when nothing exists iristantiating the termis of the law,’ is
that the truthmakers for the law are relations betweert Platonic univer-
sals, the mark of which is that they continue to exist uninstantiated. -
An Aristotelian like Armstrong holds that universals only exist in their
instances, and do not exist uninstantiated. My preferences in this mat-
ter lie with Tooley, but here I only want to contrast the way the two

13 Armstrong; see also his What Is a Law of Nature? (Cambridge: Cambridge Univer-

" sity Press 1984); Michael Tooley, “The 'Nature of Laws,” Canadian Journal of

. Philosophy 7 (1977) 667-98; Fred Dretske, ‘Laws of Nature,” Philosophy of Science
44 (1977) 248-68. o PRI (05 BRSO T LB
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views apply to our present discussion. If Tooley is right, then the ex-
istence of particulars might well be explicable along the lines of this
paper; though the existence of something rather than nothing is not,
since for the explaining laws to be true, universals must exist. If Arm-
strong is right, the matter is less clear. It is arguable that Armstrong’s .
theory cannot allow that there be laws which hold when no particu-
lars exist, in which case it does not look like ‘the kind of ex’planati‘on
of particularity we have been considering would be available. But
perhaps laws can be true while no particulars or universals exist. Then
we would have the stronger result that the existence of anything at
all would be explicable in such a universe. Of course I am not saying
this is how things are, only how they might be.

So there is a difference between asking why particulars exist and
asking why anything at all exists. The former might be answerable
along the lines discussed; but even an answer to the latter is not wholly
unthinkable if laws could be true consistent with nothing existing. But
now we can observe that presumably the explaining laws would be
contingent. For both Tooley and Armstrong, for example, the truth-
makers for laws are contingent relations between universals. So some-
thing remains unexplained: why contingent laws are thus and not so.
Conceivably, of course, it is incorrect to think that the laws of nature
are contingent. The kind of reasoning which led to the Theory of Rela-
tivity can be made to look surprisingly a prioristic. If entailment is
" necessary for explanation, then since necessity distributes over entail-
ment, this course abolishes contingency altogether.

Perhaps it is not essential to be so heroic in the quest for Total Ex-
planation. Nozick considers extensively the hypothesis that ultimate
contingencies might be self-subsuming and so in a sense explain them-
selves. His conclusion seems to be that inegalitarianism cannot be
avoided even here. One contingency-retaining possibility not consi-
dered by Nozick is as follows. Suppose that the laws of nature are
necessary but probabilistic, with a finite probability going to the con-
dition that nothing exists, M=0. Then, I suggest, if anything exists it
would exist contingently. But on the other hand existence would be
. explained as well as any probabilistic explanation explains, and by
necessary laws. The idea that a probabilistic theory such as the Quan-
tum Theory might be necessary is a kind of dual to the above sugges-
tion that the Theory of Relativity might be necessary. Since presumably
necessities would not need explanation, the probabilistic idea has the
advantage that it allows both for contmgency and also for the explan-
ation of every fact.: A
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I do not regard the necessity of either of these theories a particular-
ly tempting option, it must be confessed. But even here we should
" not be too hasty in our rejection. If there is any lesson in this paper,
" itis that explanations might be pushed further back than we hitherto

thought. . .. . : : :

Received Septe,mbe-r, 1984

14 Thanks to Michael Bradley and Graham Nerlich for helpful comments.
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ARGUING FOR UNIVERSALS

Chris MORTENSEN (*)

1. INTRODUCTION

The problem of universals comes in various forms, often with versions
in both a formal mode (problems about predication) and a material mode
(problems about being). Thus corresponding to the formal problem of
how a predicate can be true of more than one thing, th_cré is the material
problem (sometimes called One over Many) .of how different things can
be somehow the same. or similar. Arguments for universals along these
lines can be given a scientific realist (or causal realist) twist, -as has been
pursued by several authors( ) : in order to make intelligible how the
equations of scientific/causal theory apply to types of situations; indeed
uninstantiated types’ of situations, we need to suppose that there are
certain real samenesses or universals behmd those types. Again, corres-
ponding to the formal problem of how more. than one predicate can be
true of one thing, there is the material problem of how a thing can have
more than one aspect. Needless to say, while there are correspondences
of sorts. between material and formal modes, we should beware .of
concludmg too readily with Carnap that formal and material versions of
a problem are equivalent.

Arguments for the existence of universals are inevitably t1ed to (formal
or material) variants of the One over Many problem, because universals,

(*) Thanks to David Armstrong, Michael Bradley, Peter Forrest and Graham Nerlich
for many stimulating ideas about universals.

(1) See David ARMSTRONG, Universals and Scientific Realism, Cambridge, Cambridge
University Press, 1978 ; and What Is a Law of Nature ? Cambridge University Press, 1983 ;
or Michael TooLEY ‘The Nature of Laws’, Canadian Journal of Philosophy, 1977, 667-698.
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whatever their nature, are definitionally the kind of entity which is the
same in different things. Undoubtedly the universe contains things similar
to one another (predicates have multiple extensions), and however one
argues for universals, one must be arguing that some similarities are
produced by samenesses. A strong.thesis would be : all similarities are
sustained by or produced by the existence of samenesses or universals.
This does not have to mean that whenever things are similar in a respect,
there exists a universal instantiated in all and only those things similar in
that respect ; we will presently see the troubles about that. But it should
mean at least that underlying samenesses are responsible for all similari-
ties ; though the responsibility might be so to speak indirect, for instance
via the logical operations (*). Less specifically, the relationship between
natural language predication and the laws and predicates of physical
theory designed to account for all basic causal interaction is doubtless
quite complex, but it is a not uncommon view that in the end such basic
interactions are responsible for all change or differences, and all stability
or samenesses, in the universe. It will be convenient here ‘to avoid
questions about this complex relationship, by restricting consideration as
much as possible henceforth to basic causal theory itself. We can sum up
the above strong thesis in a slogan : no similarity without sarmeness in what
exists, to which it is convenient to give a name, the Similarity Principle.
I take it that the principle includes a cluster of more precise versions, both
material and formal, which I will not bother too hard to distinguish.
Notice, too that the principle is typically intended to apply as much to
polyadic predicates as to monadic predicates : what is similar in the
situations a is between b and c and b is between ¢ and f; is accounted for
in terms of a (térnary) universal betweenness, which a has a special role
in connection with, as does d. :

'One independent argument for universals is a characteristically causal
realist one. Successful physical theory all quantifies over universals. It is
worth having a perspective on just how ubiquitous the practice is. An
equation like F = Gm,m,/r* asserts an identity, the expressions on either
side being singular terms. As if that were not bad enough, the expression
on the right hand is a functional expression, and there is no known theory

(2) Compare Armstrong Universals and Scientific Realism, especially vol. 2. Compare
also with the thesis that atomic facts are responsible for all truths via the operation of the
logical connectives.
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of multiplication and division which does not treat them as operators ; and
operators, as is well known, require quantification over that which is
operated on. Moreover, the operators here work on dimensioned quanti-
ties (5 grams) which can be possessed by more than one particular, which
is the kind of thing a universal is. Now of course,; there might be some
wholesale reconstrual of basic causal theory which avoids the use of
equations and operators, and I will in Sections Five and Six respectively
consider the possible use of set -theory and of number theory to do this:
For the moment I only want to stress the naturalness of the theory of
universals. It constantly puzzles me when the objector complains about
the oddness of entities like universals. On the contrary, universals and their
behaviour are very familiar to us from scientific theory: In this paper, I will
be running two separate lines in favour of universals : questions about the
Similarity Principle and related principles, and the just-mentioned ob-
viousness and familiarity of universals from physical theory. I consider the
former group of problems first, and return to the latter in:Section Six.

2. A PrROBLEM

. There is’a threat to the Similarity Principle and thus any argument for
the existence of universals, which standard arguments against universals
frequently seek to exploit. This is, that if any similarity obtains between
things . w1th demonstrably no umversal to be responsible for its obtaining,
then it is reasonable to ask why we should ever believe that any similarity
is produced by underlying samenesses. This threat can be made more
concrete in several ways ; we mention two here. First, Russell’s Paradox
for universals. Suppose that to any similarity there is a universal instan-
tiated in exactly those things which are similar in that respect. The first
order expression of this i is the schema (3u) (x) (x instantiates u <> Fx).
But then, substituting ~ x instantiates x’ for the schematic ‘Fx’, it is a brief
and_ well-known argument to the conclusion that u instantiates u & ~ u
instantiates' 1.- Second, common regresses employed against universals
often focus on the role played by instantiation itself : if to every similarity
there is a common universal instantiated in just the right things, then how
precisely does instantiation glue together particulars and their universals ?
If instantiating u is a similarity in things, then it needs a further universal
to be responsible for that similarity, and so on.
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Setting aside currently fashionable paraconsistent solutions to the
Russell contradiction, or cumbersome irreflexive hierarchies (*) of univer-
sals inspired by Russell’s Theory of Types and subject to all the objections
thereto, we can say that these objections alike emphasise the problematic
role which instantiation has to play in any theory of universals. That
problematic role is precisely. why we cannot sit content with the. simple
observation that having a corresponding universalis not preserved: with
respect to compounding by the logical operations such as rnot and or (M.
To expand this point, someone might argue that while ‘Fx’ might have a
corresponding universal, it does not in general follow that ‘~Fx’ does A).
Thus while ‘x instantiates x’. might have a corresponding universal, we are
not entitled to conclude that ‘~ x instantiates x’ does ; and it is substitu-
tion for the latter in the Russell schema which gets: the contradiction
going. Against this, there are two' points. First, it is not just a matter of
negative universals causing the -trouble, 'since Russell’s Paradox can be
replaced - by what might be called Curry’s Paradox for universals ®.
Substitute for ‘Fx’ in the schema not ‘~ x instantiates x’, but rather x
instantiates x — snow is black’. It is then an easy argument (") to prove
the falsehood that snow is black. Second, it is true that one need not
maintain the gereral schema (3u) (x) (x instantiates u <> Fx) to get the
contradiction ; that it is enough to have (Ju) (x) (x instantiates u <> ~ x
instantiates x) or its cousins (e.g. Curry). But then,. regress/hierarchy
troubles to not turn on having a universal corresponding to the reflexive
case ‘x instantiates x’, so much as applying some version of the Similarity
Principle to the general situation in which x instantiates w.

(3) For a hierarchy, see Graham NERLICH ‘Universals : Escaping Armstrong’s Regres-
ses’ Australasian Journal of Philosophy 54 (1976), 58-64. On irreflexivism, see Armstrong,
Universals and Scientific Realism op. cit.

(4) Aside from Armstrong’s arguments for this observatxon an advantage of adoptmg
the principle that universalhood is not preservcd with respect to truth functional compoun-
ding is that Popper’s-qualitative verisimilitude ordering is apparently resurrectable in a
natural way by counting universals. A decent theory os verisimilitude has seemed essential
to some realists (Smart, Putnam, Popper), and reéent theories fall well short of this. See
my ‘Relevance and Verisimilitude’ Synthese 55 (1983) 353-64.

(5) Armstrong op. cit Notice that this is consistent with-the thesis that universals are
responsible for all similarities or predications via the -operation of linguistic mechanisms.

(6) On Curry’s Paradox for sets, see e.g. Robert Meyer, Richard Routley and Michael
Dunn, ‘Curry’s Partadox’, Analysis 40 (1980), 124-8.

(7) And one, moreover, which poses problems for paraconsistentist solutions to the
problem ; see MEYER, Routley and Dunn, op. cit.
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So the problem is that it cannot be that there is any sound argument
for universals sufficient to show that similarities always have to be
explained in terms of samenesses, since instantiation appears to be a
counterexample.. And yet one wants to save as much: as possible the
intuition that such explanations are sometimes appropriate, while stopping
short. of ‘endorsing anything so strong that it produces a contradiction.
While the Similarity Principle has to be abandoned, there seems to be
something right about it, namely that samenesses sometimes explain
similarities. But how to save the latter while drawing a not-too-ad-hoc line
at the former ? Various people have complained about Armstrong’s ad-
hocery -concerning: instantiating (®. But is the cost of avoiding it an
abandonment of universals altogether ? L

3. DIFFERENCE

A standard argument against resemblance nominalism is that ‘our best
theories about the universe assert more than one similarity between things,
that is different similarities ; and it is difficult to construé this assertion
without quantification over similarities. That is to say, difference plays a

éentral role in arguments for universals. Causal realism needs causal
' Variation, or ‘causal explanation of differences and potential differences
between situations, no less than it needs causal samenesses. ‘And so we
rmght have a compahnion to the Similarity Principle which we can call the

*(8) M. Devitt ‘Ostrich Nominalism or Mirage Realism 7' Pacific Philosophical Quarterly
61 (1980), 433-39 ; W. V. O. QuINE, ‘Soft Impeachment Disowned’, Pacific Philosophical
Quarterly 61 (1980), 448-9 ; Gail FivE, ‘Armstrong on Relational and Nonrelational
Realism', Pacific Philosophical Quarterly, 62 (1981), 262-71 ; D. Lewis, ‘New Work for
a Theory of Universals’, Australasian Journal of Philosophy 61 (1983), 343-377. David
Armstrorig suggests in correspondence, appealing to Lewis' paper, that ‘what is a difficulty
for all positions is not a difficulty for any’ ; that any answer to the problem of: universals
requires some-fundamental connective to be-exempt from abstraction. It is true that
unlimited abstraction has to be abandoned, but that is the beginning of the story. The point
is that the Similarity Principle threatens us with unlimited abstraction, and yet it is hard
to see how to avoid using it, or to place limits on its use. My suggestion is that it is possible
to avoid placing too much weight on it. Again, as Armstrong notes, if instantiation is
exempt from general abstraction in order to avoid regresses. Armstrong is hardly in a
position to wield his'own regress arguments against his opponents. So, ‘then, one would
seem to need different arguments for Armstrong’s position. Perhaps it is not possible to
get to Aristotelianism, but I do claim that one can get to universals without relying on
Armstrong’s regresses.
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Dissimilarity Principle : no d1ss1m11ar1ty without a difference in what
exists. :

I suggest that the D1ss1m1lanty Principle can get us where we want to
go using the Similarity Principle, but at less cost. A common argument for
universals, also a related argument against resemblance nominalism, is
essentially an application of it. We can imagine a single particular to have
more than one causally efficaceous property, e.g. charge and mass. A test
particle with both charge and mass might be involved in a gravitational
interaction in which only the latter is causally operative. But unless some
things exist which are different to constitute the difference in these
properties,  this is unintelligible. Differences in behaviour and potential
behaviour are attributed to independent variations in applicable laws. If
this did not issue from differences in what exists, then nothing would be
explained : the nonexistent cannot make for a difference in the existent.
All dissimilarity is nonidentity.

.Showing that more than one predicate can be true of a thing because
the thilig has different existing aspects, does not show what is the nature
of aspects. So far as the argument has gone, it can cons1stcnt1y be said that
everythmg has, for example, parts, and that some of the _parts of a thing
are its aspects (°) ; or perhaps that aspects are abstract partzculars Herc
- is where we can put some weight on the Similarity Principle, though
' hopeﬁllly not too much. Because evidently those existing aspects of a thing
which differ from one another, are precisely those things which are the
same in different things : the mass 5 grams is different from the mass 6
grams, but more than one thing can have each. Thus, the Dissimilarity
Principle delivers the existence of universals which differ from one
another, the differences serving to constitute the lawlike differences in the
world. But since they are universals, we have saved, at least to some
degree, the intuition that there exist genuine samenesses between different
things in the universe. But also, we have had to rely neither on any
principle to the effect that all similarities ultimately derive from samenes-
ses, nor any demonstrably unsound argument for it.

4. INSTANTIATING

To reinforce this last point, we can ask whether there is some difference
between things marked by the relational concept instantiating ; and which

(9) A position which, for instance, a bundle theorist of universals: might accept.
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thus, on the Difference Principle, needs accounting for by an existing
universal. It is hard to imagine that there could be. Certainly there is a
difference between a’s instantiating u and a’s instantiating v, when u and
y are different universals responsible for differential causal behaviour. But
that difference is carried by u+ v. The question is, rather, whether there
is something common to all instantiations in virtue of which' a’s instan-
tiating u differs from its not being the case that a instantiates u. But what
we -are. trying to distinguish here is instantiating something, from not
instantiating ‘anything at all ; sincé as we have just seen distinguishing
instantiating u from instantiating v can be carried by u # v. The answer has
- to be that there is no extra difference ‘between things to be accounted for
here. Being a mere instance does not confer differential causal potentiali-
ties ;' what does that are the different universals instantiated. In short, it
seems reasonable from the Dissimilarity Principle to draw the causal
realist conclusion that those and only those universals exist which suffice
to explain the differences in lawlike behaviour and causal potentialities in
things, but that mere instantiation is not one such. The advantages of this
conclusion for the problems of the previous section are evident.

A quick disclaimer must be made here. It is not being contended that

_ causal realism rules out higher order universals in Armstrong’s sense. At
least those higher order universals will exist which are necessary to
constitute the natures of universals involved in causal theory, and further-
more it is not unreasonable to say that these contribute indirectly to causal
processes. ‘'We already admit different roles in causal processes, for
instance particulars versus universals. That higher order universals might
not appear in physical theory should not concern us.overmuch if we think
that metaphysics is also a legitimate source of truths.:

It is by no means plain sailing from here, however. If you lean heavily
on the Dissimilarity Principle, you need to be ever vigilant that some
difference might not creep up for which you cannot account by differences
in what exists. For example, what of the different predicates ‘x exists’ and
‘(3u) (x instantiates u)’. Is there a difference here that will cause trouble ?
The obvious ‘and gratifying manceuvre here is simply to say that there is
no real difference between existence and being an instance of a universal.
This is a conclusion with which Armstrong and Kant would variously
sympathise.
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5. AGAINST SETS

I want to go on to consider a complication. But before doing so, it is

necessary to say some things about the use of set-theoretic constructions
in philosophy, so that we will not be mchncd to take the wrong route
around the complication.
It is well known that the theory of umversals has many parallels w1th
the theory of sets, for instance Russell’s Paradox above. When problems
about universals are cast in the formal mode as problems about predica-
tion, it has often seemed tempting to reach for the Completeness Theorem
for first-order classical logic as offering a set-theoretic account of predi-
cation, and thus an extensionalist reduction of universals to sets in line
with the desire to account for similarities by samenesses. That set theory
is an extensional theory of universals is both its strength and its weakness.
It is a strength because the identity conditions for sets give no more
problems than those of their members, and a weakness because those same
identity conditions would then identify universals which are intuitively and
causally distinct, so long as they-were co-extensional. It is also common
to object that the theory of universals-as-sets gets the order of explanation
wrong. Far from its being the case that things are red because they are
‘members of the set of red things, rather it is that S rather than S' is the
set of red things because all and only S’s members are red. Since a set is
extensional, mere brackets so to speak, its identity is derivative from the
identity of its members ; so that it takes on whatever character it has in
virtue of the character of its members. Thus, underlying sets there must
be universals to explain predication, samenesses and differences.

This point is worth amplifying. It has been argued ('°) that the standard
mathematical description of the topology of space, as a collection of sets
of spacetime points, cannot be right because set theory gives us many more
actual alternative collections of sets of points as well. Set theory by itself
has no way. of choosing which of the existing alternatives is the correct
description of réality. Mathematical topology is an extensional attempt to
describe the structure of space or spacetime entirely in terms of points or
sets of points. ‘And as a description of the extensional features of that
structure no-one could quarrel with it. But, too many other set theoretic
collections which equally well count as a topology also exist (since sets

(10) Chris MorTENSEN and Graham NERLICH, ‘Physical Topology’, Journal of Philoso-
phical Logic, 1978, 209-223; also ‘Spacetime and Handedness’, Ratio (1983) 1-14.
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do ; remember that we are evaluating universals as sets here). The trouble
is that these other collections give an incorrect description of reality. So
whatever constitutes the structure of space must be something which
underlies sets, and which makes it possible to select one set theoretic story
among others as the correct extensional story. In the spirit of the present
paper, that something must be relations between points, polyadic univer-
sals. Thus, universals are necessary to explain why certain sets and not
others do the job they are expected to do, because there are too many
other collections of sets around which could do the job but happen not
to. Universals explain why only certain collections of sets are the right
ones to pick, and that explanation needs to be made.

- This argument sits comfortably with causal realism. It is certainly a
mistake to accept incautiously every entity -(particularly mathematical
entities) postulated by physical theory. It is not typically the concern of
physicists to fine-tune their mathematical apparatus to suit the ontic
scruples of philosophers. Causal realism is not physics worship ('*).
Indeed; it has .always been irksome that the strictly mathematical items
necessary for physical theory do not play a causal role in those theories ;
epistemology has always been a stumbling block for the philosophy of
mathematics. That is no news either, but it is worth seeing in the causal
realist framework. It is hardly satisfying to argue, as many have, that the
epistemology of mathematical items is no more problematic than suc-
cessful postulation, wherein you get numbers and sets for free along with
the electrons. The causal realist wants to postulate only those items which
make a causal difference. This is where sets and universals differ, to the
advantage .of the latter. The possession of a universal can be causally
eﬂiqacgons,in a way that being a member of a set is not (or at best only
derivatively). Instantiating a universal alters the causal efficacy of a thing ;
that is precisely the role given to universals in physical theory. Needless
to say, this rejection of items which make no causal difference puts causal
realism_at -an opposite pole from the extreme of Quine’s Pythagorean
universe. As an aside, it would seem to be that causal realism views the
geometrical strlicﬁlrg of spacetime, since it makes a dynamic difference,
as no less a causally relevant feature of the universe than any other feature
of it, contrary to a thesis of Nerlich’s ('?).

(11) On physics worship, see ‘Spacetime and Handedness’, op. cit.
(12) Graham NeruicH, ‘What Can Geometry Explain 7, British Journal for the
Philosophy of Science, 30 (1979), 60-74,
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It is not difficult to see that these arguments apply equally. to the
set-theoretic constructions on possible worlds which have been proposed
to solve several philosophical problems. I do not mean to argue against
modal realism here, so much as to reject the attempt fo inject an element
of intensionality into various universals, by identifying them with sets of
extensions in possible worlds. If a world is a collection of particulars,
distinguished by their properties and relations, and ‘if properties and
relations are nothing but sets whose membership varies from world to
world, then there will ultimately be nothing which distinguishes a set in
a world as the set of red things in that world rather than the set of green
things. All the sets you'd ever want would exist, but only some would be
correctly identified as sets of red things, and set theory 1tse1f doesn’t tell
how to do the identification.

Twentieth century mathematics could some Justlce be called the Age of
Set Theory, to the extent that set theory has become its lingus franca. But
~set theory might also be viewed as a disease of modern mathematics,
which has produced a secondary infection in philosophers, the etiology of
which is mathematical logic and its Completeness Theorem. There are
signs that mathematics is curing itself of the tendency to.reduce structure
to containment, with the development of Category Theory (). It is to be
hoped that philosophy will be more inclined to use set theory as a mere -
tool without being mesmerised by its ontic commitments.

6. NUMBERS AND QUANTITIES

We return to a matter raised at the end of Section One; namely the fact
that our best theories, indeed all our theories, quantify over universals ;
and that farthermore the prospects for nominalist reconstrual of this look
very dim, since our equations exploit mathematical operations which
make sense only on terms.

Now it might be argued, as Qulne does (“) that predications at the
basis of the equations -of physical science, for example X’s mass =5
grams’, can be reconstrued not so much to avoid commitment to univer-
sals, but to commit one only to certain kinds of universals, namely
~ numbers. As follows : ‘x’s mass-in-grams = 5°. A further move might be

(13) See Robert GOLDBLATT, Topoi, North Holland, 1979.
(14) E.g. QuINe, Word and Object, M.IT. Press, 1960.
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made to reduce the right hand side to sets, but let us not concemn ourselves
with that blind alley.

This position has its attractions, among which is that mathematical
operations on numbers can be drawn on naturally to explicate their use
- in the equations of physical theory. Indeed, how else to do it ? What sense
are we to make of writing ‘Force-= (5 -grams x 6 grams) + (8 cm)>
Wouldn’t it be more mtelhglble to * write ‘ForCe-in-appropriate-
units = (5 x 6) + 8%.

Now it seems to me nevertheless that the Quinean view is not the
natural view of the matter. The natural view is that x’s mass is a universal
in x, and the same universal might be in y ; that is, that the construal most
natural in accordance with physical theory is ‘X’s-mass =5 grams =y’s
mass’. Worse is the fact that the alternative is at odds with causal realism,
as we emphasised in the previous section, in that it requires the existence
of humbers which make no causal contribution to. the universe. One might
begin to make sense of why x accelerates the way:it does if told that x’s
mass = 5 grams, because the mass 5 grams is an entity the instantiation of
which confers differential causal activity on x in accordance with physical
law. But what contribution could the number 5 make to x’s behaviour,
different from the contribution the number 6 makes ? We seem to be in
the same kind of problem as we saw for sets : both 5 and 6 would exist,
'so how could some function, mass-in-grams, serve to relate x differently
to § from x’s relation to 6, and in such a way asto confer differential causal
capacity on x ? -

So admitting quantities into one’s ontology makes more causal sense
than admitting dimensionless numbers. And to this conclusion one can
add the weight of two arguments against the dimensionless numbers story.
The first is the simple fact that it falls foul of the substitutivity of identity.
For suppose that x has a mass of 14 grams and a charge of 14 volts. Then,
on the theory, we are to construe this as x’s mass-in-grams = 14 and x’s
mass-in-grams = 14 and x’s charge-in-volts = 14. From which it follows
that x’s mass-in-grams is identical with x’s charge-in-volts. But now
suppose that x is involved in a gravitational interaction with an uncharged
particle. Surely physical theory says that x’s charge was causally irrelevant
to x’s subsequent behaviour, while certainly x’s mass was not. How could
that be if x’s mass-in-grams was identical with X’s charge-in-volts ? On the
other hand, if x’s mass = 14 grams and x’s charge = 14 volts, we have no
such problems. Of course, what we can conclude, if x’s mass = 14 grams
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and y’s mass = 14 grams, is that X’s mass = y’s mass, which, far from being
problematic, is precisely in accordance with the view of them as universals.

A second argument against dimensionless numbers draws attention to
the semantic structure of the expression ‘x’s mass-in-grams’. Having this
expression denote a number, conceals the fact that it has a structure of
implicational relations which would be difficult to explain. If X’s
mass-in-grams = 2000 then x’s mass-in-kilograms =2,  but evidently
mass-in -grams is a different function from mass-in-kilograms. The rela-
tionship between them obviously has something to do with x’s having the
same mass, that is that mass is a semantic component of mass-in-grams,
but this is hard to make sense of on the present construal.

But do we have a problem here ? After all, how does one account for
‘x’s mass = 2000 grams <> X’s mass = 2 kg’ ? Evidently by saying that the
universal 2000 grams is identical with the universal 2 kilograms. How this
comes about, I suggest, is that change in a system of units for the one kind
of property (grams to kilograms) amount to-a systematic change in names
for the same properties. ‘2000 grams’ is part of a systematic set of names
for properties, ‘2 kilograms’ is part of a systematic set of a different set,
and names the same property. This fits nicely with the intuition that
change of units is mere terminological change. - - -

- A number of questions remain in connection with the present account,
which T will mention but not pursue in this paper.:One is to account for
the-fact that even in the preferred identity ‘x’s mass = 2000 grams’, the
number 2000 is a semantic component. So a job remains to be done of
saying what contribution it makes to the theoretical function of 2000
grams’. In particuldr, this semantic contribution is bound up with the
ability to perform arithmetical operations on dimensionless numbers
which thereby has consequences for the values of dimensional quantities
of which they are components. Clearly the answer will have something to
do with how physical theory makes it felicitous to choose continuous
ranges of properties falling under a property-kind. Beyond remarking that
on the face of it physical theory does just exactly that, I will not pursue
the matter. A related puzzle is why physical theory permits the multipli-
cation and division of properties' from different property kinds, but
not their addition and subtraction: 6 grams x 6 seconds = 36 gm sec.,
6 grams + 6 seconds=1 gram per second, but 6 grams X 6 seconds
doesn’t make sense. Clearly whatever the answer is, control over arith-
metical operations here rests with the dimension rather than the arithmeti-
cal operations on the numbers, a fact which I suspect the Quinean will
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have trouble dealing with. So causal realism suggests some thesis to the
effect of ‘abandon dimensionless mathematical entities in favour of
quantltles since it is the latter which have causal bearing on the universe,
according to causal theory. But perhaps-this goes too far, since physical
theory might provide for quantification over dimensionless numbers. The
kind of case which strikes me ‘might be troublesome is ‘The number of
electrons in the -universe is finite’. Beyond noting the possibility -that
numbers might need to be admitted as well as quantities I will not pursue
this. But I trust that this section has done enough damage to-a certain
metaphysical manceuvre which would otherwise .cast doubt on my claim
that we need to see basic causal theory in perspective, as a theory which
deals with universals as unavoidable and unproblematic.

-

7. THE ADICITY OF INSTANTIATING

Now we consider a complication, which..comes from the familiar
problem of the irreducible adicity of predlcatlon It was argued that one
can account for differences in a thing by. dlﬂ'erences in entities mstantlated
in the thing: Let us now ask which adicity instantiation has T spoke
casua]ly as if instantiation was a binary relation, but that w111 do only on

- the too- simple assumption that the aspects of a thing are the unary
propertxes of a thing. More specifically, the difference. between a s being
heavier than b and a's being larger than b comes down to the mstantlatlon
of universals such as heavier and . larger, wh1ch do not seem.to be
analysable into unary properties. If not, then we have to say that heavier
is instantiated in a and b, where the order of a and b matters ; so that it
seems pretty inescapable that instantiation is functioning here as a ternary
relating. Conceivably it has something to do with heaver being instantiated
in the ordered pair <a, b>, but that has the disadvantage of introducing set
theory into a metaphys1c so far free of it. What then shall we say of the
earlier binary. predicate ‘X instantiates #* ? Is it really ternary after all ? That
seems otiose, especially when as should be apparent there is no limit to
the edicities we must allow. If it is not really ternary but binary, then we
have two instantiation predicates of different adicity, e.g. x instantiates;
u’and ’x and y instantiate, v.-A similar argument evidently applies for any
adicity for which there is a umversal not analysable into combinations of
lower adicity. Hence instantiating,, ..., instantiating,, ..., perhaps even up
into the transfinite if there are umversals of infinite adicity.
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Now that is not so bad : it is a hierarchy and not a regress. Does the
Dissimilarity Principle do any damage here ? I am inclined to think not,
though it does seem arguable, since there would be an acknowledged
dissimilarity - between instantiating, and instantiating, marked by the
indices. Nevertheless, even if there is no problem here, there is a certain
lack of economy in the infinite hierarchy of instantiation predicates. I
suggest that there is a natural way to avoid the hierarchy.

That can be done only if we have a single instantiation predicate, and
this can be done only if either we can assign a fixed adicity to instantiation,
or instantiation need not have a fixed adicity. Prospects for the former of
these two possibilities are bleak, I should think. It means finding an upper
limit to the adicity of instantiations and then analysing instantiations of
higher and lower adicity in terms of it, all of which looks a priori unlikely.
However, nrospects for the latter are not at all bleak.

The theory of anadic predicates, predicates of no fixed adicity has been

extensively studied, e.g. by Richard Grandy and by Barry Taylor (**). One
example is X, ... X, are surrounded by y, ...'y,,". There is no fixed number
of places, either before the verb or after it. Yet the predicate does seem
to constitute a single semantic unit, so that breaking it down into the
infinite number of predicates ‘x;, ..., , are surrounded , ; by y, ...y, would
be a distortion. '
" Utilising the insight of the theory of anadic predicates, we can say that
the instantiation predicate is anadic. Indeed, if anadic predicates are
possible at all, and if any such is analysed into the instantiation of a
corresponding universal, then we will be forced to say that instantiating
is anadic. If we do-say this, then the infinite hierarchy above collapses
immiediately to the single case ‘X, ..., X, ... instantiate . This view has
the further advantage that it is consistent with the attractive thesis that
there -nieed only be one basic kind of multiple attribution of relational
predicates which is not ultimately explicable in terms of the existence of
universals, namely the assertion of instantiation.

(15) Richard GRANDY, Advanced Logic for Applications, Synthese Library, Reidel 1977.
Barry Taylor, ‘Articulated Predication and Truth Theory’, in B. VERMAZEN and M.
HmnmikkA (eds.), Profiles of Philosophers : Donald Davidson, ... Note though that the
methodology of these is thoroughly set-theoretic.
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8. CoNCLUSION

One further matter relates to the dispute between Aristotelian and
Platonic theories of universals. One difference is that the account of laws
with uninstantiated subject terms looks to be considerably simpler in the
latter than in the former (**). On the other hand, Aristotelianism does
seem to have a better account of being a particular. The Dissimularity
Principle perhaps creates trouble with the difference between °‘x is a
particular’ and ‘(3u) (x instantiates «’)’, but an Aristotelian can, instead
of appealing to a brute difference between particulasity and universality,
presumably analyse the former as ‘~(3y) (y instantiates x)’ i.e. particulars
are things which have no instances. That is not available to anyone who
thinks that there exist uninstantiated universals.

Department of Philosophy.
The University of Adelaide.

(16) TooLEY, op. cit, or ARMSTRONG, What Is a Law of Nature ? op. cit.



Semiotics and the foundations
of mathematics

CHRIS MORTENSEN and LESLEY ROBERTS

Introduction

Semiotics has largely been neglected as a vehicle for foundational studies
in mathematics. A notable exception is Brian Rotman, who has, in the
name of semiotics, offered accounts of mathematics in general and
number in particular. Rotman nominates his basic semiotic vocabulary
as being principally Saussure’s, though informed by Peirce and later
developments such as Eco: sign, signifier, signified, language or code,
discourse, metasign, and subject (Rotman 1993: 31). We therefore begin
this article with a brief overview, particularly of Saussure’s version of
semiotics, taking the opportunity to do some critical reconstruction along
the way. We then briefly survey the problem of the nature of mathematics
as conceived by analytical philosophy, drawing on Hilary Putnam’s work.
‘These preliminaries set the scene with the theoretical concepts we use.
Our main interest in this article is in numbers, including especially the
‘number zero. We proceed to describe and criticize Rotman’s theories on
these matters. and then to offer an alternative understanding that draws
on some of his insights. We then consider the problem of infinity, arguing
that Rotman’s position on this issue also has its drawbacks. We conclude
by broadening the focus to the nature of mathematics in general, discuss-
ing the work of Edwin Coleman and René Thom in the context of the
prospects for a semiotically-informed philosophy of mathematics.

Preliminaries: Saussure’s semiotics

Saussure’s (1916) linguistic signs were made up of a signifier and a
signified. These do not occur separately: Saussure used the analogy of a
piece of paper — the sign is like the sheet of paper with the signifier as
one side and the signified as the other. Saussure said that the signifier is
‘the form which expresses the word’ and the signified is the meaning.

Semiotica 115-1/2 (1997}, 1-25 0037-1998/97/0115-0001
' © Walter de Gruyter
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Now Saussure’s account is not primarily about external, physical items.
Rather, it is a mentalist account; while Saussure allowed a material
substrate, both the signifier and the signified are located in the mind.
The mentalist account of the signifier (as opposed to the signified) is one
which we think it would be better to avoid, if only because it privatizes
a centrally important linguistic concept. We follow Wittgenstein in hold-
ing that language is importantly public, and that only if some central
linguistic building-blocks are public can one explain the singular useful-
ness of language in communication with complete strangers. Nonetheless,
_ this issue would seem to be largely one of nomenclature, we suggest, if
it is conceded that signifiers have a physical base.

Saussure: pointed -out that the signifier and signified are arbitrarily
linked, or as one might say, the link between syntax and meaning is
conventional. What is less obvious is Saussure’s further claim, that both
the signifiers and the signifieds are arbitrary. He maintained that there is
no intrinsic property which determines a particular signifier or a particular
signified, but rather a signifier is defined by its relations to all other
signifiers, and a signified by its relations to all other signifieds. Language
on this view turns out to be a kind of relational algebra; what is important
are structural relations. '

It is the system of relations that establishes identity conditions for
signifiers and signifieds. Saussure explained this by using a chess analogy.
If you are playing a game of chess and you misplace a knight in the
middle of the game, then you can replace it with something which bears
" no physical resemblance to the original piece, such as a button, provided
that the same relations hold between it and the other pieces as held
between the knight and those pieces. If the structure does not change, if
two linguistic objects stand in the same relations, then they count as
being the same. Thus the account is thoroughly holistic.

Saussure used the term ‘difference’ to talk about relations between
different items. We believe that this has led to some confusion in later
interpreters. One of his famous quotes is “in language there are only
differences’ (1974 [1916]: 120). We claim that this has to be understood
in the way we have indicated, as the claim that the identity conditions
of linguistic units are relational and holistic. If Saussure meant by ‘differ-
ence’ literally simple disidentity, then he would be open to a conclusive
technical objection. This is, that there is a simple proof, using quantifier
logic plus identity as a model language, which shows that no collection
of nonidentity statements is sufficient to imply any identity statement
which is not already part of one’s theory.* This shows that in order to
fix the identities of any collection of items, more-is needed than their
differences construed as disidentities.
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Following Rotman, we will say that a code is a language or sublanguage
exhibiting this typical internally differentiating pattern of differences.
What is it, then, that structures a code, if it is not simple disidentity?
Saussure wanted to define two kinds of relations called syntagmatic and
associative. He gave some clues as to what these relations are, but in
neither case were they clearly defined. Syntagmatic relations were based
on the ‘linear nature of language’. He said that ‘a term acquires its value
... because it stands in opposition to everything that precedes or follows
it, or both’ (1974 [1916]: 123). Presumably such relations would give us
the grammar of the language, i.e., which signs can be combined with
which. The definition of an associative relation is not much clearer. A
word, he said, will ‘call to mind’ a number of other words which are
‘related in some way’ (1974 [1916]: 123). The different kinds of relation-
ships are formed by different associative relations. But just what are these
different kinds of relationships? Saussure was not clear. He said that
associative relations are ‘based on the comparing of terms which have
something in common’ (1974 [1916]: 125), and he included antonyms,
- synonyms, rhymes; and having the same prefix, suffix, or root. Thus, for
example, ‘black’ might be associated with ‘white’ and also with ‘tack’.
Now while Saussure may not have been very clear about association, we
can certainly assimilate any other work on association, natural or conven-
tional, from Pavlov onward. .In more modern terms it is the thesis that
meaning is a pattern of distances in cognitive space.

Saussure’s concept of the sign is different from what we ordinarily
mean by ‘sign’. Something is a sign if it stands in for something else:
smoke is a sign of fire, a footprint in the sand is a sign of human presence.
General semiotic theories which adopt this more general conception of
a sign (such as C. S. Peirce’s, for example) are general theories of
representation; and their associated semiotic accounts of language typi-
cally come with a theory of reference. But Saussure does not explain this
stand-for relation. The relation between signifier and signified i§ not a
stand-for relation; one does not represent the other.

Tt is almost a cliche to point out that Saussurean semiotics suffers from
Saussure’s omission of a theory of reference. This strikes us as somewhat
unfair to semiotics. It is certainly true that without a theory of reference
one runs the risk of thinking that there is nothing outside the text.
Contrary to the apparent view of some post-structuralist thinkers that
there is no extra-linguistic world, it is unavoidable that a general theory
of language must take into consideration reference, that is, the naming
relation between signs and the physical and social world, on pain of
denying us linguistic and epistemic access to a mind-independent reality. .
But this is hardly a major problem: for example, Peirce’s version of
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semiotics admits it. Nevertheless, there can surely be no objection to
pulling apart the sign in order to study the signifier-signified relation,
which we gloss here as the relation between syntax and the varieties of
meaning. Indeed, there is likely to be a special imperative to do so for
the case of mathematical codes: as we see, it is their referentiality which
is opén to question here, so that we are interested in the possible contrib-
utors to signification in the absence of referentiality. One such contribu-
tion is likely to be from surrounding discourses, or what Wittgenstein
called language-games; though we should always be aware that language-
games or discourses typically have a socio-political-historical aspect, as
well as a structural-relational aspect, in their contribution to meaning.
Further; while there are strong prima-facie objections to Saussure’s men-
talist account of the signified (meanings), nonetheless we concur with
Dummett (e.g., 1977) that the emphasis on the concrete epistemic phe-
nomenon of understanding locates meaning correctly with respect to its
cognitive foundations: any theory has to be compatible with its own
epistemology.

Further preliminaries: Analytical philosophy of mathematics

A central problem for any general account of the nature of mathematics
_is ‘what is mathematics about? One answer is given by Platonism. On a
Platonist account, mathematics is about real, existing abstract objects
such as numbers and sets, which are referred to by mathematical words
or signifiers such as the count-nouns. In a well-known overview,
‘Philosophy of mathematics: A report’ (1979), Hilary Putnam discusses
major accounts- of mathematics including Platonism, conventionalism,
formalism, and intuitionism. Putnam notes two definitive issues for any
position. One is the truthmakers of mathematical propositions: given
that we think that mathematics is straightforwardly true or false, and
mathematicians give every sign in their practice that they think just this,
what makes the true propositions true? Here Platonism has a ready -
answer, namely, that the truthmakers are the abstract objects and their
properties and relations to other such abstract objects, to which mathe-
matical nouns refer. The ability of Platonism to give a ready account of
the truthmakers of mathematics is unquestionably its major strength.
The second central issue for any philosophy of mathematics is the
epistemology of mathematics: how we can know any mathematical truths?
On this point Putnam is, contrary to some well-known theorists including
Godel, uncompromisingly naturalistic: our knowing mechanisms are
finite nerve nets, so that Platonism in particular has the serious difficulty
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of how finite nerve nets can have any connection with abstract objects
sufficient to know them (Putnam 1979: 389). There are two related
epistemological problems here. First, as we have just seen, any account
must explain or explain away how we come to know the ‘objects’ of
mathematics and truths about them. Second, it must explain how we as
finite beings come to understand infinite mathematical structures. Even
the set of natural numbers {0,1,2,3 ... } seems too large for mere mortals
to comprehend.

We set aside the special problem of infinity until a later section,
although we notice that debates about the nature of infinite processes in
mathematics go right back to the ancient Greeks. Two opposing positions
have been (1) the claim that the appeal to infinite processes and series is
only ever an appeal to the potential infinite, that all an infinite process
ever amounts to is an instruction ‘to continue; as opposed to-(2) the
claim that actually infinite mathematical items such as infinite series and
sets exist. The debate became especially acute from the seventeenth cen-

“tury when calculus was discovered, and the fate of infinite items became
linked to the fate of their reciprocals, the infinitesimal numbers. The
debate was widely held to be settled in favor of the potential infinite by
the nineteenth-century Cauchy-Weierstrass definition of limits and the
derivative; though later that century Cantor’s paradise of infinite sets,
and particularly Robinson’s important discovery in the 1960s of nonstan-
dard analysis, sharply revived the question.

On the question of general epistemology, Putnam mentions the
approach of Quine, that numbers and sets including infinite sets are
postulated in the very same way that electrons are, and for the very same
reasons, namely, as unavoidable parts of the explanation of the success
of the observations of physicists (Putnam 1979: 390). It is worth making
a terminological distinction at this point between Platonism and realism:
mathematical realism is the general position which asserts the existence
of mathematical entities; while Platonism is the extra claim that mathe-
matical entities are abstract, by which we will mean that abstract entities
are not in spacetime nor are they causally relevant to events occurring
therein. The Quinean argument is certainly realist and referentialist about
mathematics, though not obviously Platonist (Putnam calls it holist; see
1979: 390). At first glance, moreover, it proposes a better epistemology
for any realist about mathematical entities, namely the familiar hypothet-
ico-deductive method of natural science. However, it also. raises the
important distinction between pure mathematics and applied
mathematics.

Realism can appeal to supporting arguments wherever it can find them.
In Quine’s case we have the argument from applied mathematics and
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physics. While we do not agree with Quine’s argument, we will support
a different argument from natural science for a realist: conclusion.
Whether it is a Platonist conclusion is a matter which we discuss. But
notice that it is left open that if physics were different, then perhaps the
mathematics necessary to describe it would not need to assert the existence
of numbers and sets. We would then have no Quinean reason to think
that they existed; we might as well invoke Ockham’s Razor and deny
them. Why one initially resists this conclusion is because it leaves un-
touched the whole question of pure mathematics. After all; to the extent
that entities are needed in physics to explain the causal order, to that
extent they are causally implicated and thus not abstract as we are using
the term. Such realism is not at all inevitably Platonism. On the other
hand, it seems likely that there are areas of pure mathematics which will,
as a matter of the construction of the universe, never be necessary for
physics (consider the example “There exists at least one nondenumerable
inaccessible number’). At any rate, much pure mathematics is done at
some remove from practical applications; even if, as with differential
geometry, it is sometimes later discovered to have a use in physics. Pure
mathematics has thus an aspect of necessary truth which the contingent
truths of physics do not explain, just as arguments have an aspect of
absolute logical validity, indeed at its most noticeable in pure mathemat-
ics, which logic studies. This is the argument from pure mathematics and
Jogic for full-scale Platonism, as supplying the truthmakers for the true
propositions and valid arguments of pure mathematics. Putnam is aware
of this point, and tries to broaden his data to be explained to include
‘combinatorial facts’ (1979: 390). But he concedes that such Platonism,
if it asserts the existence of acausal abstract objects, is back with the
epistemological problem, since the hypothetico-deductive method does
not seem to engage with entities whose presence would make no difference
to the contingent causal order. '

We do not take this up here, since our target is Rotman; but we wish
to register disagreement with one more aspect of Putnam’s discussion.
One major rival to Platonism has been Brouwer’s intuitionism (see, e.g., .
Dummett 1977), according to which mathematics is a mental construction
which does not exist until constructed and isn’t to be regarded as true
until constructed: mathematics is made, not discovered as the realists
would have it. Brouwer is to be saluted for placing the epistemology of
mathematics at the center of a philosophical understanding of mathemat-
ics. But Putnam points out that the mentalism is at odds with the a priori
character of pure mathematics and logic (1979: 394): how could a mind
(finite nerve net), whose operations are causally determined by the
chemistry of the brain, create the necessary constraints on mathematical
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constructions? For example, it is well known that there is nothing to stop
a brain or mind from being inconsistent; whereas, according to Putnam,
we regard inconsistency in a mathematical construction as a sure sign
of error. ‘

While we agree that pure mathematics and logic have an aspect of
necessity which needs to be explained or explained away, we think that
Putnam has gone too far here. As Imre Lakatos (1976) and others have
made abundantly clear, the history of mathematics, far from a paradigm
of formal clarity and rigor; is the story of a boat afloat on.a sea of
anomalies. In a particular case, the ‘discovery of the paradoxes of set
theory and semantics in contexts where deduction seemed to be at its
most innocent and pellucid, has been a driving force in mathematical
logic this century. However, its noticeably ad hoc outcomes have recently
led some theorists (e.g., da Costa, Priest, Routley) to react against the
constraint of consistency. This has led ultimately to the discovery of
inconsistent mathematics, on which see, e.g., Mortensen (1994). That is
“to say, Putnam is wrong in the detail of this criticism of intuitionism.

Another less-than-satisfactory aspect of intuitionism is its revisionism.
It is notable that, in consequence of his analysis of what a mental
construction could be, Brouwer concluded that many existing construc-
tions in mathematics were illegitimate, and that certain apparently reason-
able logical principles such as the Law of ‘Excluded Middle (either A is
true or not-A is true) were unsound. Now Quine’s realism bites, because
physics plainly needs some mathematics; hence Brouwer had to show
that he can get enough in his trincated mathematics to deliver the
successful predictions of physics. Whether intuitionism can do this satis-
factorily is still open; though it is clear that Brouwer’s attempt, brilliantly
creative though it was, was also remarkably ugly and restricting. But
there is a deeper objection here to any revisionist philosophy of mathe-
matics. Indeed, it applies also to any philosophy of mathematics, such
as Hilbert’s formalism (see, e.g., Putnam 1979: 388), which accords a
notion of ‘canonical mathematics’: that some mathematical formalisms
are more canonical as mathematics than others. A revisionist is in the
business of claiming that some accepted mathematics is correct, while
some other accepted mathematics is false or misleading or less canonical,
and thus should be discarded or taken less seriously or revised. However,
such a position can only be part of the story. At most, what are addressed
are the questions of what are the truth-makers and the epistemology for
mathematics. These are, of course, perfectly legitimate questions which
have been addressed in the foundations of mathematics this century, but
left unaddressed is the question of what makes the supposedly false or
uncanonical parts of mathematics still mathematics? Surely, until we can
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answer this question we will not have understood sopmthing at the core
of mathematics. And this is why semiotics has an appealing prospect
here, since it offers the possibility of understanding that true and false
mathematics are both mathematics in that they are both a distinctive
kind of text. We return to this point in the final section, particularly in
the discussion of Edwin Coleman’s work.

Putnam concludes that so far ‘nothing has worked’, that every existing
account suffers from some fatal flaw. He finishes with what is from our
point of view a significant observation: he urges philosophers of mathe-
matics to cease doing formal mathematical logic, and to start investigating
the history of mathematics, plausible reasoning, and the philosophy of
language, in ‘discussion of the deep metaphysical issue of realism as a
theory of truth and reference’ (1979: 395).

Rotman’s account of mathematics and number

In his paper “Towards a semiotics of mathematics’ (1988), Brian Rotman
begins by looking at what makes up a mathematical text; and notes that
in such a text one does not just find mathematical notation, but also
natural Janguage. Rotman claims that the signifiers and signifieds of
mathematical discourses are the ‘scribbles’ and ‘thoughts’ of mathemati-
cians. That is, the signifiers are what the mathematician writes down,
and the signifieds are whatever is going on in the mathematician’s head
when she is doing mathematics. ,

Rotman posits three ‘semiotic subjects’. The three semiotic subjects
are the Mathematician, the Agent, and the Person, who work together
when mathematics is practiced. The Mathematician is the subject who
does the scribbling, and who follows the inclusive imperatives of mathe-
matical discourse, such as .‘consider’, ‘define’;, and ‘prove’. The-
Mathematician imagines the domains within which mathematical actions
take place and she also imagines the second semiotic subject, the Agent.
The Agent is a kind of skeleton diagram of the Mathematician, who .
carries out mathematical instructions within the imagined domains. The
Agent, according to Rotman, is ‘free from the constraints of finitude and
logical feasibility’ (1988: 13). Thus, when proving the statement ‘for all
numbers x and y, x +y=y+x’, while the Mathematician cannot manipu-
late all possible instances of x and y to determine that x+y=y-x in all
cases, the Agent has no trouble with this infinite task. Rotman’s Person
is the subject who answers to the pronoun- ‘I’, and who can articulate
the connection between the Mathematician and the Agent. It is the Person
who, in virtue of this capacity, can be persuaded by a proof. In each line
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of a proof, Rotman’s Mathematician observes the imagined Agent per-
forming some task. The Mathematician ‘becomes convinced — persuaded
somehow by the thought experiment — that were he to perform these
actions the result would be as predicted’ (1988: 14). Even for finite
equations such as 2+3=3+2, Rotman says that the Mathematician
must be convinced that the equation holds for all tokens of 2 and 3.
Once convinced, the Mathematician ‘scribbles’ a new line of the proof.
The Person, who grasps the underlying narrative, the connection between
the Mathematician and the Agent, is persuaded by the proof.

Rotman gives an account of whole numbers with which he wishes to
show the falsity of Platonism, and claims that his account shows that
mathematical discourse creates its own objects. He argues that numbers
appear when there is a subject who counts: counting is a recursive process,
and an analysis of number should begin with a close look at I, II, 111,
1111, etc. Counting begins when ‘I’ is taken as a signifier and ‘etc.” as an
instruction to copy the last signifier and add another ‘T’. On Rotman’s
account, ‘etc.’ is an instruction to the Mathematician who will imagine
her Agent performing the algorithm. Numbers, he. says, are ‘things in
potentia’ (1988: 32). They are all the possible signs which can be produced
by the Mathematician and her Agent.

There are several problems with Rotman’s account. To begin with, it
is not at all obvious how the falsity of Platonism or even realism follows
from this account. While the signifier might be inseparable from the
signified, it does not follow that there is no object to which number signs
refer, any more than it would follow in the general case of arbitrary signs
where reference evidently takes place.

In his book, Signifying Nothing: The Semiotics of Zero (1987), Rotman
offers a ‘deconstruction’ of number discourses in an attempt to show that
numbers do not exist prior to the numerals or count-nouns, but are in
fact produced by them. Rotman’s deconstruction relies on the introduc-
tion of the (number) variable. On a Platonist account of mathematics, a
variable can be replaced by any numeral which names a pre-existing
number. Rotman argues that variables can be replaced by number signs
and these must be produced by the process of counting, hence variables
must be explained in terms of a counting subject. A variable thus ranges
over all the possible signs produced by the ‘one who counts’ (1987: 3).

This account is reminiscent of those anti-Platonist accounts of number
which turn on what is known as the ‘substitutional’ interpretation of
variables, as substitutable by count-nouns which are not referential (see
later discussion, especially Note 2). We do not propose to consider this
line at this point: we are more interested here in Rotman’s argument for
his position. Now a Platonist could readily admit that variables can be
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replaced by number signs which are produced by counting, but still insist
that those signs are referential. Rotman’s deconstruction seems to rest
on a prior claim, that numbers are produced by numerals. His argument
appears to be like this: (1) number signs are produced by counting,
(2) number signs do not refer to but are constitutive of numbers, and
(3) variables can be substituted for by number signs. Hence, (4) numbers
are produced by numerals. The trouble is that when (4) is unpacked, it
is not clearly different from (2); that is, Rotman has assumed what he is
trying to show.

The most serious problem faced by Rotman’s general account is the
epistemological problem. We saw that the Platonists have the problem
of explaining our knowledge of the abstract entities they claim do exist.
We argue that Rotman’s account suffers from a similar difficulty.

At first glance, Rotman’s semiotic subjects might seem to provide
solutions to both epistemological problems. Mathematical objects turn
out to be the signs which we produce ourselves, and hence there is no
problem in knowing them. In a proof, the Mathematician observes the
Agent performing an infinite number of tasks and becomes convinced
that were she to perform them, her answer would be the same. The
Mathematician/Agent creates the signs of mathematics, and the Person
believes in truths about them. The Person ‘knows’ the relationship which
holds between. the Mathematician and the Agent, and hence: ‘knows’ the
mathematical objects which are produced by the Mathematician through
her thought experiments and her scribbles. So the objects of mathematics
are knowable because they are the creations of mathematicians. The
problem of infinite structures is similarly solved. Though the
Mathematician is finite, she has an infinite Agent who does the mathemat-
ical leg-work for her. Since the Person has an understanding of the
relationship between the Mathematician and the Agent, she can under-
stand infinite structures. B

Still, this account has two obvious and related problems. The first is
how a functional part-of 4 finite Person, the Agent, could manage to
perform an infinite task. The second is how another functional part, the .
Mathematician, who ex hypothesi cannot perform an infinite task, could
be rationally persuaded by the operations of the Agent. At any point in
time, when the Mathematician observes the Agent, only a finite number
of these tasks will have been performed. As Rotman acknowledges, the -
Mathematician is 4 finite being, and finite beings simply do not have the
time to imagine infinite processes. In other words, Rotman seeks to
explain our understanding of infinite structures by positing an Agent
who can do the work for us. But he does not provide a convincing
account of how we are to understand the infinite processes of the Agent.
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The special case of zero

The sign for zero plays, on the face of it, a special role. As a number,
zero is stranger than other numbers, if only because zero things of a
given kind are not any number of things of that kind at all. The same is
true of other ‘null signs’ in mathematics, such as the null set, initial
objects in category theory, or such.things as null sequences or null lists
in computer science.

Rotman concurs in giving zero a special place; but we will argue that
the details of his position are unsatisfactory. Rotman’s most consistent
account would seem to be that zero is a meta-sign which signifies the
absence of other signs (see, e.g., 1987: 3). By a meta-sign,-Rotman means .
a sign which appears like other signs but which has a role as signifying
aspects of those other signs, partrcularly aspects which involve a subject.
As a count-noun, zero signifies the ‘origin’ of counting (1987: 13). (In
his later book Ad Infinitum [1993], Rotman appears to have a somewhat
different nomenclature: there the mathematical metacode is identified as
informal mathematics; and is distinguished from code, which is mathe-
matics considered strictly formally, though it-might be argued that meta-
code in this sense continues to fill the earlier role of meta- srgns We'
consider the later book more closely in a later section.)

Now to say that zero plays an excluding role with respect to other
signs is, from a Saussurean point of view, no news: we saw that for
Saussure all signs are constituted by their difference from others within
the code, but this precisely does not distinguish zero from other signs.
Furthermore, it is initially strange to speak of zero as the origin of
counting: counting does not start at zero, but at one. What Rotman
seems to mean here by the origin, is the originator, perforce a subJectmty
and thus a subject. Zero signifies the trace of the originator of counting -
in a way that one does not, presumably precisely because no ‘omne starts
at zero when they count and because zero plainly is not referential, Still,
if the subjective act of counting is the origin of numbers, then it is not
obvious why zero should play a greater role in signifying that, than one
or any other number should. All results of counting ought to signify the
counting.

We are not confident we have understood Rotman on What semiotic
closure or completion amounts to. It seems to be a kind of limit, and if
that is so then perhaps it is simply another way of expressing the 1dea of
zero as the origin of counting. Rotman uses the analogy with algebralc
variables and equations. These too are meta-signs in that they are to be
understood as signifying a subjectivity at work, the algebraic sub_lect
who is performing a kind of virtual counting, countmg at one remove as
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it were. But equations containing vatiables are also the semiotic comple-
tion of counting in that they signify the results of all possible acts of
computation through counting. Note again the substitutional conception
of variables as arising from more primitive semiotic acts of the same
linguistic type, as opposed to the Platonist conception of variables as a
kind of variable name for abstract mathematical objects.

Rotman finds a role for zero in other places in mathematical discourses.
He discusses the vanishing point in perspective in paintings, or line at
infinity in projective geometry (1987: 17,39). The line at infinity in
projective geometry is the place where the difference between parallel
lines disappears or ceases to exist. Rotman argues that the device of
perspective in paintings is a meta-sign’in that it signifies a subjective
point of view initially different from the viewer’s, namely the artist’s.
However, we submit that there is nothing particularly subjective or meta-
linguistic in this conception. After all, we are all familiar with the public
visual aspect of the horizon, which is furthermore describable by a simple
and uniform collection of mathematical transformations. Indeed, there
are more ‘perspectives’ than there are subjectivities. An analogy is in the
Special Theory of Relativity, where there are more frames than observers:
frames are perfectly objective aspects of reality in Special Relativity, and
talk of observers was an accretion of outdated Positivism. That is not to
deny that zero and infinity, as reciprocals of one another, are intimately
felated. On the other hand, there is'an aspect of the denial of existence

- of a difference at the horizon which we will see is on all fours with what
we say about the semiotic role of zero in the next section.

Another place to find zero at work, according to Rotman, is in
exchange, money, and credit (e.g., 1987: 5,46). Zero arises once bookkeep-
ing makes possible balanced books. This strikes us as quite right, and
indeed a good place to look for one of the important semiotic functions
for zero. We will take it up in more detail in the next section. Having
said this, we wish to turn to give a positive account of numbers in general,
which will locate the semiotic role of zero within it. We will see, however,
that we will eventually have to tolerate a measure of number realism of .
a sort. But we will also see that zero has a special place, and that realism
about zero and other null signs is to be avoided at all costs.

Numbers: The true story can now be told
In considering the semiotic nature of mathematical signs, it must be

stressed that prior considerations about what the nonhuman world must
be like in order to support mathematical practices are relevant. It will be
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seen that the origins of realism are to be found in a special semiotic
context, namely, that of natural science, which in turn offers reasonable
hope for epistemology. ‘

So we begin with the count-nouns ‘one’, ‘two’, ... , and ask for their
role-in counting. The salient point which springs to mind is this: that a
simple activity like counting, teachable to any preschool child, surely has
nothing whatever to do with arcane abstract objects. This point alone is
telling against a Platonist-referentialist view of the count nouns. Piatonic
numbers simply do not arise from counting.

This intuitively reasonable argument is reinforced by a technical con-
sideration from logic. When counting the number of marbles in a tin, we
get an answer like “There are two marbles in the tin’. It is well known
that this can be rendered in a standard and systematic way in the usual
apparatus of quantificational logic, without mentioning entities such as
numbers, like this: “There is an x dnd there is a y such thatx and y are
marbles in the tin, x is not identical with y; and for any z which is a
marble in the tin, either z is x or z is y’. The last clause, beginning ‘and
for any z ... ’, obviously says that there are no more than two marbles
in the tin. If the result of counting was that there are three marbles, one
could render this in a systematic way as “Thereisanx,ay and a w such
that x,y, and w are marbles ... etc.’. Notice that there are no abstract
numbers spoken of here, only marbles and the tin.?

A second salient point about counting concerns the unique role of zero
in this process.-To count the marbles in the tin, start with some marble
and say ‘one’, move to another marble and say ‘two’, and continue
appropriately. Here is how NOT to count: point to an empty space and
say ‘zero’, then continue as before. That is, zero does not arise from
counting in the way that the (other) count-nouns do: in an important
sense, zero is not a count-noun since it is not the outcome of a counting.
Could zero be dispensed with altogether in counting then? Now zero
finds a use in a counting-related activity, as one possible answer to the
question ‘How many marbles in the tin? However, ‘“There are zero
marbles in the tin’ does not refer to an abstract entity, zero; it is not
even the same kind of answer as “There is one marble’, “There are two
marbles’ ..., etc. The latter are all constructed from the basic beginning
“There is one marble’ by adding additional existence claims, whereas the
answer zero is a denial of existence. It is the answer one gives when all
the existential claims are false. But neither is it any kind of meta-assertion.
It is an answer which one sometimes gives because the series “There is
one marble’, “There are two marbles’ ..., does not logically exhaust the
possibilities by itself; while adding the possibility “There does not exist a
marble’ does provide an exhaustive set. This in turn raises the general
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issue: of the role in mathematics of null entities such as the null set. We
will be suggesting that they are nominalized ways of denying existence,
and thus no matter what Platonist conclusions one comes to about other
entities in mathematics, zero ought not to be construed as naming any
sort of existing thing, abstract or concrete. '

It can be fiendishly difficult to rid oneself of the tendency to think that
nonexistence in general is a kind of thing, a null thing. Natural languages
typically contain a nominalization of nonexistence: in English one .can
speak of the absence of nonexistence of a thing, and Sartre wrote about
le néant, nothingness. But we submit that this tendency ought to be
resisted, in the name of common sense over false profundity. It is well
known that a nominalized place does not guarantee referential status. In
defense of our position, we offer a slogan: nothingness does not exist.

Thus the natural number nouns 0,1,2 ... arise in counting, but their
use there is not referential; and in any case zero is a special case, though
not a meta-case. But this now leads us to ask from whence come the
negative numbers. When the negative numbers are taken into account,
there arises the additive group of integers ... —2,—1,0,1,2, ... . For our
purposes, the important part of describing this collection as an additive
group is that every number now has its negative counterpart with the
property that adding the two together produces the zero. Negatives and
zero, then, go together. But negatives do not arise from the semiotic
.activity of counting, or at least not without a directionality to the count-
ing. With directional counting one then has the possibility of a result
zero to the counting: count in one direction, then count the same amount
in the other direction. Direction suggests geometry, but it is too soon for
geometry. The obvious model is exchange, barter, the market, giving and
receiving as group inverses of one another. Nor are there any realist
numbers, negative or positive, needed for exchange (at least not if the
exchange involves merely counting units of things as opposed to measur-
ing continuous quantities of things, see later this section). We now see a
further role for zero emerging, that of an absence of change, an inability
to make a difference, the end result of two operations which ‘cancel each
other out’. Note again the distinctive pattern of zero being involved as
a denial of existence. Not only does nothingness not exist, but there are
no null entities. .

With exchange comes money. Rotman notes that money comes in two
stages, gold and post-gold (1987: 46). The former had intrinsic value.
The latter comes about because the intrinsic value of the former can be
debased below its face value. Post-gold money counts as a meta-sign for
gold. Money plays an important intermediary role in facilitating
exchange. But notice a further fact so obvious as to need explanation,
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that no one ever made a genuine coinage with a face value of zero dollars
(pounds, francs, lira ... ). (We have seen play money with such a denomi-
nation, but it is no sort of legal tender.) The role of zero in denying
existence provides the explanation, for if a coin were worth zero dollars
then its purchasing power would be nonexistent, and it would thus be
wasting money to manufacture it. (There could still be existing things
having no monetary value, things which it did not cost to manufacture
or obtain, but they would not be coinage.)

Post-gold coinage leads inevitably to a different code, credit. According
to Rotman, the role of a meta-sign such as post-gold money is to signal
and facilitate a change of codes. Signs indeed have the power to change
codes, which makes them in a sense prior to things and ‘creative’ of them
(Rotman 1987: 49). We think that it is worth emphasizing that the
Hegelian/Marxian tradition had the useful concept of a dialectical pro-
cess, signifying a mutual interaction, sometimes with a struggle. Too
much emphasis on one aspect of the contradiction can lead to according
it a false priority, and even to thinking of the other aspect as a mere
epiphenomenon.

With credit and the keeping of financial books, negative numbers and
zero gain a further role as the inverse of assets: debts. Then the ‘“fiction’,
net worth, can be defined as assets minus debts. Now we have a puzzle;
for while having zero debts means that there are no debts, and having
zero assets means that there are no assets, having zero net worth does
not mean that there is no worth. Zero net worth is a positive state, better
than negative net worth, for example. It need not involve the nonexistence
of purchasing power; and will not, while assets continue to exist. Zero
net worth just means that amount of assets=amount of debts. There is,
however, an implied conditional denial of existence: that if assets were
used to discharge debts, then neither assets nor debts would exist at the
end of the process. )

So far we have seen that the correct way to understand the use of
count-nouns does not require realism about numbers, that negative count-
nouns arise in conditions such as exchange where directionality of count-
ing has a place, that the count-noun zero has a special role associated
with the denial of existence, and that these facts can be discerned from
the formal properties governing the mathematical structures in question.
But now we have to consider the role of continuously distributed numbers
such as \/2 and pi, that is, the real numbers. The position we develop is
essentially Newton’s, though it derives ultimately from Plato. We also
draw on recent developments and improvements on the status of quanti-
ties and numbers done by, e.g., Forrest and Armstrong (1987), Bigelow
(1988), Bigelow and Pargetter (1990), and Mortensen (1987, 1989, 1994).
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We will see that the anti‘realism we have been developing about numbers
must be abandoned, and that the correct understanding of real number
signifiers is referential.

With the rise of the theoretical sciences, especially physics, physical
chemistry, and chemistry, quantities arise. Quantities come with a number
and a quantity-kind: 3 sec, 5.2 gm, \/2 cm. But the primary reality is the
dimensioned entity, the quantity; while the dimensionless entity, the pure
number, is derivative. Should one treat quantity-signifiers as referential?
The natural answer is yes, in view of the role they play in natural laws.
For example, consider Newton’s law of gravitation: any pair of bodies
with any masses m,, m,, separated by a distance 1, attract each other
with a force F given by F=Gmgm,/r?, where G is the gravitational
constant. The guantities F, G, my, m,, and r all come in dimensions or
quantity-kinds. The laws of nature relate quantities together, and in
virtue of that explain the observed behavior of bodies. So lawlike relation-
ships between quantities constitute fundamental aspects of the universe.
This is the best of reasons for taking fundamental laws literally and hence
referentially and realistically.’

What sort of entities, then, are quantities? Evidently, they are quite
like the universals of Plato and Aristotle.* One and the same quantity,
such as 5 gm, can be possessed by a multiplicity of things, in different
locations. This was the principal mark of a universal. Because universals
are unlike spatially located bodies, they have seemed controversial entities
to many through the ages, but this suspicion seems misplaced to us.
Universals are no more mysterious than the quantities familiar to us
from elementary physics, and shouldn’t be feared.

Our mathematical interest, however, is in the numbers which come as
a part of quantities, the ‘5’ in ‘5 gm’. Here we draw on Newton (1728,
cited in Bigelow and Pargetter 1990: 60). Universals themselves can have
properties and relations. Pure, dimensionless numbers arise as ratios
between quantities: 5.1=(10.2 gm/2 gm)=(204 cm/40 cm), for instance.
Ratios are thus relations of comparison between quantity-universals. Being
relations, they are also universals, since one of the marks of relations is
that they too can relate differing collections of universals: the comparison
between 10.2 gm and 2 gm is the same as that between 204 cm and 40 cm.

Is this realist position on numbers Platonism? In the sense that it is a
variant of Plato’s view on universals, the answer is yes; but in the sense
of ‘abstract’ we defined earlier, numbers are not abstract, since they
emerge from the quantities whose possession is necessary for the behavior
of bodies as described by the laws of nature. In that sense, the answer
is no.
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What are we to make of zero as a comparison between quantities?
Here one can once again draw attention to the unique role for the zero
signifier, namely, that unlike other real number signifiers it is not referen-
tial. Zero would be an existing universal like the other real numbers
provided that it arose as a comparison-ratio between quantities. But what
is one to make of zero quantities such as zero grams? We suggest that
there is no such quantity-universal as zero grams. To describe something
as having mass zero grams is to assert nonexistence again, the absence
of any power to influence the behavior of bodies involved in interactions
in which mass is causally relevant.

But here we have an irteresting point: that the story about zero is not
quite the same in every causal law. It is like the situation when directional
counting was considered. Some but not all quantity-kinds (kinds of
tniversals), such as mass, length, temperature, and duration, come with
an absolute zero. There are no negative masses, lengths, temperatures,
or durations. So having zero mass, length, temperature, or duration is
the absence of mass, length, temperature, or duration. But there are
positive and negative charges. So zero charge means something else,
something more like zero worth. Here we can distinguish charge from
‘net charge’. To describe a body as having zero net charge is not necessar-
ily to describe it as having zero charges, it is not a simple denial of
existence. It is to say that such positive and negative charges as it might
‘have ‘cancel out’, in the sense that it behaves exactly as a body lacking
all charges behaves. Notice a difference from the concept of zero net
worth described earlier: having zero net worth does not mean that one
behaves the same as if one had no assets and no debts. But notice also
the core feature of a denial of existence, albeit a conditional denial: if
the charges are allowed to neutralize one another, then the body lacks a
charge of any kind. :

There is considerably more that could be said about numbers and
universals, but enough has been said to make our point. There does exist
a fairly straightforward account of how number signs function in the
world, and it is a referential account. But its referentiality derives from
the scientific discovery of continuously distributed quantities and the physi-
cal laws in which they appear; and especially its referentiality does not
arise from counting or exchange of discretely-occurring commodities.
Furthermore, the zero sign plays a distinctive role in denying existence,
sometimes conditionally, and thus is not referential. Finally, these semiotic
facts can largely be inferred from the nature of the mathematics describing
the properties of the numbers themselves. From the semiotical point of
view, this is hardly surprising since mathematics is seen as a textual activity
arising from human practice in the world. But notice also the particularly
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simple codes in play here: number-nouns, addition, subtraction, multiplica-
tion, division, and equality. This argues for a simple account, arising from
universal human practices such as counting, exchange, and natural science.
The nature of the end product ought to contain clues to its origin, as in
any respectable scientific theory. That is only to say that the situation is a
dialectical interplay of theory and practice.

Infinity

In Ad Infinitum (1993), Rotman offers a somewhat revised account of
the semiotic subjects involved in mathematical activity. Instead of Person/
‘Mathematician/Agent we now have Person/Subject/Agent (see, e.g., 1993:
8). The Person is the entity which refers to itself with the indexical
expression ‘I, and which understands mathematical metacode, which is
to say informal mathematics. The Subject is that entity or subfunction
which understands formal mathematical propositions or code, while the
Agent retains its role as a manipulator of signifiers at the subcode level.
One significant difference in the role of the Agent, however, is that it is
no longer required to perform infinite tasks or simulations. Rotman is
unequivocal in appealing to the Nietzschean Philosophy of the Body (or,
in analytical terms, naturalism and materialism) to reject the actual
infinite. He argues that the Agent would have to be imagined as embodied
or corporeal, which rules out infinite tasks (see, e.g., 1993: 10,16). But
as John Bell (1995) argues, this is to place a severe and immediate block
on what an Agent could do in the way of imaginative manipulation. But
it can be argued from a weaker premise that no natural function of a
finite material person, such as an Agent would have to be, could be
expected to make infinite constructions.

Rotman links belief in actual infinities with Platonism, and sees his
task to reject both (see, e.g., 1993: 10,158). But it is not at all clear that
belief in the actual infinite is incompatible with a careful non-Platonist
realism. For example, our most successful theories about the mathemati-
cal properties of the manifold of physical spacetime assert that every
spacetime interval contains a nondenumerable infinity of points, while
quantum field theory has long endeavoured to manipulate infinite quanti-
ties appearing in its equations in an operational fashion, using the device
of renormalization. Note that this is a species of the realist hypothetico-
deductive argument from applied mathematics.

Even so, one might still feel that infinities remain an epistemological
problem for the naturalist for a deeper reason. After all, how could a
finite creature even understand the infinite if it has only a finite number
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of bytes to encode the concept? Now this can look insurmountable if one
conceives the task of understanding infinity in mathematics as the task
of encoding an infinitely large construction. In the sense of separately
representing and encoding an infinite number of distinct atomic parts,
this would seem to be beyond finite creatures, or at any rate creatures
with a finite number of functional parts, such as discrete automata.
Nonetheless, we should reflect on the similarly between infinity and zero.
Like zero, infinity signifies a negative existential: there does not exist a
counting of the whole collection (while unlike zero there do exist count-
ings of subcollections). So, given that one has a concept of negation, the
problem of understanding the infinite in general terms is reducible to the
problem of understanding finite counting in general terms, which is
something we seem to have a good purchase on. The matter ‘does not
rest there, however, because it can obviously be argued in reply that we
cannot fully grasp finitude until we grasp all the infinite distinct instances
of finite countings. We do not propose to pursue this any further, only
to caution that the epistemology of infinity might not be so impossible
“to deal with.

. There is, however, another point against Rotman. This is that, contrary
to the prospect which semiotics might be thought to hold out for under-
standing what distinguishes mathematics from other textual activities,
Rotman appears to succumb to revisionism. Despairing of the infinity of
the infinite series of natural number signifiers 0,1,2, ... , he proposes to
replace it by a finite series of signifiers 0,1,2, ... $, where § represents an
unspecified upper limit of actual finite countings. This interesting
approach constitutes what he calls ‘non-Euclidean arithmetic’ (e.g., 1993:
115). While Rotman is unclear about what specifically Euclidean is being
rejected, the approach falls within the established and respectable prob-
lematic of mathematical finitism. Nonetheless, it seems to amount to a
proposal to declare some existing parts of mathematics false, the parts
which would refer to actual infinities. As such, it is open to the objection
urged earlier against revisionisms, namely that it fails to tell us what is
mathematical about the rejected parts, false though they may be.

We conclude, then, that in rejecting infinities Rotman ultimately falls
back into the analytical problematic of truthmakers he was seeking to
transcend. This brings us back full circle to the task of bringing semiotics
to bear on understanding mathematics in general, and in the final section
we turn to that.

General mathematics

Here we want to say that we view the situation with mathematics in
- somewhat the way John Passmore viewed aesthetics in his well-known
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paper ‘The dreariness of aesthetics’ (1951). Passmore rejected the aesthe-
ticians’ preoccupation with high-level theorizing about art on the-grounds
that its very generality was self-defeating in that it tended to lose what
is interesting about art, that is, its richness and complexity. Passmore did
not claim that no very general answers might fortuitously be found, only
that such discoveries were apt to be platitudinous and not really why we
were in the game anyway: what aesthetics is and ought to be about, is
strongly continuous with art theory. .

To apply this to mathematics needs an application of the idea of
difference, namely a sense of the richness and diversity of mathematical
texts. Edwin Coleman, in his Ph.D. thesis, The Role of Notation in
Mathematics (1988), pointed out that even a brief perusal of the differ-
ences between, say, a page from Euclid, a page from Whitehead and
Russell’s Principia Mathematica (1910), a page from a text in business
mathematics, a page from a standard calculus text, and a page from a
mechanical engineering text, will convince one that these differences are
richly textual and at the same time the very stuff of mathematics (see

" Coleman-1990: 131-136). Consider, for example, the varying role of
diagrams, and of natural language text therein (Principia Mathematica
used precious little of these). Now on the one hand, it is an essentialist
mistake, identified by Wittgenstein among others, to think that there
must be something general and yet interesting in common between all of
these. But on the other hand, a central question about mathematics is
how the varieties and possibilities within text contribute to mathematics,
indeed, how textual understanding constitutes mathematical understand-
ing; or to put it conversely, how the mathematical understanding is
distinctively textual and symbolic. This is very much in the spirit of
Rotman’s Signifying Nothing, but even Ad Infinitum supports the point
(1993: 33):

... no account of mathematical practice that ignores the signifier-driven-aspects
of that activity can be acceptable. It is simply not plausible — either historically
or conceptually — to ignore the way notational systems, structures and assign-
ments of names, syntactical rules, diagrams, and modes or representation are
constitutive of the very ‘prior’ signifieds they are supposedly describing.

Coleman, who must be credited with grasping the bearing of semiotics
on the foundations of mathematics independently of Rotman, argues at
length that mathematics is very significantly a textual phenomenon. The
complex varieties of mathematical texts and codes, with their various
uses and language-games, argue for an explanation which avoids a-sim-
plistic referentiality. While of course there are many connections between
mathematical codes and the extra-linguistic world, it is precisely the
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varieties of these connections with the varieties of useful distinctively
mathematical styles of texts, which need understanding. Reference must
thus play at best a very secondary role in that understanding.

These observations point to an expanded conception of the role that
the ‘general theory of signs, symbolism, and notation ought to play ia
_ understanding the nature of mathematics. But they are also applied
against a more traditional view of the general nature of mathematics:
formalism. Hilbert took the view that in order to display the correct
formal relationships which justify mathematical propositions, mathemat-
‘ics shouild be reconstructed as-a formal uninterpreted calculus employing
axioms and rules for mathematical theories. In a similar fashion, though
with somewhat different philosophical aims, Whitehead and Russell took
it upon themselves to provide formally correct definitions of the basic
mathematical concepts so that mathematical propositions could be seen
as deriving from these by means of logically valid arguments, the program
of logicism. But we commit an error if we think that such formalizations
reveal the real mathematics. Hilbert and Whitehead and Russell, being
twentieth-century thinkers, are comparative latecomers on the mathemat-
ical scene. Principia Mathematica looks quite unlike almost all of mathe-
matics written beforehand, or currently for that matter. Even the idea of
logical consequence or following from, on which Principia Mathematica
was based, must undergo a radical shift in light of the function of
diagrams in mathematics, which Barwise (1994) and others have pointed
out receéntly. Understanding mathematics in general requires understand-
ing mathematical difference as much as formal sameness. What needs to
be understood are the possibilities for difference while remain-
ing within recognizably mathematical codes, and these differences are
notably textual. But also, importantly, there follows a certain anti-
foundationalism about mathematics. Elucidation of mathematical differ-
ence is anti-reductionist in spirit, unless the varieties of mathematical text
yield to a simple underlying explanation, which looks to be more unwar-
ranted essentialism. Coleman has gone on to develop these themes in a
number of studies (1990, 1992, 1995).

" We note two other thinkers who have addressed textual issues in a
way which we think has been relevant to understanding the complexities
of mathematics. One is Nelson Goodman, in his justly admired Languages
of Art (1981). Goodman does not discuss semiotics explicitly; but he
refers approvingly to Peirce and Morris, and his themes are certainly
semiotical in orientation, while having a distinctively analytical viewpoint.
‘The other is René Thom,3 well known for his contributions to catastrophe
theory. Thom’s aims are somewhat different from ours. One might charac-
terize the difference by saying that we apply semiotics to understanding
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mathematics, especially foundational themes; while Thom applies mathe-
matics to understanding semiotics, especially Peircean concepts. Having
said that, we must acknowledge that Thom was aware of the limitations
of the Hilbert Program in catering for geometric objects, linking it with
the tendency. to see only a chain of signification which we have also
criticized:

.. une théorie trés en vogue sur la place de Paris prétend: il n’y a pas de signifié,
il n’y a que signifiant; chaque signe référe & d’autres signes eri une régression sans
fin ... Les mathématiciens, dans leur souci d’éliminer tout appel & I'intuition

géométrique, ont connu, avec le programme de Hilbert, la méme tentation. (Thom
1980: 197) '

Supporting this point Thom offers, inter alia, formal accounts of the
Peircean concepts of icon, index, and symbol, with the aim of showing
that spatiality is amenable of semiotic analysis and application. In a later
work (1983, especially ch. 14, ‘Semiotics’), Thom develops this direction,
atguing that in iconicity there is a particularly evident mutual generation
between signifier and signified.

However, enough has been said by now, we believe, to make our pomt
that the way is clear for a textual and notational conception of mathemat-
ics. The view of mathematics as symbol, notation, and text points away
from narrow formalism and logicism, as we have seen. It also points

- away from a Platonism of abstract objects. Texts are produced by humans
interacting with the world and one another, while abstract objects are
unworldly. It would be perverse, to turn one’s back on the pr1ma1y
phenomenon to be explained, in seeking an explanatmn of it.

We also conclude that while there are difficulties in the details of
Rotman’s views, we must acknowledge the interesting direction of his
contribution.

With some apprehension about avoiding the Scylla and Chalybdls of
essentialism and platitide, we offer some concluding observations on the
central role of symbolization in mathematics. Certainly mathematics has
a power to exclude the extraneous in order to achieve generality and
purity of focus. But philosophy is ‘also general; and philosophy and
mathematics alike aim at certitude, clarity, and rigor. What distinguishes
mathematics from philosophy are. the symbolic means by which this is
achieved. By this, for want of a better not-too-theoretical term and pace
Peirce, we mean the ordinary sense of symbolic which contrasts with
everyday language. This is where spatial representation must be taken
into account, for it is very difficult to give a mathematics lecture which
is purely spoken, while very easy to give a mathematics lecture which is
purely written. Note that there remain large distinctions to be elucidated
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between the varieties of the geometric and the otherwise merely symbolic
in mathematics, as well as the large roles played by the computational
and the deductive. Note also the difference between mathematics and
ordinary language or discourse: while Coleman is undoubtedly correct
that' mathematics derives from ordinary discourse and makes heavy use
of it, it is nonetheless generally not so difficult to give a lecture on
nonmathematical themes which is purely spoken. Of course the nonspo-
ken use of iconography might be otherwise relevant: our mental lives are
thoroughly permeated with the nonverbal, just as they are with the
verbal .® It is, on the other hand, generally much easier to give a wholly
spoken philosophy lecture than a wholly spoken mathematics lecture, as -
Socrates amply demonstrated. Another dimension of the difference
between spatial representation and auditory representation is manifested
in the relation between mathematics and music: music, one might say, is
auditory geometry. This would in passing account for why many mathe-
maticians have felt an affinity with music, and why mathematics has an
-aspect of the beautiful.

Notes

1. Theorem: No theory of first order logic plus identity, whose only nonlogical axioms
are negations of identity statements (i.e., —(a=b), —(b=c), etc.) will contain any
consequences which are identity statements (i.e., of the form (e=f)), unless these are
already theorems of first order logic plus identity (such as (a=a), (b=Db), etc.).

Proof: There will always be a countermodel to e=f. Let the domain be all names,
as in standard completeness theorems for first order logic. Let the interpretation of an
identity statement be true just in case the names flanking the identity sign are the same
“symbol, otherwise false. Then the interpretations of —(a=b), etc., are all true, but (e=
f) is interpreted as false, unless its interpretation was already fixed by first order
logic. QED. )

2. But if the primary phenomenon in counting is assertions of the form “There are n Fs
in W’, then why mislead the youth by having nouns, which look like they function
referentially? The presence of the noun ‘two’ looks like it fills the place after the equals
sign in “The number of Fs in W=... . In standard logical notation, such a construction
permits one to deduce ‘There exists an x such that x is identical with two’, and it is
near enough to Platonism to be told that the number two exists. But the explanation
lies in the human tendency to nominalize, to turn such place-holding devices into a
series of nouns. After all, what varies in the collection of statements of the form ‘There
are two marbles in ... ’, “There are three marbles in ... ’ is the place occupied by ‘two’,
‘three’, ... . That is the part we are interested in, in answer to the question ‘How many
Fs in W?’; the rest is constant in all the answers. It simply saves time, then, to answer
with one of the collection of words which fit the place. The logical device which records
our ability to speak in an apparently referential way yet avoid existential seriousness is
substitutional quantification. ‘There is an x which is G’ (such as “There is a number
which is the number of marbles in the tin’) is construed as meaning ‘Some noun can
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be substituted for x in “x is G” in order to make a true statement’. There remain
existential questions about what are the truthmakers for statements of the form ‘(noun)
is G’, but at least we are freed from thinking that the human use of nouns is unavoidably
referential. There also remains the accompanying epistemological issue of how the
atomic sentences of the form ‘(noun) is G’ are to be known. The literature on substitu-
tional quantification is extensive; on its use in avoiding numbers see, e.g., Priest (1983),
who offers a conventionalist epistemology of the atomic sentences of pure mathematics.

3. There are further technical reasons for holding that quantities are prior to numbers;
see, e.g., Mortensen (1987).

4. There was a notable difference between Plato and Aristotle on the status of universals
which are not instantiated, such as a mass so heavy that nothing happens to possess it
(cf. also recent questions in physics about the ‘missing mass’ of the universe). Plato
believed in uninstantiated universals, Aristotle denied it. This has led to some interesting
recent debates concerning the status of laws governing the possible behavior of bodies
possessing uninstantiated properties, which, however, goes beyond our present semioti-
cal concerns. See, €.g., Armstrong (1978).

5. We are indebted in this paragraph to comments by Thomas A. Sebeok.

6. See, e.g., Mortensen (1989).
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ON THE POSSIBILITY OF SCIENCE WITHOUT NUMBERS

Chris Mortensen

Part 1: Field on Numbers
L. Introduction

Hartry Field’s well known book Science Without Numbers (1980) was an important
contribution to the debate on realism and platonism about numbers. Field’s exploitation
of the notion of conservativeness was a particularly significant innovation. However,
there is a difference between realism and platonism; #nd one aim of this paper is to
support the former while disputing the latter. I will explore Field’s nominalist strategy,
and argue that it is both unnecessary and unlikely to bring about the results he desires.
After Field’s position is disputed, we see that non- -platonist numbers play a distinctive
role in securing metrical realism or anticonventionalism in basic physical theories.

By realism about numbers is meant the claim that there are numbers. By platonist
realism (platonism for short) about numbers is meant the claim that there are platonist
numbers, that is there are numbers construed as havmg no spatiotemporal location and
especially no causal powers. One point of agreement with Field is stressed, namely the
intention to deny the existence of the causally irrelevant. If numbers prove to be so, then
they should be dispensed with; and any claims for their indispensability, such as have
been made by Quine and Putnam, should be resisted. Field also describes his position as
‘nominalist’, and some of the literature discusses its legitimacy. This paper tends to use
‘nominalist’ and ‘physicalist’ interchangeably, since as Field notes there isn't much in the
‘word, and the methodology can be applied to specific issues such as the reality of
numbers without forcing other concepts under. the umbrella. Strictly speaking, Field
holds up as undesirable several marks of platonist entities such as numbers: as well as
acausality, there are the related problems of unreférentiality and unknowability,
especially inability to explain the reliability of mathematicians’ beliefs. One can raise
questions about which of these imply which, for example whether acausality implies
unknowability. But while such issues are important, they are not the project of this paper.
Hence we set them aside, and it is taken that it is undesirable to have any one of these
marks.

This paper is in two parts. In the present Part 1, Sections II-1V, Field’s nominalist
strategy is considered and disputed. It is argued that there is a simpler strategy available
to the antirealist. Field has considered this strategy and |e_|ected it, and the main aim of
Part 1 is to rehabilitate it. It is also argued that any antirealist or antiplatonist strategy,
either Field’s or the alternative of this paper, must address the additional question of
whether it is desirable or correct to eliminate the additional entities. In Part 2, this
question is taken up; and it is argued, in line with recent work in Australia, that numbels'
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can be seen as causally and epistemically virtuous. This is particularly evident in
spacetime theory, where several antirealist stories are considered and rejected. Thus, far
from being able to eliminate numbers, one would want to have them in one's physical
theory. ' -

I1. Conservativeness

Field's principal claim about the specifically mathematical parts of basic physical theory,
is that it is conservative. A clear statement can be found in Field's Realism, Mathematics
and Modality [1989]: ‘

(1) A mathematical theory S is conservative if, for any nominalistic assertion A and

any body of such assertions N, A is not a consequence of N+§ unless A is a

consequence of N alone. (p. 125).
In other words, if A follows from N+8S then A follows from N alone. A nominalistic
assertion is one ‘whose variables are all explicitly restricted to non-matherﬁhtical entities’
(p. 125). Notice in passing the identification of the mathematical as the target, rather than
the specifically plztonist-mathematical. Field then argues, using what he calls a
representation theorem, that the mathematical part of Newtonian gravitation theory is
conservative with respect to a certain non-mathematical theory (written in a language of
betweennesses, congruences, part-whole etc.), which he claims can be regarded as
expressing the whole non-platonist content of gravitation theory. From this it will follow
that mathematics is dispensable from Newtonian gravitation theory, and that the Quine—
Putnam indispensability claim is undermined. Field expresses the opinion that there
should be available similar representation theorems/conservativeness results for other
basic physical theories such as GR gravitation theory. Brent Mundy subsequently-
developed representation theorems covering the conditions in which a quantity-space
with weaker structural properties than a continuous metrical comparison between
quantities, car be embedded in a continuously metrically ordered quantity space (see e.g.
(19872), (1987b)). Here he and Field were extending the well-entrenched program of
measurement theory (see e.g. Adams (1979)).

If Field is cight overall, this in turn will open the way for the instrumentalist claim that
mathematics is false but useful: false on the grounds that we have no reason to believe in
its existential claims: but useful because of its conservativeness, in that mathematics can
be used as a deductive shortcut without fear that we will generate any more nominalistic
statements than appear in the approved nominalist theory anyway. Thus, universities can
still justify funding mathematics departments. .

'Some controversy has taken place over the issue of whether the consequence relation
alluded to in the definition of conservativeness is proof-theoretic or semantic. These two
are co-extensive (though not identical) in the case of classical first order logic, but not co-
extensive in classical second order logic. Field clearly holds this issue to be important and
discusses it at length in various places. His original preference was for a second order
semantic account, since his representation theorem is model-theoretic in character. In the
end he seems to come down on the view that consequence is a primitive modal relation, ‘
whose meaning is explicated by a collection of (effective) rules for deducibility and non-
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deducibility (i.e. consistency, a semantic notion which is not effective at the first order
level). However, 1 will seek to avoid this controversy also, by arguing that a sufficient
conservativeness result can be obtained for any of these.

I11. Is Mathematics Trivially Conservative?

It might be wondered whether mathematics can be trivially shown to be conservative over
non-mathematical physical theory. In order to develop this, it will help to define the
concept of a conservative extension of a theory. Suppose we have theories Thl and Th2,
where the language of Th2 is a subset of the language of Thl. Then:

(2) Thl is a conservative extension of Th2 iff any consequence of Thl in the (sub-)
language of Th2 is also a consequence of Th2.

Now we have a simple result, alluded to by Field, (1989, p. 129).

(3) Any mathematical-and-physical theory has a puré]y physical subtheory of which it
is a conservative extension.'

This means that no sentence of the nominalist sublanguage is in Thl without already
being in Th2. Any deduction (according to whatever canons of deducibility, semantic,
proof-theoretic, first-order or second-order, intuitive or modal) of nominalistic/
physicalistic conclusions from premisses involving a mix of mathematical and physical
predicates, will already be deducible in the preferred nominalistic subtheory. Hence, it is
open to us to hold that the existence claims found in mathematics are false, while at the
same time being able to explain why they might be useful to simplify calculations without
adding anything to the “objective” sublanguagé. Mathematics can be used where it
simplifies computations, in the sure knowledge that there is a purely nominalist subtheory
which reflects all and only the nominalist truth. Isn’t this ‘false but useful’?

Field is aware of this result and rejects it. To appreciate his reply, it will be useful to
restate ‘his claim that mathematics is conservative in the ‘above terms. To say that a
mathematical theory S is conservative, is to say that for any' nominalist theory N, if any A
in the language of N is a consequence of N+S then A is a consequence of N atone. That
is, S is conservative iff for any nominalist theory N, N+3S is a conservative extension of
N. So Field’s claim that the mathematics of physical theory is generally conservative,
amounts to the claim: '

Proof: Let Thi be any theory (i.e. closed under consequences) in language L1, where LI contains
both mathematical and physical predicates. L1 has a sublanguage L2, consisting of all sentences
and predicates constructible solely from physical predicates and relations, and let Th2 be the
intersection of Th1 and L2. Clearly, Thl is a conservative extension of Th2, since any A provable
in Th! in the language of L2 is therefore in Th2. It remains only to show that Th2 is a theory, i.e.
that Th2 is closed under consequences. Suppose that Al ... An are in Th2 and that Al ... An
tucnstile B where B is in L2. Since Th2 is a subset of Th1, all of Al ... Anarein Thl; so since Th1
is a theory, B is in Thi. But B is in L2, so B is in Th2. That is, Th2 is a theory, and thus a
subtheory of Thi. Note that this strategy is essentially that of Craigean transcriptionism. Indeed,
in light of Craig’s Theorem it is also true that if Thl is axiomatisable so is Th2.
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(4) Any (consistent) mathematical theory when added to any nominalist/physical
theory produces a resulting theory which is a conservative extension of the nominalist
theory.

Thus, mathematics doesn’t generate any more nominalist consequences no matter what
nominalist theory it is added to. This is certainly worth calling a dispensability thesis.
Contrast it with (3) above, which is that any theory of math'cmatics-plus-physics has a
purely physical subtheory of which it is a conservative extension.

Field contrasts these two propositions, arid argues against the usefulness of (3) for the
nominalist program. In Science Without Numbers he describes such nominalist theories as
‘bizarre trickery’, ‘obviously uninteresting since they do nothing whatever toward
explaining the phenomena in question in terms of a small number of principles’, and
contrasting with theories which are ‘reasonably attractive’ (p. 8, see also p. 41, 47). In
Realism, Mathematics and Modality, he says: '

_ the conservativeness of mathematics tells you what happens when you ‘add
mathematics to nominalistic theories: it doesn’t say anything about the availability of
sufficiently interesting nominalistic theories (p. 129)

also:

[(3) above] or any strengthening thereof is an assertion about the existence of a
sufficiently wide variety of nominalistic theories, and this is something that the
assertion that mathematical theories are conservative does not claim. (p. 129).

He also refers to such nominalist subtheories as ‘unnatural’ (p. 133). Geoffrey Hellman
(1989) similarly argues that the existence of the nominalist subtheory is ‘not sufficient for
“good systematisation”, not to mention other aspects of “attractiveness”’ (p. 135).

I must say that I fail to see the force of thesé arguments. It is true that there is a
difference between (3) and (4). But Field’s arguments do not, I suggest, give a clear reason
for Following his particular route through conservativeness to dispensability. One obvious
point in reply is that while one does not have an a priori guarantee that the nominalist
subtheory guaranteed by (3) is theoretically attractive, such attractiveness is not ruled out.
That would take further case-by-case arguments which Field does not supply.

Second, let us note that the nominalist subtheory guaranteed by (3) has a feature of
maximality, in that it is a// the nominalist consequences of the platonist theory (see proof
in footnote 1). But now, any time Field succeeds with his own strategy of finding an
attractive nominalist subtheory of which platonist mathematical physics is a conservative
extension, then, if Field's attractive subtheory happens to be identical with the maximal
nominalist subtheory, we have precisely a counterexample to Field's unattractiveness
claim. And if Field’s whole program were to succeed on this basis, then what he would
have shown is that the maximal nominalist subtheories are attractive throughout the
whole range of his chosen platonist theories. '

Still, it must be conceded that it is not guaranteed by (3) that the maximal nominalist
subtheory is theoretically attractive. So one should leave open the possibility that the
nominalist subtheory so obtained is theoretically unattractive. But one should also ask
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whether that matters. If Field’s nominalist subtheory is attractive, then it is distinct from‘
the maximal subtheory, and thus a proper subtheory of that also. But now we would be in
the situation where Field’s version of nominalism fails to decide where the maximal
subtheory decides. At Jeast that makes the maximal subtheory more festable. Even il the
test should fail in empirical prediction, there is every reason to include the resuit in the
maximal physical subtheory of a revised platonist mathematical physics, as is current
" practice. Rémenﬂber, too, that the maximal subtheory is all the nominalist consequences
of platonist mathematical physics, which can thus be expected to be well-confirmed.
Hence, if the two programs diverge, it seems like Field’s version is at a disadvantage in
that it under-describes reality.

One final argument is this. If the properties and relations described in the preferred
nominalist sublangnage amount to the sum total of the causally relevant relations, if these
are the sum total of things which make a difference to laws and especially observations,
then does it matter overmuch if our pure theory of them is complex and unattractive? One
wouldn’t care overmuch if the larger platonist theory is simpler, needless to say: Field and
I agree that this is no reasor to opt for platonism. In choosing between nominalist
subtheories, an overriding consideration is surely what we take to be true; and if our best
confirmed platonist theory says that certain nominalist statements are true, then so much
the worse for scruples about unattractiveness. What would have been shown at most is
that reality is unattractive,2 whatever that might be. But there is no metaphysical minus in
that. Principles of theoretical attractiveness such as simplicity are not guaranteed by the
simplicity of the universe. They are desirable on epistemic grounds, because it is sensible
to begin with the simplest theories and only complicate them if one is forced to do so. Of
course, it is conceded on all sides that there are epistemically attractive presentations of
nominalist theories, namely their platonist supertheories.

Thus the alternative strategy of appeal to the maximal nominalist subtheory takes note
of the point that for the program of showing that mathematics is dispensable and false
but useful, there is no evident reason why one should do any more than separate
mathematics from -true physical theory: Why would it matter if mathematics were
indispensable from false physical theories? From some it might be, from some it might
not. Field’s necessitarianism has led him to overlook the contingency of his thesis, I think.
But then, if true physical theory is all that one must eliminate mathematics conservatively
from, why not claim that true physical theory is simply the maximal physical subtheory of
our best platonist mathematical physics? It is what.useful mathematics has revealed to us,
though it is not itself mathematics: It has a remarkably simple, attractive and general
presentation of course, namely modern mathematical physics, wherein answers to
properly presented nominalist questions can be deduced. And finally, there is the
advantage that such a nominalist argument can be made out generally, exploiting (3)

(X}

This is what distinguishes the present issue of mathematical realism versus mathematical
instrumentalism, from the issue of realism about the external world versus phenomenalism und
Craigean transcriptionism. In the latter issue, the additional entities, space, time, matter and its
properties, are causally and explanatory relevant: vary their distributions and observations vary in
systcniutic ways. So one is more loath to lower the boom on them compared with acausal, ,
acounterfactual, eternal numbers. Physical objects do amount to an expansion of ontology over
phenomena, but more than make up for it in lawlike generality.
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C
above, instead of proceeding on Field's program to extend his result to theories stronger
than Newtonian gravitation theory (see also below, section VII).

This strategy appears so simple that there must be a catch. And there is, of sorts. The
catch arises from the fact that this trick obviously can be pulled for any sublanguage, and
so what licenses one to claim that a certain sublanguage is the preferred nominalist one?
Well, clearly more has to be done, namely that an argument is owed about why the
preferred class of predicates and relations exhausts thie class of caﬁsally relevant
predicates and relations. But this is something which Field cannot escape either. That is, I
am saying that there can be arguments about whether Field's own chosen set of
nominalistically-preferable relations express all the physical aspects of reality, and that
indeed for any dispensability strategy to succeed such arguments must be supplied.

IV. Three Problems and Replies

In (1996), James Hawthorne points out a problem directed at Craigean transcriptionism
by Van Fraassen, which Hawthorne applies in three ways to the case before us of
mathematical instrumentalism. In this section we consider these problems, and see that
replies are available.

First, we could have a theory in mathematical physics which, in quantifying over
mathematical entities, implies that there are entities which fail to be at any spacetime
point p. The latter is a statement which can be made in the purely physical vocabulary:
(Ex)(for all points p)(- x is at p). One would therefore expect it to be in the maximal
physical subtheory. However, a physicalist, who believes that physical descriptions
exhaust reality, ought to rejcct the statement, since it asserts that there are entities not in
spacetime.

As far as this goes it isn’t very worrying. After all, mathematicians do not bother to
insert into mathematical theories assertions to the effect that mathematical entities are not
located. This latter claim is something that metaphysicians typically assert for
completeness when observing that mathematical theories simply lack attributions of
location to mathematical entities. So in real life mathematical theories it isn’t obvious that
the physicalist has any such problematic consequences to worry about.

Even so, it remains a potential problem that there might be such unintended and
unacceptable consequences stateable in the physicalist sub-language. Hawthorne points
out a second; similar problem which needs somewhat different treatment. The pure
physical theory may contain the universal closures of its laws, for example the assertion
(fFor_all x)(Ep)(x is at p), or the assertion ‘Everything attracts everything else with a
gravitational force’. But then, what sort of mathematical theory would be a conservative
extension of this? It would attribute position and gravitational attraction to numbers and
sets.

The remedy suggested by Hawthorne, following a strategy in Science Without
Numbers, is plausible. To begin with, one must have a sense of which of one’s predxcates
count as physical and which mathematical. It is to be expected that anyone taking an
instumentalist position would have a position on which concepts are to count as
objectionable, for instance. Then one needs to require that one’s theory contains
information pertaining to this distinction. The easiest way to achieve this is to suppose
that, or to make it that, all quantifiers are relativised. That is, let there be predicates “Px”
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for ‘x is physical’ and ‘Mx’ for ‘x is mathematical'. Then let no universal quantifier occur
except in the contexts '(x)(Px—..." and ‘(x)(Mx—...” and ‘(x)((Px¥Mx)—...’; and let no
existential quantifier occur except in the contexts ‘(Ex)(Px&..." and ‘(Ex)(Mx&..." and
‘(Ex)((PxVMx)&...". Then, the maximal physical subtheory will not contain the assertion
(Ex)(Mx&(p)(- x is at p)), for that does not appear.in the supertheory with relativised
quantifiers. One can then if one wishes add to the physicalist subset the postulate of
physicalism, (x)Px. This will produce a theory with unrelativised quantifiers once more,
sufficient to gladden the heart of the sternest physicalist. There is a minor technical hitch
here, in that the strategy of relativising all quantifiers has the consequence that neither the
mixed superset of sentences nor its physicalist cut-down are theories, i.e. deductively
closed sets of sentences, since all unrelativised consequences will fail to appear. But, as
Hawthorne shows, this is avoidable by recourse to the device of 2 many-sorted language.
The details are omitted here.

A third problem raised by Hawthorne concerns the strategy of cdnjoining or adding
two theories to one another, which naturally enough scientific unity requires. But if the
two mathematical superstructures are different, then one must allow the possibility. that
they might produce unintended physical consequences if conjoined. A worst case might
be where incompatible mathematical theories were used, for then conjoining the theories
would produce inconsistency. ‘

Hawthorne shows that there are formal precautions one can take to avoid this. An
intuitive strategy one can adopt is as follows. Work out the two physicalist subtheories
first, then conjoin them and close under consequences (since mere set-theoretic union of
theories is not automatically a theory). There is surely no problem for the mathematical
opportunist in this. No advantages of ease of calculation have been lost, though some
physical theorems might have to be proved without detour through mathematics.
Furthermore, it is wise advice to proceed like this. If one doesn’t believe in one’s
mathematical superstructure, then one should beware of extending it beyond the context
in which it has proved useful, .

I conclude with Hawthorne, then, that these problems can be met by the mathematical
instrumentalist.

Part 2: Numbers as Causal
V. Numbers and Quantities as.Causally Virtuous

The bulk of Field’s work on numbers took place before a later Antipodean development
on the metaphysics of numbers, namely numbers as relations between quantity-
universals, an idea which can be attributed to Newton (see Newton (1728), also Forrest
and Armstrong (1987), Bigelow (1988), Bigelow and Pargetter (1988), Mortensen (1987),
Cheyne and Pigden (1996).) While the position is doubtless familiar to many Australasian
philosophers, it is as well to re-present it for others. The basic idea is that quantities are
the primary reality as revealed in our most successful accounts of physical laws. Consider
Newton’s law of gravitation: any two bodies of mass m,, m, at distance r attract one
another with a force F = G.n1,.1nz/r2. Each of these variables has a dimension: mass is in
some system of units such as gm, r in distance-units such as cm, F in force units such as
dynes, and G is a dimensioned constant, in these units equal to 6.67 times 107 dyne cm?
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gm2. Quantities of any kind are multiplied and divided, and quantities of the same
quantity-kind are added and subtracted. The unit dynes is specified by saying that one
dyne is identical with the force necessary to accelerate one gram by one centimetre per
second per second, or | dyne = 1 gm cm sec'z_.

Quantities ‘contain’ a number, so a quantity might be thought to be a kind of
composite, of a number and a dimension. Similarly, multiplication and division might
seem to be achieved by two operations, multiply and divide the numbers inside the
quantities and then multiply and divide the units to get the dimension of the result. This
might tempt us into Quine’s view, which also seems to be Field’s, namely that when one
says that a's mass is 5 gm, this is to be construed as a relation (actually a function)
between a’s mass-in-gram and a number: a's mass-in-gram = 5. However, there are a
number of difficulties for the Quinean view. One is that implausible causal consequences
ensue. Consider a particle having mass 5 gm and charge 5 coulomb. Then on the
offending view, a’s mass-in-gram = 5 and a's charge-in-coulomb = 5. It follows that «'s
mass-in-grams is identical with «'s charge-in-coulomb. But a might be involved in an
interaction in which only one of thes¢ aspects is causally operative, as when in a nonzero
gravitational field but no electromagnetic field. It is not easy to see how to reconcile these
last two propositions. A second difficulty is that the offending view has no easy
explanation of the fact that a’s mass-in-gram = 2,000 iff a’s mass-in-kilogram = 2. The
natural view is that this holds because ‘2,000 gm’ and ‘2 kg’ are names for the very same
thing, a determinate quantity within the quantity kind. A thicd difficulty is that the
offending view threatens to produce foo much arithmetic. If a's mass-h{-gram =5=as
charge-in-coulomb, then. 10 = 5+5 = a's mass-in-gram + a’s charge-in-coulomb. But
the latter sum really would be a mathematical artifact, something which appears to have
no point in existing theory since addition and subtraction operate only within the one
quantity—kind.

On the other hand, the natural view of basic physical theory is that when we say that
«’s mass is 5 gm, we are asserting an identity between quantities, ¢’s mass and the mass S
‘gm, i.e. a’s mass = 5 gm. The existential consequences of this are that a’s mass and § gm
exist.-On this view, the arithmetical operations are in the first place operations on
quantities, and at most derivatively operations on numbers. Quantities are universal-like
in that they satisfy two intuitions often expressed in the theory of universals. First, some
predications of the same predicate to different objects hold in virtue of the fact that one
and the same thing, a universal, is in common to those objects. Sécond, some predications
of different predicates of the same object hold in virtue of different but universal-like
aspects of that object. Perhaps there remain dissimilarities between quantities and
universals classically conceived; but these two intuitions, particularly the former, are
enough to justify calling them universal-like. .

But now the emergence of something like dimensionless numbers is vi rtually inevitable,
once the operation of division is permitted between quantities: 10gm/4gm = 25cm/10cm
= 2.5 . A dimensionless ratio can thus be thought of as a relation of comparison or
proportion between quantities, a comparison moreover which is common between those
quantity-lkinds which are continuously distributed. This seems to have been Newton’s
view. (I say that dimensionless ratios are ‘something like’ numbers because there remain
potential differences, particularly in respect of whether analogues of al/l the classically-
envisaged numbers exist, or whether for example the dimensionless ratios are ‘gappy’,
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suchasa gap at the number zero, or a largest finite number; but that is another story, and
dimensionless ratios are certainly number-like.) There are further important issues here,
for example the specific nature of the relations or functions between quantities or
magnitudes such as addressed by Mundy (1988), which are not addressed here though the
project seems to be compatible with the present one.

VI. Epistemological Considerations

We can now take epistemological stock. Cheyne and Pigden (1996) develop the
epistemological argument against the platonist in the form of a dilemma. Either numbers
have causal powers or they do not: if they do then number platonism is false; and if they
do not then then the number platonist has to show how numbers can be explanatorily
and predictively useful and indispensable, since their presence or absence would seem to
make no difference to scientific observations. I am sympathetic to the conclusion of their
argument, but one can imagine a reply which leads to something of an impasse.
According to our most successful basic physical theories, quantities are thoroughly part
of the causal furniture of the world. Our best laws relate quantities, and thus imply their
existence. Our best laws also imply that the quantities of things are causal, in the sense
that if the quantities of things were differently distributed, the observable future of the
universe can be predicted to be different. Furthermore, our best laws, which certainly
employ arithmetical operations between quantities, imply the existence of dimensionless
ratios or numbers, platonist or not, as derivative from the existence of quantities of which
they are relations of comparison. Thus at least the epistemological problem is solved; but
even more strongly it might be claimed that if numbers are delivered by best physical
theory, then they simply are causal, or as causal as you will get. '

The trouble is that this reply is really just Quine and Putnam’s argument, and plainly it
can be adapted by anyone seeking a way out of the epistemic bind. So it needs
emphasising that the epistemic objection to platonist numbers links their problematic
epistemic status to their acausality, or at the very least to the idea that platonist numbers
make no difference to which contingent laws and predictions hold in our universe. So the
number causalist has to show that numbers so conceived do play an explanatory role, and
do make a difference to our laws and observations. There are several points on which this
can be defended, I suggest. .

First, there is the role of the count-nouns ‘one’, ‘two’ etc. It is well known that
counting does not by itself imply the existence of numbers as referents of the.count nouns.
A statement such as ‘There are just two cells in the dish’ is reducible to *“There are an x
and a y which are nonidentical cells in the dish, and any cell in the dish is identical with
either x or y.” This is a statement about cells, the dish, and identities and disidentities
between them, nothing more. Thus, if all that science needed numbers for was to count,
then there would be no reason to believe in their existence. But then, if the world were so
structured that there were only discrete countable things in existence, say for example if
space were quantized, which does seem conceivable, and if further there were a maximum
number of things in existence, say 10" which has been suggested for the number of
electrons in the universe, then it would seem to be possible in principle to completely
describe the .world by a finite list of the things in it and their properties. In such a
universe, there would be no reason to believe that numbers exist. Further, the jury is still
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out on whether our own universe is like this. If successful physical theory could decide
this issue, which most seem to think is a possibility, then the non-existence of numbers
must be regarded as having empirical consequences. Of course, there are true whole
number statements, but these are made true by complex facts involving conjunctions,
identities and non-identities, not number-universals. )

Second, considering universes in which there are real number quantity ratios, it should
be asked what effects changes in these ratios would -have. One thing to note is that one
and the same universal can be referred to in different ways, by ‘a’s mass’ and by ‘S gim’.
The former mode of reference. identifies longtitudinally as it were, in terms of the
continuing identity of one of the bearers; while the latter identifies latitudinally, or better
across all spacetime. Now there is no question that ratio comparisons between a’s mass
and.other universals certainly. make a difference to which abservations we can make. If a’s
mass were twice what it in fact is, @ would behave differently. This is even true if a’s
quantity remains in constant ratio with a universal standard: the upshot of the ‘universal
nocturnal doubling’ debate seems to have been that such a thing is counsistent and would
Lave detectable effects. This effect is even more marked if the background space is non-
Euclidean with positive curvature, as Nerlich (1991), points out: in this case universal
doubling would change the shapes of things. Hence, in this sense number ratios between
universals are causally efficacious: the ratios between the quantity universals possessed by
objects at a time, and other universals from the same quantity kind, make a difference to
how the body will behave at that time.

? Perhaps this is the most we can expect for the causal efficacy of number relations, since causal
efficucy presumably requires properties to be subject to temporal change. Still, one can also ask
whether there is any (other) sense in which relations between universals identified fatitudinally can
be regarded as making a difference to how bodies behave. After all, it might be argued that the
identity of the universal § gm is constituted by the system of ratio relations to other quantities
from the same quantity-kind. Indeed, precise ratio comparisons are the mark of genuine
universals or genuine samenesses between things. Hence if we try to imagine such relations
changing or being different, we are only imagining a change in the distribution of quantities, not &
change in the ratio comparison relations between the quantities themselves. Now even here there
is a qualification, namely that the pattern of numerical relutions does not constitute the whole of
the identity of the quantity, since this would omit the quantity-kind. Further, there is the
speculation that ratio relations between quintities such as distances might change in systematic
global nonlinear ways. For example, the metric of space might change from ds?=dx* +dy*+dz*
to ds®=(dx*+dy*+ d2*)[z*. This changes the geometry of space from Euclideun to non-Euclidean
(see Grunbaum (1964) ch. 1), which would readily be detectable by its effects on the behaviour of
free particles if laws of gravitation remained the same. What would also change would be the
global pattern of congruences between intervals, including in purticular congruences between the
lengths of bodies. Again, one might suppose a systematic non-linear change in all masses, e.g.
from x gm to x gm or to log(x) gm, which would have differential effects on accelerations if forces
such as gravity remained dependent on masses in the same way 4s now. Now these changes might
be regarded as changes in the distribution of quantities, but they might also be regarded as
chariges in the ratios between existing latitudinally identified quantities. Further, this might be the
simplest description of the change if it were global, since the alternative would seem to be locul
changes everywhere in the masses of individual bodies. Variation in ratio relations between
quantities, as opposed to variation in individual quantities, thus has effects which are global in a
way that they are not for vaciations in individually located quantities. A chunge in a body’s mass
is local, but a change in relative size of whole quantities affects all bearers of those quantities. It
would seem then that if we had reason to believe that such global changes were taking place, we
should suspect this possibility. Other examples of relations between universals are laws of nature,

_as Armstrong persuasively argued, which are also glabal in reach.
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It is concluded, then, that there is every reason to think that variation in the possession
and distribution of real number relations would have detectable effects on bodies, and
thus be causal in that sense.?

VII. Can Field’s Result be Strengthened?

We return to the question of the success or otherwise of the dispensability program. It has
been argued that the motivation for using such a strategy has been weakened if numbers
do not have the unattractive features of acausality, unreliability, etc. But a number realist
of this kind must still come to terms with the consequence of Part 1, that there are always
resources available to ensure the conservativeness of platonist mathematics over
nominalist theories. Thus Ockham’s Razor threatens the numbers unless their causal
and epistemic virtues are secured. We have also noted that Field’s version of the program
was not carried beyond Newtonian gravitation theory. So the question arises whether his
result can be extended to GR gravitation theory. After all, it is surely necessary for
nominalism that platonist numbers be dispensable from true physical theory. It is argued
in the remaining two sections that there are difficulties for making the extension, in '
Field’s way or indeed any other.

Recall that it was argued that no matter whose strategy one adopts, it must be shown
that the preferred nominalist sublangﬁage exhausts the nominalistically or physicalisti-
cally acceptable features of the world. GR theory as it stands is involved in numbers at
least by virtue of postulating a metrical structure on spacetime, determined by the field
equation of GR. A metrical structure amounts to a definition of distance along curves, so
numbers are involved as soon as they emerge from distance comparisons. Thus one might
gét a clue to what could count as an acceptable number-free sublanguage for GR by
asking what it would take to dispense altogether with a metrical structure for spacetime.

This puts us on familiar territory, because it is notable that Adolf Grunbaum was
influential in denying the existence of an intrinsic metric structure for continuous spaces
(see his (1964)). Grunbaum’s arguments for his Thesis of Metrical Amorphousness need
not concern us here, but it should be noted that Grunbaum was not in the business of -

4 Jody Azzouni (1997) has recently argued for a shirp epistemic distinction between subatomic

particles and numbers in terms of a distinction between thick and thin epistemic access. Thick has
four significant aspects: (1) robustness—observation operates largely independently of what we
believe, seeing is robust over a wide range of circumstances; (2) refinability—we have ways of
adjusting our observational means of access to the thing being seen, which aims at increasing
robustness; (3) trackability—sensory awareness enables us to track properties of a thing, to form
an episodic history of its behaviour; (4) epistemic relevance—we can connect certain properties of
things seen with our capacity to know about these properties. Sensory observation is evidently
thick. Thin epistemic access, on the other hand, is what a posit enjoys merely by being the value of
a bound variable in a theory with the Quinean virtues of simplicity, familiarity, scope, fecundity
and success under testing. Thick implies thin, but evidently not vice versa, the numbers being an
exception: Electrons and quarks fall into the thick side, by virtue of our having instrumental access
to them, which is to say access by means of the construction of instruments to whose behaviour
we have observational access. In this sense, our knowledge of them is robust, refinable etc. On the
other hand, it is almost definitional that we lack thick access to mathematical items, which should
be regarded as ‘effects of language’ (p. 483). Mathematics, as Galileo suid, is the ‘language of
physics’. Azzouni's argument definitely advances the antiplatonist cause, 1 would say, but not
inevitably the antirealist cause. Our access to which quantities a thing possesses, its mass, size,
velocity, charge etc., is plainly thick. The thickness is obviously explained by the causal role of
quantities, how they appear in basic laws. To the extent that we tuke quantities to lead to
numbers, as argued above, then we have a strengthened epistemic role for the latter as well.
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denying numbers, nor of eliminating metrical terminology from spacetime theory. Rather,
metrical language may be used but need be not taken seriously because it contains
conventions which can be varied without violating any Facts of the matter. There are
many equally correct metric tensor fields which yield different collections of congruences
between bodies. Applying this to the problem at hand, it could be said that while number-
ratios still elnex:ge as relations between quantities (4 sec/5 sec = 0.8), nonetheless metrical
language, and numbers in particular, do not reflect any objective relations between
bodies. This is not quite science without numbers; but it is metric ge'ometry where the
quantification over quantities and numbers is ‘semantically idle’. The universe lacks the
structure it would need to have for distances and their associated numbers to have any
explanatory force.

But if so, why mislead the ybuth with the established formalism of metric tensor fields,
which look as if they are intended to do descriptive and explanatory work in connection
with spatiotemporal relations between observable objects and events? At least, show that
metric tensor fields are dispensable from physics, preferably with a conservativeness
result. Now in a sense this problem was addressed earlier this century by the French
mathematician Elie Cartan, who showed how to describe the affine structure of spacetime
without resort to a metric tensor field. The affine structure is the structure of geodesics
and curvatures, and so it is affine structure that is responsible for inertial behaviour in a
gravitationa] field. Thus, as far as GR gravitation theory is concerned, it is open to claim
that spacetime is metrically amorphous, at least up to an affine transformation. This
would support the thesis-that numbers arising from metric geometry do not reflect facts
about the gravitational behaviour of bodies, hence are explanatorily idle and apt for
dispensibility. Cartan’s affine sublanguage would thus supply the preferred nominalist
subtheory for Field’s conservativeness result. :

I don’t say that Field is a metric conventionalist. It is only being claimed that the thesis
that spacetime lacks a metric structure serves as an example of the required justification
for the choice of a metric-free sublanguage, which would be adequate for gravitation
theory and yet nominalist as far as distance quantities are concerned. Both distances and
their pure number ratios would be explanatorily idle, and thus apt for dispensability by
whatever version of conservativeness is to one's taste. Thus it is perhaps significant that
Field chose to eliminate numbers from Newtonian gravitation theory, since Newtonian
spacetime has an affine structure but no invariant spacetime interval. Scratch an American
and you find a pragmatist, and a metric conventionalist too. (Just kidding, folks.)

Unfortunately, this interesting line of argument does not succeed in the end. We could
rehearse existing persuasive criticisms of Grunbaum’s arguments for his thesis of metrical
amorphousness (e.g. Nerlich (1976)). It can also be pointed out. that affine
transformations remain ratio-preserving for distances along the same geodesic, so that
ratios still emerge at the level of affine structure. But there are strong positive arguments
from spacetime theory as well. Here the authority of Misner, Thorne and Wheeler's
Gravitation (1973) is appealed to. In discussing Cartan, they offer a number of reasons
why physics needs a full metrical structure for spacetime, rather than the weaker affine
structure (see pp. 304-5). Their principal reason is that a full metric tensor field is
necessary to guarantee that spacetime is locally SR as ours is, rather than loc;dlly
Euclidean. In short, there is a difference between a universe in which SR holds and a
universe which is Newtonian; but both are flat (zero curvature), and it is the signature of
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the metric tensor field which distinguishes them. This is a constraint beyond gravitation
theory, since it concerns the geometrical structure necessary to describe the behaviour of
light, and the structure of time-like (i.e. causal) curves.

It is corn:ztuded, then, that the case for an elimination of numbers in GR gravitation
theory, via an elimination of metrical structure in favour of affine structure, is doubtful.

VIII. Differential Structure

However, there is an even deeper level of structure in spacetime theory where quantities
and numbers intrude, namely its differential structure. Indeed, this level of analysis is
quite general in that-much physics, not jusf gravitation theory, can be written in these
terms. So it is as well to consider it.

. One supposes that there is a manifold, such as a continuous 4-dimensional collection
of spacetime points. This is structured so that it is locally isomorphic to (but not identical
with) the subspaces of the space of quadruples of real numbers R*. One further su'pposes
that there is a scalar field defined on all of the manifold. A scalar field consists of a
quantity from the same quantity-kind (e.g. temperature) at every point, with the further
stipulation that close poinfs have close temperatures. The latter stipulation is sufficient to
define the differential structure, namely directional derivatives, tangent vectors and
tangent plane of the scalar field at the point. This amount of structure is weaker than
affine structure, which requires a further concept of parallelism between vectors, or
‘parallel transport’, via the stipulation of an affine connection on the space. (The concept
of an affine connection has some interesting implications for the theory of universals
which we do not take up here; see Forrest (1996).)

We can already ‘see, however, that numerical comparisons between the scalar
quantities at different points are again available by virtue of the ratios, since the
numerical operations are certainly permitted on scalars when defining differential
structure. So it looks very much as if (nonplatonist) numbers are delivered right from the
‘outset in basic physical theory.

Looks can be deceptive, of course. Here, we can try out one last antirealist strategy.
The rational numbers hold a prospect for motivating the elimination of both the scalar
quantities and their associated real number ratios. It is kihown that fixing all the rational
ratios in a continuously ordered collection of quantities from the same quantity-kind
(quantity-space) suffices to fix all the real number ratios too. Focussing for simplicity on
the case of a single variable, all equational laws of nature can be written in the form
f(x)=0 where x is a variable ranging over a quantity kind. If f(x) is a continuous function
then it has the property that if f(x)=0 for all rational x then f(x)=0 for all real x also.
Hence all laws and relationships holding in the rational lariguage are preserved in the real
language, and there are no new laws in language of the cut-down rational theory that are
not already there in the cut-down in the first place. Hence one has coriservativeness of a
kind, in that one could compute with real-quantity-valued continuous functions on a
quantity space while aiming for rational-valued results, and be assured that all rational-
ratio results so obtained would be obtainable from rational-valued premisses alone.

But now the point of focussing on the rational sub-language is that statements about
rational numbers can be reductively analysed away without reference to numbers. The
idea is first to translate out the ratio into the obvious comparison between counting facts
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. involving quantities or relations of parts, and then note that counting facts have the usual
translation which does not commit one to numbers. For example, the sentence ‘x's mass/
y's mass = 2/3’ can be analysed as,

There are equimassive bodies r, s, t, u, v such that r and s are non-overlapping, t, u
and v are non-overlapping, the mereological sum of r and s has the same mass as x,
and the mereological sum of t, u and v has the same mass as y.

Field appears to want to further eliminate quantities in favour of relations between
objects; but that is not necessary. to make the point that numbers disappear in this story,
so that one might again claim conservativeness of the real-number-theoretic supertheory.

OFf course, there remains what to do about the further (atomic) statements in the
nominalist subtheory of the form ‘x’s mass = 0.6gm’. These would have to be declared
literally false, though someone who .believes in relations as universals doesn’t seem to
have a strong a priori objection to someone who believes in monadic quantities as
universals. At any rate, this is a familiar dispute, and one where the naturalness of the
existing formulation of physics taken at face value weighs in favour of quantities and
their ratios. But there is another cost also, namely that all propositions asserting the
existence of real-number-valued quantities are definitely false. Indeed, one can
understand this strategy as making the empirical claim that the world has less structure
than might be thought if one took the existing formalism at face value. Perhaps this
empirical claim is right, but it would need independent defence. Without that, it is an
arbitrary and unwarranted claim. And well-entrenched theory is certainly against it. Thus
for example it would be false that the length of the hypotenuse of a right angled triangle
of side lem is /2cm. It would be false that a circle constructed on a diameter of lcm has
a circumference. .

It is concluded, then, that there does not seem to be available a good way to avoid.the
existence of numbers as ratio-comparisons between quantities, given the role of the latter

in fundamental laws, especially spacetime theory.’
5 It should not be thought, of course, that all of mathematics hus thus been rendered applicable.
For example, set theory remains unjustified, and for good reason. One point of-agreement with
Field, is on the platonist nature of sets, and their dispensability. Field's chosen physicalist
sublanguage is mereology, the theory of the part-whole relation. This is clearly the right way to

. go, undoubtedly some existing things are parts of some other existing things. The difference
between sets and wholes boils down two extra principles in set.theory: (i) singieton formation, i.c.
given any thing, a, there exists its singleton set {¢} which is different from a, and (ii) the existence
of the null set {}. As many have noted, neither of these principles is attractive from a physicalist
perspective: the uddition of entities {a}, {{«}}, would seem to add nothing to the causal powers of
the universe; while the special case of the null set, abstract brackets around nothing, is particularly
otiose.. Set theory has the appearance of a failed and over-baroque attempt at a theory of
collections, which mereology does in a way which is much more physicalistically acceptable.
Needless to say, this has nothing to say about the usefulness of set theory; nor about problems
about the possible second-order nature of comprehension axioms for mereology and set theory. [t
must be acknowledged at this point that Penelope Maddy (1990) has ingeniously defencled a
physicalist account of sets. If sets can be made out causally, then I am all for them; but Maddy
also seems to suggest that both (i) and (ii) above are false, which seems to me to be mereology. At
any rate, it is platonist sets which I deny. Of course, number theory can be constructed within set

. theory. But that is just one theory of number-like structures. Who says that numbers are that way,
or unother? There was no mention of sets in the above story ubout ratios. If numbers are causal
but sets are not, then one should accept the former but not the latter. Conversely, also, there can
be emergentist consteuctions of sets, such as David Lewis's megethology which constructs a set-
thearetic-like-structure within mereology. However, the present project, like Field's, concerns the
status of mathematical items as busic ontological categories.
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' IX. Conclusion

We can now see a role for numbers. To begin with, there is a fairly obvious
computational role for numbers. The conservativeness of mathematics derives, in the end,
from crossing off the dimension in the calculation because what matters is the calculation.
This shouldn’t blind us to the fact that the primary reality is the dimensioned quantity: if
there were no quantities there would be nothing for numbers to compare. However it also -
true that numbers as common ratios across quantity-kinds do not themselves have a
dimension. Thus the same computation works for each quantity-kind which is structured
by the same ratio comparisons. ' .

It further follows that what numbers do, that multiple congruence relations do not do,
is to provide a cross-dimensional comparison of relative size. 15cm/10cm = 30gm/20gm
= Gsecf/dsec = 1.5. This is a special case of the fact that stable number ratio comparisons
provide a platform for objective congruences between derivative quantities, such as
centimetres per second. This is importantly part of our sense of the stability of nature. If
we operationally define a unit in the dimension, say a metre as the same length as the
standard metre bar, then surely one wants the ratio between the standard and a sample to
be an objective fact of nature, something which might be unchanging over a period of
timie for example. And if the values of two independent variables from different quantity-
kinds bear no comparative relationships to their respective units, what would one make
of a law of linear form, for example y=k.x?. How could the law y/x=k, where k is a
constant quantity, explain or even describe any constancies in nature, if the relative sizes
of y and x bear no objective relation to each other?

To sum up, we have been consxdermg the prospects for the success of Field's program.
It was' suggested in Part 1 that there is an éasier way than Field’s to promote
conservativeness, but that in any case any conservativeness claim has to be supported by
an argument to the effect that the preferred nominalist sublanguage exhausts physical -
reality. In Part 2, some strategies along these lines were considered, such as metric
conventionalism and a general rational-quantity ontology, and it was argued that these
are unsatisfactory. As a consequence, there exists a reasonable physicalist/causalist
account of number-like entities as relations between independently well-motivated
quantnty-umvers:tls and we saw their distinctive role in providing cross- dlll‘lellSlOl]d] size
compdnsons
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Change

Change is so pervasive in our lives that it almost defeats description and analysis. One can think of it
in a very general way as alteration. But alteration in a thing raises subtle problems. One of the most
perplexing is the problem of the consistency of change: how can one thing have incompatible
properties and yet remain the same thing? Some have held that change is a consistent process, and
rendered so by the existence of time. Others have held that the only way to make sense of change is as
an inconsistency. This entry surveys the history of this problem and cognate issues, and concludes that
the case for change as inconsistency cannot be dismissed so easily.
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1. Introduction

The most general conception of change is simply difference or nonidentity. Thus we speak of the
change of temperature from place-to-place along a body, or the change in atmospheric pressures from
place-to-place as recorded by isobars, or the change of height of the surface of the earth as recorded by
a contour map. Contour lines record sameness in quantities (such as 100 metres) from the same
quantity-kind (such as height), and the differences recorded by different contour lines are
quantity-differences (100 metres as opposed to 200 metres). The philosophical question here is how to
construe such statements of identity and nonidentity, and it seems that the problem of universals is the
main issue.

A narrower usage of &ldquo;change&rdquo; is exemplified by change in the properties of a body over
time, that is temporal change. This essay will focus on temporal change. We begin by separating the
concept of change from several cognate concepts, specifically cause, time and motion. Then we briefly
survey attempts by such thinkers as Parmenides and McTaggart to deny change. There follows an
account of the problem of the instant of change, where it is concluded that the problem is too general
to admit a single solution, but requires specification of further metaphysical principles envisaged as
constraints on a type of solution. The final three sections, the bulk of the essay, consider the question
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of the consistency or inconsistency of change, which in one way or another looms over all our
discussions. It emerges that the case for change as an inconsistent process is stronger than might be
expected.

2. Change, Cause, Time, Motion

Our interest in this essay will be on the special case of temporal change. So construed, the notion of
change is obviously bound up with notions of cause, time and motion. Now a distinction between
change and cause can certainly be drawn. It is clear that uncaused change is conceptually possible, and
arguably actual in such things as radioactive decay. Conversely, the operation of a sustaining cause
results in no change in a thing, if the thing would otherwise be undergoing a change which the
sustaining cause prevents. Hence, the operation of a cause on a thing is neither necessary nor sufficient
for change in that thing. Accordingly, we put the topic of cause in the background when discussing
change.

Time cannot be so backgrounded. The thesis that time could pass without change in anything at all has
proved controversial, and we have adopted the usage that change in a thing implies the passage of
time. Aristotle nonetheless argued that change is distinct from time because change occurs at different
rates, whereas time does not (Physics IV,10). This essay focusses on the topic of change, while not
denying that the topic of time is inseparable from it. Motion, as change in place, will figure
prominently in our discussion.

One well-known idea is that of Cambridge change. This can be arrived at by following the well-tried
analytical technique of re-casting philosophically important discussions and concepts in the
meta-language. Thus a Cambridge change in a thing is a change in the descriptions (truly) borne by the
thing. The phrase &ldquo;Cambridge change&rdquo; seems to be due to Geach (1969, 71-2), who so
named it to mark its employment by great Cambridge philosophers such as Russell and McTaggart. It
is apparent that Cambridge change includes all cases ordinarily thought of as change, such as change of
colour, from &ldquo;red&rdquo; to &ldquo;non-red.&rdquo; But it also includes changes in the
relational predicates of a thing, such as when I change from having &ldquo;non-brother&rdquo; true of
me to having &ldquo;brother&rdquo; true of me, just when my mother gives birth to a second son. It
might seem faintly paradoxical that there need be no (other) changes in me (height, weight, colouring,
memories, character, thoughts) in this circumstance, but it is simply a consequence of the above piece
of metalinguistic ascent. It does point up, though, that in attempting to capture the object-language
concept, one should take note of the distinction between the monadic or internal or intrinsic properties
of a thing, and its relations or external or extrinsic features. Thus the natural view of change is that
real, metaphysical change in a thing would be change in the monadic or internal or intrinsic properties
of the thing. We will return to this point in Section 5.

3. Denying Change

It is on the face of it extremely implausible to deny change, but extreme implausibility has not always
deterred philosophers. The Eleatics (C5th BCE), particularly Parmenides, appear to have been the first
to do so. Parmenides maintained that whatever one speaks about or thinks about must in some sense
exist; if it did not exist then it could not exist, and thus could not even be thought about. From this
Meinongian-sounding thesis, it is deduced that the existing thing cannot have come into existence,
because to say that it could would be to speak of a time when it did not exist. By similar reasoning,
existing things are eternal because they cannot go out of existence. It is now a small step to conclude
that change is an illusion, on the grounds that a change in a thing implies that there was a time when
the thing-as-changed did not exist. However, this argument is not persuasive: the premiss that what
does not exist cannot exist is dubious, as is the premiss that the non-éxistent cannot be thought or
spoken about.
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Parmenides’ disciples Melissus and Zeno developed this theme. Melissus argued that motion implies
empty space to move into, but empty space is a nothing and so cannot exist, so that motion is
impossible since it implies a contradiction. This argument requires the dubious premisses (1) that
empty space is a nothing (which is denied by realists from Newton to Nerlich), and (2) that motion
would have to be change relative to space. Even those who have held that empty space is a nothing
(relationists from Leibniz to Mach and onward) have not generally denied motion, proposing instead
that motion of a thing is change in the spatial relations between that thing and other things.

Zeno’s brilliant paradoxes are generally accounted as attempts to defend Parmenides. We will not look
at these in detail, but his paradox of the arrow is relevant to what follows. This is the argument that an
arrow in flight could not really be moving because at any given instant it would be at a place identical
with itself (and not another place); but something at just one (self-identical) place could not be
described as moving. Discussion of this subtle argument is deferred until discussion in a later section
of Graham Priest’s position, which turns on similar premisses.

McTaggart’s well-known argument (1908) that time is unreal applies equally to the unreality of
(temporal) change it seems. McTaggart distinguished between two ways of attributing temporal
characteristics to events. The A-series of events is given by the descriptions &ldquo;past,&rdquo;
&ldquo;present&rdquo; and &ldquosfuture,&rdquo; while the B-series is strictly in terms of the
relational concepts &ldquo;earlier,&rdquo; &ldquo;simultaneous&rdquo; and &ldquoslater.&rdquo;
Now the B-series is insufficient to define change, because B-series relations apply unchangingly if they
apply at all; whatever is earlier than something is always earlier than it. Moreover, the B-series
presupposes the A-series since if X precedes Y then there must be a time when X is past and Y present.
This step in the argument is not at all absurd: the discovery of spacetime, the relativistic realisation of
the B-series, has impelled many from Minkowski on to describe it as a &ldquo;static&rdquo;
conception of time. A genuinely dynamic conception of change would thus need to have things coming
into and going out of existence with the passage of time, whereas spacetime invites quantification over
it all &ldquo;at once&rdquo; as it were.

Thus according to McTaggart the source of time and change must be found in the A-series. But the
A-series implies a vicious regress. Any event must have all three properties, pastness, presentness and
futurity, but this is a contradiction. The only way out of the contradiction is to say that the event is past,
present and future at different times; but the same question arises about the temporal instants
themselves, which would force us to appeal to a further time series to avoid the contradiction.

Two millennia of philosophical history show in the greater sophistication of McTaggart’s argument
over those of the Greeks. Whatever we make of it, and much has been written about it, it highlights the
baffling nature of the apparent passage of time. On the other hand, any denial of temporal change such
as McTaggart’s is surely required to explain the overwhelming fact of its apparent existence. There are
problems either way. However, one thing can be said about all the above denials of change: they all
argue against change on the ground that it implies a contradiction. But the assumption of the
consistency of change has been denied by a number of influential figures, as we will see.

4. The Instant of Change

Consider a car moving off from rest at exactly noon. What is its state of motion at the instant of
change? If it is in motion, when did it start? And if it is motionless, when could it ever begin? This
problem was explored by Medlin (1963), Hamblin (1969), and others. Put this way, a solution for at
least some special cases is readily available. Locate the time origin¢ = 0 at noon. If the car’s position

function fis given by, say, () = £, then its speed is 2z. If motion is defined as having non-zero speed,
then the car is motionless at z=0. On the other hand, at all ¢ > 0 it is in motion, so there is surely no
puzzle about when it could ever begin: there is no first instant of motion.
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However, there are more troublesome special cases. Suppose that the car’s position function is given
by: f(r)=0 for all ¢ <0, else f¢)=t. Then speed is zero for all 7 <0, and speed is 1 for all ¢ > 0. But what
of 7 = 0? One should avoid &ldquo;arbitrary&rdquo; solutions, which privilege one possibility (such as
that it is in motion) over another (that it is not), but do not give a reason for so privileging. There is of
course at least one simple solution that is non-arbitrary, namely that it is neither in motion nor
motionless, since its speed is indeterminate at ¢ = 0. This solution derives from the fact that according
to classical calculus there is no derivative of such a function at ¢ = 0.

But can we do no better? The present author (1985) proposed to set aside the problem until more is
said about various possible constraints on the solution. Unless we had some reason to think that such
functions really did describe the world, we might well feel that a solution was less than imperative and
less than unique. For example, the world might be described wholly with C-infinity functions (n-th
derivatives exist for all n, e.g., cos, sin, log, exponential functions). The above function is not among
these, since its derivative is discontinuous. But then it isn’t clear what we might say of it if the example
is counterfactual. There might be different things to say depending on what further principles describe
the possible world. Hence we would need to supplement the original statement of the problem with an
argument to the effect that we might expect such functions to describe the real world, or alternatively
supply additional metaphysical principles to be regarded as constraints on the solution.

A related problem is the fracture problem, described by Medlin. Imagine fracturing a material body
such as a piece of wood, regarded as a plenum (full of matter). What is the state of the two new
surfaces after the fracture? Unless matter is to be created or destroyed, we seem to have to say that the
break is half-open, with one new matter-surface being topologically closed and the other being
topologically open. But which surface is which? There seems to be no principle to determine which. In
response, it can be asked how seriously we have to take the postulation of a plenum. If for example
matter is as Boscovich suggested, punctate and surrounded by fields, then there are no plena, and the
problem is no more than hypothetical. Or again, there might be plena but other principles might apply.
For example, mass-density functions might drop smoothly to zero at the boundaries between matter
and empty space, which would mean that all surfaces were open. On the other hand, it might be instead
that as a matter of fact all surfaces are topologically closed. This would need an inconsistent solution
(see below, sections 5-7).

5. Consistent and Inconsistent Change

If a changing thing has different and incompatible properties then a contradiction is threatened. The
obvious move to make when confronted with the fact that things change, is to say with Kant (1781)
that they change in relation to time, which avoids the inconsistency. But then another problem
emerges. In what sense can one thing persist through change? Identity across time and space is the
mark of universals, but we also account particulars such as billiard balls and persons as having
self-identity across time.

Aristotle’s views on the persistence of things are worth noting here. At the risk of gross
oversimplification of what is treated thoroughly elsewhere in this Encyclopedia (see Cohen (2001)), it
can be said that early on he took the the view that what persists over time and through change, the
substrate, can be identified with matter, and that it is the form of matter which is acquired or lost.
(Physics I, 5-7). By the Categories, it is substance which is said to be susceptible of contrary
attributions; and as such substance itself has no opposites. (Categories 4a10). In the Metaphysics Z, a
more complex doctrine of substance, that which is, is worked out. Substance is not the substrate,
matter, since that lacks particularity. Its substance, what it is to be that thing, that without which it
does not exist, is its essence. Aristotle then links essence with his theory of causes, being identified
variously with its final cause and with its formal cause.

Although Aristotle’s views about change -- in particular, his distinction between essence and accident
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-- have sometimes been thought to contain a solution to the problem of persistent identity through
change, it seems to this author that they do not really get a grip on the problem in its most fundamental
form. This is perhaps clearest in the Categories, where the ability of substance to admit incompatible
accidental features is more-or-less definitional.

The problem can be made sharper by reflection upon the law of the indiscernability of identicals. If a
thing-at-t, were identical with a thing-at-f,, then they should share all their properties. What sort of

identity is it, if not that? But if the properties at different times are incompatible, then a contradiction
follows. Because they emphatically took the view that contradictions are never true, the great Buddhist
logicians Dharmakirti (C7th CE) and his commentator Dharmottara (C8-9th CE), who had certainly
read their Aristotle, deduced that identity over time does not exist (see Scherbatsky (1930) vol 2). This
is the Buddhist doctrine of moments, essentially an ontology of instantaneous temporal slices. The
doctrine of the momentariness of existence is felicitously in accord with the core Buddhist doctrine of
the impermanence of all things. The doctrine of moments might seem to be an unnecessarily strong
application of impermanence, certainly unnecessary for soteriological purposes, were it not for the
evident strength of the argument in its favour, not to mention its accord with the spacetime ontology of
modern physics. On the other hand, it is of course psychologically very difficult to believe that one’s
own self, as something genuinely self-identical, has not endured from moment-to-moment in the past.
Even so, the thesis of the momentariness of human existence has had a recent defender in Derek Parfit
(1984), who asks what sort of principle could unify the temporal stages sufficiently closely to be worth
calling identity. He argues that none could, and proposes that internalising the momentariness of our
lives has a beneficial effect on how we should face our deaths.

This theme is echoed in a recent debate on the topic of &lsquo;temporary intrinsics&rsquo;, which
also connects with the earlier-mentioned concept of Cambridge change. Cambridge change in a thing
is still change in something or other, but it is not always change in the thing itself. Thus we might seek
to isolate change in the thing itself by change in its intrinsic properties. But then we have the problem
of in what sense it continues to be just one thing through a change in its intrinsic properties. Now
obviously this raises the question of how to define the concept of intrinsicality. We do not address that
here, since it is discussed elsewhere in this Encyclopedia, sce Weatherson (2002). So assuming a
prima facie distinction between the intrinsic and extrinsic properties of a thing, how does a thing
persist through changes in its intrinsic properties? David Lewis and others debated this question, e.g.,
Lewis (1986),(1988). Several options for a solution were canvassed, three of which were as follows.

(1) The basic existents are things indexed by times, that is time-slices. What primarily exist are
things-at-a-time: &ldquosa is red at t&rdquo; is rendered &ldquo;a-at-t is red&rdquo;. Things that
persist over time are then wholes made up of such parts, and one says that persisting things perdure
rather than endure. This is the solution favoured by Lewis, by the present author, and by space-time
theory.

(2) A second option is to say that, instead of indexing times, one indexes properties: &ldquo;a is red at
t&rdquo; is rendered as &1dquo;a is red-at-t&rdquo;. This option does not seem to have had any
defenders, perhaps because those properties which are universals are supposed to be wholly in each of
their instances, which the indexing apparently denies.

(3) A third option takes as its basic minimal idea that the index modifies the whole event: (a’s being
red) holds at ¢. A variant is to take the index as modifying the exemplification &lsquo;relationé&rsquo;:
a exemplifies-at-f redness. Versions of this position were urged by several contributors: Johnston
(1987), Lowe (1987), (1988), Haslanger (1989). However, the problem for adverbial-style analyses
anywhere is to provide enough semantics, enough logical structure for the event, to account for the
logical implications of the sentences under analysis, as Davidson (1967) pointed out. So for example
one has things like: (((Fa) at r) & a=b) implies ((Fb) at #); or (((Fa) at t|) & ((Ga) at 1) & (Fis

incompatible with G)) implies not ¢,=t,; or ((Fa) at 1) & ((Gb) at t) & (F is incompatible with G))
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implies not a=b. One thus cannot rest with a minimalist position. At least Lewis’ has the merit of
providing a viable semantics, a direct parallel with counterpart theory in modal semantics. Of course,
the basic ontology of Lewis’ favoured position was Dharmakirti’s though Lewis did not note that fact.
More to the point, Dharmakirti’s strategy did not depend on the intrinsic/extrinsic distinction. The
problem of contradictory attributions occurs even if the attributions are extrinsic, and Dharmakirti’s
argument is a straightforward application of Leibniz’ law to things-at-a-time. If time-slices are admitted
at all, and it is hard not to do so if they are sanctioned by relativity theory, then Dharmakirti’s argument
goes through.

Others have taken a different course on the issue of the consistency of change. Herakleitos (C6th BCE)
wrote in a suggestive fashion, with his doctrine of the unity of opposites. However, his few surviving
sentences are too obscure and fragmentary to give much confidence in interpretation. He spoke of the
same river having different waters at different times, but there is no development of the observation.
Similarly he spoke of the sea as being at one time both life-preserving (to fish) and death-dealing (to
humans), and &ldquo;the path up and the path down are one and the same.&rdquo; These examples
hardly force one to believe in true contradictions, however.

There is also in Herakleitos the idea that everything is in a state of flux, always changing, and that it is
the struggle between opposites (opposed tendencies) which drives change. This can be seen as an early
version of the Marxist dynamic of dialectical materialism. But without a separate argument for the
inconsistency of change, there is no reason to think that it remains anything but a formally consistent
theory.

Hegel was more explicit. In The Science of Logic he said that only insofar as something has
contradiction in itself does it move, have impulse or activity. Indeed, movement is existing
contradiction itself. &ldquo;Something moves not because at one moment of time it is here and at
another there, but because at one and the same moment it is here and not here.&rdquo; (Hegel (1812)
p. 440).

There is something appealing in this argument. As Priest and Routley put it, &ldquosin change&hellip;
there is at each stage a moment when the changing item is both in a given state, because it has just
reached that state, but also not in that state, because it is not stationary but moving through and beyond
that state&rdquo; (Priest, Routley and Norman, 1989, p. 7). Think of a body coming to rest at a given
time, and compare it with the same body proceeding on to further motion. There must be something
about the body at that instant which distinguishes the two scenarios, or there could be nothing at the
time to count as continuing change. Cause cannot do it, for a body can continue in its state of motion
without being impressed by an external force, as Newton taught us. Nor can mere velocity do it, since
velocity is a relation to surrounding points. Indeed, there is no difference in velocity between a body
momentarily at rest, and a body at rest for a period around the instant; yet one is changing and the other
not.

We will look more closely at this argument in the next section. However, here we can remind
ourselves of Hegel’s idealism. Just about everyone agrees that contradictions within ideas are easier to
swallow than contradictions in the external world. In the special case of the phenomenology of motion,
it is not such an absurd speculation that what distinguishes the direct perception of motion from the
mere static memory of difference in position, is that nearby small variations in the stimulus are read
into a kind of buffer where they are not compared as static memory does so much as overlapped or
superimposed in the way that contradictions are. After all, we are not at all good at discriminating
small intervals of time, as the success of 25 frames per second makes apparent. Thus, the mind
constructs a kind of contradictory theory which undergoes constant update. Indeed, this may well be
the source of the troublesome intuition we noted earlier, that it is one and the same thing which
endures through change, even though it is acknowledged that it has different properties at different
(nearby) times. If this is right, then if one thinks with Hegel that the world is a kind of idea, then the
contradictoriness of ideas such as motion is apt to spill over to the contradictoriness of their

23/08/2004 6:59 pm



realisations in the world. Indeed, even without the assumption of full-blown idealism, there is always
the caution that if a theory (consistent or not) can be made out which describes an epistemic state, i.e.,
a cognitive state, then how can we be entirely confident that the world simply could not be that way?

Taking a far less ambitious view than Hegel, Von Wright (1968) nonetheless proposed an interesting
account of conditions in which change would have to be regarded as inconsistent. The account requires
two conditions. The first condition is that time is regarded as structured as nested intervals rather than
an assemblage of atomic point-instants. This is an attractive proposal, if only because no-one has ever
seen a temporal or spatial point. Of course, standard relativity theory proposes that spacetime is
punctate, as does the usual mathematics of the continuum. But a successful non-punctate mathematics
using intervals instead can be worked out, albeit with considerably extra complexity. (see e.g., Weyl
1960). Now in the ontology of intervals, since there are no atomic points to attach a unique proposition
to, the most one can say is that a proposition holds somewhere in the interval, with the limiting case
that it holds throughout the interval.

Von Wright’s second condition was then to suppose that an interval might be so structured that a given
proposition p and its negation 7ip are dense in each other throughout the interval. This means that no
subinterval, no matter how small, can be found in which just p holds throughout that subinterval, and
no subinterval can be found in which just -p holds throughout the subinterval: every subinterval in
which one holds, the other holds as well. From an external point of view admitting instants, we can see
that this is a genuine consistent possibility, if for example we think of p as the proposition that a
rational number of seconds has passed, and —p as the proposition that an irrational number of seconds
has passed. These are dense in each other on the classical real line regarded as time. Thus, there is no
subinterval which is purely p throughout and no subinterval which is purely -p throughout.

This was von Wright’s proposed account of a continuous change in an ontology of intervals. The state
-ip changes continuously to p if there is a preceding interval which is p throughout, then an interval
with =p and p dense in each other, then a succeeding interval with p holding throughout. Von Wright
described this as a kind of inconsistency. Unfortunately it is not clear from his written words whether
he had in mind that the situation was inconsistent or only possibly inconsistent. His argument seems to
be this. In an ontology of intervals we begin with descriptions like &ldquo;It rained here
yesterday&rdquo; which means that it rained sometime here yesterday. The basic description is thus
&ldquo;p holds (somewhere) in the interval 1.&rdquo; The special case where p holds throughout I is
noted, where to hold throughout is for there to be no subinterval in which -ip holds. Now p’s holding in
I is of course compatible with =ip’s holding inI. But there is no contradiction here, as long as there is a
partition of / into subintervals such that p holds throughout the subinterval or -ip holds throughout the
subinterval. Thus if we take in that a disjunction holds in an interval just in case there is a partition in
which each of the disjuncts holds throughout its subintervals, we can say that if there is such a partition
for p, then the law of excluded middle p ¥ —p holds throughout the interval. Von Wright introduced
the modal operator Np for &ldquo;Necessarily p.&rdquo; If we define &ldquo;Np holds in I&rdquo; to
mean that p holds throughout I, we can say that if there is no continuous change in the above sense,
then Excluded Middle LEM holds necessarily, N(p ¥ -p). However, defining the modal
&ldquo;Possibly&rdquo; in the usual way as M =df "N~ and assuming de Morgan’s Laws, Double
Negation and Commutativity, we get the result that in an interval in which there is continuous change,
M(p & —p) holds, ie. a contradiction is possible. Presumably it further follows that in a subinterval
which has continuous change throughout, N(p & -ip) holds. Needless to say this implies that a
contradiction is true in that subinterval. We might note that the result that continuous change is a true
contradiction follows without the detour through modal logic, since if LEM is false then <(p v -p)
holds for some p, and so by de Morgan and Double Negation, p & -p holds (throughout).

This ingenious construction has its problems. It is certainly dangerous to assume De Morgan’s Laws
and Double Negation when the logic of intervals is the case in point. They both fail for open set logic,
which is to say intuitionism, just as they both fail for its topological dual, closed set logic. On the other
hand, what is one to say if the world is structured as intervals, non-punctate, and if there are
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subintervals in which propositions and their negations are dense in each other, interspersed with
intervals where one of the propositions holds throughout? The latter are clearly periods of non-change,
and the former are reasonably described as intervals of change. And yet it would seem that the best one
can do is to say that p & —p holds in the transition periods: there appears to be no consistent way of
describing what is happening in the situation which adheres to intervals and eschews points.

6. Inconsistent Motion

Many of the above themes come together in Graham Priest’s inconsistent account of motion in In
Contradiction (1987). Priest sets up the opposing consistent account of change as what he calls the
cinematic view of change. This is the view that an object in motion does no more than simply occupy
different points of space at different times, like a succession of stills in a film only continuously
connected. He attributes the view to Russell and Hume. It is an extrinsic view of change, in the sense
that change is seen as a matter of a relation to states at nearby instants of time. The best-worked-out
version of this view is the usual mathematical description of change of position by a suitable function
of time; and then motion as velocity, that is rate of change of position, is given by the first derivative,
which is a relation to nearby intervals.

Priest wishes instead to have an intrinsic account of change, in which it is a matter of the features of
the object solely at the instant whether it is changing at the instant. He offers three arguments against
the extrinsic account. First there is the &ldquo;abutment&rdquo; argument (p. 203). Taking the usual
view of time as a continuously distributed collection of point-instants, in any change there must be an
interval throughout which p holds abutting an interval throughout which =p holds. It makes no
difference whether there is a last instant for p and no first instant for =p, or no last instant for p and a
first instant for —p; either way there is no room for a time at which the system is changing. For
example, if we said that the change was at the boundary point, then there would be nothing about that
point to distinguish it from the situation where there was no change at all because the abuiting intervals
had the same proposition holding throughout each. Hence there is no change at all in the cinematic
view: for change there would have to be a time when change was occurring, and that is absent in this
case.

Priest’s second argument (p. 217) appeals to causation. It is at least imaginable that the universe is
&ldquo;Laplacean,&rdquo; by which he means that the state at any time is determined by the states at
prior times. But if change is cinematic, then there is no sense to saying that the instantaneous state of
the world at the prior time determines its state at subsequent times: for example, not even velocity is
determined by the intrinsic instantaneous state of a body. Now a Laplacean universe is possible, but the

cinematic view makes Laplacean change a priori false.

Priest’s third argument (p. 218) is his version of Zeno's arrow argument mentioned earlier. In the
cinematic view of change, there is nothing about the arrow at any instant to contribute to its motion: it
is indistinguishable from an arrow at rest. But then there is nothing to constitute its motion: an infinite
number of zero motions does not add up to anything but zero motion. In response to the reply that
according to measure theory a (nondenumerably) infinite number of points of measure zero can have a
non-zero measure, Priest argues that this is just mathematics: &ldquo;&hellip;it does not ease the
discomfort &hellip; when one tries to understand how the arrow actually achieves its motion. At any
point in its motion it advances not at all. Yet in some apparently magical way, in a collection of these it
advances. Now a sum of nothings, even infinitely many nothings, is nothing. So how does it do
it?&rdquo; (pp. 218-9)

Setting aside questions about the stren gth of these arguments for the present, how then are we to give
an acceptable intrinsic account of motion? According to Priest, the only acceptable answer is Hegel’s:
that motion is inconsistent. Support comes from Leibniz’ Continuity Condition (LCC). This is
essentially the thesis, suitably qualified, that whatever holds up to a limit, holds at the limit. Priest’s
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argument for the LCC appeals to causality. He describes change violating the LCC as
&ldquo;capricious&rdquo; (p- 210). Humeans might be able to accept it, but for them there are no
connections, nothing to constitute past states’ determination of future states. He also argues if the LCC
fails, change would occur, but &ldquo;at no time&rdquo; (p. 210): for a proposition switching values
discontinuously at a boundary there would be no instant identifiable by its intrinsic properties alone as
the one at which the change occurred.

Priest’s qualification to the LCC is that it applies only to atomic sentences and their negations:
otherwise we would have to admit the case where a disjunction p ¥ ¢ held right up to a limit in virtue
of p holding at the rational points and g holding at the irrational points: this would be capricious
behaviour in which we can make no sense of the past determining the future. We would also admit
problems if we allowed the LCC to apply to tense operators: Future-p can obviously hold up to a limit
without holding at the limit.

But now we observe that the LCC so qualified implies that continuous change is contradictory. For
consider any particle with equation of motion x = f(f). Then at ¢ = a its position x = fla). However if it
is in motion then in the neighbourhood we have ~(x = f{a)), so by the LCC at the limit also ~(x = f{a)),
along with of course x = f{a) as well. Priest amplifies this account by proposing that no moving body
can be consistently localised. Rather, in moving at time ¢ it inconsistently occupies a small finite
(Planck length) lozenge of space, which is made up of the positions it takes in the corresponding
lozenge of time surrounding ¢. This gives a natural intrinsic account of motionlessness at #, namely that
there is no contradiction in its position at £. One can propose an account of velacity, as varying with the
length of the lozenge or spread of position in the direction of motion. There are applications in
Quantum Theory, too. The Heisenberg uncertainty of position may simply be the size of the spread or
smeared position. Moreover, there is a possibility for backward causation implicit in the advanced
wave front of inconsistency affecting earlier states in the inconsistently identified smear of spatial
positions; and backward causation may be the way to go with quantum nonlocality, as Huw Price
(1996) has argued.

One quick objection does not succeed. One might argue that since motion and rest are not
relativistically invariant, neither could the contradictoriness in motion be part of the absolute character
of reality. This may be so, but it does not prevent the concept being of use in the analysis of
phenomena by means of frames: frame-relative inconsistencies would still be a (relational) part of the
world. More importantly, the concept may find its natural home in QM rather than GR. It is
well-known that there are deep incompatibilities between them as they now stand, but the jury is still
out on how to resolve them, and it may well be that absolute motion is a part of the solution.

In asking how strong are the arguments in favour of this well-crafted position, we return to Priest’s
three arguments against the rival, consistent, extrinsic, cinematic view. We recall the first argument
was the &ldquo;abutment&rdquo; argument: consistent change cannot allow that there is a (single)
time at which the change takes place. This will not sway the opposition, who will reply that it is the
nature of change, even change at a point, that it is relational in that it requires comparison with nearby
points; hence the demand for an intrinsic conception of change is a mistake.

The second argument was that the cinematic view is incompatible with the Laplacean view that the
past determines the present. The way Priest puts it is not so plausible: he says that Laplaceanism is
possible, whereas the cinematic view rules it out &ldquo;a priori&rdquo; (p. 217). But this is a modal
fallacy: the cinematic view is only ruled out when one adopts the Laplacean view, and so that is only
relatively apriori.

The third argument, Zeno’s arrow, has greater force though. How can any number, even an infinite
number, of zeros add up to a nonzero? The mathematics of measure theory may say that intervals have
a non-zero measure whereas individual points are zero, but so what? What is needed is a story which
makes its application intelligible and non-arbitrary. If this is not forthcoming, there is the strong
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counter-intuition that zero marks the absence of existence; and no number of absent or non-existent
things or quantities makes a present, existent thing or quantity.

So Zeno’s argument after all seems to be the most resilient. But the Laplacean universe also has appeal.
Many philosophers have felt uneasy about Hume’s views on causation: if the past does not determine
the future then the universe is indeed capricious. Still, we can note at least one consequence of Priest’s
position which many will find implausible. It can be debated whether if a body is changing its position,
i.e., if it is in motion, then it has a non-zero speed (consider the case of having non-zero acceleration
but zero speed). Most philosophers would however agree with the converse: if a body has non-zero
speed then it is in motion. It must be noted, though, that Priest is denying that a non-zero speed is
sufficient for motion: the point of the cinematic analogy is to say that a sequence of stills of changing
positions does not amount to motion, yet it is precisely this sequence of stills which is used to define
the concept of speed. Against Laplaceanism, it will be argued that the concept of speed is present in
everyone's story, and the counter-thesis that non-zero speed is sufficient for motion is simpler in that it
does not involve appeal to a further, mysterious, intrinsic feature. On the other hand, this has to be
weighed against the force of the above counter-arguments, especially Zeno’s arrow.

7. Discontinuous Change and the Leibniz Continuity Condition

If the LCC is to have a chance of being applicable, then it needs further restriction, beyond atomic
sentences and their negations. This is because it has implausible consequences when applied to certain
atomic sentences. Consider any increasing function f{(£). Then sentences of the form f{#) < fla) will hold
for ¢ < a. By the LCC then, fla) < fla). This is surely a gratuitous conclusion even before the
contradicting sentence -f{a) < fla) is taken into account. The present author (1997) therefore proposed
to restrict the application to the atomic sentences of equational theories, that is to sentences of the form
fi£) = 0. This is not so unreasonable on independent grounds, since the basic laws of nature are
expressed in equational form.

So restricted, we can note that far from being unreasonable, it turns out that the LCC is satisfied in a
large class of reasonable models, specifically the C-infinity worlds mentioned earlier, in which every
function is continuous. These include all those of GR. Now a C-infinity world gives us a kind of
half-way house for cause. It might be that all correlations are coincidences, but at least if functions are
continuous then causation is a distinctive correlation in that it is transmitted locally. This can be
applied beneficially to produce not a general account of inconsistent change, but a particular account of
certain inconsistent changes, as follows.

Quantum measurement has long been problematic, for more than one reason. One reason has been that
it represents an irreducibly different kind of process from Schrodinger evolution. Another is that it is
change which is discontinuous and yet causal: one can make things to happen with measurement, even
though one cannot determine the exact outcome. A third reason is nonlocality itself: the nonlocal is
ipso facto the discontinuous, and yet the nonlocal is governed by a kind of statistical causality. But
now, to settle at least some of these issues, it has been proposed to utilise the theory of inconsistent
continuous functions. These arise when a function is classically discontinuous, but we inconsistently
identify the limit of the function (assuming it has a limit) with its value at the limit. Such functions, by
virtue of being continuous, can be shown to satisfy the LCC. But granted that the formal details exist,
what reason is there to apply them? It is precisely that we want to preserve a degree of causality, that is
LCC-causality, while yet retaining the essential discontinuity and unpredictability of the process. Thus
the slogan &ldquo;nonlocality is inconsistent locality,&rdquo; which is intended not to apply to
change in general but to discontinuous change which we nonetheless have reason to think of as causal.

8. Conclusion

There remain many loose ends from our discussion. Still, it emerges that the connection between
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change and inconsistency is deep, and that the case for inconsistencies in motion and other change is
surprisingly robust.
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CHRIS MORTENSEN and JULIANNA CSAVAS

IN THE BEGINNING

ABSTRACT. In this paper, a survey.is made of some of the contributions to the interpreta-
tion of Hartle and Hawking’s theory of the wave function of the universe and its beginning.
It is argued that there are considerable dlfﬁcultles with the mterpretatmn of the theory, but
that there is at least one interpretation h1therto not found in the hterature which survives
existing ph110soph1ca1 objéctions. - : :

1'. INTRODUCTION

It is widely held that Hartle and Hawking (1983) described a revolutionary
account of how time might have come to begin in a smooth way, not
in a singularity as the current theories of the Big-Bang imply. In order
to make the singularity vanish, their proposal was (in part) to transform
time ¢ in the very early universe into imaginary time, that is iz, where
i is the square root of minus 1. This has given rise to a large literature
about how to understand their suggestion. In the present paper we will
survey a subset of the literature, focussing mostly but not exclusively on
contributions by philosophers. This is because the philosophers’ contri-
butions have largely. been the clearest and-most rigorous, as we will see,
and therefore most worth addressing. Nonetheless we aim to show how
inconclusive the discussion has been on all sides. We will conclude with
an alternative suggestion of our own, and argue that it escapes the major
problems of existing 1nterpretat1ons

2. -THE HARTLE-HAWKING THEORY
¢
One of the more accessible sources is Hawking’s own account in A Brief
History of Time (1988, pp. 145-148). The singularity at the origin of the
universe according to classical GR arises because at ¢ = 0 the universe has
infinite curvature. The universe can thus be represented as the surface of
a cone with its sharp point being the first instant. Since in GR curvature
is related to mass density by the equation Curvature = 8 .Density, this
implies infinite density at the point also. Hawking describes the situation

;“ "Erkenntnis 59: 141 156, 2003 !
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as undesirable due to our inability to make a prediction when quantities
assume infinite values.

We note a quick digression: there is of course no problem over the math-
ematics of the infinite. Therg are well-known rigorous theories of infinite
cardinals and ordinals. The'theory of the infinite most suitable for Hawk-
ing’s purposes would be that of Robinson’s Non-Standard Analysis (1966)
since that theory has all the theorems of classical standard analysis, and is
even more simple computationally. There is no question that this developed
theory permits easy manipulation of differential equations applying to in-
finite quantities and their reciprocals, the infinitesimals. However, it seems
that the infinity at the point of the origin of time remains “absolute infin-
ity”, the reciprocal of zero. Unfortunately, despite much effort, there is no
theory of the reciprocal of zero, consistent or inconsistent, which is even
remotely functional enough to permit calculations. Hence, while infinite
numbers are highly effective in the right context, the kind of infinity in
question in the present discussion is definitely very undesirable. (Even so,
it must be allowed that absolutely infinite curvature is possible in some
sense, precisely because a consistent geometncal object such as a cone
can exist.) :

Returning to our main theme: to avoid an impasse over predictability,
Hawking proposes that the absolute probability of the universe’s being in
a given state is the sum over all histories (earlier spacetimes) with that
state as.outcome. To make such histories well-defined (converge), it is
necessary to sum over histories with a locally Euclidean spacetime metric.
This is obtained by transforming the time variable t by multiplication by
i. A simplified example, adapted from Hartle-and Hawking (1983), is a
state function ¢ given by ¢ = f e'*dt. If the integral is taken over the
whole of the. positive real line, this is not defined since it is the integral of
a periodically .oscillating function. Under the transformation which maps ¢
to it however; it becomes f e~*dt, which is 1 over the positive real line.

The transformation from ¢ to it evidently also changes the form of the
metric, from:

ds? = dx?* + dy‘j +dz? —dt?, to
ds? = dx? + dy? + dz? + dt”?,

where ¢’ = it. _ .
That is, the transformation changes the usual (+, +, +, —) signature
Minkowski metric to a (+. 4+, +, +) signature Euclidean metric. Now
while this transformation ensures that certain important integrals exist, it
~does not by itself transform away the singularity, since multiplying infinity
by i is still infinite. There is thus required a further move, and so Hawking
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then postulates that the universe did not begin with-a singularity. Such non-
singular Euclidean metrics take the form of the surface of a closed sphere
in 4 dimensions, a 4-sphere. Hence, the universe is explained as arising
smoothly without smgulanty from a very early (half-spherical) Euclidean
region which undergoes a change to the more familiar Minkowski metric
for spacetime, and then expands in the accustomed inflationary manner as
in the standard model of the big bang. - - ‘

This is unquestionably a very interesting idea. But we see that there is.
a veritable thicket of complexities over interpretation.

3. NO BOUNDARY IS NO BIG DEAL

Hawking describes his theory as the No Boundary Condition: “the bound-
ary condition of the universe is that it has no boundary”. What does this
mean? After all, when we compare Hawking’s smooth-bottomed bucket
(half-sphere) with the pointy-bottomed cone, we see that they are homeo-
morphic, that is there is no fopological difference between them. But it is
obvious that the surface of a sphere has no boundary. It follows then that
the surface of the cone likewise has no boundary. Why then does Hawking
describe the half-sphere as being preferential to the cone in this respect?

. The answer must obviously lie in the difference between a cone and a
half-sphere. The difference of course is that at its point a cone has infi-
nite curvature, -whereas ‘the half-sphere nowhere has infinite curvature.
But surely this makes no difference to the existence of a boundary? Curva-
ture is an affine concept, and strictly less general than a topological concept
like a boundary. The answer is in the (simple linear) relation between -
curvature and mass-density. As we saw, if curvature is infinite, so-must
be density. But it is (absolutely) infinite mass-density which is the real
singularity here; not the point of the cone itself which is only the oeometrlc

“indicator” as it were. So far so good, but why does infinite mass-density
make for a boundary? The reason can-only be that infinite mass-energy
is never realised in the universe. Thus, if the universe were like a cone,
then it would be a cone with the end point nipped off, a nonexistent vertex.
Now a cone with its end-point removed is homeomorphic to a half-sphere
with a point removed. In fact it is homeomorphic to-a half-sphere with a
disc removed, and that certainly has a boundary, namely: the circle at the
edge of the disc. Moving back to the cone then; removing the point creates
a boundary, the “absent” point (which can conveniently be thought of as
existing in a'space containing the cone). That is, to say that the universe has
no boundary is to deny that the universe has a hole in it at the point of cre-
ation. But this in turn is simply to deny that a singularity of mass-density
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ever existed. Thus, to say that the universe has no boundary is simply to
refuse to countenance singularities in the distribution of matter. It is not
to solve the problem, it is simply to declare the hope that a reasonable
constraint on a solution will be satisfied. '

4. THE EUCLIII)E'AN REGION: SPACE OR SPACETIME?

Lorentzian
de Sitter solution

/

Euclideu;l
4-sphere

The above picture, taken from Hawking and Penrose (1996, p. 86), shows
two spacetime regions, a Euclidean region like a smooth half-bucket,
joined to a Minkowski region like a cone with a small part of its pointy
end nipped off. It should be noted that space and time in the picture are
confined to the surface, not the interior. Now there is an important dis-
tinction to be noticed. -Just about all contributors to the debate speak of
the Euclidean region as one where the distinction between time and space
disappears, where time becomes “spatialised”. The motivation for this way
of talking is clear enough: the shift from a- (4, 4+, 4, —) metric to a (4, +,
+, +) metric removes a distinctive metrical role for time. Furthermore, this
has significant further implications. For example, in Minkowski spacetime
the difference between spacelike, timelike and null separation of events
derives from the sign of the spacetime distance between them, so that with
the shift in the metrics the whole light-cone structure is removed.

This then raises the question of the ontological status of time in the
Euclidean region. We find in the literature two discernibly different ways
of talking. On the one hand one can take the above talk of disappearance
literally at face value, as the view that the Euclidean region simply has no
time at all, just 4 spatial dimensions. This might be described as an elim-
inationist interpretation of time in the Euclidean region. However, equally
ubiquitous is the continued use of temporal terminology to describe the
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Euclidean region, as we see below. To explain that, one might understand
the eliminationist talk as a slightly loose way of speaking of a phenomenon
which'is still time, just with somewhat different properties. This might be
described as a reductionist interpretation. Perhaps the clearest statement of
the latter interpretation is where Davies says in About Time (1995, pp. 191-
192): “Time is always time, it doesn’t really turn into anything . .. what we
call time may once have had some of the properties we normally associate
with space”. ,
Various of the difficulties we discuss below apply to both interpreta-

tions. However, the eliminationist interpretation has further problems of
its own, we think. Chief among these is the question of in what sense we
have an explanation at all of the Minkowski epoch of the universe, if there
is no causal process leading up to it. Having said that, we signal that in a
late section we will take this up again and endeavour to make sense of it.
For the time being, we propose to adopt the view that the Euclidean region
possesses time in some sense. There remain problems aplenty to discuss.
In defence of this interpretation, it can be said that the loose talk of “no
dlfference may well just mean, in the context of metrics, no more than

“no metrical difference”. From the fact that there is no metrical difference
between time and space, it does not follow that there is no difference at
all. After all, there is no metrical difference between the signatures of the
3 spatial dimensions either, but it is unquestionable that spacetime has
3 spatial dimensions not 1. The disappearence of the Minkowski causal
structuré is inevitable for Euclidean spacetime, but then Minkowski space-
time is not a necessary truth. Naturally causality has to be carried by a
different physical structure, but that is to be expected, not feared. Misner,
Thorne and Wheeler in Gravitation (1973, 51) condemn the old practice
of using Euclidean coordinates in their section “Farewell to ‘ict’ ”’; but in
the context it is clear that they are objecting to the use of such coordinates
to describe universes which are still fundamentally Minkowski. That is not
so here. It is not as if one were simply redescribing a universe which is in
reality Minkowski: rather there would be a fundamentally different set of
laws of nature.

5. THE JOIN PROBLEM: A CONTRADICTION?

In short, we proceed for the present with the interpretation that the Eu--
clidean region has time of some sort in it. So the theory involves the
postulation of two regions, one Euclidean and one Minkowskian. This
leads one to inquire in more detail about the relation between the two
regions. Hawking draws them as joined together. But what is the nature
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of the relation? This is called the join problem by Deltete and Guy (1996).
For example, in desciibing the theory, Hawking speaks of the Minkowski
phase as being “later than” the Euclidean phase (pp. 145-146). Again, Paul
Davies in About Time (1995) stresses that the join is not a sharp discontinu-
ous change but is smeared out, then speaks of a continuous sequence where
time “starts out” as space and gradually “turns into” time as we know it.
One can see here two variants of the join problem. One is the problem of
how the Euclidean region can be earlier than the Minkowski region; the.
other is the problem of what the nature of join, in particular is it abrupt or
fuzzy? We briefly consider the first of these here, then turn to the second
in the next section.

In (1993), Quentin Smith seizes on Hawking’s talk about how “‘once”
quantum . smearing effects subside, -4-D Euclidean space joins onto
Minkowski spacetime. If in the Euclidean region there was no real time,
how could it stand in the relation of being earlier than? “ ...it is not
really earlier than, later than or simultaneous with the four-dimensional
spacetime manifold. Accordingly it is false that the 4-sphere joins ... once

. Nor can this “once” refer to imaginary time, which would 1mp1y that
the real spacetime is later in imaginary time than the 4-sphere, which it
is not” (p. 318). The idea here seems to be an appeal to the analogy. of
complex numbers with rotation through 90 degrees, since a line at right
angles couldn’t amount to being earlier. Smith also argues that “later” is
not an ‘appropriate description of imaginary time at all, since “imaginary
time is instead like a spatial dimension, in which there is no direction”
(p. 318). The way the latter point is made appears to be a difficulty directed
at the eliminationist interpretation.

Similarly, Deltete and Guy (1996) maintain that there is a contradiction
implicit in this way of talking about the join. They argue that if real time is
later than imaginary time, then it is later either in real time or in imaginary
time. However; either answer implies that the one time existed in the other
time’s region. This aspect of the join problem is certainly problematic. We
will need to keep it in mind as an important constraint on any solution to
the join problem. We will see eventually that there is (at least) one way
of talking about the join problem which avoids the difficulty, but that will
have to wait until a much later section.

6. THE JOIN PROBLEM: VAGUENESS
We recall Davies’ insistence on the gradualness of the join. Deltete and

Guy reject a fuzzy transition as “facile” (1996, p. 190), and contend that the
above problem of contradictoriness arises as much for a vague or smeared-
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out join. In addition, a further problem of consistency apparently arises:
a succession of stages implies a succession of times during which time
gradually came into existence, which is contradictory. This is clearly a
problem which is distinctive'to a vague join: it does not arise if the join is
sudden, as if the universe “flips over” into our spacetime.

However, in a later paper (1997), Smith offers a defence of a vague join.
He argues that Deltete and Guy assume that a metrically amorphous join
is impossible, that having a topological structure at all requires metrical -
relations of some sort. However, it is well-known that topological structure
is more general than metric. It does not logically imply a metric and can
therefore logically exist without it.

Smith is correct about the logic here. Spacetime has several levels
of structure, specifically metrical, affine, and topological. Each is more
general than its predecessors. Therefore, the postulation of a metrically
indeterminate topological structure is consistent. Hence, if that is what a
vague join implies, then it cannot be convicted of contradiction.

Smith goes on to argue for the join region being metrically indetermi-
nate. Though the details remain to be worked out with exactitude, it
seems reasonable to say that the transition from Euclidean to Minkowski
regimes is described by a superposition of quantum states described by the
respective characteristic metrics. Around the join, the contributions of the
two components of the wave function are approximately of the same size.
Thus they cannot deliver a unique metric the way they do elsewhere. This
is metrical indefiniteness, if anything is. :

Again we agree. The only alternative is that the change from one
metrical structure to another takes place discontinuously. While this is
unquestionably a consistent possibility, in Quantum Theory such changes
take place only with a measurement, and we should be avoiding measure-
ment at all costs.if we are talking about a wave function of the universe.
Hence the universe as a whole is described by an analog of Schrédinger
evolution, the Wheeler—DeWitt equation. The evolution is smooth and thus
the change must take place gradually. Even so, perhaps there is scope for
some amount of discontinuous change. It might be that the wave function
contains a measure of lower-level complexity due to space at the very small
scale bubbling with virtual pairs, well below the Planck length. The whole
wave function of the universe would thus contain this small scale bubbling,
which would occasionally manifest itself at the larger scale, and precipitate
very rapid changes. This does not need measurement, only small-scale
complexity. ' -

We are not confident that this is a viable description of literally discon-
tinuous change. However, the alternative of a vague join, i.e. Davies and
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Smith’s position, is certainly defensible from a charge of contradiction. A
fuzzy join is not a contradiction, and may well be required by QM. Having
said this, we register that Deltete and Guy’s original consistency problem
remains: there is a problem dbout how one region could be before the other.-

7. IRREALISM

It is time to track another theme in this whole debate, namely that of the
various brands of irrealism, instrumentalism, realism etc. which are on
display here. Hawking’s own mad-dog instrumentalism is well-known. He
disparages his own clever suggestion by describing it as merely a mathem-
atical device or trick to enable us to calculate answers about real spacetime.
“So it is meaningless to ask: Which is real, ‘real’ or ‘imaginary time’? It is
simply a matter of which is the more useful description” (1988, p. 148).

Such hard-core positivism has largely departed the philosophical scene,
it is pleasing to note. It is interesting to ask how Hawking envisages one
description could be more useful and enabling us to calculate answers
about real spacetime, if it is a mere fiction. What confidence could one
have that one’s descriptions had anything to say about the real world, if
the real world is nothing like the way one’s descriptions describe it to be?
Hawking was bothered about his inability to make predictions about the
history of the universe, but.how could he seriously make predictions with
instruments he holds not to accord, even approximately, with the world?

Deltete and Guy argue against Quentin Smith’s more subtle brand of
irrealism . In (1993) Smith proposes what he calls “quasi-realism”. This
is the thesis that only the universe after the join is real. Before that, he
denies any structure corresponding to the Euclidean metric. It is true that
this avoids the objection that to say that the after-join universe is later than
the before-join universe is contradictory. This is done by the expedient of
denying the existence of the before-join universe altogether. But this is
bought at a large cost. If there is nothing before the join, then one aim of
" the game is given up: explanation of the very early epoch. There could be
no sense of deducing the way things are from some description which one
proposes is close to the way the world is. It would be just another story,
that’s all, and talk is cheap. _

In the later paper (1997), Smith gives up this mixed irrealism in favour
of a full realism of both regions. Even so, he is unable to resist a resid-
ual irrealism, we suspect. Commenting on Davies’ gradualism, he flirts
with the contradiction, describing space as “gradually” becoming time-
like, “journey”, “approached”, “distant from” one region to another; and
then defends the language as “definable entirely in co-ordinate and topo-
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logical terms . .. no fact of the matter as to whether there is a first temporal
initerval of each actual length” (p. 175). Now it is correct that one speaks
of approaching a limit along an arbitrary curve of co-ordinates. This is
at the level of abstract differential topological structure, and need have
nothing to do with time per §e. So such language should not be seized on
too quickly as evidence of self-contradiction. But “no fact of the matter” is
conventionalist-irrealist language, unquestionably, and in such a case one
wants to know just where the facts of the matter reside.

Another version of irrealism is conjured up with the idea that the
descriptions of the world in the extreme quantum region are only “sym-
bolically” true, not literally. true, “metaphorical” perhaps. In (1993), Chris
Isham speaks of “the origination of the universe” in an imaginary space-
time, from which the Minkowski “process ...emerges ...well away from
the originating 4-sphere” (p. 74). These appear to be temporal and metrical
concepts. However, Isham denies this: they are to be understood “in a
symbolic sense” (p. 74).

This too is criticised by Deltete and Guy They suspect it of instru-
mentalism: “In what sense is the 4-sphere an ‘originating’ sphere if the
Lorentzian spacetime does not succeed it temporally? And in what sense
is the Lorentzian real-time region ‘well away from’ the four-space if ‘well
away from’ does not mean ‘temporally distant from’? Finally, if the words
‘emerge’ and ‘process’ are being used symbolically, what do they sym-
bolise?” (p. 192). Isham indeed disavows a realist interpretation: we are
talking about features of ‘mathematical models’ of the Universe and not
to features of the Universe itself (p. 193). However, Deltete and Guy’s
argument is the appropriate one against anyone who is tempted by meta-
phors: in that case, what is the cash value of the metaphor? One cannot hide
behind metaphors forever. Eventually the audience wants to have:some sort
of indication of what the symbols are supposed to signify.

8. AN ARTIFACT OF CO-ORDINATES?

One technical version of irrealism which has attracted support is the claim
that the singularity is an artifact of co-ordinates. Davies (1992, p. 67)
describes the singularity at ¢t = 0 as “just the coordinate singularity”.
Even more explicitly, John Gribbin in Schrédinger’s Kittens (1996) writes
that “mathematicians are free to choose many aspects of the co-ordinate
systems they use . .. only a change in choice of mathematical co-ordinates™
(p. 211). Gribbin, however, also attributes to Hawking the thesis that “our
éveryday understanding of time is wrong, and-that a better model of the
way the Universe works is...imaginary time™ (p. 210), and that the latter
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alternative is “more physically reasonable” (p. 213). In that case, one might
ask what account of the wrongness of our ordinary understanding Gribbin

has in mind. In passing, we note that Gribbin also describes Hawking’s 4-

sphere universe without talking about a join: Gribbin seems to take it that.
the entire history of the universe might really be Euclidean. We find this

altogether too unbelievable, and we do not pursue it further.

However, the suggestion that somehow a co-ordinate change can avoid
a real singularity is an interesting one, and worth -exploring. This kind
of strategy has had its successes in the history of physics. One of the
better known is the use of- Kruskal/Szeckeres co-ordinates to describe
black holes. Early theorising about black holes made it look like they
had two singularities, one at the light horizon and one right at the centre
where mass-density becomes absolutely infinite. However, Kruskal and
Szeckeres showed independently that the former infinity does not appear
if a new set of co-ordinates is used. These are well-behaved although the
transformation cannot perforce be continuous everywhere, for that would
only reproduce the singularity. This device had the consequence that an
observer freely falling into the black hole would not be crushed out of
existence at the light horizon, but would continue on into the centre, where
it would really be crushed, at the real singularity.

There is some realism here, however. To conclude that an observer
would not be crushed at the horizon is to argue that the K/S co-ordinates
are in reality fopologically correct, and the other co-ordinates incorrect.
In particular, the singularity in the other co-ordinates does not exist in
physical space. So for the co-ordinate change strategy to work anywhere,
it must be accompanied by the hypothesis that the world really is that way
and not the other. We certainly don’t mean to imply that one should follow
Gribbin all the way into total irrealism about our Minkowski world, of
course. Pace the early Smith, realism about both regions is possible and
more reasonable. But realism about the Euclidean regime must be part of
that strategy if we think that a co-ordinate change will gain us any mileage
at all. Thus, mere co-ordinate change is not so mere: unless it is realist,
it does not escape the difficulties of irrealism; and so far as we have got,
tealism hasn’t escaped the join problem.

9. SPACE AND TIME AS MACROPHENOMENA

In (1999a and 1999b), Butterfield and Isham make a significant advance.
They promote the idea that spacetime emerges in the large scale “from
something else” (p. 25) of smaller scale. The Minkowski metrical structure
is not intrinsic to spacetime, but rather is a relation between spacetime and
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matter: GR metric, the physics of the large, is emergent. The important
point is that they contend that this is not a temporal process, and that
hence all objections.about contradictoriness fall down, for these rely on
interpreting the metaphors temporally (p. 57).

We are very sympathetic to this suggestion as far as it goes. Indeed, it
would seem to be inevitable for any theory in which there is a distinctive
physics of the very small. To put our own spin on it, Minkowski space-
time emerges from a fuzzy Euclidean background of phenomena below
the Planck length, as the scale becomes too big to be affected by quantum
phenomena. This is precisely the phenomenon of quantum decoherence.
It is like this: the Universe starts out smoothly as a quantum fuzz. The
radius grows and grows until things begin to be too big for quantum effects.
The Minkowski metric emerges as decoherence cancels out the effects of
the very small, particularly on the behaviour of light. Very soon after,
inflation as we know it takes over. Of course the.“join region” will have
an indeterminate metric, but we have seen that this is not so problematic.
Butterfield and Isham rather spoil it with more irrealism, by asserting that
the Euclidean region has no more physical meaning than does an imaginary
spacetime trajectory in normal physics. . This “does not mean that this solu-
tion has any ontological status in the quantum theory” (p. 59). Of course,
this might be a simple caution not to be too trusting of physicists’ tricks
with models, which we certainly endorse but which leaves open realism
somewhere: Setting aside the irrealism then, it is an attractive position.
It appeals to a familiar phenomenon of scale as the mechanism at work.
It unifies static and dynamic phenomena, synchronic and diachronic, as a _
single process of decoherence.

But there is still a fallacy lurking here. To say that there is one mecha-
nism is not to say that there aren’t two ‘different processes. What we
wanted to understand, was the origin of the universe, the temporal process.
That remains as a special case of scale. Thus, there remains the special fea-
ture of a temporal join. The threatened contradiction concerns the temporal
order between parts of this process, and that has not been dismissed by the
simplification afforded by seeing it as part of a more general phenomenon.
Hence it can’t yet be said that the join problem has been avoided.

10. IMAGINARY SPACE

So, the problem of the ternporal order between parts around the join is still
with us. One way remains for solving the problem. Th1s applies whether
the join is fuzzy and gradual or not.
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We recall the point that the substitution of ¢’ = i turns the metrical
form from a signature of (+, +, +, —) to (4, +, +, +). This was the point
about abolishing a metrical distinction between space and time. However,
it invited the question of in, what sense it could be earlier than . Now
one thing which seems not to have been noticed is that the Minkowski
signature is often written (—, —, —, 4) or (4, —, —, —). Such a signature
is regarded as an equally legitimate description of SR spacetime. It follows
that there is another way to describe the transition. The transformation
of the spatial co-ordinates (x, y, z) to i(x, y, z), that is (ix, iy, iz), will
equally transform a Minkowski metrical form into a Euclidean form. That
is, to transform a SR metric to Euclidean, it suffices to take imaginary
space, not imaginary -time. But in this model there is no problem about
which times are earlier or later, because the time variable t is univocal
throughout. The join region is a-superposition of spatially distinct regions,
with a common time. The contradiction problem dissolves. So does the
problem of how the postulation of the Euclidean region can explain the
Minkowski region and yield reliable calculations about it. The Euclidean
region is earlier than the Minkowski region and thus causally prior to.it.
Indeed, we go so far as to suggest that even the problem of the fuzziness of
the join looks more tractable. Vague spatial states, that is a superposition
of spatial states, are fairly routine quantum weirdness, even if superposing
Euclidean and Minkowski times were hard to comprehend.

* This is a better solution interpretationally, we think, especially when
combined with Butterfield and Isham’s application of the principle of
scale. All it would seem to require is the capacity to transform three sets
of spatial variables through mutually orthogonal directions. The result is
presumably another 3-D space at right angles to our own. This is not so
absurd a thought. In fact, it’s the one you would naturally come to if you
thought of the change as a process, something, taking place over (the one
kind of) time. A '

Moreover, there is apparently no change in the way the calculations are
conducted. Indeed, inspection of Hartle and Hawking (1983) indicates that
in the way they first set up the-analysis (p. 2960), the integral which is
made to converge in the Euclidean regime is only indirectly a function of
time through the functional dependence of space upon time in conditions
of an expanding universe. The state function v is given as [ e'Sdx, where
S is a function of x which is in turn a function of ¢. The transformation
of ¢ to it then turns the integral into [ e~Sdx. That this has the desired
effect for suitable S, x and ¢ can-be seen simply by setting § = x = ¢,
which reduces the example to the simplified case given in Section 2. The
functional dependence of this integral on ¢, that is the fact that the state
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function ¥ so determined is a function of time, means that one can in turn
proceed to calculate the probability that a given v occur at ¢ by summing
over “histories” which lead up to 1 at ¢, that is by integrating with respect
to ¢ in the usual fashion in QM. In short, it seems that there are no adverse
consequences for the calculations of amplitudes and probabilities, which
is thus some indirect support for the viability of our suggestion.

11. EUCLIDEAN TIME AS SPACE

In an early section we distinguished two interpretations of the ontological
status of time in the Euclidean region. We have mostly been discussing the
reductionist interpretation, namely that there is after all time of a sort in
this region, having registering, further distinctive difficulties for the elimi-
nationist approach. It is time to see if nothing better can be said in favour
of eliminationism. One place where a ghost of an-eliminationist suggestion
emerges is in Gribbin (1996, pp. 211-212) where he interprets Hawking’s
thesis to think of the expanding universe “...not in'térms of an expanding
bubble of spacetime that appears out of a mathematical point (the singu-
larity) and grows, but.in terms of lines of latitude drawn on the surface of
a sphere which stays a constant size” (emphasis ours). This looks like the
denial of time in the Euclidean region, even if the next few sentences take
it back: “A tiny circle drawn around the north pole of the sphere represents
the Universe when young — all of space is represented by the line that
makes up the circle. As the Universe expands, it is represented by lines
drawn further from the pole and closer to the equator” (emphasis ours)

Is it possible to give sense to the idea that it begins as space alone?
Of course, our suggestion in the last section is not available, since that
proposes that time exists in a fairly robust sense throughout. Still, it is
not so absurd to talk this way, perhaps. Imagine that, looking backward,
instead of there being a pointy temporal singularity there is a bubble of
space. The bubble of space doesn’t change in size. It is simply the ori-
gin of the universe, but it is not itself extended in time. It is surely not
a necessary truth that whatever exists, is temporally extended. Another
analogy that we think is useful is of a mercury thermometer. It has a
(static) bubble at the bottom and. out of that rises a column of mercury.
The dynamic aspect of time is captured by the motion of the column as it
rises. Now ask Hawking’s question: how can one calculate the probability
that our universe arose from a region where there is no singularity of mass-
density? Would it not be a reasonable suggestion to apply. the analogy of
summing over all possible non-singular “histories” which join to a small
but incontrovertibly Minkowski state, save that one sums over all possible
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non-singular spatial bubbles from which the Minkowski state initiates? We
don’t think that the word “initiates” gives anything away here. It is the
Minkowski universe which initiates, not the spatial bubble which initiates
it. Time begins as Minkowski, there is no before, but there is a finite space
at the origin nonetheless.

We do not wish to endorse. this way of talking too strongly. We st111
think that there is no clear sense in which the Minkowski region would .
be explained by the Euclidean region, if the latter has no time. If that is
50, then what we have here is at most description but not explanation. In
which case, the hypothesis offers nothing as explanation and so there are
no grounds for its retention. That is, if one' takes the eliminationist posi-
tion about time in the Euclidean region then in turn one should eliminate
the Buclidean region altogether. This of course was Smith’s conclusion
in arguing for his original quasi-realism. Moreover, on this suggestion the
status of the calculation of the probability that the Minkowski region exists,
on analogy with summing over histories in ordinary QM, is problematic.
These are not “histories” in any sense. Hence it is not at all clear what
could justify Hawking’s claim that he has calculated the probability that
the universe arises out of “...a zero three-geometry, i.e., a single point. In
other words, the ground state is the amplitude for the Universe to appear
from nothing” (1983, p. 2961). Further clarification of these matters is to
be awaited with interest.

12. CONCLUSION

To sum up, we believe that we have sketched a consistent and coherent
interpretation of the Hartle-Hawking theory of the very early epoch of
the Universe. The present account appeals to a simple re-interpretation
of the change of metric which is founded in actual practice in present-
ing the relativistic metric. It also adopts as an independent principle the
Butterfield-Isham application of scale or decoherence. The result is a
theory which, we propose, avoids the. major problems that bedevil other.
interpretations, allows for a reasonable concept of explanation, and retains
the calculatory advantages of the original theory.: :
There are other interpretational issues in this area which we do not
propose to take up, since it would seem that they are not affected by
the details of our argument. One issue concerns the difference between
two rival accourts of the change in the literature, the Hartle-Hawking
theory and Vilenkin’s quantum tunneling approach. Another is the debate
between Smith and Craig over Smith’s contention that the sum-over-
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histories methodology implies an anti-theistic argument, by yielding a
non-zero probability that the universe arose from nothing at all.

Instead, we will content ourselves by recalhncr Hawkmg s-words in A
Brief History of Time (p. 185)

Up to now, most scientists have been too occupied with the development of new theories
that describe what the universe is, to ask the question why. On the other hand, the people
whose business is to ask why, the philosophers, have not been able to keep up with the-
advance of scientific theories. In the seventeenth century, philosophers considered the
whole of human knowledge, incliding science, to be their field and discussed questions
such as: Did the universe have a beginning? However, in the nineteenth and twentieth
centuries, science became too technical and mathematical for the philosophers, or anyone
else but a few specialists. Philosophers reduced the scope of their inquiries so much that
Wittgenstein, the most famous philosopher of this century, said “The sole remaining task
for philosophy is the analysis of language’. What a comedown from the great trad1t1on of
philosophy from Aristotle to Kant!

This is unworthy of Hawking. Wittgenstein died in 1951, and did not
_see the rise of a generation of scientifically-literate philosophers who do
regard the whole of human knowledge as their field. The list of twenti-
eth century philosophers who have been technically well-informed about
modern physics is very long. If one had to name the three most influential
philosophers of the twentieth century one might guess Russell, Wittgen-
stein and Quine, though we doubt that Wittgenstein would be the most
famous. Of these, Russell and Quine display strong mathematics and phys-
ics. Even Wittgenstein, trained as an engineer, showed no fear of technical
mathematics. Wittgenstein’s role in twentieth-century philosophy is a com-
plex one, though it can be said that in his later period he held the view
that philosophical puzzles arise solely from confusion over our ordinary
use of language. This is understandable for its time, but its limitations
were seen some decades ago. Finally, one can accuse the physicists of
collaborating in the confusion by formulating their theories in ways which
- are infected with bad philosophy. Salient examples are the formulations
of both SR and QM in terms of observers. These are positivist accretions
which persist even today among physicists when better versions in terms
of frames and interactions respectively exist, in no small part due to the
efforts of philosophers.
We take it that the present paper, along with those we have been discuss-
ing, constitutes a counter-example to Hawking’s opinions on philosophers.
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DHARMAKIRTI AND PRIEST ON CHANGE

Chris Mortensen
Department of Philosophy, University of Adelaide

This essay looks at the contrasting accounts of change and motion given by the
Buddhist logician Dharmakirti (seventh century C.E.) (along with his commentator
Dharmottara [eighth to ninth centuries C.E.]) and the contemporary analytical phi-
losopher Graham Priest. In what are otherwise strikingly similar positions, they take
opposite views on the Law of Non-contradiction—the former appealing to it and the
latter denying it. The question of who is right is raised, and a qualified endorsement
of Dharmakirti is entered.

Priest’s Inconsistent Account of Motion

Graham Priest (1987) argues that motion must be an inconsistent process. The idea
of motion and change as inconsistent has a long history, from Heracleitus to Hegel.
As a major premise in his proposed account, Priest, following Hegel, argues that an
account of motion at a given time ought to be intrinsic rather than in relation to other
times. He offers two main arguments in favor of this premise. First, he proposes that it
must be possible to distinguish” from its instantaneous state alone whether a body is
in motion or at rest. An instantaneous snapshot ought to reveal which components of
a process are in motion and which are not. Now, one might initially think that one
would have velocity vectors, which intrinsically constitute the instantaneous velocity
of a particle. However, Priest points out that velocity, as the derivative of position, is
not intrinsic. It is a relation to nearby times; it is the limit of average velocities for
shorter and shorter times. As such, motion considered as velocity could not be a
property internal to the instantaneous state itself; there must be an additional ingre-
dient to have motion.

Priest’s second argument is a challenge: if you believe that Laplacean deter-
minism is at least possible, then you allow that there is a possible world in which any
instantaneous state in the future is determined by the present state. But this can only
be so if change is intrinsic: the instantaneous non-relational state cannot determine
whether a particle is in the same place or different places at other times. But if it were
logically necessary that change were a relation between times, then Laplacean
determinism would not even be coherent.

In order to set aside this second argument, let us be clear about what Priest
is denying. He is denying the proposition that velocity being nonzero suffices for
motion; that is, v # 0 — motion. (The converse implication might also be disputed,
but that need not concern us here). Now, | suggest, one should not go so far as to say
that Laplacean determinism is impossible or incoherent. It is possible for motion to
be as Priest and Hegel say it is. On the other hand, Priest and Hegel must admit that
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the relational facts of the matter are present even in their story; that is, v # 0. Hence,
their view is at least vulnerable to the charge of multiplying entities beyond neces-
sity. The alternative, that nonzero velocity is stifficient for motion, is simpler and
explanatorily clearer. Moreover, there is also the difficulty that Laplacean deter-
minism appears not to be true, because of the probabilistic nature of quantum
measurement.

However, | am more interested in what Priest does with this account. He con-
tends that a plausible intrinsic account can be given if we think of a moving particle
as occupying a small spread or interval of spatial points at any given time. He argues
that the classical position function can be thought of as the leading edge of this
interval, and that speed can be thought of as a measure of the extent of the spread,
with the limiting case of zero being the absence of motion.

So far so good. Indeed, so far so consistent: the particle is smeared out; it occu-
pies spatial extension. Now, spatially extended things are no news, and hardly in-
consistent. What makes the theory inconsistent is the further premise that no single
body can be in distinct positions at the same time. More precisely, a body’s having
position p1 at t excludes that body having position p2 at t, if p7 and p2 are different
positions. Moreover, this premise applies even when both positions belong to the
postulated spread of positions at ¢, a point that might seem questionable if the parti-
cle is thought of as spatially extended. Keep the premise in mind. Priest does not
offer any further argument for it that I can find, but it is essential to his account. We
will see that Dharmakirti is likewise committed to a parallel assumption.

Dharmakirti’s Account of Change

Dharmakirti’s central argument is found in A Short Treatise on Logic (Nyaya Bindu),
along with Dharmottara’s Commentary (see Stcherbatsky [1930] 1962, especially
1:103-105, 414; and 2 : 8, 94, 196-197). What follows is a modernized reconstruc-
tion, but it essentially follows Stcherbatsky’s own twentieth-century reconstruction.

Consider a thing that changes from having a property F (such as blue) at t7 to
having an incompatible property G (such as yellow) at t2. Then the body-at-t7 has
an incompatible property from the body-at-t2. Thus, they cannot be identical: what
it means to have incompatible properties is that the one excludes the other; one and
the same thing cannot possess both. Hence, all things are made up of temporal
atoms or time slices that are entirely distinct; no two are identical. No one thing
changes; there are merely differences between distinct time slices. Thus the Buddhist
doctrine of momentariness is deduced.

Stcherbatsky dlescribes this as an application of the “Law of Contradiction,”
which is the traditional name for what we now commonly call the “Law of Non-
contradiction” (LNC): ~(P & ~P). LNC is indeed involved in the reconstructed
argument below, and Dharmakirti and Dharmottara certainly spend considerable
time defending it (secs. 12 ff.). But one might at least implicate Leibniz’ Law (LL), as
well:. if two things are identical then they have the same properties. The argument is
of the form:
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1. First, x =y & Fx & Gy & (z)(Fz —» ~Gz) implies x =y & Fx & ~Fy (by first-
order-logic principles).

But, x =y & Fx & ~Fy implies Fx & ~Fx (by LL).

Now, ~(Fx & ~Fx) (LNC).

So, ~(x =y & Fx & ~Fy) (2, 3, modus tollens).

However, Fx & Gy (by observation).

Hence, Fx & ~Fy (since F and G are incompatible).

So, ~(x =) (4, 6, first-order logic).

AU

Here, x and y are the body-at-t7 and body-at-t2, respectively, and (z{Fz — ~Gz)
expresses the incompatibility of F and G, the mutual exclusion of F and G.

Notice that Priest is likewise committed to (1) and .(2) and indeed their ante-
cedents: body b-at-t7, in motion, has the properties of being at place p7 and at place
p2, and, as we have seen, being at p7 excludes being at p2. (Dharmakirti’s move
from [5] to [6] is parallel.) Now, for Priest, there is no question as to whether b-at-t7
is self-identical. Since these facts are certain, there is no question of their being
overridden by LNC. Hence, being at p7 and not being at p7 both apply to b-at-t7,
and motion is inconsistent. One person’s modus ponens is another’s modus tollens.

Leibniz’ Law
In passing, it is worth noticing that there are different versions of Leibniz’ Law in
operation here. Three equivalents can be distinguished. The whole inference above

is given by:

4.1 (x)y)(Fx & Gy & (z)(Fz — ~Gz)) — ~(x = y))

“ Substituting ~F for G satisfies (z)(Fz — ~Gz), so this implies:

4.2 (X)Y)(Fx & ~Fy) = ~(x =y))
The latter is obviously equivalent to LL in its familiar form:

4.3 (X)y)x =y — (Fx — Fy))
Conversely, assume (4.2) and the antecedent of (4.1). From the latter, we may de-
duce (z)(Gz — ~Fz), and hence Gy — ~Fy. Applying modus ponens gives ~Fy, and
conjoining gives Fx & ~Fy. This is the antecedent of (4.2), so we obtain ~(x = y).
Hence, (4.1) is equivalent also.

Space-time Theory

Time Slices
Who is right here—Priest or Dharmakirti? | confess a definite inclination to side with
Dharmakirti and the Buddhists, with some qualifications.
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The first and most obvious point is that twentieth-century space-time theory
sides with Dharmakirti. Space-time is a whole whose atomic parts are space-time
points. These stack into slices that make up space-time frames. Continuing objects
are thus made up of time slices, which are themselves spatially complex, in accor-

" dance with Buddhist theory. The basic items of reality are space-time points, and
everything else is wholes of these. Indeed, it is tempting to believe that Buddhist
thought on this point constitutes the first coherent attempt at a space-time ontology,
although, of course, its vindication from speculative status awaited much more
sophisticated science.

Relativistic Invariance

Furthermore, there is a problem for Priest and Hegel, namely that in relativity theory
motion is relative to frames, not absolute. Hence Priest’s theory is not relativistically
invariant: the spread of inconsistent locations vanishes in a frame in which the body
is at rest,

Actually this is not such a damaging problem. So what if inconsistent theory is
appropriate for the description of space-time frames but not invariance? This locates
its sphere of usefulness, but does not destroy it. Even so, inconsistency would be
eroded as a basic character of the world. It would enjoy the same status as space and
time separately, without enjoying the full reality of the invariants of space-time.

No Atomic Times? -

The viability of this account of the basic ontology of the universe turns on whether
the universe is, at bottom, atomic, that is, punctate. At the very least it needs that
_time be punctate. If time had no instants, only nested shorter and shorter intervals,
then there would be no ultimate time slices out of which to build continuing exis-
tences.

It is certainly true that relativity theory, both special and general, postulates
space-time as punctate. Thus, our best theory of the (large-scale) structure of the
universe supports the atomicity of space and time (in the small scale, which is hardly
surprising!). Quantum theory is much more equivocal. It is true that Hilbert spaces,
the phase spaces of QM, are described by sharp-valued coordinates including space
and time coordinates. But, as many texts point out, this is something of an illusion:
the- Heisenberg Uncertainty relations for spatial position P and time T require that
both have indeterminacy: §P.8Q and 5T.8E are both bounded below (Q and E here
are, respectively, momentum and energy). There are technical issues here: it is pos-
sible to recover exact values for position and duration using a formal device called
the Dirac Delta function, but the cost is a considerable complication of the mathe-
matics, 5o the resulting theory is less simple.

However, it is also true that a few theorists have suggested that it is unnecessary
to have exact positions and times (see, e.g., Mortensen and Nerlich 1978). The idea
here is simply that there are intervals of ever-diminishing size, but no basic sizeless
atoms of space and time. This seems to have been Aristotle’s view, and it is certainly
a natural view, if only because no one has ever detected a point. It is suggested here
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that there is no conclusive proof either from evidence or from a priori argument, or
both, that reality could not be temporally nonatomic. If this right, then support for
Dharmakirti must be tempered with the proviso that reality should turn out to be as
our best current space-time theory says it is, rather than the non-punctate alternative.

Differentiating a Scalar Field

Stcherbatsky raises the example of the differential calculus ([1930] 1962, 1:106-
108). He contends that it shows that time is punctate. As we have already seen, there
is no doubt that differential calculus employs functions on sets of points that are
isomorphic with the Real Numbers. So anyone wishing to deny the atomicity of
reality ought to show how calculus can be done on the kinds of manifolds they are
postulating, for it is in terms of differential equations that the basic laws of nature
are written. But it should not be thought that this is such an impossible task. There
are various approaches that have been taken regarding this problem; for example, on
the use of synthetic differential geometry, see Kock 1981 or Bell 1988.

The application of calculus in physical theories actually looks at first glance
to make things worse for Stcherbatsky and the Buddhists. For instance, we find the
velocity of a particle by considering the position function of the particle over time.
Now this is already problematic for Buddhist logic, since it postulates a particular
that continues to be self-identical at different times: a particle is a particular, if any-
thing is. Similarly, wanting to find the particle’s change of mass over time, or the
dynamics of its temperature, involves us in the mass function M(t) and temperature
function T(t) of the particle. Thus, it seems that the Buddhist doctrine of momentari-
ness is immediately defeated by differentiation, since the latter postulates identity
over time.

More careful accounts of taking the derivative of a scalar field avoid this prob-
lem for the Buddhists, although further problems emerge. We suppose that the uni-
verse (or a region of it) is pervaded by a field, such as a field of gravitational poten-
tials, or a field of temperatures. That is, a scalar quantity-kind, such as temperature,
takes a definite value at different points in space (the space in question might not
be physical space but phase space). The universals in question are the individual
temperatures at points in the field: they are universals because they can take an
identical value at different places distant from orie another. Thus far, there are no
continuing particulars. There is a problem over the identity of the kind of field at
different points: all temperatures, for example. But if we have universals at all, then
presumably there is in principle no problem with higher-order properties of univer-
sals and relations between universals: some such account of what binds quantities
together into quantity-kinds would have to be right.

Now we take the derivative by taking the average variation in the field over
smaller and smaller nested intervals of the independent variable (e.g., distance or
duration) in a given direction as determined at the point at which the derivative
is being taken. The limit of these averages as the independent variable tends to zero
is stipulated to be the rate of change of the field in that direction. Note that one
can differentiate at a point in whatever direction and along whatever pathway we
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choose. There is no preferred direction such as following the track of a particle
in phase space. One can choose to do that, of course, but differentiation does not
require it. .

There is one preferred direction of the field, the one in which the magnitude of
" the derivative is the greatest, and this is called the gradient of the field. This is the
track down which the system will proceed without outside interference. Think of the
contours of a hillside: the route down which water will flow is the route of steepest
descent. But that doesn’t significantly alter the point of this story, which is this: that
we don’t have to track a particle through time or space. There is just the all-pervasive
field with a universal instantiated at every point in it, and we can differentiate in
whatever direction we choose.

Differentiating a Vector Field: Direction and Distance at Different Places

For the sake of completeness, it needs to be noted that space-time theory has to
do more differentiating than this, and this leads to an increase in the conceptual
resources required. In addition to differentiating a scalar field one wants to take the
second derivative of position, namely acceleration. Taking the next derivative by
differentiating the resulting vector field is not an immediate requirement, however,
for there is no natural way of comparing vectors at different points, because vectors
have a direction as well as a magnitude, and we have yet to import directions. This
is solved in general relativity theory by introducing the further concept of an affine
connection. An affine connection provides for the idea of parallelism, specifically
of a parallel transport between vectors attached to differing (nearby) points. This,
evidently, serves to introduce the idea of sameness of direction at different points. In
point of fact, something even stronger is introduced into space-time: the idea of a
metric. A metric provides a comparison of distance between neighboring points, and
along a path. The distance here is generally space-time distance rather than spatial
or temporal distance. A metric determines a unique affine connection but not vice
versa. :

The metaphysics of distance and direction have to be carefully worked out. It is
apparent that space and space-time cannot adequately be described without systems
of relations, so realism about spatial universals is realism about relational universals
of various kinds. | just want to claim here that this apparatus would seem not to need
anything more in principle than the identity of various universals at different points.
Useful work on this has been done by Peter Forrest (Forrest and Armstrong 1987;
Forrest 1988) and John Bigelow (1988).

Universals and Particulars

Thus, the Buddhist doctrine of momentariness had best be interpreted as the claim
of disidentity of atomic particulars. Lurking in the background of this discussion has
been the distinction between universals and particulars, which the Buddhist logi-
cians certainly knew about. Now it is continuing particulars that are being primarily
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denied: universals are not the sorts of things of which one can take space-time slices.
And it is particulars that are relevant to religious practice and the Buddhist doctrine
of impermanence, for it would seem that we ourselves are particulars."’ In the last
section above, we defended Dharmakirti from the specter of the Moving Particle,
by arguing that properly understood differentiation does not require the identity of
objects over time. A more modern account of field theory requires scalar universals
distributed across space-time. Universals are fully in all of their instances, so there is
identity across space-time; but, of course, from the beginning the theory of universals
was designed precisely for universals to be self-identical over time and space.

Unfortunately Dharmakirti’s position is made more difficult by the strong tradi-
tion of Buddhist nominalism to which he subscribed. This is hardly surprising—the
Buddhists appear as the Knee-Jerk Impermanence Police here. But it does mean that
the defense given above to the objection from the Moving Particle is unavailable.
Notice, too, that this cannot be turned by insisting that quantities are merely rela-
tional after all, for relations are equally universals. | suggest, however, that admitting
universals is a small price to pay. Still, there are several complications, as we shall
see.

First, in Plato’s theory universals are eternal, existing independently of their
instances. But in Aristotle’s rival account, which the Buddhist logicians knew about,
universals are immanent; that is, they exist in and only in their instances. This surely
opens the door for impermanent universals: a universal ceases to exist when all of its
instances do. Hence, adopting Aristotle’s account would permit a universal doctrine
of impermanence. This battlé is not yet settled. In recent decades we have had
Michael- Tooley (1977} arguing in the name of Plato against David Armstrong’s
Aristotelian universals (1978). Armstrong and Tooley agree that a (basic) law of
natire is a relation between universals; however, Tooley argues that laws can fail to
be instaptiated .(such as a law governing a temperature that as a matter of fact is
higher than any realized). In that case, if one wants to say that the counterfactual “if
that temperature were realized, then ...” holds, one would have to look for a truth
maker, and the only truth makers are relations between universals that continue to
exist when uninstantiated. :

Second, for the Buddhist logicians, universals do not exist in the external world,
only in the mind (where they are genuinely existing). It is natural to project objective
properties onto the world, but these are constructs of an active mind, illusions. All
there is in the mind-independent world are “powers” to produce (universal) ideas in
us, and it is well known that different powers can produce the same mental result.
The doctrine of mental universals was in strong dispute with realist schools such as
Nyaya and Vaisesika. Stcherbatsky ([1930] 1962, 1:446) discusses “The Experiment
of Dharmakirti,” which was influential as an argument for the mentality of univer-
sals. This argument proposes that the phenomenon of inattention shows that per-
ceptions can be present while the understanding fails to be engaged. In turn, this
shows that understanding -is an active and constructive process. But it is under-
standing that is employed when general concepts are employed. If there were an
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objective sameness in the world corresponding to the general term, then an active
and constructive understanding would be otiose; knowledge would simply be pro-
duced directly in the mind. Against this argument, while we can agree that inatten-
tion is certainly a philosophically interesting phenomenon, and while it is unques-
. tionable that the mind constructs and projects so that some of our classifications are
constructed, still this does not go to show that there are no objective samenesses in
the world. Indeed, the very employment of the language of “powers” is general; we
must allow at least the lively possibility that the same power manifests itself in more
than one place.

Third, an assumption unexamined so far is that a person is a particular. That is
what is needed to salvage the religious relevance of the doctrine of impermanence
from the threat of universals. But there also lurks the possibility that the soul is a
universal, one in many. This kind of view was adopted some centuries later by
Averrogs, for example. If it were right, then when the appropriate universal is later
instantiated, so is the person. This opens the way for a kind of survival, even eternal
survival if Platonic universals are adopted. Lest the position seem too ancient, reflect
that Hilary Putnam’s 1960 functionalism postulated that minds were systems of
relations between logical states, and multip!y realizable. This does seem to have the
consequence that if identical functional states are realized in two different places (as
with copying a disk, for example), then there would be the same mind. Even so, it is
very difficult to believe that souls are universals. If we took two identical twins, so
icdentical that they had the same thoughts, then it would surely not follow that they
had the same mind. If one dies while the other continues to live, then one mind
exists but the other does not. This strong intuition is, | think, at the basis of the idea
that a person is not a universal.

Whatever is the case here, the scientific arguments for universals of some form
are strong. Even before modern field theory and relativity theory, Newton’s physics
was up to its neck in universals. Consider the law of gravitation, F = Gmymy/r?,
which relates the force of gravitational attraction to masses and distances in their
respective units. Masses are obviously universal-like, since they can be identical in
different bodies and at different times. The whole law postulates a regularity across
space and time: wherever such mass universals are instantiated, they will attract one
another with the same precise force and undergo the same acceleration. These are
not mere powers, but substantive postulates about existing things. (On these matters
see, e.g., Forrest and Armstrong 1987; Bigelow 1988; Mortensen 1987.)

It must be conceded to Dharmakirti’s Experiment that it is right to be suspicious
of the genuine unity of external universals. For example, the case of colors makes it
clear that what is in the world might be a power (to produce secondary qualities) and
that different powers can produce the same mental effect. Intuitions about what is
constructed and projected are thus apt to be unreliable. But this proper caution is
bypassed by the results of our best science. Unless a wholesale reconstruction of
basic physical theory can be demonstrated, the criterion of rationality here is the
usual scientific one, and real generalities and regularities must be accepted.
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Conclusion

Thus, Buddhist nominalism is an unnecessary restriction. All that the doctrine of
impermanence needs in order to be applicable to people’s lives is that people are
particulars and that particulars are impermanent. The thesis that people are partic-
ulars is a rejection of souls as universals. We noted that this is not quite so obvious
but that it is reasonable nonetheless. The thesis that particulars are impermanent is
common experience, as the Buddha saw. It would seem from Dharmakirti’s argu-
ment, then, that we have reason to believe his conclusion of the momentariness of
existence, appropriately construed so as to allow universals, against Priest’s incon-
sistent account. However, we also noticed that there are various complicating fac-
tors. Chief among these was the question of the contingent truth or falsity of the
thesis that physical reality is atomic. Only if that is true can we make Dharmakirti’s

- argument work.
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Computing Dual Paraconsistent and Intuitionist Logics

1. Topological Spaces and Logics

It is well known that intuitionism has a natural connection with topology, in that
the usual intuitionist propositional calculus can be semantically characterised in terms
of Heyting algebras, which in turn arise as algebras of open sets on a topological space.
It is also known, though less well known, that algebras of closed sets are inconsistency-
tolerating, or paraconsistent. By this we mean that theories can be constructed by allowing
sentences to take values from elements of an appropriate algebra (in this case an algebra
of closed sets) in such a way that the theory is negation-inconsistent while nontrivial, i.e.
not every sentence is in the theory.

It is not difficult to see informally how this works, by looking at the intuitionist case
first. A Boolean algebra is isomorphic to a field of sets. The sets can be thought of as
sets of “worlds”. Assigning a proposition to an element of a Boolean algebra, a set of
worlds, can be regarded as equivalent to declaring the proposition to be true at just those
worlds. If the field of sets is additionally endowed with a topological structure, then the
intuitionist point of view can be described as proposing that truth is only ever truth on
open sets of worlds, that a proposition is only ever true at the points of an open set. Since
intuitionist negation is an operation on intuitior;ist propositions, the points at which the
negation of a proposition are true also form an open set, the obvious candidate being the
interior of the set-theoretic (Boolean) complement of the original set. But this leaves the
possibility that the set on which either a proposition or its intuitionist complement are
true, which is to say the union of the two open sets, will not be the whole space unless the
open sets are also clopen. The whole space is, needless to say, an open set. Indeed, it is
the set on which, according to Intuitionism, propositions must always be true in order to
be semantically valid (logical truths).  Every topological space thus gives rise to a logic,

as the set of sentences which, when their atomic sentence-letters are assigned to arbitrary



open sets, are true at all points in the space. Hence the law of excluded middle Av-A fails
to be valid in such logics.

The dual paraconsistent point of view requires that propositions only be assigned to
the closed sets of a topological space. If paraconsistent negation (in this paper written r) is
to be an operation on closed sets, then the obvious candidate is the closure of the Boolean
complement. With the natural assumption that conjunction corresponds to set-theoretic
intersection, this means that a proposition and its paraconsistent negation will both be
true on the boundary of the two sets, itself a closed set and non-null unless the closed sets
are also clopen. So, if a theory is determined by the stipulation that its members be those
sentences true on any of a suitable collection of closed sets which includes a boundary,
then that theory will be negation-inconsistent but in general nontrivial.

These ideas can be presented more formally as follows. Begin with a propositional
language £ with binary operators (&,v) and a unary operator r. A functionv: L — C,
where C is any set-theoretic closure algebra, is a paraconsistent valuation if it satisfies (i)
v(p) € C for any atomic letter p (ii) v(A&B) = v(A4)Nv(B) (iii) v(AvB) = v(A)Uvu(B) (iv)
v(rA) = the closure of the set-theoretic complement of A. A subset D of C is a semifilter
iffif S, € Dand 5; C S; then S; € D. A semifilter D is a filter iff if S; € D and S, € D
then 5, N S2 € D. A semilogic L is a set of propositions closed w.r.t. uniform substitution
and having a binary conscquence relation |= satisfying: if A € L and A |=; B then
B e L. If A€ L we also write = A. If a semilogic L also satisfies the condition that
if 1 A and |=¢ B then |=p A&B, then it is a logic. A closure algebra C and a filter
D on it then determine a logic L via the stipulations (i) L = {A: for all paraconsistent
valuations v on C, v(A) € D} and (ii) A |=r B iff for all paraconsistent valuations v on C,
v(A) C v(B). There are other possible definitions of |= here, for example (Vv) (if v(A) € D
then v(B) € D); but since there can be different D’s on the same C, it seems a good idea

to have a = which is independent of any particular D. The set D is called the designated



values of L in C. Note that such a set L is always closed w.r.t. uniform substitutions,
conjunctions and the consequence relation |=r. If C is a finite closure algebra, then such
an L is finite-valued.

An L-semitheory relative to a logic L is any set of sentences closed w.r.t. |=r. (L-
semitheories are not necessarily closed w.r.t. uniform substitutions.) An L-semitheory
also closed w.r.t. conjunctions is an L-theory. An L-theory Th is inconsistent iff for some
A, both A € Th'and rA € Th, otherwise consistent; and trivial iff Th = £, otherwise
nontrivial. A logic L is a paraconsistent logic iff there are inconsistent but nontrivial
L-theories.

If L), L, are logics determined by filters D, and D, on the same closure algebra C,
then if Dy C D, then L; € L,. (The latter C cannot be strengthened to C because of the
possibility that no theorem A of L, take values in D;—D,.) So, to produce a weaker logic
on the same closure algebra, restrict the designated values. The limiting case of weakness
is D = {V} where V is the maximal element. The other limiting case, D = C — {A} where
A is the minimal element, does not in general produce more than a semilogic since such a
D might only be a semifilter.

A set of designated values can be used to determine a theory as well. If v is any para-
consistent valuation on C then choosing D and setting Th = {A : v{4) € D} determines
a theory of the logic determined by C and D. If logics L, C Ls, then every Li-semitheory
is an L,-semitheory and every Li-theory is an L,-theory, though the converses fail. So
a theory determined by a valuation and set of designated values is a theory of any logic
dctermined by that D or any smaller D. So if D; C D; and L, is a paraconsistent logic, so
is L. Obviously also, theories determined by smaller sets of designated values are smaller
theories.

These definitions can easily be reworked substituting intuitionist negation =+ for para-

consistent negation r, an open set algebra O for the closure algebra C, and the interior



of the set theoretic complement for the value of a negated formula. So there is a natural
topological duality between intuitionist logics and theories on the one hand and the above
paraconsistent logics and theories on the other. There are other paraconsistent logics (e.g.
the relevant logics and the Brazilian logics) to which these remarks do not apply, though
the present structures can fairly be characterised as Brazilian-style. The duality runs
quite deep, in that the topological duality is reflected in the fact that topos theory gives
rise as naturally to paraconsistent logics as to intuitionist logic, as announced in (10] and
demonstrated in [11]. In the light of these results, the usual public-relations exercise for
intuitionism simply cannot be sustained.

Finite-valued intuitionist logics and their corresponding finite interior algebras have
proved useful in model theory. Their dual paraconsistent logics are beginning to be useful
as inconsistent mathematics is developed (see [9] also {5] (7] and [§]). So it would seem
to be useful to display all such structures, and that is what the present study aims at.

Further computational directions and applications are reviewed in the final section.

2. Implication and Deducibility

The present approach to paraconsistent logics seems to be simpler than those of Fitting
[2] and Hardegree (4]. However, computational questions about the implication operator
— on paraconsistent logics are consciously ignored h;re. There are a couple of reasons for
this. In the first place, the present state of inconsistent mathematics is quite extensional
or zero degree, as is the bulk of classical mathematics. Insofar as one is interested in
questions of deducibility one has the natural metalinguistic }= corresponding to < (or C)
on the background lattice, so that inserting an — into the objec{; language seems fairly
unnecessary. Second, the exercise of adding an — to closed set algebras and logics is not

too difficult. This is contrary to what seems to be suggested by Goodman in [3], though he

deserves credit for seeing the connection between closed sets and inconsistency-toleration,



ke, yve

also noticed by Filtting, Hardegree and Lawvere.

A number of natural desiderata for = and — can be given. Among these are:

(YEA AEB /. =B.

(2) For any theory Th, A€ Th, A=B /. B € Th.

(8)AEBiff EA— B.

(W EAEASB /i B

Now (1) holds for any D closed upward w.r.t. C as we have required, since (Yv)(v(A) € D)
and (Vv)(v(A) C v(B)) ensure (Vv)(v(B) € D). Number (2) holds because it has been
stipulated for theories. On (3), one has to fix two variables, a definition of — as well
as D. If (a): we define v(A — B) = V (equivalently = rAvB) iff v(4) C v(B), and
v(A — B) = A otherwise; then (3) holds for any D C C (since if (Vv)(v(A4) C v(B)) then
(Vv)(v(A — B) = V), while if (Jv)(v(A4) £ v(B)) then (v)(v(4A — B) = A ¢ D). This
makes this definition of — suitable for the logic which is the intersection of all closed-set
logics, since it is appropriately general. Note that = (A&rA) — B fails in general. Another
definition for — is (b): v(A — B) = v(rAvB if v(4) C v(B), and v(4 — B) = v(B)
otherwise. This definition is not too far from the — of RM and RA2n + 1, having the
first clause in common. Here, (3) fails except if D is defined as in intuitionism to =
{Vv}, which yields the minimal paraconsistent logic for that C. Indeed, given this D then
another definition for —, namely (c): the full RA{-ish — with v(A — B) = v(rA4&B) if
v(A) £ v(B), also satisfies (3). \

Given (1) and (3), (4) follows. A fifth possible condition on |= and —, the semantic
deduction theorem 4,,...,A, = B iff A,,...,An-1 E An — B, needs a definition of
Ai,..., A, = B. Given the natural glb{v(4;) : 1 £ i < n} C v(B), the SDT fails for
all three definitions (a)-(c) of the previous paragraph. This is not necessarily a bad thing
since the same happens in the usual relevant logics. Various one-way versions hold.

So there are various interesting implications on these structures with natural and gen-



eral properties and we do not pursue the matter further.

3. Summary of Algorithm

It is standard theory that topological spaces can be generated from preordered sets,
where a preorder is a reflexive transitive relation. The present approach detours via modal
logic in what we believe is a naturally intuitive way. Given any subset S of a preordered
set thought of as subset of worlds at which a given proposition P is true, the interior
of § is that subset of § at which the proposition necesserily P would be true, where
necessarily P is interpreted as for the modal logic S4. Thisis {z: (Vy)(z Sy Dy € S5)}.
The closure of S is that superset of 5 where the proposition possibly P would be true.
This is {z : (y)(z < y&y € S)}. The open sets are then those elements of the power
set Boolean algebra which are interiors, and the closed sets are those which are closures.
If we begin with a preorder, then each of these satisfy the postulates for open sets and
closed sets of a topological space respectively, and moreover the open sets are the Boolean
complements of the closed sets, and vice versa. In particular the open sets are closed w.r.t.
N and U, as are the closed sets. Intuitionist negations of propositions (i.e. sets of worlds)
are then computable, as the interiors of the set-theoretic complrments of open sets; and
paraconsistent negations are computable as closures of set-theoretic complements of closed
sets.

Computing the preorders is of interest. The number of different preorders on, say, 5
worlds, is large, and in particular contains many isomorphs, so considerable pruning was
required. First, preorders which contained symmetric pairs of worlds, i.e. for which z # y
but £ < y and y < z, were eliminated. This was done on the grounds that when turned
into algebras such pairs of worlds behaved as a unit, both being either in a closed set or
out of it, both in an open set or out of it, so could be replaced with an equivalence class

and thus be isomorphic to a topological space of smaller size. Thus < was required to be



antysymmetric as well as transitive and reflexive, turning the preorder into a poset.
Disconnected outrider worlds for which weak connectedness (Jy)(z < y vy < z)
fails unless z = y, represent topological spaces for which the singleton {z} is a clopen
set. Thus the subspace {V, {z},V — {z},A} is as logic, a Boolean algebra. We took the
opportunity to eliminate such well-behaved structures as of lesser interest. A reasonably
fast isomorphism test for posets was obtained by matching each world of one with the list
of those worlds of the other with the same total of arrows in and arrows out. The set of all
permutations without repeat from those lists is the set of candidate isomorphisms. These
can then be tested according to whether the two arrays are identical under any candidate
isomorphism. If even one candidate produces identity, it is an isomorphism; while if none
do, the two posets are nonisomorphic. It speeds the isotest considerably if only those
orders are considered which are subsets of the order on the natural numbers, since any
other order is isomorphic to one of these. This was done early in the poset generation loop.
So the procedure is: generate all five power-set Boolean algebras for universes up to
size = 5 (2" elements for dimension n), together with their set theoretic operations U, N, —.
The U and N double as v and & on the logics. For each size, generrte and test all binary
relations which are reflexive, antisymmetric, transitive and embeddable in the natural order
on that size. We called these Frasts, for Function Reflexive AntiSymmetric aﬁd Transitive.
(The ‘F”’ arises because we represented these by their characteristic functions.) Eliminate
isomorphs, producing isofrasts; and use these as kernels around which to permute isofrasts
of greater size. Discard isofrasts failing weak connectedness, producing isoconfrasts. The
isotest is the major slowing factor beyond size § and parallelism is indicated here. Fix an
isoconfrast, and for each element of the power set Boolean algebra, compute its interior

(necessitation) and closure (possibilification). The sets of interiors and closures are two



latticés on which intuitionist and paraconsistent negations are computed, as
described above. Repeat for each isoconfrast. The programme is dynamic, since topological
operations and negations are computed as each new isoconfrast arises.

Logics are displayed up to size = 5 (47 logics at that size), with the elements of the
power set coded as binary 5-tuples, and recoded in decimal more in keeping with their
traditional conception as values of a many-valued logic. Those subsets of the power set
Boolean algebra which are interiors then constitute the values of the intuitionist sublogic,
while the closures are the values of the paraconsistent sublogic. Inclusion of tables for
necessity and possibility means that the results also include computations of finite-valued
S4-ish modal and epistemic logics, of 2" values. We note that the role necessity plays in in-
tuitionist negation qualifies it as an intuitionist operator, while correspondingly possibility
is a paraconsistent operator.

Future directions which we hope to pursue include the following. Parallelising the
algorithm as noted above, and concomitantly increasing the size, are indicated: run times
for the present algorithm on a VAX are pretty limiting (see Table I). Visual disp1a§ of
results can be substantially improved using geometrical structures rather than numbers.
Posets fairly obviously lend themselves to geometry. A Boolean algebra size = n (i.e. n
baseworlds) is naturally thought of as an n-dimensional structure with two subalgebras,
paraconsistent and intuitionist. Add in a third variable, distinguished elements, and one
has a case for geometry and colour. A different approach to representing n-dimensional
Boolean algebras utilises the interesting and surprisingly difficult equivalent problem of
visually representing Venn diagrams for more than three sets, on which see [1]. Finally,
application of these results to mathematical theories or finite-valued reasoners, partly
incomnsistent and partly intuitionist, should be made. Here we have in mind adapting the
methods of [5] to study the interaction between functionality and propositional aspects

discovered therein.
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RESULTS

Table I ~ Runtimes VAX 11/785
Size Best CPU time | No. of logics
(no. of baseworlds) (millisec)
1 130 1
2 40 2
3 120 3
4 690 11
5 9100 47
6 209900 255

(isoconfrasts only)
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Table II: Finite-valued paraconsistent,
intuitionist and modal logics

to size = 5.



CSIZE = 1

Boolean tables

&l 10 | ~ vi 10
. | | |
1l 10 ¢ 0 1{ 1 1
0 00 (1 0f 10
Isoconfrast No. = (1,1)
1
begin Logic(l,1)
No.| Binary || Possibility | Paraconsistent | Necessity | Intuitionist |
| Character {l ( closure ) | Negation | (interior) | Negation
+ ———tp o tm————— —_——— + +
1] 10 1 11 0 0t 1 11 0 0 |
01 0 0 0 | b 1| 0 0 I 1 11
—_— = ++ ———tm e + ————p e +
| end Logic(l,1)
e e e e e e +
SIZE = 2
Boolean tables
&{ 3210 |~ vi 3210
i _1
313210 10 313333
212200 11 2{ 3232
it1 010 | 2 11 3311
0 0000 | 3 0 3210
Isoconfrast No. = (2,1)
11
01
begin Logic(2,1)
No.| Binary |{ Possibility [ Paraconsistent | Necessity | Intuitionist |
| Character It ( closure ) | Negation { (interior) | Negation |
———t———— T o———— + - + - +
31 11 |} 3 11 | 0 00 | 3 11 | 0 00 |
21 01 |1 3 11 | 1 10 | 2 o1 | 0 00 |
1 10 11 1 10 | 3 11 | 0 00 | 2 01 1
0f 00 |1 0 00 | 3 11 | 0 00 | 3 11 |
———mm e ——— et ———— L ettt + D +

end Logic(2,1)
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SIZE = 3

Boolean tables

14

&l 7 6543210 | - vi 765 43210
| 1 =
71776543210 (0 7177777117 771
6l 6 6323200 [ 1 61 76 717 6 6 7 6
51 35130110 | 2 51 77575755
41 4 2140210 | 3 41 7 7 7 4 7 4 4 4
31 333030600 1| 4 3176 S73 653
222020200 |5 21 767 4 6 2 42
1{ L 0110010 | 6 1{ 77 S 4S5 411
o( 00000000 7 0l 76 S 43210
Isoconfrast No. = (3,1)
101
011
001
begin Logic(3,1)
No.| Binary || Possibility { Paraconsistent | Necessity | Intuitionist |
| Character Il ( closure ) | Negation | (interior) | Negation |
——tm e - B e i = + - +
71 111. 11 7 111 | 0 000 | 7 111 | 0 000 |
61 011 || 7 111 | 1 100 | 6 011 | 0 000 |
S| 101 || 7 111 | 2 010 | S 101 | 0 000 |
q| 110 [ 4 110 | 7 111 | 0 000 | 3 001l |
31 001 {1 7 111 | 4 110 | 3 001 | 0 000 |
2| 010 11 2 010 | 7 111 | 0 000 | 5 101 |
1] 100 {1 1 100 | 7 111 | 0 000 | 6 011 |
0l 000 |1 0 000 | 7 111 | 0 000 | 7 111 |
———t——— ++ - e + +- +
( end Logic(3,1)
e ——— e e ————————————— +



Isoconfrast No. = (3,2}

111
011
001
begin Logic(3,2)
No.| Binary || Possibility | Paraconsistent | Necessity | Intuitionist |
| Character I{ ( closure ) | Negation | (interior) | Negation |
e ———————— th—mmmm e o tomm——— R -+
71 111 || 7 111 | 0 000 | 7 111 | 0 000 |
6| 011 1| 7 111 | 1 100 | 6 011 | 0 000 |
S| 101 1 7 111 | 4 110 | 3 001 | 0 000 |
41 110 || 4 110 | 7 111 | 0 000 | 3 001 |
31 001 (1§ 7 111 | 4 110 | 3 001 | 0 000 |
2] 010 ti 4 110 | 7 111 | 0 000 | 3 001 |
1] 100 {1 1 100 | 7 111 | 0 000 | 6 011 |
0] 000 1| 0 000 | 7 111 | 0 000 | 7 111 |
———tm ttmmmmmm e — e e Fmm————— B +
| end Logic(3,2)
Bt ittt e e et R +
Isoconfrast No. = (3,3) _*
111
010
001
begin Logic (3, 3)
No.| Binary il Possibility | Paraconsistent | Necessity | Intuitionist |
| Character I ( closure ) | Negation | (interior) | Negation
B B ettt tmmmm e tmmm e +
71 111 | 7 111 | 0 000 | 7 111 | 0 000 |
61 011 1|1 7 111 | 1 100 | 6 011 | 0 000 |
S| 101 5 101 | 4 110 | 3 001 | 2 010 |
4] 110 | 4 110 |} 5 101 | 2 010 | 3 o0l |
31 001 |} 5 101 | 4q 110 | 3 001 | 2 010 |
2| 010 {1} 4 110 | 5 101 | 2 010 | 3 001 |
11 100 1|1 1 100 | 7 111 | 0 000 | 6 011 |
01 000 11 0 000 | 7 111 | 0 000 | 7 111 |

e e thmmm e B et trmmm T +

| end Logic (3, 3)

B i i i T PP +

15



SIZE = 4

Boolean tables

&{ 15 14 13 121110 9 8 7 6 S 4 3 2 1 O
|

15| 15 14 13121110 9 8 7 6 S 4 3 2 1 0
14f 14 1410 9 810 9 8 4 3 2 4 3 2 0 O
13( 131013 7 610 4 3 7 6 1 4 3 0 1 O
12112 9 712 S 4 9 2 7 1 S 4 0 2 1 0
11111 8 6 511 3 2 8 1 66 S O 3 2 1 O
10 10 1010 4 310 4 3 4 3 0 4 3 0 O0 O
9] 9 9 4 9 2 4 9 2 4 0 2 4 0 2 0 O
8| 8 8 3 2 8 3 2 8 0 3 2 0 3 2 0 O
71 7 4 7 7 1 4 4 0 7 1 1 4 0 O0 1 o
6] 6 3 6 1 6 3 0 3 1 6 1 0 3 0 1 O
sf $ 2 1 5 5 0 2 2 1 1 S5 O 0 2 11 0
4] 4 4 4 4 0 4 4 0 4 0 0 4 0 0 0 O
3 3 3 3 0 3 3 ¢ 3 0 3 0 0 3 0 0 o0
2 2 2 0 2 2 0 2 2 0 O 2 0 0 2 0 o
iy » 0 1.1 1 0 0 O 1 1 1 0 O O 1 O
0 o 0 6 0 0 0 0 O O O O O O'D O O

WAL WD o| U

15( 15 15 15 15 15 15 15 1S 15 15

13( 15 15 13 15 15 13 15 15 13 13
12| 15 15 15 12 15 15 12 15 12 15

101 15 14 13 15 15 10 14 14 13 13
91 15 14 15 12 15 14 9 14 12 15

71 15 15 13 12 15 13 12 15 7 13
61 15 15 13 15 11 13 15 11 13 6
S| 15 1S 15 12 11 1S 12 11 12 11
4|1 15 14 13 12 1510 9 14 7 13

21 15 14 15 12 11 14 9 8 12 11
11 15 15 13 12 11 13 12 11 7 6
0] 15 14 13 121110 9 8 7 6

O NWAEUVA DY
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Inconsistent Control Systems

1. Introduction

Paraconsistent logic is driven by the idea of inconsistency tolerance,
particularly the rejection of the principle that from a contradiction everything can be
deduced. This suggests a methodology for the broad theory of fault tolerant control
systems: where a fault or malfunction arises, seek to represent the fault as a
contradiction and then exploit the contradiction-containment capacities of
paraconsistent logics. This methodology is pursued in the present study. An
inconsistent controller is constructed in software simulation, which represents
malfunctioning by means of an inconsistent virtual model of the situation, that
incorporates elements from both the expected operation of the system and its
observed operation. Results are reported below which indicate that there are
conditions under which such an inconsistent controller is capable of returning a

system to correct functioning.
2. Inconsistent Systems of Linear Equations.

The inconsistent case of systems of linear equations is well known, but little
has been done to analyse its structure. The present section follows Chapter 8 of

Mortensen (1995).

Definition 1 A matrix M is row reduced if (a) every leading entry of a
nonzero row is 1, and (b) every column containing such a leading entry 1 has all
other entries zero. M is in solution form if additionally (c) each zero row comes
below all nonzero rows, and M is in row echelon form.if additionally (d) leading

coefficients begin further to the right as one goes down.



It is known that any matrix can be placed in row echelon form by elementary
row operations, and that the two matrices represent systems of linear equations with
the same sets of solutions. The weaker solution form suffices for a reasonably tidy
presentation of the solution of a system of linear equations with all zero
(nonindependent) rows shifted to the bottom, and in this paper we work mainly with

that.

Consider a system S of n linear equations in s unknowns Xj..Xg, having an
nxs coefficient matrix Mc=[aij] and an nx(s+1) augmented matrix Ma=[Mc,B],
where B=col[by..bp] is the column vector of constants. The system of equations
which Ma represents can be solved by reducing the Ma to solution form and the
solution read off. Reducing Ma to solution form is of course the same as reducing

Mec to solution form for a consistent set of equations.

Now if one has an inconsistent system of linear equations, then one can
always reduce its augmented matrix to row echelon form. The resulting matrix will
contain a lowest nonzero row which has zero in all places except for a 1in the
right hand column. This represenfs an equation of the form 0.xq+..+0.x,=1,
which is an inconsistency. However, the bottom 1 in the right hand column will
also have been used to reduce all other entries on the right band column to zero,
which destroys the information necessary to solve the consistent set of equations
above that row. Clearly this has no sensitivity in seeking solutions to inconsistent

systems of equations.

Definition 2 An augmented matrix Ma=[Mc,B] is in weak row echelon form

(WREF), if Mc is in solution form.

Clearly we have:



Theorem 3 If S is a consistent set of linear equations, then Ma is in WREF
iff Ma is in solution form. That is, Mc is in solution form iff Ma is in solution

form.

This suggests a methodology for the inconsistent case. Reduce Ma to WREF, ie.
reduce Mc to solution form, but do not otherwise touch the right-hand column of
constants except in performing the elementary row operations necessary to bring Ma
to WREF. The bottom portion of the WREF Ma consists of a series of rows with
zeros everywhere except perhaps in the right hand column. These represent a series
of inconsistent identities 0=ry, 0=ry.. which must be satisfied in the solution. A
solution to the original inconsistent system of equations consists of a (consistent) set
of values for the unknowns, together with a (finite) set of inconsistent identities
{0=r;}, obtained by reducing the original augmented matrix to WREF. Together,
these suffice to make the original set of equations hold simultaneously in an

inconsistent space.

There are two complications which are avoided here (see Mortensen 1995
p80) First, multiple inconsistent identities require one to associate each inconsistent
identity with one dimension of the phase space, ie. one of the unknowns Xi,..Xg.
This means in turn that one has to introduce a more complicated geometrical
interpretation. For the present application, it is sufficient to remain with the simpler
case of just a single inconsistency. Second, multiple WREFS are obtainable from
the one inconsistent set of equations. However, this does not render the overall
solution indeterminate, since there are only a finite number of WREFs obtainable
from the finite number of reorganisations of the initial set of linear equations. That
is, any set of equations has in general multiple solutions, as in the consistent case.
The simplest way to deal with this here is to make the assumption common in

engineering of some preferred ordering, such as reliability. That way, the only time



row interchange is used is as part of a final manouvre to shift a row of zeros (except

perhaps for the last place) downward to obtain WREF.
3. Control Systems.

A control system operating correctly and stably is represented in the usual
way by a linear transformation M operating on a (column) vector of inputs u to
produce a (column) vector of outputs y, or y=M.u. For simplicity, y and u are
assumed here to be the same length, so that M is square. A more detailed analysis
incorporating feedback and a state vector x is standardly given by supposing four
matrices A,B,C,D with the two relations:  x(t+1)=Ax()+Bu(t) and

y(t) =Cx(t)+Du(t). However, it is not necessary to incorporate these relations here.

An unexpected and persistent change is postulated in the output. This can be
regarded as resulting from a change in the physical laws of the plant hitherto
described by M. This prompts a distinction between the matrices Mold and Mnew.
Mold is the original M, and is responsible for the predicted output ypred via
ypred=Mold.u . Mnew is the actual laws of the plant, and is responsible for the
observed output yobs via yobs=Mnew.u . Mold is known from the original
specifications of the plant, but Mnew is unknown though its output yobs is known.
One can now define a plant to be wellfunctioning iff yobs=ypred, otherwise

malfunctioning.

To represent malfunctioning as an inconsistency, there are a number of
options. First note that one represents the equation y=M.u as an augmented matrix
whose right hand column is the outputs y , and Whose remaining body is the product
M.u. Reducing this to solution form provides the solution of the input » which
produces that output in the consistent case. To incorporate aspects of what one
knows into an inconsistent picture, ome option is to form the augmented

checkmatrix, Mac, which consists of a core which is Mold.u, a right hand



column which is yobs, and a bottom row (the checkrow), each entry in which is the
sum of that column, except that the right hand bottom entry is Lypred. (This
worked for the simple cases described here, but a more generally useful entry is
E(ypred—yobs)z.) When Zypred is not the same as Lyobs, reducing Mac to WREF
gives a nonzero entry called circ in the bottom right hand corner. The number circ
is a parameter describing an inconsistent environment which is part of the solution

for u to the simultaneous equations which inconsistently identify Mold.u with yobs.

The conjecture, then, is that if a controller is built which at each instant
computes the WREF for Mac, then adjusts the input u to a set of values which take
the inconsistent environment of circ into account, it may be possible to return yobs
to ypred without complete shutdown (zero output). Again, there are a number of
options in adjusting u. One is to return u to umodcirc, which was used in these
studies. An alternative is to return u to the largest Omodcirc less than its existing
value. Yet another alternative is to use whatever u it takes to return yobs (using
Mold) to the largest Omodcirc less than its existing value. In representing this

situation, it is also useful to make a distinction commonly made in control theory
between the input vector u and the state vector x which takes into account feedback

from the controller and on which Mold operates  directly.

\'_ NMacos 7 B “30-_4/
L !

) 1 Ud
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Fig 1 A general inconsistent controller



4. Results.

A desirable behaviour for malfunctioning plants is that, under the action of
the controller, the plant eventually becomes wellfunctioning by modifying the input.
We see that this proves possible. Among plants which are not eventually

wellfunctioning, there can be defined several types.

Definition 4.

(@) A plant cycles iff yobs(t)=yobs(t+k) for some k and all t (or all t after an

appropriate tg).
(b) A plant is persistent (afier t) iff yobs(t)=yobs(t+k) for all k> 0.

(¢) A plant is bounded iff no component of yobs(t) ever gets more than a fixed

number k from zero.

(d) A plant may be defined operationally to explode iff some component of yobs

exceeds a predetermined bound (in these studies it was taken as 105).

For a plant which does not eventually wellfunction, any of the behaviours (a)-(c)

are more desirable than explosion.

Programs were written to simulate the controller described in Section 3. To
facilitate inspection of large numbers of runs, Mold was held fixed and Mnew
varied systematically by applying a multiplier to one row. The size of M was kept
low, to 2x2 or 3x3. The following data summarise the results of various runs with
two different methods of adjustment of the state vector x. It is noted that the
outcome of eventual wellfunctioning is in several cases achievable within a

continuous range of variation of Mnew, which suggests a systematic effect.



In addition, the above behaviours of cycling and persistence have been
observed. Boundedness cannot be directly observed, of course, but long runs have

been observed without explosion.
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Fig 6 Mixed Persistence and Cycling

Mult No of Orbits Result

2.0 1 Persistence

1.9 1 P

1.8 2 P

1.7 3 P

1.6 3 P

1.5 4 P

1.4 2 Cycling (period 2)
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http://www.arts.adelaide.edu.au/humanities/philosophy/inconsistent_images/index.
html

Only the front page is included here: other pages with animations and images by
the co-authors can be accessed from the links on the front page.
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Inconsistent Iimages

Impossible pictures are so-named not because the two-dimensional

School Horoe

TG mEN

Euronren Studies picture itself is impossible (for then there would be no picture!), but
because what is depicted, an apparently three-dimensional thing, is
French Studias impossible. This raises a significant puzzle: how can it be that one is able
to draw a picture of a thing which cannot exist because to do so would
Genman Studies violate the laws of logic or mathematics? One surely cannot draw a picture
of a standard contradiction, such as "Snow is white and snow is not white."
Linguistics But impossible pictures are different: there is an experience "l see it but |

don't believe it" which cries out for explication.

The history of impossible pictures goes back to Pompeii. Later, there are
isolated medieval altarpieces, Piranesi's Carceri contains some
strange-looking stairs, and Marcel Duchamp drew a peculiar bed.
However, impossible pictures were not drawn in any systematic way until

N Oscar Reutersvaard began his career in Stockholm in 1934, drawing over
| e 4,000 pictures in the subsequent decades and being honoured by the
Swedish government in the 1980s. M.C.Escher and the Penroses followed
from 1955 onward, Escher in particular producing masterpieces such as
Ascending and Descending, Belvedere, and Waterfall.

neansisens imaues

Impossible pictures should be distinguished from pictures which permit
more than one gestalt, such as the duck-rabbit or the candlestick-faces. In
the present study, these are classified as incomplete, not inconsistent. The
property of incompleteness is a logical dual to inconsistency in more then
one sense. Since this duality is well-known, this means that mathematical
treatment of incomplete pictures is readily available once it has been
worked out for impossible pictures. However, the latter is a hard problem,
not yet solved satisfactorily.

Undaigracuste

ATh e LR R

A research project conducted in the Discipline of Philosophy aims to
address the issue on several fronts. First, impossible pictures need to be
described mathematically. This requires the tools of inconsistent
mathematics and paraconsistent logic, that is logic which is tolerant of
inconsistencies. The general idea is on viewing an im possible picture, the
brain encodes an inconsistent theory. This is somewhat analogous to the
way that the brain encodes projective geometry as a projection ofa
three-dimensional reality, except that the "virtual” three-dimensional reality
is inconsistent. Clearly, this has connections with cognitive science: it is
hardly being suggested that there is an inconsistent reality "out there",
rather it is a matter of the brain's capacity to represent in an inconsistent
fashion. A start has been made on the mathematics, but much more
needs to be done. Second, in particular there is an issue of classification
into various types here, types which seem not to be reducible to one
another. These types ought to reflect different mathematical theories.
Third, Reutersvaard's own program of drawing different pictures is being
extended by Steve Leishman and others. Fourth, there is the prospect of
virtual reality itself. There has been a conjecture by Bruno Ernst to the
effect that one cannot rotate an impossible picture. This is now known to
be false: Mortensen demonstrated this in principle at the 1999 Australasian
Association for Logic Annual Conference (Melbourne), and Peter Quigley
has now implemented it in detail, discovering more than one way of doing
so with impossible Necker cubes. It is apparent that this animation is a
preliminary to virtual reality, wherein one has the prospect of being able to
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wander through a whole impossible environment.

Peter Quigley has provided some further discussion and examples,
including animations.

Steve Leishman has created a gallery of impossible pictures (best viewed
with Internet Explorer 6, Netscape 7 or Firefox).

John Mercier has created another gallery of impossible pictures (thanks to

Peter Quigley).

Download
Chris Mortensen 2005 Firefox | 1
© 2005 The University of Adelaide top €3

Last Modified 10/06/2005 M&5C Copyright | Privacy | Disclaimer
CRICOS Provider Number 00123M

20f2 8/08/2005 6:0



