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Abstract  

Marsupials have complex and interesting socioecology and life history strategies that 

differ quite markedly to much-studied eutherian mammals. However, the 

socioecology and life history strategies of a number of Australian marsupials are most 

often observed only within the context of a much larger study on their ecology. My 

aim was to study, using a combination of behavioural observations and molecular 

DNA techniques, aspects of the socioecology of a population of yellow-bellied gliders 

(Petaurus australis) in Rennick State Forest, south-western Victoria. Petaurid gliders 

feed on plant and insect exudates, pollen/nectar and arthropods. Yellow-bellied 

gliders are arboreal, rare, nocturnal and cryptic, have persistent pair bonds, are 

territorial and exist in low population densities. In particular, I sought to confirm that 

the Rennick population of yellow-bellied gliders maintained a predominantly 

monogamous mating system. I also sought to confirm that the timing of reproduction 

in this population of yellow-bellied gliders would be seasonal, and timed to coincide 

with peaks in the abundances of two indices of protein food resources (i.e. flowering 

and bark shed). In a more broadscale study, I sought to examine the geographic 

distribution of mitochondrial haplotyes and morphological variation of the yellow-

bellied glider throughout its range.  

Polymorphic microsatellite loci are the choice of genetic marker for fine-scale studies, 

such as relatedness and paternity. Microsatellite loci had previously only been 

characterised and optimised for Petaurus norfolcensis (squirrel gliders). However, 

close inspection of the GenBank sequences revealed the presence of replicates 

differing only by sequencing errors. A panel of seven polymorphic tetranucleotide 

loci in Petaurus breviceps (sugar gliders) and three polymorphic trinucleotide loci in 

P. australis were isolated and optimised. Five P. breviceps loci were polymorphic in 

P. norfolcensis and two were polymorphic in P. australis. Only one P. australis locus 

was variable in P. breviceps and P. norfolcensis. No locus showed a deficit in 

heterozygotes according to Hardy-Weinberg expectations, and the large number of 

alleles for some of the loci confirmed their usefulness for studies in relatedness and 

paternity.  
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A number of Australian arboreal marsupials have been reported to show monogamous 

and polygynous mating systems in different populations, but previous studies have not 

included genetic analyses to confirm the observations. My aim was to test the 

hypothesis that monogamy was the predominant mating system in a population of 

yellow-bellied gliders (Petaurus australis) in south-western Victoria. Home range 

overlap, cohesiveness of pairs, rates of den site co-occupancy and location of den 

trees within the home ranges of 13 gliders were determined via radio-tracking. A 

monogamous social system predominated, demonstrated by extensive home range 

overlap between cohabiting adult males and females (40-100%) and little home range 

overlap between adjacent territories (< 7%). Males spent approximately 55% of their 

active time within 25m of their female partners and 55-85% of their sleeping time in 

dens with their female partner. The paternity of all juveniles within the population 

was analysed using five microsatellite DNA markers. Of 37 individuals genotyped, 12 

of 13 juveniles could be attributed to the resident adult male. My results suggest that 

social monogamy equates with genetic monogamy in this population of yellow-bellied 

gliders.  

Mammalian taxa living in seasonal environments usually coincide energy-demanding 

reproductive activities with the seasonal availability of food resources. However, few 

studies on arboreal marsupial taxa in Australia have focussed upon the interplay of 

forest phenology and the timing of breeding. This study examined forest phenology in 

a temperate environment, and the timing of reproduction the yellow-bellied glider. I 

captured adult females once per month between August 2001 and August 2003 to 

determine reproductive condition, and monitored indicators for two key food 

resources over the same period. Flowering phenology (as an index of pollen 

availability) was assessed in 170 manna gum (Eucalyptus viminalis) and brown 

stringybark (E. baxteri) trees, while bark shed (as an index of arthropod availability) 

was assessed in 45 manna gum, the only eucalypt species at this site that sheds it bark. 

Aseasonal reproduction was indicated within this population of gliders, as 

distributions of births were not statistically different from random. However, yellow-

bellied gliders did exhibit distinct birth peaks in spring, summer and winter, when 

data were combined for both years. The temporal distributions of flowering for both 

eucalypt species were statistically different from random, indicating seasonal 

availability of nectar and pollen. Peak flowering occurred in summer for brown 
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stringybark, and autumn for manna gum in both years, although for manna gum peak 

abundance of flowers was one month earlier in the second year. While the temporal 

distribution of bark shed on the trunks of trees did not differ from random, it did show 

seasonality on the main and outer branches, peaking in summer and declining 

thereafter. Thus, it appears that yellow-bellied gliders breed aseasonally in a 

predictable, seasonal environment. However, yellow-bellied gliders have a reliance on 

the complex temporal interplay of different seasonal food resources.  

Subspecific status has often been used as a surrogate for conservation unit, but does 

not always reflect intra-specific lineages with different evolutionary histories. One 

contentious case of subspecific classification occurs in the yellow-bellied glider, a 

marsupial species showing considerable decline in population size and requiring 

conservation management. Our aim was to assess the current subspecific status of 

populations and define units of conservation using a combination of 

phylogeographical analyses of mitochondrial DNA and morphological analyses. 

Analyses of the mitochondrial ND4 gene provided evidence for significant 

phylogeographic structure within yellow-bellied gliders. Isolated populations in north 

Queensland (NQ) and Victoria/ South Australia were genetically distinct from 

populations in New South Wales and southern Queensland. Morphological analyses 

provided little evidence for discrimination of populations, although NQ specimens 

were generally smaller in size compared to southern forms. My analyses do not 

support the classification of subspecies, P. a. reginae, for the original type specimen 

from southern Queensland. Taking into account other behavioural and ecological data, 

and the disjunct distribution of NQ populations from southern populations, I propose 

that the NQ population represents a distinct Evolutionarily Significant Unit, a lineage 

showing highly restricted gene flow with the rest of the species.   
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