THE EFFECTS OF HYPOXIA ON RESPIRATORY SENSATION AND REFLEXES IN HEALTHY SUBJECTS: Implications for Sleep and Respiratory Disease

By

Danny Joel Eckert

BAppSc (Human Movement, University of South Australia, 2000) &

BSc (Hons) (Physiology, University of Adelaide, 2002)

A thesis submitted for the degree of

DOCTOR OF PHILOSOPHY

June, 2006

Discipline of Physiology

School of Molecular &

Biomedical Science

University of Adelaide

South Australia, 5005.

Adelaide Institute for Sleep Health

Repatriation General Hospital

South Australia, 5041.

TABLE OF CONTENTS

TABLE OF CONTENTS	i
LIST OF TABLES	vii
LIST OF FIGURES	viii
ABSTRACT	x
PUBLICATIONS	xiii
ACKNOWLEDGEMENTS	xvii
GLOSSARY OF ABBREVIATIONS	xix
CHAPTER 1. GENERAL INTRODUCTION	1
1.1 Brief Overview of Hypoxia in Sleep and Respiratory Disease	1
1.2 Varied Physiological Effects and Consequences of Hypoxia	2
1.2.1 Oxygen Sensing and the Central Nervous System	2
1.2.2 Effect of Hypoxia on Respiratory Mechanics and Airway Tone	4
1.2.3 Hypoxia and Respiration	6
1.2.3.1 Acute Sustained Hypoxia	7
1.2.3.2 Maturational Influences	9
1.2.3.3 Intermittent Hypoxia, Differences between Animals and Humans	10
1.2.3.4 Plasticity	11
1.2.4 Hypoxia, Cognition and Neurophysiological Function	12
1.2.5 Other Physiological Effects and Consequences of Hypoxia	15
1.3 Overview of Conditions in which Acute Hypoxia occurs in Human Disease	16

1.3.1	Acu	te Severe Asthma	16
1.3.2	Chro	onic Obstructive Pulmonary Disease (COPD)	17
1.3.3	Acu	te Respiratory Disease Syndrome (ARDS)	19
1.3.4	Slee	ep-disordered Breathing	20
1.4	Respira	atory Sensation and Respiratory Load Perception	22
1.4.1	Clin	ical Importance	22
1.4.2	Psy	chophysics and Methodology used to Quantify Respiratory Sensations	24
1.4	4.2.1	Scaling Methods	24
1.4	4.2.2	Defining Relationships between Respiratory Load and Sensory Perception	27
1.4	4.2.3	Respiratory Related Evoked Potentials	29
1.4.3	Und	erlying Neurophysiology	33
1.4	4.3.1	Sensory Receptors Capable of Eliciting Respiratory Sensations	33
1.4	4.3.2	Central Integration of Respiratory Sensations	44
1.4	4.3.3	Potential Mechanisms Underlying Respiratory Sensations	47
1.4.4	Effe	ct of Hypoxia on Respiratory Load Perception	51
1.5	Protect	tive Respiratory Reflexes	52
1.5.1	Cou	gh Reflex	53
1.5	5.1.1	Clinical Implications	53
1.5	5.1.2	Physiology of the Cough Reflex	54
1.5	5.1.3	Measurement Techniques	55
1.5	5.1.4	Effect of Blood Gas Changes on the Cough Reflex	57
1.5.2	Gen	ioglossus Upper Airway Negative Pressure Reflex	58
1.5	5.2.1	Clinical Implications	58
1.5	5.2.2	Physiology of the Genioglossus Negative Pressure Reflex	61

	1.5.2.3	Measurement and Analysis Techniques	62
	1.5.2.4	Effect of Hypoxia on Genioglossus EMG	63
1.	.5.3 Insp	iratory Muscle Reflexes to Brief Respiratory Occlusion Stimuli	66
1.6	Summa	ary and Aims of Thesis	68

CHAPTER 2. SUSTAINED HYPOXIA DEPRESSES SENSORY PROCESSING

			OF RESPIRATORY RESISTIVE LOADS	_69
2.1		Introdu	ction	69
2.2		Method	ls	71
2	.2.1	Subj	ect Selection	71
2	.2.2	Preli	minary Visit	71
	2.2	2.2.1	Target Ventilation Method	71
2	.2.3	Stud	ly Design, Techniques and Measurements	72
2	.2.4	Mag	nitude Perception of Externally Applied Inspiratory Resistive Loads (ψ)	73
2	.2.5	Res	piratory Related Evoked Potentials	74
2	.2.6	Data	Analysis and Recording Methods	75
	2.2	2.6.1	Respiratory Variables	75
	2.2	2.6.2	Magnitude Perception of Externally Applied Inspiratory Resistive Loads $(\boldsymbol{\psi})$	75
	2.2	2.6.3	Respiratory Related Evoked Potentials (RREPs)	76
2	.2.7	Stati	stical Procedures	77
2.3		Results	8	77
2	.3.1	Anth	ropometric Data	77
2	.3.2	Vent	ilatory Parameters during the Preliminary Visit	78
2	.3.3	Vent	ilatory Parameters during the Main Experimental Visits	78
2	.3.4	Mag	nitude Perception of Externally Applied Inspiratory Resistive Loads (ψ)	79

2.3.4	4.1 Target Ventilation	79
2.3.4	4.2 Recovery	80
2.3.5	Respiratory Related Evoked Potentials	80
2.3.	5.1 Target Ventilation	80
2.3.	5.2 Recovery	82
2.4 D	Discussion	93
2.4.1	Respiratory Afferent Neural Transmission and Respiratory Load Perception	94
2.4.2	Potential Mechanisms for Hypoxia-Induced Suppression of Respiratory Afferer	ıt
	Transmission and Load Perception	95
2.4.3	Methodological Considerations	98
2.4.4	Summary and Clinical Implications	_ 100
CHAPTER	3. ACUTE SUSTAINED HYPOXIA SUPPRESSES THE COUGH	
	REFLEX IN HEALTHY SUBJECTS	_102
3.1 lr	REFLEX IN HEALTHY SUBJECTS	_ 102 _ 102
3.1 lr 3.2 M	REFLEX IN HEALTHY SUBJECTS	_ 102 _ 102 _ 104
3.1 lr 3.2 M 3.2.1	REFLEX IN HEALTHY SUBJECTS	_ 102 _ 102 _ 104 _ 104
3.1 lr 3.2 M 3.2.1 3.2.2	REFLEX IN HEALTHY SUBJECTS	_ 102 _ 102 _ 104 _ 104 _ 104
3.1 lr 3.2 M 3.2.1 3.2.2 3.2.2	REFLEX IN HEALTHY SUBJECTS	_ 102 _ 102 _ 104 _ 104 _ 104 _ 104 _ 105
3.1 Ir 3.2 M 3.2.1 3.2.2 3.2.1 3.2.2	REFLEX IN HEALTHY SUBJECTS Introduction Methods Subject Selection Preliminary Visit 2.1 Target Ventilation Method 2.2 Assessment of Cough Reflex Threshold and Acute Tachyphylaxis	_ 102 _ 102 _ 104 _ 104 _ 104 _ 104 _ 105 _ 105 _ 105
3.1 Ir 3.2 M 3.2.1 3.2.2 3.2.3 3.2.3	REFLEX IN HEALTHY SUBJECTS Introduction Methods Subject Selection Preliminary Visit 2.1 Target Ventilation Method 2.2 Assessment of Cough Reflex Threshold and Acute Tachyphylaxis Main Experimental Visits	_ 102 _ 102 _ 104 _ 104 _ 104 _ 105 _ 105 _ 105 _ 106
3.1 Ir 3.2 M 3.2.1 3.2.2 3.2.3 3.2.3 3.2.3	REFLEX IN HEALTHY SUBJECTS Introduction Methods Methods Subject Selection Preliminary Visit 2.1 Target Ventilation Method 2.2 Assessment of Cough Reflex Threshold and Acute Tachyphylaxis Main Experimental Visits Data Analysis	_ 102 _ 102 _ 104 _ 104 _ 104 _ 105 _ 105 _ 106 _ 107
3.1 Ir 3.2 M 3.2.1 3.2.2 3.2.3 3.2.3 3.2.4 3.2.5	REFLEX IN HEALTHY SUBJECTS Introduction Methods	_ 102 _ 102 _ 104 _ 104 _ 104 _ 105 _ 105 _ 106 _ 107 _ 107 _ 107
3.1 Ir 3.2 M 3.2.1 3.2.2 3.2.3 3.2.3 3.2.4 3.2.5 3.3 F	REFLEX IN HEALTHY SUBJECTS Introduction Methods Subject Selection Subject Selection Preliminary Visit 2.1 Target Ventilation Method 2.2 Assessment of Cough Reflex Threshold and Acute Tachyphylaxis Main Experimental Visits Data Analysis Statistical Procedures Results	_ 102 _ 102 _ 104 _ 104 _ 104 _ 105 _ 105 _ 105 _ 106 _ 107 _ 107 _ 107 _ 108

3.3.2	Ventilatory Data	10
3.3.3	Cough Threshold	10
3.3.4	Cough Tachyphylaxis	11
3.4 D	Discussion	11
3.4.1	Possible Mechanisms contributing to Blunted Cough Reflex Sensitivity during	
	Hypoxia	_ 11
3.4.2	Methodological Considerations	_ 11
3.4.3	Summary and Clinical Implications	12
CHAPTER	4. THE EFFECTS OF HYPOXIA ON RESPIRATORY REFLEXES	S ANI
	RREPs DURING SLEEP	12
4.1 lı	ntroduction	12
4.2 N	lethods	12
4.2.1	Subject Selection	12
4.2.2	Measurements and Equipment	12
4.2.3	Protocol	12
4.2.	3.1 Preliminary Visit	12
4.2.	3.2 Main Experimental Visits	12
4.2.4	Data analysis	12
4.2.5	Statistical Procedures	13
4.3 F	Results	13
4.3.1	Anthropometric Characteristics and Sleep Architecture	13
4.3.2	Ventilatory Characteristics	13
4.3.3	Reflex Responses to Brief Pulses of Negative Pressure	13
4.3.	3.1 Genioglossus Negative Pressure Reflex	13

4.3.	3.2 Inspiratory Muscle Reflex Responses1	35
4.3.4	RREPs 1	36
4.4 D	iscussion 1	53
4.4.1	EMG Reflex Morphology to Negative Pressure Pulse Stimuli 1	53
4.4.	1.1 EMGgg 1	53
4.4.	1.2 EMGsc 1	58
4.4.2	The Effect of Sleep on Reflex Responses to Negative Pressure Pulse Stimuli $_$ 1	59
4.4.	2.1 EMGgg 1	59
4.4.	2.2 EMGsc 1	61
4.4.3	The Effect of Hypoxia on Reflex Responses to Negative Pressure Pulse Stimuli 1	62
4.4.	3.1 EMGgg 1	62
4.4.	3.2 EMGsc 1	63
4.4.4	The Effects of Sleep and Hypoxia on RREP Waveform Components to Negative	
	Pressure Pulse Stimuli1	64
4.4.5	Possible Relevance to Sleep Disordered Breathing 1	68
4.4.6	Methodological Considerations 1	69
4.4.7	Summary 1	71
CHAPTER	5. SUMMARY AND CONCLUSIONS 1	72
DEEEDENA		70
NELEVEN	دی ۱	10

LIST OF TABLES

Table 1	Group Average Ventilatory Characteristics during Inspiratory Resistive Load Perception
	Protocol
Table 2	Group Average Ventilatory Characteristics during RREP Protocol
Table 3	Effect of Hypoxia on RREP Mean Amplitude and Latency Data at Maximal Sites of
	Activation during Target Ventilation and Recovery Periods
Table 4	Sleep Architecture Data
Table 5	Group Mean Ventilatory Characteristics Immediately Prior to Stimulus Presentation
	during Wakefulness and NREM Sleep140
Table 6	Effect of Hypoxia on EMGgg Reflex Characteristics to Negative Pressure Pulse Stimuli
	during Wake and NREM Sleep141
Table 7	EMGgg Single Motor Unit Firing Frequency during Negative Pressure Pulse Stimuli 142
Table 8	Effect of Hypoxia on EMGSc Reflex Characteristics to Negative Pressure Pulse Stimuli
	during Wake and NREM Sleep143
Table 9	Arousal and K Complex Probability to Negative Pressure Pulse Stimuli during Sleep . 144
Table 10	Effect of Hypoxia on RREP Mean Amplitude and Latency Data at Maximal Sites of
	Activation during Wakefulness145
Table 11	Effect of Hypoxia on RREP Mean Amplitude and Latency Data at Maximal Sites of
	Activation during NREM Sleep

LIST OF FIGURES

Figure 1	Example of the Averaged Respiratory Related Evoked Potential (RREP) Overlying	the
	Somatosensory Area of the Cortex at Cz	32
Figure 2	Schematic of the Breathing Circuit for Study 1 (Chapter 2) and an Example of a	
	Subject Performing the Target Ventilation Task	86
Figure 3	Group Average Minute Ventilation Data during Load Perception and RREP Protoc	ols
		87
Figure 4	Example of a Loaded Breath during Load Perception Protocol	88
Figure 5	Example of a Mid Inspiratory Load during RREP Protocol	88
Figure 6	Load Perception versus Peak Inspiratory Pressure during Target Ventilation Gas	
	Inhalation and Recovery Room Air Breathing	89
Figure 7	Load Perception versus Resistance during Target Ventilation Gas Inhalation and	
	Recovery Room Air Breathing	90
Figure 8	RREP Group Average Waveforms during Target Ventilation and Recovery	91
Figure 9	Example Tracing in One Individual Subject at Each of the Measured Scalp Electro	de
	Sites during Target Ventilation with Normoxia and Hypoxia	92
Figure 10	Schematic of the Breathing Circuit for Study 2 (Chapter 3)	. 111
Figure 11	Group Average Ventilatory Parameters	. 112
Figure 12	Cough Threshold and Cough Sensitivity	. 113
Figure 13	Acute Tachyphylaxis	. 114
Figure 14	Schematic of the Breathing Circuit for Study 3 (Chapter 4)	. 126
Figure 15	Rectified EMGgg and EMGSc Reflex Peak and Latency Characterisation	. 147

Figure 16	Rectified EMGgg and EMGSc Reflex Responses during Wakefulness and NREM	
	Sleep in Two Subjects14	48
Figure 17	Rectified EMGgg Reflex Responses during REM Sleep in Two Individual Subjects. 14	49
Figure 18	Example of EMGgg Single Motor Unit Activity during a Negative Pressure Pulse	
	Presentation	50
Figure 19	RREP Group Average Waveforms during Wakefulness and NREM Sleep at Cz 15	51
Figure 20	Example of the RREP Waveform during REM Sleep in One Individual Subject at Cz	
		52
Figure 21	Reflex Morphology; Effects of Moving Time Averaging of the Rectified Ensemble	
	Averaged EMG Signal 15	55

ABSTRACT

Hypoxia is a common feature of many respiratory disorders including acute severe asthma, chronic obstructive pulmonary disease and pneumonia. Hypoxia also occurs during sleep-disordered breathing in conditions such as sleep hypoventilation syndrome and sleep apnea. In most respiratory diseases hypoxia is coupled with increased respiratory load. Compensatory protective mechanisms are activated to oppose these impediments to respiration. However, hypoxia is associated with impaired neurocognitive function and recent studies have demonstrated that hypoxia suppresses respiratory load perception in healthy individuals and asthma patients. These recent findings raise the possibility that a variety of protective physiological reflex responses to increased respiratory load may be impaired during periods of hypoxia. The effects of hypoxia on several of these protective responses and possible mechanisms of respiratory sensory depression by hypoxia are explored in the experiments outlined in this thesis.

In the first study, the respiratory related evoked potential (RREP) was used to investigate the mechanisms underlying hypoxia-induced suppression of respiratory load sensation in healthy individuals. As a positive control the effects of hypoxia on respiratory load perception to inspiratory resistive loads were also measured. The amplitude of the first and second positive peaks (P1 and P2) of the RREP were significantly reduced during hypoxia. P1 is thought to reflect the arrival of the ascending respiratory signals to the somatosensory area of the cortex. The perceived magnitude of externally applied inspiratory resistive loads was also

reduced during hypoxia. These data provide further support that hypoxia suppresses respiratory load perception and suggest that this is mediated, at least in part, by suppression of respiratory afferent information prior to its arrival at the cortex.

In the second study, the effects of acute sustained hypoxia on the cough reflex threshold and cough tachyphylaxis to inhaled capsaicin were explored in healthy individuals. Acute sustained hypoxia suppressed cough reflex sensitivity to inhaled capsaicin. This finding raises the possibility that the cough reflex, important for protecting the lungs from inhalation or aspiration of potentially injurious substances and for clearing excess secretions, may be impaired during acute exacerbations of hypoxic-respiratory disease.

In the third study, reflex responses of the genioglossus and scalene muscles to brief pulses of negative airway pressure were compared between hypoxia and normoxia during wake and sleep in healthy males in the supine position. Cortical RREPs to the same stimuli were also examined under these conditions. The genioglossus is the largest upper airway (UA) dilator muscle and can be reflexively augmented in response to negative UA pressure. A diminished response of this muscle during sleep has been postulated to be a contributing mechanism to obstructive sleep apnea (OSA) in individuals with an anatomically narrow UA. Cortical activation (i.e. arousal) to sudden airway narrowing in OSA is an important protective response to help restore ventilation during an obstructive event. In this study, genioglossus reflex responses to negative pressure pulse stimuli were maintained during mild overnight hypoxia. Conversely, reflex inhibition of the scalene muscle to the same stimuli was prolonged during hypoxia. In addition, a previously undescribed morphology of the genioglossus negative pressure reflex consisting of activation followed by suppression was observed with greater suppression during sleep than wake. The amplitude of the P2 component of the RREP was also significantly reduced during hypoxia.

In summary, the potential mechanisms underlying hypoxia-induced suppression of respiratory load sensation and the effects of hypoxia on several protective respiratory responses have been investigated in healthy subjects. The potential implications of these findings for patients with hypoxic-respiratory disease are discussed.

PUBLICATIONS

The following are publications that have arisen from work conducted towards this thesis:

Journal Articles:

Eckert DJ, Catcheside PG, McEvoy RD. Blunted sensation of dyspnoea and near fatal asthma. *Eur Respir J* (Invited Editorial) 2004;24:197-9.

Eckert DJ, Catcheside PG, McDonald R, Adams AM, Webster KE, Hlavac MC, McEvoy RD. Sustained hypoxia depresses sensory processing of respiratory resistive loads. *Am J Respir Crit Care Med* 2005;172:1047-54.

Eckert DJ, Catcheside PG, Stadler D, McDonald R, Hlavac MC, McEvoy RD. Acute sustained hypoxia suppresses the cough reflex in healthy subjects. *Am J Respir Crit Care Med* 2006;173:506-11.

Published Abstracts:

Eckert DJ, McDonald R, Catcheside PG, Webster KE, Hlavac MH, McEvoy RD. Targeted hyperventilation for matching respiratory related evoked potential stimuli during hypoxia and normoxia. *Respirology* 2004;9:A67.

Eckert DJ, Catcheside PG, McDonald R, Adams AM, Webster KE, Hlavac MC, McEvoy RD. Evoked potential differences and blunted perception to respiratory stimuli with hypoxia. *Intern Med J* 2005;35(3):A21.

Eckert DJ, Catcheside PG, McDonald R, Adams AM, Hlavac MC, Webster KE, McEvoy RD. Decreased amplitude in early respiratory related evoked potential components and impaired perception of respiratory load with hypoxia. *Respirology* 2005;10:A18.

Eckert DJ, Catcheside PG, McDonald R, Adams AM, Hlavac MC, Webster KE, McEvoy RD. Amplitude Reductions in Early RREP Components and Blunted Perception of Respiratory Load with Hypoxia. *Proceedings of the American Thoracic Society* 2005;2:A6

Eckert DJ, Catcheside PG, Stadler DL, McDonald R, Hlavac MC, McEvoy RD. Acute Sustained Hypoxia Depresses Cough Reflex Sensitivity in Healthy Individuals. *Respirology* 2006;11:A17.

Published Abstracts (continued):

Eckert DJ, Catcheside PG, George K, Thompson K, Webster KE, McEvoy RD. Sustained Hypoxia Decreases Sensory Processing to Brief Pulses of Negative Upper Airway Pressure During NREM Sleep. *Sleep* 2006;29:A591.

Unpublished Conference Proceedings:

Eckert DJ, Catcheside PG, McDonald R, Adams AM, Hlavac MC, Webster KE, McEvoy RD. Amplitude reductions in early evoked potential components and impaired perception of respiratory load with hypoxia. *International Union of Physiological Sciences Congress. Dyspnea: Mechanisms and Management two-day satellite meeting.* San Diego, United States of America. 2005;A18.

Eckert DJ, Catcheside PG, George K, Thompson K, McEvoy RD. Evidence for Reflex Inhibition of the Genioglossus Muscle to Brief Pulses of Negative Upper Airway Pressure during Wake and Sleep. *Australian Society for Medical Research Annual Scientific Meeting, South Australian Branch*, Adelaide, Australia. 2006.

This citation not included in the original print copy of thesis

Published Abstract:

Eckert, D.J., McEvoy, R.D., George, K.E., Thomson, K.J. and Catcheside, P.G. Genioglossus reflex inhibition to upper-airway negative-pressure stimuli during wakefulness and sleep in healthy males. J Physiol. 2007 Jun 15;581(Pt 3):1193-205

DECLARATION

This work contains no material which has been accepted for the award of any other degree or diploma in any university or tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent to this copy of my thesis, when deposited in the University Library, being made available in all forms of media, now or hereafter known.

Danny Eckert

Date: Wednesday, 16 June 2006

ACKNOWLEDGEMENTS

Firstly, I would like to thank Professor Doug McEvoy for providing me the opportunity to carry out this Ph.D. in his laboratory. I am exceptionally grateful for his incredible insight, commitment to research and for his continual support, encouragement and mentorship.

I would also like to sincerely thank Dr Peter Catcheside for his invaluable scientific input and assistance with study designs, the collection, analysis and interpretation of the data, for proof reading and most importantly for his friendship, careful explanations and support.

I am very appreciative to all the Adelaide Institute for Sleep Health Research Assistants and co-workers that have assisted with the data collection, provided valuable technical assistance and camaraderie during these studies including: Rachel McDonald, Amanda Adams, Daniel Stadler, Michael Hlavac, Kate George and Kieron Thompson.

I am very grateful to Dr Kate Webster for her expertise and collaboration in establishing the techniques used to measure and interpret respiratory related evoked potential recordings for studies 1 and 3.

Dr Stuart Mazzone provided valuable insight and advice into the sensory physiology of the cough reflex for experiment 2.

I am very grateful to all of the Adelaide Institute for Sleep Health staff at the Repatriation General Hospital, in particular Samantha Windler for staging the sleep studies for experiment 3 and Jeremy Mercer and Mark Jurisevic for their assistance with laboratory issues.

Professor Tim Miles provided valuable assistance and advice regarding the EMG recordings in experiment 3.

I am also very appreciative to the subjects who participated in the studies and to The University of Adelaide and the School of Molecular and Biomedical Science, Discipline of Physiology for financial and educational assistance.

Proof reading of this thesis was provided by Ruth Eckert and Murray Bramwell.

Finally, a big thank you to my brothers, Jamie, Cary and Tom, my partner Hoa-han and my dad Paul for their great support and understanding. Similarly, my mother Polly who despite losing her battle with cancer in 2002, has been a continual inspiration throughout my Ph.D. studies and life.

GLOSSARY OF ABBREVIATIONS

ARDS	Acute respiratory distress syndrome
BMI	Body mass index (kg·m ⁻²)
CNS	Central nervous system
COPD	Chronic obstructive pulmonary disease
CSA	Central sleep apnea
ECG	Electrocardiogram
EEG	Electroencephalogram
EMG _{DI}	Diaphragm electromyogram
EMG _{GG}	Genioglossus electromyogram
EMG IC	Parasternal intercostal electromyogram
EMG _{SC}	Scalene electromyogram
EOG	Electrooculogram
ERP	Event related potential
GABA	γ-aminobutyric acid
IC	Inspiratory capacity (I)
F _B	Breathing frequency (breath min ⁻¹)
F _I CO ₂	Fraction of inspired carbon dioxide concentration (%)
F _I O ₂	Fraction of inspired oxygen concentration (%)
FEV ₁	Forced expiratory volume in 1 second (% predicted)
FRC	Functional residual capacity (I)
FVC	Forced vital capacity (% predicted)
LTF	Long-term facilitation
NREM	Non rapid eye movement sleep
N1 & N2	First and second negative peaks of the ERP respectively
Nf	Negative frontal peak of the RREP
NTS	Nucleus tractus solitarius

OSA	Obstructive sleep apnea
P1,P2 & P3	First, second and third positive peaks of the ERP respectively
Рсно	Choanal pressure (cmH ₂ O)
PaCO ₂	Partial pressure of arterial carbon dioxide (mmHg)
PaO ₂	Partial pressure of arterial oxygen (mmHg)
P _{EPI}	Epiglottic pressure (cmH ₂ O)
PETCO ₂	End-tidal partial pressure of carbon dioxide (mmHg)
PIF	Peak inspiratory flow (I·min ⁻¹)
PIP	Peak inspiratory pressure (cmH ₂ O)
P _{MASK}	Mask pressure (cmH ₂ O)
RDI	Respiratory disturbance index (events·hr ⁻¹ sleep)
REM	Rapid eye movement sleep
RREP	Respiratory related evoked potential
R	Resistance (cmH ₂ O·I ⁻¹ ·sec)
RV	Residual volume (I)
SaO ₂	Arterial oxygen saturation (%)
SEM	Standard error of the mean
SOL	Sleep onset latency (minutes)
TLC	Total lung capacity (I)
TST	Total sleep time (minutes)
UA	Upper Airway
VC	Vital capacity (I)
V _{TI}	Inspiratory tidal volume (I)
Ϋı	Inspiratory minute ventilation (I·min ⁻¹)
ψ	Perceived magnitude of externally applied resistive loads