
Appendix A

Simulation Environment

Simplicity is the ultimate form of sophistication.

Leonardo da Vinci (1452-1519)

Italian Scientist, Mathematician, Engineer, Inventor and Artist

This appendix provides additional information on the vehicle environment includ-

ing the reference frames used within the optimisation and guidance programs. The

density profiles for the world and the Hopper and X-33 vehicles terminal area flight

phase are also included along with a comparison of the model errors.

A.1 Coordinate Frames and Transformations

The programs utilised in this study contain many different co-ordinate systems and

reference frames used for describing the vehicle dynamics. These reference frames

include inertial, geocentric, horizontal, body and velocity co-ordinate systems. A de-

tailed description including diagrams of each reference frame and the transformations

between the systems is presented in Schöttle (1979) and Burkhardt (2000).

The position and velocity vectors for the vehicle are given by equations A.1 and A.2

respectively.

�r =

⎡
⎢⎢⎢⎣
r

λ

δ

⎤
⎥⎥⎥⎦ (A.1)

219



220 Simulation Environment
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A.2 Density Profiles

The density profiles used within this study are taken from the US Standard 1962 and

MSISE 1993 atmospheric models. This section presents the different density profile

models for world wide and the individual flight environments pertaining to the vehicle

missions as seen in figures A.1, A.2, A.3, A.4, A.5 and A.6. A comparison of the US

Standard 1962 and MSISE 1993 density profiles is also presented to show the difference

in the models used between the simulator and predictor.

A.3 Wind Profiles

This section presents the wind profiles generated from the Horizontal Wind Model

(HWM). The wind profiles are for both the Hopper and X-33 vehicles and their associ-
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Figure A.1: The density profiles for the world wide models: US Standard 1962 and

MSISE 1993
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Figure A.2: The density errors for the world wide models: MSISE 1993 - US Standard

1962
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Figure A.3: The density profiles for the Hopper vehicle terminal area flight phase: US

Standard 1962 and MSISE 1993
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Figure A.4: The density errors for the Hopper vehicle terminal area flight phase: The

Hopper vehicle mission MSISE 1993 - US Standard 1962
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Figure A.5: The density profiles for the X-33 vehicle terminal area flight phase: US

Standard 1962 and MSISE 1993
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Figure A.6: The density errors for the X-33 vehicle terminal area flight phase: The X-33

vehicle mission MSISE 1993 - US Standard 1962

ated missions. Figures A.11, A.12 and A.13 also include the predictor wind profiles in

comparison to those of the HWM.
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Hopper: Latitude -8.5° to 7.5°, Longitude 345.0° to 346.5°
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Figure A.7: The HWM profiles for the Hopper vehicle mission with positive values

representing a northerly direction wind and negative values a southerly direction wind

Hopper: Latitude -8.5° to 7.5°, Longitude 345.0° to 346.5°
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Figure A.8: The HWM profiles for the Hopper vehicle mission with positive values

representing a westerly direction wind and negative values an easterly direction wind
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X-33: Latitude 39.6° to 40.9°, Longitude 246.1° to 247.8°
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Figure A.9: The HWM profiles for the X-33 vehicle mission with positive values rep-

resenting a northerly direction wind and negative values a southerly direction wind

X-33: Latitude 39.6° to 40.9°, Longitude 246.1° to 247.8°
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Figure A.10: The HWM profiles for the X-33 vehicle mission with positive values rep-

resenting a westerly direction wind and negative values an easterly direction wind
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X-33: Latitude 39.6° to 40.9°, Longitude 246.1° to 247.8°
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Figure A.11: The HWM profiles for the X-33 vehicle mission with various days and

predictor wind model for strong winds. Positive values represent a westerly direction

wind and negative values an easterly direction wind

X-33: Latitude 39.6 to 40.9, Longitude 246.1 to 247.8
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Figure A.12: The HWM profiles for the X-33 vehicle mission with various days and pre-

dictor wind model for medium winds. Positive values represent a westerly direction

wind and negative values an easterly direction wind
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X-33: Latitude 39.6° to 40.9°, Longitude 246.1° to 247.8°
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Figure A.13: The HWM profiles for the X-33 vehicle mission with various days and

predictor wind model for light winds. Positive values represent a westerly direction

wind and negative values an easterly direction wind



Appendix B

Numerical Methods

The latest authors, like the most ancient, strove to subordinate the phenomena of

nature to the laws of mathematics.

Sir Isaac Newton (1642-1727)

English Physicist, Mathematician, Astronomer, Alchemist, and Natural

Philosopher

This appendix details the common numerical recipes used during the optimisation

and guidance programs. It also defines some of the numerical methods used in evalu-

ating the results.

B.1 Vehicle and Trajectory Characteristics

During the trajectory there are several characteristics and restrictions that the guidance

system must cope with. In order to determine whether the trajectory is within these

restrictions several different calculations are required. These calculations are detailed

below in the following sections and were derived from theoretical and empirical meth-

ods.

B.2 Mach Number Calculations

The equation for the Mach number, Ma of the vehicle is shown in figure

Ma =
ν

a
(B.1)
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Where ν is the current velocity of the vehicle and the speed of sound, a is given by

equation B.2.

a =
√
κ · RGasT (B.2)

Where κ is the ratio of specific heats also known as the adiabatic index, 1.402 for air.

R is the gas constant, 287.05 J · kg−1 · K−1 and T is the temperature in ◦K.

B.3 Statistics

For the analysis of results common statistical methods including the average and stan-

dard deviation were used, these are defined in equations B.3 and B.4. Where n is the

number of simulations, xi the value of the simulation, x̄ the average value and σ the

standard deviation.

x̄ =
1
n

n∑
i=1

xi (B.3)

σ =

√√√√ 1
n

n∑
i=1

(xi − x̄)
2 (B.4)

B.4 Unit Conversions

Some the data provide for the X-33 vehicle was in non Systéme International (SI) units

and consequently conversions were required to transfer these units as given in table

B.1.

Unit Conversion
1ft = 0.3048 m
1 m = 3.2808 ft

1 ft/s = 0.3048 m/s
1 m/s = 3.2808 ft/s
1 psf = 0.0478803 kPa
1 kPa = 20.8854 psf

Table B.1: Unit conversions



Appendix C

Hopper Vehicle Speed Brake Model

Make everything as simple as possible, but not simpler.

Albert Einstein (1879-1955)

Theoretical Physicist

A large modification made to the optimisation and guidance programs was the de-

velopment and inclusion of the speed brake model for the Hopper vehicle. The model

was developed from two major models the HL-20 lifting body vehicle Jackson et al.

(1992); Jackson and Cruz (1992) and X-34 demonstration vehicle Pamadi and Brauck-

mann (1999); Pamadi et al. (2000). Although it might not be a true representation of

the actual speed brake model it is used as a guide for further development of the op-

timisation and guidance programs. The speed brake model provides the increases in

the Hopper vehicle drag for increased speed brake settings. The model is a table of

additional drag coefficients as a function of angle of attack and Mach number.

The purpose of this study was not to further an aerodynamic model of the Hopper

vehicle nor was it to determine the accuracy of a speed brake model, which for this

study is a ’best guess’ model. However, some important characteristics of the speed

brake model are drawn from basic aerodynamic knowledge.

The speed brakes for the Hopper vehicle are placed on the sides of the fuselage

above the wings as shown in figure C.1. This placement should cause some distur-

bance of the flow of the speed brakes for high angles of attack and for transonic speeds

traditionally considered Mach 0.8 to 1.2. This was represented in the upper body flap

model of the HL-20 lifting body vehicle. However, comparison to the X-34 model

231



232 Hopper Vehicle Speed Brake Model

Figure C.1: The Hopper vehicle with speed brakes

which has a rudder mounted speed brake similar to the US Shuttle Orbiter showed

that the magnitude of the drag coefficients were lower then should be expected for a

speed brake. There were insufficient data points available for the X-34 vehicle model

therefore the HL-20 data was biased with respect to the limited X-34 data to provide a

better approximation. Figures C.2, C.3, C.4 and C.5 show the increased drag (at maxi-

mum setting) with respect to Mach number for different angle of attack settings.

Intermediate data points were determined using either linear or fourth order spline

interpolation. However, the original model had too few data points to accurately re-

produce all features with spline especially in the transonic flight region of figures C.2,

C.3, C.4 and C.5. Consequently an increased number of data points was produced for

the transonic region using more data from the HL-20 model, some interpolation and

engineering judgement to produce the final models presented here. Tables C.1 and C.2

present the final data in tabular form used for this study. The figures C.2, C.3, C.4, C.5

and tables C.1, C.2 presented the maximum increased drag, that is the increased drag at

maximum speed brake setting.The speed brake setting steering variable is defined as a

percentage of the maximum possible drag increase. Note it was assumed that a reduc-

tion of drag coefficients occurred for the transonic Mach numbers. This was included

because it was assumed that the flow over the wing surfaces was disturbed and con-

sequently poor flow over the speed brakes was achieved. This assumption was based

upon the information from the HL-20 vehicle upper body flap model Jackson et al.
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(1992); Jackson and Cruz (1992).
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Figure C.2: Speed brake coefficient, Cs vs Mach number for angle of attacks 0 to 5◦
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Figure C.3: Speed brake coefficient, Cs vs Mach number for angle of attacks 6 to 10◦
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Figure C.4: Speed brake coefficient, Cs vs Mach number for angle of attacks 11 to 15◦
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Figure C.5: Speed brake coefficient, Cs vs Mach number for angle of attacks 16 to 20◦
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Angle of Attack
Mach Number 0.1 0.3 0.5 0.6 0.8 0.85 0.9 0.925

0.0 0.01262 0.013006554 0.013440628 0.013657664 0.016461301 0.01766312 0.01786312 0.01523894
1.0 0.01187 0.012367249 0.012898887 0.013164706 0.015605358 0.016625683 0.016825683 0.014323458
2.0 0.01137 0.011930333 0.012467893 0.012736673 0.014697085 0.015477291 0.015677291 0.013281397
3.0 0.01115 0.011629337 0.012122905 0.012369689 0.013828398 0.014357752 0.014557752 0.012239085
4.0 0.01093 0.011402294 0.011852912 0.012078222 0.013437487 0.01391712 0.01411712 0.011829134
5.0 0.01079 0.011227431 0.011616611 0.0118112 0.013992423 0.014883034 0.015083034 0.012741788
6.0 0.01069 0.011067285 0.011454671 0.011648363 0.014127909 0.015167682 0.015367682 0.012954
7.0 0.01043 0.010907093 0.011365788 0.011595136 0.014345028 0.015519975 0.015719975 0.01318106
8.0 0.0101 0.010711827 0.011316514 0.011618857 0.014640575 0.015951434 0.016151434 0.01344102
9.0 0.00969 0.010504927 0.011281511 0.011669803 0.014884264 0.016291494 0.016491494 0.013602273

10.0 0.00938 0.010277891 0.011229652 0.011705532 0.015476395 0.017161826 0.017361826 0.014256046
11.0 0.00896 0.010030756 0.011146322 0.011704105 0.015590046 0.017333017 0.017533017 0.014272882
12.0 0.00845 0.009770405 0.011061184 0.011706573 0.015619735 0.017376315 0.017576315 0.014175901
13.0 0.00804 0.009509937 0.010986228 0.011724373 0.015611101 0.017354466 0.017554466 0.014022547
14.0 0.00754 0.009256615 0.010942888 0.011786025 0.015561597 0.017249382 0.017449382 0.013787515
15.0 0.008556 0.009046567 0.010931133 0.011873417 0.015391403 0.016950396 0.017150396 0.013377776
16.0 0.007995 0.008898986 0.010925701 0.011939059 0.015348946 0.01685389 0.01705389 0.013147195
17.0 0.007887 0.008941357 0.011028708 0.012072384 0.015441988 0.01692679 0.01712679 0.013058753
18.0 0.007798 0.008840426 0.010961996 0.012022781 0.015442072 0.016951718 0.017151718 0.012910754
19.0 0.007863 0.008837408 0.010978925 0.012049684 0.01555184 0.017102919 0.017302919 0.012853567
20.0 0.008399 0.008908228 0.011053476 0.0121261 0.016183586 0.018012329 0.018212329 0.01337622

Table C.1: Speed brake coefficient, Cs for Mach numbers 0.1 to 0.925 and angle of attack 0 to 20◦
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AngleofAttack
MachNumber0.950.9751.051.11.21.331.6

0.00.0126147610.0134943960.0161332990.0178925670.0182827310.0161562030.011739567
1.00.0118212320.0126638510.0151917060.0168769430.0175285360.0154538110.011144767
2.00.0108855020.0118234590.014637330.0165132440.0172107250.0150764680.01064378
3.00.0099204180.0109492640.0140358030.0160934950.0168153460.0146826670.010253256
4.00.0095411470.0106464930.013962530.0161732210.0167771830.0145779120.010010194
5.00.0104005410.0113009990.0140023710.0158032860.0165243610.0143653040.009881109
6.00.0105403180.011313270.0136321290.0151780340.0161685530.0141116520.009839625
7.00.0106421460.0113155820.013335890.0146827620.0159289110.0139649680.00988601
8.00.0107306050.0112946690.0129868590.0141149850.0156830780.0138391060.010009318
9.00.0107130510.0112847920.0130000130.0141434940.0158913950.0140372040.010186192
10.00.0111502660.0115947430.0129281730.0138171270.0158827930.0140973790.01038921
11.00.0110127470.0114150520.0126219670.0134265770.015867620.0141531740.010592403
12.00.0107754860.0111697430.0123525140.0131410280.0159665510.0142883070.010802722
13.00.0104906280.0108364240.0118738110.0125654030.0159072890.0143176150.011015983
14.00.0101256470.0104701470.0115036460.0121926460.0160479380.0144644470.011175659
15.00.0096051550.0099635980.0110389270.0117558130.0161248360.0145294610.01121599
16.00.00924050.0095969040.0106661180.0113789270.016405440.013135520.01106528
17.00.0089907160.0093196430.0103064210.0109642730.016552190.012989170.01084443
18.00.008669790.0089713960.0098762160.0104794290.016703840.012777920.01044928
19.00.0084042160.0086524440.009397130.0098935870.016854990.012486770.00984623
20.00.0085401120.0087183790.0092531810.0096097150.0170.01210.009

TableC.2:Speedbrakecoefficient,CsforMachnumbers0.95to1.6andangleofattack0to20◦



Appendix D

Steering Profile Modifications

I think Isaac Newton is doing most of the driving now.

Bill Anders (1933 - )

American Astronaut, Apollo 8 Commander, when told that a ground

controller’s son had asked who was driving the capsule on the return from

the Moon to the Earth, 26 December 1968.

This section contains the plots for how each of the steering profiles was modified

with respect to the initial solution. The method of adapting the trajectory is discussed

in sections 6.1.2 and 6.2.3 for the Hopper and X-33 vehicles respectively. Figures D.1 to

D.18 are provided so that future studies of the methodologies used within this study or

the terminal area flight phase can determine how the various off-nominal conditions

effect the trajectories of the vehicles.
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Figure D.1: Hopper vehicle steering profile for the reference trajectory and CL ± 10%
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Figure D.2: Hopper vehicle steering profile for the reference trajectory and CD ± 10%
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Figure D.3: Hopper vehicle steering profile for the reference trajectory and m± 10%
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Figure D.4: Hopper vehicle steering profile for the reference trajectory and ρ± 10%
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Figure D.5: Hopper vehicle steering profile for the reference trajectory and HWM
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Figure D.6: Hopper vehicle steering profile for the reference trajectory and h± 2.5km
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Figure D.7: Hopper vehicle steering profile for the reference trajectory and ν =

400 / 500m/s
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Figure D.8: Hopper vehicle steering profile for the reference trajectory and χ± 20◦
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Figure D.9: Hopper vehicle steering profile for the reference trajectory and γ = 0/−30◦
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Figure D.10: X-33 vehicle steering profile for the reference trajectory and CL ± 10%
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Figure D.11: X-33 vehicle steering profile for the reference trajectory and CD ± 10%
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Figure D.12: X-33 vehicle steering profile for the reference trajectory and m± 10%
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Figure D.13: X-33 vehicle steering profile for the reference trajectory and ρ± 10%
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Figure D.14: X-33 vehicle steering profile for the reference trajectory and HWM
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Figure D.15: X-33 vehicle steering profile for the reference trajectory and h± 1828.8m
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Figure D.16: X-33 vehicle steering profile for the reference trajectory and ν± 30m/s
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Figure D.17: X-33 vehicle steering profile for the reference trajectory and χ± 15◦
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Figure D.18: X-33 vehicle steering profile for the reference trajectory and γ± 4◦
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