

Trajectory Design, Optimisation and Guidance for Reusable Launch Vehicles During the Terminal Area Flight Phase

James T. A. Chartres

SUPERVISORS:

Dr. Gerald Schneider Dr. Michael Gräßlin Dr. Matthew Tetlow

School of Mechanical Engineering Faculty of Engineering, Computer and Mathematical Sciences The University of Adelaide

&

Missions und Systemanalyse Institut für Raumfahrtsysteme Universität Stuttgart

A thesis submitted in fulfilment of the requirements for the degree of Doctorate of Philosophy in Aerospace Engineering on the 2nd day of February in the year 2007 Copyright © 2007 by James Chartres. All rights reserved.

2nd February, 2007

School of Mechanical Engineering, The University of Adelaide, North Terrace, SA Australia, 5005

&

Missions und Systemanalyse, Institut für Raumfahrtsysteme, Universität Stuttgart, Pfaffenwaldring 31, 70569 Stuttgart, Deutschland

Man belongs wherever he wants to go - and he'll do plenty well when he gets there.

Wernher Von Braun (1912 - 1977) Time magazine, 17th February, 1958

Contents

Contents	i
List of Figures	v
List of Tables	ix
Nomenclature	xi
Abstract	xxi
Statement	xxiii
Acknowledgements	xxv

xxvii

1	Intr	oductio	on	1
	1.1	Backg	round and Motivation	1
	1.2	Object	tives and Scope	3
	1.3	Thesis	Organisation	4
2	Lite	erature Review 7		
	2.1	Optin	visation	8
		2.1.1	Gradient Methods	8
		2.1.2	Genetic Algorithms	9
		2.1.3	Simulated Annealing	10
		2.1.4	Summary of Optimisation Methods	11
	2.2	Trajec	tory Design and Guidance	11

		2.2.1	Implicit Guidance	12
		2.2.2	Explicit Guidance	13
	2.3	Termi	nal Area Trajectory Design and Guidance Methods	14
		2.3.1	Lifting Body Vehicle Guidance	14
		2.3.2	US Shuttle Terminal Area Energy Management (TAEM)	15
		2.3.3	Charles Stark Draper Laboratory Development	20
		2.3.4	Pre-Landing Maneuvering Stage	25
		2.3.5	EADS-ST Development	28
		2.3.6	Previous Hopper Vehicle Developments	30
		2.3.7	Barron Associates Incorporated Development	33
		2.3.8	Rose-Hulman Institute of Technology Development	36
		2.3.9	University of Missouri-Columbia Development	38
	2.4	Other	Guidance Methods	41
		2.4.1	Ascent Guidance	42
		2.4.2	Re-entry Guidance	43
		2.4.3	IRS Programs	45
	2.5	Discu	ssion of Literature	47
	2.6	Concl	usions From Literature	51
	2.7	Resea	rch Aims	52
3	Met	hodolo	ogy	55
	3.1	Proble	em Formulation	55
		3.1.1	Equations of Motion	56
		3.1.2	NLPQL Subroutine	58
		3.1.3	Gradient Projection Algorithm	60
		3.1.4	Guidance Program Implementation	61
		3.1.5	Structure of the Optimisation Program	63
		3.1.6	Structure of the Guidance Program	63
		3.1.7	Load Controller	64
	3.2	Mode	ls and Errors	65
		3.2.1	Atmosphere and Wind	66
		3.2.2	Earth Shape and Gravity	68

	3.2.3	Aerodynamics
	3.2.4	Vehicle Mass
	3.2.5	Navigation Errors
	3.2.6	Steering Command Errors
	3.2.7	Initial Condition Errors
	3.2.8	Summary of Off-Nominal Conditions
3.3	Assum	nptions and Limitations
Veh	icles an	nd Missions 85
4.1	The H	opper Vehicle and Mission
4.2	The X-	-33 Vehicle and Mission
4.3	Termin	nal Area Flight Phase
Traj	ectory l	Design and Optimisation95
5.1	Param	eterisation Variable
5.2	Param	eter Profiles
5.3	Sensiti	ivity Studies
5.4	Traject	tory Margins
5.5	Traject	tory Design
5.6	Cost F	unctions
5.7	Refere	ence Trajectories
5.8	Comp	arison to Other Methods
5.9	Discus	ssions From Trajectory Design
5.10	Conclu	usions from Trajectory Design
Gui	dance	133
6.1	The H	opper Vehicle Results
	611	Real Time Operation 136
	0.1.1	
	6.1.2	Guidance Worst Cases
	6.1.2 6.1.3	Guidance Worst Cases 139 Sensitivity Studies 143
	6.1.26.1.36.1.4	Guidance Worst Cases 139 Sensitivity Studies 143 Guidance Evaluation 152
	 6.1.2 6.1.3 6.1.4 6.1.5 	Guidance Worst Cases 139 Sensitivity Studies 143 Guidance Evaluation 152 Re-Entry Study Results 156
	 3.3 Veh 4.1 4.2 4.3 Traj 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10 Gui 6.1 	3.2.3 3.2.4 3.2.5 3.2.6 3.2.7 3.2.8 3.3 3.3 Assum Velles and 4.1 The H 4.2 The X- 4.3 Traied 5.1 Param 5.2 Param 5.3 Sensit 5.4 Traject 5.5 Traject 5.4 Sensit 5.4 Sensit 5.4 Traject 5.5 Traject 5.4 Cost F 5.5 5.6 Comp 5.7 Sensit 5.8 Comp 5.9 Discus 5.10 Concle 6.1

		6.1.7	Comparison to Other Methods	. 165
	6.2	The X	-33 Vehicle Results	. 167
		6.2.1	X-33 Vehicle Guidance Modifications	. 169
		6.2.2	Real Time Operation	. 170
		6.2.3	Guidance Worst Cases	. 171
		6.2.4	Sensitivity Studies	. 176
		6.2.5	Guidance Evaluation	. 186
		6.2.6	Predictor Wind Models	. 191
		6.2.7	Comparison to Other Methods	. 198
	6.3	Discus	ssions From Guidance	. 200
	6.4	Concl	usions From Guidance	. 204
7	Con	clusior	1	209
-	7.1	Summ	arv of Major Findings	. 209
	7.2	Concl	usions of the Research	. 211
	7.3	Addit	ions and Improvements to Programs	. 213
	7.4	Addit	ions to Terminal Area Flight Phase Research	. 214
	7.5	Future	e Work	. 214
Α	Sim	ulation	Environment	219
	A.1	Coord	inate Frames and Transformations	. 219
	A.2	Densi	ty Profiles	. 220
	A.3	Wind	Profiles	. 220
В	Nur	nerical	Methods	229
	B.1	Vehicl	e and Trajectory Characteristics	. 229
	B.2	Mach	Number Calculations	. 229
	B.3	Statist	ics	. 230
	B.4	Unit C	Conversions	. 230
C	Hop	per Ve	hicle Speed Brake Model	231
D	Stee	ering Pi	ofile Modifications	239
Re	References 249			

List of Figures

2.1	TAEM guidance phases	16
2.2	Steps of the Proto-SNAKE trajectory generator	22
2.3	Russian Buran Orbiter	26
2.4	Buran Pre-Landing Maneuvering Stage	26
2.5	Buran Pre-Landing Maneuvering Stage for different conditions	27
2.6	EADS-ST TAEM strategy	29
2.7	TAEM reference trajectory	39
3.1	Graphical representation of the GPA	62
3.2	Structure of the guidance concept	64
3.3	The Hopper and X-33 vehicle aerodynamics	71
4.1	The sub-orbital Hopper concept vehicle	86
4.2	The Hopper vehicle mission profiles	87
4.3	Vehicle comparison for the X-33, VentureStar TM and US Space Shuttle	89
4.4	The X-33 vehicle MAAF mission profile	90
4.5	The terminal area flight phase of the Hopper vehicle	91
5.1	Different profiles for vehicle state variables	99
5.2	A parameter model with too many steering parameters	.02
5.3	Model error effects for a Hopper vehicle trajectory without guidance 1	.05
5.4	Initial condition effects for a Hopper vehicle trajectory without guidance 1	.06
5.5	Model error effects for a X-33 vehicle trajectory without guidance 1	.09
5.6	Initial condition effects for a X-33 vehicle trajectory without guidance 1	.09
5.7	Additional Hopper vehicle trajectory solution ground tracks	.19
5.8	The Hopper vehicle reference trajectory	20

5.9	Additional X-33 vehicle trajectory solution ground tracks
5.10	The X-33 vehicle reference trajectory
5.11	The Hopper vehicle aerodynamic model for the feasible glide slopes 130
6.1	The Hopper vehicle ground track and steering profile no errors
6.2	Guidance call interval influence on Hopper vehicle final conditions 137
6.3	Guidance integration step size influence on Hopper vehicle final conditions 138
6.4	The Hopper vehicle worst case results models
6.5	The Hopper vehicle worst case results initial conditions
6.6	The Hopper vehicle steering profile for initial solution and $C_L\pm 10\%$ $~$ 143
6.7	The Hopper vehicle target miss errors
6.8	The Hopper vehicle target miss error influences
6.9	The Hopper vehicle final velocity errors
6.10	The Hopper vehicle final velocity error influences
6.11	The Hopper vehicle final azimuth errors
6.12	The Hopper vehicle final azimuth error influences
6.13	The Hopper vehicle final flight path angle errors
6.14	The Hopper vehicle final flight path angle error influences
6.15	The Hopper vehicle final position results
6.16	The Hopper vehicle final condition results
6.17	Final positions from the Hopper vehicle re-entry studies
6.18	Final positions with re-entry study inputs
6.19	Results for re-entry inputs with off-nominal conditions
6.20	Hopper vehicle final condition errors with re-entry study inputs 160
6.21	Hopper vehicle re-entry trajectory #393 and reference trajectory 161
6.22	Reference trajectory without speed brake
6.23	Final positions for the Hopper vehicle without a speed brake
6.24	Hopper vehicle final condition errors without a speed brake
6.25	X-33 vehicle ground track and steering profile without off-nominal conditions169
6.26	Guidance call interval influence on X-33 vehicle final conditions
6.27	Guidance integration step size influence on X-33 vehicle final conditions 171
6.28	X-33 vehicle worst case results for models

6.29	X-33 vehicle worst case results for initial conditions
6.30	X-33 vehicle target miss errors
6.31	X-33 vehicle target miss error influences
6.32	X-33 vehicle final velocity errors
6.33	X-33 vehicle final velocity error influences
6.34	X-33 vehicle final azimuth errors
6.35	X-33 vehicle final flight oath angle error influences
6.36	X-33 vehicle final flight path angle errors
6.37	X-33 vehicle final flight oath angle error influences
6.38	X-33 vehicle dynamic pressure margins
6.39	X-33 vehicle results 1000 simulation Monte Carlo
6.40	X-33 vehicle final condition errors with off-nominal conditions
6.41	X-33 vehicle final positions with predictor winds
6.42	X-33 vehicle results with predictor winds
6.43	X-33 vehicle final velocity errors with HWM and predictor winds 195
Δ 1	The density profiles for the world wide models 220
Δ 2	The density promes for the world wide models
A 3	The density profiles for the Hopper vehicle terminal area flight phase 221
Δ Δ	The density errors for the Hopper vehicle terminal area flight phase 222
A 5	The density profiles for the X-33 vehicle terminal area flight phase 222
A 6	The density promes for the X-33 vehicle terminal area flight phase 223
Δ7	The North South HWM output for the Hopper vehicle mission 224
Δ 8	The Fast West HWM output for the Hopper vehicle mission 224
Δ9	The North South HWM output for the X-33 vehicle mission 225
A 10	The Fast West HWM output for the X-33 vehicle mission 225
A 11	The strong predictor wind profile with HWM output 226
A 12	The medium predictor wind profile with HWM output 226
Δ 13	The light predictor wind profile with HWM output 227
11.10	
C.1	The Hopper vehicle with speed brakes
C.2	Speed Brake model $\alpha = 0$ to 5°, Ma = 0.1 to 1.5
C.3	Speed Brake model $\alpha = 6$ to 10° , Ma = 0.1 to 1.5

C.4	Speed Brake model $\alpha = 11$ to 15° , Ma = 0.1 to 1.5
C.5	Speed Brake model $\alpha = 16$ to 20° , $Ma = 0.1$ to 1.5
D.1	Hopper vehicle steering profile for the reference trajectory and $C_L \pm 10\%$ 240
D.2	Hopper vehicle steering profile for the reference trajectory and $C_D\pm10\%$ 240
D.3	Hopper vehicle steering profile for the reference trajectory and $m\pm10\%$ $~$. . 241
D.4	Hopper vehicle steering profile for the reference trajectory and $\rho\pm10\%$ $~.~.~241$
D.5	Hopper vehicle steering profile for the reference trajectory and HWM 242
D.6	Hopper vehicle steering profile for the reference trajectory and $h\pm 2.5 \text{km}$ 242
D.7	Hopper vehicle steering profile for the reference trajectory and $\nu = 400/500\text{m/s}$
D.8	Hopper vehicle steering profile for the reference trajectory and $\chi\pm20^\circ$ $~$ 243
D.9	Hopper vehicle steering profile for the reference trajectory and $\gamma = 0/-30^{\circ}$ 244
D.10) X-33 vehicle steering profile for the reference trajectory and $C_L\pm 10\%$ \ldots . 244
D.11	X-33 vehicle steering profile for the reference trajectory and $C_D \pm 10\%$ 245
D.12	X-33 vehicle steering profile for the reference trajectory and m \pm 10% \ldots 245
D.13	X-33 vehicle steering profile for the reference trajectory and $ ho\pm10\%$ 246
D.14	X-33 vehicle steering profile for the reference trajectory and HWM \ldots 246
D.15	5 X-33 vehicle steering profile for the reference trajectory and h $\pm1828.8\text{m}$ $$. $$. 247
D.16	X-33 vehicle steering profile for the reference trajectory and $\nu\pm30$ m/s $~~.~.~247$
D.17	$^{\prime}$ X-33 vehicle steering profile for the reference trajectory and $\chi\pm15^{\circ}$ $~$ 248
D.18	3 X-33 vehicle steering profile for the reference trajectory and $\gamma\pm4^\circ$

List of Tables

3.1	Earth constants 70
3.2	The Hopper and X-33 vehicles off-nominal conditions
4.1	The Hopper vehicle characteristics
4.2	The Hopper vehicle mission restrictions
4.3	The X-33 vehicle characteristics
4.4	The X-33 vehicle mission restrictions
4.5	The Hopper vehicle nominal initial conditions
4.6	The Hopper vehicle nominal final conditions
4.7	The X-33 vehicle nominal initial conditions
4.8	The X-33 vehicle nominal final conditions
5.1	Hopper vehicle sensitivity study for off-nominal conditions
5.2	Hopper vehicle sensitivity study results
5.3	X-33 vehicle sensitivity study for off-nominal conditions
5.4	X-33 vehicle sensitivity study results
5.5	Flight path angles and corresponding L/D ratios for constant glide slope \therefore 129
6.1	The Hopper vehicle guidance results without off-nominal conditions 135
6.2	The Hopper vehicle worst case results
6.3	The Hopper vehicle results 1000 Monte Carlo, 20km
6.4	Final results from Hopper vehicle re-entry studies
6.5	Final results with re-entry study inputs
6.6	Results for re-entry inputs with off-nominal conditions
6.7	Results for the Hopper vehicle without a speed brake
6.8	X-33 vehicle guidance results without off-nominal conditions

6.9	X-33 vehicle worst case results
6.10	Other results for initial altitude and azimuth variations
6.11	X-33 vehicle results 1000 simulation Monte Carlo
6.12	The X-33 vehicle predictor wind profiles
6.13	X-33 vehicle results with predictor winds
6.14	Results from Kluever and Horneman (2005) for drag variations
6.15	X-33 vehicle results for drag variations with on-board guidance knowledge 199
B.1	Unit conversions
C .1	Speed brake model $Ma = 0.1$ to 0.925, $\alpha = 0$ to 20°
C.2	Speed brake model $Ma = 0.95$ to 1.6, $\alpha = 0$ to 20°

Nomenclature

Acronyms

3D	Three Dimensional
3DOF	Three Degrees of Freedom
6DOF	Six Degrees of Freedom
AD	Anno Domini
ALIP	Auto and Landing Interface
ALIP3D	Auto Landing I-load Program Three Dimensional
ALIP	Auto Landing I-load Program
AOTV	Aeroassisted Orbital Transfer Vehicle
ARES	Atmospheric Re-entry Experimental Spaceplane
ASTRA	Advanced Systems and Technologies for RLV Application
ATMOS4	Orbital Sciences Corporation Atmospheric Model
ВС	Before Christ
CFD	Computational Fluid Dynamics
CFRP	Carbon Fibre Reinforced Plastics
COLIBRI	Concept of a Lifting Body for Re-entry Investigations
DFP	Davidon-Fletcher-Powell

DOF	Degrees Of Freedom
EADS	European Aeronautic Defence and Space Company
EADS-ST	European Aeronautic Defence and Space Company, Space Transporta- tion
EAGLE	Evolved Acceleration Guidance Logic for Entry
EELV	Evolved Expendable Launch Vehicle
FESTIP	Future European Space Transportation Investigations Programme
FPGA	Field Programmable Gate Array
GPA	Gradient Projection Algorithm
GPS	Global Positioning System
GTO	Geostationary Transfer Orbit
HAC	Heading Alignment Cylinder/Cone
HWM	Horizontal Wind Model
IMSL	International Mathematics Standards Library
INS	Inertial Navigation System
IRS	Institut für Raumfahrtsysteme (Institute for Space Systems)
KEP	Kernel Extraction Protocol
LH ₂	Liquid Hydrogen
LOX	Liquid Oxygen
LQR	Linear Quadratic Regulator
LRB	Liquid Rocket Booster
MAAF	Michael Army Air Field
MATLAB TM	Matrix Laboratory

MAVERiC	Marshall Aerospace Vehicle Representation in C
MECO	Main Engine Cut Off
MIRKA	Micro Re-Entry Capsule
MOD	Mission Operations Directorate
MSISE	Mass Spectrometer Incoherent Scatter Extended
NASA	National Aeronautics and Space Administration
NEP	Nominal Entry Point
NLP	Non-Linear Programming
NLPQL	Non-Linear Programming Optimiser Sub-routine
OPTG	Optimum-Path-To-Go
PAM	Payload Assist Module
PNN	Polynomial Neural Network
Proto-SNAKE	Prototype Sub-Optimal Nodal Application of the Kernel Extraction
RLV	Reusable Launch Vehicle
SIGI	Space Integrated GPS/ INS
SI	Systéme International
SNAKE	Sub-Optimal Nodal Application of the Kernel Extraction
SQP	Sequential Quadratic Programming
SSO	Sun Synchronous Orbit
SSTO	Single Stage To Orbit
TAEM	Terminal Area Energy Management
TAI	Terminal Area Interface

Greek Letters

α	Angle of attack
α_k	Step length
β	Side slip angle
x	Azimuth or heading
х́	Azimuth rate
ΔF	Change in cost function
δ	Latitude
δ	Latitude rate
δSB	Speed brake setting
e	Total vehicle energy
ϵ_{Init}	Initial vehicle energy
ϵ_{Kin}	Kinetic vehicle energy
€ _{Norm}	Normalised vehicle energy
€ _{Pot}	Potential vehicle energy
Ϋ́	Flight path angle rate
γ	Flight path angle
к	Ratio of specific heats (adiabatic index)
λ	Longitude rate
Λ	Lagrangian multipler

λ	Longitude
μ_{E}	Earth gravitational potential
ν̈́	Velocity rate
ν	Vehicle velocity
ω_{E}	Earth angular velocity
ψ	Introduced parameter
ρ	Atmospheric density
σ	Standard deviation
τ	Time delay
θ	Thrust angle
ξ	Introduced variable

Latin Letters

a	Speed of sound
B _k	Approximate Hessian of the Lagrange function
COS	Cosine function
C _A	Axial coefficient
C _D	Total drag coefficient
C _d	Drag coefficient with Mach number correction
$C_d^{\mathrm{Skin}\mathrm{Friction}}$	Drag coefficient with skin friction
$C_{d^{\text{Mach}}}$	Drag coefficient correction for Mach number
C _f	Skin friction coefficient
C _L	Total lift coefficient

C _l	Lift coefficient with Mach number correction
$C_{l^{Mach}}$	Lift coefficient correction for Mach number
C _N	Normal coefficient
Cs	Speed brake coefficient
C _{SD}	Speed brake coefficient for drag
C _{SL}	Speed brake coefficient for lift
D	Drag force
d _k	k-th solution of the quadratic sub-problem
е	Eccentricity
Γ̈́	Augmented cost function
F	Cost function
f	Function
F _{Aero}	Aerodynamic forces
F _{Control}	Control effort cost function
F _{Dynamic Pressure}	Dynamic pressure cost function
F _{Load}	Load margin cost function
$F(\vec{p})_{Hopper}$	Hopper cost function
$F(\vec{p})_{X-33}$	X-33 cost function
Ğ	Gravitation force vector
ĝ	Gravitation acceleration vector
G	Universal gravitational constant
g	Gravitational acceleration

G_δ	Gravitation force with respect to latitude
gδ	Gravitation acceleration with respect to latitude
gi	Final constraints
g _j	In-flight constraints
\vec{g}_p^k	Jacobian matrix
G_λ	Gravitation force with respect to longitude
gλ	Gravitation acceleration with respect to longitude
G _r	Gravitation force with respect to centre of the earth
gr	Gravitation acceleration with respect to centre of the earth
Ĥ	Quasi-Newton matrix
h	Altitude
i	Final constraints list
Ji	Jeffery Constants
J _k	The set of active constraints
k _B	Boltzman factor
K _k *	The set of inactive constraints
L D	Lift-to-drag ratio
L	Lift force
L(x, u)	Lagrange function
М	Vehicle mass
m	Number of in-flight constraints
Ma	Mach number

$M\mathfrak{a}_{f}$	Mach number factor
M _E	Mass of the Earth
m _e	Number of final constraints
n	Number of parameters
p	Set of parameters
p _{i,l}	Parameter lower bound
p _{i,u}	Parameter upper bound
q	Dynamic pressure
ŕ	Radius rate
R	Current distance from the Earth's centre
r	Distance from centre of the Earth
R _{Gas}	Gas constant
R _n	Random number
R _E	Radius of the Earth
R _e	Earth equatorial radius
R _{mean}	Mean Earth radius
R _p	Earth polar radius
sin	Sine function
S _{ref}	Aerodynamic reference area
_₹ ^k	Search direction
tan	Tangent function
Т	Effective temperature

Т	Thrust force
t	Vehicle state variable (normalised energy)
T _{Air}	Temperature
t _{end}	Final flight time
$\vec{u}(t)$	Control history
$\dot{\vec{x}}$	Differential constraints (equations of motion)
x	Average value
x _i	Current value
x _k	k-th estimate of the optimal solution
$\vec{x}(t_f)$	Final state
$\vec{x}(t_0)$	Initial state
Subscripts	

α	Angle of attack
c	Commanded steering setting
δSB	Speed brake setting
Lim	Limit
μ	Bank angle
Max	Maximum
Х	X axis
Y	Y axis
Z	Z axis

Abstract

You can't solve a problem with the same kind of thinking that created it.

Albert Einstein (1879-1955) Theoretical Physicist

THE next generation of reusable launch vehicles (RLVs) require significant improvements in guidance methods in order to reduce cost, increase safety and flexibility, whilst allowing for possible autonomous operation. Research has focused on the ascent and hypersonic re-entry flight phases. This thesis presents a new method for trajectory design, optimisation and guidance of RLVs during the terminal area flight phases. The terminal area flight phase is the transitional phase from hypersonic re-entry to the approach and landing phase.

The trajectory design, optimisation and guidance methods within this thesis are an evolution of previous work conducted on the ascent and re-entry flight phases of RLVs. The methods are modified to incorporate the terminal area flight phase through the adaption of the problem definition and the inclusion of the speed brake setting as a steering parameter.

The methods discussed and developed in this thesis are different to previous methods for the terminal area flight phase as they encompass optimisation, trajectory design and guidance based on the definition of the steering parameters. The NLPQL nonlinear optimiser contained within the International Mathematics Standards Library (IMSL) is utilised for trajectory design and optimisation. Real-time vehicle guidance is achieved using the restoration steps of an accelerated Gradient Projection Algorithm (GPA).

The methods used are evaluated in a three degrees of freedom (3DOF) simulation environment. To properly evaluate the programs and gain a better understanding of the terminal area flight phase, two different vehicles are utilised within this study. These vehicles are the German sub-orbital Hopper concept vehicle, a previously proposed replacement for the Ariane series of launch vehicles and the recently cancelled joint National Aeronautics and Space Administration (NASA) and Lockheed Martin sub-orbital test bed vehicle, X-33. The two vehicles each have a terminal area flight phase, but their mission profiles and vehicle characteristics are significantly different. The Hopper vehicle is a winged re-entry vehicle, whereas the X-33 vehicle is a lifting body.

The trajectory design method takes into account the initial and final conditions, inflight restrictions such as dynamic pressure and vehicle loads as well as safety margins. The designed trajectories are evaluated to analyse the terminal area flight phase and to assist in the development of the guidance program.

The guidance method is evaluated utilising an program consisting of two parts, a real world simulator with high order models and a representation of the on-board guidance computer, the predictor, which uses low order models for computational efficiency. The guidance method is evaluated against a variety of off-nominal conditions to account for dispersions within the high order real world models and common errors experienced by re-entry vehicles. These off-nominal conditions include atmospheric disturbances, winds, aerodynamic, mass, navigation, steering and initial condition errors.

The results of this study include a detailed analysis of the terminal area flight phase highlighting the major influences for vehicle and trajectory design. The study also confirms the applicability of the non-linear programming method utilising the vehicle steering parameters as a viable option for trajectory design and guidance. A comparison to other available results highlights the strengths and weaknesses of the proposed method.

Statement

THIS work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent to this copy of my thesis, when deposited in the University Library, being made available in all forms of media, now or hereafter known.

James T. A. Chartres

Date

Acknowledgements

Be silent as to services you have rendered, but speak of favours you have received. Seneca (5 BC - 65 AD) Roman Dramatist, Philosopher and Politician

F^{IRSTLY I} would like to thank my supervisors Dr. Gerald Schneider, Dr. Michael Gräßlin and Dr. Matthew Tetlow who went above and beyond my expectations to assist me with my research, funding and visas. Without their help and input I would never have had such an incredible international experience or produced this thesis.

Special thanks to the people of The School of Mechanical Engineering, The University of Adelaide and the Institut für Raumfahrtsysteme, Universität Stuttgart for the opportunity to work on such a fantastic project in two top quality research environments.

I wish to thank The Sir Ross and Sir Keith Smith Fund for financial support during research in Germany and in Australia.

My gratitude to all those who have assisted in my research; Jürgen for his never ending assistance and explanation with all things program related, Billy for keeping my computer in top condition, Will for everything ETEX, Lynette for organising all my travel payments, Kay Leverett for her assistance and knowledge with all things library related, the people of S213 and S226a for their assistance and at times much needed distraction, the other people of the aerospace research group and AIAA Adelaide for their motivation and contacts.

Special thanks go to Greg Dukeman and the NASA Marshall Space Flight Center for their assistance provided. Without their continued support the studies on the X-33 vehicle could not have been performed.

I would really like to thank all my friends in Germany for making my time there more enjoyable than I could have ever imagined. Very special thanks to Raphi for letting me steal all his friends, welcoming me into his family and showing me the time of my life in and outside of Germany.

Thanks to all my friends in Adelaide for the much needed support and distraction outside of my PhD. Special thanks to Melissa for her never ending support and for always being there when I needed her.

Last but by no means least I would like to thank my family members who have always supported me throughout my studies I can't thank you enough. Special thanks to Mum and Dad for looking after Gizmo and organising the Australian side of things during my long absences. This thesis is dedicated to all those people who have given of themselves in the pursuit of the exploration of space. May their sacrifice be never forgotten or in vain.

If we die, we want people to accept it. We are in a risky business and we hope that if anything happens to us it will not delay the program. The conquest of space is worth the risk of life.

Virgil I. "Gus" Grissom (1926 - 1967)