DHA-RICH FISH OIL AND REGULAR MODERATE EXERCISE: A COMBINED INTERVENTION TO IMPROVE CARDIOVASCULAR, METABOLIC AND INFLAMMATORY BIOMARKERS IN OBESITY

Alison M Hill

B App Sc. (Hons) Human Movement

A thesis submitted for the degree of Doctor of Philosophy

Discipline of Physiology

University of Adelaide

South Australia

March 2007

TABLE OF CONTENTS

ABSTRACT	ix
DECLARATION	xi
ACKNOWLEDGMENTS	xiii
GLOSSARY OF ABBREVIATIONS	XV
LIST OF FIGURES	xxi
LIST OF TABLES	XXV
PUBLICATIONS ARISING FROM THIS THESIS	xxvii
INTRODUCTION	1

1.1	OVERVIEW	1
1.2	OMEGA-3 FATTY ACIDS (N-3 FA)	3
1.2.1	Description, sources & metabolism of n-3 FA	3
1.2.2	Biochemical effects of n-3 FA	4
1.2.3	Health benefits of n-3 FA	9
1.2.4	Current & recommended intakes of n-3 FA	11
1.3	PHYSICAL ACTIVITY (PA)	13
1.3.1	Description of PA	13
1.3.2	Health benefits of PA	13
1.3.3	Current and recommended levels of PA	14

i

1.4 EFFECTS OF N-3 FA & PA ON CV, METABOLIC &

	INFLAMMATORY BIOMARKERS	15
1.4.1	CV biomarkers	15
1.4.2	Metabolic biomarkers	27
1.4.3	Inflammatory biomarkers	37
1.4.4	Clustered risk factors i.e. the Metabolic Syndrome (MS)	41
1.5	AIMS OF THESIS	47

STUDY DESIGN & SUBJECTS

49

2.1	STUDY DESIGN	49
2.1.1	Overview	49
2.1.2	Outcome measures	50
2.1.3	Power calculation	51
2.1.4	Statistical analysis	51
2.2	SUBJECTS	52
2.2.1	Entry criteria	52
2.2.2	Recruitment & screening	54
2.2.3	Randomisation	56
2.2.4	Compliance & retention	57
2.2.5	Treatment group profiles	60

BODY COMPOSITION 61 3.1 INTRODUCTION 61 3.2 AIM 61

3.3	METHODS	62
3.3.1	Anthropometry	62
3.3.2	Total body and abdominal composition	62
3.3.3	Exercise testing	63
3.3.4	Diet analysis	63
3.4	RESULTS	63
3.4.1	Subjects	63
3.4.2	Effects of n-3 FA and/or exercise on energy intake	64
3.4.3	Effects of n-3 FA and/or exercise on body weight and BMI	66
3.4.4	Effects of n-3 FA and/or exercise on total body composition	
	(fat and lean mass)	67
3.4.5	Effects of n-3 FA and/or exercise on abdominal region composition	68
3.4.6	Effects of n-3 FA and/or exercise on RER	69
3.4.7	Effects of n-3 FA and/or exercise on fat oxidation during exercise	71
3.4.8	Associations between measures of body composition and	
	metabolic variables	72
3.5	DISCUSSION	76
3.5.1	Exercise induced changes in body composition	76
3.5.2	Omega-3 FA induced changes in body composition	79
3.5.3	Correlations with metabolic variables	81
3.5.4	Combined intervention trials & summary	82

BLOOD PARAMETERS

4.1	INTRODUCTION	83
4.2	AIM	84

83

4.3	METHODS	84
4.3.1	Blood sample collection	84
4.3.2	Erythrocyte fatty acid analysis	84
4.3.3	Analysis of lipoprotein lipids	85
4.3.4	Analysis of glucose and insulin	85
4.4	RESULTS	86
4.4.1	Effects of n-3 FA and/or exercise on erythrocyte fatty acid	
	concentrations	86
4.4.2	Effects of n-3 FA and/or exercise on lipoprotein lipids	89
4.4.3	Effects of n-3 FA and/or exercise on glucose & insulin	93
4.5	DISCUSSION	94
4.5.1	Fatty acid composition of erythrocytes	94
4.5.2	Omega-3 FA induced changes in blood lipids	94
4.5.3	Exercise induced changes in blood lipids	96
4.5.4	Combined n-3 FA & exercise effects on blood lipid profiles	96
4.5.5	Omega-3 FA induced changes in glucose and insulin	97
4.5.6	Exercise induced changes in glucose and insulin	98
4.5.7	Combined n-3 FA & exercise effects on glucose and insulin	98
4.5.8	Summary and conclusion	99
ARTERIAL F	FUNCTION	101

5.1	INTRODUCTION	101
5.2	AIM	102
5.3	METHODS	102
5.3.1	FMD and Glyceryl-Trinitrate Mediated Dilatation (GTN-D)	103
5.3.2	Arterial Compliance and BP	104

5.4	RESULTS	106
5.4.1	Effects of n-3 FA and/or exercise on endothelial-dependent &	
	-independent dilatation	106
5.4.2	Effects of n-3 FA and/or exercise on measures of arterial compliance	110
5.4.3	Effects of n-3 FA and/or exercise on BP	112
5.5	DISCUSSION	113
5.5.1	Omega-3 FA induced changes in arterial function	113
5.5.2	Exercise induced changes in arterial function	115
5.5.3	Combined effects of n-3 FA & exercise on arterial function	117
5.5.4	Omega-3 FA induced changes in BP	117
5.5.5	Exercise induced changes in BP	118
5.5.6	Summary & conclusion	119
INFLAMMATION & IMMUNE FUNCTION		
6.1	INTRODUCTION	121
6.2	AIM	121

6.3	METHODS	122
6.3.1	Blood sample collection	122
6.3.2	Leukocyte preparation	122
6.3.3	Neutrophil functions	122
6.3.4	Cytokine production from stimulated MNL	123
6.4	RESULTS	124
6.4.1	Subjects	124

6.4.2 Effects of n-3 FA and/or exercise on erythrocyte fatty acid
concentrations 125
6.4.3 Effects of n-3 FA and/or exercise on cytokine production 127

6.4.4	Effects of n-3 FA and/or exercise on neutrophil function	129
6.5	DISCUSSION	133
6.5.1	Omega-3 FA induced changes in cytokine production	133
6.5.2	Exercise induced changes in cytokine production	135
6.5.3	Combined n-3 FA & exercise induced changes in cytokine production	137
6.5.4	Omega-3 FA induced changes in neutrophil function	138
6.5.5	Exercise induced changes in neutrophil function	140
6.5.6	Combined n-3 FA & exercise induced changes on neutrophil function	141
6.5.7	Summary and conclusion	141
HEART RAT	E	143
7.1	INTRODUCTION	143
7.2	AIM	145
7.3	METHODS - STUDY 1	145
7.3.1	HR response to exercise	145
7.3.2	Resting HR	146
7.3.3	Statistical analysis	146
7.4	RESULTS – STUDY 1	146
7.4.1	Effects of n-3 FA and/or exercise on resting HR	146
7.4.2	Effects of n-3 FA and/or exercise on HR response to exercise	147
7.5	METHODS - STUDY 2	149
7.5.1	HRV	149
7.6	RESULTS – STUDY 2	150
7.6.1	Subjects	150
7.6.2	Effects of n-3 FA and/or exercise on HRV	151

7.7	DISCUSSION	153
7.7.1	Effect of n-3 FA and exercise on resting HR, HR response to exercise	ise
	& HRV	153
7.7.2	Summary & conclusion	156
GENERAL D	ISCUSSION	159
8.1	KEY OUTCOMES FOR THIS STUDY	159
8.1.1	Benefits of n-3 FA supplementation in an overweight population	
	with increased metabolic risk	159
8.1.2	Potential benefits of regular aerobic exercise in an overweight population	lation
	with increased metabolic risk	160
8.1.3	Potential benefits of combined regular aerobic exercise and n-3 FA	in
	an overweight population of increased metabolic risk	161
8.2	PUBLIC HEALTH IMPLICATIONS	162
8.3	STUDY LIMITATIONS	163
8.4	FUTURE DIRECTIONS	164
BIBLIOGRA	PHY	165

ABSTRACT

The current obesity epidemic has intensified research on lifestyle interventions aimed at combating obesity and associated cardiovascular (CV) and metabolic risk. This clustering of risk factors with obesity is known as the "Metabolic Syndrome" (MS). There is now a large body of evidence detailing the ability of omega-3 fatty acids (n-3 FA) and regular moderate exercise to independently ameliorate several CV risk factors; however the combination of these interventions may be a more effective strategy in reducing CV risk than either treatment alone. This thesis describes the independent and combined effects of supplementation with docosahexaenoic acid (DHA) rich fish oil, and regular moderate exercise, on CV, metabolic and inflammatory biomarkers.

Sedentary, overweight volunteers (BMI > 25kg/m²) with mild hypertension (140/90 – 160/100mmHg), elevated plasma triglycerides (TAG) (>1.6mmol/L) or elevated total cholesterol (TC) (>5.5mmol/L) were recruited in three cohorts for a 12-week intervention trial. Subjects were randomised to one of the following interventions: fish oil, fish oil and exercise, sunflower oil (placebo), sunflower oil and exercise. Subjects consumed 6 g/day of DHA-rich fish oil (26% DHA, 6% EPA; ~1.9g n-3 FA) or sunflower oil. The exercise groups walked 3 days/wk for 45 min, at 75% age-predicted maximal heart rate (HR). Outcome measures were assessed and compared across each intervention group at Weeks 0, 6 and 12, with the exception of body composition, heart rate variability (HRV) and immune functions, which were assessed at Weeks 0 and 12 only. Apart from the consumption of allocated capsules, all subjects were instructed to maintain their normal diet during the study. If not asked to exercise as part of the intervention subjects were also instructed to maintain their normal level of physical activity. Supplementation with DHA rich fish oil resulted in substantial increases in total long chain n-3 FA and DHA levels in erythrocyte membranes, accompanied by reduction of TAG, increase of high-density lipoprotein (HDL) cholesterol and reduction of superoxide production by stimulated neutrophils. Both the increase in HDL and the decrease in superoxide production were correlated with the change in erythrocyte DHA. Endothelium dependent arterial vasodilation (assessed by flow-mediated dilatation, FMD), HRV and HR response to exercise were also improved in subjects supplemented with the DHA-rich fish oil. Regular moderate intensity exercise, either alone or in addition to the DHA-rich fish oil supplementation, had no effect on these parameters, although it improved the compliance of small resistance arteries. Interestingly, however, both DHA-rich fish oil and regular exercise reduced body fat and these effects were additive when the interventions were combined. The change in fat mass was accompanied by an increase in fat oxidation during exercise, as measured by the respiratory exchange ratio. For the population as a whole, reductions in total and abdominal fat mass were associated with reductions in blood pressure.

In summary, this study is the first to evaluate the metabolic and CV benefits that can be achieved by combining n-3 FA supplementation from fish oil and regular aerobic exercise in overweight/obese adults. While this combination did not produce any synergistic effects, several independent benefits were attained. The high compliance rate (>85%) within this study indicates that this intervention is well tolerated and may therefore be sustainable in the longer term. Future research should evaluate the mechanisms underlying the n-3 FA mediated improvements in body composition.

DECLARATION

I certify that this work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent to a copy of my thesis being made available in the University Library.

Alison M Hill

 31^{st} March 2007

ACKNOWLEDGEMENTS

First and foremost, to my principal supervisor, Professor Peter Howe, thank you for your invaluable support and guidance throughout my candidature. You have taught me a great deal, and I am extremely appreciative of the numerous hours spent in your counsel.

To Associate Professor Jon Buckley, thank you for your enthusiasm, patience and support, and for always making time to see me, even at short notice.

I thank Dr Karen Murphy for her assistance during the early stages of my clinical trial debut and for critiquing manuscript and thesis drafts.

To Dr Alison Coates and Dr Joe Laforgia, thank you for your friendship and for keeping me focused - there is light at the end of the tunnel!

I extend thanks to Daniel Ninio and Associate Professor David Saint for their advice and assistance in conducting the heart rate variability sub-study and to Carrie Worthley and Professor Tony Ferrante for their assistance and expertise in the inflammation and immunity sub-study. I would also like to thank Christina Blefari for technical assistance during the early stages of my project and Professor Adrian Esterman for statistical advice.

I would like to thank my fellow postgrads and other NPRC lab members for their support and friendship, and for making the NPRC a great place to work.

Finally, to my friends and family, especially my *parental guidance* and my husband Matthew, thank you for your love, support and constant belief in my abilities.

GLOSSARY OF ABBREVIATIONS

AA	Arachidonic Acid
ACSM	American College of Sports Medicine
АНА	American Heart Association
ANOVA	Analysis of Variance
ANCOVA	Analysis of Covariance
Apo B	Apolipoprotein B
ATP III	Adult Treatment Panel III
β-receptor	Beta-Adrenoreceptor
BIA	Bioelectrical Impedance
BMI	Body Mass Index
BP	Blood Pressure
° C	Degrees Celsius
Ca ⁺⁺	Calairea
Ca	Calcium
CDC	Centers for Disease Control and Prevention
CDC	Centers for Disease Control and Prevention
CDC CHD	Centers for Disease Control and Prevention Coronary Heart Disease
CDC CHD Con A	Centers for Disease Control and Prevention Coronary Heart Disease Concanavalin A
CDC CHD Con A COX	Centers for Disease Control and Prevention Coronary Heart Disease Concanavalin A Cyclooxygenase
CDC CHD Con A COX CPT-1	Centers for Disease Control and Prevention Coronary Heart Disease Concanavalin A Cyclooxygenase Carnitine Palmitoyl Transferase-1
CDC CHD Con A COX CPT-1 CRP	Centers for Disease Control and Prevention Coronary Heart Disease Concanavalin A Cyclooxygenase Carnitine Palmitoyl Transferase-1 C-Reactive Protein
CDC CHD Con A COX CPT-1 CRP CV	Centers for Disease Control and Prevention Coronary Heart Disease Concanavalin A Cyclooxygenase Carnitine Palmitoyl Transferase-1 C-Reactive Protein Cardiovascular
CDC CHD Con A COX CPT-1 CRP CV CVD	Centers for Disease Control and Prevention Coronary Heart Disease Concanavalin A Cyclooxygenase Carnitine Palmitoyl Transferase-1 C-Reactive Protein Cardiovascular Cardiovascular Disease

DHA	Docosahexaenoic Acid
DPA	Docosapentaenoic Acid
DXA	Dual Energy X-ray Absorptiometry
ECG	Electrocardiogram
EDTA	Ethyldiaminetetraacetic Acid
ELISA	Enzyme Linked Immunoabsorbent Assay
eNOS	Endothelial NO Synthase
EPA	Eicosapentaenoic Acid
FA	Fatty Acid
FAME	Fatty Acid Methyl Ester
FAT/CD 36	Fatty Acid Translocase
FMD	Flow-Mediated Dilatation
fMLP	f-met-leu-phe
FXR	Farnesol X Receptor
FO	Fish Oil
FOX	Fish Oil + Exercise
g	Gram
GTN	Glyceryl Trinitrate
GTN-D	Glyceryl - Trinitrate Mediated Dilatation
HbA _{1c}	Glycosylated Hemoglobin
HBSS	Hanks' Balanced Salt Solution
HDL	High Density Lipoprotein
HFP	High Frequency Power
HNF-4α	Hepatic Nuclear Factor-4α
HOMA	Homeostasis Model Assessment
HPEPE	Hydroperoxyeicosapentaenoic Acid
HPETE	Hydroperoxyeicosatetraenoic Acid

HR	Heart Rate
HRV	Heart Rate Variability
IAAT	Intra Abdominal Adipose Tissue
ICAM-1	Intracellular Adhesion Molecule-1
IDF	International Diabetes Federation
IFG	Impaired Fasting Glucose
IFNγ	Interferon Gamma
IGT	impaired glucose tolerance
IL-1β	Interleukin 1 Beta
IL-1ra	Interleukin 1 receptor agonist
IL-2	Interleukin-2
IL-4	Interleukin-4
IL-6	Interleukin-6
IL-10	Interleukin-10
ISAK	International Society for the Advancement of Kinanthropometry
kg	Kilogram
kJ	Kilojoule
\mathbf{K}^+	Potassium
LA	Linoleic acid
LNA	Alpha-linolenic acid
LDL	Low Density Lipoprotein
LAC	Large Artery Compliance
LFP	Low Frequency Power
LOX	Lipoxygenase
LPL	Lipoprotein Lipase
LPS	Lipopolysaccharide
LT	Leukotriene

LTA_4	Leukotriene A ₄
LTA ₅	Leukotriene A ₅
LTB_4	Leukotriene B ₄
LTB ₅	Leukotriene B ₅
LTC ₄	Leukotriene C ₄
LTC ₅	Leukotriene C ₅
LTD_4	Leukotriene D ₄
LTD ₅	Leukotriene D ₅
LTn	Lymphotoxin
LXR	Liver X receptor
mg	Milligram
mL	Millilitre
mm	Millimetre
mRNA	Messenger Ribonucleic Acid
MAP	Mean Arterial Pressure
MI	Myocardial Infarction
MIP	Macrophage Inflammatory Protein
MNL	Mononuclear
MS	Metabolic Syndrome
n-3 FA	Omega-3 FA
n-6 FA	Omega-6-FA
NADPH	Nicotinamide Adenine Dinucleotide Phosphate
NATA	National Association of Testing Authorities of Australia
NBT	Nitroblue Tetrazolium
NCEP	National Cholesterol Education Program
NF-ĸB	Nuclear Factor-Kappa-Beta
NHMRC	National Health and Medical Research Council

NNS95	1995 Australian National Nutrition Survey
NO	Nitric Oxide
OD	Optical Density
OGTT	Oral Glucose Tolerance Test
PA	Physical Activity
PAI-1	Plasminogen Activator Inhibitor-1
PBMC	Peripheral Blood Mononuclear Cells
PG	Prostaglandin
PGE ₂	Prostaglandin E ₂
PGE ₃	Prostaglandin E ₃
PGH ₂	Prostaglandin H ₂
PGH ₃	Prostaglandin H ₃
PGJ_2	Prostaglandin J ₂
PGJ ₃	Prostaglandin J ₃
РНА	Phytohaemagglutinin
РКС	Protein Kinase C
PMA	Phorbol Myristate Acetate
PP	Pulse Pressure
PPAR	Peroxisome Proliferator-Activated Receptor
PPL	Post-prandial Lipemia
QUICKI	Quantitative Insulin-Sensitivity Check Index
RCT	Randomised Controlled Trial
RER	Respiratory Exchange Ratio
ROS	Reactive Oxygen Species
S	second
SAC	Small Artery Compliance
SBP	Systolic Blood Pressure

SEM	Standard Error of Mean
SREBP-1c	Sterol Regulatory Element Binding Protein
SO	Sunflower Oil
SOX	Sunflower Oil + Exercise
SVR	Systemic Vascular Resistance
TAG	Triglyceride
TC	Total Cholesterol
TNFα	Tumor Necrosis Factor Alpha
TVI	Total Vascular Impedance
TX	Thromboxane
TXA ₂	Thromboxane A ₂
TXA ₃	Thromboxane A ₃
μL	Microlitre
VCAM-1	Vascular Cell Adhesion Molecule-1
VLCD	Very Low Calorie Diet
VLDL	Very Low Density Lipoprotein
VO ₂	Oxygen Uptake
VCO ₂	Carbon Dioxide Output
WC	Waist Circumference
WHO	World Health Organisation
WHR	Waist to Hip Ratio
WLFO	Weight Loss with Fish Oil
WLPO	Weight Loss with Placebo Oil

LIST OF FIGURES

Figure 1.1 Structure of linoleic (LA) and alpha-linolenic acid (LNA).	3
Figure 1.2 Metabolic pathway of the conversion of linoleic acid (18:2n-6, LA)	
and linolenic acid (18:3n-3, LNA).	4
Figure 1.3 Metabolic pathway of eicosanoid synthesis from arachidonic acid (20:4n-6)	
and eicosapentaenoic acid (20:5n-3).	6
Figure 1.4 Hypothetical schematic diagram of the change in total dietary fat intake	
and the contribution of different fatty acids.	11
Figure 1.5 Plasma cytokine response to strenuous exercise.	40
Figure 2.1 Study design and time line.	50
Figure 2.2 Subject recruitment and attrition patterns.	59
Figure 3.1 Energy intake by oil treatment at Weeks 0, 6 and 12 of intervention.	66
Figure 3.2 Effect of exercise training or no exercise on body weight.	67
Figure 3.3 DXA assessed changes in total body fat and lean mass by treatment group.	68
Figure 3.4 DXA assessed changes in abdominal fat and lean mass after exercise training	
or no exercise for twelve weeks.	69
Figure 3.5 RER during 3 exercise workloads at Week 0 and after 6 and 12 weeks of	
exercise training or no exercise.	70
Figure 3.6 Relationship between the change in total body fat mass and average change in	
RER across all workloads.	71
Figure 3.7 Fat oxidation during exercise at Week 0 and after 6 and 12 weeks of	
exercise training or no exercise.	72
Figure 3.8 Relationship between changes in total body fat mass and SBP and DBP.	74
Figure 3.9 Relationship between the change in total body fat mass and resting HR.	74
Figure 3.10 Relationship between the change in total body fat mass and plasma insulin.	75 xxi

Figure 3.11 Relation between the change in total body fat mass and HOMA.	75
Figure 3.12 Relation between the change in abdominal fat mass and SBP and DBP.	76
Figure 4.1 Erythrocyte fatty acid levels by treatment group.	88
Figure 4.2 Change in HDL (mmol/L) by oil treatment.	91
Figure 4.3 Change in TAG (mmol/L) by oil treatment.	91
Figure 4.4 Relationship between change in TAG and baseline (Week 0) TAG levels.	92
Figure 4.5 Relationship between changes in total long chain n-3 FA or DHA and HDL.	92
Figure 5.1 Analysis of arterial diameter using digital calipers.	104
Figure 5.2 Schematic diagram of certain key features of the arterial BP waveform	
used to determine arterial compliance.	105
Figure 5.3 Schematic diagram of the modified Windkessel model.	106
Figure 5.4 Ultrasound assessed resting brachial artery diameter measured at	
0, 6 and 12 Weeks of intervention.	108
Figure 5.5 Relationship between baseline brachial artery diameter and	
peak FMD response.	109
Figure 5.6 FMD mediated absolute change in brachial artery diameter (cm) at following	
intervention with DHA rich fish oil or sunflower oil.	109
Figure 5.7 FMD mediated percent change in brachial artery diameter following	
intervention with DHA rich fish oil or sunflower oil.	110
Figure 5.8 Effect of exercise training or no exercise on SAC.	111
Figure 5.9 Change in SBP and DBP by treatment group.	113
Figure 6.1 Change in erythrocyte fatty acid composition by treatment group.	127
Figure 6.2 Effect of DHA-rich fish oil or sunflower oil on superoxide production.	130
Figure 6.3 Relationship between change in superoxide production and incorporation	
of DHA into erythrocyte membranes.	131
Figure 6.4 Effect of exercise training or no exercise on bactericidal activity.	132
Figure 6.5 Effect of exercise training or no exercise on chemotaxis. xxii	133

Figure 7.1 Change in resting HR by treatment group.	147
Figure 7.2 Change in HR response to sub-maximal exercise by treatment group.	148
Figure 7.3 Change in HFP by oil treatment.	152
Figure 7.4 Change in LFP by exercise treatment.	153

LIST OF TABLES

Table 1.1 Effect of n-3 FA supplementation (<7 g/day) on blood lipids	
(% change from baseline).	17
Table 1.2 Meta-analyses reporting the effects of intervention with regular aerobic exercise	
on blood pressure.	23
Table 1.3 Summary of select studies reporting the effect of exercise (without dietary	
restriction) on total body composition in overweight/obese subjects.	34
Table 1.4 Summary of select inflammatory cytokines and cytokine receptor functions.	38
Table 1.5 Metabolic Syndrome definitions	42
Table 1.6 American Heart Association (AHA) diet and lifestyle recommendations for	
CVD risk reduction.	44
Table 1.7 Combined n-3 FA and exercise intervention details.	46
Table 2.1 Study inclusion criteria	53
Table 2.2 Study exclusion criteria	53
Table 2.3 Subject entry characteristics by treatment group.	60
Table 3.1 Baseline (Week 0) measures of body composition and energy intake (kJ).	64
Table 3.2 Profile of macronutrient intake by treatment group.	65
Table 3.3 Pearson's correlations between changes in various measures of body composition	n
and metabolic variables by Week 12 of intervention.	73
Table 4.1 Erythrocyte fatty acid composition (% of total fatty acids) by treatment group.	87
Table 4.2 Plasma lipoprotein lipid concentrations (mmol/L) by treatment group	90
Table 4.3 Plasma glucose, serum insulin and measures of insulin sensitivity	
(HOMA, Beta cell function, QUICKI) by treatment group	93

Table 5.1 Endothelial-de	pendent and independ	dent measures of	vascular function
Table J.T Lindomental-uc	pendent and-mucpent	dent measures of	vascular function

	by treatment group	108
Table 5.2	Measures of arterial compliance by treatment group.	111
Table 5.3	Measures of blood pressure by treatment group.	112
Table 6.1	Neutrophil function and cytokine production sub-study subject entry characterist	ics
	by treatment group.	124
Table 6.2	Erythrocyte fatty acid composition (% of total fatty acids) by treatment group.	126
Table 6.3	Cytokine production from stimulated neutrophils by treatment group.	128
Table 6.4	Measures of neutrophil functions by treatment group.	129
Table 7.1	Resting HR (bpm) measured at Weeks 0, 6 and 12 by treatment group.	146
Table 7.2	Heart rate variability sub-study subject entry characteristics by treatment group.	151
Table 7.3	Measures of heart rate variability by treatment group.	152

PUBLICATIONS ARISING FROM THIS THESIS

Papers – Published

- AM Hill, J LaForgia, AM Coates, JD Buckley & PRC Howe. Estimating abdominal adipose tissue with dual energy x-ray absorptiometry and anthropometry. *Obesity*. 2007; 5: 504-510.
- Buckley JD, **Hill AM**, Coates AM, Howe PRC. Simpler diet and exercise strategies for managing obesity in "Physical activity and obesity". Editors Hills AP, Bryne NM and King NA. Smith-Gordon and Co, London (Published August 2006).

Papers - In Press

- Hill AM, JD Buckley, KJ Murphy, PRC Howe. Combining fish oil supplementation with regular aerobic exercise to improve cardiovascular and metabolic health. *Am J Clin Nutr* (In Press)
- Hill AM, Worthley C, Murphy KJ, Buckley JD, Ferrante A, Howe PRC. Omega-3 fatty acid supplementation and regular moderate exercise: differential effects of a combined intervention on neutrophil function. *Br J Nutr* (In Press)

Abstracts - Published

Hill AM, Buckley JD, Murphy KJ, Saint DA, Morris AM & Howe PRC Combined effects of omega-3 supplementation and regular exercise on body composition and cardiovascular risk factors. *Nutrition Society of Australia, 29th Annual Scientific Meeting,* 30th November – 3rd December 2005. Asia Pac J Clin Nutr. 2005; 14(supp):S57.

- Ninio DM, **AM Hill**, JH Smith, K Murphy, J Buckley, DA Saint, PRC Howe. Fish oil enhances heart rate variability in overweight adults. Cardiac Soc ANZ, Brisbane. Heart, Lung Circ 2004;13:S82
- Davison K, Hill A, Thorp A, Worthley C, Murphy K, Howe P, Buckley J. Digital volume pulse (DVP) analysis of vasodilator function during exercise. *The Australian Society for Medical Research (SA Division) Annual Scientific Meeting*, 4th June 2004; abstr. O31.
- Hill AM, Murphy KJ, Saint DA, Buckley JD, Howe P. Combined effects of omega-3 (ω3) and moderate exercise on body fat and cardiovascular (CV) risk factors. *The Australian Society for Medical Research (SA Division) Annual Scientific Meeting*, 4th June 2004; abstr. O30.

Conference Presentations

- AM Hill, J LaForgia, AM Coates, JD Buckley & PRC Howe. DXA and anthropometry predict intra abdominal adipose tissue. *Physical Activity & Obesity. International Congress Satellite Conference.* September 2006, Brisbane, Australia.
- AM Hill, JD Buckley, KJ Murphy & PRC Howe. Running on fish oil: benefits of ω3 supplementation and exercise. 7th Congress for the International Society for the Study of Fatty Acids and Lipids, July 2006, Cairns, Australia.
- Hill AM, Buckley JD, Murphy KJ, Saint DA, Morris AM & Howe PRC Combined effects of omega-3 supplementation and regular exercise on body composition and cardiovascular risk factors. *Nutrition Society of Australia, 29th Annual Scientific Meeting*, December 2005, Melbourne, Australia.
- Hill AM, Buckley JD, Murphy KJ, Saint DA & Howe PRC. Omega 3 supplementation enhances body fat loss during exercise. 2nd International Symposium on Triglycerides and HDL: Role in Cardiovascular Disease and the Metabolic Syndrome, July 2005, New York City, USA.

- Hill A, Buckley J, Murphy K, Saint D, & Howe P. Cardiovascular & Metabolic benefits following omega-3 fatty acid supplementation and exercise. *Australasian Section of the American Oil Chemists Society, Bi-Annual Meeting*, December 2004, Adelaide, Australia.
- Hill A, Murphy K, Saint D, Buckley J, Howe P. Combined benefits of omega-3 and exercise for cardiovascular health. Australian Atherosclerosis Society Annual Scientific Meeting, September 2004, Barossa Valley, Australia.
- Hill AM, Murphy KJ, Saint DA, Buckley JD, Howe P. Combined effects of omega-3 (ω3) and moderate exercise on body fat and cardiovascular (CV) risk factors. *The Australian Society for Medical Research (SA Division) Annual Scientific Meeting*, 4th June 2004; abstr. O30.

Poster Presentations

Hill AM, KJ Murphy, DA Saint, JD Buckley & PRC Howe. Effect of omega-3 supplementation and moderate intensity exercise on cardiovascular health. *International Society for the Study of Fatty Acids and Lipids Congress*, July 2004, Brighton, UK.