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Conjugate Functions and Semiconformal mappings

Paul Baird and Michael Eastwood

1. Introduction

Suppose that M is a Riemannian manifold and f : M — R is a smooth function.
We may ask whether there is a smooth function g : M — R such that

(1) Vil =1Vgll and (Vf,Vg) = 0.

In this case, we shall say that f and g are conjugate functions. Suppose M is 2-
dimensional. If f has a conjugate, then f is harmonic. Locally, the converse is true:
harmonic functions admit conjugates. We may ask what happens for manifolds of
dimension > 3. Is there, for example, a partial differential equation that characterises
those f that admit a conjugate? In this article we shall establish a second order
partial differential inequality and, in case M is 3-dimensional, a third order partial
differential equation that must be satisfied by a function f in order that it admit a
conjugate. Our final aim (as yet not attained) is to find further differential equations
characterising such functions. These (nonlinear) differential equations should provide
a natural conformally invariant generalisation of harmonic function to dimensions
greater than 2.

One motivation for the condition (1) comes from the theory of harmonic mor-
phisms [2]. A mapping F' : M — N between Riemannian manifolds is said to be a
harmonic morphism if and only if harmonic functions locally defined on N pull back
by F to harmonic functions locally defined on M. The Hopf fibration S® — S? is a
harmonic morphism. If the target manifold is R? and we write F' = (f, g), it is clear
that each of f and ¢ should be harmonic (since the codrdinate functions on R? are
harmonic). The other condition that F' be a harmonic morphism in this case was
derived by Jacobi in 1848. It is (1). It is especially natural to isolate this condition
when one notices that it is conformally invariant (whereas being harmonic is only
conformally invariant in dimension 2). The condition (1) on F' = (f,g) also has
a good geometric interpretation. At points where F' is a submersion, it says that
its derivative dF' is conformal on the subspace orthogonal to its null space: F' is
semiconformal (some authors use (weakly) horizontally conformal).

2. Examples

Here are some examples of pairs F' = (f,g) on R3\ x1-axis enjoying (1):~
(a): f =212 — 202 — 232 g = 2x1V/ 192 + 132,
(b): f:x2x12+$22+$32 g:x3$12+$22+x32
x9? + 132 x9? + 132
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(): f— (L — [l=]1?/2)z2 + V22125 g= 1= (12 /2)23 + V2w122

.%'22 _1_:1;32 3?22 +$32 :
This last one is the Hopf fibration conformally rearranged using stereographic coor-
dinates: R3 — $3 — S? «> R2. In none of these examples is f harmonic (whereas
it is shown by Ababou, Baird, and Brossard [1] that if f and g are polynomial and
conjugate on R™ for any n > 3, then they must be harmonic).

In this article we shall show, for example, that neither of
(2) f=mxoxs nor f=a}+ x5+ a3

on R3 admit a conjugate, even locally.

3. A differential inequality

The first function f of (2) may be dealt with by a differential inequality that
must be satisfied in case f admit a conjugate. To express this inequality, let us write

i=Vif  fi;=V;V;f  and so on,

where V; is the metric connection (or just codrdinate derivative on R™). Also, let us
‘raise and lower’ indices with the metric in the usual fashion and write a repeated

index to denote a sum over that index. Thus, fi% = Af is the Laplacian and
flgi = (Vf,Vg). Given a smooth function f on a smooth n-manifold M, let
(3) X = (n—=2)2f i f* fr. — £l i) + £ F(F75)°

Theorem 1 Suppose f is a smooth function defined on a Riemannian n-manifold.
If f admits a conjugate, then it satisfies the partial differential inequality X < 0.

Proof Let us suppose that f admits a conjugate ¢g and let us write w; = V;g, noting
that w;; = Vjw; is symmetric in its indices. The equations (1) become

(4) flwj=0 and ww;= fif;.
Differentiating again, we find

(5) flwj+wif;=0 and ww; = f7f;.
Using that w;; is symmetric, we conclude that

(6) flwiw; + f9fif; = 0.

We now regard (4) and (6) as algebraic equations on the 1-form w; and claim that
X < 0is a necessary constraint on f; and f;; in order to find a solution w;. Certainly,
this will complete the proof.

Where f; vanishes X also vanishes. We may suppose, therefore, we are at a point
where f; # 0 and we are required to show that X < 0 there. We may do this in local
coordinates chosen conveniently at the point in question. Let us suppose that

fi=fo=-=f_1=0 fn#0 g;j = identity matrix
at this point. If we let o be an index running over 1,2,--- ,n — 1, then we may
rewrite X at our chosen point:i—

X = (P (=220 fh — ) + (75)?)
= (0= 2[(an)? = 12 fag] + (fan + [70)?)
= (fn)2 ((n - 1)(f7m)2 - (n - 2)faﬁfo¢,8 + 2fnnfaa + (faa)Q) .
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Letting @ denote the (n — 1) x (n — 1) symmetric matrix f,,,¢*® + f*%, we find that
(trace Q)2 = ((n - 1)fnn + faoz)Q

and

trace Q% = (n. — 1)(fun)? + £ fap + 2funt“as
whence
(7) X = (fn)? ((trace Q)% — (n — 2)trace QQ).

Now let us consider the three equations (4) and (6) in our special codrdinates. The
first one says that w, = 0 and from the others, we find that
(fang®® + [P waws = fanw'wi + fIwiw;
= fowlw; — f”fzfj = f,m(wiwi — (fn)Q) = 0.
In particular, the symmetric matrix @ is indefinite. Thus, bearing (7) in mind, to

finish the proof it suffices to show that for any (n — 1) x (n — 1) indefinite symmetric
matrix Q,

(8) (trace Q)* < (n — 2)trace Q2.
This is easily verified by diagonalising Q). O

Notice that when n = 3, the criterion (8) is not only necessary but also sufficient
for the 2 x 2 symmetric matrix Q) to be indefinite:—

(trace Q)* — trace Q* = 2det Q.

In general, the constant (n — 2) in (8) is best possible.
When n = 2, the differential inequality X < 0 becomes

IVFIP(Af)” <o,

which can only happen if f is harmonic. Thus, we recover the well-known 2-
dimensional criterion for f to admit a conjugate. In higher dimensions, it is some-
times the case that X is identically zero. In the examples (a) and (b) of §2 we find
that X = 0. For (c), however,
f= (L= [|z|?/2)zs + V2wrws . 2+ =]
N x92 + w32 N ($22 + x32)4’

which is strictly negative.

4. Counterexamples
We may now dispose of the first of (2). We compute
f = T1T2T3 = X= 6(.%'1.%’2:1?3)2.

There is no open set on which X < 0so f does not admit a conjugate. This criterion,
however, is not always sufficient:—

f=al+ad+25 = X|q11)=T776 whilst X|1o 09 = —1944,

which does not rule out f having a conjugate near (1,2, —2). Even worse,

V1I+ a2+ 32— 1
(9) f=log ( N +2V/1 4 2% + 232
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yields

5 (3 4 2292 + 223%) (1 + 2292 + 2232)?
(.21?22 + .21?32)2(1 +x92 + .%'32)4

which is everywhere negative though, as we shall see, f does not admit a conjugate.

X=-

)

5. Some conformal invariants

Given the conformally invariant nature of the problem, it is not surprising that
the quantity X is itself conformally invariant. This means that if the Riemannian
metric g;; is rescaled by an arbitrary positive smooth function, then X itself merely
rescales. More specifically X is a conformally invariant density of weight —6 meaning
that

Ggij — gij = QQgZ‘j = X X =0 5x.
We may check this directly as follows. The metric connection changes as
Vipj = Vip; — Tips — Tioi + THorgs;
acting upon any 1-form ¢;, where T; = V;log Q. Thus, while the exterior derivative
fi=V,f of f is invariant (f; = f;), the Hessian changes:—
fii = fij = Cifs = ifi + Y fugij.

Therefore,

Pifi=Q72f i =070 f; = Tif 1))

FFiF% fie = QOU F5 % e = 2050 fig + T2 £)7)

f9 fiy = QFI fig = A0 fig + 208 fif's + 2007 £ + (n = 2) (X £i)?]

fij=Q72f3;+ (n—2)Y f}]
and all the terms involving T; cancel in computing X from (3). From this direct cal-
culation, the conformal invariance of X seems miraculous and, even in flat space R",
conformal invariants are somewhat thin on the ground. Nevertheless, it is possible,

in principle, to list all conformal invariants of functions on R™ and this is done in [3].
Here are some further conformal invariants:—

J = f'f; (weight —2) and Z = (n—2)f"f;f;+ Jf’; (weight —4).

They are of first and second order, respectively, and are invariant not only in flat
space but also on an arbitrary Riemannian manifold. Any polynomial with consis-
tent overall weight in known invariants is also invariant. Here are some third order
invariants in flat space:—

R=Jf'N,Z —2Zf'V;J (weight —8)
and ‘ A
S=Jf'V; X —3Xf'V,;J (weight —10).
Again, they are invariant on any Riemannian manifold. Also, they are all even:

invariant under change of orientation.
Here is an odd conformal invariant on flat R3:~

V = XTIV (f Hij fr) — 3F Hij fxVeJ)
where € is the volume form and
Hij =2JV;V;J —3(VJ)(V;J)
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It has weight —11 and changes sign under change of orientation. As written, it seems
that V' is fourth order but the highest derivatives V,V;V;J clash with the skew
symmetry of e/*¢ and so V is actually only third order. It extends to an invariant on
a general Riemannian 3-manifold with the addition of a ‘curvature correction term’
to Hijif

Hij =2JV;V;J =3(V;J)(V;J) — 4R¢jJ2,

where R;; is the Ricci curvature.

6. A partial differential equation

Theorem 2 Suppose f is a smooth function defined on an open subset of R3. If f
admits a conjugate, then it satisfies, where X < 0, the following partial differential
equation:—

(10) 2(ZS —2XR+2X7% —4JX*)? + XV? = 0.

The proof is postponed until §8 below. Let us first give some applications.

7. Further counterexamples

It is a matter of calculation (most easily done with a computer) to see that
Theorems 1 and 2 obstruct certain functions from admitting a conjugate. For f =
713 4+ 293 + 233 of (2) we find that both X and the left hand side of (10) are non-zero
polynomials

2ZS —2XR+2X7Z% —4JX*)? + XV? = 2933052823 ...

whereas Theorems 1 and 2 would have their product vanishing identically in any
open set on which f were to have a conjugate. Hence, nowhere does f admit a
conjugate.

Similarly, though the function f defined on R?\ z1-axis by (9) everywhere passes
the criterion of Theorem 1, it is immediately ruled out of having a conjugate by
Theorem 2. The left hand side of (10) works out to be

(1 + 2292 + 2232)16
(292 + 232)10(1 + xo2 + z32) 14"

128

On the other hand,
\/1—|—.’L‘22+.’L’32—1 2
Virg? + 32 (w2* + x37)
which is everywhere negative and f also satisfies the differential equation of Theo-
rem 2. In fact, f has a conjugate: g = z1 + arctan(xs/z2).

>+ 1+CC22+5632:>X:—

8. Proof of Theorem 2
Recall our equations so far, namely (4) and (6):—
(11) Fuwi=0  wj=Ff  flow+ f9ff;=0.
Let us calculate the directional derivative fiV; of (6):—

FIEfififi + PR fwjwr + 2075 £ fife + 2475w fiwp, = 0.
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Now use that w;; is symmetric and the second of equations (5) to replace w';f; by
—f"jw;. We obtain:—

(12) FIR i fi b+ FIR frwjon + 2098 £ fife — 298 fLiwiw, = 0.

Notice that (11) and (12) are algebraic equations for w;, which at any point are
constructed from the third jet of f at that point.

To proceed we need to suppose that the dimension is 3 and, for simplicity, we
shall also suppose that the manifold is Euclidean space R3. We would like to solve
the equations (11) for w; (since in dimension 3 there are 3 equations for 3 unknowns)
and then eliminate it from (12) to give a vanishing expression in the third derivatives
of f. At stated, this does not work because the sign of w; is not determined by (11).
In fact, this is not a problem because changing the sign of w; also preserves (12).
There is a more serious problem. As we shall soon see, there is not just a 2-fold
ambiguity in w; from (11) but a 4-fold ambiguity, arising geometrically by viewing
(11) as the intersection of two planar quadrics.

This more serious problem can be overcome as follows. Computer algebra is
apparently insufficient to solve (11) in a useful way. Instead we shall choose special
coordinates near a fixed basepoint, carry out the proposed solution and elimination in
these special coordinates, and then guess the resulting partial differential equation
in general codrdinates, finally justifying our guesswork by computation in special
codrdinates.

We shall say that an orthonormal codrdinate system is special at a given base-
point if and only if

(13) fi=fo=fi2=0 and f3#0

at that point. Evidently, this is possible at any point where ||V f]| is non-vanishing
for we may take the xz-axis to align with V f and then diagonalise the Hessian f;;
restricted to (Vf)* by rotation in the (z1,x2)-plane.

The first equation of (11) in special coordinates says that ws = 0 and the re-
maining two equations then read:—

(W1)? + (w2)® = (f3)® and  fi1(w1)?® + foo(w2)® + f33(f3)* = 0.

From these linear equations for (w1)? and (w2)?, we find

9 o2 foet f3s o e2f11t f33
(14) () =) =5, Wl =)=

provided that f11 # foo. But if we compute X in special codrdinates, we find
X =2(f3)(f11 + f33)(faz + f33),

whence X < 0 forces f11 # foo. In fact, if we rewrite (14) as

2(f3)*(fo2 + f33)? 2(f3)2(f11 + f33)?
(f3)2(f22 + f33)2 - (f3)2(f11 + f33)2 - X’

then it is clear that when X < 0 the right hand sides of (14) are strictly positive and
hence that there are precisely 4 solutions for the 1-form wj;, as claimed above.

(w1)® = (f3)22 = (w2)? = (f:%)22
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Now, let us also write out (12) in special codrdinates:—

(f3)3 fa3s + falfris(wi)? + 2f12swiwa + faos(w2)?]
+2(f3)*[(f13)* + (f23)* + (f33)?]

—2[(f11)* + (f13)*](w1)? — 4f13 foswiws — 2[(f22)? + (f23)?](w2)* = 0.
If we rewrite this equation as
(f3)? fazs 4+ 2(f3)2[(f13)* + (f23)* + (f33)?]
(15) + [fsfis — 2(f11)2 — 2(f13)?] (wn)?
+ [fafoo3 — 2(fa2)? — 2(f23)*)(w2)? = 2[2f13f23 — [3f123)wiwa,

485

then it is clear from (14) that the left hand of (15) is completely determined by the
third jet of f at the basepoint, whilst the right hand side of (15) is determined up to
sign. By squaring both sides and substituting for (w;)? and (ws)? according to (14),
we certainly obtain a partial differential equation providing a necessary condition for
f to have a conjugate where X < 0. The only problem with this partial differential
equation is that it is written in special codrdinates. It is, however, a matter of trial
and error to express the left hand side of (15), once substituted from (14), as a
rational expression in the conformal invariants J, Z, X, R, and S. It turns out to

be

(ZS —2XR+2X 7% — 4JX?)
2(22 —2JX)

(16)

Concerning the square of the right hand side of (15),

o, w2 yevalfertfe)(futfis) o 6 X
(wl) (wQ) - (f3) (f22 — f11)2 - (f3) 2(22 — 2JX)
and, in special coordinates, we find
V = —A4(f3)°(faz — f11)[f3f123 — 2f13.f23]
whence
V2 V2

[f3f123 — 2f13.f23])" = (f3) ™ 16

Putting this together,

(21fs fias — 2frsfosloren)? = —<— AL
J— w1 = — .
3J123 13./23|w1w2 8(Z2 —2JX)?
Together with (16) we conclude that
2(2S —2XR+2X7° - 4JX*)?* XVv?
8(Z2 —2JX)? - 8(2%2-2JX)?

and (10) is obtained by equating numerators.

_ —6
(faz — f11)? (£5) 16(22 — 2JX)
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