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Appendix A

Flame Calculations

This appendix describes the flame calculations referred to throughout the thesis
in greater detail. For all calculations, the GRI-Mech 3.0 mechanism is used.

A.1 Nonpremixed Flames

For nonpremixed flames, the OPPDIF code of the CHEMKIN (version 3.6.2)
package is used. OPPDIF is used for computing temperature and species con-
centration for opposed-flow diffusion flames. The OPPDIF configuration (Fig-
ure A.1) consists of two facing nozzles (one fuel stream, one oxidant stream)
which produce an axisymmetric, one-dimensional flow. The imposed strain rate
at the stagnation plane is dependent on the stream velocity and the separation.

The OPPDIF configuration, which simulates opposed-flow laminar diffusion
flames, is clearly different to the parallel-flow turbulent flames investigated in
this study. Nevertheless, the results from OPPDIF are still closely related to
nonpremixed jet flames. The opposed-flow geometry is better suited for simpli-
fication of the steady state numerical simulations. Changing the strain rate is
somewhat equivalent to the effects of turbulence. It is important to recognise the
different geometry between the two configurations however.

In the OPPDIF configuration, the strain rate is not defined at a single point as is
the case in some other opposed-flow calculations [98]. Determination of a char-
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NOTE:  This figure is included on page 244 of the print copy of the 
thesis held in the University of Adelaide Library. 
 

 
 
 
 
 
    
Figure A.1: Schematic representation of the axisymmetric opposed-flow configuration 
[98]. 
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Oxidant 3% O2 9% O2

O2 0.03 0.09
N2 0.84 0.78

H2O 0.10 0.10
CO2 0.03 0.03

Table A.1: Oxidant (coflow) stream composition (molar basis). Temperature: 1100K.

acteristic strain rate in the OPPDIF configuration must therefore be determined
from the velocity profile [98]. The strain rate estimates presented in this work are
obtained from the OPPDIF post-processor output file, which gives the average
normal strain rate.

For calculations involving the coflow from the JHC burner, the oxidant stream
temperature used is 1100K. The oxidant stream was presented in Table 3.5, and
the major species composition is re-iterated in Table A.1.

A.2 Number Density

The experimental measurements yield the number density of the species. To
determine the number density from the flame calculations the ideal gas law is
used;

PV = NRT (A.1)

Where;
P is the pressure (Pa)
V is the volume (m3)
N is the number of molecules (mol)
R is the universal gas constant (8.314 J/mol/K)
T is the absolute temperature (K)
A is Avogadro’s constant (6.022× 1023 mol−1)

Rearranging equation A.1 to yield the number density (n = N/V );
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n =
P

R · T

(
mol

m3

)
=

A · P
R · T

(
molecules

m3

)
=

A · P
1003 ·R · T

(
molecules

cm3

)

For atmospheric pressure (P = 101.325kPa);

n =
7.339× 1021

T

(
molecules

cm3

)
(A.2)

Equation A.2 is for the total number density. The number density of species i,
with mole fraction Xi, is;

ni = Xi ·
7.339× 1021

T

(
molecules

cm3

)
(A.3)

A.3 Mixture Fraction

Since the coflow oxidant stream consists of combustion products (H2O and CO2),
the standard definition of mixture fraction is not appropriately defined for cal-
culations based on the mass fraction of H & C (hydrogen & carbon) atoms. To
compensate for this, a normalised mixture fraction (ξ∗) is defined based on the
mixture fraction found from the calculations (ξ) such that;

ξ∗ =
ξ − ξoxi

ξfuel − ξoxi

(A.4)

Where ξfuel & ξoxi refer to the standard definition of mixture fraction at the fuel
and oxidant stream boundaries, respectively.
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Key Figures Figure Figures Figures
Parameters 3.25, 3.26 4.3 4.10, 4.11 6.14, 6.15, 6.16,

& 3.27 & 7.1 & 7.6
FUEL C2H4: 0.5, Table A.3 CH4: 0.5, Various

H2: 0.5 H2: 0.5
TFUE 300K 300K 300K 300K
VFUE 10, 30, 100, 50 cm/s 2–500 cm/s 60 cm/s

& 500cm/s
OXID Table A.1 Table A.1 Table A.1 Table A.1 &

21% O2/79% N2

TOXI 1100K 1100K 1100K 1100K
VOXI 10, 30, 100, 50 cm/s 4–1000 cm/s 60 cm/s

& 500cm/s
XEND 2 cm 1 cm 6 cm 2 cm
GRAD 0.3 0.2 0.5 0.3
CURV 0.5 0.5 0.5 0.5
ATOL 1E-6 1E-6 1E-6 1E-6
RTOL 1E-3 1E-3 1E-3 1E-3
ATIM 1E-6 1E-6 1E-6 1E-6
RTIM 1E-3 1E-3 1E-3 1E-3

Diffusion MIX MIX MIX MULT

Table A.2: Key solution parameters for OPPDIF calculations

A.4 OPPDIF Calculation Parameters

Table A.2 presents the key parameters used for the OPPDIF calculations. Further
details of the particular calculations are outlined in subsequent sections. For all
cases the pressure is 1 atmosphere and the energy equation is solved.

A.5 Figure 3.25 & 3.26

Figures 3.25 & 3.26 show the calculated Rayleigh cross-section, plotted against
either axial distance, or the dimensionless temperature (τ, equation 3.19). The
Rayleigh cross-section is determined from major species concentration from OP-
PDIF calculations. The species considered are; CH4, C2H4, C3H8, H2, N2, O2,
CO, CO2, OH & H2O.
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The Rayleigh cross-section is calculated for all of the experimental conditions.
Figures 3.25 & 3.26 only present the results for the C2H4/H2, 3% O2 flame.
Table A.2 lists the key solution parameters.

A.6 Figure 3.27

Figure 3.27 shows the calculated OH quenching rate determined from major
species concentrations from OPPDIF calculations. The species considered are;
OH, N2, H2O, CO2, O2, CO & H2.

The OH quenching rate is calculated for all of the experimental conditions. Fig-
ure 3.27 only presents the results for the C2H4/H2, 3% O2 flame. Table A.2 lists
the key solution parameters.

Figure 3.27 incorporates the quenching rate with the OH number density, which
is found using equation A.3.

A.7 Figure 4.3

Figure 4.3 shows the effect of partial premixing on the peak H2CO concentration.
It consists of a series of nonpremixed flames at various levels of partial premixing
and also at premixed conditions.

OPPDIF calculations

Table A.3 shows the fuel stream composition for various fuel-stream equivalence
ratios (for partial premixing with air). Each fuel composition in Table A.3 is
calculated at the two O2 levels, with the oxidant stream composition shown in
Table A.1. Table A.2 lists the key solution parameters.
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Fuel Φ=3 Φ=6 Φ=12 Φ=24 Φ=∞
CH4 1 1 1 1 1
H2 1 1 1 1 1
O2 0.836 0.418 0.209 0.100 0
N2 3.144 1.572 0.786 0.377 0

Table A.3: Fuel stream composition (molar basis) for Figure 4.3

PREMIX calculations

At stoichiometric (Φ = 1) mixing with air, PREMIX is used to find the peak
H2CO concentration. The reactant species used are; CH4=1, H2=1, O2=2.5,
N2=9.409 (molar basis). Initial reactant temperature of 400K is assumed. The
flame is freely propagating and the energy equation is solved. Solution parameters
are: GRAD=0.3, CURV=0.5, ATOL=1E-9, RTOL=1E-4, ATIM=1E-5, RTIM=1E-5.

A.8 Figures 4.10, 4.11 & 7.1

Figure 4.10 shows the effect of imposed strain rate on the peak OH number den-
sity, calculated using OPPDIF. A separate run is used for each strain rate, with
each run having a different velocity of the fuel and oxidant streams. To ensure the
flame front is not affected by the boundary, the oxidant stream velocity is dou-
ble the fuel velocity. To reduce computational effort, each run is restarted from
the adjacent velocity case, starting from vfue=20cm/s (voxi=40cm/s). From this
starting run, the velocity is both increased (in 9 increments up to vfue=500cm/s)
and decreased (in 12 increments down to vfue=2cm/s). As the velocity is de-
creased, the grid is regridded to 25 points after each restart.

Table A.2 lists the key solution parameters. Thermal diffusion effects are in-
cluded, and in general, mixture averaged transport is used. Some runs were
repeated with multi-component transport to confirm that the computationally
easier mixture average transport did not introduce perceivable differences.

For generating Figure 4.10, the strain rate is obtained from the OPPDIF post-
processor output file. From the post-processor output, the peak OH concentration
is found for each of the runs. For the peak OH concentration (mole fraction) the
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number density is found using equation A.3.

Figures 4.11 & 7.1 use the same series of calculations as for Figure 4.10, but
plot different species from the post-processor output. For Figure 4.11 the peak
H2CO concentration is used. Again, with the strain rate from the post-processor
output file. At the location of the peak H2CO concentration the corresponding
O2 concentration is found to generate Figure 7.1.

A.9 Figures 6.14, 6.15, 6.16 & 7.6

Figures 6.14, 6.15, 6.16 & 7.6 show selected species concentrations for a single
fixed velocity case (vfue=voxi=60 cm/s). Three fuels are considered for Figures
6.14, 6.15 & 6.16; CH4/H2, C2H4/H2 & C3H8/H2 in an equal volumetric ratio of
hydrocarbon to hydrogen. For Figure 7.6 the fuels are; CH4, C2H4 & C3H8.

For the diluted O2 cases, the oxidant stream composition is from Table A.1 at a
temperature of 1100K. For the cold (standard air) the temperature is 300K, and
air is assumed 21% O2 & 79% N2.

Table A.2 lists the key solution parameters.

A.10 Figures 7.2, 7.3, 7.4 & 7.4

Figures 7.2, 7.3, 7.4 & 7.4 show relevant species and reaction rates for determi-
nation of the production of H2CO. These figures are generated from four selected
cases from the runs described in §A.8. For both the 3% & 9% O2 cases, two ve-
locity runs were chosen, namely; vfue=30cm/s (voxi=60cm/s) and vfue=300cm/s
(voxi=600cm/s).

From the selected runs, the OPPDIF post-processor is used to generate the pro-
duction rate for H2CO and also O. Reaction rates less than 1% are excluded from
the post-processor output files.
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Oxidant Fuel C2H4 H2 N2 O2 H2O CO2

C2H4 1 0 84.00 3.0 10.00 3.00
3% O2 C2H4/H2 1 1 98.00 3.5 11.67 3.50

(1100K) C2H4/air 1 0 68.73 3.0 7.90 2.37
C2H4/N2 1 0 87.00 3.0 10.00 3.00

C2H4 1 0 26.00 3.0 3.33 1.00
9% O2 C2H4/H2 1 1 30.33 3.5 3.89 1.17

(1100K) C2H4/air 1 0 22.91 3.0 2.63 0.79
C2H4/N2 1 0 29.00 3.0 3.33 1.00

C2H4 1 0 17.00 3.0 0 0
15% O2 C2H4/H2 1 1 19.83 3.5 0 0
(1100K) C2H4/air 1 0 16.60 3.0 0 0

C2H4/N2 1 0 20.00 3.0 0 0
C2H4 1 0 11.29 3.0 0 0

21% O2 C2H4/H2 1 1 13.17 3.5 0 0
(1100K) C2H4/air 1 0 11.29 3.0 0 0

C2H4/N2 1 0 14.29 3.0 0 0

Table A.4: Reactant composition for PREMIX calculations of laminar flame speed.
Note that the fuel and oxidant are not applicable for these premixed calculations, and
are included only for designation of the nonpremixed flame conditions.

A.11 Table 7.1

Table 7.1 presents laminar flame speed calculations from the PREMIX code of
CHEMKIN (version 3.6.2). The laminar flame speed is found for a stoichiomet-
ric mixture for each fuel type and oxidant stream composition. The premixed
composition and temperature for each of the flame cases is shown in Table A.4.

To determine the laminar flame speed, the premixed flame is solved as a freely
propagating flame. The energy equation is solved. The velocity at the base of
this flame represents the laminar flame speed.

The computational domain extends from X=–0.5cm to 10cm, with conver-
gence criteria of GRAD=0.5 & CURV=0.5, ATOL=1E-8, RTOL=1E-6, ATIM=1E-6,
RTIM=1E-6. Multi-component transport with thermal diffusion is used.
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OH-LIF Linearity

This appendix demonstrates the linearity of the OH laser induced fluorescence
measurements (OH-LIF). To test for linearity, a separate experiment was con-
ducted. The same Lambda-Physik ScanMate 2E dye laser, pumped with a Quan-
tel BrilliantB/Twins Nd:YAG, (§3.3.2) was used in both campaigns.

To simplify the experimental setup, the beam leaving the laser (after the Pellin-
Broca array) is only passed through a single spherical lens (f=1000mm). A
simple laminar partially-premixed methane/air flame located at the focal point
provides a stable source of OH.

To investigate the dependence of the OH-LIF on the spectral intensity, the laser
power is adjusted. To decrease the laser energy without affecting the beam profile
and characteristics, the doubling crystals are misaligned to reduce the ultra-violet
(UV) emission. The linewidth of the UV laser pulse was measured to verify that
it is consistent with the turbulent flame measurements (i.e. ∆ν = 0.5cm−1).

At each laser energy, the OH signal is averaged from the maximum in each of 100
images. Figure B.1 shows the dependence of the maximum OH-LIF signal from
the flame for various laser energies.

From Figure B.1 it appears that the OH-LIF is linear with laser energy up to
around 1 mJ/pulse. Even at 1 mJ/pulse there is some slight non-linearity, but
this is quite minor. The beam diameter (round because of the spherical lens used)
has been measured to be 1mm (both from burns to photosensitive paper and from
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Figure B.1: OH-LIF dependence on laser energy

scaling from the images themselves). The OH-LIF is therefore considered linear
up to ∼1.2 mJ/mm2.

For the turbulent flame measurements, the laser energy through the probe volume
was 2 mJ/pulse. The laser sheet was 12mm in height. The in-plane resolution of
the OH imaging was 160µm. Burns from photosensitive paper suggest that the
sheet thickness was greater than this, but accurate determination from the burns
was not possible. Using 160µm as the sheet thickness is an under-estimate, which
will subsequently over-estimate the flux. Assuming a 160µm sheet thickness, the
fluence in the turbulent flame images is ∼1 mJ/mm2. Since this fluence is less
than that considered linear (1.2 mJ/mm2) the measurements are therefore within
the linear regime.



Appendix C

Publications

Publications arising from this thesis

Medwell, P. R., Kalt, P. A. M. and Dally, B. B. (2005), Effect of Fuel Dilution
on Jet Flames in a Heated and Diluted Co-flow, ‘5th Asia-Pacific Conference on
Combustion’, The University of Adelaide, Adelaide, Australia, pp. 325–328.

Medwell, P. R., Kalt, P. A. M. and Dally, B. B. (2005), Effect of Reynolds
number on the Spatial Distribution of OH and Formaldehyde in Jet Flames in a
Heated and Diluted Co-flow, ‘5th Asia-Pacific Conference on Combustion’, The
University of Adelaide, Adelaide, Australia, pp. 381–384.

Medwell, P. R., Kalt, P. A. M. and Dally, B. B. (2005), Quantification of OH-LIF
in Jet Diffusion Flames, ‘Fourth Australian Conference on Laser Diagnostics in
Fluid Mechanics and Combustion’, The University of Adelaide, South Australia,
Australia, pp. 105–108.

Medwell, P. R., Kalt, P. A. M. and Dally, B. B. (2007), ‘Simultaneous imaging
of OH, formaldehyde, and temperature of turbulent nonpremixed jet flames in a
heated and diluted coflow’, Combustion and Flame 148, 48–61.

Medwell, P. R., Kalt, P. A. M. and Dally, B. B. (2007), Structure of Ethylene
Based Nonpremixed Flames Stabilised on a JHC Burner, ‘6th Asia-Pacific Con-
ference on Combustion’, Nagoya Congress Center, Nagoya, Japan, pp. 452–455.

254



APPENDIX C. PUBLICATIONS 255

Medwell, P. R., Kalt, P. A. M. and Dally, B. B. (2007), ‘Imaging of Diluted
Turbulent Ethylene Flames Stabilised on a Jet in Hot Coflow (JHC) Burner’,
Combustion and Flame. in press.

Medwell, P. R., Kalt, P. A. M. and Dally, B. B. (2007), Influence of Fuel Type on
Turbulent Nonpremixed Jet Flames Under MILD Combustion Conditions, ‘16th

Australasian Fluid Mechanics Conference’, Crown Plaza, Gold Coast, Australia.
submitted.

Medwell, P. R., Kalt, P. A. M. and Dally, B. B. (2007), Influence of Fuel Com-
position on the MILD Combustion Reaction Zone Structure in a JHC Burner,
‘Proceedings of the Australian Combustion Symposium’, University of Sydney,
Australia. submitted.

Medwell, P. R., Kalt, P. A. M. and Dally, B. B. (2007), The Role of Hydro-
gen Addition on the Structure and Stability of Hydrocarbon Flames in a JHC
burner, ‘7th High Temperature Air Combustion and Gasification International
Symposium’, Phuket, Thailand. accepted.



Quod Erat Demonstrandum a



PERMISSIONS TO INCLUDE FIGURES
 
Fig. 2.1  
Mi, J., Nobes, D.S. and Nathan, G..J. (2001), ‘Influence of jet exit conditions on the 
passive scalar field of an axisymmetric free jet’, Journal of Fluid Mechanics, 432, 91-
125 
 

Permission to include figure in electronic thesis granted by Cambridge 
University Press. 

 
Fig. 2.2  
Westbrook, C.K. and Dryer, F.L. (1984), ‘Chemical kinetic modelling of hydrocarbon 
combustion’, Progress in Energy and Combustion Science, 10, 1-57 
 

Reprinted with permission from Elsevier 
 
Fig. 2.3  
Refael, S. and Sher, E. (1989), ‘Reaction kinetics of hydrogen-enriched Methane-Air 
and Propane-Air Flames’, Combustion and Flame 78, 326-338 
 

Reprinted with permission from Elsevier 
 
Fig. 2.11  
Wunning, J.A. and Wunning, J.G. (1997), ‘Flameless oxidation to reduce thermal 
NO-formation’, Progress in Energy and Combustion Science 23, 81-95 
 

Reprinted with permission from Elsevier 
 
Fig. 2.12  
Choi, G.-M. and Katuski, M. (2001), ‘Advanced low No[subscript x] combustion 
using highly preheated air’, Energy Conversion and Management 42, 639-652 
 

Reprinted with permission from Elsevier 
 
Fig. 3.17  
Emery, C.D., Overway, K.S., Bouwens, R.J. and Polik, W.F. (1995), ‘Dispersed 
fluorescence spectroscopy of excited rovibrational states in S[subscript O] 
formaldehyde’, Journal of Chemical Physics 103 (13), 5279-5289 
 
Reprinted with permission from American Institute of Physics 


	Bibliography
	Appendix A Flame Calculations
	Appendix B OH-LIF Linearity
	Appendix C Publications
	PERMISSIONS TO INCLUDE FIGURES



