Laser Diagnostics in MILD Combustion

Paul R. Medwell

Laser Diagnostics in MILD Combustion

Paul R. Medwell

Ph.D. thesis

12th October 2007

Turbulence, Energy and Combustion Group School of Mechanical Engineering Faculty of Engineering, Mathematical and Computer Science The University of Adelaide, Australia

Preface

This document is the culmination of many years of study, and is the thesis submitted for the award of Doctoral of Philosophy. The topic of research is the Moderate or Intense Low oxygen Dilution (MILD) combustion regime, which is studied using laser diagnostic techniques. MILD combustion is a particular combustion mode which offers the desirable combination of higher thermal efficiency and lower pollutant emissions, as compared to conventional combustion systems. The importance of developing efficient and low pollutant combustion systems is increasingly important with the current issues of global climate change and the ever diminishing supplies of energy resources. The work presented in this thesis uses an experimental burner to study fundamental aspects of MILD combustion. The intention of this work is to help in the development of the world's understanding of this unique combustion regime so that it can be used to benefit combustion systems and everyone who relies on them.

Declarations

This work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent to this copy of my thesis when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

The author acknowledges that copyright of published works arising from this thesis (as listed in Appendix C) resides with the copyright holder(s) of those works.

Paul R. Medwell

Acknowledgements

It is impossible to recognise the invaluable contributions of the countless people who have helped throughout this thesis and all of the related work which has gone into it. Nevertheless, it would be remises not to mention the outstanding assistance provided by my supervisors Dr Bassam Dally, Dr Peter Kalt and Dr Zeyad Alwahabi. The reliable guidance provided by these individuals has been extremely helpful, not only in the context of this thesis, but in the growth of knowledge which it represents.

It is also necessary for me to thank the useful and enjoyable time spent together in the lab with Owen Lucas and Karel Meeuwissen: together we learnt to use photons and not just spanners. I also would like to recognise all the other students who invited me to give them help with their projects, not the least of which Dr Kimberley Clayfield and Nader Qamar. While helping them, they inadvertently continued to teach me new aspects of laboratory life.

Outside of the lab, the interesting and useful (and not so useful) discussions and friendship with Owen Lucas, Cristian Birzer, Dr Kimberley Clayfield and Laura Brooks, amongst *many* other people, helped me through the trials and tribulations of the "interesting" lives and times of being a research student. It was reassuring to know that there were others who shared the same frustration; and the importance of having someone willing to listen to the frequent grizzling cannot be understated.

I also acknowledge the efforts of the support staff in both Mechanical and Chemical Engineering departments. In particular, Elaine Minerds for ordering the never-ending onslaught of gas cylinders and Andrew Wright for his efforts in helping keep the lab environment up to standard.

No doubt there are many people that I will regret not personally thanking here, and to those people, I sincerely apologise in advance. Above all, I must thank my family — without their boundless support *none* of this would have been possible, and to them I will remain eternally grateful.

Abstract

Despite mounting concerns of looming global warming and fuel shortages, combustion will remain the predominant source of fulfilling the world's ever-increasing demand for energy in the foreseeable future. In light of these issues, the combustion regime known as Moderate and Intense Low oxygen Dilution (MILD) combustion has the potential of offering increased efficiency whilst lowering pollutant emissions. Essentially, MILD combustion relies on the reuse of the exhaust gases from the combustion process to simultaneously dilute the oxygen concentration of the oxidant stream, and increase its temperature. The benefit of this technique is that it results in a vast reduction in emissions, especially oxides of nitrogen. In addition, the thermal efficiency of the combustion process is increased, reducing fuel demands, as well as producing a more uniform heating profile and subsequently better product quality for many applications.

The recirculation of exhaust gas and heat has been utilised for applications in the past. MILD combustion aims to extend the advantages of heat recovery and exhaust gas recirculation beyond the boundaries that are otherwise possible using conventional techniques. The relatively new concept of MILD combustion is a major advancement to the previous technology, and many fundamental issues have not yet been resolved. In a furnace environment, the dilution and preheating of the reactants generate a unique "distributed" reaction zone. There is a need to better understand the structure of this combustion regime and the parameters which control it.

To emulate MILD combustion conditions in a controlled experimental environment, a Jet in Hot Coflow (JHC) burner is used in this study. The MILD combustion regime is examined using laser diagnostic techniques. The two key flame intermediates hydroxyl radical (OH) and formaldehyde (H₂CO), as well as temperature, are imaged simultaneously to reveal details relating to the reaction zone. Simultaneous imaging enables not only the spatial distribution of each scalar to be investigated, but also the combined effect of the interactions of the three measured scalars.

The role of four key variables are investigated as part of this work, namely; the

coflow oxygen (O_2) level, the jet Reynolds number, fuel dilution and fuel type. Also considered is the effect of surrounding air entrainment into the hot and diluted coflow, which causes a deviation from MILD combustion conditions.

The local oxygen (O_2) concentration is a key parameter in the establishment of MILD combustion conditions. The effect of lowering the O_2 level is to lead to reductions in the OH and temperature in the reaction zone, in effect leading to a less intense reaction. When comparatively high oxygen laden, cold surrounding air mixes with the hot and low O_2 coflow, MILD combustion conditions no longer exist. In this case, the flame front can become locally extinguished and subsequent premixing with the high O_2 concentrations can lead to increased reaction rates and hence higher temperatures. It is therefore essential that fresh air must be excluded from a MILD combustor to maintain the stable reaction which typifies MILD combustion.

It is found that the flame structure is relatively insensitive to both the type of hydrocarbon fuel and the Reynolds number. Each of these parameters can lead to changes in some intermediate species, namely formaldehyde, yet the OH and temperature measurements show comparatively minor variation. Nevertheless, fuel type and Reynolds number, in the form of increased flow convolution, can lead to striking differences in the flame structure. One of the most prominent effects is noted with the dilution of the fuel with various diluents. Some of the flames visually appear lifted, whereas the measurements reveal the occurrence of pre-ignition reactions in the "lifted" region. The unique characteristics of the stabilisation for these particular cases has lead to the term transitional flames.

The fundamental aspects discovered by this study shed new light on the reaction zone structure under MILD combustion conditions. By advancing understanding of MILD combustion, future combustion systems will be able to better utilise the efficiency increases and lower pollutant benefits it offers.

Contents

Pı	reface		i
D	eclar	ations i	i
A	cknov	vledgements ii	i
A	bstra	ct iv	7
Li	st of	Figures xiii	i
Li	st of	Tables xx	i
1	Intr	oduction 1	
	1.1	Importance of Combustion Systems	L
	1.2	Introduction to MILD Combustion	2
	1.3	Approach	ł
2	Bac	kground 7	7
	2.1	Fundamentals of Combustion	7
	2.2	Fluid Mechanics Overview)
		2.2.1 Introduction to Turbulence)
		2.2.2 Turbulence Length Scales)
		2.2.3 Introduction to Jets	2
		2.2.4 Introduction to Mixing	1

	2.2.5	Interaction of Combustion and Turbulence	15
2.3	Chemi	stry Overview	16
	2.3.1	Chemical Kinetics	16
	2.3.2	Flame Intermediates	20
	2.3.3	Pollutant Emissions	26
2.4	Spectr	roscopy Overview	31
	2.4.1	Introduction to Spectroscopy	31
	2.4.2	Quantum Numbers	32
	2.4.3	Boltzmann Populations	39
	2.4.4	Energy Transitions	42
	2.4.5	Collision Processes	43
2.5	Laser	Diagnostic Techniques	43
	2.5.1	Mie Scattering	43
	2.5.2	Rayleigh Scattering	44
	2.5.3	Raman Scattering	46
	2.5.4	Laser Induced Fluorescence (LIF)	47
	2.5.5	Molecular Energy Transfer	48
2.6	Laser	Imaging of Key Scalars	51
	2.6.1	Hydroxyl Radical (OH)	51
	2.6.2	Formaldehyde (H ₂ CO) \ldots	53
	2.6.3	Temperature Measurements	56
2.7	MILD	Combustion	58
	2.7.1	Overview	58
	2.7.2	Terminology / Related Technologies	58
	2.7.3	Principles of MILD	60
	2.7.4	Characteristics of MILD	62
	2.7.5	Application / Implementation of MILD	64
	2.7.6	MILD Combustion Studies	68

CONTENTS

3	Exp	erime	ntal Details	72
	3.1	Introd	uction	72
	3.2	Burne	r Design	72
		3.2.1	JHC Burner	72
		3.2.2	Slot Burner	74
		3.2.3	Flat-Flame Burner	76
	3.3	Laser	Systems	77
		3.3.1	Rayleigh Laser System	77
		3.3.2	OH Laser System	77
		3.3.3	H_2CO Laser System	77
		3.3.4	Wavelength Calibration	78
	3.4	Exper	imental Layout	78
		3.4.1	Optical Layout	78
		3.4.2	Timing Details	79
	3.5	OH SI	pectroscopy	84
		3.5.1	OH Major Features	84
		3.5.2	OH Rotational Energy	86
		3.5.3	OH Excitation Scheme	89
		3.5.4	OH Boltzmann Distribution	89
	3.6	Forma	ldehyde Spectroscopy	91
		3.6.1	Formaldehyde Notation	92
		3.6.2	Formaldehyde Vibrational Population	93
		3.6.3	Formaldehyde Rotational Population	95
		3.6.4	Formaldehyde Boltzmann Population Distribution	96
		3.6.5	Formaldehyde Spectral Intensities	98
		3.6.6	Formaldehyde Excitation Scheme	103
	3.7	Raylei	gh Cross-Sections	104
	3.8	Data l	Processing	106

viii

		3.8.1	Image Matching	107
		3.8.2	Image Anomalies	107
		3.8.3	Background and Dark-Charge Correction	108
		3.8.4	Detector Attenuation	108
		3.8.5	Laser Power and Profile Corrections	109
		3.8.6	OH-LIF Quantification	109
		3.8.7	H_2 CO-LIF Corrections	112
		3.8.8	Rayleigh / Temperature Quantification	113
	3.9	Error .	Analysis	115
		3.9.1	General Error Sources	115
		3.9.2	OH-LIF	117
		3.9.3	$H_2CO-LIF$	120
		3.9.4	Temperature	121
	3.10	Experi	mental Conditions	123
		3.10.1	Gas Supply	124
		3.10.2	JHC Burner – Coflow Conditions	124
		3.10.3	JHC Burner – Jet Conditions	125
4	Nat	ural G	as / Hydrogen Flames	128
	4.1	Introd	uction	128
	4.2	Flame	Conditions	128
	4.3	Visual	Observations	130
	4.4	Instan	taneous Images – 35mm downstream	131
	4.5	Radial	Profiles – 35mm downstream	135
	4.6	Result	s – 125mm downstream	138
	4.7	Discus	sion	144
		4.7.1	Extinction at Furthest Downstream Location	144
		4.7.2	Effect of Coflow O_2 Level	147

		4.7.3	Strain Effects	148
5	Dilı	ited E	thylene Flames	152
	5.1	Introd	luction	152
	5.2	Flame	e Conditions	153
	5.3	Visual	l Observations	153
	5.4	Instan	ataneous Images – 35mm downstream	156
	5.5	Radia	l Profiles – 35mm downstream	160
	5.6	Result	ts – 125mm downstream	163
	5.7	Discus	ssion	167
		5.7.1	General Observations	167
		5.7.2	Effect of Coflow O_2 Level	169
		5.7.3	Effects of Fuel Composition	172
c	т., А		of Fuel Turne	175
0		uence		175
	0.1	Introd		175
	6.2	Flame	Conditions	176
	6.3	Visual	Observations	176
	6.4	Result	ts – 35mm downstream	178
		6.4.1	Typical Features	178
		6.4.2	Turbulent Fluidic Structure	180
		6.4.3	Reaction Zone Weakening	181
		6.4.4	Radial Profiles – 35mm downstream	183
	6.5	Result	ts – 125mm downstream	186
		6.5.1	Examples of Downstream Fluidic Structure Effects	188
		6.5.2	Multiple Reaction Zones	189
		6.5.3	Surrounding Air Entrainment	191
		6.5.4	Localised Extinction Events	192
		6.5.5	Spatial Mismatch of OH & H_2CO	193

	6.6	General Discussion
7	Sum	nmary & Discussion 203
	7.1	Introduction
	7.2	Effect of O_2 level $\ldots \ldots \ldots$
	7.3	Turbulence Chemistry Interaction
		7.3.1 Convolution
		7.3.2 Reaction Zone Weakening
		7.3.3 Localised Extinction/Reignition
	7.4	Fuel Composition Effects
		7.4.1 Primary Fuel Type
		7.4.2 Reaction Zone Transition
	7.5	Relationship between OH and H_2CO
		7.5.1 Effect of O_2 Level
		7.5.2 Reaction Zone Transition
		7.5.3 Spatial Mismatch
	7.6	Future Work
8	Con	clusion 227
Bi	bliog	raphy 230
\mathbf{A}	Flar	ne Calculations 243
	A.1	Nonpremixed Flames
	A.2	Number Density
	A.3	Mixture Fraction
	A.4	OPPDIF Calculation Parameters
	A.5	Figure 3.25 & 3.26
	A.6	Figure 3.27

CONTENTS

C Publications

В	OH-LIF Linearity	252
	A.11 Table 7.1	251
	A.10 Figures 7.2, 7.3, 7.4 & 7.4	250
	A.9 Figures 6.14, 6.15, 6.16 & 7.6	250
	A.8 Figures 4.10, 4.11 & 7.1	249
	A.7 Figure 4.3	248

 $\mathbf{254}$

List of Figures

1.1	World energy production by source	2
1.2	Jet in Hot Coflow (JHC) burner schematic	5
2.1	Radial profile of normalised scalar mean	13
2.2	Hierarchy of simple hydrocarbon fuels	18
2.3	Kinetic flow chart of carbon for propane/air flame	19
2.4	Example of soot emission	30
2.5	Morse curve energy well	34
2.6	Vibrational energy levels	35
2.7	Combined effect of rotational and vibrational energy levels $\ . \ . \ .$	36
2.8	Combined effect of rotational, vibrational and electronic energy $\ .$	39
2.9	Electronic excitation process	42
2.10	LIF saturation example	50
2.11	Stability limits of conventional and MILD combustion	61
2.12	Industrially implemented MILD combustion furnace	67
3.1	JHC burner schematic diagram	73
3.2	Schematic diagram showing entrainment of surrounding air on the JHC burner flame	74
3.3	Slot burner schematic diagram	75
3.4	Photograph of the slot burner and partially-premixed flame	75
3.5	Flat-flame burner photographs in two operating modes	76

3.6	Pictorial representation of experimental layout	79
3.7	Schematic details of experimental layout	80
3.8	Timing connexions for the lasers and cameras $\ldots \ldots \ldots \ldots$	81
3.9	Timing diagram of Stanford DG-535 pulse delay/generator $\ . \ . \ .$	83
3.10	OH-LIF excitation	84
3.11	OH-LIF excitation features	85
3.12	Maximum J value for OH \ldots	86
3.13	Least sensitive J value for OH	87
3.14	OH population distribution for various J values $\ldots \ldots \ldots$	88
3.15	Population variation of OH between 1000–2000K for various J	88
3.16	OH Boltzmann population distribution (X-state, $v'' = 0, J'' = 7.5, \Omega = 3/2$)	92
3.17	Vibrational modes of formaldehyde	93
3.18	Vibrational ground-state formaldehyde Boltzmann distribution for $v=0$	94
3.19	Formalde hyde rotational Boltzmann distribution for various ${\cal K}$	97
3.20	Combined formaldehyde branch intensity and Boltzmann fraction distribution for various K for rR and pP branch (i.e. $\Delta J = \Delta K = \pm 1$). Vibrationless ground-state.	99
3.21	Combined formaldehyde branch intensity and Boltzmann fraction distribution for various K for pQ and rQ branch (i.e. $\Delta J = \pm 1, \Delta K = 0$). Vibrationless ground-state.	100
3.22	Combined formaldehyde branch intensity and Boltzmann fraction distribution for various K for rR and pP branch (i.e. $\Delta J = \Delta K = \pm 1$). Vibrationless ground-state.	101
3.23	Combined formaldehyde branch intensity and Boltzmann fraction distribution for various K for pQ and rQ branch (i.e. $\Delta J = \pm 1, \Delta K = 0$). Vibrationless ground-state.	102
3.24	Temperature dependence of selected formaldehyde excitation scheme (X-state, $v'' = 0$, $J'' = 21$, $K'' = 5$).	103
3.25	Rayleigh cross-section variation across width of reaction zone. Fuel: C_2H_4/H_2 , 300K. Oxidant: 3% O_2 , 1100K	105

3.26	Rayleigh cross-section variation as a function of non-dimensional temperature, τ for a range of velocities. Fuel: C ₂ H ₄ /H ₂ , 300K. Oxidant: 3% O ₂ , 1100K	106
3.27	Example of OH-LIF quenching rates at different inlet velocities. Fuel: C_2H_4/H_2 , 300K. Oxidant: 3% O_2 , 1100K	111
3.28	Processing of Rayleigh image to temperature	114
3.29	Image of slot burner reference flame and premixed flame front	118
3.30	Example of raw H_2CO -LIF image	120
3.31	Example of raw Rayleigh image	122
4.1	Photographs of natural gas / hydrogen flames at two coflow O_2 levels	130
4.2	Selection of instantaneous OH, H_2CO and temperature image triplets showing typical features (irrespective of Reynolds num- ber) of natural gas/hydrogen flames. Each image 8×35 mm. Jet centreline marked with dashed line. Axial location 35mm above jet exit	132
4.3	Calculated peak H_2CO mole fraction plotted versus equivalence ratio for a methane/hydrogen fuel mixture for two oxidant stream O_2 levels	133
4.4	Selection of instantaneous OH, H_2CO and temperature image triplets showing wide radial distribution of H_2CO of natural gas/hydrogen flames. Each image 8×35 mm. Jet centreline marked with dashed line. Axial location 35mm above jet exit	134
4.5	Mean and RMS radial profiles for OH, H_2CO and temperature of natural gas/hydrogen flames at two coflow O_2 levels. Jet Reynolds numbers ranging from 5000 to 15000. Central 3mm strip of images used. Axial location 35mm above jet exit.	136
4.6	Mean and RMS radial profiles for OH, H_2CO and temperature of natural gas/hydrogen flames at two coflow O_2 levels. Jet Reynolds numbers ranging from 5000 to 15000. Central 3mm strip of images used. Axial location 125mm above jet exit.	139
4.7	Selection of instantaneous OH, H ₂ CO and temperature image triplets showing effects of surrounding air entrainment on natural gas/hydrogen flames. Each image 8×35 mm. Jet centreline marked with dashed line. Axial location 125mm above jet exit	140

4.8	Selection of instantaneous OH, H_2CO and temperature im- age triplets showing localised extinction events of natural gas/hydrogen flames. Each image 8×35 mm. Jet centreline marked with dashed line. Axial location 125mm above jet exit	142
4.9	Selection of instantaneous OH, H_2CO and temperature image triplets showing effects of oxygen leakage on natural gas/hydrogen flames. Each image 8×35 mm. Jet centreline marked with dashed line. Axial location 125mm above jet exit.	144
4.10	Calculated peak OH number density plotted versus strain rate found from laminar flame calculations for methane/hydrogen fuel at two oxidant stream O_2 levels. The overlaid horizontal dashed lines are the peak experimental results	149
4.11	Calculated peak H_2CO number density plotted versus strain rate found from laminar flame calculations for methane/hydrogen fuel at two oxidant stream O_2 levels	150
5.1	Photographs of diluted ethylene flames at two coflow \mathcal{O}_2 levels	154
5.2	Apparent lift-off height of 9% O_2 diluted ethylene flames based on visual observations at various Reynolds numbers.	156
5.3	Selection of instantaneous OH, H ₂ CO and temperature im- age triplets showing typical features of diluted ethylene flames. $Re_{jet}=10,000$. Each image 8×35mm. Jet centreline marked with dashed line. Axial location 35mm above jet exit	157
5.4	Selection of instantaneous OH, H_2CO and temperature im- age triplets showing examples of lifted diluted ethylene flames. $Re_{jet}=10,000$. Each image 8×35 mm. Jet centreline marked with dashed line. Axial location 35mm above jet exit	159
5.5	Mean and RMS radial profiles of OH, H_2CO and temperature for diluted ethylene flames. $Re_{jet}=10,000$. Central 3mm strip of images used. Axial location 35mm above jet exit	162
5.6	Mean and RMS radial profiles of OH, H_2CO and temperature for diluted ethylene flames. $Re_{jet}=10,000$. Central 3mm strip of images used. Axial location 125mm above jet exit	164
5.7	Selection of instantaneous OH, H_2CO and temperature im- age triplets showing typical features of diluted ethylene flames. $Re_{jet}=10,000$. Each image 8×35 mm. Jet centreline marked with dashed line. Axial location 125mm above jet exit	165

LIST OF FIGURES

5.8	Axial location 35mm above jet exit – further selection of instanta- neous OH, H ₂ CO and temperature image triplets for diluted ethy- lene flames. $Re_{jet}=10,000$. Each image 8×35mm. Jet centreline marked with dashed line	168
6.1	Photographs of natural gas, ethylene & LPG flames (each diluted with hydrogen) at two coflow O_2 levels $\ldots \ldots \ldots \ldots \ldots$	177
6.2	Selection of instantaneous OH, H_2CO and temperature image triplets of natural gas/ H_2 , C_2H_4/H_2 and LPG/ H_2 flames show- ing typical features. $Re_{jet}=10,000$. Each image 8×35 mm. Jet centreline marked with dashed line. Axial location 35mm above jet exit	179
6.3	Selection of instantaneous OH, H ₂ CO and temperature image triplets of natural gas/H ₂ , C ₂ H ₄ /H ₂ and LPG/H ₂ flames showing vortex interaction with the reaction zone (reaction zone convolu- tion). $Re_{jet}=10,000$. Each image 8×35mm. Jet centreline marked with dashed line. Axial location 35mm above jet exit	180
6.4	Selection of instantaneous OH, H ₂ CO and temperature image triplets of natural gas/H ₂ , C ₂ H ₄ /H ₂ and LPG/H ₂ flames showing vortex interaction with the reaction zone (reaction zone weakening). $Re_{jet}=10,000$. Each image 8×35mm. Jet centreline marked with dashed line. Axial location 35mm above jet exit	182
6.5	Selection of instantaneous OH, H_2CO and temperature image triplets of natural gas/ H_2 , C_2H_4/H_2 and LPG/ H_2 flames show- ing isolated pockets of high H_2CO . $Re_{jet}=10,000$. Each image 8×35 mm. Jet centreline marked with dashed line. Axial location 35mm above jet exit	184
6.6	Mean and RMS radial profiles of OH, H_2CO and temperature for natural gas/ H_2 , C_2H_4/H_2 and LPG/ H_2 flames. $Re_{jet}=10,000$. Central 3mm strip of images used. Axial location 35mm above jet exit.	185
6.7	Mean and RMS radial profiles of OH, H_2CO and temperature for natural gas/ H_2 , C_2H_4/H_2 and LPG/ H_2 flames. $Re_{jet}=10,000$. Central 3mm strip of images used. Axial location 125mm above jet exit	187

6.8	Selection of instantaneous OH, H_2CO and temperature image triplets of natural gas/ H_2 , C_2H_4/H_2 and LPG/ H_2 flames show- ing typical features. $Re_{jet}=10,000$. Each image 8×35 mm. Jet centreline marked with dashed line. Axial location 125mm above jet exit.	188
6.9	Selection of instantaneous OH, H ₂ CO and temperature image triplets of natural gas/H ₂ , C ₂ H ₄ /H ₂ and LPG/H ₂ flames show- ing various effects of convolution on the structure of the reaction zone. $Re_{jet}=10,000$. Each image 8×35mm. Jet centreline marked with dashed line. Axial location 125mm above jet exit	189
6.1	0 Selection of instantaneous OH, H_2CO and temperature image triplets of natural gas/ H_2 , C_2H_4/H_2 and LPG/ H_2 flames showing multiple reaction zones. $Re_{jet}=10,000$. Each image 8×30 mm. Jet centreline marked with dashed line. Axial location 125mm above jet exit.	190
6.1	1 Selection of instantaneous OH, H_2CO and temperature image triplets of natural gas/ H_2 , C_2H_4/H_2 and LPG/ H_2 flames showing effect of surrounding air entrainment. $Re_{jet}=10,000$. Each image 8×35 mm. Jet centreline marked with dashed line. Axial location 125mm above jet exit	191
6.1	2 Selection of instantaneous OH, H_2CO and temperature image triplets of natural gas/ H_2 , C_2H_4/H_2 and LPG/ H_2 flames show- ing localised extinction. $Re_{jet}=10,000$. Each image 8×35 mm. Jet centreline marked with dashed line. Axial location 125mm above jet exit	193
6.1	3 Selection of instantaneous OH, H_2CO and temperature image triplets of natural gas/ H_2 , C_2H_4/H_2 and LPG/ H_2 flames show- ing spatial mismatch between OH and H_2CO . $Re_{jet}=10,000$. Each image 8×35 mm. Jet centreline marked with dashed line. Axial location 125mm above jet exit	194
6.1	4 Temperature and species mole fractions from strained laminar flame calculations in (normalised) mixture fraction space for 3% O ₂ coflow composition ($a \approx 100 \text{s}^{-1}$)	198
6.1	5 Temperature and species mole fractions from strained laminar flame calculations in (normalised) mixture fraction space for 9% O_2 coflow composition ($a \approx 100 \text{s}^{-1}$)	199

6.16	Temperature and species mole fractions from strained laminar flame calculations in (normalised) mixture fraction space for (21% O_2 , 300K) air ($a \approx 100s^{-1}$)	200
7.1	Laminar flame calculation of O_2 mole fraction (%) at location of peak H ₂ CO concentration as a function of strain for methane/hydrogen flames at two oxidant stream O_2 levels	207
7.2	H_2CO production rate via major reactions, found from laminar flame calculations. CH_4/H_2 fuel with 3% O ₂ , 1100K oxidant stream. Strain rate, $a \approx 30s^{-1}$.	209
7.3	H_2CO production rate via major reactions, found from laminar flame calculations. CH_4/H_2 fuel with 3% O_2 , 1100K oxidant stream. Strain rate, $a \approx 200 s^{-1}$	209
7.4	Selected species and production rates found from laminar flame calculations. Production rate of H_2CO is shown for reaction R10. Production rate of O is shown for reaction R38. CH_4/H_2 fuel with 3% O_2 , 1100K oxidant stream. Strain rate, $a \approx 30s^{-1}$.	211
7.5	Selected species and production rates found from laminar flame calculations. Production rate of H_2CO is shown for reaction R10. Production rate of O is shown for reaction R38. CH_4/H_2 fuel with 3% O_2 , 1100K oxidant stream. Strain rate, $a \approx 200s^{-1}$	211
7.6	Temperature and species mole fractions from strained laminar flame calculations in (normalised) mixture fraction space for 9% O_2 coflow composition ($a \approx 100 \text{s}^{-1}$)	216
7.7	Selected instantaneous OH, H_2CO and temperature measurements showing effect of coflow O_2 level. Top image contains OH, H_2CO and spatial overlap of OH & H_2CO . Bottom image is the tem- perature. OH: Black–Red. H_2CO : Black–Green. [OH]·[H_2CO]: Black–White. Temperature: Black–Yellow. Each image 8×30mm. Axial location 35mm above jet exit.	221
7.8	Selected instantaneous OH, H_2CO and temperature measurements showing reaction zone transition. Top image contains OH, H_2CO and spatial overlap of OH & H_2CO . Bottom image is the tem- perature. OH: Black–Red. H_2CO : Black–Green. [OH]·[H ₂ CO]: Black–White. Temperature: Black–Yellow. Each image 8×30mm. Axial location 35mm above jet exit.	223
		= 5

LIST OF FIGURES

7.9	Selected instantaneous OH, H_2CO and temperature measurements showing spatial mismatch. Top image contains OH, H_2CO and spatial overlap of OH & H_2CO . Bottom image is the tempera- ture. OH: Black–Red. H_2CO : Black–Green. [OH]·[H ₂ CO]: Black–	
	White. Temperature: Black–Yellow. Each image 8×30 mm. Axial location 125mm above jet exit	224
A.1	Schematic representation of the axisymmetric opposed-flow con- figuration	244
B.1	OH-LIF dependence on laser energy	253

List of Tables

3.1	Inlet flowrates (L_n/\min) and equivalence ratio for the two operat- ing modes of the flat-flame burner	77
3.2	OH-LIF excitation wavelengths of the $A - X$ electronic band from ground state vibrational level $v''=0$	85
3.3	Comparison of peak and equilibrium OH levels in premixed flame found experimentally and from calculations	118
3.4	Natural gas composition	124
3.5	Coflow parameters	125
3.6	Jet parameters	126
4.1	Jet operating conditions of natural gas/hydrogen flames. Re_{jet} ; Jet Reynolds number, \dot{Q} ; volumetric flowrate, \bar{v}_{exit} ; mean exit velocity (for an exit temperature of 300K)	129
4.2	Coflow composition and flow conditions for natural gas/hydrogen flames	129
4.3	Visible flame length of natural gas/hydrogen flames	131
4.4	Mean OH width estimates at 35mm downstream location for natural gas/hydrogen flames at two coflow O_2 levels and three Reynolds numbers.	135
4.5	Proportion of images with evidence of extinction at 125mm location for natural gas/hydrogen flames at two coflow O_2 levels	145
4.6	Mean and standard deviation (σ) of peak OH number density for natural gas/hydrogen flames	147

5.1

5.2

5.3

5.4

5.5

5.6

5.7

6.1

6.2

Jet operating conditions of diluted ethylene flames. Re_{jet} ; Jet Reynolds number, \dot{Q} ; volumetric flowrate, \bar{v}_{exit} ; mean exit velocity (for an exit temperature of 300K)	153
Apparent lift-off height estimates based on visual observations of diluted ethylene flames for $Re_{jet}=10,000.$	155
Mean and standard deviation (σ , in brackets) of peak OH number density ($\times 10^{16}$ cm ⁻³) for diluted ethylene flames. $Re_{jet}=10,000$. Axial location 35mm above jet exit	160
Mean and standard deviation (σ , in brackets) of peak H ₂ CO concentration (arbitrary units), for diluted ethylene flames. $Re_{jet}=10,000$. Axial location 35mm above jet exit	161
Mean and standard deviation (σ , in brackets) of peak OH number density ($\times 10^{16}$ cm ⁻³) for diluted ethylene flames. $Re_{jet}=10,000$. Axial location 125mm above jet exit	166
Mean and standard deviation (σ , in brackets) of peak H ₂ CO concentration (arbitrary units), for diluted ethylene flames. $Re_{jet}=10,000$. Axial location 125mm above jet exit	166
Fuel jet dilution ratios of ethylene (C_2H_4) and stoichiometric mix- ture fraction (for both coflow compositions)	170
Jet operating conditions of natural gas (NG), ethylene (C ₂ H ₄) and LPG flames, each diluted with hydrogen in equal volumetric parts. Re_{jet} ; Jet Reynolds number, \dot{Q} ; volumetric flowrate, \bar{v}_{exit} ; mean exit velocity (for an exit temperature of 300K)	176
Mean and standard deviation (σ , in brackets) of peak OH number density measurements.	195

- Peak temperature and OH & H₂CO number density from strained 6.3 laminar flame calculations $(a \approx 200 \text{ s}^{-1})$. 196
- Calculation of laminar flame speed for diluted ethylene flames at 7.11100K. Dilution ratio expressed on molar basis. The 3% and 9% O_2 oxidant cases represent the experimental coflow composition. For 15% and 21% O_2 levels the balance is N_2 . $\Phi = 1$ in all cases. . 219

A.1	Oxidant (coflow) stream composition (molar basis). Temperature:	
	1100K	245
A.2	Key solution parameters for OPPDIF calculations	247

A.3	Fuel stream composition (molar basis) for Figure 4.3 \ldots .	249
A.4	Reactant composition for PREMIX calculations of laminar flame	
	speed	251