
Reduced Rank Interference Suppression for Multichannel SAR
Luke Rosenberg, Doug Gray
University of Adelaide, Australia

Luke Rosenberg
Defence Science and Technology Organisation, Australia

Abstract

Large regions of a Synthetic Aperture Radar (SAR) image can potentially be destroyed by an airborne broadband jammer.
Jammer components include both the direct-path and multipath reflections from the ground, known as hot-clutter (HC)
or terrain scattered interference. Using multiple antennas on a SAR provides spatial degrees of freedom and allows for
beamforming to reject the direct-path signal. Previous studies have shown that derivative constraints when combined with
fast-time taps can suppress HC while maintaining a reasonable SAR image. This approach however requires an expensive
matrix inverse and may not be implementable in real time. This paper therefore presents a fast-time Space Time Adaptive
Processing (STAP) algorithm with a reduced rank constrained Generalised Sidelobe Canceller (GSC).

1 Introduction

The goal of interference suppression for SAR is to success-
fully suppress the unwanted signals while not significantly
effecting the image quality by blurring, reducing the res-
olution or raising the sidelobe level. This can be hard to
achieve in practice, especially if the interference is non-
stationary and the training statistics change from pulse to
pulse, causing traditional slow-time STAP techniques be
ineffective, [1]. Therefore adapting within each pulse is re-
quired by exploiting spatial/fast-time STAP. This offers the
advantage of exploiting the coherency between the direct-
path jammer and other HC signals to provide improved in-
terference rejection. It will however cause secondary mod-
ulations during image formation, similar to that shown by
[2]. In previous work, the use of derivative constraints to
reduce potential signal suppression has shown to be an
effective compromise to reduce the interference without
compromising the targets range profile, [3].
Fully adaptive processing can be very computationally in-
tensive and not suitable for real time operation. More-
over, if the interference is non-stationary, the eigenvalues
of the covariance matrix will spread, increasing the inter-
ference rank and therefore the degrees of freedom required
to effectively cancel it. This problem is also analogous to
the Moving Target Indication application where the ground
clutter returns may not be stationary due to real world ef-
fects, such as aircraft crabbing, non-linear array geometry,
intrinsic clutter motion, and scattering from near-field ob-
stacles, [4].
Reduced rank techniques work to reduce the rank associ-
ated with the interference plus noise covariance matrix.
Many of the methods in the literature promise perfor-
mance near or better then their full rank counterparts but

with reduced sample support and computation. This paper
looks at applying space/fast-time adaptive algorithms to
the problem of interference suppression in the presence of
non-stationary HC. A constrained fast-time GSC is mod-
ified to use a lower rank covariance matrix similar to [5],
with diagonal loading to achieve performance similar to
the full rank derivative constraint implementation.

2 System Models and Geometry
2.1 SAR Signal Model

Consider a SAR platform travelling along the y-axis at
vp m/s, imaging a point in the slant-planex ∈ [Xc −
X0,Xc +X0], y ∈ [−Y0, Y0]. The radar transmits a broad-
band chirp and the received signalxn(t, u), is base-banded
and sampled for each of theN channels of a linear an-
tenna array with equi-spaced receivers along the azimuth
direction. The variables(t, u) represent (fast-time) sam-
ples within a pulse and the SAR platform position (slow-
time) respectively. As the SAR bandwidth,B (Hz) is much
smaller than the carrier frequency,ωc (rad/s), the SAR sig-
nal model can be split into temporal and spatial compo-
nents.
The spatial reference signal is given by the time difference
between the phase centre of the antenna array and thenth

channel and can be approximated as a function of the SAR
positionu or equivalently, an angular offsetθ(u), i.e.,

sn(u) = exp
[

j
ωc

c
dn sin [θ(u)]

]

(1)

wherec is the speed of light,θ(u) = arctan(u/Xc) is
the steering angle anddn = nδ is the antenna offset
from the array phase centre with antenna spacingδ and
n ∈ [−(N − 1)/2, (N − 1)/2] for N (odd) antenna ele-
ments.



The received SAR signal comprises the total ground re-
turn, γn(·), interference from the direct-path and ground
reflected path (HC),zn(·) and receiver noiseνn(·).

xn(t, u) = γn(t, u) + zn(t, u) + νn(t, u) (2)

The noise signalνn(·) represents the receiver noise for
each channel. It is modelled as white Gaussian noise with
zero mean and unity variance. Figure 1 shows the process-
ing chain from transmission of the chirp signal, formation
of the received SAR signal, range processing, adaption and
image formation.

Figure 1: SAR processing diagram

2.2 Jammer model

The bistatic jammer model assumes there areK HC
patches within a given area. If an absolute time variable,
t̃ = u/vp + t is defined as the sum of slow-time and fast-
time, the interference plus noise signal is formed by the
superposition of the direct path, hot-clutter scatterers and
the receiver noise,

qn(t, u) =
K

∑

k=0

bkJ(t̃ − τ̄n,k(t, u)) exp[−jωcτ̄n,k(t, u)]

exp[−jωd,kt] + νn(t, u) (3)

whereJ(·) is the jamming signal waveform,̄τn,k(·) is the
bistatic delay for thekth scatterer,ωd,k is the fast-time
doppler frequency andbk is defined as the relative mag-
nitude between the direct-path and hot-clutter signal. The
zero index refers to the direct-path withb0 = 1.
The power spectral density of the jammer signal has an ap-
parent bandwidthB, centred at baseband with power level,
σ2

J . Realisations of the jammer signalJ(·) can then be
generated by an eigen-decomposition of the jammer auto-
covariance,

rJ(τ) = σ
2
J sinc(Bτ) (4)

A physically based model for the multipath scattering is
presented by Beckman, [6] and uses a surface roughness
parameterKβ to define the scattering distribution between
the SAR and an airborne jammer at heightshP andhJ re-
spectively, separated by a distancex̃J in the ground plane.
The coefficients,bk = ρBk for k > 1 are formed with a
HC scaling factorρ, relative to the direct-path and a ran-
dom amplitudeBk, determined from the scattering model.

3 Fast-time Filtering
For effective fast-time filtering, the fast-time sample rate,
∆t is oversampled by a factor of two to provide increased
correlation, [7]. Spatial beamforming for thelth fast-time
range bin requires stacking of both the received data and
the signal model to formN × 1 spatial vectors,

x(tl, u) = [x−(N−1)/2(tl, u), . . . , x(N−1)/2(tl, u)]T ,

s(u) = [s−(N−1)/2(u), . . . , s(N−1)/2(u)]T

where tl = l∆t. Beamforming is then performed by
matching the received data vector with the spatial steering
vector,

y(tl, u) = s
H(u)x(tl, u) (5)

To extend the processing to use fast-time taps, the spatial
data vector is stacked over the futureL̃ < L taps,

X(tl, u) =
[

x
T (tl, u) ,x

T (tl−1, u) , . . . ,x
T (

tl−L̃+1, u
)

]T

with data components forl < L̃ set to zero. The fast-time
component of the steering vector post range processing is
given by,

gk = sinc [B(k − 1)∆t] , k = 1 . . . L̃ (6)

and can be stacked to give the fast-time steering vector,

g = [g1, . . . , gL̃]T ∈ CL̃×1 (7)

If no oversampling is used, the fast-time model matches
the delta function commonly used in literature, [2] where
it is assumed that the target occupies a single range bin.
The fast-time filter is then represented as a convolution,

ỹ(tl, u) = S
H(u)X(tl, u) (8)

with the space/fast-time steering vector formed by the Kro-
necker product of the spatial and temporal steering vec-
tors,

S(u) = g ⊗ s(u) ∈ CL̃N×1 (9)

3.1 Generalised Sidelobe Canceller

The reduced rank GSC is a beamspace STAP implementa-
tion and is shown in Figure 3.1. It forms a set of ‘beams’
with the main beam in the ‘desired’ target direction and the
other ‘reference’ beams going through a blocking matrix
B(u) to remove the desired signal from the data. The ref-
erence beams are then transformed with the matrixU(u)
to reduce rank, filtered and subtracted from the main beam.
For this application, the GSC is preferred over the tradi-
tional element space processor as it is better suited for ap-
plying reduced rank transforms, [8].



Figure 2: Reduced rank GSC

The output of the GSC is given by,

yf (t, u) = W
H
d (u)X(t, u) − W

H
a (u)UH(u)BH(u)X(t, u)

= [Wd(u) − B(u)U(u)Wa(u)]H X(t, u) (10)

where the desired weight is given by

Wd(u) = C(u)
[

C
H(u)C(u)

]

−1

D ∈ CL̃N×1 (11)

with C(u) containing theNcon adaptive constraints, usu-
ally expressed as a function of the steering vector with
desired response,D. To successfully remove the desired
signal in the reference beam, the blocking matrix must
to be orthogonal to the constraint matrix,BH(u)C(u) =
0. A general method for the blocking matrix design has
been presented in [3]. The adaptive weight vector of size
L̃(N −Ncon)× 1 is designed to minimise the mean square
error between̂e0 ande0, with the solution given by [5],

Wa(u) =
[

U
H(u)BH(u)R(u)B(u)U(u) + ηI

]

−1

U
H(u)BH(u)R(u)Wd(u)

= [UH(u)RX1
(u)U(u) + ηI]−1

U
H(u)rX1,e0

(u)

whereRX1
(u) andrX1,e0

(u) are the reference covariance
and cross-covariance respectively and the diagonal load-
ing level, η acts to improve the robustness by smooth-
ing the adaption via compression of the eigenvalues, [9].
The normalised interference plus noise covariance matrix
R(u) = αR′(u) is determined by averaging overLt range
bins,

R
′(u) =

1

Lt

Lt
∑

l=1

Z(tl, u)ZH(tl, u) ∈ CL̃N×L̃N (12)

with the normalising value,α = Tr {R′(u)} /(L̃N) pro-
vides a relative measure of the effect of diagonal loading.
It is assumed techniques described in [10] can be used to
get different realisations of the interference plus noise sig-
nal without any targets present. The interference plus noise
vector,Z(·) is formed similarly to the data vectorX(·).
The spatial constraint matrix used for this study has a unity
response in the steering direction with its first derivative
equal to zero. This has shown to be effective as it allows
less potential signal suppression [3].

c(u) =

[

s(u),
∂s(u)

∂θ(u)

]T

; d = [1, 0]T (13)

Note, that if only the steering vector constraint is used,
the adaptive processor is known as the Minimum Variance
Distortionless Response (MVDR). The spatial constraints
are related to the space/fast-time versions by,

C(u) = IL̃ ⊗ c(u) ∈ CL̃N×L̃Ncon

D = g ⊗ d ∈ CL̃Ncon×1
(14)

3.2 Reduced Rank Transform
The choice of transform,U(u) can be found by an eigen-
decomposition of the reference interference plus noise co-
variance matrix,

RX1
(u) = QΛQ

H ∈ CL̃(N−Ncon)×L̃(N−Ncon), (15)

and choosingC eigenvalue/eigenvector pairs,(λc,qc) ac-
cording to a ranking criteria. If the eigen-pairs are ranked
according the eigenvalues, the transform is given by,

UPC(u) = [q1, . . . ,qC ] ∈ CL̃(N−Ncon)×C (16)

This is known as Principle Component (PC) decomposi-
tion and the GSC will retain full adaptive performance
if C is greater than the rank ofRX1

(u). A second cri-
teria is known as the cross-spectral metric (CSM) and
utilises knowledge of the constraint vector to suppress
the strongest interference in the mainbeam, [8]. This is
achieved by decomposingRX1

(u) according to Equation
15 and selecting theC largest eigen-pairs according to the
CSM, i.e.,

ρc =
|qcrX1,e0

(u)|2

λc
(17)

With this ranking, the CSM transformation is given by,

UCSM(u) = [qρ1
, . . . ,qρC

] ∈ CL̃(N−Ncon)×C (18)

where(λρ
c
,qρ

c
) denotes thecth eigen-pair withλρ

1
the

largest eigenvalue,λρ
2

the second largest, and so on. Us-
ing either of these approaches, the reduction in compu-
tational complexity of the matrix inverse is reduced from
O(L̃(N − Ncon))

3 to O(C)3.

4 Simulated Results
A multichannel X-band SAR simulation has been imple-
mented in MATLAB with parameters summarised in Ta-
ble 1. A sample image is used for comparison with image
formation performed with a spatial matched filter interpo-
lation algorithm.

Table 1: Simulation parameters
Parameters Value
Carrier frequency(fc) / bandwidth(B) 10 / 0.3 GHz
Number of elements(N) / spacing(δ) 5 / λ

2
m

Number of pulses(M) / range bins(L) 100 / 250
Range centre(Xc) / clutter noise ratio 10 km / 20 dB
Range / azimuth resolution 1 / 5 m
Fast-time sampling(∆t) / training size(Lt)

1
2B

/ 3L̃N

SAR height(hP ) / jammer height(hJ) 3 / 3 km
Jam. offset(x̃J) / jam. power(σ2

J) 50 km / 80 dB
No. HC scats.(K) / relative HC scaling(ρ) 200 / 0.6



A moderately diffuse scattering scenario is used with
Kβ = 0.4 and to demonstrate the worst case scenario, both
the direct and HC paths are incident in the SAR mainbeam
spread over the range of angles,−0.7o to 0.7o. Based on
the size ofRX1

(u) when L̃ = 15 taps are used, the full
interference rank for the MVDR constraint is 60 and for
the derivative constraint is 45. The reference beam eigen-
distribution is shown in Figure 3 with the normalised noise
floor at 1/α = -115dB. The eigen-distributions for both
cases are nearly full rank and it is expected that the com-
pression gained by diagonal loading will achieve better re-
duction in rank.
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Figure 3: Reference beam eigen-distribution for:
(- -) MVDR constraint, (-.-) derivative constraint

The adaptive performance is measured by the Signal Dis-
tortion Ratio (SDR) which is a measure of the signal power
of the adapted image relative to an ideal image with no
interference present. With no adaption, the conventional
SDR is 3.8dB. However the first results in Figure 4 show
the full rank GSC withC = L̃N and the SDR improve-
ment gained by using fast-time taps. The plot of the left
is with the MVDR constraint and the one on the right uses
derivative constraints. With−60dB of diagonal loading
and 15 fast-time taps, the MVDR SDR improves from 4 to
6.5dB. The derivative constraint SDR however reaches a
maximum 7.1dB and maintains this level between -90dB to
-60dB of diagonal loading. The next two Figures 5-6 show
how the SDR varies as a function of the GSC rank and the
level of diagonal loading. The plots on the left are the PC
results and the plots on the right are the CSM. The MVDR
results are very sensitive to diagonal loading and the CSM
ranking criteria shows improved performance over PC only
when the filter rank is low. Beyond this, there is little dif-
ference between the two ranking criteria as the filter rank
approaches the full rank results in Figure 4. Results for the
derivative constraints however are not as greatly affected
by the diagonal loading level. With a filter rank of only
10 and a small amount of diagonal loading, this filter can
safely achieve the same SDR level as the full rank case.
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Figure 4: SDR for full rank GSC with varying̃L, η
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Figure 5: SDR for MVDR constraint with varying rank,η

−inf
−90

−60
−30

0

5

18

32

45

4

5

6

7

η (dB)Rank
P

C
S
D

R
(
d
B

)

−inf
−90

−60
−30

0

5

18

32

45

4

5

6

7

η (dB)Rank

C
S
M

S
D

R
(
d
B

)

Figure 6: SDR for deriv. constraints with varying rank,η

5 Conclusion
This paper has shown how the constrained fast-time GSC
can be formulated with reduced rank and computational
complexity using transforms based on the PC and CSM de-
compositions. These use the adaptive degrees of freedom
more effectively to remove the hot-clutter interference and
not distort the final SAR image.
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