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How to make a laser sensor “Eye-safe”

Keep energy/power low

Low power laser,
Large transmitted
beam

Low Duty
Cycle

Select wavelength
for maximum allowed
pulse energy



Content of talk

• Coherent eye-safe laser radar: Review of current work in 
Er:Yb:glass slab lasers

• Planned work in Er:Yb:YAG

• New composite slab laser design

• Eye-safe sensing at low power



Our chosen Eyesafe laser species is 
Erbium

• Erbium lases at 1.5 – 1.6 μm, where laser safety allows:
• 10× the energy per pulse allowed at 2 μm
• 100x the energy per pulse allowed at 10 μm

• Allows better spatial resolution (for otherwise similar conditions)

• Can make use of available telecommunications photonic 
components: eg Master fiber oscillator

• BUT: it is a 3-level laser, normally in a phosphate glass host



Er:Yb energy level diagram
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Summary of Early work in Adelaide*

• Demonstrated first injection seeding of single frequency Er:glass
laser at 1.5μm

• Demonstrated successful transform limited coherent Doppler 
measurement at 1.5μm

• Initial wind sensing measurements

*A. McGrath, J. Munch, G. Smith, P. Veitch,
Appl. Opt. 37 (29), 5706-5709 1998.



Coherent Laser Radar
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First injection seeded Er:glass at 1.5μm
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The injection seeded, Q-switched laser 
produced a transform limited linewidth
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We used the Er:Glass laser to make a Doppler 
velocity measurement of moving hard-targets
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Second Generation Er:Yb:Glass Slab

• Robust laser design

• Folded, total internal reflection, zig-zag slab

• Diode laser side-pumping (Q-CW)

• Injection seeded, Q-switched ring

• Long output pulse, using new resonator design with efficient 
out-coupling via throttled Q-switch



Standing-wave Er:Yb:Glass slab laser
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Side-pumped laser head
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Injection seeded ring resonator
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Ring Oscillator Q-switch results
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Q-switched pulse (E=3mJ/pulse) Q-switch pulse – expanded
scale: ms

Gain switched lasing
(E=8mJ/pulse)
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Current results with Er:Glass

• Good long pulse energy in standing-wave oscillator, near TEMoo
(50mJ)

• Q-switched ring oscillator demonstrated

• Injection seeding demonstrated

However :However :



Problems with current Er:Glass slab laser

• Energy output limited by Er bleaching (measured)
• High intra-cavity losses in ring oscillator (Pockels cell)
• Serious thermal lensing limitations 
• Optical damage of glass host
• Currently max energy per pulse Q-switched is 10mJ/pulse, 

but need 20-50mJ/pulse raw laser output for scalable 
systems (eg: larger aperture, system losses)

• Pulse repetition rate will be limited by thermal effects
• Pumping limited by frequency chirp in diode-lasers used



Continuing effort in Erbium

Two parallel approaches:

1. Improve and optimize Er:Yb:glass subject to its inherent thermal 
limitations.
• Experiments using different Er, Yb concentrations for optimum 

pumping
• Reduce resonator losses
• Complete injection seeding characterization as laser radar

2. Investigate third generation Er:Yb:YAG



Third generation: Er:Yb:YAG at 1.645μm 

• Greatly improved thermal properties of YAG host
• Better control of thermal lens
• Better efficiency (lower level has 2% population)
• Scalable to higher power, rep. rate
• Manufacture as ceramic YAG material
• Permits use of our new end-pumped composite slab geometry
• Experience from our successful Nd:YAG designs directly 

relevant
• But requires a new, single frequency master oscillator
• Recently demonstrated in bulk Er:Yb:YAG*

* Georgiou & Kiriakidi, Opt. Eng., 44 Jun. 2005
80mJ output, pumped by 4.7J



High pump intensities and necessary cooling of the gain medium 
leads to strong thermal gradients which cause undesirable effects.

Issues
• strong thermal lensing

- change from top/bottom cooling to side cooling

• thermally induced birefringence
- use specialized pump distribution

Scaling to higher power slabs



Effect of pump profile on depolarization loss 
in Nd:YAG
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Effect of pump profile on depolarization loss 
in Nd:YAG
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Composite end-pumped, side-cooled 
folded zigzag Nd:YAG slab
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Off-axis zigzag pumping

• Rectilinear zigzag duct allows pumping at normal incidence and
mixes pump light prior to slab entry

• Can pump using fibers by collimated bar-stack-array, and use non-
imaging lens duct

• Scalable by increasing pump power, height of doped and undoped
region (mode volume)

Optical
fibres
(2D array)

rectilinear
zigzag duct

Optic axis of pump source
Optic axis +θ
Optic axis -θ



• Tophat pump distribution – minimum birefringence

• Good absorption efficiency due to quasi end-pumping

• More uniform power loading within slab due to double-clad structure 
transporting pump light along slab before absorption

• No hard-edged apertures in vertical direction

• Large pump input aperture and acceptance angle accommodates 
real divergent pump sources

• Insensitive to pump beam-quality due to mixing of pump light in slab

• Undoped YAG layers produce reduced thermally induced stress

• Conduction-cooled

Composite slab advantages



End view of conduction-cooled laser head 
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Composite slab design for Er:Yb:YAG

• Ceramic

• Doped and undoped Er:Yb:YAG

• Doping concentrations easily changed

• Slab configuration based on success with Nd:YAG



Er:Yb:YAG laser radar system

• New master oscillator under development
– NPRO (non-planar monolithic ring oscillator)
– Ceramic Er:Yb:YAG
– To be developed in collaboration with Innolight

• Injection seeded slave ring oscillator

• Ceramic composite slab slave as described



The DIAL program
(DIAL = differential absorption lidar)

• Aim: Low-Cost profiling of water vapour up to top of boundary layer

• Provide water vapour concentrations for

– Quantitative precipitation forecasting, Bushfire danger assessment, fog 
prediction

– current technique - radiosondes, high recurrent cost, infrequent data

• 830nm GaAs diode lasers (mature technology)

– Single mode limited to ca 0.5W (Average power ca 0.5mW - eyesafe!)

– Detector technology well developed (low-noise single photon) 

• Wavelength control

– On-line laser (master oscillator) stabilised to peak of water resonance

– Off-line/ On-line difference frequency stabilised to 15GHz 

– Water resonance ~ 6GHz width @ sea level ~ 1GHz width @ 4km altitude 

– Freq. stability of ~ 20MHz adequate



Setup for DIAL



Spectral properties of amplifier



Wavelength control of master lasers

On-line laser 
stabilisation
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Wavelength 
difference 
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- GREEN LOOP



Water resonances near 829nm

• accessible for 
diode lasers

• appropriate 
line intensity 
(10-23cm-1)

• sufficiently 
isolated from 
other 
resonances

• other lines at 
832nm



Stabilization to water resonance (832nm)
- error signal at lock-in output

V

wavelength



Conclusion

• Er:glass at 1.53 μm is a useful approach for a simple, low 
average power eye-safe coherent laser radar, but is limited by 
thermal effects and damage in glass.

• Er:Yb:YAG is a promising new, preferred option at 1.6μm
Design experience form Nd:YAG directly transferable

• Low cost alternatives to eye-safe incoherent sensing for short 
range (<4km) applications using shorter wavelengths are 
feasible.



Producing a tophat pump distribution

• How? 
– Use a composite slab (doped & undoped YAG layers)
– End-pumped for good efficiency
– Side-cooled zigzag slab

Pump absorption is a tophat profile, thus minimizing thermally 
induced birefringence loss (even though diode-laser pump profiles 
typically produce Gaussian transverse profiles)

Thermal lensing minimized by using a zigzag mode-path in the plane 
of cooling, and by controlling the heat flow in the orthogonal plane



Small-signal gain measurement proves 
bleaching of Erbium
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