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Abstract 

The research presented in this thesis focuses on the investigation of whether the 

compartmental flow models of bed occupancy originally described by Harrison and 

Millard (1991) for decision-making around geriatric service care in the English 

National Health Service can be used to describe data from acute care hospitals in 

Australia and New Zealand.  

Australia’s total health expenditure for 2004-05 was $87.3 billion. The use of health 

care services and expenditure pattern is well established and Australia follows the 

pattern found in most developed countries, with the greatest expenditure occurring on 

services for the elderly. Australia is experiencing a shift in population structure, with 

the proportion of older people forecast to increase. It is expected there will be a need 

for a greater level of expenditure on health care as the number of elderly people 

increase.  

There is an emerging gap between the ability to supply health services and the 

demand for them. Furthermore, acute care hospital treatment is generally considered 

expensive and governments have been keen to control this expenditure. 

It is imperative that governments are able to make decisions based upon robust policy 

advice. There are serious consequences in both economic resource allocation and 

patient (and population) health outcomes if decisions about future health service 

structures are incorrect. In particular, there is a need for better decision-making 

around bed management at the strategic level. Strategic decision-making relates to 

decisions that will occur in a longer time frame.
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Decision-making can benefit from the use of modelling. Models represent a simplified 

version of reality that preserve the essential features of the situation being examined 

and can be used as a tool to investigate decision-making options, particularly in 

complex environments such as the health sector. 

Historically decision-making relating to hospital beds has used either simple “back of 

the envelope” calculations or adherence to “rule of thumb” approaches. Most of the 

approaches have relied upon using the average length of stay metric. While the 

modelling of hospital bed numbers is not new, much of this work has relied upon the 

average length of stay, which is known to be a poor measure. 

Harrison and Millard (1991) introduced the application of the compartmental flow 

model for modelling hospital bed occupancy and noted its potential to be used to 

influence policy decision-making. The flow model results are plausible and easily 

interpreted. However, relatively little work has focussed on the ability of these models 

to be generalized and be used for predictive purposes. 

The research undertaken for this thesis consisted of a series of modelling experiments 

that can be grouped into two key stages: whether the models could be successfully 

applied to the acute care data; and whether the models could be used for novel 

purposes, such as forecasting, evaluation of service change, and benchmarking. This 

entailed the further development of the model, and a consideration of basic modelling 

issues such as the balance between data-fit and model complexity, in order to capture 
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better variation in the data and also to facilitate linkage to changes in population and 

seasonality.  
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Glossary and Abbreviations 

A The first parameter of the first compartment in the flow 

model that relates to the total number of occupied beds or 

patients in the first or short-stay compartment. 

ABS Australian Bureau of Statistics 

Acute care hospital A hospital that provides short-term medical care especially 

for serious acute disease or trauma 

ALOS Average length of stay 

ARDRG Australian refined diagnostic related group 

ARIMA Auto-Regressive Inductive Moving Average  

B or b The second parameter of the first compartment in the flow 

model that relates to the flow of patients through the first or 

short-stay compartment. 

BIC Bayesian information criterion 

BOMPS Bed Occupancy Management and Planning System 
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C The first parameter of the second compartment in the flow 

model that relates to the total number of occupied beds or 

patients in the second or long-stay compartment. 

  

D or d The second parameter of the second compartment in the flow 

model that relates to the flow of patients through the second 

or long-stay compartment. 

DRG Diagnostic related Groups (see also ARDRG) 

Elective admission A planned admission of a patient into a hospital bed, as 

opposed to emergency admission. 

Emergency admission An unplanned admission of a patient into a hospital bed. 

Long-stay patients  Patients who stay for a longer period of time than short-stay 

patients. Arises from the fitting of a double compartmental 

flow model to acute care hospital data. Long-stay is a relative 

term and differs when applied to alternative types of care 

paradigms, for example, geriatric care services (see also 

short-stay patients). 

LOS Length of stay 
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Short-stay patients Patients who stay for a short period of time in an acute care 

hospital. Arises from the fitting of a double compartmental 

flow model to acute care hospital data. Short-stay is a relative 

term and differs when applied to alternative types of care 

paradigms, for example, geriatric care services (see also long-

stay patients).  

WSSE Weighted Sum Squared Error. 
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Chapter 1 

Introduction 

In this chapter the research topic of acute care hospital bed occupancy compartmental 

flow modelling bed is introduced. The issue of strategic decision-making in relation to 

hospital beds is identified as a real problem that warrants improvement and the gaps 

in current knowledge are identified. The research topic is shown to be of relevance to 

both researchers and policy makers in the health sector. The motivation for 

undertaking the research and the research questions are also presented. The chapter 

has the following structure:

1.1  The Australian Health System and the Emerging Problem........................... 2 
1.2 The Need for Better Decision-Making......................................................... 9 
1.3 Why Model Hospital Bed Occupancy?...................................................... 13 
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1.8 The Need for More Research Around Compartmental Flow Bed 

Occupancy Modelling ............................................................................... 21 
1.9 Personal Motivation for Undertaking the Research.................................... 22 
1.10 The Research Project Outline.................................................................... 25 
1.11 The Research Project Aims ....................................................................... 25 
1.12 The Research Project Questions ................................................................ 26 
1.13 About The Research Project Methodology ................................................ 28 
1.14 Contribution Towards Knowledge ............................................................ 28 
1.15 The Thesis Layout .................................................................................... 29 
1.16 Author Publications .................................................................................. 31 
1.17 Conclusions .............................................................................................. 32 
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1.1 The Australian Health System and the Emerging Problem 

There has been rarely a week, if not a day, go by in recent years when access to 

hospital beds or waiting times for elective surgery has not been in the media spotlight 

in Australia. In more recent times, the issue of sufficient clinical staff has also begun 

to receive significant media attention. Both are resource issues and both are 

intertwined – there is no point in opening hospital beds if there are insufficient staff to 

provide patient care. 

So what is all the attention about? Australians are fortunate in having access to free 

medical care in public hospitals. Also, there is the option of accessing care through a 

considerable private sector. New medications and interventions provide cure or relief 

from many forms of disease that could not be treated previously.  

Additionally, existing forms of treatment, such as dialysis, have been provided for 

more people, including older people, when previously a lack of access to equipment 

meant that such options were not always available. Thus, the expectation that access 

to high quality care that can treat more and more problems exists. Acute care hospital 

treatment, however, is generally considered expensive and governments have been 

keen to control expenditure (for example, see Generational Health Review, 2003). 

In Australia, there are three levels of government: commonwealth, state and local 

governments. While the commonwealth government has the responsibility for primary 

health activity - that is it contributes to the cost of general practitioner and private 

specialist care in the doctor’s room and for diagnostic testing - the public acute care 

hospitals fall under the control of state governments. 
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Australia’s total health expenditure for 2004-05 was $87.3 billion or $4,319 per 

person and represented 9.8 per cent of the gross domestic product (AIHW, 2006). In 

terms of international comparison, Australia’s expenditure per person, a measure that 

overcomes the problems with using short-term measures of gross domestic product, 

was ninth highest when compared to 29 other OECD countries (AIHW, 2006). The 

level of expenditure has remained relatively stable over the last ten years, thus 

confirming that Australia applies considerable resources to the health sector. 

The public health sector costs represent significant proportions of the budget in each 

state and territory. Almost 23 per cent of the Australian health expenditure for 

2004-05 was met by state, territory and local governments (AIHW, 2006). While it is 

generally recognised that the demand for health care services is great, this must be 

balanced against the other services that state governments must also provide. 

Almost all developed countries and many developing countries are experiencing a 

shift in population structure – the proportion of older people is increasing. Australia is 

no exception to this trend as shown in Figure 1. 
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Percentage of Australians Aged 65 Years or More: Historic and Future Trend
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Period of accelerated growth 
in the proportion of older 
Australians commences.

The change in profile can be related to several events, including: 

• A period of population growth post World War II (the baby boomers), and 

• A period of contraction in the birth rate during the later part of the 20th century. 

Although there may be some doubt about the ability of the Australian Bureau of 

Statistics to forecast accurately the population profile for the remainder of this century 

it is clear that the predicted rise in the proportion of the elderly will occur in the next 

few years. 

The use of health care services and expenditure pattern is well established and 

Australia follows the pattern found in most developed countries, that is, with the 

exception of the first few years of life, the greatest expenditure occurs on services for 

Figure 1: The changing age structure of the Australian population is illustrated through the changing 
proportion of older people (aged 65 years or more). Historically the proportion of older people was low. 
While it has increased in recent times, a new period of rapid growth is forecast to commence.  Source 
data: Australian Bureau of Statistics (2002 and 2006). 



 
 
the elderly (OECD, 2003). This pattern is illustrated in Figure 2 using Australian 

patient separation data. 

 
 
 

Non Indigenous Hospital Patient Separations 2004-05 
 
 

 
NOTE:  This figure is included on page 5 of the print copy of the 
thesis held in the University of Adelaide Library. 
 

 
 
 
 
 
    
Figure 2: The hospital utilisation patterns for non-Indigenous Australians show a high use of services for the 
very young and increased utilisation as age increases. The difference between males and females aged 
between 15 and 40 relates to child bearing. Data source: AIHW (2006). 
 
 
The Indigenous hospital utilisation pattern is similar to that of the non-Indigenous 

Australians except that utilisation rates are greater (that is, the distribution is shifted up) 

and the increased higher utilisation associated with ageing occurs at a younger age. 

 

The ageing of the population presents a range of new challenges for communities and 

governments, including: 

 

•  A reduction in the size of the available workforce (based upon current patterns of 

 working life) 
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• A smaller tax base (from individuals) upon which to seek revenue to fund 

services as the numbers in the workforce diminish 

• A changing mix in service requirements – there may be demand to shift 

resources from the younger aged people, particularly as the number of children 

becomes less, to the older people (who also have voting power), and 

• A period of greater expenditure on health and other social services as the 

volume of older people increases (see Figure 1).  

This challenge is made even greater when combined with the shift in disease 

prevalence from acute infectious disease to one of chronic disease (Generational 

Health Review, 2003; Productivity Commission, 2005). Chronic diseases tend to 

affect people later in life and while we have been successful in achieving greater life 

expectancy we have also increased the burden of chronic disease (Duckett, 2005). 

Health workers are not precluded from the processes of life – they too are ageing and 

the existing workforce is replete with baby boomers, many of who are, or will, reach 

the end of their working lives within the next 10 years (SA Government, 2005; 

Duckett, 2005). The expected large number of retirements comes at a time of forecast 

high demand for services, a reduction of available workers and following a period of 

insufficient succession planning. The health sector relies upon many highly skilled 

clinical professions whose training is often lengthy. In South Australia, estimations of 

workforce contraction vary, with contraction forecast to occur between 2011 and 2016 

(Access Economics, 2001; Sphoehr, 2004). 
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The ability to rely upon other countries to provide a significant component of the 

South Australian health workforce no longer exists, because all developed countries 

(and other states within Australia) will be competing for the same resources. 

Consequently, South Australia will not only have to work harder to compete to attract 

clinical staff, but it will also face increased competition from other states or countries 

as they try to attract staff elsewhere. This competition has already begun with other 

states providing significant increases in remuneration to attract additional staff and 

prevent their own staff moving elsewhere. Thus, there is an emerging gap in the 

ability to supply services, both in terms of capital infrastructure and workforce, to 

meet demand as shown in Figure 3. 

Hospital occupancy levels have also increased in recent years. The ability to provide 

services to the growing wave of baby boomers that are expected will not exist, ceterus 

paribus, unless capacity is increased (as shown in Figure 3). Additional capacity 

(capital infrastructure) can be created relatively quickly. There is, however, little point 

in doing so if there are insufficient staff available to provide services to patients. 

Forecast Demand

Forecast Reduction
in Supply

Growing gap TimeNow

Infrastructure cap

Forecast DemandForecast Demand

Forecast Reduction
in Supply

Forecast Reduction
in Supply

Growing gapGrowing gap TimeNow TimeNow

Infrastructure capInfrastructure cap

Figure 3: A schematic representation of the emerging demand and supply issues facing the health 
sector.
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Record breaking hospital inpatient activity levels reported in South Australia during 

20061 lends credence to such forecasts. The levels of demand on the South Australian 

health system forecast to occur by 2011 in the Generational Health Review report 

(Generational Health Review, 2003) were found to be occurring during 2006. Peak 

activity levels were such that one major teaching hospital, Flinders Medical Centre, 

implemented its disaster plan for the first time ever in order to deal with ordinary 

patient activity – not disaster activity. It entailed the early discharge of 120 people to 

take the pressure of the emergency department to allow for emergency admissions. 

Apart from Flinders Medical Centre, the Royal Adelaide Hospital (the State’s largest 

teaching hospital) and the ambulance service also report record activity levels. These 

records occurred during one of the mildest winters in recorded history for the State 

and in the absence of high levels of influenza. This activity resulted in the Minister for 

Health reporting that there was solid evidence that if the State continued to provide 

health care using current models of service delivery and care strategies, by 2043 the 

entire state budget will be required to meet the costs of providing health care (Hill, 

2006).  

Not everyone has supported the notion that the ageing of the population will pose 

problems for the health system. For example, Gray, Yeo and Duckett (2004) 

concluded that the ageing of the Australian population was not associated with an 

increase in the proportion of hospital beds used by older patients during the period 

1993-2002. The authors identified that a significant increase in patient separations 

occurred and that much of this was attributable to the increase in same-day 

admissions. The authors, however, failed to take account of the relative mix of beds 

                                               
1 At the time of writing, 2006 was not complete. 
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among the population groups, which is biased towards the elderly. Furthermore, the 

authors failed to note that despite an increase of almost 100 per cent in same-day 

patient activity over a ten-year period, the number of overnight patient bed days 

decreased by only one per cent and the overnight stay patient numbers increased. 

When these are considered a very different perception about recent activity can be 

reached as reported in the work by Mackay and Millard (2005a and 2005b). 

Commentaries such as that provided by Gray, Yeo and Duckett (2004) are in the 

minority and most researchers, policy analysts and political or financial commentators 

are concerned that the level of health expenditure is set to rapidly increase as 

populations in developed countries age. For example, see Commission of the 

European Communities (1999), WHO (2002), OECD (2003), the Australian 

Productivity Commission (2005) and Gottret and Schieber (2006).

Consequently, governments are now exposed to having to respond to demand and 

supply problems that will have potentially long-term health consequences for their 

populations. Health is not the only industry that will be facing the challenges of 

ageing populations and thus the problems confronting governments are complex and 

widespread (Productivity Commission, 2005). 

1.2 The Need for Better Decision-Making 

Given the previously described set of circumstances it is imperative that governments 

are able to make decisions based upon policy advice that is robust and sound as 

possible given current understandings. As previously indicated, the health care 
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industry is a complex one and decision-making in such an environment can be 

difficult. 

Models represent a simplified version of reality that preserve the essential features of 

the situation being examined (Denardo, 2002) and can be used as a tool to investigate 

decision-making options or possibilities, particularly in complex environments where 

many factors interplay (Jun, Jacobson and Swisher, 1999; Fone et al., 2003) or 

experimentation is not possible, both of which describe conditions that apply to the 

health sector. The interpretation of the model output, however, may be more of an art 

than an exact science at times (Powell and Baker, 2004). 

Given the increasing demands being placed upon the health services and the 

likelihood of significant staff shortages, there are serious consequences in both 

economic resource allocation and patient (and population) health outcomes if 

decisions about future health service structures are incorrect. Given the recent 

advances in computing power and the need to improve decision-making, there has 

never been a more opportune time to apply modelling to facilitate improved decision-

making in the health care sector. One aspect where modelling will become 

increasingly important in the health sector is in relation to modelling decisions around 

hospital beds. 

Many states within Australia have reviewed their health systems in recent times, 

including South Australia, New South Wales, Victoria and Western Australia. In the 

review findings reference to hospital beds has been made, though any reference to 

modelling has not necessarily been accompanied by material that would enable 
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evaluation of any modelling undertaken as part of the review work as shown in Table 

1.  

Table 1: Recent reviews of state health systems have not always included bed modelling or access 

to modelling methodologies used. 

State Modelling Activity 

South Australia The South Australian Government sought a review of its 

health system during 2002. The findings of the review 

(Generational Health Review, 2003) found that without 

change a significant increase in hospital beds would be 

required. The methodology for arriving at the increase was 

not reported. 

New South 

Wales 

The report of the NSW Health Council (2000) found that 

NSW was facing increasing demand, but that a good health 

system is characterised by more than just the number of 

beds. No specific methodology for bed forecasting was 

stated in the report. 
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(Table 1 cont.) 
Western 

Australia 

The Western Australian Government sought a review of its 

health system during 2003. The findings of the review 

(Department of Health, 2004) found that a major 

reprioritisation of the health system was required. Findings 

were in part based upon bed modelling. The methodology for 

the bed modelling was published (Strategic Planning 

Directorate, 2004). The modelling was based upon activity 

and utilisation data (bed days and separations), and linked to 

population projections. 

Victoria During November 2000, the Patient Management Task Force 

was set up to identify specific areas for improvement in in-

hospital patient management processes and to advise on 

system factors that will encourage best practice in patient 

management (Patient Management Task Force, 2001). A 

patient flow-modelling project was commissioned by the 

Task Force to assess the feasibility of predicting the impact 

of changes to various elements of the health care system. The 

initial results led to the recommendation by the Task Force 

that Department of Human Services should commission the 

development of computer-based patient flow modelling tools 

to assist metropolitan health services in forward planning 

their elective caseloads. No details about the nature of the 

modelling were provided.  
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Thus, while there has been some move towards using modelling or recognition of the 

potential for using modelling to facilitate better decision-making around hospital beds 

this is not universal, the work is often simplistic (see section 1.5) and if often not 

transparent. 

1.3 Why Model Hospital Bed Occupancy? 

The ability to infer the underlying process that generated observed data is the goal of 

most behavioural research (Myung and Pitt, 1997) and the goal of modelling the use 

of acute care hospital beds is no different.  Developing a formal and quantitative 

model allows: 

� Interpretation, understanding, and insight into how and why the 

distribution changes 

� The ability to generalise where data are not available (for example, other 

hospitals), and 

� The ability to make predictions where data cannot be available (for 

example, into the future). 

Ultimately, the use of modelling can be applied to policy and resource allocation 

issues, including the determination of the number of hospital beds required for service 

provision for a given hospital or community. 



14

1.4 Decision-making and Hospital Beds 

Historically decision-making relating to hospital beds has used either simple “back of 

the envelope” calculations or adherence to “rule of thumb” approaches. Most of these 

approaches have relied upon using the average length of stay metric. 

The average length of stay measure is a ubiquitous measure in the health sector that is 

used for a range of purposes, from benchmarking, calculating bed numbers and more 

complex financial allocation methods, as can be verified by a simple search on the 

internet. For example, searching on Google™ (2005) using the criteria of a small 

number of country names and the term average length of stay yielded more than 15 

million hits (see Table 5, Chapter 4 for more details). 

The modelling of hospital beds and patient length of stay, which are intertwined, is 

not new. For example, work in this area has been undertaken Yates (1982), 

Pendergast and Vogel (1988), and Sorensen (1996). Some of this work, such as that 

by Sorensen, has the development of the models reliant upon the average length of 

stay (ALOS), which could be argued to be a slightly more advanced approach than 

what is often undertaken by health care managers and clinicians.  

1.5 Simple Models and the Average Length of Stay 

It has been recognised that the use of the ALOS for modelling hospital bed issues is 

flawed (for example, Farmer and Emami, 1990; Harrison and Millard, 1991; Mackay 

and Millard, 1999; Costa et al., 2003). There are several numerical and practical 

reasons that using the ALOS is inappropriate for use in the development of models. 

First, the length of stay profile typically has a highly skewed distribution and that is 
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not well summarised by its mean value. Second, the length of stay distribution is 

complex, often consisting of mixtures of patient types (that is, medical and surgical, 

planned and unplanned admissions, young and elderly) and mixtures of outcomes 

(that is, some patients die, some are discharged home, some to alternative care 

services such as nursing homes). While it might be argued that the introduction of 

casemix categories could reduce some of the complexity, recent work indicates that 

the problems associated with the average length of stay are still not overcome (Wang, 

Yau, and Lee, 2002). Furthermore, the ALOS does not take into account the time of 

day when a hospital is most busy. That is not to say, however, that some of the work 

previously undertaken has not yielded interesting findings, such as the focus on 

discharge destination by Sorensen (1996)2. 

1.6 The Introduction of Bed Occupancy Compartmental Flow Model 

In their seminal paper, Harrison and Millard (1991) introduced the application of the 

compartmental flow model. A compartmental model describes the flow of something, 

such as patients, through a system, where the system is comprised of a finite number 

of homogeneous subsystems known as compartments (Godfrey, 1983). According to 

Godfrey (1983), compartmental models have been widely applied as modelling 

solutions in the areas of biomedicine, pharmacokinetics and ecology. 

                                               
2 See Chapter 2 for a more fuller appraisal of the literature on bed modelling. 
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The abstract of the paper describes the model developed by Harrison and Millard 

(1991) and its potential to be used to influence policy decision-making for bed 

allocation: 

The empirical distribution of length of stay of patients in departments of 

geriatric medicine is fit extremely well by a sum of two exponentials. Most 

of the patients in a geriatric department are rehabilitated and discharged 

or they die within a few weeks of admission, but the few who become long-

stay patients remain for months or even years. A model is presented for 

the flow of patients through a geriatric department, which has analogies 

to models of drug flow in pharmacokinetics. The theoretical model 

explains why the empirical distribution, obtained from the midnight bed 

state report, can be used to study the effect of various policy decisions on 

both immediate and future admission rates for the department, and shows 

the benefits of policies which reduce long-stay patient numbers by 

improving long-stay rehabilitation. (Harrison and Millard, 1991, pg 221). 

Visually the hospital bed compartmental flow model can be represented as shown in 

the Figure 4. 



 
 
 
 

 
NOTE:  This figure is included on page 17 of the print copy of the 
thesis held in the University of Adelaide Library. 
 

 
 
 
 
 
    
Figure 4: A diagrammatic representation of the flow of patients through compartments. The compartments 
may be virtual or real - the patients may not actually change location within the physical hospital (Mackay 
and Lee, 2005). 
 
 
 

Others joined Harrison and Millard in their work, notably McClean. Harrison, 

McClean and Millard continued publishing research that promulgated the notion of 

compartmental models of occupancy being used as a means of looking resource 

implications concerning hospital beds (for example, Harrison, 1994; McClean and 

Millard, 1994; 1995; 1998; Harrison, 2001; Harrison, Mackay and Schaeffer, 2005). 

 

Work to date has focused on two or three compartment bed occupancy flow models to 

describe the patient stay profile within the hospital (Harrison, 1994, and Mackay, 

2001), with additional compartments being added to incorporate the community 

(Taylor, McClean and Millard, 1996). 
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The modelling work of Harrison was incorporated into software known as the Bed 

Occupancy Management and Planning System (BOMPS) and attempts were made at 

commercialization. It was subsequently distributed as freeware. BOMPS provided 

two mechanisms for creating the bed occupancy profiles: a daily census, or an average 

census. Most of the work undertaken has focussed on the use of the daily census 

approach, although has not necessarily employed the BOMPS software (for example, 

Harrison and Millard, 1991; and McClean and Millard, 1993). The software, however, 

has not been updated to run on current computing environments. 

The flow model results are plausible and easily interpreted. However, relatively little 

work has focussed on the ability of these models to be generalised and be used for 

predictive purposes. For example, if the census method of model creation is employed 

based upon sampling data from a Monday, it is reasonable to question whether the 

obtained LOS distribution will generalise to data from other days. It is also not clear 

whether generalisability is adequately addressed in the average day census approach.  

Data relating to geriatrics patients from the South of England was used for the 

development of the model and also much of the subsequent research. The application 

of the model was extended to the acute care sector using data relating to the 

hospitalization of patients in acute care settings in Australia and New Zealand by 

Mackay with others (for example, Mackay and Millard, 1999; Millard, Mackay, 

Vasilakis and Christodoulou, 2000; Mackay, 2001; Mackay and Lee, 2004a, 2004b, 

2005; Mackay, Lee, Millard and Rae, 2004; Harrison, Shafer and Schaefer, 2005; 

Mackay, 2006). This modelling also has the potential to influence decision-making in 

other areas, such as that of staffing. For example, the decision to increase bed 

numbers can only occur if sufficient nursing (and other) staff are available to provide 
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patient care services. Other potential applications include forecasting future bed 

requirements, the ability to pre-test system changes through sensitivity and simulation 

analysis, benchmarking, evaluation and the potential to influence resource allocation 

funding models. 

1.7 Compartmental Flow Modelling and Health Services Research 

This type of modelling can be categorized as belonging to many particular academic 

fields, including mathematical, statistical, economic or health services research. The 

broadest and most inclusive category is that of health services research. 

Health services research (HSR) has been defined by various individuals and 

organisations, including Fraser (1997), Roper (1997), Aday (2001), Lohr and 

Steinwachs (2002), Scott and Campbell (2002), and Academy Health, a US-based 

organisation. It would appear that there is general agreement that HSR is a 

multidisciplinary field, where researchers and others are interested in the application 

of HSR are concerned about questions relating to the need, use, demand, supply and 

outcome of health services (Last, 1988). The term “outcome” has a broad meaning 

and may relate to the appropriateness, equity, effectiveness and efficiency of health 

services (Pirkis et al., 2005). Research may be conducted across the range of care 

situations, that is, from individual to populations; across the care types from 

prevention through to palliative care; and across service provider types including 

individuals through to organisations.  

Some efforts are being made to expand this historic category to health services and 

systems research. Bed occupancy modelling sits well in either health services research 
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or the wider health services and systems research category. HSR is a relatively newly 

recognised field of research in its own right in Australia, although as a research 

activity, it has a long history (Hall and Chinchen, 1999). Despite the large size of the 

health sector in terms of expenditure, Australia has not historically made large 

investments in such research (Hass, 2004; Pirkis et al., 2005). Consequently, the 

capacity to undertake and provide the necessary modelling in the more general sense 

is indeed limited. In terms of bed occupancy modelling, while there has been 

increased interest developing in the topic in recent years, there are few people in 

Australia actually involved in such research endeavours as I can attest to as one of the 

convenors of the International Health and Social Care Modelling and Applications 

Conference that was held during 2006.  

Jun, Jacobson and Swisher (1999) observed that despite the obvious benefits of 

modelling – and they restricted their attention to discrete simulation health care 

modelling – they could not foresee modellers overcoming the difficulties in 

implementing models. Fone et al. (2003) have considered why health services 

research modelling may not have been more influential in the past. Their findings 

suggest that health care modelling has a somewhat potted history, with little known 

about the whether models were implemented, and even if they were, whether they 

were of value in guiding decisions. While this research was not specific to Australia 

and was restricted to particular types of modelling, particularly that relating to 

simulation, my experience suggests that their findings do resonate with experiences in 

Australia. From my experience other factors that have previously affected the use of 

modelling for decision-making purposes include the continual changes arising from 

political cycles, inflexible funding, a preference to adhere to existing service models 
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and a lack of understanding of modelling by decision-makers. Thus, notwithstanding 

the challenges of the research, the challenges of gaining acceptance of the research 

outcomes are considerable and cannot be ignored. 

1.8 The Need for More Research into Compartmental Flow Bed Occupancy 

Modelling 

Earlier in this chapter the need for good decision-making around the allocation of 

health care resources was established. The remainder of this chapter will focus on the 

need for better decision-making around bed management at the strategic level and 

how research conducted for this thesis may usefully contribute to achieving that 

outcome. 

There is a continuum upon which decision-making occurs. Strategic decision-making 

is concerned with decisions that will occur in a longer time frame, such as the 

planning of future services. Conversely, operational or tactical decision-making 

relates to decisions that come into effect immediately or perhaps in a short space of 

time. For example, in a health care setting, this might be planning for the next shift, or 

perhaps even the next hour, as queues begin to occur. Tactical and strategic decision-

making criteria may share some common inputs, but this will not always be the case. 

Additionally, the weight placed upon the common factors may be different. Thus, it is 

quite likely that the models that can assist decision-makers for tactical and strategic 

decision-making purposes will be different. 

Furthermore, the evidence for management solutions is rarely based upon the 

interpretation of statistical tests, such as a double blind controlled experimental 
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environment, as this would not permit the flexibility or adaptability required by 

organisations, and could result in a loss of competitive advantage. Thus, the evidence 

about which method is or is not more suited to a particular management task is rarely 

concrete. The use of models, however, enables the study of systems (for example, 

organisations and integrated services) to aid in the design, understanding and 

construction without the need for real experimentation (McClean, 1994).  

The personal motivation for undertaking the research and an outline of the remainder 

of the thesis will also be provided. 

1.9 Personal Motivation for Undertaking the Research 

The motivation for undertaking this research stems from involvement in a work 

project at the South Australian Health Commission (now Department of Health). A 

large teaching hospital had requested additional funding for extra beds that it believed 

would be required for the forthcoming financial year. The request came via a letter 

and included no business case or analysis to support the need for the additional 

funding. In the absence of any supporting analysis for provision of the funds a joint 

Health Commission-hospital project team was established to undertake the analysis to 

confirm whether the funding was required or not. 

During this project the question of whether or not the hospital had any modelling or 

decision-making tools around hospital beds was asked. It was reported that the only 

measure required for this type of decision-making was the ALOS and that despite at 

least one attempt by the hospital, no modelling or decision-making tools relating to 

bed use had been found.  
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As a consequence of this feedback I undertook a literature search that resulted in the 

identification of numerous papers on decision-making and modelling hospital beds, 

including that of Harrison and Millard (1991). At that time Millard and his colleagues 

(Harrsion and McClean) were the most prolific authors on the topic of bed modelling. 

A meeting with Millard in London convinced me that the models he had been 

developing with Harrison and McClean were suitable for application in the acute care 

sector in Australia, because the length of stay profiles in the geriatric and acute 

systems were of similar shape and it the difference between the two patient groups 

could be described as one of differing duration in hospital. 

At the end of the project, the decision regarding the need for the additional funding 

was a political decision. 

After discussions with Millard I prepared some findings for the hospital using the 

BOMPS software package. The feedback from that experience was that the clinicians 

saw some potential, but required further evidence that a “system developed for 

geriatric health services in the UK” could be applied to an acute care setting in 

Australia. This need for further evidence resulted in the identification of a gap in the 

academic literature relating to strategic management decision-making around acute 

care hospital beds. This eventually resulted in the research for this degree being 

undertaken. 

The process for problem solving described by Powell and Baker (2004), which stems 

from the work of Couger (1995), is applied to this research problem and represented 
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in Figure 5. The first four stages of the process can be attributed to the initial work 

relating to the request for additional funding. The research work aligns with the fifth 

step of evaluating solutions.   

  

The final step of the process relates to the transfer of research into practice. While 

some attempts have been made to publish and therefore alert others to the benefits of 

this research, that stage is yet to be completed. 

The same process was applied to the approach adopted by the hospital. Without being 

privy to the entire decision-making within the hospital prior to the time of the request 

for additional funding, it would appear that the decision-making process did not 

follow that identified by Powell and Baker, but was truncated to the presentation of a 

Figure 5: Application of Powell and Baker's creative problem solving process to the hospital bed 
problem. There is an apparent difference between my research and the approach undertaken by the 
hospital. 
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problem and a request for additional funding as a solution. The need for a joint project 

team to evaluate the initial funding request perhaps is evidence that the first two steps 

in the Powell and Baker process were bypassed. Additionally, the solution that the 

hospital sought was extra funding and no other solutions were apparently considered. 

Such a decision-making process, while not perhaps ideal, is perhaps reflective of the 

processes in place at the time and the political nature of any such decisions. 

1.10 The Research Project Outline 

This project will focus on the investigation of whether the compartmental flow 

models of bed occupancy originally described by Harrison and Millard (1991) for 

decision-making around geriatric service care in the English National Health Service 

can be used to describe data from acute care hospitals in Australia and New Zealand. 

The research work will consist of a series of modelling experiments. The experiments 

can be broken into two key stages that addressing the following questions: 

� Can the compartmental flow models be successfully applied to the acute care 

data? 

� Can the models be used for novel purposes, such as forecasting, evaluation of 

service change, and the potentially altering funding policy?  

1.11 The Research Project Aims 

As previously indicated, the majority of the research conducted on bed occupancy 

compartmental flow models has relied upon an English geriatric data set. While this 

data has generated useful research about the application of flow models to patient 

occupancy issues, it can be argued that this research has little relevance to an acute 

care hospital setting or at least evidence is required to validate that the research using 
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geriatric data sets can be generalised to other parts of the health sector, including 

those from different counties.  

Thus, the broad aims of this research project are to develop an understanding of: 

� Whether the bed occupancy compartmental flow model will fit data from an acute 

care hospital 

� Whether the bed occupancy compartmental flow model can be applied to novel 

research problems, such as population change 

� Whether model choice theory can be introduced to improve model selection, and  

� Whether the bed occupancy compartmental flow model can be further developed 

or modified to enable better fit of the data. 

1.12 The Research Project Questions 

The main question to be addressed by the research will be: 

 Can bed occupancy compartmental flow models be applied to acute care 

hospital data in order that better (compared to existing) or new 

information or understanding be developed and have the potential to result 

in improved strategic planning of service delivery (and thereby resource 

utilisation)? 

Secondary research questions that will be tested during the research include: 

1. How many data are required to create a bed occupancy compartmental 

flow model for an acute care hospital data set? 

2. What level of model complexity is desirable in order that models can be 

used for generalisation and forecasting purposes?  
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3. Can bed occupancy compartmental flow models that incorporate the 

ageing of the population be used to forecast future bed (resource) usage 

in acute hospital care? 

4. Can bed occupancy compartmental flow models be used to evaluate 

service change? 

5. Can bed occupancy compartmental flow model parameters be used for 

forecasting purposes? 

6. Can the bed occupancy compartmental flow model be adjusted to 

incorporate seasonal variation, where the term “seasonal” applies to 

weather seasons? 

7. Can bed occupancy flow compartmental flow model parameters provide 

a substitute metric for the average length of stay in resource allocation 

models? 

8. Can sensitivity and simulation techniques be used in conjunction with 

bed occupancy flow compartmental flow models to enable uncertainty to 

be incorporated into the modelling process? 

These questions do not represent the full gamut of research that could be 

conducted in relation to strategic decision-making and bed occupancy 

compartmental flow models. Rather, it is intended to address the current gaps in 

the literature and also fundamental issues relating to the: 

• Modelling technique (questions 1 and 2);  

• Needs of the decision-maker and health policy worker (questions 3 to 7); 

and  

• Need to address the notion of uncertainty (question 8). 



28

1.13 About the Research Project Methodology 

As previously indicated, the work of Harrison and Millard (1991) provides the 

foundation for this research. The research methodology will be fully described in 

Chapter 4. It is, however, useful to identify and reinforce that this research is of a 

multi-disciplinary nature and is likely to be of interest to researchers from a range of 

backgrounds, as well as those who might wish to apply the research findings in a 

health care setting. Consequently, and also to reflect the author’s own background, the 

research in this thesis relies on various other research that is often mathematical or 

statistical in nature, but is presented in a style that is deliberately devoid of extensive 

mathematical notation.  

1.14 Contribution Towards Knowledge 

The underlying purpose of conducting this research is to address the existing gaps in 

the literature, which includes queries initially raised about whether the work of 

Harrison and Millard (1991) can be applied to acute care hospital setting. It will also 

be shown that the research undertaken for this thesis covers new areas of findings, 

including: 

a. Considering different means of modelling the data 

b. Addressing the issue of model complexity and fit 

c. Bed occupancy forecasting 

d. Using the modelling for evaluation purposes 

e. Modifying model to incorporate seasonal change, and

f. Considering whether there is merit in using the model output for funding 

purposes.  
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1.15 The Thesis Layout 

This thesis is presented as a series of chapters, with those chapters relating to research 

findings being presented in the format of a lengthier academic journal publication. 

While each chapter can be read independently, it is recommended that the chapters be 

read in the order in which they are presented so that the development of the modelling 

can be more easily understood. The translation of the research questions into chapters 

in this thesis is presented diagrammatically in Figure 6.  

  

In this chapter, I have introduced my topic and explained the importance of my 

research.  In the following chapter I present a literature review of hospital bed 

modelling. In Chapter 3, contextual information is provided about the two hospitals 

Figure 6: A diagrammatic representation to the research that is required to show that there is merit in 
adopting compartmental flow models for strategic decision-making purposes in the Australian acute 
care environment. 
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that provided the data for this research. Additionally, the bed occupancy data obtained 

from the hospitals is analysed using commonly used techniques in order to highlight 

the shortcomings of these techniques for strategic decision-making purposes. In 

Chapter 4 some of the theoretical background about modelling and model choice that 

that underpins the research is discussed. Chapter 5 is based upon a published paper 

(Mackay and Lee, 2005) regarding model choice and considers how much data is 

required to model hospital bed occupancy in an Australian acute care hospital. 

Additionally, the issue of model complexity is examined through consideration of 

different models that enable the capture of seasonality3. Chapter 6 presents the results 

of the evaluation of service change. These results provide further confirmation that 

the bed occupancy compartment flow model can be applied in an acute hospital 

setting using data from New Zealand and also introduce the novel application of the 

use of such models for evaluative purposes. In Chapter 7 the issue of complexity is 

again considered, but in relation to how many models are required to describe 

occupancy and patient age. These models are combined with population forecasts in a 

novel process to create forecasts of future occupancy. The presentation of an 

alternative method for modelling patient age and seasonality is presented in Chapter 

8. In Chapter 9, the data from New Zealand is again considered, and the model 

parameters alone are used for forecasting future occupancy levels. In Chapter 10 the 

ability to substitute the ALOS with parameters from compartmental flow occupancy 

models as a means of improving the casemix funding methodology is considered. The 

issue of incorporation of uncertainty into the models through simulation and how this 

might be done using widely available and low cost software is discussed in Chapter 

                                               
3 Seasonality in this sense refers to variation of weather patterns across the year, as opposed to the use 
of the term in operations research. This is discussed more fully in later chapters. 
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11. The overall discussion of the results, the need for further research and conclusions 

are presented in Chapters 12, 13 and 14. 

1.16 Author Publications 

I have already communicated the outcomes of much of the proposed research to the 

health sector and HSR sector as a consequence of: 

a. Referred journal publications 

b. Referred conference papers or abstracts 

c. Published letters 

d. Conference presentations (invited and other), and 

e. Articles in newsletters. 

The list of publications and presentations is detailed in Appendix I. 

The communication of the research findings prior to submission of a completed thesis 

was a deliberate strategy designed to achieve two outcomes: 

1. Engagement with the local health sector within Australia to raise awareness of 

the potential of the research and gauge interest in such research in a timely 

fashion that would not have been otherwise possible, and 

2. Seek critical comment upon the nature of the research findings. 

Both of these outcomes have been achieved and have assisted me in my research. 
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Additionally, the communication of the research findings has commenced the final 

stage of the problem-solving process suggested by Powell and Baker (2004), that of 

solution implementation.  

1.17 Conclusions 

In this chapter I have outlined the significant issues facing the health sector in 

Australia, and indeed, in most developed countries. The case for improved strategic 

decision-making around hospital beds has been presented.  

The proposed research questions and aims should result in new and potentially useful 

decision-making tools for the acute care hospital sector. Clearly, much of this research 

has already been presented either in the form of published journal articles or as 

conference papers. The communication of the research findings to the health sector 

and broader academic community provides some measure of confidence in this 

research. The difficulties in translating this work into the health sector, however, have 

also been recognised. 

The next chapter will consider the previous attempts that have been made to model 

hospital beds, why these past methods are problematic and identify the niche that can 

be filled by the bed occupancy compartmental flow model. 
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Chapter 2 

Hospital Bed Modelling - A Chequered History  

In this chapter I present examples from the published literature of various approaches 

to hospital bed planning and forecasting, together with the advantages and 

disadvantages of these methods. A simple classification system is introduced to group 

works of a similar nature. The work stemming from Harrison and Millard’s (1991) 

publication on the use of hospital compartmental flow models for modelling geriatric 

health service data is also presented. It is noted that Harrison and Millard’s (1991) has 

provided a general basis for modelling patient flows, but it now requires exploration 

in the acute care hospital sector. The chapter has the following structure: 

2.1 Introduction .............................................................................................. 34 
2.2 Australian literature reviews ..................................................................... 34 
2.2.1  Review by Dwyer and Jackson............................................................... 35 
2.2.2  Review by Anderson et al. ..................................................................... 36 
2.2.3  Review by Goddard and Mills................................................................ 37 
2.2.4  Conclusions about Australian literature reviews ..................................... 38 
2.3 General hospital bed modelling techniques ............................................... 38 
2.3.1  Simple Methods..................................................................................... 41 
2.3.2  More Complex One-off Approaches ...................................................... 44 
2.3.3  Queueing Models................................................................................... 47 
2.3.4  Simulation ............................................................................................. 53 
2.3.5  Flow Models.......................................................................................... 58 
2.3.6  Conclusion regarding the general research ............................................. 64 
2.4 The Harrison and Millard compartmental flow model ............................... 67 
2.4.1  The Subsequent Research Effort ............................................................ 67 
2.4.2  A more in-depth look at the compartmental flow model ......................... 78 
2.4.3  Conclusion regarding the compartmental flow research.......................... 87 
2.5 Other sources of literature ......................................................................... 90 
2.5.1  Bed management texts ........................................................................... 89 
2.5.2  Grey information ................................................................................... 91 
2.5.3  Conclusions regarding the other literature .............................................. 92 
2.6 Overall conclusion 93 
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2.1 Introduction 

The purpose of this chapter is to provide an illustration of the range of approaches that 

have been published as means of planning and forecasting hospital bed needs. In 

doing this, three sources of literature will be considered, namely: literature reviews, 

individual research papers and specifically written texts on the subject of bed 

management.  

The aim of this chapter is not to present an exhaustive review of every publication that 

deals with hospital bed management and planning. Rather, the intent is to highlight 

that a myriad of approaches have been suggested in tackling bed management and 

planning over a period of more than 30 years and that little or no traction has been 

achieved in terms of ongoing or widespread application. 

In order to provide context about developments in Australia, literature reviews on bed 

management emanating from Australia will be first presented. Illustrations of 

techniques originating from a variety of countries that have been published in the 

general academic journals will then be presented. This will be followed by a 

presentation of the work stemming from Harrison and Millard’s (1991) paper. Finally, 

the non-journal literature will be considered. 

2.2 Australian literature reviews 

In this section comment is provided on Australian literature reviews relating to 

hospital bed management (or patient flow). While literature reviews may not be 

frequently published, consideration of the literature reviews on the topic of bed 

management that have emanated from Australia is important in gaining an insight into 
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what Australian researchers and health departments consider important in relation to 

this topic. Literature reviews emanating from elsewhere are considered in other 

sections of this chapter. 

In recent years, there have been three literature reviews relating to hospital bed 

management published by Australian authors, namely the work of Dwyer and Jackson 

(2001); Anderson, Bernath, Davies, Greene and Ludolf (2001); and Goddard and 

Mills (2003). Other reviews may exist, but were not discovered. It is likely that any 

such reviews would have been written for specific use within health care 

organisations (otherwise they would have been discovered) and were not intended to 

be made available to the general public, which is not an uncommon business practice. 

2.2.1 Review by Dwyer and Jackson 

The literature review by Dwyer and Jackson (2001) was commissioned by the Patient 

Management Task Force (Task Force) of the Victorian Department of Human 

Services. The Task Force was established in response to acknowledged difficulties in 

meeting the demand for acute inpatient care, particularly in winter. The Task Force 

was required to identify essential organisational and patient management practices 

that would maximise the ability of hospitals to respond to the demand for inpatient 

care. The review was commissioned to provide information about integrated bed and 

patient management to the Task Force. Given the terms of reference provided to the 

Task Force, the literature review reflected the published evidence relating to 

managing demand, improving throughput and balancing the system (that is, removing 

bottlenecks). Additionally, the authors also provided high-level policy advice that 

stemmed from their review to the Department of Human Services. 
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The review focussed on strategies for managing patients or work practices, rather than 

looking at mechanisms that would lead to better understanding of the existing 

problems. Consequently there was no reference to the benefits that could be derived 

from the application of modelling (or other analytical approaches) to the issue of bed 

management problems. Acknowledgment of the need for better data to facilitate 

management of emergency patients, however, was made.  

This review encapsulates my experience of the health sector management approach, 

which is to identify a problem, look for a solution (often elsewhere) and implement it. 

Little emphasis was placed upon understanding the problem through beyond what 

would be considered simple analysis and the need for, or recognition of benefit of, 

undertaking more advance analysis or modelling did not occur. 

2.2.2 Review by Anderson et al.      

This review was published by the Centre for Clinical Effectiveness, Monash Institute 

of Public Health (Anderson et al., 2001), which is based in Melbourne (Australia). It 

occurred at a time when recognition of bed management problems had led to the 

creation of the Patient Management Task Force of the Victorian Department of 

Human Services, a group who were given responsibility for the identification of 

possible solutions to hospital management problems, particularly concerning access to 

hospitals. The stated aims of the review were to summarise and assess the literature 

relating to integrated bed and patient management, and identify pertinent issues for 

the Victorian health system. 
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The review was not particularly concerned with the application or use of modelling, 

although it was noted that some studies had confirmed that high occupancy levels 

contributed to bed crises, and that demand and supply issues could be modelled. 

Rather, the review concentrated on the identification of research relating to methods 

that may ameliorate hospital bed management problems, including demand 

management techniques, hospital in the home and appropriateness of admission.  

As with the review by Dwyer and Jackson (2001), little emphasis was placed upon 

improving understanding of the problem through the use of modelling.  

2.2.3 Review by Goddard and Mills 

The literature review by Goddard and Mills (2003) arose as a consequence of a 

mathematician’s (Mills) involvement with a regional health service (Bendigo Health 

Care Group) and was published as an academic article. The stated aim of their paper 

was to alert mathematicians that they could usefully contribute to the task of better 

managing hospital beds. Thus, the intended audience and purpose were quite different 

from that of the review undertaken by Dwyer and Jackson (2001), and Anderson et al. 

(2001). The review commented upon the increasing congestion in Victorian public 

hospitals and provided illustration of how mathematics can be applied to gain an 

improved understanding of this congestion. Three approaches to investigating bed 

management issues were reviewed, namely the use of simulation, queueing and 

compartmental flow models. Goddard and Mills (2003) concluded that mathematics 

could contribute useful insights into bed management problems, but that the problems 

were complex and could not be solved by mathematicians alone. 
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This review did provide readers with an appreciation of how analysis and the 

application of modelling may lead to better understanding and solutions to health 

system management problems. However, it is unlikely to be read by many managers 

or analysts in the health care, because it was published in a highly specialised non-

health related journal.  

2.2.4 Conclusions about Australian literature reviews 

The Australian literature reviews provide evidence that hospital bed management 

issues do indeed represent an issue about which there is current concern. Furthermore, 

given that some of these reviews were commissioned, it  would appear that 

management is keen to base future decisions upon the published literature – at least to 

some extent. The reviews, however, indicate that much of the focus is based upon pre-

existing solutions, such as demand management, and that the specialised field of 

modelling has received scant attention and continues to represent an area of interest to 

a niche group that are not necessarily main stream health sector players. 

2.3 General hospital bed modelling techniques 

Published research papers represented the primary source of information about 

modelling and associated methodologies concerning hospital bed management, 

planning and forecasting for this research. The investigation and reporting of hospital 

bed use is not a new subject, with the earliest paper I have noted being published by 

Benjamin and Perkins (1961) who reported upon the measurement of bed use and 

demand (cited by Barber and Johnson, 1973).  
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Apart from the fact that this field of research is very small in comparison to the field 

of health research in general, the difficulty in identifying relevant research papers was 

made more difficult due to the fact that publication occurs infrequently and in a 

diverse range of journals. In this section I present research findings that span more 

than 30 years and represent a range of approaches to modelling hospital bed issues. 

The approaches have been classified as belonging the following categories: 

� Simple one-off approaches 

� More complex one-off approaches 

� Queueing models 

� Simulation models, and 

� Flow models.  

These categories are not mutually exclusive and allocation was subjectively 

determined. Table 2 indicates the membership of papers to the various categories, 

with the principal category being highlighted. 
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Although the list of papers is not exhaustive, it is informative to note that prior to 

1987 more complex studies were generally not performed. The expansion into more 

complex areas of analysis appears to co-incide with an increase in the availability of 

the personal computer and an increase in computing power. It is also important to note 

that the publication of research that involved “simple” methods did not cease with the 

rise in publication of more complex methodologies, but has continued throughout the 

period of review. This is perhaps reflective of the divide between academic study of 

the health system and application of more simplistic methodologies in practice. 

Table 2: Categorisation of research papers. Where papers could have been assigned to more than one 
category, the capitalised X indicates the primary category. 

Simple one-off 
approaches

More complex one-off 
approaches

Queueing 
Modelling

Simulation 
Modelling

Flow 
Modelling

Barber and Johnson 1973 X
Sweeney and Ashley 1981 X
Bay and Nestman 1984 X
Sterk Shryock 1987 X
Worthington 1987 X
Pendergast and Vogel 1988 x X
Farmer and Emami 1990 X
Worthington 1991 x X x
Huang 1995 X
Myeng-Ki 1995 X
Vissers 1995 x X
Altinel and Ulaş 1996 x X
Sorenson 1996 x X
Milner 1997 X
Huang 1998 x X
Law 1998 X
Bagust, Place and Posnett 1999 x X
Fullerton and Crawford 1999 X
Côté and Stein 2000 X
Green and Nguyen 2001 x X
Toussaint, Herengt, Gillios and Kohler 2001 X
Gorunescu, McClean and Millard 2002 X
Isken and Rajagoplan 2002 X x
Jones, Joy and Pearson 2002 X
Finaerelli and Johnson 2004 X
Lattimer, Brailsford, Turnbull et al. 2004 X x
Myers and Green 2004 X
Nguyen, Six, Antonoili et al. 2005 X x x
Akcali, Côté and Lin 2006 X
Cochran and Bharti 2006 x X
Fusco, Saiito, Arcà and Peruci 2006 X

Categories
Author/s Year
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2.3.1 Simple Methods 

Barber and Johnson (1973) identified that the range of statistics available for hospital 

activity that could form the basis of reporting to management was diverse. This 

diversity enabled alternative measures to be reported that were not consistent and 

could be used to suit the needs of the individual or unit, as opposed to those of the 

overall organisation. In relation to the management of hospital beds they proposed a 

graphical representation of the average patient length of stay (Y Axis) and patient 

turn-over interval (X Axis) that could be prepared at the unit or hospital level and 

tracked over time. Additionally, the effects of modifying patient length of stay or turn-

over interval on the number of patient discharges or occupancy could be visually 

determined as lines of patient discharge numbers and bed occupancy levels were 

included on the graph.  This approach, while combining a number of simple measures 

in a meaningful way has two drawbacks:  

1. It relies upon the average length of stay, which is a flawed measure, and 

2. The visual interpretation of the results is not straightforward (although training 

in the technique would overcome this drawback). 

Given the era when this approach was advocated, it perhaps, represents a reasonable 

attempt to capture the effects of decision-making on hospital bed management. 

However, its use does not appear to have gained traction and the individual reporting 

of patient turnover and length of stay measures continues to occur. 

A number of authors (Sweeney and Ashley, 1981; Bay and Nestman, 1984; Toussaint, 

Herengt, Gillois and Kohler, 2001) have reported on methods of looking at bed 

numbers that are based upon consideration of the population. Although these methods 
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incorporate consideration of population changes they rely upon simplistic measures of 

either bed occupancy, length of stay or a predefined level of beds per thousand head 

of population. As discussed in Chapter 1, the ALOS is highly skewed and therefore a 

poor measure (for example, Farmer and Emami, 1990; Harrison and Millard, 1991; 

Mackay and Millard, 1999; Costa et al., 2003). Thus, such simple approaches will not 

lead to improved decision-making. Setting a defined number of beds per thousand 

head of population relies upon a policy decision at some level within the system, for 

which no basis is obvious and thus cannot be said to rely upon a robust method. 

Toussaint et al. (2001) also report on a method of setting a target level of occupancy. 

However, this methodology relies upon use of the ALOS and thus, while simple and 

trying to achieve an outcome that provides a mechanism to deal with daily variations 

in occupancy, is also flawed. 

Sterk and Shryock (1987) suggested the use of a simple linear regression model of 

patient days to achieve improved financial outcomes in hospitals. The approach, while 

simple, does not facilitate planning based upon changes in the rate of patient flow or 

policy decision (for example, decisions to reduce the number of beds), and thus does 

not confer much advantage to those seeking to investigate bed requirements in a more 

thorough manner. 

Finarelli and Johnson (2004) also consider linkage of simple bed occupancy statistics 

to population changes in the nine-step methodology they propose for determining bed 

requirements. However, they also include a supply-side component in their modelling. 

While the inclusion of a supply-side element is crucial (that is, there is little point 

planning for beds if the necessary staff are not available), the modelling is still based 
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upon use of the ALOS and thus is flawed. Myers and Green (2004) suggested a 

similar approach to that of Finarelli and Johnson (2004), although it was described as 

a two-step approach with the differentiation being modification of the forecast (for 

beds) by consideration of future changes (for example, changes in technology). Their 

approach is perhaps better described as a traditional simplistic methodology modified 

by inclusion of judgment about future events. 

Nguyen, Six, Antonioli et al. (2005) suggested that achieving a minimum score on the 

means and standard deviations of ratios developed based on the number of 

unoccupied beds, patient transfers (due to full capacity) and capacity to deal with 

unplanned admissions enables determination of bed requirements. The authors claim 

that the method overcomes the flaws with the ALOS, but is only of use in assessing 

current, and not future, bed requirements and thus is of limited value for strategic 

planning purposes where changes in policy, population and other factors must be 

considered and analysed.  

Simple Methods - Summary 

It is interesting to find that the simple approaches to modelling hospital bed issues 

have continued to be developed and promulgated in spite of the availability of more 

powerful computers and better data collections that often underpin the development of 

more complex modelling. 
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2.3.2 More Complex One-off Approaches  

Various researchers have undertaken the development of more complex models for 

forecasting hospital bed requirements. In many instances, it would appear that the 

work has been undertaken on a one-off basis as continued publication on the topic by 

the same author or authors has not been noted. 

Farmer and Emami (1990), Myeng-Ki (1995), and Milner (1997) have all reported on 

research efforts involving auto-regressive inductive moving average (ARIMA) 

modelling.  Farmer and Emami (1990) compared forecasts of ALOS made using 

simple approaches to that made using ARIMA. While they noted that the ALOS was a 

flawed measure they elected to use it for their work and found that forecasts could be 

improved by adopting ARIMA in preference to simpler methods, such as simple 

linear regression. Milner (1997) looked at forecasting patient attendances and found 

that ARIMA forecasts resulted in improved forecasts compared to simpler methods.  

Myeng-Ki (1995) used ARIMA to create short-term forecasts of bed occupancy. The 

work was development and although linked to the possibility of assisting management 

does not appear to have proceeded further. Jones, Joy and Pearson (2002) have 

undertaken similar, but have favoured in the generalised autoregressive conditional 

hetroskedasticity (GARCH) method in preference to the ARIMA model, because they 

contend it is better suited to modelling data with periods of high volatility which are 

followed by periods of less volatility.  They also reported using the seasonal ARIMA 

(SARIMA) model. They found that they could predict bed occupancy, but not 

admissions, using SARIMA. The focus of their work was aimed at predicting crises 
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and thus it had a more operational focus. Operational1 models are not suited for 

strategic decision-making purposes. An interesting conclusion reached by these 

researchers was that the success of the modelling should be gauged not by statistical 

measures, but rather by how it influenced patient care. Despite the improvements in 

forecasting gained through the application of ARIMA models, the ability to 

manipulate the model output to adjust for policy decisions (for example, changes in 

bed numbers) or changes in patient flow is limited (particularly when the ALOS is the 

basis of the modelling. Thus, alternative models are required. 

Law (1998) reported on the application of neural networks for forecasting hotel room 

occupancy rates. It can be argued that a hospital is a hotel that has clinical services 

appended to it (for example, the provision of a bed, catering and cleaning are 

functions that occur in both institutions). Like hospital managers, hotel managers are 

also concerned about bed occupancy. However, the motivating factors are different. 

The aim of the hotel supplier is to ensure that investment in the provision of additional 

hotel beds only occurs if a minimum occupancy is reasonably certain. If demand 

exceeds supply this is not a problem for the hotelier, but rather a signal that 

investment in additional capital will be beneficial. 

Law (1998) states that the superior pattern recognition capabilities of neural 

networking make it suitable for forecasting and that the methodology is superior to 

traditional statistical methods. Law found that the neural network model of room 

occupancy was more accurate than naïve extrapolation or multiple regression, two 

                                               
1 The term “tactical” is often used in conjunction and relates to the development of the terminology in 
association with the military. However, the term “operational” is also appropriate and is perhaps more 
commonly used in health environments. For example, the local Department of Health (South Australia) 
has “strategic” and “operational” divisions and not a “tactical” division). 
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commonly used forecasting methods in the hotel industry, and concluded that the 

application of the approach would result in better decision-making. The potential for 

application in the health sector would appear to exist. However, neural networking 

can be viewed as a “black box” method and this can represent an impediment to 

implementation. 

Fullerton and Crawford (1999) applied the method of Cosinor Rhythmometry to the 

analysis of hospital bed occupancy. The Cosinor Rhythmometry method enables the 

testing of the hypothesis that a seasonal sinusoidal curve exists. They analysed data 

based upon specialty grouping and found that General Medicine had a significant 

seasonal effect that explained much of the variation in bed occupancy. They 

concluded that the seasonal effect was predictable and that strategies could be adopted 

to ameliorate the effects of the winter peak in demand for beds. The approach, 

however, only confirms the presence of a seasonal effect and therefore is limited in its 

use in terms of strategic hospital bed decision-making.  

Fusco, Saitto, Arcà and Peruci (2006) considered the effects of influenza outbreaks on 

hospital bed occupancy in Rome using Gaussian generalised additive models. It was 

reported that during the influenza season, influenza bed occupancy increased and the 

level of increase depended upon the specialty area. Daily and seasonal variation in 

occupancy was found. According to the Fusco et al. (2006) influenza bed crises were 

more a factor of an unresponsive system unable to exploit fully its resources rather 

than excessive demand. While informative in terms of identifying daily and seasonal 

trends in influenza related bed occupancy, the approach did not provide decision-

makers with the tools to comprehensively plan, predict or test the system. At best, the 
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analysis might aid planning, but only in a general sense. The description of 

management as being “ineffective” (in terms of being able to allocate available beds) 

may result in rejection of the findings by hospital managers on the basis that the study 

did not identify the complexities that occur in a hospital environment (a commonly 

used strategy adopted when defending management of hospitals).   

More Complex One-off Approaches - Summary 

While the more complex approaches to studying hospital bed issues have yielded 

some interesting findings, these approaches, with the exception of the neural 

networking (which was not applied to hospital data), appear to offer decision-makers 

limited insights into hospital bed management and are therefore unlikely to be 

attractive to decision-makers. 

  

2.3.3 Queueing Models  

Hospitals and health services in general can be viewed in similar ways to other service 

provision industries, such as banks, shops or airlines, that is, there are customers (in 

this case called patients) who seek some kind of service and in order to receive the 

service, the customers must join queues. An admission to a hospital may see a patient 

join multiple queues, including a queue to get a bed, have diagnostic tests performed 

and analysed, and undergo surgery. Indeed, undergoing surgery may involve the 

patient joining multiple queues: waiting to see the anaesthetist to ensure that the 

patient is healthy enough to undergo the surgery, waiting to be prepared for theatre, 

waiting for someone to transport them to theatre, waiting to be moved into the theatre, 

waiting for biopsy results during surgery, waiting in recovery post theatre and waiting 
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to be transported back to the wards. Queueing theory has been applied to the analysis 

of resource problems when queues occur (Denardo, 2002). For example, how many 

bank tellers are required so that customers do not wait more than x minutes represents 

a typical problem that might be considered. A natural extension of the application of 

queueing theory extends to the analysis of health care queues. Often such modelling 

relates to the queues found in outpatients, emergency departments, but also hospital 

waiting lists. Queueing modelling is often combined with simulation and thus is not a 

mutually exclusive category of modelling. Examples of the application of queueing 

modelling to the analysis and development of solutions to hospital bed issues are now 

presented.     

Worthington (1987 and 1991) applied queueing models to the analysis of hospital 

waiting-list problems. Application of the M(λq)/G/S queueing model was undertaken 

in the work reported in 1987, where arrivals occur at a random rate λq, there are q

patients in the waiting list and there are S servers. A server is the place where the 

customer receives the service – in this case it is the hospital bed, where the service 

time is the patient length of stay. Worthington (1987) described this type of queue as 

being a simpler version of the machine-interface problem. Using the models 

developed it was possible to illustrate the length of period patients would remain on 

waiting lists, the effect of altering the number of available beds and decreasing the 

patient length of stay. An important observation was that success in reducing a 

waiting list could be met with increased demand as a consequence of a 

recommendation by the College of Health that patients “shop” for the shortest queues. 

Positive feedback was considered likely to result in the original queue being re-



49

instated and no long-term benefit being attained from addressing the original waiting 

list problem. 

Worthington’s second analysis (1991) reported work carried out with the Lancaster 

District Health Authority where queueing theory was applied to investigate waiting 

lists and included what-if analysis. The modelling incorporated the transition of 

patients through general practice to outpatients to inpatient and then back to general 

practice (although this may have included a transition through outpatients). Attempts 

were made to capture other features in the process, such as the classification of 

patients into different waiting list streams, such as routine or urgent. Worthington 

(1991) found, however, that the data were not uniformly collected making the 

modelling exercise difficult. The actual methodology was based upon system 

dynamics methodology, although the formulae were not stated. System dynamics 

software was not, however, used for the modelling exercise, but was performed using 

the more commonly available Microsoft Excel spreadsheet program. Projected 

waiting lists and waiting times were developed as the model output. Worthington 

(1991) reported that the use of the tool was very much textbook like and involved 

decision-makers in the development. Use of the tool achieved additional beds for one 

hospital consultant, but did not result in additional bed allocations for other 

consultants due to other constraints. Where consultants did not secure additional beds, 

the modelling was still deemed successful as it was used to highlight issues requiring 

action, such as improving the transition flow between inpatients and outpatients. 

Continued use of the spreadsheet-based model was not recommended due to the skills 

required to modify it for each scenario and a specific application was developed for 

generic use. While the achievement of additional bed allocations, identification of 
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related issues and development of a decision-support tool were beneficial outcomes 

from the research conducted by Worthington (1991), the lack of specificity around the 

mechanics of the modelling approach has masked much of the work, thus making 

independent replication or broader independent transfer difficult.   

The application of queueing models was presented by Huang (1995) as an 

intermediate method that overcame the problems of using the ALOS and other simple 

measures in determining hospital bed requirements, and as being less onerous than 

using more complex methods such as simulation. The modelling extended previous 

work by Pike, Proctor and Wyllie (1963) to include a day of week effect and used the 

M/G/∞ queueing model (unlimited beds) to investigate bed requirements. 

Consideration of other constraints – such as resource limitations – was not taken into 

account. While for analytical purposes, the approach appears reasonable, care in 

applying the approach when beds are limited, would be required. The results were 

found to be congruent with those obtained from a Monte Carlo simulation model. 

Huang (1995) concluded that once the number of beds was calculated using the 

queueing model, other performance measures could also be determined (for example, 

daily bed occupancy). Although the insights gained from the approach were useful, 

the need for appropriate training in implementation of the model and also the need to 

incorporate realistic constraints (such as a fixed number of beds) would likely deter 

use of these findings in a real decision-making environment.  

Green and Nguyen (2001) investigated the potential impact of cost-cutting strategies 

on the delay for hospital beds using a queueing model. Additionally, the study was 

used to examine desirable occupancy levels, provide insights on reducing patient LOS 
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and consider the effects of demand variability. The majority of analysis performed by 

Green and Nguyen (2001) relied upon the application of M/M/s queueing models and 

this was justified on the basis of robustness, ease of use and wide application in 

industry. The analysis was conducted in the USA and used data from a surgical and 

obstetrics unit. The authors reported that for obstetric and surgical units of similar size 

and occupancy levels, the probability of delays in admissions were quite different. 

Similarly, combining small surgical units resulted in reductions in the overall number 

of beds, while there was little scope for bed reduction by combining large surgical 

units. Additionally they reported that efforts in attempting to reduce variation in LOS 

were not well rewarded in terms of the reduction in the number of required hospital 

beds when compared to the effects of reducing the ALOS. According to the authors 

the insights provided by the analysis were consistent with what was already known 

about queueing theory from application in other industries. The authors demonstrated 

that the application of queueing theory might provide useful insights for managers 

when considering how resources should be allocated (for example, combining units) 

or how particular efficiencies may be gained. The paper, however, focussed on how 

queueing theory may be applied. There was no reported intent to introduce the use of 

the modelling for decision-making purposes. 

Gorunescu, McClean and Millard (2002) applied queueing theory to describe the 

movement of patients through a hospital department and presented a means of 

optimising the number of beds required in order to meet specified delay. Additionally, 

they considered the need to balance the costs of empty beds against delays in 

admission. Previous research on compartmental flow modelling undertaken by 

McClean and Millard (and others – see Section 2.4 for more details) provided the 
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means of describing the patient stay. Compartmental flow models belong to a class of 

models known as phase-type distributions. A Poisson distribution was used to 

describe the arrival rate of patients and the number of beds was fixed, giving rise to a 

M/PH/c queueing model, where M denotes the Poisson arrivals, PH denotes the 

phase-type distribution of the patient length of stay and c denotes the number of beds 

(or servers in queueing language). The notion of patients being lost to the system due 

to insufficient beds was stated as not necessarily reflecting the observed practice, as 

patients will be admitted into other wards (overflow) or held in the emergency 

department and generally will not be turned away, as might occur in a cinema.  

The base-stock policy, which according to the authors is used in inventory systems to 

determine base stock levels, was applied to determine the number of beds that would 

satisfy the need to balance unmet demand with the costs of unoccupied beds. The 

authors were able to illustrate that as the percentage bed occupancy increased, the 

number of patients turned-away (or forced to wait for a bed, or be transferred 

elsewhere) increased, which was consistent with known experience and other research 

(for example, Bagust, Place and Posnett, 1999). Additionally, they were able to 

illustrate that managers may be indifferent to decisions that suggest the provision of 

hospital bed numbers that will meet reasonable patient turn-away number (say up to 

three per cent of patients) outcomes and cost penalties. The provision of a sufficient 

number of hospital beds to avoid more than three per cent patient turn-away, however, 

was associated with an increased cost penalty. The cost modelling did not include the 

potential for different cost or patient outcomes should patients be admitted, but 

overflowed to a different part of the hospital, even though they recognised that 

overflow had the potential for such undesirable outcomes. As with some of the other 

queueing papers, while the authors suggested an application of queueing theory to aid 
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management decision-making, there was no evidence of the approach having being 

implemented. Furthermore, while the paper provides those managers keen to use the 

approach with sufficient methodological information to do so, it is likely that this is 

well beyond the capabilities of most people without either the development of a 

decision-support tool or the use of consultants to develop the requisite model.  

Queueing Theory - Summary 

While the application of queueing theory to investigate hospital bed management 

decision options appears to be able to offer useful insights to those seeking to improve 

decision-making, the actual uptake of the research appears poor. It is evident from the 

literature that there are numerous challenges to be overcome, including providing the 

appropriate tools for decision-makers to use this form of modelling and the need to 

address the reasons for variation in the modelling approaches illustrated. For example, 

each paper reviewed has applied different assumptions and queueing models, but with 

no reason as to why the given model should be chosen in preference to others already 

illustrated in the literature. 

2.3.4 Simulation 

According to Law and Kelton (1991) simulation is often used to model complex 

systems simply because the mathematical solution that could be developed is in itself 

complex and it is often difficult to develop an analytical solution. 

A simple definition of simulation analysis is that it is undertaken by looking at the 

model performance results generated when the model is tested using a variety of input 

values (Law and Kelton, 1991). There are a variety of simulation approaches 
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including static and dynamic simulation. Given the complexity of health systems, it is 

not surprising that simulation analysis has been applied to the study of hospital bed 

occupancy problems. 

Simulation modelling as a topic heading is not mutually exclusive. For example, 

queueing models and flow models have been combined with simulation analysis. The 

work of El-Darzi, Vasilakis, Chaussalet and Millard (1998) combines simulation, 

queueing and compartmental flow models and is referred to in the section on 

compartmental flow models (Section 2.4). 

Altinel and Ulaş (1996) applied simulation analysis to study the bed requirements for 

the Emergency Surgical Department at the School of Medicine in Istanbul. The 

history of the Department was that it had experienced heavy demand and the 

simulation model was created to assist in the planning of the service to facilitate 

patient flow and determine bed numbers. The hospital system and processes were 

modelled using SLAM-II simulation software. The model was a dynamic simulation 

model. The model was used to test a number of plans for change at the hospital and 

found to be useful in guiding the configuration of the arrangement of the various 

clinics and bed numbers. However, creating a model that represented the hospital’s 

processes was found to be challenging and the lack of easily accessible data was 

found to be problematic.  

Huang (1998) similarly applied dynamic simulation analysis as part of a re-

engineering process to determine the allocation of beds in order to minimise patient 

over-flows at the Plymouth Hospital NHS Trust in the United Kingdom. The goals of 
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this project included achieving a reduction in general medical emergency admissions 

and a reduction in the ALOS by one day in order to fund the remaining goals of the 

project. Huang (1998) acknowledged that simulation was used in preference to 

attempting to solve the complex and difficult mathematics required to describe the 

hospital system. An interesting approach to achieving the required reduction in ALOS 

was to seek the reduction only be targeting those patients with long lengths of stays 

(defined as bed blockers). While a valid approach in terms of achieving LOS 

reductions, the cost savings profiles of bed blockers and the remainder of the patient 

population are not likely to be the same. The author did not state whether the required 

savings were successfully achieved. However, the model was used to test a variety of 

scenarios, particularly around patient over-flow. The author concluded that 

influencing decision-making to achieve better decisions was an appropriate goal for 

modellers. 

The study by Bagust, Place and Posnett (1999) has received much attention as it 

validated a commonly held belief that an occupancy level of 85 per cent was 

appropriate, because higher levels of occupancy were associated with discernible 

levels of risk of bed crises. The study was based upon a discrete-event stochastic 

simulation model that reflected the relation between available bed capacity and 

demand. The statistics used to create the model were derived from the National Health 

Service (United Kingdom), but did not relate to an individual hospital. This represents 

the study’s strength and weakness – it was a hypothetical study designed to stimulate 

debate around hospital bed numbers, but it could not be validated against any 

particular hospital data. The lack of validation means that the particular occupancy 
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levels found to give rise to bed crises may not be relevant to an individual hospital. 

This can become important when such studies influence general policy. 

Isken and Rajagopalan (2002) identified that simulation has a role to play in planning 

inpatient bed capacity, but that it is often difficult to determine the basis for creating 

patient groupings to use in a simulation model. Different patient types, for example 

cardiac patients and general medical patients, require different resource allocations 

(including bed occupancy). In order to develop a model that reflects reality it is 

necessary to create patient categories. However, creating a large number of patient 

categories can introduce too much complexity and make model validation difficult. 

Discrete-event stochastic modelling was used.  They proposed data mining clustering 

techniques such a K-means as a way of determining appropriate patient groupings for 

use in simulation modelling. This paper demonstrated that methodological issues are 

still being considered in relation to hospital bed capacity simulation modelling. 

Lattimer, Brailsford, Turnbull, et al. (2004) described the creation of a system 

dynamics model to describe an emergency and urgent care system within a health 

authority in the United Kingdom. System dynamic models represent a particular 

branch of modelling that stems from the work of J Forrester (1961) in the United 

States. The modelling is different from other forms of simulation modelling in so far 

as it emphasizes feedback behaviour. This study identifies operational issues, such as 

bottlenecks in patient flow as a consequence of high occupancy levels and also 

illustrates the application of a system dynamic model in a health setting. The model 

incorporated aspects beyond the hospital boundary, such as primary care, and thus is 

more indicative of a system. The authors did acknowledge that the provision of data, 
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particularly from primary care providers, limited the development of the model. They 

also acknowledged that the findings were unlikely to apply to other studies. The 

limitations highlight the downsides of simulation models: detailed simulation models 

are unlikely to be generalisable, and creating models of the wider health system (that 

is, greater than the hospital) will be difficult in Australia where much of primary care 

service is provided by small private businesses which increases the difficulty in 

capturing the necessary information required for such model development.      

Cochran and Bharti (2006) applied discrete event simulation and queueing analysis to 

study the effects of increasing patient numbers on bed requirements in an obstetric 

hospital in the United States of America. The authors indicate that the modelling 

exercise was undertaken to help the owner of the hospital “organise the mess” or 

understand the complexity of the obstetric service. They found that using both 

queueing and simulation analysis was beneficial in order to attain the understanding 

that they required around bed utilisation. Data limitations were again identified as a 

problem in developing a simulation model. The study represents another typical 

application of simulation modelling.  

Simulation Modelling - Summary 

In general, the use of simulation modelling appears to enable decision-makers greater 

flexibility in gaining understanding of the system that is being examined and also the 

potential to test changes to the system when compared to the previously discussed 

approaches. However, the application of these models tends to be more operationally 

focussed, often requires significant additional data capture and can require significant 

development time. Additionally, the models are not generalisable. Thus, while there is 
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potential benefit to be gained from such models, as compared to the simple and more 

complex models, the development cost, data requirements and operational focus are 

likely to make such models unattractive for strategic bed management decision-

making. The range of potential model types – for example, discrete-event, system 

dynamics, static – is also likely to hinder method selection by health care service 

managers, who are often not well trained in the possible approaches that can be 

applied to investigating hospital bed issues. 

2.3.5 Flow Models 

Flow models represent those models that aim to capture aspects of patient flow 

through some part of the hospital system. This class of model captures a range of 

work, although the word “flow” may have different meanings to different researchers. 

There is potential overlap with simulation and queueing modelling.  

Pendergast and Vogel (1988) proposed a multistage model of hospital bed 

requirements. The model was designed at a time when excessively long hospital stays 

were suggested to be associated with hospital cost increases. Clinical judgment was 

used to determine the clinically meaningful phases of care. Basic probability theory 

was applied to determine the likelihood of transition from one to another. The authors 

claim that the approach relied upon standard operational research methodology and 

provided a sound basis for planning decisions around hospital beds. The model was 

applied to psychiatric patient data, where three phases of stay were identified, namely 

the acute, extended and long-term intensive stay. Ten possible paths through the 

various phases were identified. Patients could be discharged from any phase. Results 

were also presented in relation to medical and surgical patient data. There were only 
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two phases (acute and extended) for medical and surgical patients. According to the 

authors, the methodology represented a digression from other more complex 

approaches, such as simulation and queueing. The methodology was designed to 

identify patients in bed for non-hospital care, which is important when trying to 

quantify the level of hospital care provided to patients who should have received this 

care elsewhere, but could not (for example, in the case where discharge to another 

facility was delayed by that facility and has nothing to do with hospital decisions). 

The model also incorporated the population figures for the hospital catchment, which 

facilitated bed planning. While the method is relatively simple, it did rely upon the 

collection of specific data and also required the creation of phases based upon clinical 

judgment. Having the phases relate to clinical practice was considered to be the 

strength of the approach, as the authors believed the approach could be implemented 

widely with ease and reflect local clinical and organisational practice.  The model, 

however, relied upon the average length of stay. The average length of stay is usually 

highly skewed and therefore a poor measure (for example, Farmer and Emami, 1990; 

Harrison and Millard, 1991; Mackay and Millard, 1999; Costa et al., 2003). Reliance 

upon the ALOS suggests that the value of the resultant model output will be 

considerably weakened. 

Vissers (1995) considered the consequences of patient flow on the production 

capacity of Dutch hospitals. He found that the current practices of resource allocation 

resulted in peaks and troughs in the workload cycle of departments and in his opinion 

this led to a loss of capacity. Additionally, resource allocation practices resulted in 

departments competing for the same resource at times of peak activity, resulting in 

bottlenecks and thus leading to further inefficiencies. As part of Vissers’s (1995) 
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research a set of five computer models were developed to support resource allocation 

decision-making. The models enabled the visualisation of patient flows and study of 

consequences of different resource allocations decisions. The modelling relied upon 

an industrial production control framework that was modified for the hospital setting. 

The intent of the application of the model was to focus on the control of co-ordination 

mechanisms between design, flow and clinical services to maximise output with the 

available resources. The approach involved the development of a number of linked 

models, with the patient flow component being treated as a low-level (operational) 

component of the overall set of models. Vissers (1995) stated that simplistic models 

were purposely developed to facilitate involvement of hospital staff and optimisation 

of particular model outputs was not undertaken in order to achieve the desired level of 

simplicity. Insufficient detail was provided to determine the methodology employed, 

beyond noting the use of a production control framework. Thus, it is not clear how 

patient flow was modelled and whether reliance was placed upon the ALOS or not. 

According to Vissers (1995) the models were useful in acting as a catalyst for the 

development of resource allocation solutions. While Vissers (1995) suggested that the 

models could be used for both strategic and operational purposes, the results suggest 

the main application was for operational purposes. For example, the models were used 

to redesign surgeon timetables and improve use of x-ray facilities. While the reported 

outcomes appear to support the use of the modelling, the lack of transparency 

surrounding the exact model design was a significant oversight in the paper reducing 

the likelihood of others being able to replicate the approach.  

Sorenson (1996) continued to develop the approach advocated by Pendergast and 

Vogel (1988). Sorenson stated that the specific purpose of the model was to assess the 
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effects of reducing the patient length of stay on the requirement and use of hospital 

beds. It was recommended that the approach be used in preference to more complex 

methods and only replaced by such alternative approaches when the model could not 

be used to analyse a particular bed issue. Unlike the Pendergast and Vogel (1988) 

approach, Sorenson (1996) subjectively determined the number of patient phases and 

the time spent in each phase. Sorenson (1996) created four patient phases of stay: 

same-day, short, extended and long-stay and applied these to medical, surgical and 

gynaecological patient data. For each phase, patients could be discharged home, to 

another institution or die. The focus on discharge destination is useful when 

considering issues relating to bed blockage that arise as a factor external to the 

hospital (for example, a lack of timely access to nursing home beds). While the model 

was easily created and could be implemented in a spreadsheet, a commonly available 

tool, it again relied upon the average length of stay as a key measure in the model, 

even though the length of stay profiles reported in the publication were clearly not 

Gaussian distributions. Thus, the model output will also be flawed. 

Côté and Stein (2000) developed an Erlang-based stochastic model for describing 

patient flow. The authors described how patients could flow from one state, or phase, 

to another and that such flow represents a semi-Markov process. The authors 

developed theoretical justification for the adoption of the Erlang-based model, unlike 

many other authors who merely describe the application of a particular model to solve 

a given problem. Notably, the authors found that the skewed LOS distribution could 

be well described with exponential models. The models were used to study the flow of 

leukaemia and coronary patients. The authors spent considerable time justifying the 

approach. They noted several requirements that would preclude the use of the 
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approach, particularly when patients were found to relapse frequently and return to 

prior phases of treatment, and when the data was exceptionally different to the Erlang 

distribution. However, they stated that the patient data used in their work was 

representative of most patient flow and thus they could not foresee why the approach 

should not be used. They did concede that simulation was an alternative option, but 

the analytical model was superior, particularly in relation to what-if analysis. Given 

the journal the article appeared in, it is highly unlikely that intended audience were 

clinicians, managers or other professionals who may be charged with decision-making 

in the health sector. Thus, while the analysis presented by the authors was rigorous, it 

showed no sign of application and would more than likely be overlooked by applied 

decision-makers searching the literature for improved decision-making tools. This 

work represents an independent and parallel development of the flow model 

approaches fostered by Millard and his colleagues (see section 2.4 for more details), 

with the exception that the work relied upon acute patient data and not geriatric 

patient data, and lacked real world application. One point of divergence between the 

work of Millard and his colleagues and that of Côté and Stein (2000) is that the latter 

authors’ work included backwards patient flow (that is, flow to a previous state).   

Akcali, Côté and Lin (2006) reported that despite the increasing number of services 

that could be accessed in an outpatient setting and a restriction on health care payment 

reimbursements, inpatient activity had grown in the United States. Prior to this 

activity growth, hospitals had undergone an extensive period of consolidation and 

contraction. The authors suggested that the increased inpatient growth and diminished 

resources has made hospital bed planning difficult. They examined how a network 

flow model could be applied to determine optimal hospital bed capacity. The model 
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developed was a large-scale non-linear integer optimisation model designed to 

minimise cost while achieving targeted performance levels. The initial model 

developed was modified to become a binary integer-programming problem in an 

attempt to recognise that decisions about expansion or contraction of hospital beds 

usually relates to a particular a quantum of beds (that is, a ward) as opposed to 

opening one or two extra beds. The model was thus constrained to a single choice of 

the same, more or less beds per period. In the study the quantum of beds that could be 

opened or closed was 25 and the original number of beds opened was 300. A network 

of options was formed by considering the consequences of options over a number of 

periods. The use of flow is different from other “flow” models insofar as that the flow 

is a balance of the number of beds in a previous period plus or minus changes to bed 

capacity in the current period. The model was implemented using C++ programming 

language. There is no evidence of this model being adopted in a practical sense and 

the examples provided appear to be hypothetical. While the authors have identified 

some key issues in relation to the allocation of beds, this model appears to be in the 

early stages of development and further investigation is required before it could be 

adopted in a real decision-making setting. Furthermore, it represents a flow of 

decisions and does not relate to the flow of patients. This provides an illustration of 

how the use of language in relation to bed modelling is not yet well developed. 

Flow Models - Summary 

Flow modelling represents a diverse range of work that shares some similarity insofar 

as a notion of “flow” is being modelled. The meaning assigned to the term flow, 

however, is not yet well defined and varies widely. In some instances there has been 

reliance upon the average length of stay as a measure of patient flow, which is known 
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to be a poor measure, and in other instances the methodology is not clear. Both of 

these factors affect the credibility of this genre of modelling. Furthermore, there 

appears to be little evidence of uptake of this modelling. 

The mathematically tractable flow model proposed by Harrison and Millard (1991) is 

discussed in section 2.4. 

2.3.6 Conclusion regarding the general research 

Research relating to hospital bed management and patient flow has been evolving and 

is increasing in volume and sophistication. The research has occurred in various 

countries, indicating the pervasiveness of hospital bed management problems.  

Although more sophisticated methodologies are continuing to be developed it is note 

worthy that the simple methods have not been abandoned. The continuation of the 

development and promulgation of simplistic methodologies reflects a desire to 

approach the issue of hospital bed management problems in a manner that is easily 

understood by everyone, even though such approaches are typically reliant upon a 

poor measure of patient stay, namely the ALOS. It may also reflect the investment in 

education around health service research topics within the health sector and the need 

to provide “simple political” solutions to hospital bed management problems. The 

continuation of the development of simplistic approaches is unlikely to result in 

improved decision-making, particularly where reliance upon the ALOS occurs. 

However, the use of simplistic models may represent the evolutionary path required in 

order for consideration of more complex approaches to occur.  
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Notably many research efforts resulted in outcomes that only partially addressed the 

needs of decision-makers. The work of Fullerton and Crawford (1999) is perhaps a 

good example, where the presence of seasonal variation was confirmed, but no 

management tool was developed to aid decision-makers. Furthermore, in some 

instances it is not clear that the intended purpose of the reported research was to 

develop a model that was intended for actual use or whether it was to illustrate the use 

of a particular methodology that might be applied. 

The development of divergent approaches may lead to several conclusions, including: 

� There are various views of the hospital bed management problem that require 

different methods of investigation 

� Researchers from different backgrounds (for example, economics, mathematics 

and medicine) have developed different approaches to investigating what are 

essentially the same types of problems 

� There has been a lack of sufficient details provided in some publications (for 

example, Vissers, 1995) to enable other researchers to test given types of models 

advocated in research journals 

� There has been a failure of any one approach (or even a small number of 

approaches) to gain traction as a solution (or solutions) to the hospital bed 

management problem(s) 

� The research field is not yet mature as a topic in its own right and thus results in a 

the application of a variety of research approaches, and  

� The differences in the provision of care between different countries or regions and 

the dynamic nature of the health systems means that new ways of investigating 

hospital bed management issues will continue to evolve. 
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Clearly, the above conclusions are not mutually exclusive and the current state of 

hospital bed management research is most likely a mixture of the above.  

Griffith and Wellman (1979) reviewed bed management recommendations stemming 

from six studies of hospitals conducted in Michigan (USA) during 1975 and found 

that the forecast bed requirements were inaccurate. Fone et al. (2003) have found that 

modelling has not been evaluated in the health sector. The absence of reliable 

forecasting and evaluation of modelling efforts also will foster an environment where 

divergent research methodologies occur. 

The issue of poor forecasting also may relate to the problem of over-fitting data when 

models are developed. As an issue, the over-fitting of data and the impact on model 

generalisability and forecasting have been absent in the literature that has been 

reviewed. For example, there has been no representation that models are not 

generalisable when the data is over-fitted. Indeed the transferability of models on the 

basis of one-off studies is perhaps questionable practice anyway. This aspect of 

modelling is discussed in more detail in Chapter 4.

The flow modelling approach as originally proposed by Harrison and Millard (1991) 

offered a way forward in the approach to tackling hospital bed management issues at 

the strategic level. The resultant model provided a closer fit to the length of stay 

distribution, thereby improving upon models that were reliant upon the ALOS and 

also provided output that is meaningful in terms of management decision-making. The 

compartmental flow modelling research literature is now discussed.  
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2.4 The Harrison and Millard compartmental flow model  

In Chapter 1 (see Section 1.6), the seminal work of Harrison and Millard (1991), 

which highlighted the potential for compartmental flow models of hospital bed 

occupancy for strategic decision-making, was introduced.   

As previously mentioned, the compartmental model describes the flow of something, 

such as patients, through a system, where the system is comprised of a finite number 

of homogeneous subsystems known as compartments (Godfrey, 1983). The wide 

application of compartmental flow models (Godfrey, 1983) as modelling solutions in 

diverse areas such as biomedicine, pharmacokinetics and ecology indicates a degree 

of robustness as a solution for analogous problems in different fields. Indeed, 

Harrison and Millard (1991) drew an analogy between the flow patients through 

hospital beds to pharmacokinetics in their work. 

2.4.1 The Subsequent Research Effort 

Since the publication of the 1991 article by Harrison and Millard, various researchers 

have continued the investigation on various aspects of compartmental flow modelling. 

It is informative to consider this work as it shows the course of development over a 

period of time, something that is not achieved when methods are only published as 

one-off pieces of work. 

As the key clinical proponent of using compartmental flow models for improving 

decision-making, Millard has played an ongoing role in the research. He has 
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maintained an electronic record of publications stemming from the original work by 

Harrison and himself. Millard provided me with an electronic copy of this collection 

of references, which I reviewed. As a consequence of my review, I omitted a number 

of references that were not directly related to the field of research and also included 

several papers that were absent from Millard’s list. The references covered the period 

1991 to 2005 (inclusive). The published material included papers published in 

journals, letters, editorials and conference proceedings. It did not include book 

chapters, working papers, reports, conference or other presentations, or dissertations. 

Additionally, it did not include material published in “Nosokinetic News”, an 

informal newsletter established by Millard in 2004. It is possible that the reviewed 

collection is not exhaustive, but it is expected that most works have been captured in 

this process. 

I developed a simple classification system in order that a number of facets pertaining 

to the research could be highlighted. Given that much of the work has stemmed from 

data relating to a geriatric service from England and the focus of my research related 

to the application of the modelling approach to the acute care hospital sector, I chose 

to classify the research efforts based upon data type. Four categories were used: 

� Older persons, covering research using data from a geriatric health service and 

also data relating to aged care services 

� Acute care, covering research using data from acute care hospitals 

� Psychiatric care, covering research using data from a psychiatric hospital service, 

and 
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� Not related, covering research where the data type was not relevant and this 

mainly related to theoretical papers.  

It is acknowledged that the classification is simplistic and that other classification 

systems could be developed. However, the approach was developed to enable the 

reporting of some simple statistics and more complex approaches were not required 

for this task. 

The list of publications stemming from Harrison and Millard’s (1991) research is 

shown in Table 3.
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Figure 7 shows the number of publications achieved each year since 1991.  

  

While publication has continued each year since the publication by Harrison and 

Millard (1991), it is not until 1998 that the growth in publications becomes more 

marked. The most publications achieved in any one year were 13 during 2001, 

highlighting that this represents a niche area of research. 

Not surprisingly, journal publications were found to have dominated the mix of 

publication types, as shown in Figure 8.

Figure7: The cumulative growth in the number of publications per year since 1991 showed a period of 
marked increased from 1998.  
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The introduction of Nosokinetic News, an informal newsletter created by Millard 

during 2004, may have helped to increase the frequency of information delivery about 

patient flow modelling to people.  

  

It is evident that much of the research to date has been based upon data relating to 

older persons as shown in Figure 9. 

Media Destination for Flow Modelling Publication

Journal Article
92%

Letter
3%

Editorial
1%

Conference Proceedings
4%

Number of publications = 73 

Figure 8: Journal publications have been the dominant form of disseminating written information about 
the modelling approach to others. 
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The bias in publications relating to older people is likely to relate to access to data. 

Millard, a geriatrician, has been pivotal in this research and has provided much of the 

data. While this has facilitated research efforts, it is necessary to reduce the bias if this 

research is going to be taken up in other sectors of the health care system.  

Although publication was spread over 37 journals, multiple publication was achieved 

in only 10 journals, with 25 per cent of the publications occurring in the Health Care 

Management Science (a journal). While the Health Care Management Science is an 

appropriate source for dissemination of this research, it is also evident that publication 

has occurred in some journals that would not be considered mainstream. 

Mix of Publication Types Based Upon Service Type

acute care
14%

older persons
67%

psychiatry
1%service type 

not relevant
9%

Number of publications = 73 

Figure 9: The research effort has been biased towards services relating to aged care. 
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The 73 papers involved 23 different principal authors, although five principal authors 

have contributed 55 per cent of the publications. It is evident that Millard and 

McClean have driven much of the publication effort. More than one quarter of 

principal authors have only published once as principal or contributing author, thus 

highlighting the fact the topic area still does not have ongoing buy-in by even those 

sufficiently interested to have published in the area. This is also evident by the fact 

that almost half of the 43 authors involved in the 73 publications have only 

contributed once. 

2.4.2 A more in-depth look at the compartmental flow model 

The compartmental flow model put forward by Harrison and Millard (1991) was 

introduced in section 1.6 of Chapter 1. In this section, the Harrison and Millard 

model, and subsequent developments will be examined more closely. 

As previously illustrated in Chapter 1 (see Figure 4) the hospital bed compartmental 

flow model can be represented diagrammatically. It is useful to repeat the diagram 

here as shown in the Figure 10. 



 
 
 
 

 
NOTE:  This figure is included on page 79 of the print copy of the 
thesis held in the University of Adelaide Library. 
 

 
 
 
 
 
    
Figure 10: A diagrammatic representation of the flow of patients through compartments. 
The compartments may be virtual or real - the patients may not actually change location 
within the physical hospital (Mackay and Lee, 2005). 
 
 
In creating their model, Harrison and Millard (1991) relied upon a number of 

assumptions, which were: 

 

1.  That the discharge and transfer rates (measured in patients/day) were 

 proportional to the number of patients present in the compartment and these 

 rates do not change with time. It should be noted that this also necessitates the 

 assumption that the patient casemix also remains constant in order to achieve 

 this explicitly stated first assumption. Depending on the period of analysis (for 

 example, a year) this latter assumption may be approximately true. 

 

2.  That discharge and transfer rates are independent of the length of stay, thus 

 given this assumption and assumption 1, the discharge rate of short-stay 

 patients is constant, the discharge rate of long-stay patients is constant and the

 conversion rate from short to long-stay patient is also constant. It is not

 expected that this assumption is necessarily totally valid, but it does result in a

 simplified model. 
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3. That the system has reached steady state with respect to total occupancy. This 

appears to be a reasonable assumption given that hospitals tend to be run at 

high levels of occupancy. Clearly, to achieve this state, a hospital would have 

to be operated for some period of time and not have just commenced 

operations. The period of “warm-up” will depend upon the nature of the 

hospital, with an acute care hospital having a much shorter warm-up period 

prior to stability than a long-stay geriatric hospital. 

Using midnight patient census data (that is, counting the number of patients who were 

in bed and also recording their length of stay since admission) and relying on these 

assumptions, Harrison and Millard (1991) found that a mixed exponential model fitted 

the data well, which can be represented as: 

 Y = Ae-bx + Ce-dx, where 

 A = the number of beds in the short-stay compartment 

 b = the flow rate through the short-stay compartment 

 C = the number of beds in the long-stay compartment, and 

 d = the flow rate through the long-stay compartment. 

The parameters, A, b, C and d, were equated to the theoretical equation used to 

describe the short and long-stay compartments by Harrison and Millard (1991), such 

that: 

rv
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 where 

 Ao = admission rate per day 

 k = fraction of patients who would be long-stay if identified on admission 

 v = conversion rate between compartments 

 r = release rate per bed for short-stay patients 

The importance of doing this becomes clear when seeking to generate information 

that will be relevant to decision-making. For example, the half-life and expected 

length of stay of short-stay patients is given by (respectively): 

 Half lifeshort-stay
)1ln(

)2/1ln(

rv −−
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 Expected length of stayshort-stay 
)(

1

rv +
=   

(The parameters were defined for the previous equations.) 

This representation of the data can be used to generate a range of useful information 

about bed occupancy (see Appendix II for the performance statistics formulae). The 

derivation of the formula is more fully explored in the original paper by Harrison and 

Millard (1991), and is also summarised by Goddard and Mills (2003). The 

mathematics of compartmental models is not a new subject and for those seeking a 

fuller description of the mathematics and application of these models I refer you to 

Godfrey (1983), Manton, Singer, and Suzman (1993), or Matis and Kiffe (2000). 
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Goddard and Mills (2003) found it interesting that the resultant fit was excellent 

despite the fact that the model relied upon simplistic assumptions. Certainly, the issue 

of whether the assumptions are reasonable is a valid one. For example, the assumption 

that the system has reached a steady state with respect to total occupancy could be 

argued to be valid on the basis that the tendency to operate hospitals at high levels of 

occupancy and that the data was obtained from hospitals that had been in operation 

for many years.  A counter argument can be made, however, as evidence exists that 

hospital systems are generally unstable and are challenged by differing workload 

demands at different times of the week or year (St George, 1988; Mackay and 

Gorunescu, 2001; MacStravic, 2001). Millard and his colleagues also acknowledged 

system instability in later work (for example, Taylor, McClean and Millard, 1996; 

Harrison, 2001; Harrison, Shafer and Mackay, 2005).

The issue of stability has implications for the methodology used to achieve a model. 

From a methodological point of view, the reliance upon a census of patient occupancy 

may be problematic. If the assumption that a hospital is in a steady state were to hold 

true, then basing the model on a single census should result in essentially the same 

model as if all the data were used. As previously stated, it is unlikely that the system 

will be stable, or at least stable enough to rely upon the use of a single census, as the 

data source for model development. Research relating to amount of data needed for 

model development is presented in Chapter 5.   

Millard and Harrison (1991) illustrated the application of the model in relation to a 

number of hypothetical policy decisions, including the implications of increasing the 

bed stock to the geriatric service. While in general it is evident that the model can be 
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used to support strategic decision-making, not all the conclusions drawn by Millard 

and Harrison would appear to be reasonable. In relation to the increase in bed stock it 

was noted that a 10 per cent increase in beds would necessitate a 10 per cent increase 

in staff. Generally staffing, particularly that of nursing, is based upon some kind of 

agreed formula that stipulates the number of patients per nurse. This typically results 

in a step function and thus while an increase in beds may occur, it may or may not 

lead to a change in the number of nurses (it will depend upon the number of beds and 

the staffing formula). 

Others joined Harrison and Millard in their work, notably McClean, as shown in 

Table 3. Harrison, McClean and Millard continued publishing research that 

promulgated the notion of compartmental models of occupancy being used as a means 

of looking at resource implications concerning hospital beds.  

Marshall, Vasilakis and El-Darzi (2005) provided a review of the literature relating to 

what they describe as being length of stay-based patient flow models. These authors 

have been involved with Millard and McClean (and also myself). The review 

concentrated on the efforts of research stemming from the original Harrison and 

Millard (1991) paper. Apart from commenting upon the compartmental flow model, 

Marshall, Vasilakis and El-Darzi (2005) noted that there had been three other main 

areas of development relating to modelling patient flow, namely the introduction of 

stochastic models; the introduction of phase-type models; and the use of queueing 

models. While brief examples of each of these types of models will be presented it is 

not the intention to replicate the work of Marshall, Vasilakis and El-Darzi (2005) who 

provide a more thorough review of these developments. 
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The work by Harrison and Millard (1991) was based upon a deterministic approach. 

Deterministic models make no account of variation. Stochastic models, however, do 

take account of variation. The Markov-chain models represent a class of models that 

capture variation. Harrison and Millard (1991) noted that the assumption concerning 

the independence of the discharge and transfer rates from the length of stay was also 

an assumption that could be applied for Markov chain model development. They 

noted that the focus of the Markov model, however, would relate to patient transition 

probabilities and not the length of stay.  

Irvine, McClean and Millard (1994) developed stochastic models to describe the 

movement of patients through a geriatric hospital using a two-stage continuous-time 

Markov model. As with the Harrison and Millard (1991) model, patients move 

through compartments or stages, until they are discharged or die. Admissions were 

modelled in two ways, namely as replacements for discharged patients (including 

death) or as a Poisson stream.  Irvine, McClean and Millard (1994) stated that this 

method had the advantage of taking into account different types of patients and 

introducing variability, thus making it calculate not only the means of numbers of 

patients requiring hospital care, but also the variances. Other work on Markov models 

has also been undertaken, for example, using a Markov reward model to estimate 

spend-down costs for a geriatric department (McClean, McAlea and Millard, 1998) 

and using continuous-time Markov models to describe geriatric patient behaviour 

(Taylor, McClean and Millard, 1998). 
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Phase-type models are a generalisation of the Erlang distribution (Marshall, Vaslikas 

and El-Darzi, 2005), both of which are Markovian models. The phase type model 

enables movement between the phases (or states, or the compartments) and the 

absorption state (that is, in the case of bed modelling, death or discharge) at any point, 

whereas movement between phases or states is sequential for the Erlang models.  

While seemingly useful, the phase-type model is difficult to solve and the Coxian 

phase-type model was introduced (Neuts, 1981). In the Coxian phase-type model, the 

transition between phases or states is ordered, although progression to the absorption 

state can still occur at any time.  Faddy and McClean (1999) used the Coxian phase-

type model to analyse geriatric patient length of stay data. According to Marshall, 

Vasilikas and El-Darzi (2005) such models are mathematically sound, account for the 

long tail of the length of stay profile and still lead to the notion of compartments, 

which can be understood by clinicians. 

The Coxian phase-type model has been augmented with the inclusion of Bayesian 

belief networks  (Marshall, McClean, Shapcott, Hastie and Millard, 2001; Marshall, 

McClean, Shapcott and Millard, 2002; Marshall and McClean, 2003; Marshall and 

McClean, 2004). The Bayesian belief networks were used to condition the length of 

stay models by taking into account various patient factors, including age and gender, 

thus, giving rise to the potential to forecast patient length of stay in advance, which 

may be useful for managing costs (Marshall, McClean, Shapcott and Millard, 2002). 

Such an approach, according to Marshall, Vasilakis and El-Darzi (2005) has the 

potential to become a useful explanatory tool as it can provide insights into the 

interactions of variables (including social variables) that can affect length of stay, but 



86 

due to the additional complexity of the approach, additional development and testing 

is required compared to simpler methods. 

Marshall, Vasilakis and El-Darzi (2005) suggested compartmental flow model output 

could be augmented with queueing model output. The output from queueing models 

can be used to analyse different aspects of bed problems, such as methods to 

overcome bottlenecks in the system. According to Marshall, Vasilakis and El-Darzi 

(2005) discrete event simulation (DES) is used to implement such models, because it 

offers flexibility. 

El-Darzi, Vasilakis, Chaussalet and Millard (1998) developed a simulation modelling 

approach to evaluate length of stay, occupancy, emptiness and bed blocking that 

incorporated three compartments. One of the findings from this work was the 

observation that a long warm-up time was required to achieve stabilisation or steady 

state. The implication of this finding was that it suggested that any change to the 

system (that is, changes in patient length of stay or increasing beds) would require a 

long period before a new steady state was achieved. This finding, however, was not 

generalisable to the acute care sector, as the research was based upon the study of a 

geriatric service with very long-stay patients.  

Vasilakis and El-Darzi (2001) reported on the use of a queueing system and a discrete 

event simulation model to analyse the winter bed crises, which appears in British 

hospitals every year, two or three weeks after Christmas.  As previously described in 

the section 2.3.3, Gorunescu, McClean and Millard (2002) have also applied queueing 
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theory to describe the movement of patients through a hospital department and 

presented a means of optimising the number of beds required in order to meet 

specified delay.  

Marshall, Vasilakis and El-Darzi (2005) suggest that the incorporation of queueing 

methodologies into the study of patient length of stay confers some advantages over 

using compartmental flow models alone, including the ability to incorporate variation 

and to analyse the effects of bed constraints and blockages. Although technical 

solutions to simplify the generation of output have been achieved (Marshall, Vasilakis 

and El-Darzi (2005), it would appear that the approach is unlikely to be adopted as a 

routine management tool in its current form. 

2.4.3 Conclusion regarding the compartmental flow research 

Marshall, Vasilakis and El-Darzi (2005) suggest that building on the success of 

current models and currently evolving hybrid approaches is where the future of 

modelling patient flow and hospital bed type issues lay, and that interdisciplinary 

collaboration will be required to successfully work in this problem arena. The 

weakness with their forecast, as identified by Harrison (2001), is that to date there has 

been no apparent uptake of these modelling tools. According to Goddard and Mills 

(2003) the real value of the work of Millard and his colleagues has been to provide a 

general approach to modelling patient flows in hospitals. Furthermore, given that the 

models fit the data well and appear to align with intuition, Goddard and Mills (2003) 

suggest that there is potential to improve understanding among decision-makers of 

how compartments within a hospital interact, thereby providing a mechanism to drive 

change. Based upon my experience in the health sector, it would seem that the 
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necessary developments required for these tools to be implemented regularly on a 

wide scale are: expansion of model development to the acute care sector, which is a 

gap in the literature (and which is in part achieved by this thesis); education of 

management about how modelling can help improve decision-making (in appropriate 

forums such as under-graduate and post-graduate training courses); education of 

management that a variety of modelling approaches will be required to answer 

different questions relating to the health system (in appropriate forums); and the 

adoption of the modelling by a champion (ideally a head of a significant part of the 

health sector, such as a division within a large hospital) who will help “sell” the 

solution to others. 

Given the need to address the use of this modelling in the acute care sector, and 

adopting Goddard and Mills’ (2003) notion that the original Harrison and Millard 

(1991) work provides a general platform for the development of flow modelling, the 

need to explore phase type and queueing models as part of this work cannot be 

justified. Rather it is appropriate the issues of whether the compartmental flow model 

can be used in the acute care sector be examined, together with consideration of issues 

pertaining to the number of data and model selection. The issue of variation is 

important and is also addressed in this research.  
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2.5 Other sources of literature  

In this section comment is provided on the number of specific books relating to 

hospital bed management (or patient flow) and the grey literature base. 

2.5.1 Bed management texts 

There is little value in commenting upon the material in the books, suffice to say that 

much of the material could be obtained by combing the journal publications. Books, 

however, can be an economical way in which to access a range of ideas for which 

there is usually a range of published evidence, or at least an interpretation of the 

material presented in journals. 

The numbers of books written that specifically address the topic of hospital bed 

management or patient flow and address modelling in any depth is limited. However, 

books on this topic have been published since at least 1982 when Yates wrote 

Hospital beds: a problem for diagnosis and management. Most recently, Hall (2006) 

edited the tome Patient Flow: Reducing Delay in Healthcare Delivery, which presents 

a collection of papers that cover managing demand, workforce issues, quality and 

safety issues, forecasting, logistics in relation to a full range of health service sectors 

(that is, primary care through to the acute care hospital sector).  In between this 

period, other texts have also been produced, including those by Millard and McClean 

(1994 and 1996), and Vissers (2005). Of these five texts, only Millard and McClean 

(1994), and Yates (1982) can be considered as dealing exclusively with modelling and 

length of stay or occupancy. The other three texts incorporate topics that affect patient 

flow, such as personnel, waiting lists, outpatients and logistics (Hall, 2006; Vissers, 

2005), and surgical audit (Millard and McClean, 1996). The inclusion of wider topic 
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material in these texts is perhaps indicative of the connectedness of the wider health 

system and the effects on patient flow.  

The motivation for publishing these texts appears to be consistent. Millard and 

McClean (1994 and 1996) highlighted that their books stemmed from a passion for 

seeing the introduction of a scientific basis for the planning of health services, 

particularly as the population ages. In the book by Vissers and Beech (2005), the need 

for increased application of health operations management is identified, while in the 

book edited by Hall (2006) it is stated that the intent of the book is to illustrate the 

mechanisms for improving patient flow that are necessary so that medical practice can 

keep pace with medical science.  

Other forms of texts do exist, but usually fall into one of two categories, namely 

belonging to the health services planning genre (for example, Schulz and Johnson, 

1990; Mohan, 2002), or belonging to the more general operational research technique 

genre (for example, Ozcan, 2005). The health services planning genre, in my 

experience, tend to focus on economic policy, workforce issues, capital issues and 

strategic planning. Modelling is usually not a significant feature of such texts, and 

when present, simple modelling techniques are presented or discussion is limited to 

the acknowledgment that modelling exists, but details about its use and potential to 

aid decision-making are omitted. Conversely, the operational research texts, such as 

Ozcan’s book (2005), provide significant detail about various methodologies that can 

be applied to address a range of problems from scheduling through to capacity 

planning. While informative, and extensive discussion about modelling may be 

present, such texts do not focus on any one problem or technique and issues 
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pertaining to flaws with the LOS are not usually mentioned, and discussion about 

techniques such as compartmental flow models are rare.        

The publishing of texts, however, does not guarantee the widespread adoption of 

methodologies, as evidenced by the work of Harrison and Millard (1991) and their 

colleagues (as discussed earlier), and also that of Yates (1982). 

Given the investment in hospitals, and other forms of care in which accommodation is 

also provided (for example, aged care organisations), it is, however, surprising that 

few texts exist that deal with hospital bed management and modelling have been 

written. When compared to many other topics where significant investment has been 

and will continue to be made, and where problems in managing the system occur, it 

might be expected that many more texts on the topic would be found. 

Although these texts present interesting material, reliance upon journal articles has 

been preferred for this research, because of the greater number of methods that can be 

discovered and the better timeliness of the material published in journals. Reference 

to these books has been included as a matter of completeness. 

2.5.2 Grey information 

Apart from the sources of literature already discussed, grey or miscellaneous sources 

of information regarding modelling and bed management or patient flow do exist. 

These can be broken down into two categories: research dissertations and reports. 
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Research dissertations do contain reviews of the literature. However, discovery and 

access to such work is problematic. During my research I have seen two theses that 

relate to hospital bed modelling – one by Millard (1989) and the other by Vasilakis 

(2003). These theses, however, have not been used to inform this research, due to 

various factors, such as issues of access, but most importantly the differing focus of 

the research. 

Health departments (or the equivalent establishments) and hospitals frequently 

commission reports and reviews on a range of topics, including bed management, as 

evidenced by the work of Dwyer and Jackson (2001). This work may be undertaken 

within the organisation or be undertaken by external consultants (for example, Dwyer 

and Jackson, 2001). Often, while the outcome of such work may be visible, the actual 

decision-making, modelling and other aspects behind the report or review may not be 

available to the public (for example, the determination of the increase in beds referred 

to in the Generational Health Review (2003) is not supported by published 

methodology). The reasons for this are many and varied, but often include the need 

for political sensitivity. 

Thus, the miscellaneous sources of literature have not played a significant role in 

providing methodological related information for this research.   

2.5.3 Conclusions regarding the other literature 

Non-journal based publications have not been a significant source of information for 

this research.  
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2.6 Overall conclusion  

Publications in scholarly journals have been the primary source of information 

regarding modelling approaches used in relation to hospital bed management 

decision-making for this research. 

It is evident that numerous methods have been proposed for investigating and 

improving decision-making pertaining to hospital bed management. Some of these 

methodologies relate to operational decision-making, while others relate to strategic 

decision-making. It is apparent that no single approach has gained sufficient traction 

with end users such that novel research regarding hospital bed modelling has ceased. 

While it should not be expected that a single methodology would be able to provide 

management with answers to all of their questions, it may be expected that the 

development of a number of modelling approaches spanning the operational and 

strategic decision-making continuum will be required. What may be surprising to 

some is that methods reliant upon flawed measures and overly simplistic models 

continue to be promulgated. This suggests that the phase of development in hospital 

bed modelling has not yet reached maturity.  

From a strategic decision-making perspective, the compartmental flow models appear 

to confer a number of advantages over the other categories of models: 

• It is not too simplistic or too complex 

• A body of evidence has been developing that supports the approach, albeit the 

evidence has largely related to a geriatric service based in the United Kingdom 
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• The approach has been shown to have the ability to provide meaningful output 

in a timely fashion, and 

• It is not overly data or other resource hungry. 

While the body of research relating to compartmental flow models used in relation to 

hospital bed management is continuing to grow, there is still significant scope for 

research activity. For example, the issues of model complexity (technical), variation 

across the year (technical) and the use of compartmental flow models in the acute 

hospital sector (scope of application) are yet to be fully explored. The research 

presented in this thesis contributes to the growing of the body of knowledge regarding 

compartmental flow models and hospital bed management.  

In the next chapter examples of how high-level information, such as the ALOS, has 

been used is explored. Such information has historically been used to influence or 

base future decisions about hospital service, particularly in relation to costs and 

hospital bed use. In doing so, the flaws in using such information can be 

demonstrated. 
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Chapter 3 

Setting the Scene  

In this chapter I provide contextual detail about the two hospitals from which the data 

for this research has been provided. In doing so, recent trends in hospital activity and 

bed occupancy are examined using commonly available measures, such as the average 

length of stay, and simple methods, such as trend analysis, that have historically been 

used to influence or base future decisions about hospital service, particularly in 

relation to costs and hospital bed use. Comments highlighting the limitations of these 

measures and approaches are also provided. The chapter provides further support for 

the use of the Harrison and Millard (1991) compartmental flow model. The chapter 

has the following structure: 

3.1 Introduction ................................................................................................. 96 
3.2 Flinders Medical Centre............................................................................... 97 
3.2.1 Background Information ........................................................................... 97 
3.2.2 Methodology............................................................................................. 99 
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3.3 Internal Medicine Department, HealthCare Otago.......................................106 
3.3.1 Background Information ..........................................................................106 
3.3.2 Methodology............................................................................................108 
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3.4.1 The Hospital Services ..............................................................................119 
3.4.2 Methods of Analysis ................................................................................123 
3.4.3 Problems with the ALOS .........................................................................127 
3.4.4 Simple Alternatives to the ALOS...........................................................1299 
3.5 Conclusion..................................................................................................131 
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3.1 Introduction 

The purpose of this chapter is to provide some contextual information, including 

information relating to the average length of stay and hospital bed occupancy trends, 

relating to the two hospitals from which the data for this research has been provided. 

Reliance is placed upon the simple measures and methods that have historically been 

used to influence or base future strategic decisions about hospital service, particularly 

in relation to costs and hospital bed use. The limitations of using these simple 

measures and methods in relation to strategic decision-making are also documented.  

The data for this research has been drawn from two primary sources: 

� The Flinders Medical Centre, a tertiary acute care teaching hospital based in South 

Australia, and 

� The Internal Medicine Department at HealthCare Otago, New Zealand. 

The background information about each hospital, the methods of analysis used and 

the results are presented separately. A single discussion and conclusion about the 

various methodologies and findings is then presented. 

Some of the information relating to the Internal Medicine Department at HealthCare 

Otago was presented at the Fourth IMA International Conference on Quantitative 

Modelling in the Management of Healthcare (Mackay, Lee, Rae and Millard, 2004). 
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3.2 Flinders Medical Centre 

3.2.1 Background Information 

All three tiers of the Australian government – commonwealth, state and local 

governments – have some responsibility for the delivery of public health care services 

(Duckett, 2004). The federal or commonwealth government operates the Medical 

Benefits Schedule (MBS) and Pharmaceutical Benefits Schedule (PBS) which part 

fund (co-pay) services provided by private medical practitioners and subsidize 

therapeutic drug prescriptions, respectively. These are significant schemes. The 

federal government also provides incentive for individuals to become members of 

private insurance funds to reduce the cost of insurance to individuals in order that 

greater use of the private health sector occurs. The funding of the veterans’ health 

service is another significant contribution to the provision of health services. 

The state governments are responsible for the operation of public hospitals, as well as 

a range of other functions, such as community health services. The federal 

government contributes approximately 42 per cent of the funds required by the states 

for the operation of public hospitals (AIHW, 2006).

Local governments have various roles in the health sector including the provision of 

health inspectors and the provision of vaccination clinics.  

As previously indicated, a private health sector exists. The private health sector 

provides a range of services, including hospital-based services that are funded by 

individuals, health insurance funds or both.  
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The Flinders Medical Centre is a tertiary level public teaching hospital and was 

established in 1976 (Flinders Medical Centre, 2006). It is located in the metropolitan 

area of South Australia. The hospital was the first medical school and teaching 

hospital in Australia to be planned and built as one institution. It services a local 

catchment area in the southern metropolitan area, as well as providing services for 

people across the state and also beyond the state boundaries (for example, Darwin in 

the Northern Territory). 

The Flinders Medical Centre currently operates with approximately 430 beds 

(Flinders Medical Centre, 2006), although when opened the number of beds was 

greater. The reductions have occurred for a variety of reasons, including the 

expansion of same-day admission services. When this research was commenced the 

hospital was operating with approximately 430 available beds, although this 

subsequently decreased to 410 during 1999-00. A private 130-bed hospital (Flinders 

Private Hospital) is co-located on the campus and staff from the public hospital are 

able to provide services in the private hospital. 

The hospital provides a full range of services, including paediatric, obstetric, mental 

health and surgical and medical services. It is also a major trauma centre and provides 

an around the clock emergency retrieval service. It is the only major public teaching 

hospital in South Australia to provide services for patients of all ages. 

The hospital has a staff of approximately 3,300 and is supported by the largest 

volunteer service in a public hospital in South Australia (Flinders Medical Centre, 

2006). 
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Approximately 80 per cent of inpatients are emergency patients at the hospital. The 

high proportion of emergency inpatients reduces the hospital’s flexibility in relation to 

bed management options. Hospitals with a lower proportion of emergency inpatients 

can use more elective inpatient beds (relative to Flinders) to cope with periods of high 

emergency patient demand. Flinders Medical Centre also provides many services 

(particularly elective services) on a same-day basis. 

The hospital had identified a need for additional funding for more beds to alleviate 

difficulties in dealing with activity levels. The additional funding would have also 

potentially ameliorated the financial pressures being experienced by the hospital, 

which were in part attributed to activity levels. Prior to commencing this research I 

was involved in a project that considered the request for additional beds. As indicated 

in the first chapter, this work resulted in the identification for the need for improved 

strategic decision-making tools for hospital bed planning. 

3.2.2 Methodology 

Analysis of data relating to patient numbers and bed occupancy was conducted at two 

levels, namely: 

� Examination of trends based upon high level summary statistics about the hospital 

that were publicly reported (Flinders Medical Centre, 1995, 1996, 1997, 1998, 

1999, 2000, 2001 and 2002), such as the ALOS and available bed numbers, and 

� Bed occupancy data relating specifically to the medical division was examined. 

The data was provided by the Hospital for this research. 
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The high-level summary data was analysed using scatterplots, which are the most 

popular method for examining bivariate relationships (Hair, Anderson, Tatham and 

Black, 1995). This method, originally developed by Galton, can suggest the nature of 

a relationship between variables, which is often linear, and provides a reasonably 

good account of many relationships found in health research (Kirk, 1990). 

The daily bed occupancy data was analysed over time. This is a simple trend analysis 

method designed to highlight the variation in occupancy that occurs over a period of 

time (for example, a year) and provides a means to visualise trends (Kohler, 1984).   

3.2.3 Results 

Summary statistics from the annual reports were used to compile trends about bed 

occupancy for the period of the 1994-95 financial year to 2001-02 financial year 

(Flinders Medical Centre, 1995, 1996, 1997, 1998, 1999, 2000, 2001 and 2002). 

These summary statistics are detailed in Table 4. 
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Table 4: Summary statistics relating to the Flinders Medical Centre. While trends are evident, such as 
the increase in same-day admissions, these are often better visualised. 

It is evident from Table 4 that during the period 1994-95 to 2001-02, the following 

events occurred: 

� The number of inpatient and same-day patient admissions increased. Admissions, 

however, peaked during 1998-99. 

� The proportion of patients that were same-day patients increased. 

� The ALOS for inpatients increased, and 

� The estimated average daily occupancy increased.  

Additionally, emergency patients represented more than 40 per cent of the patient 

discharges and medical patients represented the majority of patients.   

The increase in estimated average occupancy increased at the same time as the 

proportion of same-day patients increased as shown in Figure 11. 

1994-95 1995-96 1996-97 1997-98 1998-99 1999-00 2000-01 2001-02
Admissions 40,942 39,580 40,832 43,938 46,645 45,603 44,780 44,976
Percentage same-day 38% 43% 45% 45% 46% 48% 51% 50%
Inpatient admissions (approximate) 25,220 22,640 22,417 24,166 25,048 23,622 21,942 22,578

Emergency (patient discharges) n/a n/a n/a 46% 44% 42% 42% 43%
Medical (patient discharges) n/a n/a n/a 75% 74% 65% 65% 66%

Average length of stay (excluding same day) 5.56 5.74 5.77 5.74 5.51 5.51 6.05 6.01
Average daily estimated occupied bed days 
(excluding same-day)

384 355 354 380 378 356 364 372

Estimated percentage occupancy of average daily 
available beds (excluding same-day patients)

83% 84% 83% 87% 87% 87% 88% 89%

Average Daily Available Beds 464.6 424.7 428.5 436.4 432.5 410.3 414.9 418.6

Financial Year
Activity indicator
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Figure 11: Scatterplot of estimated average inpatient occupancy and the proportion of same-day 
patients. The relationship between these two variables appears to be reasonably well described by a 
linear relationship, with approximately 65 per cent of the variance in occupancy explained by changes 
in the proportion of same-day patients. 

A scatterplot of the average number of daily available beds and the percentage of 

same-day admissions is shown in Figure 12. 

Figure 12: A scatterplot of the average number of bed and the proportion of same-day patients. A linear 
relationship appears to exist between the two variables, with the changes in the proportion of same-day 
patients explaining approximately 75 per cent of the variation in the average number of available beds. 
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Given the relationship between the average occupancy and the proportion of same-

day patients it was not surprising that a relationship between the average number of 

available beds and the proportion of same-day patients also existed, as bed availability 

determines the resultant level of occupancy. 

The relationship between the ALOS (excluding same-day patients) and inpatient 

admissions was examined and this is illustrated in Figure 13. 

Figure 13: A scatterplot of the ALOS (inpatients) and estimated inpatient admissions. A linear 
relationship was found to explain the relationship, with a decrease in ALOS generally being associated 
with an increase in patient throughput. 

The remainder of the analysis is restricted to the data that will be used for the 

modelling undertaken as part of this research. The data relate to the Medical Division 

of the Hospital and excludes elective same-day patients, as the business processes 

associated with the management of these patients is known to be different and thus 
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should not be included the modelling. Separate modelling of the elective same-day 

patients could occur, but was not undertaken as part of this research. 

The length of stay statistics for patients discharged during 1998 and included in the 

modelling is detailed in Table 5. 

Table 5: Length of stay statistics revealed that the 
distribution is highly skewed.  

The fact that the distribution is highly skewed is not obvious from the annual high-

level statistics. While the reporting of average occupancy or length of stay without 

any other measures of spread is common practice in the health sector, it is not a useful 

measure. Comparison between periods or across different hospitals, or parts of 

hospitals, is not easily undertaken without the degree of spread being understood and 

also understanding whether the distribution is skewed or not. The ramifications of a 

skewed distribution are highlighted in Figure 14. 

Statistics
Number of patients 9558
Length of stay
Mean 5.8
Median 4
Mode 1
Std. Deviation 7.2
Skewness 4.3
Std. Error of Skewness 0.0
Minimum 0
Maximum 148
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Comparative Length of Stay Disbributions - Actual and Normal
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Figure 14: The length of stay distribution compared to a Normal distribution with the same mean and 
standard deviation. Note – the variation in the hypothetical distribution can be attributed to the 
variation in random numbers used to generate the data. 

The visual comparison of the length of stay distribution to a Normal distribution with 

the same mean and standard deviation highlights the differences in distribution shape. 

If the Normal distribution were applicable, there would be more patients with a length 

of stay of between 10 and 22 days (the positive part of the Normal curve that is 

greater than the observed data for length of stay). The Normal distribution 

assumptions also give rise to (or density to) negative length of stay values, which 

cannot be observed. The ramifications of using the ALOS when the distribution is 

skewed are discussed later in this chapter (see the discussion).  

The high level statistics also do not enable the variation in daily occupancy to be 

understood. The trend in variation in total occupancy across a single year is illustrated 

in Figure 15.  
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Figure 15: Trend in total bed occupancy. A seasonal trend is evident, as is regular peaks and troughs. 
The regular peaks and trough relate to day of week trends that were found to occur. 

3.3 Internal Medicine Department, HealthCare Otago 

3.3.1 Background Information 

The New Zealand health care system is different to the Australian health care system.  

This section draws on the material presented by Mackay, Lee, Rae and Millard 

(2004). Although a central government responsibility exists, devolution of planning 

and administration functions has occurred. Responsibility for the administration of 

health care services lies with 21 District Health Boards. While global budgets are 

determined by the central administration, each health board has responsibility for the 

administration of its budget. Unlike Australia, the health care system is not split 

between a state and federal government, but rather a single system exists. The 

implications of the single system are various, but one significant difference to 

Australia is that the Region controls the budget for both acute care and primary health 

care services. 

Total Daily Bed Occupancy Trend for 1998 (Medical Division, Excluding Elective 
Same-day Patients)
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The Otago Province is located on the South Island of New Zealand. The only tertiary 

hospital for the Province is the Dunedin Hospital. Secondary care is shared with three 

small rural hospitals located in the Province. The Dunedin Hospital has a drainage 

population of greater than 180,000 people for tertiary services and 120,000 people for 

secondary services. 

The Hospital’s Respiratory and Cardiology services share responsibility for the 

admission of acute medical patients with the Internal Medicine Department. The 

Internal Medicine Department is responsible for approximately 61 per cent of all 

acute medical admissions. The majority of these patients (approximately 73 per cent) 

are aged 65 years or older. 

Changed work processes following the introduction of a stroke pathway produced 

reduced bed occupancy for the Internal Medicine Department (Rae, Busby and 

Millard, 2007). The major driver of the reduction in occupancy was getting patients 

home sooner and without increasing the level of illness on discharge than under the 

previous policy. 

A further change to the practices of the Department occurred as a consequence of the 

review of Geriatric Medicine work process, which occurred during 1996-97. The 

review resulted in approximately 30 per cent of elderly patients being transferred to 

the Assessment Treatment and Rehabilitation, which is part of the Geriatric Medicine 

service, prior to discharge. This represented a significant increase in patient transfers 
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to this service. This change in business practice altered the occupancy profile and this 

is evident in 1997 (see later results, for example, Figure 18).  

While there was no growth in the total patient numbers for the Dunedin Hospital, 

there was an annual growth in patient numbers being admitted into the Internal 

Medicine Department. This growth was driven by a growth in the admission of 

elderly patients. During 1997 growth in admissions into the Internal Medicine 

Department unexpectedly increased. This growth was not driven by an increase in 

elderly patient admissions, but arose primarily due to financially motivated changes of 

practice in other hospital services, with the consequence of patients being deflected to 

the Internal Medicine Department. 

  

3.3.2 Methodology 

Public reporting for the activities of Otago HealthCare incorporates the activities of 

the various units within the region, including the Dunedin Hospital. Unlike the 

information that is available for Flinders Medical Centre, recent public reporting 

focuses on the region as a whole as opposed to reporting at unit level. Also, the focus 

of the research was different – it only related to the activities of the Internal Medicine 

Department, as opposed to the opportunity to consider the wider hospital. 

Consequently, the summary statistics available in relation to Dunedin Hospital were 

different to those available from Flinders Medical Centre. 

The summary statistics considered in this analysis were derived from two primary 

sources, namely: 
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� ALOS data supplied by Dr Brendon Rae, Director of Internal Medicine (Rae, 

2004), and 

� Occupancy profile data relating to the Internal Medicine Department (also 

supplied by Dr Rae). 

An ogive, which is the term for cumulative frequency distributions (Kohler, 1984), 

was used to describe the occupancy profile. 

Trend information was created from the data in relation to bed occupancy profile and 

average length of stay. The trends covered the period 1990 to 20041. Seven day and 

90 day moving averages were used to smooth the bed occupancy trends (Kohler, 

1984) in order to remove the noise associated with daily and weekly variation in the 

data. The trends were presented graphically.  

Additional contextual information (beyond that provided in section 3.1.2) was 

detailed about the Dunedin Hospital to provide an enhanced understanding of any 

meaning that could be derived about the trends. 

                                               
1 The data for the 1990 year were incomplete – only July to December. The data for the 2004 year were 
also incomplete – January to 19 April 2004. All other years were based upon complete data.  
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3.3.3 Results 

The ALOS trend for the period 1990 to 20042 is detailed in Figure 16.  

Figure 16: The ALOS trend for the period 1990-2004. It is evident that the way patients flowed through 
the system changed after 1996 as the ALOS declined significantly. 

The trend reveals two distinct periods of differing patient rates of flow as measured by 

the ALOS, namely: 

� 1990 to 1996 – a steadily declining ALOS was evident, and 

� 1997 to 2004 – a much larger decline in ALOS was initially achieved followed by 

a period a steadily increasing ALOS, although the ALOS was well below that of 

1996 for the entire period. 

Although the ALOS is often inappropriately used as illustrated in Chapter 2 (for 

example, see Farmer and Emami, 1990), there are circumstances where it can be used, 

but even then it reveals little about the total bed usage. The profile of the average 

                                               
2 The data for the 1990 year were incomplete – only July to December. The data for the 2004 year were 
also incomplete – January to 19 April 2004. All other years were based upon complete data.  

Internal Medicine  - Average Length of Stay Trend

0

2

4

6

8

10

12

1990   1991   1992   1993   1994   1995   1996   1997   1998   1999   2000   2001   2002   2003   2004   

Year

A
ve

ra
ge

 L
en

gt
h 

of
 S

ta
y



111

midnight bed census profile (that is, the time in days since a patient was admitted) for 

the entire data set is detailed in Figure 17. 

Figure 17: The average midnight bed census profile occupancy profile (ogive) for the Internal 
Medicine Department data. The shape of the distribution indicated that occupancy has a skewed 
distribution, which is expected, with most patients only being admitted for a relatively short period of 
time (for example, fewer than 10 days). 

The trend in the daily total midnight bed occupancy is useful revealing patterns that 

can be informative for management purposes. The information that can be gained 

from such analysis, however, is not complete. Figure 18 illustrates such a trend 

relating to the Internal Medicine Department. 
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Figure 18: The total midnight bed occupancy trend for the Internal Medicine Department 1990 to 2003 
is illustrated. The trend reveals weekly trends (illustrated by the many peaks and troughs occurring 
between, say December 1992 and June 1993); seasonal trends (for example, December 2001 and 
December 2002 are low points, while June 2002 represents a peak in occupancy); and change in service 
trends (the occupancy for period prior to 1997 is generally greater than the occupancy from 1997 
onwards). These trends, however, can be highlighted better using moving averages.  

A seven-day moving average trend of midnight total occupancy is more useful to 

highlight weekly patterns in bed occupancy. A 90-day moving average trend of 

midnight total occupancy is useful to highlight the seasonal variations3 in bed 

occupancy. Such trends are shown in Figure 19 and Figure 20, respectively. 

                                               
3 In this context the term “seasonal variation” is used to describe variation associated with changes in 
the time of the year (for example, summer and winter) and is not used in the operational research 
context where it relates to cyclical variation in general. 
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Figure 19: A seven-day moving average of total midnight bed occupancy. The troughs represent low 
points of activity (such as weekends) and the peaks represent days of high admissions (typically a week 
day). However, when data covering many years is presented in this manner, as in this case, the weekly 
cycle becomes compressed. 

Figure 20: A 90-day moving average of total midnight bed occupancy for the period 1990 to 2003. The 
trend highlights the seasonal variation associated with the functioning of this service and removes the 
noise arising from daily variations in service provision. 

Both of the moving average trends highlight the sudden decline in total occupancy 

that occurred at the end of 1996. The 90-day moving average trend, however, does not 
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reveal the extreme variations in short-term occupancy like the seven-day moving 

average trend. 

It is evident in all three figures of midnight bed occupancy that while the service 

underwent apparent change at the end of 1996, bed occupancy also gradually 

increased over the subsequent years. When analysis of the midnight bed occupancy 

trend is combined with the analysis of the trend in average length of stay (refer Figure 

16 and Figure 18), it would appear that part of the explanation for the increase is due 

to an increase in the ALOS.   

A small increase in long-stay patients often explains an increase in the overall ALOS. 

To determine whether the increased occupancy was due to a change in long-stay 

patients, the data was partitioned into short and long-stay sets. Partitioning was based 

upon my expert understanding of health care systems, insofar as that a stay of longer 

than 10 days in acute care hospital service (and as supported by Figure 17) is less 

common. The resultant 90-day moving average trend for the partitioned data is 

illustrated in Figure 21. 
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Figure 21: A 90-day moving average of short and long-stay patient midnight bed occupancy trends. It 
can be seen that the post 1996 growth in bed occupancy is due to short-stay patients. 

Although Figure 21 suggests that the post 1997 increase in bed occupancy arose from 

a growth in the number of short-stay patients, it is also consistent that part of the 

increase was attributable to the increase in ALOS. This form of analysis, however, 

does not lead to a definitive conclusion.  

Additionally, it can be seen in Figure 21 that the post 1997 amplitude in seasonal 

variation is increasing, suggesting that the winter peaks experienced at the Hospital 

are leading to additional pressure on beds and other associated resources. 

The Internal Medicine Department contributes to the care of the elderly and the 

midnight total bed occupancy profile for this subset of patient is illustrated in Figure 

22. 

90 Day Moving Average of Total Midnight Bed Occupancy
 for Patients Staying between 0-10 Days and Greater than 10 Days.
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Figure 22: Profile of total bed midnight bed occupancy by patients aged 65 years or more. When 
viewed with the previous figures it can be seen that these patients occupy the majority of Internal 
Medicine Department beds. 

While Figure 22 indicates a growth in total midnight bed occupancy that is 

attributable to patients aged 65 years or more, it is not evident if the growth in 

occupancy also occurs for the other patients. The distribution of occupancy for aged 

(that is, 65 years and older) and non-aged patients is shown in Figure 23. 
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Figure 23: Relative distribution of midnight bed occupancy for aged and non-aged patients. The non-
aged patients account for less of the total bed occupancy post 1997. 

It would appear that the post 1996 service change had little effect on the mix of aged 

and non-aged patients initially. The growth in aged patients has, however, led to an 

alteration in the mix of the patients (on the basis of age) over time.   

In terms of the short-stay patient trend, the change in service delivery that occurred at 

the end of 1996 resulted in a decline in the non-aged group bed occupancy as 

illustrated in Figure 24. This initial decline was sustained to the extent that bed 

occupancy was still less than prior to the change. 
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Figure 24: Trends in aged and non-aged patient total midnight bed occupancy for patients admitted for 
10 or fewer days. Increases in midnight bed occupancy for aged patients post 1997 have led to more 
beds being occupied than before 1997 for this group of patients. 

The trend in total midnight bed occupancy for the short-stay aged group reveals an 

increase in bed occupancy post 1997 to the extent that occupancy now exceeds the 

occupancy prior to the 1996.  

The long-stay trend is similar except that the levels of occupancy have not returned to 

the original pre-shock or service change state. However, there has been growth in the 

number of long-stay aged patients in recent years as shown in Figure 25. 
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Figure 25: Trends in aged and non-aged patient total midnight bed occupancy for patients admitted for 
more than 10 days. While post 1996 service delivery changes have been maintained, the occupancy for 
the aged patient group has increased. 

3.4 Discussion  

The results have provided some contextual information about the hospitals that have 

provided data for this research. Another purpose of this chapter has been to illustrate 

measures, such as the average length of stay, and methods, such as trends analysis, 

that are commonly used for strategic decision-making purposes in the health sector.  

The methods of analysis lead to three areas of discussion, namely: information that 

the hospitals may gain from the analysis, the methods of analysis and the problems 

associated with the ALOS.  

3.4.1 The Hospital Services 

The analysis of the high level measures and daily occupancy totals served to confirm 

the contextual information about both services statistics as detailed in sections 3.2.1 
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and 3.3.1.  The following sections discuss the results in light of the contextual 

information. 

Flinders Medical Centre 

Table 4 substantiated the Hospital’s claim that activity was increasing, although at the 

time of this research the number of admissions declined. Same-day patient activity 

grew during the period 1994-95 to 2001-02.  

The Hospital has highlighted its high level of emergency inpatient workload. The 

summary statistics, however, fail to enable this to be determined, because inpatient 

and same-day patient are not separated. From a strategic decision-making perspective, 

this reduces the quality of this information. 

Increasing bed occupancy was reported. A reduction in vacancy combined with a 

large proportion of admitted patient emergency workload would have resulted in a 

reduced buffer of vacant beds being available to cope with the variation in daily 

activity. Bagust, Place and Posnett (1999) have reported, based upon a simulation 

study, that bed occupancy of greater than 85 per cent can result in bed management 

crises, thus supporting the Hospital’s position. 

The relationships shown in the scatterplots in Figures 11 and 12 confirmed that 

increases in same-day patient admissions were associated with increased inpatient bed 

occupancy and a reduction in the number of available inpatient beds. Thus, it is 

apparent that same-day patient activity was not only increasing, but that a substitution 

of inpatient beds was also occurring. From personal knowledge of the hospital, at 
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least some same-day capacity was created through conversion of inpatient areas into 

same-day patient areas. The management of the creation of same-day beds thus may 

have contributed to the perceived need for additional inpatient beds. 

Figure 13 illustrated the relationship between patient length of stay and the number of 

patients admitted. It would seem apparent that greater patient admissions were 

associated with a reduction in average patient stay. It would be easy to mount an 

argument that a busy hospital (in terms of patient numbers) is a stimulus for faster 

patient throughput. The information available from this graph, however, does not 

enable a user to determine if patients were being turned away, or were being turned 

away more frequently, when the average patient stay increased . Patient turn-away 

may be measured in various ways, including ambulance bypass and waiting lists. Nor 

is it possible to determine if changes in patient length of stay was associated with 

changing acuity levels in the patients, which may have resulted in fewer patients 

being admitted, but for longer periods of time. Thus, while the information in Figure 

13 was interesting, it was not conclusive and further information about patient flow, 

numbers and whether there was a change in proportions of short and long-stay 

patients is required to gain a more complete understanding about the system and for 

strategic decision-making purposes. This is clearly an area where compartmental flow 

models are able to provide a range of information that more comprehensively 

addresses the issues raised by the analysis presented in Figure 13. This will be 

illustrated in subsequent chapters.  

Table 5 and Figure 14 highlight the skewed nature of the patient data that was 

available for the modelling exercise. It is worth noting that often the only measure of 

patient stay and rate of flow available to managers is the average length of stay. While 
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educationally useful, insofar as that the information could be used to educate staff 

about the length of stay profile, there is little value to the decision-maker in having the 

additional information presented in Table 5 and Figure 14. 

The weekly and overall seasonal fluctuations in bed occupancy were illustrated in 

Figure 15. Such information is useful to the extent that it confirms the presence of 

trends in the data.  

While this type of information supports the notion that the hospital was experiencing 

some kind of additional stress with greater levels of activity, or reduced inpatient bed 

vacancy rates, or a combination of both, it is not possible to explore the causes of this 

without more in-depth analysis.  

Internal Medicine Department 

The analysis of the average length of stay (see Figure 16) and occupancy data 

highlighted the change in the service that occurred at the end of 1996 (see Figure 18, 

Figure 19 and Figure 20). The post 1996 service change was also associated with a 

reduction in number of beds occupied by long-stay patients (see Figure 21).  

A post 1996 increase in average length of stay was found to have occurred. While the 

analysis of the ALOS was able to highlight this fact, the cause of the increase it is not 

evident from the analysis. For example, it is possible that the increase in ALOS is due 

to an increase in stay of the short-stay patients or long-stay patients. This style of 

analysis cannot tackle the drivers of ALOS and thus there is a need for a more 

definitive approach. These methods, however, are still useful in identifying trends. 
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Figure 22 confirmed that the Internal Medicine Department devoted a significant 

amount of resource to the care of the elderly, both pre and post the service change.  

The change to the service at the end of 1996 had little or no effect on the proportion of 

beds used by the aged and non-aged as shown in Figure 23. The proportion of beds 

being used by the aged, however, seemed to be growing in recent times and the total 

occupancy trend analysis confirms the increase in the number of beds occupied by 

aged patients as shown in Figure 24. This suggests that either there was a growing 

ageing population or a change in external services for the aged. In this instance, 

external services could be within the hospital. If the overall length of stay for the aged 

was increasing this might suggest a change in external services outside the hospital. A 

combination of service change and an ageing population may also explain the trend. 

The high use of resources by the aged, as measured by bed occupancy, is not 

unexpected and is consistent with trends in other OECD countries (for example, 

OECD, 2003). The style of analysis alone cannot be used to indicate whether a 

particular patient group is receiving the appropriate level of service. 

3.4.2 Methods of Analysis 

The use of high-level measures for determining the performance of hospitals is not 

new. The ALOS and level of occupancy are two key measures that are used to inform 

managers at the health service level, and also the bureaucracy, about issues 

concerning patient flow and bed use. For example, the Scottish National Health 

Service (NHSScotland, 2004) published the performance measures it used to assess 

health unit performance and this included the average length of stay and percentage of 

bed occupancy. Additionally, the average length of stay and various high level 
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statistics are reported in annual reports, such as the Flinders Medical Centre Annual 

Reports (for example, Flinders Medical Centre, 2003). 

To ensure accountability of the use of scarce resources it is appropriate to measure the 

performance of aspects of the system. There are a number of uses of such measures, 

including: 

� Comparison of performance between units (hospital or division) 

� Tracking the performance of a measure for a single unit over time, and 

� In the case of bed related measures, using these to determine required capacity. 

The analysis undertaken of the performance measures relating to bed use for this 

research was related to tracking the performance of a single unit (hospital or division 

of a hospital) over time. 

While the methods of analysis presented in this chapter are commonly used in the 

health care sector, there are issues with the methods, which are detailed in the 

remainder of this section.   

Scatterplots and Regression 

The sample size is an important consideration when undertaken regression. Samples 

with fewer than 20 observations are generally considered to be small (Hair et al., 

1995). Simple regression analysis (that is, one independent variable) may be 

appropriate in instances where there is a small sample size provided that there is a 

strong relationship between the variables (Hair et al., 1995). 
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The analysis of the high level data was based upon only eight observations and thus is 

representative of a small sample size analysis. While Figure 10 appears, on the basis 

of a naked eye appraisal, to have a good linear fit, the sample size may not be 

appropriate to provide a good level of certainty. Similarly, based upon a visual fit, the 

relationship depicted in Figure 13 would benefit from inclusion of more observations. 

Strategic management decisions, however, cannot necessarily rely upon the existence 

of long-term data collections that would improve the appropriateness of the regression 

analysis. Even if the data was available, data collections are often subject to changes 

in data definitions. Also, management practices (both clinical and other) change over 

time and thus analysis of data over a long period may not be useful. 

Thus, while scatterplots and regression analysis can be useful in alerting management 

to the existence of indicative relationships that affect patient flow and bed occupancy, 

it is likely that the usefulness of the relationships will be limited in terms of the 

strategic management of hospital beds and patient flow. Furthermore, while the 

relationships that were identified are useful when considering issues about bed 

management and patient flow, there is little ability to manipulate the drivers affecting 

patient flow. Other forms of analysis are necessary for this type of analysis. 
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Moving Averages 

Moving averages, while useful, are not without disadvantages. The Slutsky-Yule 

effect (Kohler, 1984) occurs when a non-existence cyclic trend is observed as a 

consequence of applying moving averages to a set of data. As the weekly and 

seasonal trends are evident in the non-smoothed data relating to the Internal Medicine 

Department results (for example, see Figures 19 to 22), there can be certainty about 

the existence of the trends and thus the Slutsky-Yule effect is not of concern in this 

instance. 

Other weaknesses associated with the use of moving averages identified by Kohler 

(1984), such as sensitivity to extreme values and prolongment of trends, can affect 

bed occupancy trends that are based upon moving averages. The prolongment of a 

trend increases as the amount of data used to create the average increases. Thus, there 

is little prolongment of trends in a seven day moving average, but trends are likely to 

be prolonged when a 90-day moving average is used. 

Exponential smoothing may reduce sensitivity to extreme values (Kohler, 1984). 

Extreme values, and in particular periods of high bed occupancy, are important in the 

analysis of bed occupancy and patient flow issues, as the management of beds 

involves consideration of peaks and troughs to ensure that beds are available to avoid 

the likelihood of unnecessarily long delays in patient admission. Thus, the need for 

exponential smoothing is unlikely.  

Moving averages merely help clarify the existence of either weekly or seasonal trends 

through improved ability to visualise the trends. Providing that the moving average is 
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used in conjunction with presentation of the underlying raw data, the disadvantages 

stated are unlikely to cause significant issues. 

As a tool for helping managers with strategic management decisions relating to 

hospital beds, however, they offer little value beyond the identification of generally 

appreciated trends. This stems from the fact that moving averages do not enable 

managers to understand and manipulate the drivers of the occupancy profile, namely 

patient numbers and length of stay. 

Ogives (Cumulative Frequency Distribution) 

Cumulative frequency distributions, such as Figure 17, are useful in illustrating the 

shape of the census or occupancy profile. The addition of confidence intervals 

provides some degree of indication of the variability around the profile. There is little 

surprise in the shape of the profile, however, as the length of stay distribution 

statistics (see Table 5) indicate patient stay is skewed and patient stay and occupancy 

are linked.  

Without further analysis, however, such as the fitting of equations to describe the 

profile, little use can be made of the distribution for management purposes. The fitting 

of equations to this distribution is the subject for subsequent chapters. 

3.4.3 Problems with the ALOS 

The implicit assumption made in using the ALOS is that it is Normally distributed. 

Yet data from both hospitals clearly indicates that this is not the case (see Table 5 and 

in particular, Figure 14, which highlights the difference between the Normal and 
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observed distributions in relation to Flinders Medical Centre; and Figure 17 in relation 

to the Internal Medicine Department). This is of no surprise given that other research 

relating to maternity, geriatric, acute surgical services and flow modelling in general 

has also recognised that the ALOS is skewed and is a poor measure for modelling and 

resource allocation decision purposes (for example, Harrison and Millard, 1991; 

Mackay and Millard, 1999; Millard, Mackay, Vasilikas and Christodoulou, 2000; 

Harrison, 2001; Harpler and Shahani, 2002; Wang, Yau and Lee, 2002; Costa, Ridley, 

Shahani, Harper, De Senna and Nielsen, 2003; Nguyen, Six, Antonioli, Lombrail and 

Le Beux, 2003; Bellin and Kalkut, 2004; and Vasilikas, El-Darzi and Marshall, 2004). 

What perhaps is of surprise is the lack of understanding about the ALOS and the 

ramifications of the fact that its distribution is generally skewed. 

There are theoretical and practical reasons that using the ALOS is inappropriate for 

use in the development of models. First, the length of stay profile typically has a 

highly skewed distribution and that is not well summarised by its mean value. Second, 

the length of stay distribution is complex, often consisting of mixtures of patient types 

(that is, medical and surgical, planned and unplanned admissions, young and elderly) 

and mixtures of outcomes (that is, some patients die, some are discharged home, some 

to alternative care services such as nursing homes). While it might be argued that the 

introduction of casemix categories could reduce some of the complexity, recent work 

indicates that the problems associated with the ALOS are still not overcome even with 

the introduction of such approaches (Wang, Yau and Lee, 2002). It is also my 

experience from having reviewed regional hospitals in South Australia that casemix 

approaches also tends to focus attention on disease related groups as opposed to the 

strategic decision level (Beltchev and Mackay, 2000). 
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The ALOS does not take into account the time of day when a hospital is most busy. 

The admission and discharge practices of a given hospital or service is a significant 

factor in determining the number of beds required throughout a day. If new patient 

admissions occur prior to existing patient discharges then additional bed capacity will 

be required (Mackay and Gorunescu, 2001). The use of the ALOS in determining bed 

requirements does not take into account the time of day effect. Other temporal effects 

may also exist, including variation across the week, and the ALOS does not take these 

effects into account. From a strategic point of view, these other effects may not be as 

significant as the time of day effect, because planning may occur for an average day. 

Models for bed occupancy have been developed that do use the ALOS (for example, 

Sorensen, 1996). While the ALOS is flawed, some of the work previously undertaken 

has yielded interesting findings, such as the focus on discharge destination by 

Sorensen (1996). Consequently, the information gained from such flawed approaches 

should not be disregarded, but rather treated as providing some of the building blocks 

for future model development.   

3.4.4 Simple Alternatives to the ALOS 

The average is usually the preferred measure of central tendency, because among 

other things, it can be used in mathematical and algebraic manipulations, that is, it is 

mathematically tractable (Kirk, 1990). However, when the distribution is skewed this 

does not hold.  
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The median is another measure of central tendency. This measure is less sensitive to 

extreme values and thus is a more representative measure of central tendency when a 

distribution is skewed (Kirk, 1990). It could be argued that the median length of stay 

is a more appropriate measure to report given that the ALOS is skewed. While this is 

the case, the median is less mathematically tractable (Kirk, 1990) and thus, does not 

offer significant potential as a useful alternative to the ALOS. The ongoing use of the 

ALOS within the health sector highlights the apparent desire to summarize the patient 

length of stay distribution with a single number. However, the ability to use this single 

measure for the purposes to which it has often been applied has been demonstrated in 

this chapter to be not only flawed (given it is not Normally distributed), but also 

insufficient to address many of the issues that are considered as part of strategic bed 

management issues.  

Rae and Millard (2004) have suggested that using a colour coded chart that highlights 

whether length of stay percentile values change might be a useful alternative to the 

ALOS. The system is simple and does overcome the problem of using a single 

measure of length of stay (that is, the average) to monitor a complex system. The 

approach, however, does not facilitate better future decision-making as it is not linked 

to a model that can be adapted for future change. It is a system of monitoring past 

performance. 

In the absence of an alternative suitable single measure or simple approach, such as 

the use of percentiles, to replace the ALOS, the need to consider alternative 

approaches for describing, modelling and making predictions about bed occupancy 

exists. The compartmental flow model as described by Harrison and Millard (1991) 
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provides a suitable alternative – it enables the length of stay profile to be summarized 

economically using a small number of parameters (two, four or six, depending upon 

the number of compartments used), and these parameters can be used to generate 

output which is easily interpretable and can be used to assist decision-making in 

relation to many aspects of strategic bed management.  

3.5 Conclusion 

In this chapter I have presented information that can be, and often is, readily made 

available to hospital and health care managers. The information was derived from 

three sources, namely the publicly available information relating to the hospital, the 

data used for this research and via personal contact with hospital staff. 

While this information is of use in setting the context under which these hospitals 

have operated, it has little or limited value for strategic management decision-making 

purposes. It is proposed that the creation of models, and in particular the bed 

occupancy compartmental flow model as originally promulgated by Harrison and 

Millard (1991) for the geriatric health care sector, can fill some of this information 

void and also provide information for strategic decision-making purposes in the acute 

care sector. 

In the next chapter the theoretical background that underpins the basis of modelling 

used in this research is presented. 
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Chapter 4

Modelling – Some Theoretical Background 

The essential underlying issue being addressed by the research presented in this thesis 

is whether the model originally proposed by Harrison and Millard (1991) for 

modelling geriatric hospital patient bed occupancy can be applied to the acute care 

sector for strategic decision-making purposes. In order to address this question and to 

consider other pertinent issues relating to the development of models of hospital bed 

occupancy that can be used to answer questions of a strategic nature, such as the issue 

of model selection, it is necessary to provide some background about the theories that 

underpin this research. The purpose of this chapter is thus to provide some of the 

theoretical background about modelling and model selection that is relevant to my 

research. The chapter has the following structure: 

4.1 Introduction....................................................................................................133 

4.2 Modelling.......................................................................................................135 

4.3 The process of model building.......................................................................137 

4.3.1 Testing the model validity and inputs.........................................................137 

4.3.2 Testing the model outputs...........................................................................138 

4.4 Model choice..................................................................................................139 

4.5 Model fit and complexity trade-off................................................................143 

4.6 Model choice and performance......................................................................145

4.6.1 Model performance – common approaches................................................145 

4.6.2 Least Squares and Maximum likelihood.....................................................150 

4.6.3 Bayesian Information Criterion (BIC) ........................................................153 

4.6.4 Bayes factor ................................................................................................155 

4.6.5 Cross validation and Bayes factor..................................................................157 

4.7 Conclusion ..................................................................................................159 
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4.1 Introduction 

The ability to collect and analyse data relating to bed occupancy has existed for some 

time, as illustrated in Chapter 3. Improvements in computing systems have meant that 

the ability to extract such data is now easier. Consequently, the ability to investigate 

issues requiring data extraction, analysis and modelling has become more 

commonplace. This was confirmed in a recent study on the use of simulation 

modelling where it was reported that the number of papers reporting work on 

modelling population health and health care delivery had increased, particularly since 

the 1990s (Fone et al., 2003). The downside to this situation is the increased number 

of avenues that can be explored without necessarily yielding something of value. 

While raw length of stay data can be extracted, the volume of data is such that visual 

inspection of the data is highly unlikely to yield sufficient information to be of value 

to health system managers and clinicians. Nor will it be timely. 

The ability to summarise such data using basic statistics, such as the average, has been 

used for many years. It is also widely used as shown in Table 6. 
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Indeed, the high number of Google™ hits may provide support that the average length 

of stay is an entrenched and ubiquitous measure in the health systems across the 

world, regardless of the status of development of the country. As previously 

discussed, however, the average length of stay is of limited value, particularly in 

relation to using it to assist with informed and defensible decision-making in the 

health sector. 

The creation of a bed occupancy compartmental flow model provides decision-makers 

with the opportunity to replace the average length of stay with a more useful and 

defensible decision-making tool in relation to strategic decisions concerning bed 

occupancy. The creation of such a model is not necessarily straightforward – at least 

in terms of the development required to support justification of the use of such a 

model. For example, should a bed occupancy compartmental flow model of an acute 

Country name used

Google Scholar™ Google™

none specified 48,800 3,480,000 1%

Australia 10,100 728,000 1%

New Zealand 5,260 432,000 1%

USA or America 24,100 1,580,000 2%

UK or Britain 15,300 1,260,000 1%

England 11,800 1,230,000 1%

France 10,400 764,000 1%

Japan 7,880 1,130,000 1%

China 6,870 1,100,000 1%

India 6,080 546,000 1%

Russia 3,840 597,000 1%

Canada 13,000 1,730,000 1%

Finland 3,510 191,000 2%

Italy 7,850 502,000 2%

Romania 922 121,000 1%

Indonesia 1,460 195,000 1%

Malaysia 1,280 138,000 1%

Number of search hits Ratio of 

Scholar™ to 

Table 6: A search of “average length of stay” and “hospital” using the Google™ and Google 

Scholar™ internet search engines found many hits.  The ratio of Google Scholar™ hits to 

Google™ hits was similar regardless of the country. 
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care hospital service be constructed with one, two or three compartments? The 

remainder of this chapter will provide information on modelling, model performance 

and model selection – all topics of importance when developing a model. Such 

information provides the theoretical foundations for the research conducted for this 

thesis.

4.2 Modelling

In general, modelling provides a means of summarizing a relationship in a concise 

manner. Models may be verbally specified when first developed and this can be 

sufficient to lead to discussion about the system under examination (Myung, Pitt and 

Kim, 2005). Creation of mathematical and statistical models, however, can be useful 

as such models can facilitate better understanding of the system under investigation, 

enable prediction of future events and can facilitate wider understanding through 

generalisation (Myung, Pitt and Kim, 2005).    

Mathematics can be used to describe statistical ideas with precision and efficiency 

(Davison, 2003). Mathematical solutions tend to be evaluated on the basis of 

generality of the solution and its elegance (Davison, 2003). Statistical solutions, 

however, tend to arise from applied questions linked to data and often lack the 

elegance and generality of the mathematical solution. Despite the lack of a single 

over-arching theory, Davison (2003) posits that shared threads between statistical 

solutions exist and have lead to the notion of the statistical model. 

A statistical model is one where variability is represented through the use of some 

form of probability distribution and that the probability distribution forms the basis of 

the model (Davison, 2003). There are two types of variation that must be captured 
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with such models: haphazard variation in the data and systemic variation. The 

haphazard variation within the data should be captured through the probability 

distribution, while the systemic variation should be captured through the model 

structure (Davison, 2003). It may be argued, contrary to Davison, that such modelling 

is as elegant as mathematical modelling, but differs from mathematical modelling 

insofar as that such modelling must contend with an additional source of variability. 

Such variation in opinion, however, does not have bearing on this thesis. 

The problem for which a solution is being sought should guide the development of the 

model, particularly its complexity. Thus, it is possible that the same data may be used 

to generate different models to answer different questions (Davison, 2003). In the case 

of hospital bed occupancy models, the range of possible models can be best described 

as existing on a continuum where models designed to address operational issues lie at 

the more complex end and models designed to address the strategic issues lie at the 

less complex end. 

The formulation of models involves experience, judgement, and trial and error 

(Davison, 2003). This also applies to the development of models that describe hospital 

bed occupancy. Useful models arise when the model is consistent with knowledge of 

the system under study and that the explanations derived from the model match 

experience with the system (Davison, 2003). Also, the model can be used for 

generalisation to other similar situations. Furthermore, the model should have 

reasonable mathematical and statistical properties (Davison, 2003). For example, if a 

given data set exhibits an exponential-like distribution, as is often the case with 

patient length of stay, then it is reasonable to adopt a model that relies upon the 
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exponential distribution as opposed to one that relies upon the Gaussian (or Normal) 

distribution.

4.3 The Process of Model Building 

The creation of a model is a process that has two inputs, namely variables and 

relationships (Armstrong, 1985), and can be represented as shown in Figure 26.

Figure 26: According to Armstrong (1985) models built for forecasting purposes have two basic inputs 

or components, namely variables and relationships. The concepts of validity and reliability can be 

applied to these inputs. 

4.3.1 Testing the model validity and inputs 

Model input validity and reliability are important issues in model building, 

particularly given that the creation of models involves subjective decisions 

(Armstrong, 1985). It is possible to test model reliability and credibility and in doing 

so it achieves a greater assurance that the model is of use. 

The test of reliability is whether another researcher can follow the same approach to 

model building and arrive at the same outcome. In terms of this research, it will be 

shown that it is possible to generate census type compartmental flow models of 

patient occupancy (see Chapter 5). 
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There are three tests of model validity, namely: face validity, predictive validity and 

construct validity (Armstrong, 1985). Face validity is the weakest of the validity tests. 

It involves determining whether the model appears reasonable by people who should 

be in a position to judge such an outcome (Armstrong, 2001). In relationship to this 

research, it will be shown that there is a high level of face validity (see later sections 

of this chapter and also Chapter 5). 

Predictive validity relates to determining whether the model inputs are valid in terms 

of being used to create the intended model output (Armstrong, 1985), or whether the 

model is useful for making forecasts (Armstrong, 2001). Given that the research 

interest relates to modelling hospital bed occupancy, it will be demonstrated that the 

variables used to generate the model output, both in terms of explanatory and 

forecasting purpose, are appropriate (see Chapters 5 and 9). 

Constructive validity aims to determine if a measurement is measuring what is 

intended to be measured (Armstrong, 1985). In terms of the patient flow occupancy 

models this will be clearly demonstrated (see Chapter 5). 

4.3.2 Testing the model outputs 

Increased assurance that a model is useful is also gained from testing the model 

outputs (Armstrong, 1985). Such testing can lead to further model development and 

refinement. Hastie, Tibshirani and Friedman (2001) suggest that models be created 

using training data, evaluated using test data (cross validation) and then, if successful, 

used for forecasting purposes as illustrated in Figure 27.



 
 
 
 

 
NOTE:  This figure is included on page 139 of the print copy of the 
thesis held in the University of Adelaide Library. 
 

 
 
 
 
 
 
Figure 27: According to Hastie, Tibshrani and Friedman (2001), model development should 
include the use of both training and test data sets. 
 
 

In terms of the research undertaken for this thesis, the benefit of using training and 

test data sets is demonstrated in Chapter 5. 

 

Differences in approaches to testing model outputs are discussed later in this chapter. 

 
 
4.4 Model choice 
 
As previously indicated, more than one approach may be adopted for modelling data 

(Davison, 2003). Although the number of potential models that could be created is 

large (known as the model space), only a subset of the potential models are evaluated 

as shown in Figure 28. 
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Clearly, limiting the number of potential models that are tested is a reasonable course 

of action in order to achieve: 

A timely solution – often modelling solutions take time to develop and the testing 

of a large number of models will prolong model development with the potential 

for little real gain, and 

A cost effective solution – often models are created using limited resources, thus 

preventing the testing of a large number of alternative solutions. 

Additionally, modelling may be undertaken on a contractual basis in a commercial 

setting, where those undertaking the work have successfully won the right to develop 

a particular solution. Under such circumstances it could be assumed that those 

selecting the model have considered the consequences of not testing a greater range of 

models beyond the mere consideration of initial development costs and timing 

considerations. From personal experience, this assumption is unlikely to hold true. 

Model space

Models considered

e.g. the compartmental flow model

Model space

Models considered

e.g. the compartmental flow model

Model space

Models considered

e.g. the compartmental flow model

Figure 28: The model space represents the total possible number of models that could be fitted to the 

data. The number of models actually tested represents a small proportion of the model space. 
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Fone et al. (2003) reported that the value of the discrete event simulation models 

created for health sector problems remains unclear. It is likely that this finding 

extends to all modelling undertaken in the health sector. Furthermore, in the review 

undertaken by Fone et al. (2003), it was reported that the quality of models has not 

been routinely evaluated, and nor has there been investigation to establish the extent 

to which findings have been translated into policy. Given the political sensitivity of 

many health care issues, it is perhaps not surprising that the evaluation of modelling 

and its use does not occur. 

The value of modelling is that it facilitates understanding and enables predictions to 

be made about the future (Hastie, Tibshirani and Friedman, 2001). However, for this 

to occur, there is a requirement that the choice of the model being used is appropriate. 

In terms of the research carried out for this thesis, the number of different types of 

models tested could be argued to be limited. The decision to limit the work to 

compartmental flow models was made on the following bases: 

The understanding of the problems associated with using the ALOS as the basis 

for modelling, that is, the extent to which the model addressed a skewed LOS data 

profile

There was (and will be) an ability to use the modelling for strategic decision-

making purposes (as opposed to operational decision-making purposes) 

The extent to which research had already been carried out on the modelling 

approach (many approaches are only reported once in the literature, which 

suggests insufficient research or interest in the modelling approach)  

That previous work has shown that the compartmental flow models describe the 

acute care situation well although without appropriate validation (Mackay and 
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Millard, 1999; Millard, Mackay, Vasilakis and Christodoulou, 2000; Mackay, 

2001)

At the strategic level, there was an absence of alternative models, and 

The pragmatic need to limit the research undertaken to meet the resource and time 

requirements associated with the research degree being undertaken.

As previously indicated, the work of Millard and his colleagues ((Harrison and 

Millard, 1991; McClean and Millard, 1993; Harrison, 1994; McClean and Millard, 

1994; McClean and Millard, 1995; McClean and Millard, 1998) provided a strong 

foundation for this research. They have shown that the compartmental model can be 

used to describe patient occupancy profiles, and so provide a useful basic model. 

While the focus of this research has been on compartmental flow models this has not 

prevented the issue of model choice from being explored. There are two approaches 

that can be used to fit a model to the data – trialling different types of model classes 

and improving a given class. Within the class of compartmental flow models it is 

possible to create a range of differing models that describe bed occupancy and can be 

assessed to determine if model performance is improved. In terms of model types, my 

intent was not to consider alternative model classes, but to focus on different 

applications of the compartmental flow model originally proposed by Harrison and 

Millard (1991). There were good reasons for this, namely that previous work has 

shown that compartmental flow models describe the acute care situation well although 

without appropriate validation (Mackay and Millard, 1999; Millard, Mackay, 

Vasilakis and Christodoulou, 2000; Mackay, 2001) and that at the strategic level, 

there is an absence of alternative models.  
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Modelling, however, must strike the right balance between fit and complexity (Hastie, 

Tibshirani and Friedman, 2001).  

4.5 Model Fit and Complexity Trade-Off 

It is possible to develop models that fit the data very well. Often the ability to gain 

improvement in model fit is achieved by increasing the level of model complexity. 

There is, however, a trade-off in achieving an improved level of model fit as the 

model may become less useful for generalising similar scenarios where there is no 

data (for example, another hospital that lacks the appropriate data) or forecasting 

future events (for example, at the same hospital for a different time period), that is the 

model is over-fitted (Myung and Pitt, 1997; Roberts and Pashler, 2000; Lee, 2004; 

Hastie, Tibshirani and Friedman, 2001). The problem of increasing model fit and the 

ability to generalise is illustrated in Figure 29.  



 
 
 
 

 
NOTE:  This figure is included on page 144 of the print copy of the 
thesis held in the University of Adelaide Library. 
 

 
 
 
 
 
 
Figure 29: Increasing model complexity achieves a gain in fit for both training and test data to a certain 
point, after which gains only occur in the fit obtained for the training data (based upon Hastie, 
Tibshirani and Friedman, 2001). 
 
 
According to Hastie, Tibshirani and Friedman (2001), the generalisation performance 

of models relates to the predictive ability of the model using independent test data. 

Consequently, model development requires at least two stages: model development 

and model testing. Each stage requires the use of separate data sets, namely, training 

data and test data, respectively. Analysis of the errors arising from the training data is 

insufficient to determine the predictive ability of the model. The absolute error and 

squared error are typical measures used to analyse model performance (Hastie, 

Tibshirani and Friedman, 2001). 

 
 
While the compartmental flow model for describing bed occupancy has been well 

documented (for example, Harrison and Millard, 1991), at least in relation to an 

English geriatric patient system, discussion about appropriateness of the level of 

model complexity, the degree of fit and the ability to use the model for generalisation 
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and forecasting has been lacking. For example, BOMPS, the resulting software 

package from Harrison and Millard’s 1991 work, provided statistics concerning the fit 

of the model to the data, but had no mechanism that enabled the user to create a 

testing set of data to examine the predictive ability of the model.  

4.6 Model Choice and Performance 

The task of model choice is twofold (Hastie, Tibshirani and Friedman, 2001). First, 

model selection must occur, that is, the best model from those being scrutinised must 

be chosen. Second, the predictive performance of the chosen model must be 

evaluated, that is, model assessment. 

4.6.1 Model performance – common approaches 

There are various approaches to determining whether a model describes the data. The 

manual accompanying the BOMPS software package suggests using visual inspection 

of fit, and correlations and least squares statistics as a means of gauging model fit (for 

example, BOMPS manual, 1992; Harrison and Millard, 1991). These methods can 

provide those interpreting the model output with some guide as to whether the 

modelling has described the data well or not.

The Harrison and Millard model achieved a good fit to the underlying data. It is 

recommended in the BOMPS manual (1992) that models with a correlation of less 

than 0.9 be discarded and that a low least squared error can help discriminate between 

two or more models. However, reliance upon only these statistics may result in 

selection of an over-fitted model. As previously described, there is a trade-off in terms 
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of the usefulness of a model for generalisation and forecasting purposes if it is over-

fitted. 

Various authors (for example, Hastie, Tibshirani and Friedman, 2001; Berenson, 

Levine and Krehbiel, 2002) have suggested that the absolute error and squared error 

are typical measures used to analyse model performance. Other measures, such as the 

log likelihood have also been recognised as measures of fit (Hastie, Tibshirani and 

Friedman, 2001).   

The various model performance statistics used in this research are now discussed. 

Visual inspection 

It is stated in the BOMPS manual that visual inspection of the fit of the model to the 

data should occur (BOMPS manual, 1992). Visual inspection can reveal whether a 

model fits the data or not. Motulsky and Ransnas (1987) concur with this view and 

state that many potential problems are best identified from a visual inspection of the 

model superimposed on the data. However, visual inspection alone is insufficient to 

enable selection between models that fit the data well. Consequently, other measures 

of model fit are also required (Motulsky and Ransnas, 1987). 

Correlation

The sample coefficient of correlation, r, measures the strength of association 

(Berenson, Levine and Krehbiel, 2002) between two variables (X and Y) and is 

calculated according to: 
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X  and Y represent the mean of variable X and Y, respectively. 

The relationship between the model and the data can be measured using correlation. 

Compartmental flow models of bed occupancy have achieved high correlations, with r

often exceeding 0.95 (for example, Mackay and Lee, 2005). As previously indicated, 

it is indicated in the BOMPS manual that models should achieve a correlation value 

(r) greater than 0.9 (BOMPS manual, 1992).  

It is possible for the strength of association between the model and the data to be high 

and the model still not represent a good fit. An example of this is where the model lies 

parallel to the data, but is shifted up or down. In such a situation, a high correlation 

will be reported, yet the model may not be a good fit of the data. Thus, as a method of 

model assessment, the correlation must be used in conjunction with other measures 

such as the absolute error.   

Absolute and Squared Errors 

The difference between a model (the predicted value, i) and the observed data (Yi) is 

known as the residual or estimated error (ei) (Berenson, Levine and Krehbiel, 2002) 

and can be expressed as: 
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ei = Yi - i

One means of assessing model fit is to plot the residuals (Berenson, Levine and 

Krehbiel, 2002). In the case of the bed occupancy compartmental flow models, the 

literature and experience (for example, Harrison and Millard, 1991; Mackay and 

Millard, 1999) has shown that there is a high level of fit between the model and data. 

Thus, there is little to be gained from the inspection of the residuals. (Good practice, 

however, would suggest that either visual inspection of the model fit to the data or 

inspection of the residuals should occur.)

This research has not involved the comparison of models of different types, but rather 

models within the same class. According to Berenson, Levine and Krehbiel (2002), if 

assessment of a residual analysis is not sufficient to distinguish between two types of 

models, measurement of the magnitude of the residual error is appropriate.

Summation of the estimated error is not useful as errors may lay either side of a fitted 

model. Thus, the positive and negative values may cancel each other out and not yield 

useful information about the nature of the model fit. Two approaches overcome this 

limitation – the use of the absolute error and least squared error. Both of these 

approaches remove the negative value that may arise with the estimated error, one 

though involves taking the absolute value of any difference (absolute error), while the 

other involves squaring any error (squared error). Summation of only positive values 

can provide useful information about the fit of the model to the data. 
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According to Hastie, Tibshirani and Friedman (2001), but keeping the same notation 

as Berenson, Levine and Krehbiel (2002), the absolute and squared errors are found 

by:

  Absolute error = Y - 

  Squared error = (Y – )
2

Summing the errors is therefore of use. The difference between the two errors is the 

weighting placed upon larger errors. This is perhaps best illustrated with an example. 

Error size Absolute Error Squared Error Comment 

1 1 1 Error is the same. 

4 4 16 With a larger error, the 

weighting in the squared error is 

revealed.

The squared error places greater emphasis on large errors. 

It is also common to use the mean squared error (MSE) (Myung, Pitt and Kim, 2005) 

or mean absolute error (MAD) (Berenson, Levine and Krehbiel, 2002). Using the 

mean does not overcome the weighting placed upon large errors when calculating the 

squared error. 

Berenson, Levine and Krehbiel (2002) state that statisticians have not reached 

consensus as to which measure of error is preferred. As the absolute error is perceived 
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as being more easily understood, primarily as a consequence of the lack of weighting 

of the error, it was used as a measure of fit for this research. 

4.6.2 Least Squares and Maximum likelihood 

The original work by Harrison and Millard (1991) relied upon minimising the squared 

error for model fitting purposes, which is commonly known as the least squares 

method (Berenson, Levine and Krehbiel, 2002). The sum of squared errors (SSE) is 

given by (Myung, Pitt and Kim, 2005): 

SSE(w) = 2

,

1

))(( wyy prdi

m

i

i

where yi, prd(w) is the model’s prediction for observation yi. and w are the 

parameters of the model (that is, for A, b, C and d for the bed occupancy 

compartmental flow model).,

It is recommended in the BOMPS manual that the selection of the bed occupancy 

model with the lowest least squares value occur (BOMPS manual, 1992). The use of 

least squares is a common approach (Hastie, Tibshirani, and Friedman, 2001; 

Berenson, Levine and Krehbiel, 2002; Davison, 2003). 

The residual sum of squares or least squares continues to decrease as the complexity 

of the model increases, that is, the number of model parameters increase. 

Consequently, model choice based upon least squares will always result in the most 

complex model being preferred (assuming that the models being tested all fit the data 
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well). This, however, is not consistent Ockham’s Razor (Sivia, 1996; Davison, 2003) 

and the notion of parsimony (Motulsky and Ransnas, 1987; Davison, 2003) where the 

least complex solution that achieves the description of the data is preferred. In order 

to achieve good model fit without undue complexity it was necessary to use an 

alternative approach for this research. 

The other generally accepted approach for parameter estimation is the maximum 

likelihood estimation (MLE) (Myung, Pitt and Kim, 2005). The maximum likelihood 

value was used to determine the fit of model parameters given the data. Maximum 

likelihood was used in preference to least squares for the following reasons: 

It is mathematically tractable (Berger, 1985) 

Under common-variance Gaussian conditions, least squares and maximum 

likelihood are the same  (Murshudov, Vagin and Dodson, 1997) 

The use of the maximum likelihood was consistent with Murshudov, Vagin and 

Dodson (1997), who found that refinement of models was better when maximum 

likelihood methods were used in preference to least squares, and 

Enables the calculation of other values, such as the Bayesian Information 

Criterion, that can be used in model selection (see the next section for more 

detail).

According to Myung and Pitt (2002) maximising either the log likelihood or the 

likelihood will lead to the same outcome, as both are monotonically related to each 

other. The log-likelihood, however, is computationally easier and therefore preferred. 

The log-likelihood (loglik) function is given as (Myung, Pitt and Kim, 2005): 
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In terms of parameter estimation, by maximising the likelihood function, the 

parameter values are those that are most probable given the data (Sivia, 1996; Myung, 

Pitt and Kim, 2005). 

The best-fit likelihood ratio will be the dominant factor in model choice where the 

data is of good quality (Sivia, 1996). However, where the performance of competing 

models is similar, in terms of fit, then preference will be given to the model that 

enables more values to be selected for model parameters, that is, the data range for 

each parameter is greater (Sivia, 1996). In essence, this will mean that the more 

complex model is less preferred than the simpler model. This is in keeping with the 

previously mentioned Ockham’s Razor (Sivia, 1996; Davison, 2003) and the notion of 

parsimony (Motulsky and Ransnas, 1987; Davison, 2003). While this may seem 

counter intuitive, at least initially, the selection of a model that enables more data to 

be fitted, facilitates model generalisation as well as description of the underlying data. 

For example, if hospital occupancy models were generated using 2, 4 and 6 

parameters (for example, as done with compartmental flow models) and have 

maximized log likelihood values of 0,10 and 11, respectively, then the four parameter 

(for example, double compartment) model is preferred over the two parameter  (for 

example, single compartment), but it is not clear whether the four or six parameter 

(for example, double or triple compartment) model is preferred (Davison, 2003).  
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The use of the maximum likelihood also enables different model selection statistics to 

be used. This leads to discussion about likelihood values, Bayes Factor and Bayesian 

Information Criterion (BIC).  

4.6.3 Bayesian Information Criterion (BIC) 

A range of statistical performance indicators for model fit has been discussed.  Some 

of these statistics come from developments in classical probability theory. Classical 

probability theory relies upon observation of data and those subscribing to this theory 

are sometimes referred to as frequentists. Frequentists rely upon hypothesis testing 

and accept or reject a given hypothesis on the basis of a probability value (p).

However, the Bayesian school of thought relies on conditional probability, that is, 

prior information is taken into account when finding the probability of another event 

(Berenson, Levine and Krehbiel, 2002; Davison, 2003). While Bayes developed the 

initial work that supports this school of thought in the 18
th

 century, the work of 

Laplace, and then later Jeffreys, significantly contributed to its advancement 

(Davison, 2003). 

The performance statistics discussed thus far (and others) do not penalise selection of 

complex models or do not provide sufficient penalty (for example, the use of the chi-

squared statistic). The BIC, which is a Bayesian development, does impose a penalty 

for complexity and is therefore better suited for model selection purposes (Tashman 

and Hoover, 2001). BIC is given by: 
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 BIC = nkLL ln2

where

LL is the log likelihood, 

k is the number of parameters, and 

n is the number of observations (Myung, Pitt and Kim, 2005). 

Another similar model selection statistic is the Akaike Information Criterion (AIC) 

(Tashman and Hoover, 2001). The AIC formula does not include the number of 

observations. Armstrong (2001) suggests that there is some preference by 

practitioners for using BIC over AIC. Hastie, Tibshirani and Friedman (2001), 

however, state that there is no clear choice between the BIC and AIC. For very large 

n, the AIC will lead to selection of a model that is too complex (Hastie, Tibshirani and 

Friedman, 2001). BIC on the other hand will give consistent model selection for large 

n, and as n the probability of BIC selecting the correct model, assuming that the 

true and correct model has been fitted to the data, approaches 1. For finite samples, 

however, the heavier penalty placed upon complexity by BIC may lead to the 

selection of less complex models with the consequence of under fitting or a too 

parsimonious model (Hastie, Tibshirani and Friedman, 2001; Davison, 2003). 

Contrary to the views of Hastie, Tibshirani and Friedman (2001), Kass and Raftery 

(1995) have indicated that in the more usual situation BIC will tend to favour simpler 

models (when compared to the AIC), is easy to use and does not require evaluation of 

prior distributions. They conclude that it is well suited for summarizing results in 

scientific communication. Given the inclusion of the number of data in the BIC 
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calculation, and taking into consideration the views of Kass and Raftery (1995), the 

BIC statistics was used in this research.  

One potential criticism of the BIC (and also of the AIC) is that it does not take into 

account the functional form of models (Pitt and Myung, 2002). The functional form of 

a model is the way in which model parameters are combined. Thus, it is possible to 

have two models with the same number of parameters, but have the model parameters 

used in different ways (for example, additive versus multiplicative), and assuming the 

model fit was similar the BIC would not be of use in selecting between the two 

models. Model selection methods, such as the Bayesian model selection and 

minimum description length, do take into account the functional form of models (Pitt 

and Myung, 2002). Ideally functional form would have been taken into account in this 

research, but it is computationally difficult. Additionally, it was considered that the 

BIC and Bayes Factor approximations would be sufficiently accurate given 

conservative interpretation of results, and the availability of large and informative 

data sets when comparing models with similar functional forms. 

The calculation of the BIC enables the comparison of models through the calculation 

of the Bayes factor, which is now discussed. 

4.6.4 Bayes factor 

According to Goodman (1999), the Bayes factor provides a comparison of how well 

the data is predicted by two hypotheses. Furthermore, it is objective and can be used 

as a measure of evidential strength in lieu of the frequentists’ p value. The Bayes 

factor ( ijB ) for model selection is given by: 
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 where D is the training data and M is the model (Hastie, Tibshirani 

and Friedman, 2001).  

In this case model Mi is preferred over Mj if the odds are greater than one (Hastie, 

Tibshirani and Friedman, 2001). Although model Mi may be preferred over Mj the 

strength of the evidence in making this choice needs to be considered (Goodman, 

1999). Various ranges of the Bayes factor have been reported in relation to the 

strength of the evidence provided for accepting (in this case) one model over another  

(for example, Jeffreys, 1967; Kass and Raftery, 1995; Goodman, 1999). A Bayes 

factor that is low provides weak evidence for accepting one model over another, while 

a Bayes factor that is large (for example, greater than 150) provides very strong 

evidence.

The Bayes factor (Bij) is difficult to calculate (Kass and Raftery, 1995), but may be 

approximated by: 

jiij BICBICBln2

Rearrangement of the above equation yields the Bayes factor, Bij. The above can be 

used and the difference between the two BIC values is referred to as “log odds”. 

These are posterior odds and according to Berger (1985) is something that many more 

people prefer instead of using probabilities. 
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While the BIC provides a statistic that can be used for model selection purposes, it 

does not take into account the qualitative need of increasing complexity, that is, the 

value of the extra information gained from the inclusion of additional model 

complexity. Thus, the BIC, and therefore also the Bayes factor, must be used in 

conjunction with judgment to facilitate selection of the most appropriate model. 

This research was concerned, in part, with model selection and thus use was made of 

the BIC and Bayes factor.

4.6.5 Cross validation and Bayes factor 

As previously indicated (see section 4.3.2), Armstrong (1985) and Hastie, Tibshirani 

and Friedman (2001) support the notion of model testing using test data. This is 

known as cross validation and aids in the selection of models that generalise better 

(that is, cross validation should highlight when models fit the test data poorly as a 

consequence of increased complexity or other factors) Kass and Raftery (1995) 

indicate that such an approach can be adopted no matter whether an individual holds 

Bayesianist or frequentist views. Cross validation provides a practical solution to 

model selection. 

Cross validation, however, relies upon the existence of two sets of data – the training 

and test data. Ideally the training and test data should be independent and 

representative. For example, in the case of bed occupancy data the variation that 

occurs across a year should be captured. Thus, splitting the data into two six month 

periods would lead to independent training and test data, but the variation attributable 
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to seasonality (for example, summer and winter) would not be represented similarly in 

both data sets. An alternative method of generating the test data set is to withhold 

some of the training data (Hastie, Tibshirani and Friedman, 2001). In the case of a 

annual bed occupancy model this would require random selection of records relating 

to approximately 180 days across the year for the training and test data sets. The 

downside to such an approach is that the data available for model training is reduced 

which is not preferred (see Chapter 5 for results relating to the number of data). While 

repeated sampling of the data to create multiple training and test data sets, known as 

bootstrapping methods (Hastie, Tibshirani and Friedman, 2001), may increase the 

confidence about the resultant model, it necessitates additional model development 

and testing time. Furthermore, in some instances it may be difficult to split the 

available data into two parts, thus leading to the situation where no test data is 

available.

In the absence of test data, the Bayes factor, as approximated by the Bayesian 

information criterion enables model selection decisions to occur and thereby reducing 

the possibility of selection of overly complex models. While there is theoretical 

support for using the Bayes factor for model selection purposes (see section 4.6.4), it 

perhaps provides a less practical approach to model selection compared to cross 

validation.  Furthermore, the adoption of this approach for model selection purposes 

can lead to model development using all the available data (that is, there is no 

requirement for data splitting to create a test data set). 

Kass and Raftery (1995) indicate that the degree to which the forecasts from a model 

predict the future ultimately determines how well a modelling task has succeeded. 
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The aim of model selection using either cross validation or the Bayesian information 

criterion is to select a model that generalise well and that can be used for forecasting. 

Thus, while it may be expected that the same models may not be chosen using these 

techniques, it would be hoped that the models would be sufficiently close to achieve 

forecasts that are reasonably similar. 

4.7 Conclusion

The purpose of this chapter was to provide the necessary background and theoretical 

foundations relating to the development of models of hospital bed occupancy and 

model selection techniques that relate to the research presented in the remainder of 

this thesis. This has been done. 

The subsequent chapters present the methodologies and results of the modelling 

approaches used in my research. Chapter 5 reports on whether the model originally 

proposed by Harrison and Millard (1991) for modelling geriatric hospital patient bed 

occupancy can be applied to an Australian acute care sector hospital. Additionally, the 

questions of how much data should be used to model acute hospital bed occupancy 

and the level of model complexity required for compartmental flow models are 

explored.
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Chapter 5

Choice of Models for the Analysis and Forecasting of Acute 
Care Hospital Beds  

In this chapter I investigate whether the model originally proposed by Harrison and 

Millard (1991) for modelling geriatric hospital patient bed occupancy can be applied 

to an Australian acute care sector hospital. Additionally, I address the questions of 

how much data should be used to model acute hospital bed occupancy and the level of 

model complexity required for compartmental flow models. The chapter has the 

following structure: 

5.1 Introduction ............................................................................................... 161 
5.2 Methodology ............................................................................................. 162 
5.2.1  The Harrison and Millard Approach........................................................ 162 
5.2.2  Methodology 1 – using all the data.......................................................... 162
5.3 Results....................................................................................................... 172 
5.4 Discussion ................................................................................................. 184 
5.4.1  Does the Model Succeed in Describing Acute Care Data?....................... 184 
5.4.2  Validity and Reliability ........................................................................... 186 
5.4.3  Should the Single Day Census Style of Model Continue?........................ 187 
5.4.5  The Fit and Complexity Trade-off........................................................... 189 
5.4.5  Other Issues ............................................................................................ 189 
5.5 Conclusion................................................................................................. 190 
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5.1 Introduction 

The background regarding the need for this research has been covered in previous 

chapters and will not, in the main, be reiterated here. It is useful, however, to highlight 

the two areas in which the issue of data and model application can be explored, 

namely: 

1. Increasing the number of data (that is, census type models versus models that 

are based upon consideration of more data), and 

2. Creating more models to describe smaller parts of the period being modelled 

that were previously described with fewer models (that is, nesting models).  

Consequently, research was undertaken to: 

� Further validate that the compartmental flow model could be used to describe 

acute care hospital data. 

� Explore the ramifications of increasing the complexity of the bed occupancy 

compartmental modelling approach promulgated by Harrison and Millard 

(1991) and others (Harrison, 1994; McClean and Millard, 1994, 1995 and 

1998), and  

� Demonstrate the use of measures that can be applied to such work to help 

identify the trade-off between the level of model fit, complexity and 

generalisation.     

The results of the work investigating model complexity have been presented at a 

conference (Mackay and Lee, 2004a) and also have been published in a paper 

(Mackay and Lee, 2005). 
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5.2 Methodology 

As previously indicated (see section 4.3) my intent is not to consider alternative 

model classes, but to focus on different applications of the compartmental flow model 

originally proposed by Harrison and Millard (1991). There are three areas in which 

the issue of data and model application can be explored, namely: 

1. Increasing the number of data (that is, census type models versus models that 

are based upon consideration of more data) 

2. Creating more models to describe smaller parts of the period being modelled 

that were previously described with fewer models (that is, nesting models), 

and  

3. Creating models that adjust the compartmental flow models for other factors, 

such as seasonal variation, without the need to create multiple compartmental 

flow models.  

The methodology dealing with the first two areas of exploration specified above is 

now presented. The methodology dealing with the last area of interest is covered in 

later chapters (see Chapters 6 and 8). 

5.2.1 The Harrison and Millard Approach 

It is useful to revisit the approach adopted by Harrison and Millard (1991) in their 

seminal work in order that the differences in methodologies used for this research can 

be more easily understood. 

The approach adopted by Harrison and Millard (1991) relied upon taking snapshots or 

censuses of patient data. This is illustrated in Figure 30. 
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There are two possible types of occupancy data censuses that could be undertaken, 

namely one based on a date and the other based upon a patient cohort. Harrison and 

Millard (1991) chose to census on the basis of date.  

Harrison and Millard (1991) found that a mixed exponential model fitted the data 

well. This can be represented as: 

 Y = Ae-bx + Ce-dx, where 

 A = the number of occupied beds in the short-stay compartment 

 b = the flow rate through the short-stay compartment 

Figure 30: Harrison and Millard (1991) used a bed occupancy census from a 
single day, which is highlighted by the data enclosed in the red box. An 
alternative approach could have been to census a patient cohort, which is 
represented by the shaded numbers (along the diagonal). Ultimately, 
patients are discharged, which is not shown on the diagram.  

Reverse cumulative profile of days since admitted
0 1 2 3 4 5 6 7 8 9 10 …

1-Sep-94 45 40 36 31 27 27 25 21 19 18 17
2-Sep-94 42 39 35 31 28 24 24 23 20 18 17
3-Sep-94 37 36 34 31 27 25 21 21 20 18 17
4-Sep-94 40 37 36 34 31 27 25 21 21 20 18 continues
5-Sep-94 36 32 29 28 26 24 21 19 16 16 16
6-Sep-94 31 28 24 22 22 20 18 15 13 11 11
7-Sep-94 32 25 22 20 18 18 16 15 13 11 9
8-Sep-94 36 30 23 20 18 16 16 15 14 12 11
9-Sep-94 39 30 25 19 17 15 14 14 13 12 11
10-Sep-94 35 30 25 21 15 14 12 11 11 11 10
11-Sep-94 39 33 28 23 19 14 13 11 10 10 10
12-Sep-94 46 36 30 26 22 18 14 13 11 10 10
13-Sep-94 50 44 35 29 26 22 18 14 13 11 10
14-Sep-94 48 38 33 27 21 20 17 13 11 11 9

continues

Date
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 C = the number of occupied beds in the long-stay compartment, and 

 d = the flow rate through the long-stay compartment. 

The model parameters can be used to generate a range of useful information about bed 

occupancy (see Appendix II for the performance statistics formulae) and can facilitate 

what-if scenario testing. As previously stated, this modelling was incorporated in the 

BOMPS software package, a decision support system (McClean and Millard, 1993).  

  

The stated assumption (Harrison and Millard, 1991) underlying the ability to census 

using a single date is that the occupancy profile will be relatively stable and thus a 

patient occupancy census taken on day x will be very similar to that taken on days y or 

z or any other day. Another assumption is that patient mix is homogenous (Harrison 

and Millard, 1991; McClean and Millard, 1993). Using a single day census is very 

economical and providing the assumption holds true is therefore not unreasonable. 

These assumptions would also apply to a census based upon a patient cohort. An 

occupancy profile based upon a patient cohort census will be made up of the differing 

LOS of patients admitted on the same date. Taking a census based upon a given date 

implies an interest in the activities of the hospital service on any given day as opposed 

to an interest in a particular group of patients. Consideration of occupancy profiles 

based upon patient cohorts has received attention more recently (Harrison, Mackay 

and Schaefer, 2005). 

The census methodology, however, is not free from potential criticism. St George 

(1988) and MacStravic (2001) have reported that an annual average model of acute 
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hospital services will be insufficient to enable bed planning, as the variation within 

the data will not be detected. Variation in the data stems from day of week and 

seasonal differences in workloads as well as other factors. The exception to this will 

be in the case of a stable system, where the term “system” refers to the factors that 

generate the observed patient LOS profile. While Millard and his colleagues have 

stated that the system used for the development of the model was stable (for example, 

Harrison and Millard, 1991; McClean and Millard, 1993), evidence exists that 

hospital systems are generally unstable and are challenged by differing workload 

demands at different times of the week or year (St George, 1988; Mackay and 

Gorunescu, 2001; MacStravic, 2001). Millard and his colleagues also acknowledged 

system instability in later work (for example, Taylor, McClean and Millard, 1996; 

Harrison, 2001). 

As previously stated (see Chapter 4), useful models arise when the model is consistent 

with knowledge of the system under study and that the explanations derived from the 

model match experience with the system (Davison, 2003). From the work I have 

undertaken in the Australian acute care hospital setting, it is known that the system is 

not stable and that variation occurs on a weekly basis (Mackay and Gorunescu, 2001) 

and across the year (Beltchev and Mackay, 2000). Furthermore, the research on 

Australian data initially undertaken using the BOMPS software package made use of 

the “average” data option as opposed to the “census” option and the resultant models 

were found to fit the data well (Mackay and Millard, 1999; Millard, Mackay, 

Vasilikas and Christodoulou, 2000). Consequently, the use of the census approach 

does not underpin the modelling used for this research. Comparison to census models, 

however, is made. 
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As previously stated (see Chapter 2), the work of Harrison and Millard (1991) 

provided a deterministic model of bed occupancy. The work of McClean and Millard 

(for example see McClean and Millard, 1994) introduced uncertainty and involved the 

development of a stochastic model of bed occupancy.   

The reliance upon the census methodology by Harrison and Millard (1991) and the 

lack of consideration about model complexity and data needs in early research around 

compartmental flow models and acute care hospitals (Mackay and Millard, 1999; 

Millard, Mackay, Vasilakis and Christodoulou, 2000; Mackay, 2001) suggests new 

approaches to research. The methodology used to address the questions of how much 

data should be used to model acute hospital bed occupancy and the level of model 

complexity required for compartmental flow models is now described. 

5.2.2 Methodology 1 – using all the data 

De-identified data were used as the basis for this research. The data related to patients 

treated within the Medical Division and therefore excluded the majority of patients 

who had been admitted for surgical procedures. The contextual details about the data 

were described in Chapter 3 (see sections 3.2 and 3.3). 

In keeping with Davison’s (2003) observations that useful models arise when the 

model is consistent with knowledge of the system under study and that the 

explanations derived from the model match experience with the system, the elective 

same-day patients were excluded from this analysis. While it is likely that same-day 

elective bed occupancy could also be modelled using compartmental flow models, it 
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is recognised that elective same-day patients are managed quite separately to other 

admitted patients. For example, different patients use some same-day elective beds 

several times during the same day. The same-day service may only operate on certain 

days of the week and for certain hours each day (that is, the beds are generally not 

available for patients admitted overnight or for emergency care). Thus, the business 

process of patient management is different. The ability to use compartmental flow 

models to model elective same-day patient activity is considered briefly in Chapter 

10. 

The data included the date and time of patient admission and discharge. A subset of 

the data was used to create a profile of the busiest time of day at the hospital based 

upon bed occupancy at various times of the day using the admission and discharge 

data. As a consequence of this analysis, instead of using midnight census data for the 

remainder of the analysis, which was the approach used by Harrison and Millard 

(1991), a midday day bed census profile was created for each day of 1998 and 1999 

calendar years. The 1998 calendar year data was used for model training, while the 

1999 data was retained for model testing. 

The profiles provided a count of how many patients were in bed at midday for a given 

date and how many days patients had been in bed (that is, days since admission). The 

“days since admission” profiles did not indicate the total number of beds occupied on 

a given day for all patients admitted on that day or before, which is how the data 

would be represented in BOMPS software. To put the data in the format of that used 

in the BOMPS software, a reverse cumulative distribution was created (a type of 

ogive). This profile showed how many patients had been in bed for at least x days. 
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Thus, at 0 days, all patients currently admitted at the midday census would have been 

in bed for at least 0 days. The difference between the profile creation used in this 

approach and that adopted by Harrison and Millard (1991) is shown in Figure 31. 

  

The advantage of using all of the data was that the resultant model would be based not 

upon a single day’s occupancy profile, but that of a year, which included various 

sources of variation (for example, daily and monthly variation). Thus, the model 

should better reflect the period and therefore be more useful for decision-making 

purposes. 

The BOMPS software uses the least squares method to determine the model 

parameters that best-fit the cumulative pattern of bed occupancy. This assumes that 

Figure 31: All of the data is captured and used in this methodology as 
suggested by the box surrounding the data, whereas the Harrison and 
Millard (1991) approach is based upon a single day census approach. 

Reverse cumulative profile of days since admitted
0 1 2 3 4 5 6 7 8 9 10 …

1-Sep-94 45 40 36 31 27 27 25 21 19 18 17
2-Sep-94 42 39 35 31 28 24 24 23 20 18 17
3-Sep-94 37 36 34 31 27 25 21 21 20 18 17
4-Sep-94 40 37 36 34 31 27 25 21 21 20 18 continues
5-Sep-94 36 32 29 28 26 24 21 19 16 16 16
6-Sep-94 31 28 24 22 22 20 18 15 13 11 11
7-Sep-94 32 25 22 20 18 18 16 15 13 11 9
8-Sep-94 36 30 23 20 18 16 16 15 14 12 11
9-Sep-94 39 30 25 19 17 15 14 14 13 12 11
10-Sep-94 35 30 25 21 15 14 12 11 11 11 10
11-Sep-94 39 33 28 23 19 14 13 11 10 10 10
12-Sep-94 46 36 30 26 22 18 14 13 11 10 10
13-Sep-94 50 44 35 29 26 22 18 14 13 11 10
14-Sep-94 48 38 33 27 21 20 17 13 11 11 9

Date
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each count is drawn from a Gaussian distribution with common variance. A more 

common statistical assumption in modeling count data is that the counts follow a 

Poisson distribution (for example, see Kohler, 1985). Previous research involving the 

counts that define length of stay distributions in hospitals has used this assumption 

successfully (for example, Wang, Yau and Lee 2002; Xiao, Lee and Vemuri 1999). 

Although BOMPS relied upon least squares for optimization of the curve fitting, 

maximum likelihood was chosen in preference. A two-compartment model for a range 

of scenarios was fitted to the training data using the method of maximum likelihood. 

Technically, this was done by minimising the negative log likelihood. 

The model fitting process may be terminated too soon if the optimised parameter, 

which in this case was the maximum likelihood, reaches a local optimum. This 

situation is analogous to the presence of local peaks being present on a larger 

mountain – it is possible to reach a local peak without actually reaching the top of the 

mountain as illustrated in Figure 32.  
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Consequently, to avoid early termination of the model fitting process, the established 

technique of seeding of parameters was employed (Motulsky and Ransnas, 1987; 

Powell and Baker, 2004). Seeding involves the setting of the starting point for the 

fitting of the model parameters. Seeding did not always result in improved model fit 

and nor was it used for the fitting of the most complex models tested, as the 

computing time was too great.   

With the exception of two models, all models were based upon commonly used 

periods that describe periods of time. For example, an annual model, a seasonal 

model, a weekly model and models that separated the weekend periods from the 

weekdays. Two models were based upon the analysis of the deviation of the 

underlying data from the annual average model.  

Trough

Desired outcome

Local optimum

Model
Fit

Metric

Model fitting starting point

Trough

Desired outcome

Local optimum

Model
Fit

Metric

Model fitting starting point

Figure 32: In order to avoid early termination of the model optimisation process, seeding was used. 
Seeding provided a starting point for optimisation that resulted in the model fitting process being able to 
overcome the presence of local optima. 
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Single day census profiles were also created for purposes of comparison. The profiles 

were generated on the basis of random selection of dates during the training data 

period, as well as choosing the days of minimum and maximum bed occupancy. 

The goodness-of-fit achieved by optimisation was measured for models against the 

training data and against the test data. The test data were based upon the 1999 

calendar year, although the period was amended to ensure that there was alignment of 

days of the week between the training and test data sets. Although a variety of 

measures of goodness-of-fit are possible (Hastie, Tibshirani and Friedman, 2001), the 

absolute error was used as well as the likelihood measure. 

  

In order to test whether any benefit was derived from using a single day census type 

model as opposed to one that relied upon being trained with more data, single day 

census models were also generated on the basis of random selection of dates during 

the training data period, as well as choosing the days of minimum and maximum bed 

occupancy. These models were fitted in the same manner described for the models 

based upon consideration of more data. 

A range of software was used to conduct this research. SPSS® for Windows (various 

versions) was used to generate the occupancy profile data. The data was consolidated 

using Microsoft® Excel. Microsoft® Excel was used for general analysis of the data 

sets and model results. Matlab® (version 6.1.0450, Release 12.1) was used to create 

the bed occupancy models. 
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5.3 Results 

Table 7 details the types of models created for modelling acute care hospital bed 

occupancy training data from the Flinders Medical Centre. The training period data 

represented one calendar year. 

Most models were based upon disaggregation of the training data into periods that 

coincided with calendar events or seasonal events, where the term “seasonal” related 

to the common weather patterns of summer, autumn, spring and winter, as opposed to 

the specialised use of the term in operational research. Increased model complexity 

was achieved in two ways: increasing the complexity of the same model, which 

resulted in nested models; and model redesign, which resulted in a new model. An 

example of a nested model is where the less complex model is further disaggregated 

into smaller parts, such as the monthly model becoming the weekly model. 

Table 7: Types of models created and analysed. The number of model parameters reflects the 
complexity of the model, with the annual average being the least complex model. 

Model Description
Number of 
parameters

Increasing complexity 
(compared to annual 

average model)
annual average 4
annual with weekends 8 2  times
seasonal 8 2  times
seasonal with weekends 16 4  times
based upon annual model residuals 36 9  times
based upon annual model residuals - more detail 40 10  times
monthly 48 12  times
monthly with weeks 96 24  times
fortnightly 108 27  times
weekly 212 53  times
fortnightly with weekends 216 54  times
weekly with weekends 424 106  times
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Two models were based upon disaggregation of the training data into periods that 

reflected similar patterns in the residuals arising from comparison of the total actual 

bed occupancy with the total occupancy arising from the annual average model. 

While these models were still nested in terms of sitting under the annual average 

model, they represented an alternative model design (that is, they were not based upon 

calendar or seasonal events, but residual error patterns). 

The annual average model represents the least complex model used. An alternative 

manner of representing the increase in model complexity is expressing the number of 

parameters relative to simplest model. Thus, based on this approach the weekly model 

is 53 times as complex as the annual model (see Table 7). 

In keeping with the original methodology used by Harrison and Millard (1991), 

census models were also created for single days from the training period. Census 

dates were randomly generated until dates for each day of the week were achieved.  

The training models were optimised on the basis of maximum log-likelihoods. As 

previously indicated, this was done by minimising the negative log-likelihood. The 

smaller these negative log-likelihood values, the stronger the likelihood and better the 

model fitted the training data. Cross validation using the test data was performed to 

determine which model generalised best. 

The absolute error for the census models and the annual average models was 

calculated for the training and test period. The absolute error for each census model 
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was also calculated using the training data from the corresponding census day. The 

errors are compared in Figure 33. 
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Figure 34 graphically represents the results of the model fit using the maximum 

likelihood as the performance measure. Model fit improved with increasing 

complexity as expected. The fit of the models to the test data, however, did not show 

an improvement with overly complex models. Rather the test showed initial 

improvement with a slight increase in complexity until the seasonal model was 

reached, after which model performance declined slightly, but remained stable.  
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The fit of the single day census models are also shown in Figure 35, which confirms 

the findings shown in Figure 34 that the annual average model performance was 

better than that of any census model evaluated. The absolute errors for all models are 

reported in Table 8. 

Table 8: Comparative model fit, measured in terms of absolute errors. The complex models perform 
better than the single day census models. 

The test data was checked twice. The first analysis involved fitting each model to the 

test year data. The second analysis involved adjusting each model in a consistent 

manner to allow for policy changes that affected the number of beds available. Figure 

35 illustrates the differences between the two years in terms of the number of beds 

Training 
data - day

Training 
data - year

Test data 
- year

Single Day Census Models
Tuesday - random selection 4 102 920 788
Saturday - random selection 4 84 442 420
Thursday - random selection 4 65 663 542
Monday - random selection 4 63 921 794
Wednesday - random selection 4 73 649 535
Sunday - random selection 4 71 872 792
Friday - random selection 4 101 1754 1647
Monday - maximum occupancy 4 96 494 460
Friday - minimum occupancy 4 49 1134 1024
Complex Models
annual average 4 226 228
annual with weekends 8 225 227
seasonal 8 188 214
seasonal with weekends 16 181 214
based upon annual model residuals 36 149 244
based upon annual model residuals - more detail 40 143 235
monthly 48 136 235
monthly with weeks 96 131 235
fortnightly 108 125 237
weekly 212 114 242
fortnightly with weekends 216 117 236
weekly with weekends 424 108 243

Model Description
No. of 

parameters

Absolute Errors Per Day
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made available. The second analysis was required as the health care system under 

examination was not static and consideration of model performance without such 

adjustment may not provide a correct reflection of model performance.   

Figure 35: Comparison of available beds during the training and test years. 

While the log-likelihood values were of use in terms of model optimisation, other 

measures, such as the correlation and absolute error, may be of value in interpretation 

of the fit between models and data. The correlation between the model performance 

with and without adjustment for policy change and the various models were similar as 

shown in Table 9.  
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Table 9: Correlation between models, training and test data. 

It can be seen that the correlations between the models and the training and test data 

were all high, indicating that the fit between the model and the data was good. The 

correlations also exhibit similar trends as the log-likelihood data and absolute error 

data, that is correlations improved with complexity in relation to the training data, but 

in terms of generalisation model performance, was best for the seasonal models. 

Figures 36 to 38 illustrate the performance of the models in relation to the total bed 

occupancy. Total bed occupancy represents only a single data point of the data fitted 

to the models on each day.     

annual average 0.975 0.979 0.979
annual with weekends 0.976 0.979 0.979
seasonal 0.984 0.983 0.982
seasonal with weekends 0.985 0.984 0.983
based upon annual model residuals 0.990 0.979 0.978
based upon annual model residuals - more detail 0.991 0.980 0.979
monthly 0.992 0.981 0.979
monthly with weeks 0.993 0.981 0.979
fortnightly 0.993 0.980 0.977
weekly 0.994 0.979 0.976
fortnightly with weekends 0.994 0.981 0.978
weekly with weekends 0.995 0.979 0.976

Model Description
Correlation 

Model v 
Training Data

Correlation Model v 
Test Data adjusted for 

policy change

Correlation Model 
v Test Data
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It can be seen that the fit of the training data total occupancy profile achieved by the 

model improved as model complexity increased. Increased model complexity, 

however, was not associated with improved model fit to test data total occupancy. The 

adjustment made to the models to reflect the changes in the total available bed 

numbers did result in a closer fit between the test data total occupancy and model total 

occupancy profiles. 

5.4 Discussion 

5.4.1 Does the Model Succeed in Describing Acute Care Data? 

Previous work using BOMPS suggested that acute care hospital data could be 

described well by a double compartmental flow model (see Mackay and Millard, 

1999; Millard, Mackay, Vasilakis and Christodoulou, 2000; Mackay, 2001). Other 

work also supports the use of the compartmental flow model for modelling acute care 

activity (Riddington and Kearney, 1994; and Scully and Kearney, 1994). The results 

obtained from the methodology used in this work have confirmed these findings. 

The data from an acute care medical service have been described well by the 

compartmental flow models (see Figures 33 to 38 and Tables 7 and 8). Based upon 

visual observation of total occupancy and a range of statistics, the compartmental 

models fit the data well in both instances.  

There are limitations to the extent that I have validated the use of compartmental flow 

models being of use in describing acute hospital data, including: 

• The modelling has excluded same-day elective patient data as the management 

of these patients often relies upon a different model of practice (notably the use 
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of one bed for many patients in a single day). This is discussed in more detail in 

Chapter 10. 

• The focus on medical service provision. The way services are clustered varies 

from hospital to hospital. However, it is evident that surgical, obstetric, mental 

health and paediatric services have not been included in this analysis. 

• The visualisation of the fit has been limited to consideration of total occupancy 

(see Figures 36 to 38) as plotting the data and model requires a three 

dimensional graph that is not easily interpreted (that is, there are occupancy 

profiles (data) for each day of the year and numerous models).  

Millard, Mackay, Vasilakis and Christodoulou (2000) found that compartmental 

models described surgical data from an Australian acute care hospital. There is no 

reason to suggest that other acute care services will not be able to be similarly 

described using compartmental models. The exceptions will occur if the business 

model of how services are provided gives rise to fixed time service provision and this 

may be the case in relation to some aspects of obstetric activities due to the push to 

reduce length of stay to a fixed period of service for particular types of deliveries and 

also in relation to the provision of elective same-day patient services (see Chapter 10). 

The issue regarding visualisation of the model fit arises from the difficulty of creating 

a graph that can be interpreted. For a model developed upon a census approach there 

is little difficulty in creating an appropriate graph – there are only two lines to 

represent, namely the data and the resultant model. Whereas for a model based upon 

more data, the ability to represent the data and the resultant model becomes more 

complex. For example, it is difficult to create a three dimensional graph that 
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represents data from 365 days and the resulting models and can still be easily 

interpreted. The use of the performance statistics overcomes this limitation to some 

extent. Given the resultant statistics there is no reason not to be confident of the model 

fit. Furthermore, the development of the second methodology provides a complete 

remedy (see Chapter 6). 

5.4.2 Validity and Reliability 

As discussed in Chapter 4, there are three tests of model validity, namely: face 

validity, predictive validity and construct validity (Armstrong, 1985). Face validity is 

the weakest of the validity tests and relies upon the judgment of experts in the field in 

which the modelling is occurring. Bed occupancy compartmental flow models for 

geriatric services already have established face validity through the involvement of 

Peter Millard, who was, at the time the original research was undertaken, a clinician 

in charge of a large geriatric health service in the England. Furthermore, face validity 

can be claimed on the basis of the involvement of mathematicians and statisticians 

such as Gary Harrison and Sally McClean, co-authors on bed occupancy flow models 

with Peter Millard, who can attest to the reasonableness of the modelling approach. 

Face validity of the model in relation to the acute care sector is achieved through 

reliance upon the previous work with the geriatric data, but also my views as an 

expert in the analysis of acute care health services. 

Predictive validity relates to determining whether the model inputs are valid in terms 

of being used to create the intended model output (Armstrong, 1985), or whether the 

model is useful for making forecasts (Armstrong, 2001). The ability to generate a 

model that, subject to the incorporation of extraneous factors such as policy change, 
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provides a good fit of the test data confirms the predictive validity of the approach. In 

terms of explanatory power, Chapter 11 provides an illustration of how the 

explanatory power of the model can be harnessed (see section 11.3.1). 

Constructive validity is achieved if a measurement is measuring what is intended to 

be measured (Armstrong, 1985). In terms of the patient flow occupancy models this is 

clearly the case, because the patient occupancy profile is the data on which the 

compartmental flow model of bed occupancy is based. Three separate pieces of 

research support this: the creation of a compartmental flow model for a chest pain 

service (Mackay and Millard, 1999) using BOMPS; the modelling of the surgical 

service using BOMPS (Millard, Mackay, Vasilakis and Christodoulou, 2000); and this 

research. 

In terms of meeting the reliability criterion, it has been shown that the creation of bed 

occupancy compartmental flow models can be created using the same approach as 

that of Harrison and Millard (1991). For the acute care compartmental flow modelling 

reliance can be placed upon this research and also prior research using BOMPS 

(Mackay and Millard, 1999; Millard, Mackay, Vasilakis and Christodoulou, 2000). 

5.4.3 Should the Single Day Census Style of Model Continue? 

There are various approaches to determining whether a model describes the 

underlying data. The employment of simple statistics, such as least squares or 

correlations has been used, as has the visual inspection of graphed results. Such an 

approach is recommended in the manual that accompanies the BOMPS software 

package (BOMPS, 1992). This approach is not inconsistent with methods suggested 
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by Hastie, Tibshirani and Friedman (2001), in which least squares and the squared 

error are listed as typical examples of measures used to analyse the performance of 

models. These methods may provide those interpreting the model output with some 

guide as to whether the modelling has described the underlying data well or not.  

The data of choice for the majority of work undertaken by Millard and his colleagues 

has been the single day census. The limitations of such an approach are described in 

section 5.2.1. 

Model selection on the basis of model performance in relation to training data only is 

likely to lead to an over-fitted model that describes the training data well, but 

generalises poorly (Hastie, Tibshirani and Friedman, 2001). In order to determine if 

the model fits the data well it is necessary to analyse the model performance against 

both training and test data. Performance against both the training and test data was 

undertaken in this research and is shown in Figures 33 and 34, and Table 8 for both 

census models and models based upon more data.  

The findings support the obvious point that more data are always better, providing 

appropriate model selection methods are used. Models learned from more data 

perform better than models constructed on the basis of a single census day when 

applied to an extended period of time, such as a year using data relating to medical 

patients from an acute care hospital. In many ways this is to be expected, as such 

models are more able to capture the variation across the year in the acute care setting.  
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5.4.4 The Fit and Complexity Trade-off. 

As previously described in Chapter 4, model fit can be measured in a number of ways. 

In this research the maximum likelihood was used as a means of gauging model fit, 

along with measures such as correlation and absolute error. 

Given the same level of data, increasing model complexity led to a better fit of the 

underlying data as might be expected (see Table 8 – absolute errors, Table 9 – 

correlations, and Figure 34 – maximum likelihood). While increased model 

complexity may result in a model that fits the training data better than a simpler 

model, the same results cannot be guaranteed when applying the models for predictive 

purposes as illustrated by the results for all model performance statistics used. The 

analysis has shown that increasing model complexity did result in over-fitting and 

parsimony was achieved with a relatively simple model. This finding is illustrated in 

Figures 36 to 38, which show the outcome on total bed occupancy when the preferred 

model and other models are used. It can be seen that while improved fit was achieved 

to the training data with the more complex models, this was not the case when the test 

data was evaluated. 

5.4.5 Other Issues 

The Influence of the Weather 

The fact that the complexity of the seasonal model was found to be preferred to that 

over the simpler annual average model suggests that the weather is important in 

determining hospital bed requirements. While this finding may not be of great 

surprise to those working in the hospital sector, the influence of the weather on 
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resource use or planning does not appear to have been well studied in a resource 

allocation context, despite the research that occurs at the disease level. 

The Preferred Model and Useability 

The annual average bed occupancy compartmental flow model provides a better fit of 

the data than the census model. As with the census models, there are only four model 

parameters required for this model and it is easy to use this model for scenario testing 

purposes.  

As stated earlier (section 5.2.1), St George (1988) and MacStravic (2001) have 

reported that an annual average model of acute hospital services will be insufficient to 

enable bed planning, as the variation within the data will not be detected. Thus, the 

preferred model as based upon the model selection techniques used in this research 

overcomes the difficulties identified by St George and MacStravic. However, the 

increased model complexity does increase the difficulty of undertaking scenario 

testing. Another approach that captures the variation in the data, while facilitating 

easier scenario testing, is perhaps necessary if such models are to be adopted for real 

world strategic decision-making purposes. Such an approach is developed and 

discussed in Chapter 8. 

5.5 Conclusion 

The issues of how much data is required for modelling and the ability to select models 

of differing complexity are important and have not previously been considered in 

relation to bed occupancy models. The research findings presented in this Chapter 

have: 
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� Provided further validation that the compartmental flow model can be used to 

describe acute care hospital data. 

� Shown that creating models of bed occupancy based upon more data, as opposed 

to basing models upon census data, results in a bed occupancy model that better 

captures the variation in an acute care hospital setting. 

� Shown that model complexity can be increased to better describe occupancy data, 

but that there is a trade-off in ability to generalise, particularly in relation to 

forecasting future periods, and  

� Demonstrated that various approaches, including the use of the maximum 

likelihood statistic, can be applied to help identify the trade-off between the level 

of model fit, complexity and generalisation.   

   

The validation and complexity issues are important as they enable the results of 

hospital occupancy modelling that relies upon compartmental flow models to be used 

for forecasting or generalisation purposes as opposed to gaining an understanding of 

specific historic events. 

While this work has shown that there is a pay-off for increasing the level of model 

complexity, many avenues of model development have yet to be explored. There is 

growing concern in various countries that the methods of providing health services 

are, if not already, approaching a level that cannot be sustained by the population 

(Commission of the European Communities, 1999; World Health Organisation, 2002; 

and OECD, 2003) and this provides support for the need to link population changes to 

bed models. Clearly, the need to understand the relationship between resource use and 

the underlying population structure requires that further development of more 

complex models that capture age and resource use. The issues of linking 
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compartmental flow models to population change and model development will be 

explored in a subsequent chapter (see Chapter 7). The need to consider alternative 

methods of incorporating seasonality, where seasonality relates defined periods of the 

year, is also considered later (see Chapter 8). 

In the next chapter I consider whether bed occupancy compartmental flow models can 

be used for the purpose of evaluation of change and I also introduce the use of the 

BIC statistic in relation to model choice. 
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Chapter 6

Modelling New Zealand Acute Care Occupancy  

In this chapter the investigation into whether the model originally proposed by 

Harrison and Millard (1991) for modelling geriatric hospital patient bed occupancy 

can be applied to the acute care sector is continued using data from a different 

hospital and country. The application of new model selection techniques to the bed 

occupancy compartmental flow modelling approach is also continued. The ability to 

use the model for evaluation of past events is also illustrated. The chapter has the 

following structure: 

6.1 Introduction ............................................................................................ 194 
6.1.1  The Need to Establish Validity............................................................. 194 
6.1.2  Evaluation of Service Change .............................................................. 194 
6.1.3  Application of Model Selection Techniques ......................................... 195 
6.2 Methodology 2 – capturing variation through the average ....................... 195 
6.2.1  Data ..................................................................................................... 195 
6.2.2  Method ................................................................................................ 196 
6.3 Results.................................................................................................... 200 
6.4 Discussion .............................................................................................. 207 
6.4.1  Model Fit ............................................................................................. 207 
6.4.2  Explanatory value ................................................................................ 209 
6.4.3  Alignment with experience .................................................................. 210 
6.4.4  Portability of health system measures and validation............................ 211 
6.4.5  Expert Judgment .................................................................................. 213 
6.4.6  Average models ................................................................................... 214 
6.4.7  Other issues ......................................................................................... 215 
6.5 Conclusion.............................................................................................. 215 
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6.1 Introduction 

6.1.1 The Need to Establish Validity 

The results from the previous chapter validated the use of the compartmental flow 

model for modelling acute care hospital data. It may be argued, however, that the 

validation is limited, because it was a single validation study. The results from the 

analysis of surgical data by Millard, Mackay, Vasilikas and Christodoulou (2000) 

provide further support that the compartmental model can be fitted to acute care 

hospital data. In this study, the patient type was different, that is, the data related to 

surgical patients. The data, however, were sourced from the same hospital as the data 

used in Chapter 5. It could be argued that the practices in the hospital around patient 

length of stay are not necessarily dissimilar between the medical and surgical patients 

(for example, in terms of the application of hospital wide policies) and thus, the 

additional validation is of limited value. Validation using data sourced from a 

different hospital is therefore of use and represents the basis of the investigation 

reported in this chapter. The investigation relies upon data sourced from an acute care 

hospital in New Zealand. 

6.1.2 Evaluation of Service Change 

As previously stated (see Chapter 3), the Internal Medicine Department at HealthCare 

Otago, New Zealand, underwent a period of significant service change. Apart from 

the issue of establishing validity of whether compartmental flow models can be used 

to model acute care, the aim of this investigation was also to determine if the 

compartmental flow models could be used to evaluate service change. 
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The results of the research undertaken for this research were presented at a conference 

(Mackay, Lee, Rae and Millard, 2004; Mackay, Lee and Walton, 2004) and form the 

basis of this chapter.  

6.1.3 Application of Model Selection Techniques 

In the previous two chapters the issue of model selection has been considered. The 

trade-off between increasing model complexity and model fit when generalising to the 

test data was obvious when the maximum likelihood statistic was plotted (see Chapter 

5). The other model performance statistics supported this finding and there was no 

need to introduce the BIC or Bayes factor. 

The BIC statistic and Bayes factor were discussed in Chapter 4 and are introduced in 

this chapter for model selection purposes.  

6.2 Methodology 2 – capturing variation through the average 

6.2.1 Data 

De-identified data were used as the basis for this research. The data related to patients 

treated within the Internal Medicine Department of the Dunedin Hospital, which is 

not a surgical service. Same-day elective patient data were not excluded from the 

analysis. As the census was undertaken at midnight, however, there would be no 

same-day patient data included in the profile. The Dunedin Hospital is part of 

organisation HealthCare Otago. The contextual details about the data were described 

in Chapter 3 (see sections 3.2.2 and 3.3.2). 
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6.2.2 Method 

The results obtained from the modelling using the methodology described in Chapter 

5 (see Methodology 1) guided the development of the methodology described in this 

chapter. This methodology was used to examine the HealthCare Otago data and re-

examine different aspects of the Flinders Medical Centre data (see later chapters). 

The first methodology (see Chapter 5) relied upon every data point being examined in 

order for the model fitting to occur. When analysing data over the period of one year 

this generates a matrix in the order of 365 (days) by 140 (maximum time since 

admission) or 51,100 data points. Fortunately, not every day generated the maximum 

time since admission and the actual number of data was somewhat fewer than the 

maximum possible. 

While such an approach does enable the variation in the data to be captured it is 

inefficient in terms of time. Additionally, while consideration of the entire data set is 

always sufficient (that is, encapsulates all variation), it is not always desirable to 

consider the entire data set (Schervish, 1995) and it is often possible to use a statistic 

to reduce the data and still attain sufficiency.  
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The second method employed relied upon the fact that for each period since 

admission, the data appeared to be Normally distributed. Thus, variation could be 

captured using the average occupancy profile for the year with the standard deviation. 

The number of data points was reduced to a matrix of 2 (average and standard 

deviation) by approximately 100 (maximum time since admission) or 200 data points. 

This is illustrated in Figure 39. 

The reduction in computing time makes the methodology more appealing as a 

potential decision-making tool. A tool that takes several days to generate a bed 

occupancy model was considered unlikely to be tolerated well other than in academic 

exercises. 

Figure 39: The average and standard deviation were calculated for each time period (using the reverse 
cumulative days since admitted profile) as opposed to using all the data points. 

Reverse cumulative profile of days since admitted
0 1 2 3 4 5 6 7 8 9 10 …

1-Sep-94 45 40 36 31 27 27 25 21 19 18 17
2-Sep-94 42 39 35 31 28 24 24 23 20 18 17
3-Sep-94 37 36 34 31 27 25 21 21 20 18 17
4-Sep-94 40 37 36 34 31 27 25 21 21 20 18
5-Sep-94 36 32 29 28 26 24 21 19 16 16 16
6-Sep-94 31 28 24 22 22 20 18 15 13 11 11
7-Sep-94 32 25 22 20 18 18 16 15 13 11 9
8-Sep-94 36 30 23 20 18 16 16 15 14 12 11
9-Sep-94 39 30 25 19 17 15 14 14 13 12 11
10-Sep-94 35 30 25 21 15 14 12 11 11 11 10
11-Sep-94 39 33 28 23 19 14 13 11 10 10 10
12-Sep-94 46 36 30 26 22 18 14 13 11 10 10
13-Sep-94 50 44 35 29 26 22 18 14 13 11 10
14-Sep-94 48 38 33 27 21 20 17 13 11 11 9

average 39.7 34.1 29.6 25.9 22.6 20.3 18.1 16.1 14.6 13.5 12.6
standard deviation 5.8 5.3 5.2 5.0 4.9 4.6 4.4 4.0 3.8 3.6 3.5

Date
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The HealthCare Otago data were provided in census format. Unlike the work relating 

to the data from the other hospital, no analysis of the busiest time of day was 

undertaken and the census was based at midnight. The data covered the period from 

June 1990 to September 2003. The data provided a count of how many patients were 

in bed at midday for a given date and how many days the patients had been in bed 

(that is, days since admission).  

The “days since admission” profiles did not indicate the total number of beds 

occupied on a given day for all patients admitted on that day or before, which is how 

the data are represented in BOMPS software. To put the data in the format of that 

used in the BOMPS software, a reverse cumulative distribution was created (a type of 

ogive). This profile showed how many patients had been in bed for at least x days. 

Thus, at 0 days, all patients currently admitted at the midday census would have been 

in bed for at least 0 days. 

Compartmental models were fitted to the data with the number of compartments 

varying between one and seven. The method of maximum likelihood was used to 

optimize the fit. Technically, this was done by minimizing the negative log likelihood. 

Given that it was assumed that the distribution was Gaussian (or Normal) the 

weighted summed squared error (WSSE) was used for fitting the data, as this is the 

log likelihood in this instance. The formula for the squared error was given in section 

4.6.2. Maris (1993) contends that a more appropriate statistic is one where the squared 

errors ( nSE ) are weighted by the reciprocal of the estimated variances ( 2ˆnσ ) and this 

gives rise to the weighted squared error (WSE) as denoted by: 
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2ˆ n

n
n

SE
WSE

σ
=

Summing the weighted square errors over n gives the weighted sum squared error 

(WSSE). 

As with the first method, seeding of model parameters was also undertaken.

The goodness-of-fit achieved by optimization was measured for the model against the 

training data. Although a variety of measures of goodness-of-fit are possible (Hastie, 

Tibshirani and Friedman, 2001), the absolute error and Bayesian Information 

Criterion (BIC) were used. The BIC value provided information about the level of fit 

and complexity in the absence of using a training and test set of data. The absolute 

error only provided information about model fit to the data. 

A range of software was used to conduct this research. Microsoft® Excel was used to 

generate the occupancy profiles relating to the HealthCare Otago data and also used 

for general analysis of data sets and model results. Matlab® (version 6.1.0450, 

Release 12.1) was used to create the bed occupancy models.  

The methodology detailed in this chapter is relied upon in subsequent chapters. 

Consequently, the methodology presented in subsequent chapters is truncated and 

only aspects of the methodology that were not detailed in this chapter are reported. 
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The results of the research based upon this method are detailed in this chapter and 

also Chapters 7 to 11. 

6.3 Results 

The shape of the occupancy profile was established in Chapter 3 (Figure 17) and was 

consistent with being well described by a mixed exponential equation as used in the 

bed occupancy compartmental flow model. 

Given the volume of data the smallest period to be modelled was a year, which is 

appropriate at the strategic level. The issue of how to best model the data is illustrated 

in Figures 40 to 42 where three of the obvious data groupings are presented. 

Figure 40: One option was to create a model that described all the data as indicated by the blue line. 
The difficulty with this approach was that it covered two periods of different service provision 
arrangements. 
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Figure 42: The simplest splitting of the data that enabled the change in service provision arrangements 
to be captured was to model the pre and post service change periods (the blue line indicates the split of 
the data). 
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Figure 41: The creation of a compartmental flow model of bed occupancy for each year was also 
possible. The blue lines indicate the points where the data was cut in order to achieve these models.  
This represented the most complex solution. 
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Nine configurations of models that captured different time periods in the data were 

investigated and these are detailed in Table 10. The configurations were created on 

the basis of expert opinion and represent a small subset of the total possible 

configurations that could have been investigated. The creation of all possible model 

types, however, was not pragmatic and would lead to the creation of many models 

that would be dismissed as not being useful by those attempting to use the model 

results for strategic planning or evaluation purposes.  

Table 10: Types of models created and analysed. The number of model parameters reflects the 
complexity of the model. 

Some models were created on the basis of ensuring that the pre and post service 

change periods were modelled separately. Other model configurations occurred on the 

basis of reducing the 14 years of data into groups of two or three year periods. 

Four of the models created had the same number of parameters, that is, the same level 

of complexity. Three of these models were discarded for the remainder of the 

analysis, because the purpose of the analysis was to consider the effect of complexity 

Model Description
Number of Model 

Parameters
average 1990-2003 4
grouped years: 1990-96 and 1997-03 8
grouped years: 1990-96, 1997-98, 1999-00, 2001-02, 2003 20
grouped years: 1990-92, 1993-95, 1996-98, 1999-01, 2002-03 20
grouped years: 1990-91, 1992-94, 1995-97, 1998-00, 2001-03 20
grouped years: 1990-91, 1992-93, 1994-95, 1996, 1997-03 20
grouped years: 1990-91, 1992-93, 1994-95, 1996-97, 1998-99, 2000-01, 2002-03 28
grouped years: 1990-96 and individual years: 1997,…, 2003 32
individual years 1990, …, 2003 56
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on model choice and the complexity of these four models was the same. The retained 

model was one that included disaggregation of the data on the basis of service change.  

As expected, the model fit, as measured by the weighted sum squared error (WSSE), 

improved with increased complexity as reported in Table 11. 

Table 11: Model complexity and performance. The BIC value indicated that one of the more simple 
models was the preferred choice and the likelihood of this choice being incorrect was low given the 
Bayes Factor scores. 

The relationship between complexity, fit (error) and the BIC is illustrated in Figure 

43. 

Figure 43: The fit of the model to the data improved, generally, as the complexity of the model 
increased. While the usefulness of the model is improved by slightly increasing complexity, over-
fitting occurred once the numbers of parameters exceed 20, as shown by increasing BIC values. 

The relationships between the data for each year and the resultant models are 

illustrated in Figures 44 and 45. 
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average 1990-2003 4 1,237.9 1,265.8 9.9859E+240
grouped years: 1990-96 and 1997-03 8 100.2 155.9 1
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204

Figure 44: The model fitted the pre-service change period data for each year well, although some years 
were described better than others. 

Figure 45: The model fitted the post change period data for each year well. Variation between the 
model and data was expected, as the aim was to avoid over-fitting of the data. The maximum duration 
of patient stay was reduced compared to the pre-service change (hence the changed x-axis scale). 
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The relationship between the data from each year and the resultant models were 

examined using correlations and absolute errors, which are performance measures 

similar to those recommended in the BOMPS manual (1992), as reported in Table 12. 

Table 12: Additional performance statistics supported the findings from 
visual inspection that although there was some variation between the model 
to the individual year data, the fit was very good.

The fit of the model to the data, where the data has been averaged over the two 

periods described by the preferred model, is illustrated in Figure 46. 

Model Year Pearson Correlation Absolute Error
1990 0.9972 103.6
1991 0.9988 58.6
1992 0.9999 26.2
1993 0.9993 41.2
1994 0.9987 68.6
1995 0.9991 25.0
1996 0.9989 35.5
1997 0.9987 10.9
1998 0.9999 22.4
1999 0.9993 14.1
2000 0.9998 5.8
2001 0.9999 15.0
2002 0.9997 46.5
2003 0.9992 28.7
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Figure 46: Visual inspection of the models and data show that the fit was good. Furthermore, given the 
change in shape of the post-change model, it can be seen that there was a reduction in occupied beds 
and patients flowed through the system faster (the post change model line has a steeper slope). 

In terms of other model performance statistics, the correlations between the models 

and data were all very high, and the absolute error values are all very low indicating 

that the models fit the data well as shown in Table 13. 

Table 13: Commonly used model performance statistics 
indicated that the model fitted the data well. 

Period Correlations Absolute Errors
1990-1996 0.9999 9.1
1997-2003 0.9998 8.0

While choosing the minimum BIC enables the preferred model to be selected, the 

Bayes factor (see Table 10) enabled comparison of the relative performance of the 

models tested. The odds of one of the other models performing better than the 
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preferred model are very small (almost negligible). Consequently, there was no reason 

to choose one of the other models. 

The double compartment model facilitated analysis of the service through 

examination of the change in the model parameters. This information can be obtained 

from analysis of the model parameters as shown in Table 14. 

Table 14: Analysis of the model parameters shows that the change in 
bed numbers and flow rate was not uniformly implemented across 
short and long-stay patient groups, with the long-stay patient group 
being changed more than the short-stay group. 

6.4 Discussion 

The purpose of this study has been threefold, namely: 

• To provide a measure of validity regarding the use of compartmental flow models 

of bed occupancy for modelling acute care data 

• To demonstrate that compartmental flow models of bed occupancy can be used as 

a means of evaluating the effect of service change, and 

• To highlight the need to use model choice selection methodologies.  

These issues will now be discussed. 

6.4.1 Model Fit 

It is evident from the results that the compartmental flow model originally proposed 

to model the behaviour of geriatric bed occupancy by Harrison and Millard (1991) 

A C B D
Pre change 30.61 14.15 0.189 0.064
Post change 25.24 4.13 0.325 0.146
% change -18% -71% 72% 127%

Bed number
Model Parameters

Flow rate
Service Period 
and % Change
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describes the bed occupancy data from an acute care setting in New Zealand well. 

Evidence is provided in terms of various statistical measures, such as the correlation 

and absolute errors (see Table 12 and Table 13) and also in terms of visual inspection 

(see Figures 42 to 45).  

Fit and complexity trade-off 

As previously stated, the value of modelling is that it facilitates understanding and 

enables predictions to be made about the future (Hastie, Tibshirani and Friedman, 

2001). Fulfillment of two requisite conditions is necessary to achieve successful 

modeling, namely: 

• The choice of the model being used is appropriate, and 

• The right balance between fit and complexity is struck. 

The use of the BIC value and the Bayes Factor provides evidence that the model 

selection has resulted in the choice of a model that adequately describes the data, 

particularly in the absence of test data, while not being overly complex and leading to 

a loss in ability to use the model to generalise or forecast. Such evidence cannot be 

gained from commonly used performance statistics, such as the correlation or absolute 

error (Hastie, Tibshirani and Friedman, 2001). Indeed Mayer (1975 and 1980) 

reported that when only training (or sample) data was used, reliance upon model 

selection methods, such as the R-squared statistic, resulted in models that predicted 

future outcomes poorly.  

 Figure 42 illustrates that model fit generally improves as complexity increases, but 

that the BIC value is minimised for a relatively simple model. 
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The calculation of the Bayes Factor (see Table 11) indicates that the odds of one of 

the other models being preferred to the chosen model (data split into two periods) are 

very small. This provides increased confidence in the use of the model for its intended 

purpose. 

It may be argued that for the purposes of service change evaluation there is little value 

in the application of model choice methodologies given that no generalisation or 

forecasting was linked to the development of these models. However, the application 

of model choice may help to reduce to the tendency to create models that are designed 

to represent the finest detail (that is, they are unnecessarily complex) purely because 

of the fact that it can be done, which I have frequently seen occur in the health sector. 

This may stem from the fact that people can imagine how a large number of variables 

might impact on a process, without appreciating that their measures of the process are 

not accurate enough to support such a complicated model. Furthermore, model choice 

provides a defensible position when reporting the results of the evaluation (that is, a 

simple model is appropriate for evaluating the service change), and it can facilitate 

subsequent evaluation or analysis, such as extension of the results for other purposes. 

6.4.2 Explanatory value 

While the BIC value can be used to determine model choice, the value itself does not 

provide an indication of additional explanatory value gained through increasing model 

complexity. 
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The models were created using double compartments as it was understood that the 

service was used predominantly by older people, who tend to have longer lengths of 

stay, and that the service redesign affected longer staying patients more so than 

shorter staying patients. 

Table 14 showed that the service redesign affected the flow rates and bed numbers of 

both groups, but that the long-stay patients experienced the greatest change in both 

relative and absolute terms (a greater reduction in absolute and relative bed numbers, 

and a greater increase in flow rate). The value in using a double compartmental flow 

model was supported by the additional information gained in understanding the 

change in service provision that occurred, namely that: 

• Both short and long-stay patient bed numbers were reduced and the amount of 

reduction was different for each group, and 

• The flow rate of both short and long-stay patients was increased and the rate of 

change was different for each group. 

Thus, while a single compartment model may have been indicated, the loss of 

explanatory value derived from the model would negate its use. This issue becomes 

particularly important in a situation where the evaluation results in benchmarks that 

can be used to track ongoing service performance.  

6.4.3 Alignment with experience 

The pre and post-service change model, which was the preferred model, aligns with 

the actual experience of the service change. While the creation of a model based upon 

the timing of the service change may seem an intuitive choice, the fact that it was also 
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the preferred model from those tested enables the results to be communicated more 

easily. This is important, because communication of the results, particularly as this 

analysis concerned a significant historic service redesign, adds credibility to the 

approach.  

While defensible and sound modelling is important, if such modelling is going to 

progress from an academic pursuit to a widely applied tool, it is equally important to 

recognise that communication of results to end-users must be a key goal. 

6.4.4 Portability of health system measures and validation 

In Chapter 4 (see section 4.1) the ALOS was shown to be a widely used measure 

across health systems around the world. Hospital bed occupancy is also widely used, 

though not as much as the average length of stay as shown in Table 15 (search 

conducted 29 December 2005). 

Table 15: Search results on “country name” and “hospital bed 
 occupancy” using Google™ and Google Scholar™. 

The portability of the average length of stay and bed occupancy suggests that 

measures of patient stay are of importance and are reported irrespective of local 

differences in practices and policy. Indeed, one simple strategy often employed to 

Country name used
Google Scholar Google

none specified 6,810 818,000
Australia 1,090 109,000
America 1,980 428,000
England 1,540 206,000
New Zealand 573 59,000
Canada 1,410 172,000

Number of search hits
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reduce hospital costs is to cut the number of beds that can be occupied (for example, 

Bannerman, 1995; Taheri, Butz and Greenfield, 2000).  

Given that perspective on patient stay metrics, international variation between the 

styles of health service provision should have minimal impact on the ability to apply 

the compartmental flow model as a tool for looking at bed occupancy issues. 

Furthermore, the data used in this research related to medical (as opposed to surgical) 

type services and the elderly dominate the use of these services. While there may be 

differences in the way services are provided, England, Australia and New Zealand are 

developed countries and therefore the disease profiles will be similar (that is, one of a 

developed country as opposed to one of a developing country). Consequently, it 

would be unexpected that the casemix of a particular hospital from any of these 

countries would prevent the use of compartment flow models for evaluating changes 

to patient bed occupancy. 

The research presented in Chapter 5 indicated that the modelling approach developed 

by Harrison and Millard (1991) using geriatric data could be used for modelling acute 

care data. The results from the analysis of the New Zealand data confirm that the 

compartmental model can be used to model acute care data and thus validate the 

findings of the results obtained in Chapter 5. 

While the research presented in this and the previous chapters has focussed on the 

modelling of medical patient data, modelling has also been undertaken on surgical 

patient data (Millard, Mackay, Vasilikas and Christodoulou, 2000). This suggests, that 

subject to understanding the business processes involved in the provision of care 
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within an acute care hospital, there is good reason to believe that the compartmental 

model can be fitted to acute care hospital inpatient data in general. 

Despite the likelihood that there will be little inter-health system variation that would 

prevent the use of compartmental flow models of bed occupancy, the successful use 

of data from various countries and from various service types (geriatrics, surgical and 

medical) to fit such models should provide some measure of comfort that the results 

have not arisen as a consequence of peculiarities around bed occupancy for one 

service, but rather that there is now evidence that the application of the model in 

relation to acute hospital data in general is validated and there is no reason that more 

widespread adoption of the compartmental flow modelling technique should not occur 

to aid improved decision-making in the health care environment.  

6.4.5 Expert Judgment 

The fit of the model with 28 parameters to the data deteriorated despite an increase in 

complexity when compared to slightly less complex models. When dealing with the 

same class of models, a decline in model fit can only happen if the simpler model is 

not nested in the more complicated one, and this occurred in relation to the 28 

parameter model – the eight and 20 parameter models were not nested in this more 

complex model. The improvement in fit from the four parameter model to the 28 

parameter model, where nesting occurred, is also consistent with this notion.  

This perhaps is evidence to suggest that the “expert” judgment does not always 

involve the selection of models that lead to better fit despite increasing model 
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complexity, that is, structural mis-specification occurs. The observed relationships 

were otherwise consistent with expectations, that is, fit improved with complexity.  

6.4.6 Average models 

As previously stated, St George (1988) and MacStravic (2001) have reported that an 

annual average model of acute hospital services will be insufficient to enable bed 

planning, as the variation within the data will not be detected. 

The annual average model fits the data well as shown in these results. Additionally, it 

is possible to train the model to using a methodology that captures variation. The 

notion that there is no “right” answer may be a more appropriate response to the 

shortcoming identified by St George (1988) and MacStravic (2001) and in fact, it is 

better to be confident that the answer lies within some bounds. Indeed, according to 

Dasgupta (1998), Wildon Carr, a noted British philosopher, is attributed to having 

suggested the notion that it is “better to be vaguely right than precisely wrong”, which 

is another way of expressing this notion.   

Given the primary purpose of the modelling in this instance, which was to enable 

evaluation of the service redesign as opposed to plan for future bed allocations, the 

views of St George (1988) and MacStravic (2001) perhaps have less weight. This is 

not to say that incorporation of additional complexity, such as seasonality, may not be 

useful, but rather it is not relevant given this particular task and that use of the model 

should determine the level of complexity that should be sought.  
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6.4.7 Other issues 

The methodology used for the modelling exercise undertaken in this chapter was 

different to that used in the previous chapter. A reliance was placed upon using the 

average to capture the variation in the data to be captured compared to incorporating 

every data point into the calculations performed. This enabled a significant reduction 

in the volume of data used in the modelling to occur and thereby gain significant 

increases in model run time. The method used in Chapter 5 was only applied to data 

relating to a single year and complex models required significant computing time (that 

is, many hours). In fact, given the volume of data, it would not have been practical to 

run the models using the first method as in most cases the data spanned several years 

and this would have increased computing time. The reduction in computing time 

makes the methodology more appealing as a potential tool in the real world.  

6.5 Conclusion 

The bed occupancy compartmental flow model described the data from the Internal 

Medicine Department at HealthCare Otago, New Zealand, well. The successful 

development of compartmental flow models using this data validates the application 

of the modelling approach.  

Ensuring that the model suits the purpose of the analysis is important. Model selection 

methodologies provide a defensible means of selecting the appropriate level of model 

complexity. Consideration of the value of the information gained from the inclusion 

of additional model complexity, such as the use of a second compartment, 

nevertheless requires judgment.  
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There are limitations to the extent that I have validated the use of compartmental flow 

models being of use in describing acute hospital data, including: 

• The modelling has excluded same-day elective patient data as the management 

of these patients often relies upon a different model of practice (notably the 

use of one bed for many patients in a single day). This is discussed in more 

detail in Chapter 10, and 

• The focus on medical service provision - it is evident that surgical, obstetric, 

mental health and paediatric services have not been included in this analysis. 

The validation and complexity issues are important as they enable the results of 

hospital occupancy modelling that relies upon compartmental flow models to be used 

for forecasting or generalisation purposes as opposed to gaining an understanding of 

specific historic events. 

Given this research and other work not detailed here (Millard et al., 2000), it is 

reasonable to suggest that other acute care services will be able to be similarly 

described using compartmental models. The exceptions will occur if the business 

model gives rise to fixed time service provision and this may be the case in relation to 

some aspects of obstetric activities due to the push to reduce length of stay to a fixed 

period of service for particular types of deliveries (this issue is examined more 

generally in Chapter 10). 

The issues of linking compartmental flow models to population change and model 

development is explored in the next chapter and the examination of the New Zealand 

data is continued in Chapter 8. 



217

Chapter 7

Model choice and prediction: forecasting changes in bed 
occupancy profiles as a consequence of population change  

In this chapter I investigate whether the model selection methods used in prior 

chapters can be applied to determine a suitable level of complexity for a bed 

occupancy compartmental flow model that incorporates patient age. The ability to link 

the aged based bed occupancy model to forecast population change is also 

investigated. The chapter has the following structure: 

7.1 Introduction ............................................................................................ 218 
7.2 Methodology .......................................................................................... 220 
7.2.1  Creation of the Compartmental Flow Model ........................................ 220 
7.2.2  Linkage to Population Change ............................................................. 222 
7.3 Results.................................................................................................... 222 
7.3.1  The Compartmental Flow Models ........................................................ 222 
7.3.2  Parametric Parameter Forecasts Linked to Population Change ............. 230 
7.4 Discussion .............................................................................................. 237 
7.4.1  Model Choice ...................................................................................... 238 
7.4.2  Forecasts and policy............................................................................. 241 
7.4.3  Population profiles and assumptions .................................................... 243 
7.4.4  Resource use and scenario testing ........................................................ 246 
7.4.5  Technical Issues................................................................................... 249 
7.5 Conclusion.............................................................................................. 254 
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7.1 Introduction 

The Generational Health Review (2003) reported that the current South Australian 

health system was not sustainable (see Chapter 1 for more details). Some of the issues 

affecting sustainability were: 

• The costs of services (the acute care sector costs are generally greater than 

primary care costs on a per service basis, and at a higher level, the health care 

budget represents a large part of the State budget)

• Older people use more health services (OECD, 2003), and 

• A change in the population profile is occurring that will result in a greater 

number of older people. 

The authors of the Generational Health Review (2003) suggested that if current 

practices were continued then it would be expected that: 

• Admissions would increase by ten per cent 

• There would be a requirement for an additional 420 beds (same-day and 

inpatient) – a 16 per cent increase, and 

• Costs would increase by nine per cent or $88 million per annum (based upon 

2001 prices). 

As the modelling for this work was not made public it is difficult to comment upon 

the credibility of the findings published in the report. In particular, it is not clear 

whether or not the model selection issues discussed in Chapter 4, and explored in 

Chapters 5 and 6, were considered as part of that model development.  
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Irrespective of the technical issues surrounding the findings of some aspects of the 

Generational Health Review, there is widespread support for the notion that health 

care costs are likely to increase as populations age (see earlier discussion on this in 

Chapters 1 and 4). Consequently, the possibility of forecasting future resource use 

associated with the ageing of the population is an important topic that warrants 

examination.  

In this chapter I create a linkage between the strategic bed occupancy models and 

population change. This linkage enables the resource use differences for different age 

groups to be measured in terms of both number of beds and also the rate of flow 

through the system. The work on model choice in Chapter 5 is extended to investigate 

whether there is benefit in disaggregating the data into age groups that can be used to 

assist decision-making around the expensive resource of hospital beds. This work is 

then used as the basis of forecasting future bed occupancy. Explicitly, research was 

undertaken to: 

• Explore the application of model choice methodology when selecting 

compartmental flow models of bed occupancy disaggregated on the basis of 

patient age, and 

• Explore the implications of forecasting future bed occupancy based upon 

linking compartmental flow model parameters with population forecasts. 

  

As previously stated, the results of the work investigating model complexity and 

population changes were presented at a conference (Mackay and Lee, 2004a). 
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7.2 Methodology 

7.2.1 Creation of the Compartmental Flow Model 

The data considered here only relate to that drawn from the Flinders Medical Centre. 

The contextual details about the data were described in Chapter 3 (see sections 3.2.1 

and 3.3.1). 

The data included the patient age at the time of discharge and this age was used to 

create bed occupancy data sets that reflected various patient age groupings. This was 

necessary to enable a matching of the population age profile to the bed census 

profiles. The population profiles group age in five-year intervals, and consequently, 

the bed census profiles were created to match the age ranges, with the first age range 

commencing at 20 years and the last age range representing all those aged 85 years or 

more. The data contained few occurrences of patients aged less than 20 years. This 

was due in part to the fact that the diseases treated in the medical ward tend to be 

more prevalent in the elderly. Additionally, patients aged between 15-19 years may 

not necessarily receive treatment in adult wards. Consequently, data relating to 

patients aged less than 20 years was omitted from the study. Thus, it was necessary to 

create 14 bed census profiles. 

The methodology used to create the occupancy models for the age related occupancy 

data was fully described in Chapter 6 (see section 6.2.2).  

The number of possible models that could be constructed on the basis of combining 

the various age groups was very large. The simplest model was a single model that 
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covered all ages and this equated to just using the “annual average” model for all 

patients. The most complex was one that involved the computation of a 

compartmental flow model for each of the age groups. While the ideal model was to 

be found within the bounds of the simplest and most complex model groupings, it was 

not pragmatic to construct every possible model that could be tested. My expert 

knowledge of the health system was used to guide the development of a range of 

models that could be tested. This lead to the development of 19 possible 

configurations of age grouped compartmental flow models being constructed. Of the 

19 configurations, 13 configurations had differing numbers of parameters. 

The goodness-of-fit achieved by optimization was measured for each model against 

the training data. Although a variety of measures of goodness-of-fit were possible 

(Hastie, Tibshirani and Friedman, 2001), the Bayesian Information Criterion (BIC) 

was used. The BIC value provided information about the level of fit in the absence of 

using a training and test set of data. 

The number of compartments was varied for the preferred model to test whether 

increasing the number of compartments improved the model. 

Confidence intervals for model parameters were calculated using standard Monte 

Carlo methods (Hillier and Lieberman, 2001; Powell and Baker, 2004)) 



222

7.2.2 Linkage to Population Change 

The projected population profile for South Australia was obtained from the Australian 

Bureau of Statistics (1999 and 2000). The projections were matched to the catchment 

area of the hospital.  

The rates of change for age groups matching those developed for the preferred 

compartmental flow model were applied to the model parameters relating to the 

numbers of beds. For the purpose of this exercise, the parameters relating to the rates 

of patient flow were held constant. 

The timing of predicted changes in the population profile was compared to the 

changes in the number of beds. 

7.3 Results 

7.3.1 The Compartmental Flow Models 

The groupings used for the ages, together with the number of model parameters and 

fit and complexity measures are shown in Table 16. 
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Parameter and Model Type No. of Parameters WSSE BIC Log Odds Bayes Factor
4 Single Model 4 893.9 921.5 662.6 8.E+143
8 20-64, 65+ 8 240.9 296.1 37.2 1.E+08
12 20-44, 45-69, 70+ 12 189.5 272.3 13.4 8.E+02
12 20-64 same, 65-84 same, 85+ 12 239.5 322.3 63.4 6.E+13
16 20-39, 40-59, 60-79, 80+ 16 173.1 283.5 24.6 2.E+05
16 20-64 same, 65-74 same, 75-84 same, 85+ 16 187.7 298.0 39.2 3.E+08
20 20-34,35-49,50-64,65-79, 80+ 20 120.9 258.9 0.0 1
20 20-34, 35-44, 45-54, 55-64, 65+ 20 123.6 261.6 2.7 4
24 20-34, 35-44, 45-54, 55-64, 60-84, 85+ 24 122.2 287.8 28.9 2.E+06
24 20-64 same, other years unique 24 155.9 321.5 62.6 4.E+13
28 20-34, 2 adjoining age groups joined, 65-74,75-84,85+ 28 70.7 263.9 5.0 12
28 every 2 groups joined 28 90.7 283.9 25.0 3.E+05
28 decades joined, 80+ 28 90.7 283.9 25.0 3.E+05
32 decades joined, 80-84, 85+ 32 82.9 303.7 44.8 5.E+09
40 decades joined, 60-64, 65-69, 70-74, 75-79,80-84, 85+ 40 31.4 307.3 48.5 3.E+10
44 decades joined, 50-54,55-59, 60-64, 65-69, 70-74, 75-
79,80-84, 85+

44 31.4 307.3 48.4 3.E+10

48 decades joined, 40-44,45-49, 50-54,55-59, 60-64, 65-69, 
70-74, 75-79,80-84, 85+

48 25.8 356.9 98.1 2.E+21

52 20-29, rest separate 52 17.3 376.0 117.1 3.E+25

56 All age groups uniquely modelled 56 5.4 391.8 132.9 7.E+28

The groupings with the preferred model choice are shown in a visual representation in 

Figure 47 to facilitate interpretation of Table 16.  

Where the number of parameters was the same, the BIC values will not discriminate 

between the models well, as the BIC is determined by the fit, the number of 

Table 16: Scenarios tested to determine the best age grouping of the data for modelling bed 
occupancy. The preferred model is highlighted. 

Simple Complex
20-24
25-29
30-34
35-39
40-44
45-49
50-54
55-59
60-64
65-69
70-74
75-79
80-84
85+

Model ComplexityAge 
Groups Simple Complex
20-24
25-29
30-34
35-39
40-44
45-49
50-54
55-59
60-64
65-69
70-74
75-79
80-84
85+

Model ComplexityAge 
Groups

Figure 47: Visual representation of the age groupings used for the analysis. The circled option was the 
preferred model.  



224

parameters and the number of data. The latter two are constant in models with the 

same number of parameters and in general terms the compartmental flow models all 

fit the data well. A small difference in BIC values does not provide a good basis for 

the selection of one model over another. This outcome is shown in Table 16 where the 

models with the same number of parameters have similar BIC values. Consequently, 

only results for 13 unique configurations are reported in the remainder of the results. 

Figure 48 shows the increasing fit that was achieved with model complexity (that is, 

the weighted sum squared error decreased with increasing complexity), but that the 

BIC value was minimized for a less complex model. 

This result is also shown in Table 16 where the Bayes factor and log odds are 

reported. The preferred model was compared to the other models and it can be seen 

that the log odds value suggests a strong preference for the chosen model in relation 
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Figure 48: The trade-off between model fit and generalisation with increasing complexity is shown. 
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to most of the modelled alternatives. There were several models where the log odds 

value was not large, indicating that the preference between the models was not great.  

In these instances the alternative models could have been used without much loss of 

generalisability. However, there was no good reason to adopt the alternative models, 

as the preferred model related well to the accepted understanding of resource use and 

age, and it achieved parsimony. 

The fit of the most simple and complex models, together with the fit of the preferred 

models is visually shown in the following three figures. 
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Figure 49: Fit of the data against the simplest model - the annual average model with no disaggregation 
of patients by age. The model did not fit the data well. 



226

Complex Model and Data
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Figure 50: Fit of the data against the most complex model. All data groups are well-fitted (over-fitted) 
by the model, as evidenced by the difficulty in visually differentiating between the data and model. 

Figure 51: Fit of the preferred model and data. The model does not perfectly fit the data and thereby 
avoided over-fitting (see Figure 50), but represented a significant improvement on the simplistic poor-
fitting model (see Figure 49).   
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When the data is grouped into the preferred model age ranges it can be seen that the 

model fits the data as shown in Figure 52. 

Aside from visual inspection, performance statistics confirm that the degree of model 

fit to the data was high as reported in Table 17. 

Ten per cent of patients (long-stay) used a much greater proportion of bed days (37 

per cent) as shown in Table 18.  

Model 13, Average Data v Model
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Correlation 0.992 0.998 0.999 0.999 0.999

Figure 52: The five age components of the preferred model exhibit a high level of fit to the data. 

Table 17: Model performance statistics. The correlation between the individual 
components of the model and the data was very high and the absolute errors were 
all low. 
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Given the importance of the long-stay patient group in influencing bed use, as 

illustrated in Table 18, consideration was given to the question of whether there was 

merit in creating a model with additional compartments to improve the explanatory 

power of the model. Single, double, triple and quadruple compartment models based 

upon the preferred age groups established earlier were created. Based upon the BIC 

value, the number of model compartments used should be one, that is, a less complex 

model is preferred, as shown in Figure 53. 
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Figure 53: Trade-off between complexity and fit for the preferred model. Based upon the BIC value, a 
single compartment model was suggested. However, other factors can also be important for model 
selection. 

Table 18: Short-stay patients used disproportionately less bed-days than long-stay 
patients. Valuable information about the long-stay patients can be gained via a 
double compartment flow model.

Length of stay Bed days
Percentage of 
total bed days

Patients
Percentage of 
total patients

0-14 days 35,093 63% 8,628 90%
15 or more days 20,739 37% 930 10%
Total 55,832 100% 9,558 100%
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Given that the perceived additional value in understanding the behaviour of long-stay 

patients and that increase in BIC value was not substantial, which gives rise to a low 

log odds value (47.5) and Bayes factor (2.1E+10), combining judgement with the BIC 

value would suggested that a double compartment model is still useful and does not 

lead to a significant gain in unnecessary complexity. The need for additional 

complexity through the creation of a third compartment was not so easily justified, 

particularly given the increased log odds value (115.7).  

It was possible to generate confidence intervals around each of the model parameters 

using standard Monte Carlo methods, which is useful for demonstrating that the actual 

model is not deterministic, as shown in Table 19. The model formula has been 

previously given (see Chapter 5, section 5.2.1). 

20-34 35-49 50-64 65-79 80+
lower 95% CI 6.6417 12.7284 22.6711 63.6663 40.7524
mean 6.6505 12.7372 22.6799 63.6751 40.7612
upper 95% CI 6.6592 12.7459 22.6886 63.6838 40.7699
lower 95% CI 0.3210 0.2501 0.2010 0.1362 0.1284
mean 0.3298 0.2589 0.2098 0.1450 0.1372
upper 95% CI 0.3386 0.2677 0.2186 0.1538 0.1460
lower 95% CI 0.9008 1.6952 4.6090 4.8869 3.8520
mean 0.9095 1.7040 4.6178 4.8957 3.8608
upper 95% CI 0.9183 1.7127 4.6265 4.9044 3.8695
lower 95% CI 0.0510 0.0487 0.0523 0.0311 0.0416
mean 0.0597 0.0574 0.0611 0.0399 0.0504
upper 95% CI 0.0685 0.0662 0.0698 0.0486 0.0591

C

D

Age Groups
Parameter Statistic

A

B

Table 19: Confidence (95 per cent) intervals for each parameter of the model. Such 
intervals are useful in showing that uncertainty around the exact model fit exists.
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Model performance can be measured in several ways. The degree of fit has been 

previously established (see Figure 52 and Table 17). One aspect of fit in this 

application relates to the total number of occupied beds that is suggested from the 

model as opposed to the actual number of beds occupied. Table 20 reports the model 

fit with respect to total bed occupancy. 

7.3.2 Parametric Parameter Forecasts Linked to Population Change 

The Australian Bureau of Statistic’s (ABS) forecast population profiles for the years 

of 1999 and 2019 are shown in Figure 54. 

Age 
Group

Bed Number 
Model Parameters 

(A+C)

Total Ave 
Occupancy

% over 
estimation

20-34 7.6 7.1 7.0%
35-49 14.4 13.8 4.7%
50-64 27.3 25.6 6.7%
65-79 68.6 67.0 2.3%
80+ 44.6 41.5 7.6%
Total 162.5 154.9 4.9%

Table 20: The comparison of the model to the actual data suggests that 
the model over-estimates the total number of beds actually occupied.
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It is forecast that the growth in the number people aged 55 years or more will be 60 

per cent during this period, while the number of people aged 20-54 years will 

decrease by 10 per cent. For the entire population aged 20 years or more there is an 

increase in the size of the population by approximately 13 per cent during the same 

period. 

The timing of the changes in population size is not uniform as shown in Figure 55. 

Figure 54: Comparative population profile. It is predicted that there will be a large growth in the 
number of older people during this period.
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Parametric forecasting of the bed number parameters using the change in population 

as the basis for the forecast enables the number of short and long-stay beds to be 

predicted. The forecast for short-stay beds is shown in Figure 56. 
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Figure 55: The timing of the change of population with age groups matched to the preferred 
compartmental model. 

Figure 56: Forecast change in requirements for short-stay beds according to changes in the 
population size based upon age. 
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Similarly, changes in requirements for long-stay beds were also forecast as shown in 

Figure 57. 

  

The forecast total bed requirement – that is both short and long-stay beds – is shown 

in Figure 58. 

Figure 57: Forecast change in requirements for long-stay beds based upon population changes. The 
timing of changes is important for policy and planning reasons. 

Figure 58: Forecast total bed requirements.  It is evident that those aged 65 years or more use the most 
beds. 
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While Figure 58 shows the forecast bed requirements, the mix of bed use is better 

represented by showing the changes over time as a proportion of 100 per cent 

capacity. This is done in Figure 59. 

The assumption that the mix of services, and therefore bed usage, was held constant is 

confirmed in Figure 60. 
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Figure 59: The forecast mix of bed usage based by age group over time. 
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The change in mix of resources can also be tabulated. The situation at 1998 and the 

forecast 2019 bed forecast are shown in the following two tables (see Tables 21 and 

22). 

Figure 60: The assumption that the mix of short and long-stay beds was held constant is reflected in 
the forecast results.

First Compartment Second Compartment

Admissions  
(day)

Admissions  
(year)

Average 
stay (days)

Number of 
admissions 
discharged    

(%)

Average 
stay 

(days)

Number of 
beds used     

(%)

Number of 
admissions 
discharged    

(%)

Average 
stay    

(days)

Number of 
beds used     

(%)

20 to 34 years age model 1.9 701.2 3.9 685.9 3.6 6.8 15.3 17.2 0.7
98% 90% 2% 10%

35 to 49 years age model 3.0 1095.2 4.8 1069.0 4.4 13.2 26.2 17.9 1.3
98% 91% 2% 9%

50 to 64 years age model 4.6 1666.5 6.0 1597.9 5.3 24.1 68.6 16.9 3.2
96% 88% 4% 12%

65 to 79 years model 8.8 3206.5 7.8 3156.9 7.4 65.1 49.6 25.6 3.5
98% 95% 2% 5%

80 or more years model 5.4 1976.3 8.2 1933.6 7.8 42.2 42.7 20.3 2.4
98% 95% 2% 5%

Overall 23.7 8645.7 30.8 8447.2 28.4 155.1 202.5 98.0 11.4

Model

Table 21: Summary of resource use (that is number of beds and admissions) by age group for 1998. 
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First Compartment Second Compartment

Admissions  
(day)

Admissions  
(year)

Average 
stay (days)

Number of 
admissions 
discharged    

(%)

Average 
stay (days)

Number of 
beds used     

(%)

Number of 
admissions 
discharged    

(%)

Average 
stay    

(days)

Number of 
beds used     

(%)

20 to 34 years age model 1.8 646.2 3.9 632.1 3.6 6.3 14.1 17.2 0.7
98% 90% 2% 10%

35 to 49 years age model 2.6 930.8 4.8 908.5 4.4 11.2 22.3 17.9 1.1
98% 91% 2% 9%

50 to 64 years age model 6.1 2216.9 6.0 2125.6 5.3 32.1 91.3 16.9 4.2
96% 88% 4% 12%

65 to 79 years model 12.5 4569.2 7.8 4498.5 7.4 92.8 70.7 25.6 5.0
98% 95% 2% 5%

80 or more years model 8.2 2975.6 8.2 2911.3 7.8 63.6 64.3 20.3 3.6
98% 95% 2% 5%

Overall 31.1 11338.6 30.8 11079.9 209.6 262.7 14.9
Change 7.4 2692.9 0.0 2,633 54.5 60.2 3.5

Model

The ability to undertake what-if analysis exists. Various hypothetical examples are 

shown in Figure 61. 

Percentage Change in Arrivals Under Various Reduction Strategies
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Figure 61: Visual representation of effects of making changes to the system. The system becomes stable 
over time. 

Table 22: Summary of resource use (that is the number of beds and admissions) by age group for 2019. 
The forecast increase since 1998 is also shown.  
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7.4 Discussion 

The need to influence future decision-making about the provision of health services is 

clear, as shown by the forecasts made in the Generational Health Review (2003). The 

ability to make such forecasts, however, has not been well explored at least in the 

literature. Myers and Green (2004) suggest that focussing efforts on managing the 

length of stay is an alternative way of managing bed capacity compared to increasing 

bed capacity. Some countries or studies have used a particular rate of beds per head of 

population as the means of determining the number of beds required now and in the 

future (Griffith and Wellman, 1979; Bay and Nestman, 1984; Toussaint, Herengt, 

Gillois and Kohler, 2002). The basis formula for this approach is given in by Farmer 

and Emami (1990): 

 Beds = (population served x admission rate x ALOS x efficiency factor)/365 

Others, such as Sweeney and Ashley (1981), have considered the morbidity pattern in 

the population as a driver in the determination of beds. Farmer and Emami (1990) 

consider that time series forecasting (ARIMA) methods may be of more use than 

simple population models. Pendergast and Vogel (1988) and Sorensen (1996) have 

advocated a disaggregation of the ALOS on the basis of clinical care, time spent in 

hospital and discharge destination before the calculation of bed numbers. Commercial 

and other interests may prevail over the need to publish the detail of how forecasts, if 

made, are established. The Generational Health Review (2003) provides a useful 

example to highlight this situation, as the methodology surrounding projected future 

needs was not published, although no reason for this was provided. 
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This is the first time population change has been linked to bed occupancy 

compartmental flow modelling and also where model choice theory has been used to 

determine the complexity of the age groupings used to generate the compartmental 

model. This approach provides this modelling with a broader horizon of application, 

therefore making it a more powerful and potentially useful approach. I have 

subsequently also been involved with others in pursuing this the use of forecasting, 

though with a slightly different approach (see Harrison, Mackay and Shafer, 2005). 

Various aspects of the modelling approach employed, including model choice, 

population forecasts and assumptions will be discussed in more detail in the following 

sections. 

7.4.1 Model Choice 

The data were disaggregated on the basis of age only. The previous work on model 

choice considered the effects of the how disaggregation of the data for one year 

should occur on the basis of time (for example, not at all, seasons or weeks - see 

Chapter 5). This work found that a seasonal model was the preferred choice of the 

possible models tested. While creating a model on the basis of age and seasonality 

was possible, the additional level of complexity was not desired for two reasons: 

• The desire to focus only on issues pertaining to patient and population age in 

order that understanding of the analysis of this particular component of analysis 

was maximised, and 

• It was planned that subsequent work would introduce alternative mechanisms to 

consider this more complex scenario (see Chapter 8).  
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As demonstrated and discussed in Chapter 4, the level of model fit increases with 

model complexity. This again has been demonstrated in this analysis as shown in 

Figure 48. Visual inspection was used to highlight the consequences of choosing 

models that were too simple or complex, as well as showing the fit of the preferred 

model (see Figures 49 to 51).  

The preferred model was found to fit the data well, as shown in Table 17 with a high 

correlation between the data and model being found, together with low absolute 

errors. These findings are consistent with the recommendations made in the BOMPS 

manual (1992), namely that models with low errors and high correlations should be 

retained or were found to exist when working with geriatric data. The inclusion of 

model complexity and fit trade-off decisions has not detracted from a well fitting 

model, but has served to improve the usefulness of the resultant model, insofar as that 

the preferred model can be used better for generalisation and forecasting than an over-

fitted model. 

The recommended use of a double compartment flow model is made on the basis of 

the resultant BIC values obtained when testing the number of compartments to use 

(see Figure 53) and expert judgment about the importance of long-staying patients 

(see Table 18). Long-stay patients are often credited with the blame for blocking the 

acute care health system (for example, see Mackay, 2001; Cameron and Campbell, 

2003). Given that a single long-stay patient occupies a bed for a period that could 

have accommodated multiple short-stay patients this explanation appears credible to 

some extent. The perceived problem with long-stay patients, is however, not that they 
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block beds, but rather whether the service has been planned to cope with the number 

of long-stay patients that exist. 

The length of stay and number of long-stay patients can be influenced by factors 

outside the control of the hospital, for example, the provision of community-based 

services that would enable a patient to be discharged or availability of nursing home 

beds. When outside factors increase the number of long-stay patients or increase their 

length of stay, then long-stay patients do contribute to bed blockage. 

 Internal hospital factors can also influence the length of stay and number of long-stay 

patients, and if not addressed, can also contribute to bed block problems. However, at 

Flinders Medical Centre work on the reasonableness of admissions (for example, see 

Baggoley, Phillips and Aplin, 1994; Finucane et al., 2000) and more recently, the 

application of lean thinking approaches to ensure the patient journey does not involve 

wasted time has been undertaken (for example, see King, Ben-Tovim and Bassham, 

2006). Thus, there is evidence that hospital management was cognisant of the 

implications of not addressing internal factors that may contribute to bed blockage. 

While the BIC value was useful in helping to determine whether over-fitting of the 

data occurred, it did not take into account the value of other aspects of the model, 

such as the ability to demonstrate behaviour of a particularly important group of 

patients, that is, the long-stay patients. Had the difference in BIC values between a 

single and double compartment model been far greater, then the value of the 

additional information gained through increased complexity would have been 

questionable. 
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7.4.2 Forecasts and policy 

It is evident from Figure 54 that the ageing of the local population is occurring. It can 

be seen that the relative changes in population growth are substantial (for example, a 

growth of more than 40 per cent of people aged 80 years of more is expected). Not all 

population groups, however, are expected to experience growth during this period, 

with a decline in the population aged less than 49 years expected. The timing of these 

changes is not uniform with some age groups experiencing growth (both positive and 

negative) sooner than others as shown in Figure 55.

Given the linkage between health care resource use and ageing it is important to 

understand the ramifications of the timing and sized of population change. The 

growth in demand for short-stay beds is illustrated in Figure 56. Patients aged 65-79 

years were the highest users of beds at the base year for this analysis. The need for 

additional beds for patients aged 65-79 years, however, does not increase until 

midway through the forecast period. The need for additional beds for those aged 50-

64 years and 80 years or more is expected to beginning to stabilize midway through 

the forecast period.  

While the shape of the forecasted trends for long-stay patients illustrated in Figure 57 

are similar to those forecast for short-stay patients (see Figure 56), it is evident that 

there are differences. Although the patient group aged 65-79 years occupied the 

greatest number of long-stay beds (on average) at the beginning of the forecast period, 

other age groups, namely those aged 50-64 years and then 80 or more years, exceed 

the numbers of beds used by this group until almost the end of the forecast period. 
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This has several important policy implications that would not have been identified if 

the analysis had not been undertaken using age-based disaggregated data and a double 

compartment flow model. 

It is forecast that the total number of beds required to service the medical patients will 

increase by approximately 37 per cent over the period as shown in Figure 58. The 

potential policy decisions arising from the forecasts illustrated in Figures 56, 57 and 

58 include: 

• The need to fund an increase in hospital activity 

• The need to fund capital works required to provide the physical infrastructure 

required to meet the forecast additional activity 

• The need to attract and retain the necessary workforce in order to be able to 

deliver the additional services 

• The need to plan for and implement alternative care models if additional 

capacity is not to be provided 

• The need to recognise those aged 65-79 years will continue to be the dominant 

age group for short-stay patients and that growth of this group will not increase 

until post 2008 

• That patients aged 50-64 years will become the dominate long-stay patient 

group until approximately 2016 when the patient group aged 65-79 years will 

dominate 

• That the timing of the implementation of new alternative intervention strategies 

(demand management or other services) should consider patient age, as some 

groups will experience growth prior to others and the quantum of growth varies 

for each group, and 
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• The need to fund additional non-hospital activities that already occur, but will 

experience increased demand as a result of the ageing of the population.  

The opportunity to influence operational or tactical activity through strategic decision-

making occurs prior to the time that increased demand eventuates. This is not to say 

that strategic decisions cannot be made once increased demand has occurred. 

However, the situation may be less ideal, as some decisions have significant lead 

times (for example, building extra capacity often takes years).  

Although the purpose of the forecast is designed to influence strategic decision-

making, Bay and Nestman (1984) note that ultimately political priorities of 

governments determine what health care services are provided. Consequently, one 

such additional use of the forecast information is to influence the decision-making 

processes of elected governments. 

7.4.3 Population profiles and assumptions 

Population forecast 
The population forecasts used in this analysis were created by the ABS (1999 and 

2000). The ABS provides three forecasts around future population change: low, 

medium and high forecasts. The forecasts are based upon a variety of factors and take 

into account various factors including health and birth rates. The need for multiple 

views of the future world reflects that these forecasts are not certain, but rather 

indicative and rely heavily upon the underlying assumptions used. 
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The analysis conducted has relied upon the middle range forecast of the population, 

which is deemed reasonable from a number of perspectives, including: 

• It is the forecast recommended for use within the Department of Health 

• It is the forecast recommended for use by the ABS if the middle forecast is 

sought and the more extreme views are not required (Australian Bureau of 

Statistics, 1999), and 

• On the basis of being a demonstration of technique for this research. 

The ABS population forecasts are known to generate debate on occasion. For 

example, from my role within the Department of Health I know that there has been 

debate as to whether the ABS or the Planning SA population forecasts should be used. 

This debate has since been resolved in favour of using the ABS population forecast. 

For the purpose of this research, the technical issues associated with forecasting the 

future population are not being considered as this is outside the bounds of this 

research. Rather, the population forecasts are accepted as reliable on the basis that 

ABS has a significant responsibility in trying to produce reliable statistical 

information for the benefit of the Australian public. Reliance is thus placed upon the 

ABS’s credibility. Acknowledgment of the limitations of such forecasts is, however, 

given.   

Clinical activity and practice 
The resultant bed occupancy forecasts are not only reliant upon the population 

forecast, but also of the activity occurring within the hospital during the year the 

activity was measured. For the purpose of forecasting future bed occupancy, it was 

assumed that clinical activity on a population basis remained constant. Figure 60 
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showed that the mix of short and long-stay beds forecasted remained constant. This is 

a proxy measure for confirming that clinical activity used in the forecast remained 

constant. 

In measuring bed occupancy, the activity of the hospital is not questioned, but 

assumed to be appropriate. There are a number of aspects that could be questioned, 

including whether: 

• The admission of patients was appropriate 

• The services offered are those required by the community 

• The mix of services and the related volumes of services appropriate 

• Variation in clinical practice within is significant and affects bed use 

• Variation in clinical practice across hospitals exists and if it does, whether the 

hospital performs well or not,  

• There is significant levels of unmet demand, and 

• Funding or other decisions outside the hospital affect the level of services 

provided, and therefore also the number of beds that are occupied. 

All of these factors are important in determining whether the forecast number of beds 

is reasonable. Flinders Medical Centre hospital has previously commissioned studies 

on whether admission to hospital is appropriate and concluded that almost all 

admissions were appropriate (Baggoley, Phillips and Aplin, 1994; Finucane et al., 

2000). 

The introduction of casemix funding has enabled comparison of activity between 

hospitals. The role of benchmarking in casemix funding would be greatly diminished 
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if variation between hospitals did not exist and the argument that casemix funding 

would lead to greater efficiencies would be lessened. 

Clearly, as identified by Bay and Nestman (1984), the political process strongly 

influences the quantum and type of health care services provided.  

  

Thus, this reinforces the view that the forecast should be viewed as a potential that 

might arise if current clinical activity is continued, rather than that it is immutable. 

The use of such forecasts would benefit from concomitant activities that strove to 

achieve increased efficiencies in service delivery and also quantify or better 

understand the effects of variation, unmet demand, the potential for new technology 

(including medicines) and other factors that could significantly affect bed occupancy. 

7.4.4 Resource use and scenario testing 

Resource use summary information 
The bed occupancy model parameters can enable quantification of resource use, that 

is, the average number of occupied beds, and information about the likely number of 

patient admissions as shown in Tables 21 and 22.  

The information reported in Tables 21 and 22 was calculated using spreadsheets that 

were developed for this purpose for Millard1. The information provides perspective on 

bed occupancy statistics at the commencement and conclusion of the forecasting 

period. The presentation of the summary information contained in the tables is 

                                               
1 Ms Georgina Christodoulou developed the spreadsheets Microsoft Excel in her capacity as a research 
assistant for Peter Millard. I liaised with Ms Christodoulou during the development of these 
spreadsheets and provided some limited input into the development. I was given access to these 
through my collaboration with Peter Millard and his research colleagues. 
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valuable, as it quantifies summary information about the change in bed occupancy 

over the forecast period. Senior decision-makers frequently do not have the time to 

delve deeply into how information has been gained, and must often rely upon 

summary information. Without the aid of such summary tables the ability to influence 

senior decision-makers would be limited, particularly when the catch cry of many 

time poor senior decision-makers is “just give me the number(s)”. 

There is a risk, however, in that the use of the resource summary information may be 

misinterpreted unless the end user is apprised of the methodology used to derive the 

information and the issues and assumptions that are not conveyed in the summary 

table, but affect the interpretation of the results. However, this is a risk that exists with 

all such similar information and should not deter attempts to improve the basis for 

decisions around bed occupancy. 

The presentation of the tables alone also hides some of the policy implications 

revealed in Figures 56 to 59. Thus, augmentation of the information contained in the 

two tables with at least two of the Figures is suggested as being necessary to reduce 

the likelihood of misguided decision-making.  

Scenario testing 
The ability to alter the model to reflect possible or desired changes in the rate of 

admission or patient flow gives rise to the ability to undertake scenario testing before 

implementation of real change. This is a powerful feature of the compartmental flow 

model and was a feature in the original BOMPS package (BOMPS, 1992). The ability 

to independently alter the flow and bed number parameters for each compartment 

confers considerable advantage over using a single ALOS measure (that is flawed 
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anyway) compared to many other methods (see the review of the literature, Chapter 

2). 

Figure 61 provides graphical output on the effects of testing a range of changes to the 

number of beds, rate of patient flow and simultaneous change to both rate of flow and 

beds. What becomes evident from analysis of Figure 61 is that the implementation of 

change requires time for the system to re-adjust and stabilize. The time required to 

reach system stability is relatively short in the scenarios examined and is less than 

three months. This can be contrasted to a geriatric service where the time required to 

reach stability was much longer, being around five and a half years in one system 

(El-Darzi, Vasilakis, Chaussalet and Millard, 1998). Despite the much shorter time to 

system stability, the dynamic nature of acute care hospitals may mean that this 

position is never reached before the next change is implemented (As an example, see 

Figure 35 in Chapter 5 where there are four changes shown in the number of available 

beds during a single year). 

While the ability to implement endless configurations of scenario changes exists, the 

ability to actually implement the change at the operational level needs to be 

considered. For example, a goal of saving a certain level of funds may be achieved by 

reducing patient length of stay by some percentage, this may not translate to real 

savings for a variety of reasons including: 

• The achieved reduction in length of stay (for example) does not result in a 

reduction of staffing (for example, only one bed will close, but nursing numbers 

require that eight beds must close for the staffing to be reduced) 
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• The planned reduction in length of stay is marginal (perhaps as little as a few 

hours) and does not translate into any bed closures  

• Reduction in length of stay may have already reached a plateau that cannot be 

changed further without new technologies, and 

• Demand is such that despite the planned reductions being achieved, the ability to 

close the bed is not achieved due to the need to provide additional services. 

Consequently, the use of the scenario testing ability provides the mechanism to 

initiate discussions about system change between strategic decision-makers and 

operational workers as opposed to guaranteeing that planned changes designed by 

strategic decision-makers will eventuate. The issue of scenario testing and simulation 

is examined further in Chapter 11. 

7.4.5 Technical Issues 

Model selection and test data 
Cross validation using test data represents an alternative approach to model selection 

(Hastie, Tibshirani and Friedman, 2001), but is only viable when test data is available. 

When forecasting future occupancy levels, the availability of test data may not exist. 

For example, the results presented in Chapter 5, which used the same data, relied 

upon the 1999 data as test data, but in this work, the 1999 period was a forecast period 

and thus the 1999 could not be used as test data. From my experience in the health 

sector, this is not unusual. 

The need to take account of variability across the year and also split the data into 

small age groups meant that withholding some data from the training year for the 
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purpose of providing test data was also not a reasonable option. Had this option been 

pursued, it may have resulted in some data groupings having little data and thus 

potentially adversely affected the resulting model.

In the absence of model selection methodologies, sole reliance upon performance 

measures, such as error measures or correlations, are likely to result in selection of 

over-fitted models. The ability to use the Bayesian information criterion and the 

Bayes factor (or log odds) provides an important model selection tool in this instance.  

Bayes factor and log odds 
The Bayes factor values are generally very large and provide the same information as 

the log odds values. However, in terms of ease of interpretability, easier interpretation 

occurs when using the log odds values and for implementation purposes, the log odd 

values would be preferred. 

Catchment population 

Although every endeavour was made to match the ABS population projection data to 

the hospital’s catchment area, it is unlikely that this has been achieved perfectly. 

However, there were few differences in the rates of changes of the population for the 

overall State when compared to subgroups created on the basis of geography. Thus, 

the inability to create a perfect match between the population forecasts and the 

hospital catchment should not impact the results.  

Period of forecast 
The issue of how far out should strategic bed occupancy models forecast has not been 

considered. The research presented here only projects data for 20 years. The 
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projections have used the available population projection data as the limitation factor 

for the forecast. While it may be argued that it is useful to forecast out using all the 

available data, this is probably questionable given that services are affected by a 

myriad of factors (see earlier section on clinical activity and practice), most of which 

are volatile (for example, political influence and technology). Thus, while it is 

perhaps unrealistic to some extent to project forward bed occupancy too far into the 

future, it is nevertheless useful from a strategic perspective, because it opens up 

discussion about what the future might be and how it might be altered. A pragmatic 

view might be that forecasts might be viewed as more likely to represent a likely 

outcome if not more than ten years into the future, with longer forecasts of bed 

occupancy representing a general indication of possible outcomes. The usefulness of 

the bed occupancy forecast should be considered in terms of whether the methodology 

is reliable, and tested in terms of measuring the bed occupancy and whether the 

population forecasts have been sourced from a respected and credible source. 

Bed numbers 
The fit of one part of the model to one data point, namely the total bed occupancy, is 

reported in Table 20. The model consistently over estimates the data at this single 

point. Given the intended purpose of the model output, it is preferable that over-

estimation occurs rather than under-estimation of the total number of occupied beds. 

In both instances, it is imperative that the modeller and users of the model output are 

aware of such variation. 

In terms of model fit, particularly at a single point, it must also be recognised that the 

model does not provide a deterministic answer, but rather aims to provide an answer 
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that lies within some degree of variation. The use of confidence intervals, as shown in 

Table 19 is one means of reporting that uncertainty exists. 

There is also one possible point of variation that may lead to a difference in model fit 

at the point of total occupancy when comparing the HealthCare Otago and FMC 

model outputs, and this is associated with the census time. The HealthCare Otago 

model was based upon midnight census data, whereas the FMC model was based 

upon midday census data. Midday census data will capture same-day patient and 

possible admitted and discharged patient overlap if admission occurs before patient 

discharge. This may have affected the fit of the FMC data slightly at the point of total 

occupancy, but can be easily remedied by the use of data where the census time used 

is midnight. The need to accommodate inefficiencies arising from the overlap of 

patient admission and discharge can be factored into the model separately, as can the 

need for beds required to accommodate same-day emergency patients (which were 

few in number on a patient per day basis). Such modifications represent trivial 

changes to the modelling process. 

Profile construction 
The data profiles used to construct the models were manually constructed. While this 

is not a particularly difficult task, it was nevertheless a time consuming task. This 

became amplified as multiple profiles had to be created on the basis of patient age. 

For application in applied situations the use of automated data profile creation is 

recommended as has happened with the HealthCare Otago data. Failure to adopt such 

an approach may limit the adoption of such techniques in applied settings. 
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Efficiency factors 
Farmer and Emami (1990) have suggested that an efficiency factor be incorporated 

into the calculation of bed numbers. There is no need to incorporate such a factor into 

the compartmental flow model in most circumstances as the ability to undertake 

scenario testing provides for this (see earlier section on Scenario testing).  

Annual average models and the need for other model adjustment 

In Chapter 5 it was noted that St George (1988) and MacStravic (2001) have reported 

that an annual average model of acute hospital services will be insufficient to enable 

bed planning, as the variation within the data will not be detected. Clearly, it is 

possible to capture variation within the bed occupancy model as shown by the 

reporting of confidence intervals for the model parameters in Table 19. 

The usefulness of reporting an annual average level of occupancy is, however, 

acknowledged as being deficient in some instances as such a figure relies upon the 

user understanding that acute care hospital services do exhibit seasonal trends. The 

results from Chapter 5 support the position put forward by St George (1988) and 

MacStravic (2001) insofar as that the preferred model was not the annual average, but 

the “seasonal” model. Thus, strategic planning for the annual average may be 

appropriate for some activities, while for other activities it may be more relevant to 

plan for a peak season level of bed occupancy. 

The introduction of a method to modify the annual average model that has been 

disaggregated on the basis of age groups so that it can reflect seasonal variation is 

discussed further in Chapter 8. 
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7.5 Conclusion 

In this chapter, the exploration of model choice methodology when selecting 

compartmental flow models of bed occupancy disaggregated on the basis of patient 

age, and the implications of forecasting future bed occupancy based upon linking 

compartmental flow model parameters with population forecasts has been undertaken. 

This has established a linkage between the strategic bed occupancy models and 

population change. 

The age grouped annual average occupancy model created indicates that should the 

assumptions underlying the forecasts hold true, a 37 per cent increase in the number 

of occupied beds will eventuate. Such an outcome has significant implications for the 

health system as it would imply that significant levels of additional resources will be 

required to meet new capital works (to provide additional physical capacity) and 

additional operational costs. 

The ability to use the Bayesian information criterion and the Bayes factor as a guide 

to model selection in the absence of test data has also been demonstrated in this 

chapter. Adoption of such measures should improve model selection and result in less 

over-fitted models being chosen.  

While the average occupancy model can be easily linked to forecast changes in the 

population, it does not reflect the seasonal variations that are widely reported to occur. 

Chapter 8 extends some of the work presented in this chapter to include analysis of a 

mechanism that provides linkage between population change and seasonality issues. 
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The issue of how best to incorporate additional model complexity arising from 

seasonality is also considered.  
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Chapter 8

Incorporation of seasonal effects into the compartmental 

flow model: should model complexity increase or model 

design change?

In the previous chapter, the ability to select a preferred compartmental flow model of 

average bed occupancy using data that had been disaggregated on the basis of patient 

age was demonstrated. It was then demonstrated that such models could be linked to 

population forecasts in order to generate information that would help strategic 

planners better understand the demand for hospital beds as the population age profile 

changed. In this chapter, exploration of forecasting is continued with the population 

linked bed occupancy compartmental flow model being adjusted for seasonality. The 

chapter has the following structure: 
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8.1 Introduction 

At a strategic level, the ability to link population age profiles to bed occupancy 

compartmental flow models for forecasting purposes has value, because it links to the 

differences in resource use associated with different stages of life. However, it is also 

clear that bed occupancy varies at different times of the year. From the literature (for 

example, St George, 1988; Fullerton and Crawford, 1999; Heyworth, Anderson and 

Belstead (2000); MacStravic, 2001; Jones, Joy and Pearson, 2002; Menec VH, Roos 

NP and MacWilliam, 2002; and Matter-Walstra, Widmer and Busato, 2006) and also 

from my experience in working in the health system it is evident that some of this 

variation is seasonal. For example, the existence of winter bed peaks or crises is well 

accepted in the research literature (Vasilakis and El-Darzi, 2001) and also the media 

(for example, Clarke and Crouch, 2002; Patty, 2000; and Pollard, 2004).  The term 

“seasonal” is used in this context as to relating to particular periods of the year, such 

as summer and winter, as opposed to the meaning given in operational research texts 

(for example, Ozcan, 2005), which define the term “seasonal” to mean a short-term 

relatively frequent variation. The more general definition may encompass variation 

that can be attributed to the weather seasons, but it also can relate to many other types 

of variations. The findings presented in Chapter 5 also support the notion of seasonal 

influence on the data analysed. Thus, it is posited that the inclusion of a seasonal 

adjustment factor would add value to bed occupancy compartmental flow models. 

Given the scenario that forecasting bed occupancy on the basis of age grouping is 

useful for planning purposes, the question of how to incorporate seasonality into this 

modelling arises. There are at least two options that could be considered, namely: 
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The creation of seasonal and age group disaggregated data sets to create 

compartmental flow models, and 

The retention of the approach developed in Chapter 7 with the addition of a 

seasonality modifier that does not rely upon the development of more 

compartmental flow models. 

If the first scenario was to be adopted then the number of sub-models would expand 

from five age related models to five age related models multiplied by four seasonal 

models (assuming that the findings from Chapter 6 are adopted), that is, twenty 

compartmental flow models would be required to model the FMC dataset. Clearly, a 

move to such an approach would involve increasing the overall model complexity. 

Alternatively, new data groupings would be required to reduce the number of model 

sub-groups. Such an approach would require significant investment in resources and 

in terms of application in real world scenarios may possibly work against uptake of 

the research. 

The addition of a modifier to the approach developed in Chapter 7 may provide the 

opportunity to retain the existing age based compartmental flow models without an 

undue increase in model complexity. A useful analogy may be to consider the first 

option as one of a system controlled by push buttons or switches, with a switch for 

each compartmental flow sub-group, while the second option is more akin to a system 

that is controlled with far fewer sliding scale controls as illustrated in Figure 62. 
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Figure 62: Representation of the different approaches to including seasonal weather factors in the bed 

occupancy compartmental flow model. In this scenario a switch (or model) is provided for each month, 

whereas based upon the findings reported in Chapter 6 fewer switches could be used. 

The sliding scale model is still a parameterised model, but the parameters can now be 

thought of in qualitatively different ways. 

Consequently, research was undertaken to consider whether a “sliding scale” 

modified compartmental flow could be developed to add a seasonal or weather factor 

to the age related compartmental flow models developed in Chapter 4. The weather 

provides measures, such as air temperature, that change across the seasons and is also 

known to be related to the prevalence of some diseases (Jones, Joy and Pearson, 

2002). The research was limited to demonstrating the approach for one age group and 
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was not fully implemented, as the intended purpose of the research was to investigate 

the potential of this approach and not to develop it fully. 

The research was, however, extended to include consideration of the effect of vacancy 

rates on the resultant sliding scale model. Bed vacancy occurs when a patient does not 

occupy a given bed and occupancy rates are frequently measured as an indicator of 

hospital performance (for example, Ozcan, 2005). There is a tension between the 

number of occupied beds and the number of vacant beds: vacant beds represent an 

expensive resource, particularly if they have been staffed; yet, vacancy enables 

hospitals to cope with daily variation in patient arrivals, particularly emergency 

patient arrivals. This is illustrated in Figure 63. 
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Bagust, Place and Posnett (1999) reported that exceeding 90 per cent bed occupancy 

would, according to the results of their simulation modelling, result in frequent bed 

crises. Separate research undertaken in relation to the use of inpatient beds in 

Australia undertaken by myself and Millard (2005a and 2005b), suggests that a 

reduction in supply of over-night stay inpatient beds combined with a marginally 

altered demand for multi-stay beds has led to the occurrence of increasing numbers of 

bed crises in Australia.  Consequently, the inclusion of bed vacancy in this research is 

important. 
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Figure 63: Total available beds = occupied beds + vacant beds. Vacant 

beds provide a buffer against variation in occupancy.
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Some of the findings from this analysis were presented at a conference (Mackay and 

Lee, 2004a).

8.2 Methodology

8.2.1 Data and the Bed Occupancy Compartmental Flow Model  

The data considered here only relate to that drawn from the Flinders Medical Centre. 

The contextual details about the data were described in Chapter 3 (see sections 3.2.1 

and 3.3.1). 

The methodology used to create the occupancy models for this work was fully 

described in Chapter 6 (see section 6.2.2).

This analysis only used the sub-model relating to the patients aged 65-79 years 

created and reported in Chapter 7. The basis for only using this group of patients was 

twofold:

Of the five age groups, those aged 65-79 years occupied the greatest number 

of beds and therefore from a resource perspective represented a key group, and 

There was an obvious “winter” peak in the annual bed occupancy trend, which 

suggested a strong likelihood of seasonal influence. 

8.2.2 Weather and Regression 

Weather data was obtained from the Bureau of Meteorology (2004). The data were 

collected at the Adelaide Airport (Latitude (deg S): -34.9524; Longitude (deg E):  
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138.5204; State: South Australia). The airport was the closest weather collection point 

to the hospital. 

The data obtained were climate averages. The data provided monthly average figures 

for various climate measures, such as the temperature, rainfall and humidity. The data 

represented the period 1955 to 2003. Average climate data were used as this 

accounted for variation (for example, warmer and colder winters), which was 

considered a benefit given the intended use in forecasting. 

Correlations between the monthly average bed occupancy and all the climatic 

averages were determined. The climatic average with the highest correlation, the 

mean 9 a.m. temperature measured in degrees Celsius, was selected as the target 

variable to explore for further analysis. A high degree of collinearity between the 

weather variables meant that there was little value in exploring other variables for the 

purpose of this work. 

The mean 9 a.m. temperature had been collected for 48.5 years and there were no 

missing data. Additional variables were created from the mean 9 a.m. temperature 

variable: a lagged temperature variable, a lead temperature variable and a relative 

average monthly temperature change. This latter variable was calculated according to 

the formula given by: 

Relative average monthly temperature change = 
MT
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where

xj is monthly average 9 a.m. temperature for month j

n is the number of months in the year 

and

MTx  = monthly average temperature for a given month. 

 = 
n

j

jx
n 1

1

where

xj is temperature recorded at 9 a.m. on day j

n is the number of days in the month  

The greatest correlation of each of these variables with monthly average occupancy 

was achieved with the relative average monthly temperature change. This variable 

was used to create a simple regression model. The regression model was given by: 

  Y = mxr+c

 where 

 m was the regression equation co-efficient  

xr was the relative difference between the 9 a.m. mean monthly 

temperature and the annual average temperature weighted for the 

given month 

 c was the regression equation constant 

The original model compartmental flow model formula was given by: 
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Y = Ae
-bx

 + Ce
-dx

 where 

  A is the total number of short-stay occupied beds 

  b is the flow rate of the patients in the short-stay compartment 

  C is the total number of long-stay occupied beds, and 

  d is the flow rate of the patients in the long-stay compartment. 

This was adjusted to incorporate the influence of the weather giving: 

  Y = ((mxr+c) x A/(A+C))e
-bx

 + ((mxr+c) x C/(A+C))e
-dx

 where 

m was the regression equation co-efficient  

xr was the relative difference between the 9 a.m. mean monthly 

temperature and the annual average temperature weighted for the 

given month 

c was the regression equation constant, and 

A, b, C and d were as per the Harrison and Millard (1991) original 

equation.

The regression relationship was established between the weather variable and total 

bed occupancy. Consequently, the compartmental flow model was adjusted to take 

account of the weather. The adjustment was only applied to the bed number 

parameters and flow was assumed to remain constant. 
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8.2.3 Linkage to Population Change 

The methodology for the creation of the linked bed occupancy compartmental flow 

model and population forecast was described in Chapter 7. The forecast was amended 

to take account of the revised model of bed occupancy. 

8.2.4 Analysis of vacancy rates 

The actual bed occupancy was compared to the weather adjusted compartmental flow 

total occupancy. From this it was possible to calculate the number of beds required to 

achieve zero days where there would be insufficient beds each month and also the 

number of beds required to achieve not more than five per cent of days where patients 

would be turned away.
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8.3 Results

8.3.1 Weather and regression 

Bed occupancy trends 

Figure 64 shows the daily bed occupancy for the base year. The total bed occupancy 

trend suggests the presence of a winter bed occupancy peak, though such peaks for 

the age-grouped data are difficult to ascertain. 

Figure 65 shows the moving averages, a more useful mechanism for seeing trends 

over time, for the age-grouped data.   

Daily Trend in Total Occupancy
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Figure 64: Daily occupancy trends for total and age grouped bed occupancy.  The moving average 

indicates the existence of a winter peak in total occupancy. 
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Visual inspection of the trends presented in Figure 65 show that bed occupancy for 

the 50-64, 65-79 and 80 or more year age groups exhibited some degree of seasonal 

variation.

In terms of bed occupancy for this data set, the 65-79 year age group was the most 

important as they occupied the most beds. Consequently, given the limited intended 

scope of this piece of research, all further analysis in this chapter relates to the data 

pertaining to this age group. 

Correlations

Correlations between the average climate data obtained from the Bureau of 

Meteorology and the 65-79 year age-grouped bed occupancy data are reported in 

Table 23. 

Monthly Average Occupancy by Age Groups
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Figure 65: Moving average occupied bed trends for the age-grouped data. Winter peaks in bed 

occupancy appear to exist for some aged-grouped data. 
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Given the strength of the correlation between the mean 9 a.m. air temperature and bed 

occupancy, the mean 9 a.m. air temperature was further investigated for use in 

modifying the bed occupancy compartmental flow model. Figure 66 shows a trend 

that has similar timing to the bed occupancy trend, but is the inverse, that is a winter 

trough occurs instead of a winter peak.

Mean daily maximum temperature - deg C            -0.90

Mean no. of days where Max Temp >= 40.0 deg C     -0.56

Mean no. of days where Max Temp >= 35.0 deg C     -0.69

Mean no. of days where Max Temp >= 30.0 deg C     -0.79

Highest daily Max Temp - deg C                    -0.88

Mean daily minimum temperature - deg C            -0.90

Mean no. of days where Min Temp <= 2.0 deg C      0.76

Mean no. of days where Min Temp <= 0.0 deg C      0.50

Lowest daily Min Temp - deg C                     -0.84

Mean 9am air temp - deg C                         -0.92

Mean 9am wet bulb temp - deg C                    -0.91

Mean 9am dew point - deg C                        -0.79

Mean 9am relative humidity - %                    0.90

Mean 9am wind speed - km/h                        0.11

Mean 3pm air temp - deg C                         -0.90

Mean 3pm wet bulb temp - deg C                    -0.89

Mean 3pm dew point - deg C                        -0.78

Mean 3pm relative humidity - % 0.91

Mean 3pm wind speed - km/h                        -0.57

Mean monthly rainfall - mm                        0.85

Median (5th decile) monthly rainfall - mm 0.83

9th decile of monthly rainfall - mm 0.85

1st decile of monthly rainfall - mm 0.91

Mean no. of raindays                              0.89

Highest monthly rainfall - mm                     0.43

Lowest monthly rainfall - mm                      0.90

Highest recorded daily rainfall - mm              -0.57

Mean no. of clear days                            -0.73

Mean no. of cloudy days                           0.74

Mean daily hours of sunshine                      -0.84

Highest recorded wind gust - km/h                 -0.12

Mean daily evaporation - mm                       -0.87

Grand Total - occupancy 1.00

Weather Variables
Total 

Occupancy

Table 23: Correlations between bed occupancy data and 

average climate variables. The mean 9 a.m. temperature 

was found to have the strongest correlation. 
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Table 24 shows the correlations between the four 9 a.m. mean air temperature 

variables and monthly average bed occupancy. 

Trend in Weather Variables Over the Year
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Figure 66: Monthly movements in average monthly 9 a.m. air temperature and the relative change 

variable. Both variables show a strong winter trough. 

Table 24: Correlations between the four temperature variables and bed occupancy. The relative monthly 

average temperature change has strong correlations with occupancy and the over temperature variables.

average 

monthly air 

temperature

lagged average 

monthly air 

temperature

lead average 

monthly air 

temperature

relative monthly 

average 

temperature 

change

monthly average 

occupancy
-0.906* -0.858* -0.711* -0.915*

average monthly air 

temperature
0.859* 0.859* 0.982*

lagged average monthly 

air temperature
0.483 0.841*

lead average monthly air 

temperature
0.837*

Number of observations = 12. *Correlation is significant at the 0.01 level (two-tailed).

Variables

Variables
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Table 25 indicates that the correlations between the weather variables and the 

occupancy data existed even when more occupancy data was included in the analysis. 

This was important in identifying that the influence of the weather was not a one-off 

incident.  

Given the strength of the relationship between the relative change temperature 

variable and bed occupancy this relationship was explored further. Figure 67 shows a 

scatterplot and regression equation of this relationship. 

Table 25: Correlations between 1995-2000 average monthly bed occupancy and the average 

temperature variables. The correlations are weaker, but still significant and of reasonable strength. 

average 

monthly air 

temperature

lagged 

average 

monthly air 

temperature

lead average 

monthly air 

temperature

relative monthly 

average 

temperature 

change

monthly average 

occupancy
-0.471* -0.338* -0.485* -0.486*

average monthly air 

temperature
0.859* 0.859* 0.982*

lagged average monthly 

air temperature
0.483* 0.841*

lead average monthly air 

temperature
0.837*

Number of observations = 72. *Correlation is significant at the 0.01 level (two-tailed).

Variables

Variables
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Table 26 reports the correlations between the temperature variables and the average 

monthly bed occupancy for each year of data held. It is evident that the weather 

accounted for much variation in some, but not all years. 

Figure 67: Scatterplot of bed occupancy for the model year and relative temperature change variables. 

The variation in occupancy was largely explained by the relative temperature change variable. 

Scatterplot: 1998 average bed occupancy versus relative change in the long term 

average monthly air temperature from the annual air termperature
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The temperature did not appear to be uniformly correlated for each year, suggesting 

the influence of other factors. Overall, average monthly occupancy was correlated 

with the relative temperature change variable (r = -0.486, p<0.01).

Table 26: Correlations between temperature variables and bed occupancy for individual years. The 

influence of the temperature on occupancy was not consistent; rather it was one of many factors that 

influenced occupancy. 

average 

monthly air 

temperature

lagged 

average 

monthly air 

temperature

lead average 

monthly air 

temperature

relative monthly 

average 

temperature 

change

1995 monthly average 

occupancy
-0.357 -0.070 -0.572 -0.396

1996 monthly average 

occupancy
-.835* -0.560 -.826* -.840*

1997 monthly average 

occupancy
-0.391 -0.008 -.730* -0.328

1998 monthly average 

occupancy
-.906* -.858* -.711* -.915*

1999 monthly average 

occupancy
-0.574 -0.571 -0.427 -.650*

2000 monthly average 

occupancy
-0.333 -0.442 -0.163 -0.389

average monthly air 

temperature
0.859* 0.859* 0.982*

lagged average monthly 

air temperature
0.483* 0.841*

lead average monthly air 

temperature
0.837*

Number of observations = 12. *Correlation is significant at the 0.01 level (two-tailed).

Variables

Variables
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Table 27: The R-square value for the model was high, with 82 per cent of the 

variance in occupancy explained by the weather variable. 

Regression and modified compartmental flow model 

The regression model output is detailed in Tables 27 to 29. 

The regression model was then combined with the compartmental flow model 

previously obtained (see Chapter 7). The amended model, original average 

compartmental flow model and the actual data are shown in Figure 68. 

Table 29: Model coefficients. The model coefficients vary slightly to those in Figure 65, because a 

statistical package was used to run the regression analysis as opposed to the addition of a trend as part 

of the graphical capabilities of a spreadsheet.  

Table 28: The explained variation is significantly greater than the unexplained variation. Thus, 

from the data, it would appear that a linear relationship between the weather variable and 

occupancy existed. 

standardized 

coefficients

B
standard 

error
Beta

Constant 69.802 1.079 64.704 p <0.001

Relative temperature change -26.554 3.717 -0.914 -7.144 p <0.001

Model coefficients

Note: the dependent variable was occupancy.

Model  

unstandardized coefficients

t significance

R R square
Adjust R 

Square

Standard Error of 

the Estimate

0.914 0.836 0.820 3.64

Model Summary

Note: the predictors were a constant and the relative 

temperture change

R
sum of 

squares

degrees of 

freedom

mean 

square
F significance

Regression 674.75 1 674.75 51.04 p <0.001

Residual 132.20 10 132.20

Total 806.95 11

Note: the predictors were a constant and the relative temperature change. The dependent 

variable was occupancy.

Anova
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The adjusted model provided a better fit to the data at the monthly occupancy level 

compared to the average occupancy compartmental flow model. The improved fit was 

also achieved with the daily occupancy data as shown in Figure 69.

Comparison of Monthly Average Occupancy and Annual and Weather Adjusted Occupancy Models
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Figure 68: The weather adjusted compartmental flow model better reflects the actual occupancy data 

than the average compartmental flow model. 
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8.3.2 The amended forecast 

The forecast bed occupancy based upon population change for patients aged 65-79 

years was recalculated using the weather adjusted compartmental flow model. The 

comparison of the original forecast and the weather adjusted forecast is shown in 

Figure 70. 

Comparison of Annual Average and Weather Adjusted Models: Patients 65-79 Yrs
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Figure 69: Despite a better fit between the weather adjusted model and the daily occupancy data, the 

model is clearly suited, as intended, for exploring longer-term strategic issues as opposed to the 

operational issues associated with daily occupancy. 
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8.3.3 Accounting for vacancy 

As shown in Figures 68, 69 and 70, the weather adjusted compartmental flow model 

enables visualisation of the effect of seasonality on total average bed occupancy, but 

does not reflect daily bed requirements well. While this is to be expected, as the 

model was not constructed to reflect the occupancy for each day, there is some value 

in understanding the level of vacancy required so that all occupancy levels can be 

fulfilled. 

Figure 71 illustrates the improvement in performance of the model, as measured by 

the percentage of the year when bed shortages would occur, by adding the weather 

adjustment to the model and also considering the effect of allowing for a vacancy rate. 

Comparison of Occupancy Forecasts With and Without Seasonality Influence

for Patients Aged 65-79 Years
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Figure 70: The weather adjusted forecast provided a visual indication of the seasonal occupancy 

fluctuations, unlike the forecast based upon the average compartmental flow model. 
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The level of vacancy required to avoid overload or patient turn-away was on average 

12 and 11 per cent with standard deviations of 9 and 6 per cent for the original and 

weather-adjusted model, respectively as shown in Table 30. 

Comparison of Weather and Base Models and Bed Shortages
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Figure 71: Comparison of the original compartmental flow model and weather adjusted compartmental 

flow model.  The weather-adjusted model required less vacancy to avoid patient turn-away. 
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It can be seen that the variation in the vacancy rate required to avoid patient turn-

away was reduced for the weather-adjusted model (lower standard deviation), as is the 

maximum vacancy rate. Figure 71 also illustrated that for any particular level of 

vacancy, the percentage of days that would result in patient turn-away was lower. 

Figure 72 illustrates the effect of including a vacancy rate in the weather-adjusted 

model. Two vacancy rates were used: one to achieve no more than five per cent of 

days with patient turn-away, and the other to achieve no days of patient turn-away. 

Month
Vacancy rate - 

Base Model

Vacancy rate - 

Weather 

adjusted Model

Difference 

Between 

Models

Jan 6% 16% -10%

Feb 5% 14% -9%

Mar 12% 19% -7%

Apr 10% 12% -2%

May 13% 8% 5%

Jun 20% 5% 15%

Jul 27% 11% 16%

Aug 22% 10% 12%

Sep 21% 17% 4%

Oct 9% 9% 0%

Nov 1% 5% -4%

Dec 0% 0% 0%

Average 12% 11%

St Dev 9% 6%

Min 0% 0%

Max 27% 19%

Table 30: Vacancy rates for the original compartmental flow model and weather-

adjusted model. 
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Visual inspection indicates that the weather-adjusted model fitted the monthly average 

occupancy data well. While the shape of the weather and vacancy adjusted models 

were similar to that of the weather-adjusted model, there were some differences. In 

terms of fit, examination of the absolute error, as shown in Table 31, was lowest for 

the weather-adjusted model. 

Similar results were found for the absolute errors even when calculated using the 

daily occupancy. The absolute errors for each model were as follows: the average 

model had an absolute error of 3112.4; the weather-adjusted model had an absolute 

error of 2220.2; the bed shortages on five per cent of days model had an absolute error 

Weather and Vacancy Adjusted Model - Monthly Level (Patients 65-79 Yrs)
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Figure 72: Comparison of the original, weather-adjusted and weather and vacancy-adjusted models with 

the data. 

Table 31: Absolute errors for each model. The weather-adjusted model achieved the lowest absolute 

error. 
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of 3661.4; and the no patient turn-away model had an absolute error of 4298.0. These 

may be more easily interpreted as an average absolute error per day, giving values of 

8.5, 6.1, 10.0 and 11.8, respectively. It was not unexpected that the vacancy-adjusted 

models performed less well in terms of absolute error, because they were adjusted to 

increase the number of beds to reduce or remove the effect of days of high occupancy 

(or extreme variation). In terms of performance against patient turn-away indicators, 

however, these models perform better than the non-vacancy adjusted models.   

Incorporation of the vacancy adjustments to the forecast for future bed requirements is 

shown in Figure 73. 
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Figure 73: Comparison of the original, weather-adjusted and no patient turn-away model forecasts. 

Inclusion of seasonality and vacancy is important for aiding planning decisions. 
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It can be seen that the capacity required to cope with future activity levels (based 

upon anticipated population change) could be under-estimated unless the effects of 

seasonality and vacancy rates are understood.  

8.4 Discussion

I am not aware of factors such as the weather being incorporated previously as part of 

compartmental flow models of bed occupancy. Consequently, this research, while 

being limited to one of demonstration, has shown that the bed occupancy 

compartmental flow model can be adjusted to incorporate the effect of weather, at 

least for medical patients aged between 65-79 years treated in an acute care hospital 

environment. Such modification should make the model more useful to planners and 

decision-makers, and therefore more likely to be adopted as a planning tool. 

The creation of a modified compartmental flow model raises various issues and these 

are discussed in the remainder of the discussion. 

8.4.1 Effect of weather on the model 

It is evident from the results presented in this chapter that the weather effected bed 

occupancy. While this should be of little or no surprise given recent publications in 

the literature regarding the existence of “winter bed crises” (Vasilakis and El-Darzi, 

2001) and other literature concerning the influence of weather on the patterns of 

disease (Jones, Joy and Pearson, 2002), the inclusion of such a modifier is novel in 

regards to the work on compartmental flow models of bed occupancy. 
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The modified model 

As stated in the methodology (see section 6.2.2), the original model put forward by 

Harrison and Millard (1991) was modified to facilitate consideration of more data and 

incorporation of a simple regression model of weather and bed occupancy. 

Schematically this can be represented as moving from the “base” model to a 

“modified” model as illustrated in Figure 74. 

Figure 74 consolidates the results presented in Figures 68 and 69, and Table 31 into a 

single illustration – modification of the base model results in a better fit of the data. 

The method has enabled the modification of the original base model in a relatively 

simple manner. Rather than increasing the number of compartmental flow models 
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Figure 74: The movement from the base model to the modified model resulted in a better fit between 

the model and data. 
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required to reflect seasonal changes, as suggested in Chapter 5, there was no increase 

in the number of compartmental flow models. Rather the existing compartmental flow 

model has been retained. There are several benefits from such an approach. First, the 

complexity of the model does not increase as much as it would have if additional 

compartmental flow models had been used, which is important in terms of model 

generalisation. The number of model parameters would have been 48 using individual 

monthly compartmental models (see Figure 62), or 16 based upon the results from 

Chapter 5. The adopted approach resulted in a model that had six parameters. Using 

the number of model parameters as a measure of complexity, the adopted approach is 

eight times less complex than the individual monthly compartmental model approach 

and 2.7 times less complex than the approach based upon the results in Chapter 5.

The ability to more easily undertake what-if scenario analysis is also related to model 

complexity. The number of parameters available for modification in a what-if 

scenario analysis does not increase greatly using the sliding scale model (an increase 

in one modifiable parameter as opposed to an additional 12 parameters using the 

multiple compartmental flow models as suggested from the results of Chapter 5). This 

is also a benefit, as it reduces the effort required to undertake what-if analysis. 

An additional benefit from the modification of the model is that the weather 

parameter is modifiable at an increased level of detail (monthly as opposed to 

seasonal). Furthermore, the weather parameter relates to the weather as opposed to the 

seasonal compartmental flow models, which have no actual weather variable, thus 

making what-if scenario analysis relating to weather change possible (see Chapter 11 

for additional analysis).  
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Investigation of whether the relationship with the weather was different for short and 

long-stay patient bed occupancy compartments was not undertaken due to the 

demonstration nature of this work. There is a possibility that variation in the 

relationship with the weather may exist and this represents an avenue for further 

research.  

Measuring complexity 

The modification of the model affects the ability to measure complexity using the 

Bayesian information criterion (BIC). As identified in Chapter 4 (see section 4.6.3), a 

potential criticism of the BIC (and also of the AIC) is that it does not take into 

account the functional form of models (Pitt and Myung, 2002). The modification of 

the model has resulted in a changed functional form and thus the ability to measure 

and draw conclusions about two different models using the BIC in this situation is 

difficult and was not attempted. However, appreciating the implications of the 

complexity and over fitting trade off, as discussed in Chapter 4, it is not unreasonable 

to conclude that achievement of improved model fit with a less complex model is the 

preferred outcome.  

Model selection methods, such as the Bayesian model selection and minimum 

description length, do take into account the functional form of models (Pitt and 

Myung, 2002). These methods are computationally difficult and were not explored for 

this thesis (see Chapter 4). 
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The ability to compare to the alternative option 

The alternative option of capturing the effect of seasonality was mentioned in the 

introduction in this chapter, namely, the creation of a seasonal and age compartmental 

flow model for bed occupancy (that is, a combination of the approaches presented in 

Chapters 5 and 7). It has already been stated that this would lead to a greater 

complexity than the approach investigated. 

The output from Chapter 5 is not comparable with the results presented in this chapter 

as the seasonal model created in Chapter 4 was based upon all the data and not a 

subset based upon patient age. In order for comparison to be made, a subset of the 

data would need to be created that was based upon age and also “seasons”. While 

technically this was possible, there is little pragmatic reason for pursuing this line of 

research for the reasons already stated, particularly relating to increased complexity, 

generalisation and the ability to actually modify the factor under investigation (that is, 

the weather). 

The results from the analysis presented in this chapter are supportive of this stance 

insofar as: 

The age grouping was obtained from the work in Chapter 7 and the best 

model tested was used, and 

The absolute error of the modified model improves with the weather 

adjustment (see Figures 68, 69 and 72 for visual inspection and Table 31 for 

the absolute errors). 
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The benefit of the modification 

The use of the compartmental flow model to reflect bed occupancy overcomes the 

inherent problems with the ALOS. In terms of forecasting, however, the use of a 

model based upon average occupancy has limitations as suggested by St George 

(1988) and MacStravic (2001). The primary limitation is that bed occupancy is

affected by seasonal variation. Thus, any planning based without consideration of the 

variation will be flawed. While there is no reason why an “average” bed occupancy 

model could be used providing that the ramifications of the variation are understood, 

it is difficult for planners and strategists to undertake scenario testing. 

The amended forecast illustrated in Figure 70 shows the seasonal variation well. The 

visualisation of the influence of the weather on the forecast not only enables better 

what-if scenario testing to occur, but should improve the acceptance of the model by 

showing that it captures the winter peaks and summer troughs in bed occupancy. 

Clearly, decisions about bed occupancy and related resource issues (such as capital 

planning, workforce and avoidance strategies) would be flawed if they were only 

made using the average occupancy. 

The role of other factors that affect bed occupancy 

It is evident from Figures 64 and 65 that seasonal variation in bed occupancy occurred 

at least at the overall level and also for some subsets of data based upon patient age. 

Tables 25 and 26 confirm that the chosen weather variable correlated with bed 

occupancy and that this relationship was variable (for example, r = -0.389, p=0.211 in 

the year 2000; r = -0.915, p<0.01 in the year 1998; and for the six year period r = -

0.486, p<0.01).
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Weather is only one of many possible influences on occupancy. It is posited that in 

some years, the influence of weather is stronger as other influences are less dominate 

(such as policy changes, actions arising from financial considerations, etc) and this 

results in the observed different correlation strengths between the weather variable 

and the average monthly bed occupancy variable. While this has not been 

investigated, experience in the health system would suggest that it is a reasonable 

hypothesis.

The data used for the modelling exercise showed a strong correlation year with the 

weather variable. While correlation is not causation, it is not unreasonable to expect a 

relationship between medical patient activity and the weather (Jones, Joy and Pearson, 

2002). The forecast that represents a situation where weather variable accounts for a 

high proportion of the variation in monthly average bed occupancy (R
2
 = 0.83). This 

is not an unreasonable approach insofar as that the forecast makes various 

assumptions about the base year, such as the mix of the type of activity for a given 

age group will remain constant. Similarly, it is reasonable to include an assumption 

that the influence of the weather on average monthly occupancy will also remain 

constant.

For strategic decision-making purposes it may be useful to also provide a scenario 

where weather accounts for less variation in the monthly average bed occupancy. 

Basing the regression on a more extended period of average monthly bed occupancy 

would achieve this (R
2
 = 0.24). The problem with this approach is that the 

assumptions about the base year data become mixed, with some relating to the base 

year only, while those relating to weather are based upon bed occupancy from other 



289

years. Nevertheless, providing that such issues are identified, it may provide an 

alternative scenario that stimulates discussion around future resource decisions that 

involve bed occupancy. The better alternative is to attempt to identify the actual 

cause(s) of non-weather variation in years where the correlation is low and quantify 

the effect of this on occupancy in order to see if the variation around seasonality 

would have otherwise been relatively constant. This, however, is likely to be a 

difficult task at a strategic level, though at a lower level (such as if modelling the 

activity relating to an operational unit or related to a disease) may be achievable. 

8.4.2 Inclusion of the “vacancy” factor 

In recent years there has been much written about hospital bed crises and the need for 

more beds or the operation of hospitals at occupancy levels that avoid crises (for 

example, see Bagust, Place and Posnett, 1999; and Utley, Gallivan, Treasure and 

Valencia, 2003). The rule of thumb that hospitals should operate at 85 per cent 

occupancy has been supported by research such as that of Bagust, Place and Posnett, 

1999) that found, based upon simulation studies of theoretical hospitals, when levels 

of occupancy exceeded 90 per cent bed crises occurred. Furthermore, the inclusion of 

an occupancy factor becomes more important when it is realised that there has been 

little change in the levels of inpatient bed day use in recent years, yet the number of 

available beds has declined as consequence of the increase in provision of same-day 

patient services (Mackay and Millard, 2005a; Mackay and Millard, 2005b). 

The compartmental flow models of bed occupancy, however, have not included an 

occupancy component. Clearly, not only is there a need to understand bed occupancy, 

but there is also a need to understand the level of vacancy that is necessary to avoid 
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crises. The compartmental flow model was further modified to take account of 

vacancy requirements.  

The modified model 

Schematically, the modification of the compartmental flow model to incorporate the 

vacancy adjustment is shown in Figure 75. 

Unlike the modification made to reflect the effect of the weather on bed occupancy, 

the adjustment made for the required level of vacancy to avoid patient turn-away 

relates to a business or policy decision. The resultant adjustment means that the 

occupancy level has been shifted upwards away from the average in order that the 

extreme or rare events in terms of occupancy levels are covered. This modification 

takes into account changes at the daily level as opposed to the more general 

Figure 75: Schematic representation of the change in the weather adjusted compartmental flow model 

of bed occupancy. The modification is adjusted to reflect business or policy implications. 
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incorporation of the weather modification. Furthermore, it is possible to set the level 

of occupancy such that a given percentage of days in any year will experience patient 

turn-away, as shown in Figure 72 (see the section on The ability to attach costs later 

in this chapter for more details).  

The ideal occupancy level 

Table 30 supported the notion put forward by Bagust, Place and Posnett (1999) that 

percentage bed occupancy should be on average less than 90 per cent if patient turn-

away is to be avoided. The result was also consistent with that found for a geriatric 

service using queueing theory (Gorunescu, McClean and Millard, 2002). The vacancy 

rate, however, is affected by the given mix of emergency and elective patient 

workload and the type of patients included in the analysis (that is, medical patients in 

this instance). It was interesting to note that the required vacancy rate is not uniform 

across the year, but reflected the influence of the seasonal variation for the base 

model. The weather adjusted model vacancy was also not uniform, as shown in Table 

30, but as the influence of seasonality was largely captured by the inclusion of the 

weather adjustment, the pattern of vacancy appears to be more random. 

In reality, the ability to identify what is operationally acceptable in terms of patient 

turn-away is not as simple for a variety of factors. For example, in reality patients 

may not be turned away, but admission to a different part of the hospital where there 

is capacity to take the patient may occur; elective surgery may be cancelled to provide 

additional emergency bed capacity; people may wait longer in the emergency 

department for admission to a bed; ambulance bypass may be enacted so that patients 

are admitted at other hospitals, etc. While overflow and demand management 

strategies exist, they may not be optimal in terms of patient outcomes (for example, 
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anecdotally it is suggested that admission to the wrong area in the hospital leads to 

different care and longer length of stay), but may facilitate the attainment of other 

goals, such as the management of financial resources. 

Figure 71 illustrated the trade-off between decreasing occupancy and decreasing the 

amount of the year when patient turn-away occurs. Such a diagram is useful for 

informing decisions about bed crises. Notably, the weather-adjusted model performed 

better as it captures the seasonal variation. 

The ability to attach costs 

The inclusion of a vacancy adjustment reflects a policy decision – in this case a policy 

decision about the number of days that patient turn-away may occur during the year.   

It can be seen from Figure 72 and Table 31 that the model is shifted up – to meet days 

when occupancy is high and consequently, the modified model fits the data less well 

(in terms of visual inspection – it is further away from the data - and absolute error, 

which is greater than the weather adjusted model). However, it must be recognised 

that the data does not relate to the maximum occupancy for each month, but rather 

average occupancy levels. This highlights one of the many issues regarding model fit, 

namely that the original model was created to fit the average occupancy profile, but 

the adjusted model relates to maximum occupancy levels and thus the performance of 

the vacancy model may be better judged against maximum monthly occupancy data. 

The point of the introduction of the vacancy factor, however, was to improve 

understanding about capacity required to cope with occupancy levels that exceed the 

average.
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From a resource management perspective, it must be recognised that the introduction 

of a vacancy factor involves various costs. Reducing the cost of running hospitals is 

often the focus of hospital management. Consequently, reducing the number of 

staffed, but unoccupied beds is often one way to achieve reduced running costs. There 

is, however, some tension in such an aim insofar as that political decision-making 

often appears to be concerned with avoiding “front page” headlines about bed crises.

Figure 71 is useful in that it shows the turn-away rates for given levels of percentage 

occupancy. Given that staffing vacant beds often involves additional cost (for 

example, additional nursing staff), achieving zero patient turn-away comes at a higher 

cost than having some level of patient turn-away. The attachment of costs of opening 

beds and the cost of patient turn-away enables the quantification of the trade-off to 

occur. Certainly the attachment of costs of staffing beds can occur. The cost of patient 

turn-away, however, is a more difficult task insofar as some of the outcomes are either 

difficult to cost (for example, is there a financial cost to the hospital for the 

achievement or failure to achieve political outcomes), or may not be considered as 

part of the decision-making process (for example, if patient outcome changes slightly 

does the cost, if any, associated with this matter to those making financial decisions 

about occupancy levels?). 

The benefit of the modification 

The inclusion of the vacancy modification leads to the following benefits: 

Visually it provides additional information to the user in that the maximum 

levels of occupancy can be appreciated, given the accepted level of patient 

turn-away, and 
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It facilitates a better understanding of the difference between planning for the 

average occupancy (even if modified for the weather) and the maximum that 

may result. 

It helps overcome the limitations of forecasting using a model based upon 

average occupancy, which St George (1988) and MacStravic (2001) suggest 

has limitations. 

8.4.3 The amended forecast 

The weather and vacancy modified forecast of future bed occupancy levels is 

illustrated in Figure 73. In terms of improving strategic planning decisions about bed 

occupancy and other related resources (staffing levels, future training requirements, 

capital works, etc), the inclusion of the modifications provides additional useful 

information.  

8.4.4 The role of modifiers 

A general need 

Two forms of bed occupancy compartmental flow model modifications have been 

examined. The weather modification provides an example of how factors that affect 

bed occupancy through the impact on disease and other factors can be incorporated 

into the compartmental flow model. The vacancy modification provides an example 

of how business or policy decisions can be incorporated into the compartmental flow 

model. Presumably other potential modifications could also be considered. 

While a general need to include modifiers has been demonstrated, the inclusion of 

other modifications should be based upon the impact on the purpose of the model 
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(that is, in this case strategic decision-making). The goals of inclusion should thus be 

threefold: 

Provision of better understanding of bed occupancy behaviour 

Inclusion without undue complexity, and 

Relevancy to better decision-making. 

The outcome of implementation of these goals is that modification of the base 

compartmental flow model should result in additional information that will be of 

benefit to decision-makers. The benefits of the weather and vacancy modifications 

have been previously discussed. 

The importance of business rules 

The modification of the model to facilitate consideration of the influence of business 

or policy rules is important. It highlights that bed occupancy is not just a factor of 

patient demand, but rather service provision is a function of patient demand and 

business or policy rules. The ability to incorporate such factors should make the 

model a more useful tool for those undertaking strategic decision-making. 

The implications for what-if analysis 

The inclusion of modifiers is important insofar as that it provides additional capacity 

to examine alternative scenarios using what-if analysis. In the case of weather 

variables, the modifiers can be altered to examine the influence of more varied 

weather patterns that may arise as a consequence of global warming, a much 

discussed topic in the general media. The means of undertaking the what-if modelling, 

however, may need to be altered and this is now discussed. 
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The original what-if calculations relied upon an unmodified compartmental flow 

model. In this model, the compartmental flow model is assumed to be full, that is, 

there are no unoccupied beds.

The assumptions adopted when introducing the vacancy and weather modifications to 

the compartmental flow model have meant that the flow rates of the model (that is, 

parameters “b” and “d”) were not altered. The assumptions did, however, result in the 

alteration of parameters relating to the number of beds in each compartment (that is, 

parameters “A” and “C”). In the case of the vacancy modification, the point to the 

modification was to enable the effect of “vacancy” to be considered. The consequence 

of the increased bed requirement was not that an additional number of patients would 

be seen, but rather that patients would not be turned away due to a lack of beds arising 

from the daily variation in patient numbers.  

For the intended forecasting purposes, the modification of the model parameters had 

value insofar as the only aspect being forecast was the total number of beds, and the 

modification resulted in improved visualization of the trends across a year and also an 

improved understanding of the actual bed capacity required in future years at different 

times of the year and in order to avoid patient turn-away. 

The ability to conduct what-if analysis was a feature of the original BOMPS package 

and this feature has been transferred to Microsoft Excel (as mentioned in previous 

chapters). While what-if analysis can still be conducted, care must be adopted when 

doing so in order to avoid confusion about the capabilities of the original what-if 

analysis methodology – it was designed to work with the original compartmental flow 
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model and not the modified version where the compartments are not full (that is, 

vacancy exists). A simple work around exists – what-if scenario testing can be 

undertaken using the original compartmental flow model parameters and the effects of 

the vacancy modifier can be included subsequently (assuming that the what-if 

scenario testing merely involves the compartmental flow model – see Chapter 11). 

Changes to the weather can also be examined (for example, the effects of a warmer 

winter could be examined), but can be conducted using the original what-if analysis 

with the “bed” parameters  (that is, A and C) being substituted with the weather 

adjusted bed parameters, as increased throughput would occur. Alternatively, 

scenarios considering changes to bed number or patient flow would be made using the 

base model and subsequently modified to incorporate the influence of the weather. 

8.5 Conclusion

Research has been undertaken to investigate whether a “sliding scale” modified 

compartmental flow could be developed to add a seasonal or weather factor to the age 

related compartmental flow models developed in Chapter 7. The research was limited 

to demonstrating the approach for the most important subset of the data based upon 

age grouping. 

It has been demonstrated that the use of a bed occupancy compartmental flow model 

modifier, such as the weather variable used in this work, can lead to a better fit with 

the data while not increasing the model complexity greatly. The benefits that arise 

from this approach extend to the potential for improved representation of the data and 
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better forecasting, which should result in more credibility for the approach by users 

and better decision-making. 

The extension of the modification to include consideration of the effect of vacancy 

rates on the resultant sliding scale model highlighted the ability to incorporate 

business or policy rules into the resulting model. This is also important as it should 

contribute to improved credibility of the model by users and lead to better decision-

making. 

The scope to undertake further research exists. For example, the ability to explore the 

relationship between the weather and bed occupancy across other patient age groups 

exists. Investigation of other potential model modifiers may also be warranted. 

The bed occupancy compartmental flow model can be used for other purposes, such 

as evaluation of service change and forecasting future outcomes. The ability to 

undertake short-term forecasting using the model parameters is the subject of Chapter 

9.
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Chapter 9

The use of compartmental flow bed occupancy models for 
forecasting service change  

In this chapter I investigate whether the bed occupancy compartmental flow can be 

used to forecast short-term changes in the acute care hospital setting using the New 

Zealand hospital data. The chapter has the following structure: 

9.1 Introduction ............................................................................................ 300 
9.2 Methodology .......................................................................................... 301 
9.3 Results.................................................................................................... 302 
9.3.1  Post service change trends.................................................................... 302 
9.3.2  Forecasting using the ALOS ................................................................ 304 
9.3.3  Forecasting with compartmental flow models ...................................... 306 
9.3.4  Comparison of forecasts to actual outcomes......................................... 307 
9.3.5  Comparison of the expected stay and the average length of stay........... 312 
9.4 Discussion .............................................................................................. 313 
9.4.1  The ALOS Forecast ............................................................................. 314 
9.4.2  The Bed Occupancy Compartmental Flow Model Forecast .................. 316 
9.4.3  Expected length of patient stay............................................................. 320
9.4.4  Model Choice ...................................................................................... 321 
9.4.5  Predictive validity ................................................................................ 322 
9.5 Conclusion.............................................................................................. 322 
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9.1 Introduction 

In Chapter 6 compartmental flow models were used to evaluate the change in service 

in Internal Medicine at HealthCare Otago. Evaluation of change is an activity that is 

valuable as it helps determine whether the aims of a given change process were 

achieved. Evaluation, however, relates to past events. While decision-makers in the 

health sector are interested in past events, consideration of the future events is 

probably more important, as it provides information that will indicate whether an 

existing service, or even a newly created service, will be able to meet demand with its 

given physical resources (for example, beds), financial resources and workforce.  

In Chapter 7 forecasting future bed occupancy in light of a changing population 

profile and using bed occupancy compartmental flow models was illustrated. The time 

horizon for the forecasting period was 20 years, although it was recognised that 

forecasting too far out into the future did not necessarily lead to useful forecasts when 

many underlying factors may alter (for example, technology). 

While longer-term forecasts are useful, many decision-makers are more concerned 

about the shorter-term (that is, the next few years, as opposed to the next 20 years). 

Thus, in this chapter I explore the ability to use the bed occupancy compartmental 

flow model to create short-term forecasts about bed occupancy without incorporation 

of population change. Given the ubiquitous nature of the ALOS, such forecasting is 

contrasted with short-term forecasts of the ALOS and reinforces the deficiencies of 

ALOS for short-term forecasting. The modelling uses the data from the Internal 

Medicine Department at HeatlhCare Otago. 
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The results of the research undertaken for this research were presented at a conference 

(Mackay, Lee, Rae and Millard, 2004) and form the basis of this chapter.  

9.2 Methodology 

The contextual details about the Internal Medicine data were described in Chapter 3 

(see Chapter 3 sections 3.2.2 and 3.3.2). The data relating to the period following the 

reduction in bed numbers that occurred as part of the service change, that is from 

1997 to 2003, were used for this research.  

The method used for the creation of the compartmental flow models reported in this 

chapter was described in Chapter 6 (see section 6.2.2). 

Compartmental flow models were created for each year for the period 1997 to 2003. 

Confidence intervals for model parameters were calculated using standard Monte 

Carlo methods (Hillier and Lieberman, 2001; Powell and Baker, 2004). The model 

parameters were analysed for the presence of any trend. A constant or simple linear 

regression model was selected and used to create forecasts of movement in parameters 

for the next two years (that is, 2004 and 2005). 

The ALOS was also determined for each year for the same period. Linear and non-

linear regression models were fitted to the ALOS trend. 

Additional data were obtained relating to the forecast years 2004 and 2005. This data 

enabled the calculation of average patient numbers (or the average number of 

occupied beds) and the ALOS, but it was not suitable for the calculation of 
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compartmental flow parameters. This necessitated the use of approximate measures of 

short and long-stay bed numbers and patient flow as comparisons to the 

compartmental flow model forecasts.  

The estimated length of patient stay was calculated using the compartmental flow 

model parameters1 and was compared to the ALOS measure. 

9.3 Results 

9.3.1 Post service change trends 

Although a general analysis of the trends in ALOS and bed occupancy was presented 

in Chapter 3 (see section 3.3.2) it is useful to revisit these trends. In revisiting these 

trends the focus of the analysis was shifted from the entire data set (that is, pre and 

post service change) to only that of the post service change period. The reason for 

reducing the period of analysis was that it was post service change period that would 

be used as the basis for forecasting future patient flow rate and bed occupancy. 

                                               
1

Ms Georgina Christodoulou developed the spreadsheets in Microsoft Excel in her capacity as a 
research assistant for Peter Millard. I liaised with Ms Christodoulou during the development of these 
spreadsheets and provided some limited input into the development. I was given access to these 
through my collaboration with Peter Millard and his research colleagues. 
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Figure 76 illustrates the change in the ALOS over the post service change period.  

Figure 77 shows the 90-day moving average trend in bed occupancy for the post 

service change period. 

Figure 76: The ALOS trend showed a period of continued decrease post service until about the year 
2000 after which the ALOS rose.  The changes in ALOS were small, with an increase of approximately 
2.5% over the period.  
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Neither of these measures adequately explained the changes in either patient flow or 

patient numbers, that is, was occupancy increasing because of more patients or slower 

patient flow or both, and was the change in ALOS due to a general decline in patient 

flow, an increase in long-stay patients or a decline in the flow rate of short-stay 

patients? 

9.3.2 Forecasting using the ALOS 

The trend in the ALOS post changed service consisted of two phases: an initial 

decrease, followed by a period of increase. The ALOS for 2003 had increased by 2.5 

per cent when compared to 1997. Figure 78 illustrates the trend and also shows a 

linear and polynomial model fitted to the data.  

Figure 77: The 90-day moving average trend shows an increase in total occupancy that commences 
from about the year 1999.
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If only the period where the ALOS increased was included in a forecast (that is, from 

the year 2000), which would be consistent with using data that represented current 

trends and also frequent practice in the health sector, a linear model described the data 

well as shown in Figure 79. 

Internal Medicine  - Average Length of Stay Trend

y = 0.025x + 3.7857

R2 = 0.1361
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Figure 78: The ALOS trend is fitted well by a polynomial model. However, the forecast is overstated. A 
linear model does not describe the post change period well.
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9.3.3 Forecasting with compartmental flow models 

The compartmental flow models fitted the data well as previously reported in Chapter 

6. The models created using data relating to individual years had a very low squared 

error indicating a good fit (for example, see Table 10). The trend in the model 

parameters (that is, A, b, C and d) is illustrated in Figure 80. 

Figure 79: Using fewer historic observations results in a better linear fit. The model appears to forecast 
the future ALOS well, although the ALOS during 2005 was greater than expected.
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The trends showed that movement in parameters was not necessarily uniform. For 

example, parameters A, C and d all increased in 2001 (compared to the prior year), 

while parameter b declined. 

Models were fitted to the parameter trends as shown in Figure 80, with model 

selection being determined by the fit across both the time period and also the range of 

each parameter (as shown by the error bars in Figure 80).  

9.3.4 Comparison of forecasts to actual outcomes 

The additional data provided for analysis of the parameter forecasts were different to 

the data used to generate the compartmental flow models. Only bed occupancy 

Figure 80: Trends and forecasts for bed occupancy compartmental flow parameters over the post 
service change period. A constant model best described Parameters b, C and d, while a linear model 
best described parameter A. 
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measures and patient stay measures (that is, the ALOS) could be derived from the 

data.  

It was possible to split the data into approximate short and long-stay groups in order 

to provide measures that could be used for comparison to the compartmental flow 

model output. This was done on the basis of the half-life of the short-stay patient 

group, as seven times (7x) the half-life2 (in days) of the short-stay patient group 

equated to clearance of more than 99 per cent of the short-stay patients from the short-

stay compartment.  The half-life value was obtained using the model parameters from 

2001 to 2003 and using additional features of the resource tables3 reported in Chapter 

7. The lowest half-life value was used.  

The average daily occupancy for the derived short-stay patient group was a reasonable 

estimate of parameter A. The forecast of parameter A was best described with a linear 

fit and the additional data confirmed that this forecast was reasonable as illustrated in 

Figure 81. 

                                               
2 The half-life formula was incorporated as part of the BOMPS software and the formula is shown, 
with other BOMPS formulae, in Appendix II. 
3 Ms Georgina Christodoulou developed the spreadsheets in Microsoft Excel in her capacity as a 
research assistant for Peter Millard. I liaised with Ms Christodoulou during the development of these 
spreadsheets and provided some limited input into the development. I was given access to these 
through my collaboration with Peter Millard and his research colleagues. 
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The ALOS for the derived short-stay patient group was used to provide an estimate of 

the patient flow parameter B. The difficulty of using the ALOS – even if for only part 

of the patient population (that is, the short-stay patient group) – was that it is a 

complex measure. The short-stay patient group ALOS trend is illustrated in Figure 82. 

Figure 81: The forecast of the model parameter A appeared reasonable. The implication of the forecast 
was that additional patients were admitted.
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y = 1.7285x + 17.646

R2 = 0.7385

0

5

10

15

20

25

30

35

40

1997 1998 1999 2000 2001 2002 2003 2004 2005

Year

O
cc

up
ie

d 
B

ed
 D

ay
s 

(p
er

 d
ay

)

Short Stay Patient OBDs Per Day Original data Linear (Original data)



310

Figure 82: Comparison of short-stay group patient flow data based upon the original modelling period 
and the forecast period. There appeared to be an upward trend in the ALOS, which is contrary to the 
forecast for the short-stay flow parameter, b (see Figure 80). It is not possible to determine from the 
available data whether the increase in ALOS was solely flow related. 

The average daily occupancy for the derived long-stay patient group was a reasonable 

estimate of parameter C. The forecast of parameter C was best described with a 

constant model. The additional data suggested that there was a period of growth in the 

number of long-stay patient beds as illustrated in Figure 83. 
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The ALOS for the derived long-stay patient group was used to provide an estimate of 

the patient flow parameter d. The long-stay patient group ALOS trend is illustrated in 

Figure 84. 

Estimated Long-Stay Patient Occupied Bed Days (per day):
Approximate Original Data and Forecast Result
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Figure 83: The best forecast for parameter C was with a constant model (as shown in Figure 80). 
During the forecast period, there appeared to have been growth in the number of long-stay patient beds.
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Reducing the training period for the development of the compartmental flow model 

parameter forecasts (that is, only using the parameters for the 2000 to 2003 

compartmental flow models) was not found to generate improved forecasts. 

9.3.5 Comparison of the expected stay and the average length of stay 

The comparison of the expected length of patient stay calculated from the 

compartmental flow model parameters to the ALOS is illustrated in Figure 85.  

Estimated Long-Stay Patient Flow:
Original Data Period v Forecast
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Figure 84: Comparison of long-stay patient group flow data over the model and forecast period using 
the ALOS as a proxy measure for parameter D. There appears to be a downward trend in ALOS during 
the forecasted period, but it is not possible to determine from the available data whether this was solely 
related to patient flow.
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The trends of the expected and average lengths of stay were found to be similar. The 

trends appear to diverge during the 2003 year, but this may be artefact due to the 

compartmental flow model being generated with data for only part of the year. 

Additionally, the differences between the expected length of stay and ALOS did not 

exceed more than four per cent for any one year, and could thus be considered small. 

9.4 Discussion 

Bed occupancy compartmental flow models were shown to be of use in evaluating 

past service change in the Internal Medicine Department at HealthCare Otago (see 

Chapter 6). While there is much that can be learned from history, it is my experience 

that decision-makers in the health care sector are pre-occupied with the present and 

then with the short-term future.   

Comparison of the compartmental flow model expected length of patient stay to the 
average length of patient stay (ALOS)
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Figure 85: The comparison of the compartmental flow expected length of patient stay and the average 
length of stay showed that the two measures were similar, though not identical. The partial data for 
2003 and lack of data for 2004 for the compartmental flow model makes comparison of the measures 
more difficult. 
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The ability to use bed occupancy models in a simple manner to create short-term 

forecasts was demonstrated and to some extent evaluated. The ability to create a 

short-term forecast of the ALOS over the same period – a competitive measure to the 

compartmental flow model parameters- was also undertaken. The results are now 

discussed. 

9.4.1 The ALOS Forecast 

The ALOS is a measure of how long patients stay (on average) in the hospital. It is a 

measure of time spent admitted in a hospital bed and is sometimes used as a proxy 

measure of flow (for example, see Sorensen, 1996). For example, from my experience 

in the health sector a reduction in ALOS is often assumed to mean that most patients 

are flowing faster through the system, whereas the decrease in ALOS may be 

explained by a reduction in the length of stay of a small number of long-stay patients. 

It is a complex measure. The complexity with this measure arises from the fact that it 

is a composite measure of patient stay and patient numbers. Thus, while it is possible 

to create a forecast from an ALOS trend and achieve an apparent good fit to the 

resulting data in the forecast periods, as illustrated in Figure 79, it is not clear how this 

trend should be interpreted in terms of management decision-making. For example, it 

is not clear whether the forecast in increase in the ALOS would translate into a need 

for additional beds, as this outcome depends upon whether patient numbers will be 

lessened or maintained, assuming that existing levels of occupancy are to remain 

unaltered. Consideration of trends in patient numbers is a separate analytical exercise. 

Consequently, there is no single simple measure that can be used for trend analysis 

and forecasting around acute care hospital bed occupancy.  
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The creation of the ALOS forecast did highlight several of the many issues that affect 

modelling, namely the choice of data and the number of data. Figure 78 illustrated 

several forecasts created using the ALOS data for the period of 1997 to 2003 – the 

post service change period data. The resultant simple linear regression model did not 

fit the data well and only had a r-square score of 0.13, which indicated that the model 

did not explain much of the variance and thus was considered a poor alternative 

compared with the polynomial model that fitted the data well and explained most of 

the variance (r-square score of 0.91). The polynomial model, despite fitting the data 

well, would have been a poor choice for forecasting the future ALOS, because it 

would have overstated the likely ALOS. This outcome would have occurred because 

of the application of a model without judgment. It is evident that the ALOS declined 

during the period 1997 to 2000 and then increased from the year 2000 (see Figure 78). 

Thus, a model of ALOS could be established over the entire period (for example, the 

polynomial model) or judgment would suggest that only the data relating to the most 

recent movement in ALOS should be used (that is, from the year 2000 onwards). 

Powell and Baker (2004) have identified that modelling is not just the application of 

statistical methods, but rather it involves both the application of statistical methods 

together with judgment and is an art as opposed to a pure science. Armstrong and 

Collopy (1998) also identified that the integration of judgment with statistical 

methods can lead to significant better forecasts, particularly where the judgment is 

based upon expert opinion and is unbiased. The use of judgment suggested that only 

the data from the year 2000 should be considered and a simple linear regression 

model fitted the data well as shown in Figure 79. 
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While judgment may suggest the use of only the most recent data to establish the 

forecasting model, this gives rise to the problem of whether there were a sufficient 

number of observations upon which to base the forecast. In terms of management 

decision-making, it is not always practical or possible to wait for additional data and 

thus judgment must be used when interpreting the suitability of any model for the 

forecasting task to which it is being applied. In the case of the ALOS, the r-square 

score was high and the visual fit appeared to be good, thus it would appear reasonable 

to use the regression model established using the data from the year 2000 onwards for 

forecasting changes to the ALOS in the near term future. Consideration of the 

meaning and usefulness of the forecast as discussed earlier, however, supports the 

notion of Powell and Baker (2004) that modelling is an art and not a science, or 

requires a mixture of judgment and science (Armstrong and Collopy, 1998) as a good 

statistical outcome does not necessarily translate to a useful forecasting model. For 

example, the forecast does not provide management with information about why the 

ALOS is increasing (is the change due to patient flow, bed occupancy or both) and 

thus, it is more difficult to assess how to act to change the service if the forecast future 

is not desired.  

9.4.2 The Bed Occupancy Compartmental Flow Model Forecast

The bed occupancy compartmental flow model overcomes the problem of complexity 

with the ALOS, because it captures the number of occupied beds and the rate of 

patient flow in separate model parameters. At its most simple level, the 

compartmental flow model captures flow and occupancy with two measures. Previous 

justification has been provided to show that in an acute care hospital setting, a double 

compartmental flow model is justified in order to capture the valuable information 
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about the behaviour of long-stay patients. Thus, the model has two flow parameters 

and two occupancy parameters. These parameters can be used to create a variety of 

measures that are useful for decision-making purposes (for example, see the resource 

tables in Chapter 6). Furthermore, the ability to undertake meaningful what-if or 

scenario testing type analysis provides a substantial benefit over using the ALOS for 

decision-making purposes (see Chapter 11 for a discussion on what-if analysis). 

The separation of the rate of flow and number of occupied beds provided additional 

benefit over the ALOS in that additional data could be used for model building. The 

separate model parameters did not over-ride the need for judgment in determining the 

period from which the data were drawn for the model building purposes. However, it 

was evident (see Figure 81) that all of the observations could reasonably contribute to 

the development of the linear model of parameter A. Similarly, there was no reason to 

exclude data from the modelling of parameters b, C and d. 

Given the post modelling data, the ability to compare the model forecast with the 

actual outcome was possible for parameters A and C – the parameters relating to the 

number of occupied beds. The forecast that the number of beds required for short-stay 

patients would continue to increase was found to hold true as shown in Figure 82. A 

constant model was found to describe parameter C – the number of beds required for 

long-stay patients. It would appear that during the forecast period there was a linear 

growth in the number of beds used for long-stay patients and a constant model did not 

forecast this outcome (see Figure 83). This outcome highlighted two factors, one 

concerning the evaluation technique and one about the nature of forecasting changes 

in acute care hospital environments. The evaluation technique relied upon the 
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approximate identification of the number of occupied beds that would have been 

determined had compartmental flow models been developed. The data for this was not 

available and thus these estimates represented a reasonable alternative. It is unlikely, 

but nevertheless possible, that a different trend may have been reported for the 

forecast period had compartmental flow models been developed. Had a different trend 

been reported this would have affected the interpretation of the results. 

This research has highlighted that forecasting the future bed occupancy based upon 

the compartmental flow model parameters alone in an acute care hospital – even for a 

short period of time – can be difficult. The problem of forecasting with unstable 

predictive variables relates to the use of non-stationary data. Armstrong (2001) 

describes stationary data as time series data that have means and variances that are 

unaffected over time. Clearly, the compartmental flow model parameters (and for that 

matter the ALOS) were non-stationary for the system under examination. In Chapter 5 

it was identified that hospital systems are generally unstable (St George, 1988; 

Mackay and Gorunescu, 2001; MacStravic, 2001). While the issue of general 

instability was identified as being important for decision-making relating to the period 

within a year, I contend that the multiple factors affecting the health system (including 

political decision-making, policy change, resource allocation decision-making, 

population change and changes in other services) means this is also generally the case.  

The practical solution to this issue of non-stationary data is to forecast with fewer data 

that relate to a period of approximate stationarity and only to forecast into the future a 

little way forward, as was done here. The outcome of such an approach is that the 

forecast will ideally be useful. This is not an easy thing to achieve, as indicated by 
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these findings. While short-term stationarity appeared to hold true for the forecast of 

parameter A (short-stay occupied bed numbers), the issue of rapid change was 

highlighted in relation to parameter C (long-stay occupied bed numbers), as shown in 

Figure 83. 

The increase in the number of occupied long-stay patient beds suggests that either 

there was a drift back towards the pre-service change model of care where the number 

of long-stay patients was greater or the service was affected by changes in a down-

stream service (that is, it was required to keep more long-stay patients). It is believed 

that there was no deliberate change in resource allocation policy during this period 

and thus this is ruled out as a possible explanation for the change in pattern of 

parameter C. Indeed, Rae, Busby and Millard (2007) acknowledge a 56 per cent 

increase in admissions to the service between 1998 and 2002, but cannot offer 

adequate explanation as to the causes that account for this. While judgment can be 

important in improving the accuracy of forecasts (Armstrong and Collopy, 1998), 

judgment may not always capture the likely changes in internal (that is, within another 

part of the hospital) or external (that is, outside of the hospital) factors that affect 

acute care hospitals for many reasons. For example, the likelihood of a change in 

policy in another service that affects the service of interest is not widely known and it 

is only discovered once the effect is observed and explanation is sought as to why the 

service of interest has changed. The fact that Rae, Busby and Millard (2007) could not 

account for the increase in patient admissions corroborates the difficulty in 

identification of such factors, even after the event. 
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Given the post modelling data and the inability to determine the flow parameters from 

this data, the ability to compare the model forecast with the actual outcome was 

difficult for parameters b and d – the parameters relating to the patient flow. The 

ALOS was used as a proxy evaluation guide, but as already stated, the ALOS is a 

composite measure that captures changes in both flow and patient numbers. Thus, 

despite Figure 82 showing an increase in ALOS for the short-stay patients and Figure 

84 showing a decrease in ALOS for the long-stay patients, it is not clear whether the 

observed trends reflect changes in the number of occupied beds or rate of patient flow 

and no meaningful conclusion about the illustrated trends and patient flow can be 

reached.  

The growth in the number of beds occupied by long-stay patients may have explained 

the observed increase in the ALOS (as illustrated in Figure 79). For the reasons 

previously detailed it is not clear if there was also a change in the rate of patient flow 

and thus, the possible contribution of a changed rate of patient rate of flow to the 

observed ALOS could not be ruled out.  

9.4.3 Expected length of patient stay 

The comparison of the expected length of patient stay generated from the 

compartmental flow model parameters to the ALOS (see Figure 85) highlights the 

power of the compartmental flow model  - it provides the means to create basic 

parameters that collectively have far more utility than the ALOS alone. For example, 

using the compartmental flow model parameters it is possible to generate a length of 

stay measure from the model, as well as gain information about short and long-stay 

patient bed occupancy and flow, and undertake what-if type analysis about service 
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change. The reverse, that is, using the ALOS to generate compartmental flow 

parameters is, however, not possible.  

Given the earlier observations about the widespread use of the ALOS, the ability to 

generate an expected length of stay that is similar to the ALOS may be an important 

feature of the model that can be used to assist with the adoption of this research in the 

field (that is, users will feel more comfortable knowing that a length of stay measure 

exists and may therefore use the modelling).  

9.4.4 Model Choice 

In Chapter 6, the post service change model based upon modelling each year 

separately was abandoned in preference for a simpler model. The choice of models 

was made in relation to the task being undertaken. In this instance, and using the same 

data, models were constructed in relation to each year of service (post the service 

change). However, the purpose of modelling was different. Thus, despite using the 

same data, it is important to recognise that different models are required to answer 

different questions.  

It is also acknowledged that only two types of model were fitted to the compartmental 

flow model parameters for the research presented in this chapter, namely a constant 

and linear model. While other models could have been fitted, these models seemed to 

offer reasonable fit and also could be explained. It is unlikely that meaningful 

explanations could have been attached to more complex models and again highlights 

the need for judgment when constructing models. 
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9.4.4 Predictive validity 

As previously stated, predictive validity relates to determining whether the model 

inputs are valid in terms of being used to create the intended model output 

(Armstrong, 1985). The bed occupancy compartmental flow model was developed 

using patient occupancy data (see the Chapter 4, section 4.6.3 for more details). This 

data reflected both the number of beds that are occupied on any given day and also the 

length of stay. The model parameters captured the rate of patient flow and total 

occupancy. These parameters were used for forecasting both future occupancy and 

flow. Predictive validity was achieved as total occupancy and patient flow parameters 

were used to forecast total occupancy and patient flow, respectively. 

9.5 Conclusion 

In this chapter the ability to use the bed occupancy compartmental flow model 

parameters for forecasting has been examined. The output was compared to forecasts 

of the ALOS.  

The ALOS is a composite measure that is based upon both patient numbers and 

patient flow. Forecasting using the ALOS is of limited value, as a change in ALOS 

does not provide useful information for decision-makers without additional analysis. 

It also has poor what-if scenario analysis use.  

The bed occupancy compartmental flow models, however, provide parameters that 

exclusively capture patient flow or the number of occupied beds. These parameters 

can be used for forecasting. Without incorporation of other information (such as 

population change) parametric forecasting should be restricted to a small number of 
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future periods, because bed occupancy is sensitive to many factors. It was also shown 

that even the short-term forecasting of occupied bed numbers was difficult due to 

issues of data stationarity.  

In terms of this particular service, it is evident that despite the planned change in 

service that saw a reduction in patient numbers, there has been a growth of short-stay 

patients. It would appear that a growth in long-stay patients is now also being 

experienced. Unless this growth was planned, it would appear that there is some risk 

of a return to pre-service change activity levels. 

In Chapter 10 the case for considering the inclusion of the bed occupancy 

compartmental flow model parameters in funding allocation models is presented. 
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Chapter 10

Application of Bed Occupancy Compartmental Flow 
Modelling to Casemix 

In the previous chapters, the emphasis of the research has been on considering 

whether or not bed occupancy compartmental flow models as originally suggested by 

Harrison and Millard (1991) could be used to model acute care hospital data and how 

the resultant models could be modified, and be used for forecasting and evaluation. In 

this chapter I present preliminary research findings about how the bed occupancy flow 

model parameters could be incorporated into existing financial allocation models such 

as the casemix-funding model. Funding models can be key tools for the 

implementation of financial control of health expenditure (Duckett, 2004) and thus 

this is an important area of application. The chapter has the following structure: 

10.1 Introduction .............................................................................................325 
10.1.1  The Australian Casemix-funding Model................................................325 
10.1.2  The Average Length of Stay and the Casemix-funding Model...............328 
10.2 Methodology............................................................................................331 
10.3 Results.....................................................................................................332 
10.3.1  DRG Profiles ........................................................................................332 
10.3.2  Overnight Stay Patient Results ..............................................................334 
10.3.3  Elective Same-day Results ....................................................................336 
10.4 Discussion ...............................................................................................338 
10.4.1  Number of Data ....................................................................................338 
10.4.2  DRG 261 Model Fit ..............................................................................339 
10.4.3  Inpatient and Same-day Activity ...........................................................340 
10.4.4  Business Rules – fix add distribution could change ...............................341 
10.4.5  Casemix and Benchmarking..................................................................342 
10.4.6  Policy Implications ...............................................................................343 
10.4.7  Further Research ...................................................................................344 
10.5 Conclusion...............................................................................................345 
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10.1 Introduction 

10.1.1 The Australian Casemix-funding Model 

According to Duckett (2004), the emphasis on fiscal control of health expenditure 

during the Fraser Government’s reign between 1975 and 1983 in Australia resulted in 

the introduction of policies such as the casemix funding mechanisms in the states of 

Victoria and South Australia. The implementation of the casemix funding policy took 

many years to develop. As an example, casemix funding was introduced into South 

Australia during 1994-95 (Duckett, 2004; Department of Health, 2004), although 

work on the funding mechanism commenced during the early to mid 1980s. Casemix 

funding is now used widely in Australia, although it is applied in varying ways in 

different parts of Australia (e.g. funding based upon casemix or adjusted by casemix).  

Duckett (2004) indicates that Australian public hospital services have been funded in 

a variety of ways, including the historical budget approach, the negotiated budget 

approach, per deim approach (based on days of stay), prescribed minimum payment 

(which only applies to private patients), and casemix. Casemix funding is based upon 

the notion that hospitals should be funded on the basis of the number and types of 

patients treated (that is, the mix of cases). Diagnostic related groups (DRGs) were 

developed to capture the admitted patient casemix of hospitals. The wide variety of 

hospital inpatient services are described by relatively few DRGs – about 660 in total. 

DRGs are meant to describe patient services that are homogenous in terms of resource 

use. There have been various versions of DRGs used throughout the casemix-funding 

era and casemix has been extended to outpatient and community based services. 
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One of the consequences of the introduction of casemix has been the increased 

attention paid by management to patient length of stay and this is of interest for a 

number of reasons. First, DRGs are meant to exhibit homogeneity of resource use and 

patient length of stay is one measure of how resources are used (that is, a bed is 

occupied and services are delivered to the patient). Second, patient length of stay is 

considered one aspect of patient treatment that can be manipulated. Third, it is the 

average length of stay that is used in the casemix-funding model. Thus, in order to 

“do well” under the casemix system, attempts have been made to manipulate the 

average length of patient stay. 

Casemix was originally developed as a benchmarking tool and not a funding tool. 

Thus, its use as a funding tool can be questioned. Duckett (2004) suggests that the 

application of expenditure control as a goal, and therefore the development of funding 

mechanisms such as casemix, as being based upon flawed perceptions by policy 

makers that the level of health care expenditure is somehow wrong. A more 

appropriate policy decision, according to Duckett (2004), may have been to consider 

what benefit, in terms of health outcomes, additional expenditure on health conferred 

to the Australian public. The measurement of health outcomes, however, is still a 

developing area and thus perhaps it is easy to see why financial control was targeted. 

Given that the average length of stay is a key driver in casemix funding, it is relatively 

easy to understand that gaming strategies were developed that involved the patient 

length of stay. Casemix was designed to reward activity providing that the costs of the 

activity were less than the cost of providing the service. The large number of DRGs 

and the variation in a range of factors, including patient severity (that is some patients 
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are sicker than others), service provider decisions and the use of the average length of 

stay, meant that it was expected that hospitals would be “winners” and “losers” on 

some DRGs. With sufficient information, hospitals could try to become more efficient 

and one available mechanism was to alter patient length of stay, such that it was less 

than the funding model average length of stay, which is used to determine the funding 

weight.  

Based upon personal experience in helping to develop aspects of the casemix system 

and other work in the health sector, I have come across some aspects of the gaming 

strategies that occurred in order to secure better funding outcomes for individual 

hospitals. These include: 

� Increasing patient throughput for specific DRGs. In this case, the attempt was 

unsuccessful, as the casemix reimbursement was less than the cost of the activity, 

but a lack of information systems prevented this outcome from being determined 

before the outcome occurred. 

� Focussing on certain DRGs known to generate profits for the hospital. This can 

only occur when management know that consistent performance is achieved that 

results in a large surplus per patient being generated. The downside to this strategy 

is that hospitals may focus on profitable services as opposed to meeting the health 

needs of their local communities. Also, this activity can only occur in hospitals 

that can limit the type of services provided (generally smaller hospitals). 

� Undertaking research to show why certain hospitals should be excluded from the 

casemix system or looking at aspects of casemix that require refinement (for 

specific gain of the hospital). While this has resulted in an evolving funding 
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mechanism, the cost of undertaking this work means that other areas of work may 

not receive the appropriate attention from management. 

� Realising that the length of stay distribution is skewed (as a consequence of the 

publication by Millard, Mackay, Vasilakis and Christodoulou G (2000)) and that 

attention to only a few patients with longer lengths of stay will alter the average 

and result in a casemix “win”. While giving increased attention to patients with 

longer stays may be appropriate, the “win” can be achieved without altering 

service delivery to the majority of patients and while a good financial strategy, 

may have some unintended ethical and equity issues.

10.1.2 The Average Length of Stay and the Casemix-funding Model 

I have previously shown that the length of patient stay is skewed and therefore the use 

of the average length of stay in health management decision-making is often flawed, 

because the assumption underlying the decision-making process requires that the 

average be distributed Normally.  

The technical bulletins developed by the Department of Health (2005a and 2005b) 

require that the average length of stay be modified for use in the casemix-funding 

model. Modification is required in order that payments for patients who stay in 

hospital for either a very short time (short-stay outliers) or a very long time (long-stay 

outliers) are made on a different basis so that the hospitals do not either profit or lose 

as a consequence of treating such patients. Additionally, the funding for same-day 

patients is treated separately. 
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The trim points used to determine the short and long-stay outliers are based upon 

simple modification of the length of stay calculation (Department of Health, 2005a), 

which are described by the following steps: 

� Same-day patients are excluded from the calculation

� If the average length of stay is greater than four days, the low trim point is 

calculated as one third of the average length of stay 

� The high trim point is calculated as three times the average length of stay. 

Although the trim points would be calculated separately for each DRG, it is possible 

to apply the trim points to the data previously used to show that the average length of 

stay was skewed. The comparisons are shown in Table 321 and Figure 86. 

                                               
1 Note: as the table was for illustrative purposes only approximate standard deviation  
and skewness figures were reported, as the number of patients varied slightly from the original profile. 

Table 32: Comparative statistics for the original and 
trimmed length of stay profiles. The trimmed profile is 
still skewed. 

Comparative Statistics All LOS Inlier LOS
Number of patients 9,060 6,856
Total bed days 55,832 40,772
Average length of stay 6.2 5.9
Standard Deviation >7 3.9
Skewness >4 1.2
Minimum 0 2
Maximum 148 18
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In constructing this analysis more than three quarters of the patient records (76 per 

cent) were found to lie within the inlier region. While it could be argued that this is an 

artificial construct and therefore has little application to casemix, the example length 

of stay profile reported for Australian Refined (AR) DRG 169B (version 5.0), which 

relates to bone disease with severe complications, used in the Technical Bulletin 

94:10 (Department of Health, 2005a), exhibits a similar profile to that shown in 

Figure 86. Thus, the consideration of whether the compartmental flow measure flow 

parameters could be used to replace the flawed average length of stay measure in the 

casemix funding mechanism is therefore important. Successful application could alter 

current funding allocations and also reduce the ability for hospital managers to game 

the system. Consequently, in this chapter I investigate whether the bed occupancy 

compartmental flow model can be used at the DRG level for overnight stay patients. 

Additionally, given that the funding model is applied to elective same-day patients, 
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the implications of using the compartmental funding model for elective same-day 

patients at the DRG is also considered. 

The findings presented in this chapter formed part of the content for the conference 

presentation Benchmarking Using Flow Modelling (Mackay and Lee, 2004). 

Additionally, previous research using the BOMPS package was undertaken on one of 

the DRGs (DRG 261) used in this research (Mackay and Millard, 1999). 

10.2 Methodology 

The data used for this research related to the Flinders Medical Division data that has 

been previously described. The general contextual details about the data were 

described in Chapter 3 (see sections 3.2.1 and 3.3.1). Extracts from these data were 

taken based upon the AR-DRG categories. Profiles were created for three AR-DRGs 

(V3.0):  

� 261 – chest pain 

� 572 – renal dialysis, and 

� 274 – circulatory disease without acute myocardial infarction with invasive 

cardiology investigative procedures without complicating diseases and without 

major complications.  

The chest pain patients were generally admitted overnight and were not elective 

patients. The same-day patients were omitted for this analysis. The renal dialysis and 

circulatory disease patients were the elective same-day patients and any inpatients 
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were omitted for this analysis. These DRGs were chosen because of the large number 

of patients or cost (or both). 

At the DRG level, the patient numbers per day for most DRGs were found to be very 

low. Thus, it is not particularly useful to construct an average profile of patient 

occupancy across the year. Rather, it was considered more appropriate to artificially 

construct an annual profile. This was done by creating a matrix where: 

� each row related to an individual patient admission

� each column related to the number of days of admission 

� for each day of stay, a patient was given a score of 1 (in the case of elective same-

day patients, the time profile was in hours) 

� the column totals were summed and used as the occupancy profile. 

For AR-DRG 261 a compartmental flow model was constructed using the second 

methodology described in Chapter 6 (see section 6.2.2). Performance statistics were 

generated. For AR-DRGs 572 and 274 the occupancy profiles were constructed only. 

10.3 Results 

10.3.1 DRG Profiles 
The top ten same-day and inpatient DRG profiles for the Medical Division for 1998 

are reported in Tables 33 and 34 to substantiate the choice of DRGs chosen for this 

research, that is, high volume (and also high cost or both). 
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Elective Emergency
Elective - 
Booking 

List
572 4,700 1 4,701 64% 64%
274 629 5 634 9% 72%
509 358 1 359 5% 77%
514 235 1 1 237 3% 80%
780 148 148 2% 82%
484 146 146 2% 84%
261 14 121 1 136 2% 86%
758 91 1 92 1% 87%
889 62 62 1% 88%
280 40 6 1 47 1% 89%

Subtotal 6,361 191 10 6,562 89%

DRG Total % of Total Cum. %

Admission Category

Table 33: DRG profile for same-day patients during 1998. DRG 572 accounted for almost 
65 per cent of the same-day activity. DRG 274 was the second most frequently assigned 
DRG for same-day patients. 

Elective Emergency
Elective - 
Booking 

List
177 11 519 530 6% 6%
261 5 519 524 6% 11%
252 6 403 1 410 4% 16%
297 194 197 6 397 4% 20%
274 140 176 1 317 3% 24%
170 3 274 277 3% 27%
269 1 244 245 3% 29%
270 1 225 226 2% 32%
273 38 167 205 2% 34%
280 6 178 184 2% 36%

Subtotal 405 2,902 8 3,315 36%

Admission Category

DRG % of Total Cum. %Total

Table 34: There was little difference between the number of patient separations for the top 
two inpatient DRGs. Prior research with DRG 261 and its relative cost determined its 
selection for this research.
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While the analysis was restricted to particular patient types, based upon admission 

category and patient stay status, for DRGs 261 and 274 there were other patient types 

as shown in Table 35. The other patient types, however, represented the minority of 

patients.  

In terms of the total DRG profile and for comparative purposes the number of patient 

separations per DRG was analysed. It was found that the number of patient 

separations per DRG for large teaching hospitals was not uniform as shown in Table 

36. 

10.3.2 Overnight Stay Patient Results 

The data for DRG 261 were found to be well described by the compartment flow 

model as shown in Figure 87 and Table 37. 

Emergency Elective
261  Chest pain same-day 18% 2%

inpatient 79% 1%
274  Circulatory disease same-day 0% 67%

inpatient 19% 15%
572  Renal dialysis same-day 0% 100%

inpatient 0% 0%

Patient Stay 
Status

Admission Category
DRG & Brief Description

Table 35: The patient stay and admission category profile for the three DRGs 
analysed. The majority of patients for each DRG related to the profiles 
analysed for the research. 

N % of total DRGs N % of total DRGs N % of total DRGs
>=1 separation per day 23 3% 20 3% 20 3%
< 1 sep per day, > 1 sep per week 212 32% 183 28% 94 14%
<= 1 sep per week, >0 seps 370 56% 422 64% 345 52%
no separations recorded 53 8% 33 5% 199 30%
Total 658 100% 658 100% 658 100%

Hospital 1 Hospital 2 Hospital 3
DRGs with more than:

Table 36: The average activity per DRG at three major teaching hospitals in South Australia. For many 
DRGs there is little regular activity. In smaller hospitals there tends be more DRGs where there is a low 
number of patient admissions per week or year. 
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While the fit to the data was good, the model did overshoot the data when the time 

since admission was zero days. The implication of this was that the model overstated 

the number of occupied beds required. While this may not be significant for many 

modelling situations, for bed management purposes it would be preferable if there had 

been closer fit between the model and data at this point. 

Despite using seeding in the model fitting process, the data were well described by a 

single compartment model as shown in Table 38.  
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Figure 87: The original data and the fitted model are illustrated. Visually the model appears to describe 
the data well.

Table 37: Model performance 
statistics.  The absolute error and 
correlation are indicative of 
reasonable fit. 

Performance statistics
Correlation 0.9800
Absolute Error 257.2
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In terms of using the model parameter A to determine average daily bed requirements, 

the value would have to be averaged across the year due to the use of the constructed 

annual occupancy profile. 

10.3.3 Elective Same-day Results 
The most frequently recorded DRGs accounted for 90 per cent of the Medical 

Division’s activity and included the two elective DRGs examined in this research. 

The length of stay profiles for the two DRGs are shown in Figures 88 and 89. 

One Two
A 694.8 317.7
B 0.57457 0.57456
C 377.1
D 0.57457

Parameters
Number of Compartments

Table 38: Model parameters for a single and 
double compartment flow model. The flow 
rate of the double compartment model is not 
sufficiently different to justify the use of a 
double compartment model. 
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AR-DRG 274 - Cardiology Related
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Figure 88: The length of stay profile for AR-DRG 274 was different to that of AR-DRG 261. AR-DRG 
274 appears to have a Gaussian distribution. 

Figure 89: The length of stay profiles for AR-DRG 572 was different to that of AR-DRG 261. AR-DRG 
572 appears to be uniformly distributed around a single value of stay. 
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10.4 Discussion 

The research conducted has shown that a compartmental flow model can be used to 

describe the length of stay distribution of an inpatient DRG. As previously identified 

in earlier chapters, compartmental flow models are easily constructed and overcome 

the flaws associated with the ALOS, and the model parameters can also be used for 

what-if scenario analysis. Based upon the examination of two DRGs that relate to 

same-day activity it is evident that there will be some DRGs where there will be little 

value in using exponential compartmental flow models to generate flow parameters. 

The ramifications of these preliminary findings for policy, along with the technical 

issues arising from the research, are now discussed. 

10.4.1 Number of Data 

The methodology for this particular piece of research required that the training data 

profile for the creation of the compartmental flow model be artificially constructed, 

because of low patient numbers per day. This was a realistic option given that for 

most hospitals there are few DRGs where there are at least one patient per day 

admitted and for the majority of DRGs (more than 60 per cent) there are, on average, 

fewer than 1 patient admitted per week as shown in Table 36. The biased DRG profile 

was expected and is a consequence of a number of factors, including the type of 

services that can be provided at a particular hospital (for example, complex surgery is 

rarely performed at a remote country hospital, but is a routine occurrence in a major 

teaching hospital), and the underlying burden of disease (or needs) of the population. 

The same-day DRG profile for the Medical Division was biased by the inclusion of 

the dialysis activity, with the two most frequently recorded DRGs (one of which was 
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dialysis) accounting for more than 70 per cent of the Division’s activity in terms of 

same-day patient numbers. Renal dialysis was the most frequently recorded DRG for 

the Division. It is the only DRG where there would have been sufficient data to avoid 

the construction of an artificial data profile for a compartmental flow model. 

While construction of an artificial occupancy profile still enabled the modelling of the 

data, obtaining a greater number of data per DRG would be more helpful for a number 

of reasons: 

• The bed number parameters (A, C and E – if C and E used) would not need 

averaging across the year to determine average daily occupancy, and  

• There may be implications for model fit (see next section). 

As this research was conducted in order to determine whether compartment flow 

modelling could be applied to casemix, there was no imperative to seek more data. It 

may have been possible to obtain additional data in relation to the whole State and 

this would have improved the number of data for each of these DRGs. Since this 

research was conducted, The Health Roundtable Pty Ltd announced2 that data from 

many hospitals around Australia and also New Zealand will be made available to 

researchers and thus would be an appropriate data source for further research.  

10.4.2 DRG 261 Model Fit 

Tables 37 and 38, together with Figure 87, indicate that the model described the data 

well. This is, perhaps, almost a trivial result insofar as it has been previously shown 

                                               
2 This announcement was made at The International Health and Social Care Modelling and 
Applications Conference held in Adelaide during April 2006. I was the Australian convenor for this 
conference. 
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that acute care inpatient data is well described by the compartmental flow model and 

that DRG 261 represents a subset of this inpatient data and also shares the same 

general length of stay profile. Additionally, together with Millard, I have previously 

shown that DRG 261 could be modelled with the BOMPS software package (Mackay 

and Millard, 1999). Also, the work of Wang, Yau and Lee (2002) has previously 

identified that maternity patient length of stay in Western Australia could be better 

described using a mixture model in place of the ALOS. 

It is evident, however, that the point when the number of patients have been in 

hospital for zero days, that is, x = 0 or total occupancy, is overstated by the model. 

While this would be of concern for a bed allocation decision-model, it is less of a 

concern in this instance for two reasons. First, the intention is to use the flow 

parameters (that is, the B parameter in a single compartment flow model) to replace 

the ALOS in the casemix funding model. Second, the number of data were relatively 

few and with more data the variation between the data and the model may be further 

reduced.   

10.4.3 Inpatient and Same-day Activity 

This research has focussed on modelling and profiling the occupancy patterns of 

inpatient or same-day activity. All the DRGs included in this analysis had both 

inpatient and same-day activity, as shown in Table 35, although for DRG 572 the 

inpatient activity was negligible (less than 0.1 per cent) and possibly questionable in 

terms of data quality. 
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The focus on inpatient activity in relation to DRG 261 was appropriate as this 

represented approximately 80 per cent of the activity, as shown in Table 35. 

Additionally, the same-day activity would be funded differently according to casemix 

funding rules (Department of Health, 2005a). 

The same-day activity for DRG 274 represented almost 70 per of the patient 

separations, as shown in Table 35. While the inpatient occupancy profile of the 

remaining 30 per cent of patient separations was not examined, this is perhaps a moot 

point, as the funding rules differ between the inpatient and same-day components 

(Department of Health, 2005a). Rather, the requirement for at least a dual funding 

mix, that is, an inpatient and same-day component, for any given DRG highlights the 

acceptance that the ALOS is not a perfect measure for resource allocation. This 

research has, however, identified that while compartment flow model parameters may 

be suitable for inpatient DRGs, for at least some same-day DRGs they will not 

represent a useful means of obtaining an alternative parameter, even when the 

occupancy profile is measured in hours rather than days. 

10.4.4 Business Rules – fix add distribution could change 

The previous section identified that compartment flow models based upon mixed 

exponential distributions may not generate parameters that can be used to replace 

average length of stay parameters for same-day DRGs, such as DRG 572. This fact 

does not mean that compartment flow models are flawed per se, but rather that the 

modelling needs to take into account the business rules, that is, the accepted practices 

that exist. Clearly, for DRG 572 (renal dialysis), the business practice is well known 

and there is minimal variation in patient stay. 
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Casemix is a benchmarking tool that has been adapted for funding. The incorporation 

of the ALOS in the funding mechanism ignores to a large extent, the existence of 

business rules. It could be argued, however, that the separation of same-day activity 

from inpatient activity is an acceptance, albeit not an ideal solution, to the existence of 

business rules. 

The use of compartment flow models parameters would, however, represent an 

improvement in the casemix funding environment, as any changes in patient length of 

stay profile should be derived from changes to business practices, as opposed to 

gaming the system to try and achieve financial advantage through manipulation of the 

flawed ALOS metric.  

The primary issue that remains to be investigated is whether the compartmental flow 

model parameters could be used to replace the ALOS for all the inpatient component 

of activity in the funding model. It is possible that for some inpatient activity there 

may be business practices that result in the compartment flow model parameters being 

less than ideal as indicators of patient stay.  

10.4.5 Casemix and Benchmarking 

As previously stated, the casemix-funding model was derived from a benchmarking 

application. The implications are clear – benchmarking of DRGs across different 

hospitals within a state or across different states in Australia should be possible. 
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Notwithstanding the previous comments regarding the implications of business 

practices, the use of the ALOS as a benchmarking parameter is poor. For example, it 

is possible that two hospitals will treat the majority of their patients within a similar 

time frame, yet, through manipulation of the length of stay profile of the longer 

staying patients, which may yield better clinical outcomes for that small group of 

patients, one hospital will have a lesser ALOS than another hospital (this is one of the 

gaming options under casemix). 

In Chapter 9 the potential to use the compartmental flow model parameters for 

benchmarking purposes was highlighted. Clearly, the flow rate parameters, if adopted 

for use in a casemix-funding mechanism, could also result in the improved 

comparison of patient flow between hospitals at the DRG level as these parameters 

overcome the weaknesses previously identified with the ALOS. 

10.4.6 Policy Implications 

Leaving aside the need for additional research to provide further evidence that the 

compartmental flow parameters should replace the ALOS in the casemix-funding 

model based upon technical merit, there are potential policy implications from this 

research. Benefits of using the compartmental flow parameters for forecasting and 

evaluation have already been discussed in previous chapters.  

As already identified early in this thesis, the ALOS is a ubiquitous measure and is 

routinely used in funding models, performance measures and for many other 

purposes. Furthermore, the limitations of the ALOS are either poorly understood by 

many or ignored. Measures, such as the median length of stay, would not readily be 
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able to be substituted into the current range, albeit often incorrectly, uses of the 

ALOS. Thus, it is expected that the well-cemented position of the ALOS will be 

difficult to shift in the short-term. As a consequence, even with the continued use of 

the trimmed data as required in line with the funding model policy (Department of 

Health, 2005a), the length of stay distribution remains skewed as shown in Figure 86, 

and hence, gaming around the modified ALOS is still possible.  

The research findings of Wang, Yau and Lee (2002) have shown that maternity 

patient length of stay in Western Australia could be better described using a mixture 

model. These authors have suggested that the ALOS should be replaced by the 

parameters from a mixture model. However, to date, these findings have not been 

persuasive in altering the use of the ALOS in the casemix model. 

10.4.7 Further Research 

This research represents an initial foray into the application of compartmental flow 

model parameter use in resource allocation. The research of Wang, Yau and Lee 

(2002) supports the need to consider alternative drivers other than the ALOS in 

funding models. 

While there are approximately 660 DRGs, many hospitals do not treat patients across 

the entire DRG spectrum. Consequently there is a paucity of data for many DRGs at 

the hospital level. Thus, it would seem appropriate that any additional research occur 

either at the whole of state or commonwealth level to ensure the availability of 

sufficient data. 
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Given the results for the two same-day DRGs, it is considered likely that other DRGs 

will be identified where a mixed exponential compartmental flow model will not be 

the best method for describing the occupancy profile. Thus, the primary issue that 

requires investigation is whether the compartmental flow model parameters could be 

used to replace the ALOS for all the inpatient component of activity in the casemix-

funding model. Additional research will be required to determine what other models 

will be required to describe the occupancy parameters and whether such parameters 

can be integrated into a single funding model without undue complication. 

The research described in Chapters 6 and 9 has highlighted the potential for using 

compartmental flow models for benchmarking and forecasting. The casemix funding 

mechanism was derived from a benchmarking application. While resource allocation 

is an important area of work, it represents only one area where benchmarking may be 

usefully applied. There is a potential to use flow models, and in particular the flow 

rate parameters, in other benchmarking situations that may also incorporate the use of 

DRGs. For example, there is the potential for research to: 

• Compare alternative care options 

• Compare the flow of patients based upon different demographic aspects (for 

example, sex, ethnicity), and 

• Consider the effect of discharge destination on patient stay and the implications 

for funding. 

10.5 Conclusion 

As previously identified in earlier chapters, compartmental flow models are easily 

constructed and overcome flaws of ALOS. The research conducted in relation to this 

chapter has revealed that in some, but not all, instances exponential compartmental 
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flow models will yield parameters that overcome the flaws associated with using the 

average length of stay in relation to measuring patient occupancy at the DRG level. 

The fact that compartmental flow models work at the DRG level comes as no surprise 

given knowledge of the length of stay profiles of many DRGs and prior research of 

Wang, Yau and Lee (2002). 

The identification that other business rules may be relevant in determining patient 

length of stay profiles that are unlikely to be usefully modelled with a mixed 

exponential compartmental flow model was also identified. This is an important 

revelation in itself, as it provides further justification as to why the ALOS should not 

be used as a measure for comparative or resource allocation purposes. 

Given that the introduction of casemix funding was delivered from a model initially 

established to facilitate benchmarking, it would seem appropriate to adopt a measure 

of occupancy that enables the best possible comparison across services at the DRG 

level that can be achieved. I, along with Wang, Yau and Lee (2002) believe that there 

is merit in replacing the ALOS as a key driver in the casemix funding allocation 

model with other kinds of flow rate parameters in order to overcome the deficiencies 

of the ALOS.  

Replacement of the ALOS is an issue of policy and politics. Until the examination of 

other DRGs has occurred in relation to this issue, it is unlikely that consideration of 

policy changes will be considered. Furthermore, given that a change may lead to some 

reallocation of resources, it is likely that resistance to such change would occur. 
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Consequently, in order to facilitate change, the benefits of any policy change will 

have to be sold well. 

The application of compartmental flow models at the DRG level, therefore should be 

viewed as highlighting the potential to improve resource allocation mechanism, but 

requiring further research to justify the necessary policy change required for 

implementation.  

The next chapter considers the need for sensitivity and simulation analysis as a 

component of bed occupancy research. Examples of sensitivity and simulation 

analysis using results from earlier chapters are provided.  
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Chapter 11

The use of sensitivity and simulation analysis in conjunction 
with compartmental flow bed occupancy models  

In this chapter I investigate the need and value of incorporating sensitivity and 

simulation analysis with the bed occupancy compartmental flow modelling. 

Sensitivity and simulation analysis are means of considering the consequence of 

variation on model output. The chapter has the following structure: 
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11.3.1  Sensitivity Analysis – BOMPS Style.....................................................358 
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11.4.5  Migration of Research into the Applied Setting.....................................377 
11.5 Conclusion...............................................................................................378 



349

11.1 Introduction 

Recent experience in the Australian public health sector has shown that the planning 

for future health care services does involve forecasting future bed numbers  

(Generational Health Review, 2003; Strategic Planning Directorate, 2004). For 

example, the Generational Health Review (2003) reported that by 2011 the increase in 

total admissions would be ten per cent, a 16 per cent increase in bed stock would be 

required (overnight and same-day) and total cost per annum would increase by nine 

per cent. These forecasts appear to be deterministic in nature, because the forecasts 

were reported without any sense of variation and the accompanying text did not 

indicate that variation had been explicitly considered.  

The methodology for the determination of future bed requirements for Western 

Australia presented by the Strategic Planning Directorate (2004) provided transparent 

methodology that could be examined. While the methodology enabled sensitivity 

analysis to be undertaken, the inclusion of the notion of variability, or uncertainty, 

was absent. 

The absence of reporting any uncertainty in the model output is perhaps not surprising 

as many of the methods previously discussed do not incorporate the inclusion of 

uncertainty in the reported methodology (for example, see Sorensen, 1996). It may be 

surmised that the authors have not ignored the concept, but by choosing to report 

“average” occupancy or bed requirements (where this has occurred), they are 

implicitly reporting that variation either side of the average should be expected. This 

interpretation, however, may be generous. 
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My personal experience in the health sector has led me to the conclusion that most 

“business” forecasts around resource issues are deterministic in nature, with many 

users and even forecasters having limited knowledge of forecasting methodologies 

beyond stating some basic assumptions that have been incorporated into the forecasts. 

These comments do not apply to forecasts created for other purposes, such as 

academic research. Some attempts to raise this issue have, however, been made in 

Australia in relation to workforce planning, with Joyce, McNeil and Stoelwinder 

(2004) recommending that forecasts need to move beyond deterministic models and 

providing an example of such a model (Joyce, McNeil and Stoelwinder, 2006).  

The previous chapters have shown how compartmental flow models can be applied to 

the acute care health sector. Generally, the results have involved the use of some kind 

of average model, whether it was for forecasting future bed requirements (see 

Chapters 5, 7 and 9) or the evaluation of service change (see Chapter 6). Variation 

around parameter values using standard Monte Carlo methods (Hillier and Lieberman, 

2001; Powell and Baker, 2004)) was referred to in Chapters 7 and 9. The notion of 

altering an average model to incorporate variation across the year to overcome the 

limitations of using average models of bed occupancy for forecasting and planning as 

reported by St George (1988) and MacStravic (2001) was, however, introduced in 

Chapter 8. Although the acknowledgment of a “what-if” or scenario testing feature in 

the original BOMPS package has been mentioned, the discussion of how the model 

output may vary, however, has been limited to consideration of differences between 

current and future occupancy based upon population change. Consequently, the 

purpose of this chapter is to: further discuss sensitivity analysis; further develop the 

notion of variation around the model results using simulation (in particular, using 
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standard Monte Carlo methods (Hillier and Lieberman, 2001; Powell and Baker, 

2004)); and to discuss the ramifications for decision-making. It should be noted that it 

is not the purpose of this chapter to explore the extensive literature around sensitivity 

and simulation analysis from other areas of endeavour, but to limit consideration to 

that affecting hospital bed occupancy. 

Hass (2004) has reported that health service research is poorly funded within 

Australia. Given the low level of investment in health service research, translating 

research from academia to the health sector must not be expensive. Thus, one attribute 

that may facilitate translation and therefore adoption of research is that it uses already 

commonly available software (where software is required). Consequently, a further 

aim of the research conducted for this chapter was to demonstrate this work could be 

undertaken using software that is readily available to all decision-makers within the 

Australian health care sector.  

11.1.1 Sensitivity Analysis 

According to Powell and Baker (2004), sensitivity analysis has three functions: 

1. To assess the sensitivity of the base or original model to variations in the 

model parameters, given that model parameters are subject to errors or 

other changes, 

2. To examine if changing model parameters leads to a better outcome, and 

3. To examine differences in model structure (for example, examination of 

the effect of using non-linear relationships in place of linear relations). 

The terms “what-if analysis” and “sensitivity analysis” are often used interchangeably 

(Powell and Baker, 2004). In some situations, such as model optimisation, the term 
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“sensitivity analysis” has quite a specific meaning. However, here the terms will be 

used interchangeably. Furthermore, the use of sensitivity analysis to examine different 

types of model structure is not explored. 

The potential for examining changes in bed occupancy compartmental flow model 

parameters created by Harrison and Millard (1991) was recognised and incorporated 

as a feature of BOMPS (BOMPS, 1992; McClean and Millard, 1995). According to 

McClean and Millard (1995) and the BOMPS manual (1992), the value of what-if 

testing was that it enabled the user to pre-test the impact of clinical decision-making 

and resource allocation and compare the merits of different solutions to planning 

problems. Typical what-if questions that could be answered were stated in the 

BOMPS manual and also by McClean and Millard (1995) and these included:

� How many less patients will we treat in the coming year if x beds were 

closed? 

� What rate of discharge is required to counterbalance the impact of bed 

closures? 

� What would be the immediate and long-term effects on admissions of opening 

five new beds? 

While some of the questions posed by McClean and Millard (1995) and listed in the 

BOMPS manual (1992) were related to a geriatric care service, many questions 

relating to an acute care service can be posed and examined. While the ability to test 

the sensitivity of the model to changes in the parameters was also possible with the 

what-if analysis, this was not explicitly stated as something that could, or should, be 
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done in the BOMPS manual (1992), or by McClean and Millard (1995) and thus it 

raises a new area of potential investigation. 

11.1.2 Simulation Analysis 

Simulation is a tool that enables the modelling of events that involve uncertainty 

(Hillier and Lieberman, 2001; Denardo, 2002; Powell and Baker, 2004; Ozcan, 2005). 

Computer simulation involves the generation of many observations about a particular 

event, such as bed occupancy. Due to the speed of the computer, many thousands of 

observations can be created quickly leading to a probability distribution that can be 

interpreted in order to provide insights about the system under investigation. 

Motulsky and Ransnas (1987) suggest that simulation is also of value in checking the 

fit of models to data. Indicators for use include systems that will continue to operate 

for a long time, uncertainty and complexity (Hillier and Lieberman, 2001; Powell and 

Baker, 2004). Hospital bed problems can meet these criteria and Bagust, Place and 

Posnett (1999), and Vasilakis and El-Darzi (2001) provide examples of published 

research in this area. 

Bagust, Place and Posnett (1999) examined the daily bed requirements arising from 

the flow of emergency admissions to an acute hospital in order to identify the 

implications of fluctuating and unpredictable demands for emergency admission for 

the management of hospital bed capacity, and to quantify the daily risk of insufficient 

capacity for patients requiring immediate admission. Their research involved the use 

of a discrete-event stochastic simulation model that reflected the relationship between 

demand and available bed capacity. On the basis of their simulation modelling, they 

found that when average bed occupancy rates exceeded about 85% an acute hospital 

can expect regular bed shortages and periodic bed crises if average bed occupancy 
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rises to 90% or more. Consequently they supported the retention of spare bed capacity 

in order for the effective management of emergency admissions. 

Vasilakis and El-Darzi (2001) evaluated the British winter hospital bed crisis using 

simulation. As a consequence of their modelling, they suggested that the withdrawal 

of social services during the Christmas period offered a good explanation for the bed 

blockages. 

Simulation was not a feature of the BOMPS software. However, given the long-term 

horizon for strategic hospital bed management decision-making and the uncertainty 

associated with bed occupancy, the incorporation of simulation represents a new area 

of investigation that may yield beneficial outcomes.  

11.2 Method 

11.2.1 Data and Base Model 

In Chapter 8 the development of a bed occupancy compartmental flow model that 

incorporated patient age, variation in seasonal weather and a vacancy factor was 

reported. That model and data provides the foundation for the sensitivity and 

simulation analyses conducted for this research. Details regarding the data and the 

methodology were reported in Chapter 8.  

11.2.2 Research Tools 

Microsoft® Excel, is the most commonly available spreadsheet program (Denardo, 

2002) and is widely available to health sector staff in Australia, unlike more 

sophisticated tools, such as Matlab®. Given the desire to see that the use of 

compartmental flow models of bed occupancy become a more commonly adopted 
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strategic planning tool, the work in this chapter was undertaken using Microsoft® 

Excel which is typically available for hospital and health administrators, clinicians 

and bureaucrats use.  

Crystal Ball 2000.2 Student Edition by Decisioneering, Inc. is a Microsoft® Excel 

add-in that was used for the simulating aspects relating to patient turn-away. 

11.2.3 Sensitivity Analysis 

Two approaches to sensitivity analysis were trialled. The first was based upon the 

output generated in the original BOMPS software package and the second was based 

upon general decision-science methodologies. 

Bomps style what-if analysis 
The effect of two hypothetical policy decisions was examined. The first hypothetical 

decision involved examining the alteration of bed numbers. Bed numbers were 

increased and decreased through a range of –10 to +10 per cent. 

The second hypothetical decision involved examining what reduction in the short-stay 

patient group length of stay (or increased flow) was required to offset a 10 per cent 

reduction in beds. 

The output for the analysis was calculated using spreadsheets that were developed for 

this purpose for Millard1. 

                                               
1 Ms Georgina Christodoulou developed the spreadsheets in Microsoft Excel in her capacity as a 
research assistant for Peter Millard. I liaised with Ms Christodoulou during the development of these 
spreadsheets and provided some limited input into the development. I was given access to these 
through my collaboration with Peter Millard and his research colleagues. 
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Tornado sensitivity analysis 
Sensitivity analysis of the compartmental flow model parameters was undertaken. 

Each parameter was varied by plus and minus 10 per cent. Parameters were varied 

separately to enable the effect on various aspects of the model that may be the subject 

of real decision-making value to be gauged. The visual reporting of such information 

can be done using Tornado charts (Powell and Baker, 2004). The aspects of the model 

that were measured after parameter variation were: 

� Release rate  (patient/day) - first compartment 

� Release rate  (patient/day) - second compartment 

� Overall admissions per day 

� Overall total occupied beds, and 

� Overall expected length of stay. 

The output was generated using the what-if spreadsheet developed for Millard. The 

Tornado charts were created using Microsoft® Excel based on those described by 

Powell and Baker (2004). 

11.2.4 Simulation 

Two approaches were taken in terms of simulation, both being forms of Monte Carlo 

simulation.  

Variation Around Compartmental Flow Model Parameters 
Variation around model parameters was generated using standard Monte Carlo 

methods (Hillier and Lieberman, 2001; Denardo, 2002; Powell and Baker, 2004; 

Ozcan, 2005). This was generated in both Matlab® and Microsoft® Excel.  
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Patient Turn-Away Model 
The second simulation was applied to aspects of the model created to look at patient 

turn-away and again involved using standard Monte Carlo methods (Hillier and 

Lieberman, 2001; Denardo, 2002; Powell and Baker, 2004; Ozcan, 2005).  

Crystal Ball 2000.2 Student Edition by Decisioneering, Inc. is a Microsoft® Excel 

add-in that was used to run the simulations in order to save time, although the 

simulations could have been set up without this add-in. 

The simulation was based upon incorporation of variation for a limited number of 

parameters using differing distributions as shown in Table 39. 

Table 39: Parameter variation. 

Model Parameter Distribution used for 
simulation 

Limits 

Compartmental flow 
model parameters A and C 

Normal n/a 

Relative Average Air 
Temperature Change 

Uniform +/- 10% 

Vacancy rate for 0 days 
with shortages 

Uniform +/- 10% 

The target output for the simulation was the total bed occupancy required to achieve 0 

days of shortages or patient turn-away. 
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11.3 Results 

11.3.1 Sensitivity Analysis – BOMPS Style 

The ability to generate a range of bed occupancy performance measures from the bed 

occupancy compartment flow model is illustrated in Table 40. 

The performance measures relate to both the overall patient group and also the 

individual short and long-stay patient groups. 

Table 41 provides a high level summary about patient admissions and the short and 

long-stay compartments. Both Table 40 and 41 contain similar information, with 

Table 41 being of more use to the strategic planner, while Table 40 is probably of 

more interest to the clinicians, managers and other decision-makers working with this 

patient group. 

Table 40: BOMPS style bed occupancy measures for the original model for patients aged 65 to 79 
years.

FIRST COMPARTMENT SECOND COMPARTMENT
Number of patients = 65.0 Number of patients = 3.5
Release Rate = 0.14 Release Rate = 0.04
Release Rate (patients/day) = 8.8 Release Rate (patient/day) = 0.1
Expected Length of Stay (days) = 7.3 Expected Length of Stay (days) = 26.0
Percentage of Beds Occupied = 95 Percentage of Beds Occupied = 5.1
Half-Life (days) = 4.7 Half-Life (days) = 17.6
Rehabilitation Benefit = 1.0 Rehabilitation Benefit = 3.4
Percentage of Patients Treated = 98.5 Percentage of Patients Treated = 100

Conversion rate to the Conversion rate to the 
           2nd COMPARTMENT = 0.0021             3rd COMPARTMENT = n/a
Conversion rate to the Conversion rate to the 
           2nd COMPARTMENT (patient/da= 0.14             3rd COMPARTMENT (patient/da= n/a

OVERALL
Admissions (per day) = 8.9
Derived Total = 68.6
Expected Length of Stay (days) = 7.7

65 to 79 years age model
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The effect of altering the number of available beds is shown in Figure 90.  

In each example of changed bed numbers the effect on admissions is initially greater 

than the change made to the number of beds. Overtime the system stabilises and 

eventually the percentage change in admissions equals the percentage change in beds 

numbers.  

The effect of changing both bed numbers (reduction) and the short-stay patient group 

flow rate is reported in Table 42 and Figure 91. 

First Compartment Second Compartment

Admissions  
(day)

Admissions  
(year)

Average 
stay 

(days)

Number of 
admissions 
discharged   

(%)

Average 
stay 

(days)

Number of 
beds used  

(%)

Number of 
admissions 
discharged   

(%)

Average 
stay    

(days)

Number of 
beds used  

(%)

65 to 79 years age model 8.9 3,257 8 3,208 7 65 49 26 4
98.5% 95% 1.5% 5%

Model

Table 41: The BOMPS style resource utilisation table for the model relating to patients aged 65-79 
years.  The majority of patients were short-stay patients.

Figure 90: The effect on patient admissions as a consequence of altering the number of available beds is 
illustrated. Over time the change stabilises. 
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Percentage of Short 
Length of Stay Reduction

Percentage 
Reduction in Beds

Admissions      
(at stability)

% change in 
admissions 

(initial)

% change in 
admissions      
(at stability)

0% 0% 8.92 - -
0% -10% 8.03 -10.4% -10.0%
-1% -10% 8.11 -9.5% -9.1%
-2% -10% 8.19 -8.6% -8.3%
-3% -10% 8.27 -7.7% -7.4%
-4% -10% 8.35 -6.7% -6.5%
-5% -10% 8.43 -5.7% -5.5%
-6% -10% 8.52 -4.8% -4.6%
-7% -10% 8.60 -3.7% -3.6%
-8% -10% 8.69 -2.7% -2.6%
-9% -10% 8.78 -1.7% -1.6%
-10% -10% 8.87 -0.6% -0.6%
-11% -10% 8.97 0.5% 0.5%

It can be seen that the initial reduction in the percentage change in admissions is 

greater than the final percentage change in admissions. Stability takes approximately 

160 days to achieve.  

Table 42: The effect on patient admissions when the number of beds was decreased by 10 per cent and 
short-stay patient flow was increased.

Figure 91: Visualisation of the results presented in Table 42. 
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Achieving policy neutrality around the reduction in beds through making concomitant 

changes to the short-stay patient flow rate or length of stay was possible, but required 

a greater percentage change in patient flow rate compared to the reduction in beds 

numbers. 

11.3.2 Tornado Sensitivity Analysis  

The effect of altering each of the model parameters by +/- 10% separately on a range 

of bed management measures was examined using Tornado analysis and is reported in 

Table 43 and Figures 92 to 96. 

A B C D
Release rate  (patient/day) - first compartment -10% 7.9 8.0 8.8 8.8

+10% 9.7 9.6 8.8 8.8
Release rate  (patient/day) - second compartment -10% 0.1 0.1 0.1 0.1

+10% 0.1 0.1 0.1 0.1
Overall admissions per day -10% 8.1 8.1 8.9 8.9

+10% 9.8 9.7 8.9 8.9
Overall total occupied beds -10% 62.2 68.6 68.1 68.6

+10% 74.9 68.6 69.1 68.6
Overall expected length of stay -10% 7.7 8.5 7.6 7.7

+10% 7.6 7.0 7.7 7.7

Parameters
VariationFeature of Interest

Table 43: The model parameters were altered by fixed amounts and the effects on certain aspects of 
patient discharge, bed numbers and length of stay were examined. 
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Figure 92: The effect of altering the model parameters by +/- 10% on the first compartment release rate 
is illustrated. Changes to the second compartment parameters did have a very small effect, as opposed 
to no effect. 
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Figure 93: The second compartment release rate was affected by changed to parameters B, C and D, but 
not by equal amounts.
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Admissions Per Day Senstivity Analysis (Tornado)
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Figure 94: Daily admissions were most sensitive to changes in the first compartment parameters A and 
B.

Figure 95: The number of occupied beds was sensitive to changes in parameters A and C - the bed 
parameters. 
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The various measures showed different sensitivities to the effects of uniform changes 

to the model parameters. Usually the change in measure had a uniform direction of 

change across all model parameters. However, it is evident in Figure 96 that the 

uniform change in parameter C resulted in a change in the expected length of stay that 

had a different direction to that of the changes arising from modifying the other model 

parameters.  

11.3.3 Parameter Simulation 

Following 10,000 simulation runs using standard Monte Carlo methods (Hillier and 

Lieberman, 2001; Denardo, 2002; Powell and Baker, 2004; Ozcan, 2005) confidence 

intervals for the model parameters were estimated and are reported in Table 44. 

Expected Length of Stay Senstivity Analysis (Tornado)
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Figure 96: The overall expected length of patient stay was particularly sensitive to changes in parameter 
B - a flow rate parameter. It was also sensitive to changes in the other parameters, although to a much 
lesser extent. 
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The implications of uncertainty around the model parameters is perhaps best 

illustrated in terms of the effect this has on representing the number of total beds as 

shown in Figure 97. 

The total  number of beds is no longer a unique number, but can be described in terms 

probabilities. Thus, the total number of beds can be reported as lying within a 

confidence interval. Confidence intervals can be expressed numerically, or they can 

be represented graphically, as shown in Figure 98. 

Simulations: 10,000 runs - Total Occupied Beds
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A B C D
Mean 63.67326 0.14757 4.89210 0.03929
Std Deviation 0.99936 0.00233 0.07716 0.00062
N 10,000 10,000 10,000 10,000
Lower 95% confidence interval 63.65367 0.14753 4.89058 0.03928
Upper 95% confidence interval 63.69285 0.14762 4.89361 0.03930

Statistics
Parameters

Table 44: Model parameter confidence intervals after 10,000 runs. 

Figure 97: The spread of total bed occupancy is illustrated after 10,000 runs. 
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11.3.4 Patient Turn-away Model Simulation 

Standard Monte Carlo simulation methods (Hillier and Lieberman, 2001; Denardo, 

2002; Powell and Baker, 2004; Ozcan, 2005) were again employed to generate 

occupancy statistics for the patient turn-away model created in Chapter 8. The 

resulting statistics after 10,000 simulation runs are reported in Table 45. 

Statistics Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Actual average monthly occupancy 59.3 56.9 66.0 67.7 70.4 74.9 81.8 77.9 73.0 60.7 60.1 54.8
Model occupancy 73.7 72.3 78.7 76.4 79.7 85.3 94.6 88.6 88.0 75.1 69.1 63.5
Simulation
Trials 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000
Mean 73.8 72.3 78.8 76.4 79.7 85.3 94.7 88.6 88.2 75.1 69.1 66.6
Median 73.7 72.3 78.8 76.4 79.7 85.3 94.7 88.6 88.2 75.1 69.1 66.5
Standard deviation 1.5 1.4 1.7 1.3 1.2 1.3 1.7 1.4 1.6 1.2 1.1 2.1
Range minimum 68.5 66.6 73.2 71.5 75 80.3 87.9 82.9 82.9 70.4 65.2 59.8
Range maximum 79.2 77.9 84.5 81.1 84.7 90.1 100.5 94.1 93.7 79.7 73.4 73.1
Mean standard error 0.02 0.01 0.02 0.01 0.01 0.01 0.02 0.01 0.02 0.01 0.01 0.02

Trend Chart - Probability Ranges for Total Occupied Beds (10,000 runs)
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Figure 98: Probability ranges for the number of total beds based upon 10,000 simulation runs using 
standard Monte Carlo methods. 

Table 45: Occupancy statistics following a 10,000 simulation run. The simulated occupancy will be 
greater than the average monthly occupancy as the goal was to create a model that resulted in zero 
patient turn-away. 
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For each month, the simulation resulted in a distribution of total bed occupancy that 

could be illustrated. The distribution for the month of January is shown in Figure 99. 

  
The original model to avoid patient turn-away was reported as shown in Figure 100 

(see also Chapter 8). 

Figure 99: The distribution of total occupancy for the month of January arising from the Monte 
Carlo simulations. 
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The outputs from the Monte Carlo simulation can be used to create a visual 

representation that better illustrates the existence of uncertainty as shown in Figure 

101.  

Figure 100: The original model describing the number of beds required to avoid patient turn-away.  The 
number of beds is represented deterministically, that is, there is no attempt to show the extent of 
uncertainty around the forecast. 
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The mean total bed numbers arising from the simulation follow the original model 

closely. In the month of December the mean and the model deviate a little, which may 

be a reflection of the Monte Carlo process. 

11.4 Discussion 

The underpinning reason for the need for better modelling of bed occupancy was that 

the ALOS was a flawed measure. While creating a model that describes the 

occupancy data well is a goal in itself, it is of little value unless the model can be used 

to either gain a better understanding about the current situation or for forecasting 

purposes.  

Harrison and Millard’s (1991) original model described a geriatric health service data 

set from England and achieved the goal of finding a better means of describing bed 

Simulation: 10,000 runs to Estimate Occupancy Required to Achieve Zero Patient 
Turn-Away
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Figure 101: Uncertainty was incorporated into the model designed to avoid patient turn-away by adding 
the range minimum and maximum lines.
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occupancy than the ALOS. The subsequent development of BOMPS as a decision 

support system for decision-makers and planners highlighted the thinking of those 

involved in the early research. Not only did they aim to explain and gain 

understanding about a specific data set (that is, parts of the English geriatric health 

service) in order to aid management decisions for Millard, but also to provide a tool 

that could be more widely used by others when seeking to explore data from the 

health services in which they worked. This intent was clearly promulgated by 

McClean and Millard (1995). 

The ability to address questions of policy, particularly in relation to service change, 

was a key feature of BOMPS and this was incorporated in the package’s what-if 

module. While the what-if module – a sensitivity tool – enabled the user to examine 

various scenarios involving changes to particular aspects of the system, such as the 

number of beds or the length of stay of patients in a particular phase of the model, the 

output was deterministic and fixed in what could be analysed. 

There is no doubt that much of the resource utilisation information, as reported in 

Tables 39 and 40, and the ability to undertake what-if analysis provided in the original 

BOMPS package achieved the second goal of seeking a replacement for the ALOS, 

namely, to replace it for decision-making purposes in relation to strategic planning 

and decision-making activities relating to beds. In fact, the adoption of the 

compartmental flow model exceeds the ability of the ALOS to be used to address 

many issues that were not previously able to be addressed, such as the notion of 

different patient groups (short and long-stay) and differing flow rates.  
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Although the what-if features of BOMPS have been replicated in Microsoft® Excel 

there was a need to address the limited what-if or sensitivity analysis capabilities 

originally developed for BOMPS and the deterministic nature of the modelling. While 

some aspects of this have been achieved (for example, Irvine, McClean and Millard, 

1994), there has been no further work on converting the modelling into output that is 

useable by decision-makers. Unless decision-makers and planners perceive the value 

of compartmental flow modelling this methodology is likely to remain one of largely 

academic interest. The expansion of the sensitivity analysis and also incorporation of 

simulation analysis in a manner that provides output that can be understood by non-

academics is therefore of paramount importance. It is not, however, without risk and 

this will be further discussed later (see section 11.4.3). 

11.4.1 Sensitivity Analysis – BOMPS Style 

Simulation and sensitivity analysis provide mechanisms for exploring the acute care 

hospital bed system without recourse to undertaking real experiments, which is of 

considerable benefit, as it avoids wasting resources and the fact that the management 

of hospital facilities cannot be subject to a considerable range of changes for the 

purpose of experimentation (Denardo, 2002; Ozcan, 2005).  

Sensitivity analysis can help a user better understand the model and also address 

questions of policy. However, even before undertaking sensitivity analysis, the model 

output as shown in the resource tables (see Tables 39 and 40) provide information that 

can help decision-makers and planners address questions of policy. For example, 

while long-stay patient use proportionally more beds compared to the number of 

patients admitted, there are only a few of these patients admitted at any time. Thus, 
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the rate of discharge is low. This has implications for programs that might attempt to 

target the number of long-staying patients, that is, such a small number may make it 

difficult to achieve desired goals. Consequently, while sensitivity analysis or 

simulation could be undertaken, perusal of the resource tables can help determine 

where the best outcomes may be gained when looking at policy change issues.  

The analysis of changes to bed numbers and the impact on patient admissions was 

performed as an example of the type of what-if analysis that could have been 

undertaken using the BOMPS package. The results are illustrated in Figure 90. These 

results are important in that they showed changes to bed numbers: 

1. Disturb the system for a period of time, and 

2. The percentage change to admissions initially planned was initially exceeded. 

The system was found to re-stabilise in approximately 160 days. However, acute care 

health systems may experience changes on a more rapid basis (for example, summer 

bed closures, additional beds opened in winter), thus suggesting that the likelihood of 

system stability being achieved for a prolonged period of time, if ever, is small. This 

fact may not be well understood by decision-makers and planners.  

The initial greater percentage change in admission (that is, if there was a 10 per cent 

increase in beds, there would be an increase in admissions of more than 10 per cent) is 

probably trivial in the sense that the difference between when the change occurs and 

stability is only small. This effect was also shown in Table 42. 

The other policy question that was illustrated using the BOMPS style what-if analysis 

was whether changing the patient length of stay could offset a reduction in the number 
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of beds and these results were reported in Table 42 and Figure 91. While intuitively 

this question appears simple (that is, of course this can be achieved), the result was 

perhaps not so. In this instance, the proportion change in patient length of stay 

exceeded the proportion decrease in beds in order that there was no change in patient 

admissions. The power of such analysis is significant and the ability to translate such 

analysis into meaningful service change may be great. For example, it is relatively 

easy to open or close beds (subject to the required resources being available), but 

achieving an 11 per cent reduction in patient length of stay (for the short-stay patients) 

may be hard to achieve, when the length of stay is already short and the reduction 

amounts to hours and not whole days. 

11.4.2 Tornado Sensitivity Analysis  

Parameter sensitivity was examined and the results were illustrated in Figures 92 to 

96. Examination of parameter sensitivity is useful in that it: 

1. Provides the individual with insights as to how the model behaves when 

parameters are changed, and 

2. Can be used to show the differences in effect on given outputs arising from 

the modification of particular parameters. 

Assuming the amount of change applied to a given parameter is within the bounds of 

normal behaviour, the model output can be anticipated and thus the credibility of the 

model assessed. Alternatively, the novice can better understand the behaviour of the 

system through such sensitivity analysis. This activity provides limited redress to the 

criticism of Fone et al. (2003) regarding the lack of evaluation of models.  
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The modification of the model parameters in relation to expected patient length of 

stay (see Figure 96) highlights the effects of parameter sensitivity on model outputs. 

In this instance, modifying the different parameters not only has a different size of 

effect on expected length of stay, but also a different direction of change. For 

example, a reduction in parameter C achieved a reduction in patient length of stay, 

while for other parameters, a reduction in their values achieved an increased patient 

length of stay. The additional benefits of such sensitivity analysis are considerable 

and warrant inclusion as part of the normal model bed occupancy compartmental flow 

model building and analysis process. 

11.4.3 Parameter and Patient Turn-away Model Simulation 

Simulation analysis is advantageous when exploring bed management issues, as there 

are many factors that are uncertain, and mathematical solutions to such problems are 

too complex to easily develop (Ozcan, 2005). Mathematical analysis is, however, 

more powerful (Denardo, 2002) and simulation does not provide an indication of how 

the system should behave, or the settings of the parameters required to achieve the 

system’s best performance (Denardo, 2002; Ozcan, 2005). 

The simulation of parameter values using Monte Carlo methods was both trivial and 

yet important. It was trivial in the sense that it could be argued that other forms of 

analysis such as the tornado sensitivity analysis could have provided insights around 

parameter variability. While this was the case to some extent, the actual benefit of the 

tornado style sensitivity analysis comes from the insight gained about the effect of 

changes of individual parameters on various parts of the bed system (for example, the 

number of admissions). Simulation analysis conveys a different perspective on 

variability. 
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The value of the information to end users presented in Table 44, which detailed the 

mean parameter value and a confidence interval around the parameter mean, was 

undoubtedly low. Rather, decision-makers would most likely seek the conversion of 

the parameter uncertainty into something that is more concrete in terms of their needs. 

The distribution of total bed occupancy, as shown in Figure 97, is one means of 

achieving such an outcome. An alternative outcome of such simulation is also the 

ability to express particular values, such as total bed occupancy, as mean values with 

confidence intervals and this can be presented numerically or graphically (see Figure 

98). While such an approach helps convey that uncertainty exists, this, as previously 

mentioned, is not without risk. From my personal experience in the health sector, and 

also observation of published reports regarding future bed requirements such as those 

already mentioned (Generational Health Review, 2003; Strategic Planning 

Directorate, 2004), there is generally a lack of acknowledgment of variation around 

model outputs. This, in my opinion, stems from two factors: 

1. That health decision-makers have operated in an environment that tries to 

convey certainty as opposed to uncertainty, and 

2. A single “number” is easier to explain than an average that is reported with a 

standard deviation or a confidence interval. 

Thus, while there is much benefit in considering the range of a forecast, as illustrated 

using the patient turn-away model (see Table 45 and Figures 99 and 101), as it can be 

used to show the range of activity that may have to be planned for, there is a risk that 

it will be more difficult to convince end users of the value of such information. This 

impediment may be overcome, but requires the education of the end user of the 
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modelling about the need and value of such information. This has implications for the 

actions required in order for the migration of this strategic decision-making tool from 

an academic exercise to being adopted more widely as part of normal business 

practice in the health sector. 

In relation to the patient turn-away model simulation, the simulation could have been 

extended to include the population forecast. For purposes of illustration of the 

simulation technique, however, this was not necessary. The comparison of the original 

model output, as shown in Figure 100, to the simulated model output shown in Figure 

101 highlights the fact that variation around the forecast can be visually 

communicated better using the simulated model output. 

Simulation of the entire model parameters provides a mechanism of partial redress to 

the criticism by Fone et al. (2003) that models are not evaluated. Simulation, as with 

sensitivity analysis, enables end users and also the modellers to better understand the 

behaviour of the system described by the model and therefore judge whether the 

model is appropriate or not. Simulation has the added benefit that it is easier to vary 

many parameters at the same time and repeatedly compared to sensitivity analysis. 

11.4.4 Technical Issues 

There are two technical issues that merit discussion. First, alternative distributions, 

such as the normal or triangular distributions, could have been chosen to represent the 

variation around air temperature and vacancy rates. The variation around vacancy 

rates may have been better described using the triangular distribution, with the mean 

representing a more likely outcome and the extremes less likely outcomes. As the 
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standard deviation for the variation around the weather variables was not included in 

the data a uniform distribution was appropriate without recourse to purchasing 

additional data. The choice of parameter variation was, however, unlikely to have 

affected the outcome of the results greatly. That is, the intent was to illustrate the 

variation around the model output. In an applied setting the purchase of additional 

data or experimentation with different distributions to describe parameter variation (or 

both) would occur. 

Second, the simulation could have been undertaken without the use of the Crystal Ball 

add-in to Microsoft® Excel. The add-in enabled the research to be undertaken more 

easily and there is evidence of use of similar add-ins in the Australian health sector 

(Joyce, McNeil and Stoelwinder, 2006) to facilitate simulation modelling. 

11.4.5 Migration of Research into the Applied Setting 

BOMPS provided a decision support system that was capable of creating the bed 

occupancy model and also enabling users to undertake what-if analysis. The BOMPS 

is no longer supported and an upgraded version has not been created. 

It could be argued that the ability to fit models to the data is a task that should reside 

with persons with the appropriate expertise (for example, modelling, statistical or 

mathematical expertise) and thus, such a task could be performed using a variety of 

software packages. It may also be argued that the incorporation of the compartmental 

flow model into other models, such as that illustrated in Chapter 8, also requires the 

skills of appropriate trained individuals. 
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The main benefit of this work, however, will occur when decision-makers and 

planners can undertake what-if analysis and also simulation analysis. Consequently, 

the ability to undertake such analysis using readily available software, such as 

Microsoft® Excel, is important. The provision of a range of spreadsheet templates or 

add-in tools (developed using visual basic facilities) may facilitate the uptake of this 

work. 

11.5 Conclusion 

The use of sensitivity and simulation analysis in relation to bed occupancy 

compartmental flow models has been demonstrated. Previously developed sensitivity 

analysis approaches to bed occupancy compartmental flow models were presented 

along with the parameter sensitivity analysis. Monte Carlo simulation was applied to 

previously developed models of bed occupancy and enabled the simultaneous 

variation of bed occupancy, weather and occupancy parameters to be demonstrated. 

In terms of management application, and therefore the ability to translate this research 

from the academic to the applied setting, sensitivity and simulation analysis are likely 

to represent the most appropriate vehicle for the communication of the benefits of bed 

occupancy compartmental flow modelling. The ability to do such analysis using 

readily available software will be important in this task. 

This chapter concludes the presentation of the results of the research undertaken for 

this thesis. In the next chapters I draw together the discussions arising from the 

separate pieces of research presented in this and previous chapters, present ideas for 
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future research and present an overall conclusion regarding the application of bed 

occupancy compartmental flow models for strategic decision-making in the acute 

hospital sector. 
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Chapter 12

Discussion  

In this chapter I draw together the discussion arising from the results presented in 

previous chapters. The discussion about the research is at the collective level, as 

opposed to the individual experiment or chapter level. In doing so, the original 

research questions are examined, as are the implications arising from the research for 

the bed occupancy compartmental flow model and the general issue of strategic 

decision-making around hospital beds. The chapter has the following structure: 

12.1 Introduction ............................................................................................ 381 
12.2 The Research Questions.......................................................................... 381 
12.2.1  The Main Research Question ............................................................... 382 
12.2.2  The Secondary Research Questions...................................................... 385 
12.3 The Revised Methodology and Model..................................................... 388 
12.4 The Preferred Methodology .................................................................... 392 
12.4.1  The Strategic Level .............................................................................. 392 
12.4.2  Knowledge of the Business .................................................................. 393
12.4.3  The Value of Information..................................................................... 393 
12.5 Revisiting Bed Occupancy and the Role of Modelling ............................ 394 
12.5.1  A More General Consideration of Bed Occupancy............................... 394 
12.5.2  Has the problem been over simplified?................................................. 398 
12.5.3  Influence over the problem space ......................................................... 402 
12.6 Conclusion.............................................................................................. 407 
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12.1 Introduction 

The research conducted for this thesis has been presented as a series of different 

experiments, with each experiment being reported in a separate chapter. The research 

work, however, does not represent a series of completely disjointed and unconnected 

experiments. Rather, the research represents a journey along a path of inquiry seeking 

to determine whether compartmental flow models of bed occupancy can be usefully 

applied in the acute care hospital sector, with the “experiments” linking to each other 

either through the use of methodology or the expansion of a particular idea. 

The purpose of this chapter, is therefore, to present a discussion about the research 

work that is at the level of the whole body of research as opposed to the details 

presented in the preceding chapters. In doing so, the original research questions will 

be examined, as will the implications arising from the research for the bed occupancy 

compartmental flow model and the more general issue of ownership of strategic 

decision-making around hospital beds.  

12.2 The Research Questions 

The research findings validates the belief that the compartmental flow model of 

occupancy, as first described by Harrison and Millard (1991) for a geriatric service 

operating in the health sector in London, can be applied to medical patient data from 

acute care hospitals in Australia and New Zealand. 

The creation of double compartmental flow models of bed occupancy for the acute 

hospital data used in this research were based upon understanding the trade-off 

between model complexity and fit, and also the need to secure information of value 
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(that is, the need to distinguish between short and long-staying patients). While the 

BIC could help determine the model of choice in terms of trade-off between model fit 

and complexity, expert opinion was required to determine the value of additional 

information gained through increasing model complexity.   

The primary and secondary research questions are now examined separately. 

12.2.1 The Main Research Question 

In the first chapter, I stated that the main research question to be addressed by the 

research was: 

Can bed occupancy compartmental flow models be applied to acute care 

hospital data in order that better (compared to existing) or new 

information or understanding be developed and have the potential to result 

in improved strategic planning of service delivery (and thereby resource 

utilisation)? 

Throughout this thesis it has been demonstrated that compartmental flow models of 

bed occupancy can be applied to acute care hospital data. These models have been 

generated in a variety of ways: 

� Using the now outdated BOMPS package (for example, Mackay and Millard, 

1999) 

� Using the method where all the data were incorporated into the modelling process 

(see Chapter 5), and 

� Using the method where the data were first summarised and then incorporated into 

the modelling process (See Chapters 6, 7, 8, 9 and 10). 
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Furthermore, the data used for this research have come from hospitals existing in 

separate health systems thereby increasing the validation of the approach and results. 

It could be argued that the successful application of the approach using only two data 

sets is not sufficient evidence to validate the approach. However, reliance can be 

placed upon additional sources of evidence, including: 

� The successful modelling of acute care surgical data (Millard, Mackay, Vasilikas 

and Christodoulou, 2000) 

� The representation of a length of stay profile as being highly skewed in the 

casemix manual Technical Bulletin 94:10 (Department of Health, 2005a), thereby 

implying this profile is the normal length of patient stay profile. 

� The work undertaken by Wang, Yau and Lee (2002) that found the maternity 

patient stay was better modelled by a hierarchical Poisson mixture regression 

model than the ALOS.   

Thus, while further research may be undertaken in relation to compartmental flow 

models of bed occupancy, the question of whether such models can be used in the 

acute care sector has been validated using primary (my research for this thesis) and 

secondary sources (my research prior to commencing this thesis and other sources) of 

evidence.  

The question, however, also included the condition that better (compared to existing), 

or new information, or understanding result as a consequence of the application of the 

compartmental flow models of occupancy. As previously stated, the ALOS is a simple 

measure of patient stay that is widely reported. It is a single measure. The application 

of a double compartmental flow model of occupancy yields four parameters: two 



384

parameters relating to the number of occupied beds or patients, and two parameters 

relating to rate of flow of patients through the compartments. Thus, prima facie

evidence shows that new information is gained as a consequence of applying these 

models. Further information can be gleaned about patient flow and numbers (or 

numbers of beds) through the use of sensitivity and simulation analysis. 

It can only be surmised that the additional information gained through the application 

of the compartmental flow model will result in better understanding about patient 

flow and as a consequence lead to improved strategic decision-making, because the 

opinions of potential end users regarding this research were not sought. However, as 

someone who has previously had to rely upon the ALOS, I can attest to the improved 

understanding gained about patient flow as a consequence of the generation of new 

information from compartmental flow models, as compared to what is possible to 

learn from analysis of the ALOS alone. Feedback from colleagues as a consequence 

of my research also indicates that the compartmental flow model has resulted in 

improved understanding about patient flow for them (Chris Bain and Don Campbell, 

personal communication). 

The translation of new or better information into improved decision-making was not 

tested. While it can be surmised that this should be an expected outcome should the 

modelling approach be adopted, it may not necessarily follow. For example, while 

better understanding around a particular strategic patient flow or bed management 

issue may result from the application of compartment flow modelling, political or 

financial imperatives may prevent the decision from changing. Under such 

circumstances, however, the additional understanding should enable more informed 

discussion about the consequence or consequences of the decision. 
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12.2.2 The Secondary Research Questions 

The secondary research questions that were examined during the research were: 

1. How many data are required to create a bed occupancy compartmental 

flow model for an acute care hospital data set? 

2. What level of model complexity is desirable in order that models can be 

used for generalisation and forecasting purposes?  

3. Can bed occupancy compartmental flow models that incorporate the 

ageing of the population be used to forecast future bed (resource) usage 

in acute hospital care? 

4. Can bed occupancy compartmental flow models be used to evaluate 

service change? 

5. Can bed occupancy compartmental flow model parameters be used for 

forecasting purposes? 

6. Can the bed occupancy compartmental flow model be adjusted to 

incorporate seasonal variation, where the term “seasonal” applies to 

weather seasons? 

7. Can bed occupancy flow compartmental flow model parameters provide 

a substitute metric for the average length of stay in resource allocation 

models? 

8. Can sensitivity and simulation techniques be used in conjunction with 

bed occupancy flow compartmental flow models to enable uncertainty to 

be incorporated into the modelling process? 
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It was possible to explicitly answer each of these secondary research questions. Figure 

102 details the research question, the chapters in which the research question was 

resolved and the linkages between the chapters.
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The successful resolution of these secondary research questions has resulted in a 

contribution to the body of knowledge around strategic decision-making in relation to 

acute care hospital beds. Some of this knowledge has already been communicated to 

the wider community through journal articles and conference papers. More 

importantly, the research has led to consideration of technical issues, such as model 

choice, and the modification of the original model upon which this research was 

predicated. . 

12.3 The Revised Methodology and Model 

The original work of Harrison and Millard (1991) relied upon the patient census as a 

means of obtaining data for the model. The research presented in this thesis, however, 

found that consideration of more data resulted in improved fitting of the model to the 

data. Although this is not a surprising outcome, it did lead to a justification to use data 

based upon a year as opposed to a single census for the creation of the bed occupancy 

compartmental flow model. 

Consideration of every data point across the year, however, was found to be 

impractical and would certainly not provide a tool for managers working in applied 

settings (for example, hospitals or health departments). Consequently, further 

modification of the approach was adopted, resulting in the creation of a second base 

methodology (see Chapter 6) that still captured variation in the data, but resulted in a 

much improved model creation time. 

Prior research undertaken by Millard and others has been based upon a single geriatric 

patient data set. The desire to investigate more complex models for a variety of 
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reasons (see Chapters 5 and 6) represented a new area of research. While model 

complexity could be increased easily, there was a risk that the resultant model would 

over-fit the data and therefore be of limited use for generalisation and forecasting. The 

introduction of a variety of methods to determine model choice was therefore required 

and was incorporated into the methodology. While such methods are not free of the 

need for judgment, such as when deciding whether a single compartment or double 

compartment model is most suited to the modelling task, they do provide clear 

choices between competing models and are to be valued, particularly in the data rich 

health sector, where I have observed that the practice has often been to create models 

at the finest level of detail possible. 

The original model was developed assuming that the system under examination was 

stable (Harrison and Millard, 1991). The issue of stability has been discussed in 

earlier chapters and it was noted that the acute care sector and even the geriatric care 

hospital sector were not stable and exhibited variation that could be attributed to a 

variety of sources, including seasonality and policy changes. Some of the work 

presented in this thesis has attempted to address the issue of instability, particularly 

attributed to seasonal variation, through the development of more complex models 

(see Chapter 5), which were later abandoned in favour of a less complex approach 

(see Chapter 8). Variability associated with daily variation in patient numbers – or 

vacancy – was also incorporated into the model (see Chapter 8). Uncertainty 

surrounding various aspects of the model was also incorporated through the use of 

Monte Carlo simulation (see Chapter 9). This progression of development of the 

model is illustrated in Figure 103. 
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The other aspect of variation is acknowledgment that policy decisions may affect a 

given system, but that the model can be varied to accommodate such changes. 

The development of the model co-incided with the exploration of how the model may 

be applied in different ways. For example, applications relating to forecasting (see 

Figure 103: Modification of the original (base) model has occurred to enable the incorporation of 
seasonal variation and variability of patient arrivals. The diagrams on the right-hand side are illustrative 
only and were presented in full detail in earlier chapters. 
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Chapters 7 and 9), evaluation (see Chapter 6) and casemix (see Chapter 10) were 

considered. This is illustrated in Figure 104. 

  

While the potential to apply the model to a range of health sector issues has always 

existed, early work, including the development of BOMPS, focussed on facilitating 

greater understanding of bed occupancy and providing tools that would result in better 

planning decisions. For example, BOMPS provided a means of pre-testing service 

change, but did not incorporate a mechanism to link it to population change. This is 

not a criticism of the early work, but rather is indicative of a period of evolving 

research and development.  

New approaches for conveying information from the modelling approach to users 

were also explored. For example, the tornado charts (see Chapter 11) enable users to 

Base model

Forecasting Evaluation Casemix

Planning Understanding

Base model

Forecasting Evaluation Casemix

Planning Understanding

Figure 104: The use of the compartmental flow model of bed occupancy for planning and facilitating 
understanding has been extended. This research has shown the potential to apply this style of modelling 
in the areas of forecasting, evaluation and casemix. 
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see what model parameters have the greatest impact upon a particular aspect of bed 

occupancy. 

12.4 The Preferred Methodology 

The discussion in this section focuses on the use, technical issues and limitations of 

the modelling approach that has evolved during the course of this research. These 

issues and limitations are of a generalised nature and more specific comments relating 

to particular aspects of the research can be found within individual chapters (see 

Chapters 5 to 11). 

12.4.1 The Strategic Level 

This research has not altered the focus of the use of the compartmental flow model of 

bed occupancy. The inclusion of uncertainty does enable communication of the fact 

that there will not be an exact answer, particularly in relation to forecasting, but rather 

future bed requirements will fall within a given range, assuming the assumptions hold 

true. 

The model is a tool that can assist decision-makers to make better decisions at the 

strategic level. It is not a tool for guiding operational decisions that occur on a day-to-

day basis, although the analytical methods associated with this work, as well as a 

working understanding of the model output, can be used to highlight the impact of 

short-term decisions. For example, temporary short-term closures of wards, such as 

those that are often implemented around Christmas time, should be accompanied by 

an appropriate reduction in admissions well before the closure date in order to provide 

sufficient time for clearance of the system. Without such clearance, as soon as or 
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shortly after implementation of the reduced bed numbers, it is inevitable that bed 

blockages will occur and crises occur. 

12.4.2 Knowledge of the Business 

The research has focussed on modelling inpatient bed occupancy and not elective 

same-day patient bed occupancy. While the ability to model data exists using various 

software packages (BOMPS, Microsoft Excel, Matlab, etc) and achieve a good fit to 

the data, the ability to create a bed occupancy compartmental flow model is not the 

key to the success of this modelling approach. Rather, it is imperative that the 

modeller must understand the business processes. The elective same-day bed 

occupancy profile is perhaps illustrative of the importance of having knowledge of the 

business. Aside from the fact that elective same-day patients are usually managed 

separately to inpatients, the potential to apply the compartment flow model to these 

patients exists. It was shown, however, that at least some elective same-day patient 

occupancy profiles are very different to inpatient profiles and may be better described 

using alternative modelling approaches (see Chapter 10). 

12.4.3 The Value of Information 

The implementation of a means to choose among models of varying complexity was 

considered important, as this approach resulted in the selection of models that were 

not over-fitted and thus more useful for forecasting purposes. 

However, model selection methodology cannot be divorced from judgment, because 

current approaches (for example, the use of the BIC value) do not incorporate the 

value of additional information into the measure. The example from this research that 
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illustrates this point is the decision to use double compartmental flow models as 

opposed to single compartment flow models. The double compartment model enables 

generation of information about a small group of patients that use a significant 

proportion of resources and can result in bed blockages. 

This is perhaps, closely related to a need for a strong understanding of the business 

environment and signals the fact that naïve use of the modelling approach is fraught 

with problems. 

12.5 Revisiting Bed Occupancy and the Role of Modelling 

In this section I reflect upon the notion of why modelling bed occupancy is of value 

and consider where the role of modelling, and in particular bed occupancy 

compartmental flow modelling, fits in solving strategic bed management issues. This 

reflection occurs after having spent time undertaking the research presented in this 

thesis, reading the works of others and co-convening an international conference on 

health and social care modelling. 

This section of work draws upon an article I wrote for Nosokinetics News that 

published during June 2006. 

12.5.1 A More General Consideration of Bed Occupancy 

It is clear that the strategic decision-making task relating to acute care hospital beds, 

or for that matter geriatric service beds, is affected by many factors. The ALOS is a 

ubiquitous measure and is simple – it is a single measure, that when combined with 
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one other measure can yield the number of beds required for a given hospital service. 

A hypothetical example is illustrated in Table 46. 

In determining the bed requirements, many factors affecting the resultant patient 

length of stay are assumed, either explicitly or implicitly, to be constant. The 9,500 

patients admitted will not be the same, unless of course analysis of a single disease is 

occurring (for example, across a state or country). Admissions will occur typically for 

a variety of reasons, and involve people from a variety of backgrounds and ages. To 

breakdown the ALOS by any of the many possible groupings takes effort and may not 

lead to a materially different outcome as shown in the hypothetical example in 

Table 47. 

Marmot (1999) highlights the fact that there are socio-economic determinants of 

health. That is, factors such as childhood environment, education, unemployment and 

social relationships help determine health outcomes. Consequently bed occupancy is a 

ALOS (days) 5.4
Admissions per year 9500
Days per year 365
Number of beds required per day 
(nearest whole number)

141

Table 46: Illustration of using the ALOS to 
calculate bed requirements. 

Group A Group B Group C Group D Group E Average
ALOS 6.7 3 4.9 5.2 7.2 5.4
Admissions per year 2000 2000 2000 2000 1500 9500
Number of beds required per day 
(nearest whole number)

37 16 27 28 30 141

Beds required on basis of individual groups 138
% Difference -2%

Table 47: Subdividing the data may not lead to a materially different determination of the number of 
beds required for a service. 
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result of many factors and perhaps might be represented according to the following 

equation: 

Bed occupancy α f(pmc, cm, age, sex, ttt, cd, fs, atoc, sed, rac, bdm, pdm, etc) 

Where pmc is primary medical condition 

cm is co-morbidities 

ttt is time to treatment 

cd is clinical decisions 

fm is family support 

atoc is access to other care 

sed is socio-economic determinants 

ra is resource allocation constraints 

bdm is bureaucratic decision-making 

pdm is political decision-making  

Administrative data, which is usually the source for the calculation of the ALOS, and 

in the case of this research the occupancy profiles, does not capture all the factors that 

result in an individual patient’s length of stay. 

As a consequence, the planning and forecasting of changes in the number of hospital 

beds is based upon the manipulation of what is measured. This is not uncommon – 

that is, what is measured is managed. In fact, Berwick has made the following 

observation: 
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Every system is perfectly designed to achieve the results it achieves 

Berwick (1996, pg 619). 

The immediate question arising from the adoption of this view is whether such an 

outcome is reasonable. I contend that it is reasonable for managers to exert control 

only over issues for which they have control. While the length of hospital stay is a 

consequence of many factors, most of these factors lie outside the control of decision 

makers within the hospital setting and many lie outside the control of health 

departments. For example, while poor education and employment status may be 

associated with poor health outcomes (at the population level), a hospital clinician is 

usually dealing with a patient who has presented with an illness that, in our society is 

more likely to be related to non-infectious disease, and thus may have developed over 

a period of time and be associated with a variety of risk factors (for example, a 

common chronic illness is diabetes and this can be associated with admission to 

hospital). The hospital clinician cannot remedy the problems of the past that have led 

to the admission, but merely attend to the current (and future) needs of the patient. 

Additionally, while the clinician and associated hospital staff (for example, 

epidemiologists) may identify patterns of disease and be able to advocate changes that 

will affect future admission patterns (for example, the use of seat belts, promotion of 

sun-safe behaviour and reduction in smoking rates) they do not control the decisions 

that will alter the admission patterns. Furthermore, it can be argued that even at a 

health department level many of the socio-economic determinants of health lay 

outside the jurisdiction of the health sector. 
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Clearly, the use of the ALOS is not advocated as the basis for the planning or 

forecasting of hospital beds at the strategic level due to the previously identified flaws 

with this measure. The research presented for this thesis provides an approach that 

overcomes the flaws and can incorporate other factors, such as patient age, gender and 

reason for admission (for example at the broad level, this is captured through casemix 

categories). Linkages to other factors that may be deemed to be within the control of 

decision-makers, such as patient outcomes could occur. However, such data is not 

routinely collected and is still in many ways in its infancy. 

Given that this approach appears to be reasonable, or at least defensible, a further two 

questions arise, namely: 

1. Has the problem been over simplified, and 

2. Who influences the problem space?  

12.5.2 Has the problem been over simplified? 

Plsek and Greenhalgh (2001) suggest that the simple reductionist approaches to 

analysing health sector problems, be they relating to clinical practice or organisational 

leadership, is no longer appropriate. Reductionist thinking suggests that work and 

organisations can be thoroughly planned and optimised. 

According to Plsek and Greenhalgh (2001), the reductionist or machine metaphor, as 

described by Morgan (1986), is deficient insofar as that it performs poorly when no 

part of the equation is constant, independent or predictable – features often used to 

describe health systems or parts thereof. In many ways this is consistent with the 

writing of Rosenhead (1978) and colleagues Best and Parston (Best, Parston and 
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Rosenhead, 1986) who contended that the application of operational research 

techniques to health service planning problems is fraught with difficulties for the 

following reasons: 

1. Problems are often treated as though they are static in nature and attempts are 

made to remove uncertainty when providing an answer. 

2. The goal of many proffered solutions is to maximise a single goal, as opposed 

to recognising that solutions to many goals must be concurrently achieved. 

3. There is reliance upon quantification and the exclusion of factors that cannot 

be quantified can result in models that poorly reflect the behaviour observed in 

the real world. 

4. Solutions do not allow for multiple decision-makers or environments where 

rational decisions may give way to the need to implement political solutions.   

To counter these problems, Rosenhead (1978) and his colleagues (Best, Parston and 

Rosenhead, 1986) suggested that approaches that met the following criteria should be 

favoured: 

1. Incorporates or recognises uncertainty 

2. Adopts co-ordinated solutions in preference to optimised solutions 

3. Relies upon fewer data 

4. Facilitates participation, as opposed to solely relying upon hierarchial 

deduction, and 

5. Recognises that technocratic solutions will not always meet political needs. 

The use of the compartmental flow model, as described in this research, meets the 

first and third criteria. The use of the compartmental flow model output can be used to 
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achieve participation in decision-making (see the next section). The recognition of 

political agenda is not a criterion that can be addressed through the creation of a 

model, but rather it should be recognised that the output of a model can be used to 

inform decisions at all levels, including the political level, but may not necessarily 

give rise to the outcome suggested by the model.  

Alternatively, Plsek and Greenhalgh (2001) would argue that the science of complex 

adaptive systems might provide better support for decision-makers who are trying to 

find a path through the complexity of the health system. A complex adaptive system 

is defined by the ability of a collection of individual agents being able to act in ways 

that are not always totally predictable and where an individual agent is altered (or 

their behaviour is altered) as a consequence of the action of anther agent that is 

connected to them (Plsek and Greenhalgh, 2001). There are many examples of such 

systems, and one common example is families.  

So where does this leave the bed occupancy compartmental flow model? 

Such views as those espoused by Plsek and Greenhalgh (2001) are representative of 

those promulgating their own particular solution and while they have merit, the 

grounds for abandoning the compartmental flow model in favour of a complex 

adaptive system model, or for that matter other models, are not yet sufficient for the 

following reasons: 

� The research confirms the ability of the model to describe the occupancy data well 

� The compartmental flow model fulfils a range of uses, including providing users 

with a better understanding of patient flow; the ability to plan and pre-test 
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decisions relating to the use of beds; the ability to forecast future bed 

requirements; and the ability to evaluate past changes and benchmark against 

other organisations. 

� From the strategic perspective many issues involving complexity are held constant 

through the assumptions that underlie the modelling approach. 

� Plsek and Greenhalgh (2001) acknowledge that not all problems lie in a complex 

modelling space. There is certainty about the ageing of the population, existing 

occupancy profiles and disease patterns, and for the purpose of establishing 

forecasts around future bed requirements, it may be argued that there is little value 

in adopting the complex adaptive system model. 

� It is possible to introduce uncertainty into the compartmental flow modelling 

approach. 

� Given the findings of Fone et al (2003) that few models are evaluated, the fact that 

the compartmental flow model of bed occupancy has been well researched 

provides a reasonable basis for its adoption and use. 

� While it is recognised that the health system comprises of more than just hospitals, 

the data required to create models of a larger part of the system is not routinely 

collected, and 

� Given the current reliance upon simpler modelling methods, that are relatively 

cheap, relatively quick to create and apparently easy to understand (though clearly 

there is a lack of understanding around the flaws associated with the use of the 

ALOS), it is unlikely that most decision-makers are ready to adopt more complex 

decision-making tools which are often expensive to implement, require long 

development times and require an extensive understanding of a range of topics, 

including modelling methodologies and complexity. 
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The multiple methods approach has been proposed in the management and 

information systems literature as a means of better understanding complex situations. 

This represents a means of capturing more than one source of information to guide the 

decision-making process and does not require the abandonment of the compartmental 

flow model of bed occupancy. This is discussed in the context of who has influence 

over the problem space in the next section. 

12.5.3 Influence over the problem space 

Given the conclusion in the previous section that the compartmental flow model is a 

reasonable choice as a tool to improve strategic bed management decision-making, it 

is worthwhile to consider whether, as recommended by Best, Parston and Rosenhead 

(1986), the model can be used to facilitate participation in the decision-making 

process. 

The health system is comprised of numerous groups, including doctors and nurses, as 

well as many other groups. Decision-makers, or those that can assist with decision-

making work within the health sector, may also be brought in to the health sector from 

other sectors for specific assistance, for example as consultants or researchers. The 

range of stakeholders in the decision-making process is illustrated in Figure 105. 
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It is important to recognise that the solutions for problems relating to strategic issues, 

such as decision-making around beds, cannot be owned by a single group of 

stakeholders, but rather collaboration among stakeholders is required to ensure their 

successful development and adoption. Thus, while it is possible to develop a model, 

such as the compartmental flow model of bed occupancy, which can lead to better 

decisions, the usefulness of such a model is reliant upon the acceptance of and 

inclusion of others in developing the solution to the question that is being addressed. 

Engaging stakeholders during the model development phase and also in discussion 

around the model output is one means of achieving participation in the decision-

making process. It will not, however, guarantee that organisational politics that are 

frequently a feature of the health sector environment will be reduced.  

From the modeller’s perspective, a number of key factors can contribute to successful 

collaboration, including: 

Figure 105: The range of stakeholders in the decision-making process may be large. A solution that 
relies upon a single group may not yield the best solution.
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� Ensuring that the problem is being solved as opposed to implementing a particular 

tool 

� Providing education about the modelling approach to those involved in the 

collaboration, as often the appreciation and understanding of the benefits of 

modelling varies greatly among the professions working in the health sector,  

� Provide regular information to the collaborators, and 

� Create some output early in the life of the project, even if it is basic analysis, so 

that those involved with the work have sufficient time to absorb the information 

that is generated and interest is maintained. 

The multiple methods approach was previously suggested as a mechanism that 

facilitates the capture of more than one source of information to guide the decision-

making process and is particularly relevant to forecasting decision-making. A 

multiple methods framework not only means more information is collected, but also a 

better understanding of stakeholder’s worldviews should be gained (Winkler 1989) 

and thus supports the need for participation and collaboration in the decision-making 

process. There is also a consensus among many forecast researchers (for example, 

Makridakis and Winkler, 1983; Armstrong, 1986; Clemen, 1989) and practitioners 

that combining methods improves forecast accuracy and forecast relevance. Clemen 

(1989) has stated that the notion that combining forecasts may be beneficial is not 

new and noted that Laplace identified that combining methods will lead to a result 

that has a lower probability of error during the early 19th century. 

The act of combining and giving weights to the different forecasts can be problematic 

(Armstrong, 1985), but empirical evidence does demonstrate improved accuracy. A 



405

multiple methods approach is also likely to improve the integration of forecasting 

information with strategic planning, and helps to ensure that unquantifiable 

catastrophic factors are accounted for (Morrison and Metcalfe, 1996). The adoption of 

this approach should therefore enable the inclusion of factors that are not necessarily 

captured in the routine administrative data (which is the basis for the data used in this 

research) to be incorporated into the compartmental flow model and further promote 

collaborative efforts. To some extent, the creation of the sliding scale model 

methodology used to incorporate seasonality, represents an initial foray into the 

application of multiple methods, as it involved the use of temperature data. 

There are various approaches to the implementation of a multiple methods approach 

and it is not my intention to provide an account of these approaches. Rather, I will use 

multiple perspective approach defined by Mitroff and Linstone (1993) to help 

illustrate why seeking multiple sources of information may be beneficial in the health 

sector, particularly in relation to strategic decision-making relating to hospital beds. 

The multiple perspective approach encourages decision-makers to consider a given 

problem from particular perspective, namely the technical (T), organisational (O) and 

personal (P) perspectives. The three perspectives contribute to the discovery of a more 

complete understanding of the problem and may result in improved decision-making, 

as opposed to relying upon a single analytical view of the problem (Lindstone, 1999), 

and are particularly useful when addressing complex social problems (Mitroff and 

Linstone, 1993). Clearly, decision-making in relation to hospital beds is a complex 

social problem – it involves different organisations, subgroups within organisations 

(both professional and organisational), patients and politicians. According to 

Linstone:  
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in the political arena highly technical information is usually and properly, 

discounted in favour of social interests and considerations of values 

involved – and these can never be encompassed by the T perspective 

(1999, p38). 

The multiple perspectives approach is a means of reducing the disparity between a 

model and reality (Linstone, 1981). Consequently, the multiple perspective approach 

can be justified on the basis that: 

� Each perspective (T, O and P) provides mutually exclusive insights, and 

� To bridge the gap between imperfect models (the technical view) and the real 

world, it is essential that the organisational and personal perspectives be sought. 

I also contend that the approach can be used to justify the development of improved 

technical perspectives, so that highly political decisions, such as those often relating 

to the planning of hospital beds, are based upon sound technical input into the 

decision-making process. Thus, not only is it important to ensure collaboration so that 

other perspectives are brought to bear upon the decision-making process, but also that 

the appropriate technical solution is sought. In the case of strategic decision-making 

relating to hospital beds, the development of the compartmental flow model of bed 

occupancy represents achievement in improving the technical view of the strategic 

bed management problem. Collaboration with others is required to achieve 

incorporation of the organisational and political perspectives.  
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12.6 Conclusion 

The goal of seeking to determine whether the work of Harrison and Millard (1991) in 

applying compartmental flow models of bed occupancy to a geriatric health service in 

London could be applied to the acute care hospital sector has been achieved. In 

achieving this outcome, the original methodology has been modified in a variety of 

ways. The modelling approach has shifted from a deterministic approach to a 

stochastic one. Consequently, the communication that there is uncertainty in the 

output is now easy to communicate. 

Better modelling of matters affecting the decision-making relating to hospital beds 

alone, however, will not necessarily result in better decision-making outcomes. The 

health sector is a complex system and it is recognised that collaboration by many 

stakeholders will be required to enable better decisions to be made. The modelling 

work and also the model output may be used to facilitate collaboration, and ultimately 

achieve better decision-making in relation to the planning, forecasting and evaluation 

of acute care hospital beds. 

In the next chapter I discuss the potential future directions for this research and 

whether the ability to transfer this research from an academic pursuit to one of 

improving decision-making in the health sector exists. 
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Chapter 13

Future Research and Application of Bed Occupancy 
Compartmental Flow Modelling  

In this chapter I comment upon the opportunities for further research in relation to bed 

occupancy compartmental flow models and the acute care health sector, and also, the 

ability to move the research into other areas. The scope for potential application in the 

health sector business setting (as opposed to the academic environment) is also 

discussed. The chapter has the following structure:

13.1 Introduction ......................................................................................... 409 
13.2 Scope for Additional Research ............................................................. 410 
13.2.1  Research within the hospital.............................................................. 410 
13.2.2  Research beyond the hospital inpatient.............................................. 412 
13.2.3  Incorporating information from other modelling................................ 414 
13.2.4  Beyond the health sector ................................................................... 416
13.3 Potential for Application ...................................................................... 416 
13.3.1  Scope for Application ....................................................................... 417 
13.3.2  Drivers of Adoption .......................................................................... 417 
13.3.3  Barriers to Adoption.......................................................................... 419 
13.3.4  Possible Solutions ............................................................................. 421 
13.4 Conclusion........................................................................................... 424 
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13.1 Introduction 

In this thesis I have presented research that supports the adoption of the bed 

occupancy compartmental flow model as a method of overcoming the shortcomings 

of using the ALOS, a widely used performance measure. 

While compartmental flow models represent only one aspect of modelling, and are 

particularly useful for strategic decision-making, it would seem that during the course 

of my research, others are reaching similar conclusions regarding the need for better 

management decision-making in relation to acute care hospitals. For example Jones, 

Joy and Pearson (2002) reached the following conclusion in relation to the need for 

forecasting demand: 

in 44BC, Cicero wrote that after carefully examining the pros and cons of 

being able to foresee the future, he felt that it was better to remain 

ignorant. Nevertheless, many writers on management argue that for an 

organization to be able to plan effectively, it is vital that it can in some 

way anticipate the future. Perhaps nowhere is this more pressing in the 

day to day management of an acute hospital. (Jones, Joy and Pearson, 

2002, pg 297)

I believe that the research that I have conducted has made a strong case for the 

adoption of the bed occupancy compartmental flow model in the acute care sector and 

when considered with the research undertaken in relation to the geriatric care service 

in England (for example, Harrison and Millard, 1991; McClean and Millard, 1993; 

Harrison, 1994; Taylor, McClean, and Millard, 1996; McClean and Millard, 1998), 
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there is a convincing case for its adoption more widely. However, the need for 

ongoing research does not abate. 

13.2 Scope for Additional Research 

The topics of short-term and long-term forecasting, benchmarking, evaluation, 

resource allocation and model choice were discussed in earlier chapters in relation to 

the bed occupancy compartmental flow model and their use in the acute care hospital 

setting. Although the research presented for this thesis has focussed on medical 

patient data, there is no reason such analysis will not be applicable to other patient 

groups providing that the business model results in a similar distribution of bed 

occupancy. For example, work has previously been reported in relation to the use of 

compartmental flow models and surgical inpatients (Millard, Mackay, Vasilikas, and 

Christodoulou, 2000). 

13.2.1 Research within the hospital 

The findings of the research presented in this thesis the potential to use bed occupancy 

compartmental flow models to investigate a wide range of issues exists within the 

acute care hospital environment, including: 

� Comparison across similar services 

� Comparison of alternative care options or system redesign 

� Comparison in differences in patient flow rate, particularly relating to 

patient sex, ethnicity, patient type (elective or emergency), source of the 

patient (outpatient clinic, emergency department, etc) and patient 

discharge destination. 

� Patient flow in relation to chronic disease 

� Patient flow in relation to different times of the year, and 
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� Patient flow in relation to funding or resource allocation data (DRGs and 

service related groups (SRGs)). 

Investigations into some of these areas of research have already commenced. For 

example, Harrison, Shafer and Mackay (2005) have reported on the creation of a 

compartmental flow model that is based upon patient cohorts created on the date of 

patient admission. This approach is perhaps too complex for adoption in a routine 

decision-making environment, because the methodology relied upon models for each 

day of the week (that is, the number of model parameters was relatively large making 

manipulation in a business setting a difficult task). Nevertheless, the approach 

demonstrated the ability to successfully examine patient occupancy on the basis of 

date of admission, as opposed to examining occupancy on the basis of date, and there 

may be potential to look at the rate of patient flow for similar patient groups across 

the year using this methodology. Such analysis may provide insight into whether 

similar patients are treated differently at different times of the year. For example, it 

could be used to answer the question of whether the rate of patient flow is faster 

during winter when the demand for beds is greater compared to other times in the 

year. 

Bayesian belief networks were implemented by Marshall, McClean and Millard 

(2004) as a means of predicting differences in occupancy based upon various factors, 

such as age and sex, prior to admission. Although this work was instigated 

independently of my research, my research nevertheless, supports this as an area of 

further research. Indeed, there is significant potential to undertake further research in 

this area, particularly as the population ages and chronic diseases drives up the cost of 

care.  
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In association with others from the Department of Health I have also commenced a 

preliminary study of how compartmental flow models may be used in the evaluation 

of service increases associated with chronic diseases, such as diabetes, and population 

change.    

The ability to link forecasting and sensitivity and simulation analysis to such work 

should increase researcher interest in this modelling approach. Furthermore, the 

necessary data for such analyses is now readily available within most health care 

agencies and the cost of analysis is not great. For example, in Australia there are now 

organisations that are prepared to provide researchers with access to such data from a 

wide variety of hospitals for free. 

13.2.2 Research beyond the hospital inpatient 

A further source of research endeavour centres on the incorporation of the 

compartmental flow modelling approach as a part of a bigger overall model. A bigger 

model may be beneficial in representing other parts of the hospital setting, such as the 

emergency department (or accident and emergency) and outpatient services, and also 

in incorporating aspects of the health and social service sector that operate outside of 

the hospital setting. The combination of an emergency department model and 

inpatient bed occupancy flow model is likely to be of significant interest, as the 

impact of bed blockages is often acutely felt in the emergency department resulting in 

long waits for admission to an inpatient bed. Whether or not a compartmental flow 

model could be used to model the emergency department section of a larger model 

requires investigation. Modelling the combined services, however, is not reliant upon 
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the emergency department being able to be described with a compartmental flow 

model. In fact, in the more general sense, where the bed occupancy compartmental 

flow model is contra-indicated due to the business model used to run a particular 

aspect of a health or social system, it will be appropriate to use other approaches in 

conjunction with the bed occupancy compartmental flow model. 

The acute care hospital, or indeed any hospital, does not operate separately from the 

rest of society. The ability to discharge patients from an acute care hospital can be 

affected by factors outside of the hospital. For example, patients who cannot care for 

themselves following discharge may rely upon access to community services, such as 

home care services, or access to a nursing home bed. The ability to secure such 

services can delay the discharge of patients. Consequently, while modelling may 

facilitate the discovery of strategies that will improve the operation of the hospital, the 

successful implementation of the strategies may be contingent upon the continuation, 

or even change, of external services. Thus, there is every reason to consider the 

creation of a model that can describe a larger part of the system, assuming that such a 

model is of value in answering the research questions being investigated. Taylor, 

McClean and Millard (1996) have already reported on incorporation of the 

community as part of the geriatric patient flow model. Also, given the work by 

Millard and his colleagues (for example, Harrison and Millard, 1991) on modelling 

the geriatric service data, where long-stay patients were admitted for many years, an 

obvious extension of the research into the compartmental flow model in the 

Australian setting would be the modelling of the aged care sector, where people may 

be residents for very long periods of time. 
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The notion that the measure of time varies in different parts of the system should also 

be more generally recognised. Thus, the potential to consider extending the 

compartmental flow model research into areas such as the Emergency Department or 

Intensive Care Unit, where the duration of patient stay is better measured in hours, 

also represents a worthwhile area of potential investigation. Rehabilitation services, 

where patient duration of stay may be considerable, may also represent a worthwhile 

area of potential investigation in terms of the use of compartmental flow model. 

  

Access to data from different organisations (as opposed to hospital data) and the need 

to link patient data may make such modelling exercises more difficult to undertake. 

Linked patient data does exist in the state of Western Australia and subject to 

particular conditions may be used for such research by researchers from other states of 

Australia. Even with this data set, however, it is known that much of the data 

necessary to create some models that would be of interest when modelling a larger 

part of the health system is not yet collected. 

13.2.3 Incorporating information from other modelling 

The potential to explore the use of forecasts based upon the use of the multiple 

method approach, as suggested by Linstone (for example, 1981 and 1999) also exists. 

Alternative approaches to investigating the effect of decision-making based upon the 

use of multiple methods may also result in interesting findings. 

From an organisational perspective, determining the effect of compartmental flow 

modelling, or perhaps the interpretation of the output from such modelling, on 

collaboration between different professional groups or decision-makers may also 
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generate useful information regarding health sector culture, collaboration and 

decision-making. 

The potential for further research is not limited to only developing greater insights 

about how compartmental flow models may be used to facilitate better strategic 

decisions in relation to the planning and forecasting of hospital beds. Some examples 

of areas where research may be linked with bed occupancy modelling are now 

provided. Workforce planning issues are also topical as the population ages. Holmes 

(2004) has noted that there is little point in planning for additional hospital beds if 

there are insufficient nurses to staff them. Thus, the linkage between bed modelling 

and workforce represents an important area of potential research. 

From a clinical perspective, patient safety is also of current interest in the health 

sector. Borg (2003) has reported that the level of bed occupancy is a determinant 

factor in the incidence of methicillin-resistant Staphylococcus aureus (MRSA) 

infections within general ward settings. Thus, there may be potential to link bed 

occupancy modelling to quality and safety issues, such as infection levels. However, 

before investing in such research it will be important to understand whether 

occupancy is merely an indicator of risk of an adverse patient outcome (that is, other 

factors, such as staffing levels, cause the adverse event) or whether it is a controllable 

factor that directly contributes to adverse patient outcomes.   

The notion that reducing the patient length of stay is a good mechanism for 

controlling cost is a widely held belief in the health sector. Taheri, Butz and 

Greenfield (2000) suggest that reducing patient length of stay has minimal impact on 
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the cost of hospital admission. While their study identified that the later days in a 

patient stay are less expensive than the early days of a patient stay, there was little to 

suggest that analysis of different patient groups had been undertaken. Thus, being able 

to link costs to the rate of flow of patients (particularly when discriminating between 

short and long-stay patients) and other factors, such as age, is important, because 

policy decisions usually involve cost considerations. Marshall, McClean and Millard 

(2004) have also suggested that the linkage of costs to patient flow modelling is 

important. 

13.2.4 Beyond the health sector 

Exploration of the use of the compartmental flow model of occupancy in other 

industries may also be worthwhile. For example, the “occupancy profiles” of people 

provided with supported accommodation in Australia (that is, temporary 

accommodation for homeless people) or those incarcerated in the prison system may 

be well described by compartmental flow models. 

13.3 Potential for Application 

Given the political nature of hospital bed decisions, the ability to improve strategic 

planning and forecast decision-making and also evaluate past service change would 

seem desirable, if not a political necessity. Churchill, the former British Prime 

Minister, stated:  

The most essential qualification for a politician is the ability to foretell 

what will happen tomorrow, next month and next year, and to explain 

afterwards why it did not happen. Winston Churchill (via Cetron and 

Ralph, 1983) as cited by Armstrong 1985, Pg 322. 
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I believe that there is real potential for application of the compartmental flow model 

of occupancy in the health sector and that such application could contribute to 

improved decision-making. 

The following discussion sets out the necessary conditions that I believe are required 

for the transfer of this research to application to occur.  

13.3.1 Scope for Application 

The bed occupancy compartmental flow model is not limited to a single use, which 

enhances its attraction in relation to application. Previous chapters have detailed the 

range of applications for which bed occupancy compartmental flow models can be 

applied. Applications include generating data that leads to better understanding about 

existing systems, forecasting future bed requirement information, the ability to pre-

test system change through sensitivity and simulation analysis, benchmarking, 

evaluation and the potential to influence resource allocation funding models. 

13.3.2 Drivers of Adoption 

Millard has already found through experience in England that the creation of a 

“modelling tool” that can be sold is not sufficient to result in the widespread adoption 

of the compartmental flow model in the health care setting (personal communication). 

The necessary factors that I believe to be critical in the widespread adoption of the 

compartmental flow model are: 
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� Research to support the validity of the use of the modelling approach in the acute 

care sector and also in other settings such as the geriatric care service in England 

(for example, Harrison and Millard, 1991). 

� The potential to use the modelling approach to investigate a wide range of 

strategic issues. 

� Communication of the research results through journal publications, academic and 

most importantly conference presentations and papers. 

� A business need – particularly in relation to short-term strategic decision-making 

around acute care hospital bed use.  

� A lack of confidence in, or at least a questioning of, the failure of methods that 

rely upon the ALOS. 

� Creation of a business case that details what is necessary to enable the creation of 

bed occupancy compartmental flow models so that decision-makers understand 

that the data demands are not necessarily onerous, and  

� Successful adoption of the modelling approach by one or more health care 

organisations (for example, a health department or large hospital). 

Some of these factors have already been or are currently being addressed. For 

example, research to validate the modelling approach has occurred (as presented in 

this thesis) and work towards communicating the results has already commenced (for 

example, see Appendix I). Some, however, may argue that additional research is 

required. While there is merit in undertaking further research, and potential areas of 

further research have been identified (see earlier in this chapter), it is my opinion that 

transfer to the applied setting should occur concurrently. 
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Recognition of the need to be able to forecast future bed requirements is also evident. 

For example, the findings in the reports of the NSW Health Council (2000), 

Generational Health Review (Generational Health Review, 2003) and Western 

Australian Government (Department of Health, 2004) all forecast increases in future 

bed requirements. 

The lack of questioning of the use of the ALOS by decision-makers and the early 

adoption of the modelling by an organisation represent the greatest challenges in 

achieving the widespread adoption of the modelling approach. 

13.3.3 Barriers to Adoption 

It is useful to consider Michael Crichton’s observations about human decision-making 

in complex environments: 

The total system we call the biosphere is so complicated that we cannot 

know in advance the consequences of anything we do. … This uncertainty 

is characteristic of all complex systems, including man-made systems. 

…That is why even our most enlightened past efforts have had undesirable 

outcomes – either because we did not understand enough, or because the 

ever-changing world responded to our actions in unexpected ways. … The 

fact that the biosphere responds unpredictably to our actions is not an 

argument for inaction. It is, however, a powerful argument for caution, 

and for adopting a tentative attitude toward all we believe, and all we do. 

…We think that we know what we are doing. We have always thought so. 

We never seem to acknowledge that we have been wrong in the 

past…(Crichton, 2002, pg vii-ix). 
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These observations hold true in relation to strategic decision-making relating to the 

health care system and is particularly true in relation to the use of the ALOS. The lack 

of questioning of the ALOS is perhaps an outcome that has arisen because of two 

factors: a failure to educate decision-makers about the use of the average in general, 

and the inability to provide a reasonable alternative. The latter is now addressed as the 

flow model parameters provide good alternative measures that overcome the flaws of 

the ALOS.   

The need to communicate the flaws of the ALOS, however, will be a task that will 

require a significant investment in time. In the short-term, communication of the 

problems associated with using the ALOS may be best presented via conference and 

journal papers. In the longer-term, it may be desirable to seek that better or additional 

information about basic statistics is included in courses commonly undertaken by 

health care-managers. 

The need for education of decision-makers about the shortcomings of the ALOS may 

be reduced if an early adopter of the modelling approach can be found. Successful 

adoption of the modelling approach by a large organisation may be sufficient to 

establish interest by other organisations. This assumes that the early adopter reports 

favourably on the use of the approach or indeed even champions its use. However, 

given that I have previously identified that Hass (2004) reported that there is 

significant under-investment in health services research in Australia finding an earlier 

adopter of the technology may be a difficult task as there may not be people who are 

sufficiently skilled to advocate its uptake. 
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There are a number of strategies that may further assist the uptake of the methodology 

in the business setting and these are now discussed. 

13.3.4 Possible Solutions 

Not Overselling the Approach 

I have found that health care managers tend to be cynical about the potential of 

modelling approaches to help them address their problems. One source of frustration 

has arisen from the fact that advocates of modelling tend to sell their solutions, as 

opposed to attempting to address the problem. This perhaps is borne out by Fone et al. 

(2003) who have reported that there is a lack of evaluation of modelling and 

understanding of whether models are implemented. 

In terms of the bed occupancy compartmental flow model it is important that it is used 

in relation to strategic decision-making and not short-term operational decision-

making. Consequently, this modelling approach is not suitable for forecasting the 

number of beds required for the next hour, day, week or month. 

Acknowledgment of Complexity 

In the discussion in Chapter 12, it was acknowledged that the modelling approach 

could not exist in isolation and that the decision-making occurred in a complex 

environment. Rather, the purpose of the modelling tool was to assist decision-makers 

improve their strategic decision-making in relation to hospital bed planning and use. 

The information derived from such modelling, however, can provide the mechanism 

to bring those involved in such decision-making together. Acknowledgment of the 
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complexity of the decision-making environment and role of the modelling approach 

will be critical in establishing the credibility of this modelling approach.  

Joint Research 

While health related research funding (for example, National Health and Medical 

Research Council funding) may be difficult to obtain, as traditionally health services 

research has not been well funded in Australia (for example, Hass, 2004), other 

funding sources may be of use in facilitating adoption of the modelling tool in the 

applied setting. The Australian Research Council provides grants that enable industry 

and academics to undertake research projects that will provide a benefit to industry. 

Successful application for such a research grant with either a public or private hospital 

partner may encourage adoption of the research tool, because it would reduce the 

financial risk and provide confidence about the usefulness of the approach using the 

hospitals own data. 

Another mechanism less reliant upon grant funding may be the offer of free use (that 

is, a trial) of the modelling tool for a limited period in exchange for commendation to 

other potential users.  

Need for Software Tools 

While Millard found that the development of a modelling tool – BOMPS – did not 

assist in the uptake of the compartmental flow model, it is nevertheless a factor that 

will facilitate transfer of the research into the applied setting. 
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While academic researchers may prefer to conduct their research with more 

specialised software, unless the compartmental flow model can be created easily using 

readily available software, the likelihood of widespread uptake of compartmental flow 

modelling is unlikely to be great. The work presented in Chapter 11 showed that 

sensitivity and simulation analysis could be undertaken using Microsoft® Excel. 

Attempts have also been made by Rae to create the compartmental flow model using 

Microsoft® Excel (personal communication).  

Whether the modelling tool should be created using Microsoft® Excel or some other 

approach is perhaps a moot point. In terms of seeking a commercial reward from the 

application of the modelling approach this is unlikely to come from the development 

of the software, but rather the provision of expert analysis and transfer of skills to end 

users. Indeed, the tension about a readily available tool and the need for skilled users 

is significant and is perhaps a key to the successful transfer of this research to the 

applied setting.  

The Need for Documentation 

A critical requirement for the successful transfer of the bed occupancy compartmental 

flow modelling approach to the business setting will be the provision of 

documentation. This requirement will exist irrespective of the transfer approach 

chosen. There are at least two documents that will be required to be developed, 

namely a business plan and an information prospectus. It is not the purpose of this 

thesis to fully outline the material that would be contained in these documents, but 

rather to identify the need for their existence.   
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The information prospectus is a document that is designed to provide information 

about the modelling approach to potential users of the application (and others). This 

documentation will assist interested parties to see whether the application may be of 

benefit to them. It is not expected that the documentation alone will be sufficient to 

encourage people to adopt the modelling approach, but rather will assist other 

communication methods, such as presentations. 

The business plan is a document that sets out the path or paths for transferring the 

application to the business setting. The development of such a plan is particularly 

important in identifying aspects of additional development, financial considerations, 

possible business structures and risks. 

13.4 Conclusion 

The potential to expand the research base regarding the use of compartmental flow 

models of bed occupancy in hospitals, and even in wider social care setting contexts, 

exists. Much of the research can use existing data and thus can be undertaken at 

relatively low cost. Given the history of funding health service research in Australia 

(Hass, 2004), this may be beneficial. More complex modelling, particularly where 

modelling attempts to represent activity beyond the hospital, will involve challenges 

in gaining access to the appropriate data. 

The potential to transfer the research findings into practice resulting in improved 

strategic decision-making is, perhaps, a more significant reason to further the 

evidence base regarding the use of this modelling approach. Transferring the 

modelling methodology on a commercial basis, however, will not be an easy task, as 
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evidenced by the failure of the BOMPS package to become established as a 

commercial software package. While an appropriate transfer plan is yet to be 

developed, critical features of such a plan were identified. 

In the next chapter I present an overall conclusion regarding the research undertaken 

for this thesis and comment upon the contribution made to knowledge by this work.
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Chapter 14 

Conclusions – The Beginning of a Longer Journey 

In this chapter I reflect upon the journey from the initial problem with hospital bed 

management to the conclusion of this research. I also highlight the contribution made 

towards knowledge as a consequence of the research undertaken for this thesis. The 

chapter has the following structure: 

14.1 Introduction ..........................................................................................427 
14.2 The problem is better understood ..........................................................427 
14.3 Final comments and observations..........................................................430 
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14.1 Introduction 

In the first chapter of this thesis I provided an account of the personal motivation for 

undertaking this research (see section 1.9). My involvement in this research stemmed 

from the identification of the gap in strategic management tools that were available to 

facilitate better decision-making in relation to hospital bed management. 

In this final chapter I will reflect upon the original purpose of my research, the 

outcomes and present some concluding comments.  

14.2 The problem is better understood 

As I have indicated many times during this thesis, the work of Harrison and Millard 

(1991) formed the basis for this research. The research was structured to address a 

number of aims (see section 1.11) and this has been achieved (see earlier chapters, 

particularly the Chapter 12, the Discussion). 

It is my opinion that had this work been undertaken in almost any other large industry, 

it is likely that: 

• Significant investment would have occurred to better understand the problem 

• Investment in operational research methodologies would have played a role in 

such work, and 

• That this work would have occurred earlier – perhaps during the early 1990s. 

This is not to say that investment in the management of bed problems has not 

occurred. There are now “patient flow managers” and funds have been allocated to 

various projects to better manage demand or avoid demand. These efforts are, 
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however, usually at the operational end of the decision-making spectrum, and are 

subject to the vagaries of the funding cycles and often lack the rigorous evaluation of 

pilot or demonstration projects, making it difficult to determine if the outcomes 

achieved were as good as suggested prior to implementation and that the return on the 

investment is worthwhile. However, little has been done to improve the strategic 

decision-making abilities of the health system in relation to hospital bed management. 

Without appropriate strategic decision-making tools, I suggest that the 

implementation of bed management options at the operational end of the hospital bed 

management problem spectrum will continue to be difficult and not lead to the 

outcomes sought by politicians and desired by communities. 

Despite my lament regarding the under investment in health services research in 

Australia, which is supported by evidence (Hass, 2004), much has been achieved 

given the level of funding for this work, including: 

• The modification of the Harrison and Millard (1991) model 

• Research concerning the number of data to use when generating a 

compartmental flow model  

• Incorporation of model selection techniques 

• Incorporation of seasonal variation 

• Linkage to population change 

• Consideration of vacancy levels 

• Application to casemix and benchmarking 

• Consideration of how variation in the data may be captured 

• Incorporation of additional sensitivity analysis 
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• Incorporation of simulation analysis as a means of highlighting the 

uncertainty associated with model results 

• Generation of research papers 

• Invited presentations at industry seminars and conferences, and 

• Presentation of papers at academic conferences both locally and 

internationally. 

The above highlights the contribution towards knowledge generated as a consequence 

of the research activities undertaken for this thesis. Additionally, I have sought to 

increase the knowledge of others through: 

• The convening of the several local seminars and workshops that were 

attended by Australian researchers and Millard, and  

• The convening of the inaugural international conference on health and 

social care modelling with Millard that was held in Adelaide. 

The successful convening of the inaugural international conference on health and 

social care modelling perhaps represents a sign that this field of work is gaining 

momentum and recognition. Of course, the case for not using the ALOS for decision-

making has also been promulgated. 

Thus, while there is still much more research that can be done (as suggested in the 

previous chapter) and regular implementation of the bed occupancy compartmental 

modelling methodologies has not yet been achieved, my understanding of the initial 

problem that led to this research is now much greater.  Furthermore, the 

understanding of bed modelling and strategic decision-making by those who have 
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been following the published works of myself and Millard and his colleagues should 

also have increased, thereby making a contribution to the world’s knowledge base. 

14.3 Final comments and observations 

In recent communication with Millard (February 2007), he noted that:  

Together we are changing the world - a bit like a stalagmite - ever so 

slowly growing. 

The completion of my research marks the end of the studies towards my doctorate. 

The need for such research is unlikely to abate in the next few years, particularly as 

we enter a period of declining workforce numbers and increased demand for hospital 

beds. 

My involvement in continuing to contribute to the development of improved strategic 

decision-making approaches in relation to hospital bed management will continue, 

subject to opportunity, and in many ways this marks the beginning of the next part of 

the journey.  
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Appendix I 

List of academic publications and activities relating to hospital 
bed and health care modelling 

The purpose of this appendix is to demonstrate my involvement in the generation of 
research articles and involvement in related research activities. This appendix has the 
following structure: 

Refereed Journal Articles ............................................................................................ 433 
Letters ......................................................................................................................... 433 
Conference Papers (Abstracts Refereed)...................................................................... 434 
Invited Presentations ................................................................................................... 434 
Nosokinetic News – A Health Care Modelling News Letter......................................... 435 
Collaborations ............................................................................................................. 435 
Convenor of Seminars and Conferences ...................................................................... 435 
Attracted International Guests ..................................................................................... 436 
International Sponsorship ............................................................................................ 436 
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Editorials 

Millard P and Mackay M (2007). Introducing nosokinetics: modelling to enhance health 
system management. Australian Health Review, Feb;31(1):22-3. 

Refereed Journal Articles 

M. Mackay and P.H. Millard (1999). Application and comparison of two modelling 
techniques for hospital bed management. Australian Health Review, 22: 118 - 143. 

Millard PH, Mackay M, Vasilakis C, Christodoulou G (2000). Measuring and modelling 
surgical bed usage.  Ann R Coll Surg Engl, 82(2):75-82. 

Mackay, M (2001). Practical Experience With Bed Occupancy Management And Planning 
Systems: An Australian View. Health Care Management Science, 4(1):47-56. 

Mackay M and Lee MD (2005). Choice of Models for the Analysis and Forecasting of 
Hospital Beds. Health Care Management Science, 8(3): 221-230. 

Harrison G, Shafer A and Mackay M (2005). Modelling Variability in Hospital Bed 
Occupancy. Health Care Management Science, 8(4): 325-334. 

Letters 

Mackay M and Millard PH (2005). Trends in the use of hospital beds by older people in 
Australia: 1993-2002. Med J Aust, 2005 Mar 7;182(5):252-3.

Mackay M and Millard PH (2005). Science not Rhetoric. Australian Nursing Journal, May 
12(10):3.

Mackay M and Millard PH (2007). The Need for Better Decision-Making. BMJ, 24 
January. 

Refereed Conferences Papers (published in proceedings) 

Mackay M and Pradhan M (2000). Use of Simulation Modelling to Overcome Operational 
and Structural Inefficiencies. HIC2000 Proceedings.  

Mackay M and Gorunescu F (2001). Midnight Bed Census, Patient Length Of Stay And 
Bed Occupancy Modelling. Proceedings of the 10th International Symposium on Applied 
Stochastic Models and Data Analysis, Vol 2 pages 711-717. 

Gorunescu F, Mackay M, Millard P and McClean S (2001). Queuing Models of the 
Dynamics of Bed Occupancy in Hospital Systems with Fixed or Limited Capacity. 
Proceedings of the 10th International Symposium on Applied Stochastic Models and Data 
Analysis, Vol 1 pages 475-480. 
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Conference Papers (Abstracts Refereed) 

Mackay M and Lee M (2004). Choice of Models for the Analysis and Forecasting of 
Hospital Beds. IMA Quantitative Modelling in the Management of Health Care

Mackay M and Lee M (2004). Population Changes and Projecting Future Acute Health 
Care Resource Demands with Flow Models IMA Quantitative Modelling in the 
Management of Health Care. 

Mackay M, Lee M, Millard PH and Rae B (2004). Using Flow Modelling as an 
Explanatory Tool and to Project Future Service Change. IMA Quantitative Modelling in 
the Management of Health Care.

Mackay M, Lee M and Walton I (2004). Benchmarking Using Flow Modelling. IMA 
Quantitative Modelling in the Management of Health Care.

Harrison G and Mackay M (2004). Modelling occupancy variability and future demand for 
hospital beds. IMA Quantitative Modelling in the Management of Health Care.

Mackay M and Rae B (2006). Can the weather be used to assist bed-planning decisions? 
International Conference on Health and Social Care Modelling and Applications.

Mackay M and Lee M (2006). Development of compartmental flow models for the 
Australian and New Zealand acute care sector. International Conference on Health and 
Social Care Modelling and Applications. 

Mackay M and Lee M (2006). Bed Numbers: Improved decision-making with 
compartmental flow models. The 2006 Biennial Health Conference (Australia) - A 
measure of hospital health. 

Invited Presentations 

Royal Melbourne Hospital 2000 

Department of Human Services (Vic) 2001 

Melbourne University 2005 

LaTrobe University 2005 

Melbourne University 2005. How Much Does Weather Matter in Strategic Models of Bed 
Occupancy? Presented at "Quantitative and Predictive Methods in Health Care 
Management: Resolving the Queueing Quandary". 

MASCOS Industry Seminar (2006). Searching for Gold: Is it slim pickings or the jackpot 
in the health industry? Mathematical opportunities in healthcare – AMSI/MASCOS 
Industry Forum (Melbourne, March 2006). 
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Nosokinetic News – A Health Care Modelling News Letter 

Mackay M (2006). Nosokinetics – staking our claim. Nosokinetics News, 3.3: 4-5. 

Mackay M (2005). Surgical Waiting Lists in Australia hit the headlines. Nosokinetics 
News, 2.2: 1. 

Mackay M and Millard P (2004) What’s this? Australian hospital bed usage: depends on 
how you see it. Nosokinetics News, 1.6: 1. 

Mackay M (2004). Using Ogive Plots to Display Occupancy Statistics. Nosokinetics News, 
1.6: 3. 

Mackay M (2004). Moving Averages: What Are they? Nosokinetics News, 1.4: 3. 

Mackay M (2004). What’s Wrong with Average Length of Stay? Nosokinetics News, 1.3: 
2. 

Mackay M (2004). Lean Thinking and Health Care – the Next Trend? Nosokinetics News, 
1.1: 2. 

Collaborations 

Founding member of the Nosokinetics Group – an international collaboration of health care 
modellers focussing on compartmental models relating to patient flow. This includes 
published research with: 

Professor Peter Millard (UK) 
Professor Gary Harrison (USA) 
Professor Florin Gorunescu (Romania) 

Additionally, research relating to health services in Dunedin, New Zealand, has been 
undertaken in collaboration with Dr Brendon Rae. 

Collaboration with Prof Terry Mills and colleagues from LaTrobe University, Victoria, 
regarding patient flow modelling and health services research. 

Collaboration with Prof Mills, Prof Don Campbell (Monash), Prof Gary Harrison (USA), 
Prof Sally McClean (Northern Ireland), Dr Geoff McDonnell (UNSW), Dr M Faddy (QUT), 
Assoc Prof Peter Sprivulis (Dept of Health and UWA), Assoc Prof Drew Richardson (ANU 
Medical School), Dr Dan Navarro (Adelaide), Dr A van Deth (Flinders) seeking NHMRC 
funding for bed modelling and related service investigation funding. 

Convenor of Seminars and Conferences 

Australian Convenor of the International Health and Social Care Modelling Conference 
being held in Adelaide 2006. 

April 2002 - Workshop held at University of Adelaide regarding health care modelling. 
Included interstate and local participants and one overseas guest. 
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October 2002 - Workshop held at University of Adelaide regarding health care modelling. 
Included interstate and local participants and one overseas guest. 

Attracted International Guests 

Professor Peter Millard –April and November 2002 to address the Department of Human 
Services and be involved in workshops 

Professor Sally McClean to speak at Adelaide University and Flinders Medical Centre 

International Sponsorship 

The Novartis Foundation offered funding to me so that I could attend a conference relating 
to bed modelling that was held in England during 1999. 
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Appendix II 

BOMPS Formulae 

The purpose of this appendix is to detail the formulae used in BOMPS. The material 

was put together by Mrs Georgina Christodoulou when she worked with Professor 

Peter Millard. The appendix has the following structure: 

The exponential equations ..................................................................................... 438 
 One compartment exponential equation ......................................................... 438 
 Two compartment exponential equation......................................................... 438 
 Three compartment exponential equation....................................................... 438 
Actual number........................................................................................................ 439 
Admissions per day (p/d) ....................................................................................... 439 
Conversion rate (c/p/d) .......................................................................................... 439 
Release rate (ri/p/d) ................................................................................................ 440 
Number in each group............................................................................................ 441 
Release rate (p/d) ................................................................................................... 442 
Conversion rate (c/d).............................................................................................. 442 
Derived total........................................................................................................... 443 
Admission rate per day (a/p/d)............................................................................... 443 
Fraction of beds occupied ...................................................................................... 443 
Expected length of stay.......................................................................................... 444 
Half-life.................................................................................................................. 445 
Rehabilitation benefit............................................................................................. 446 
Rehabilitation percentage....................................................................................... 447 
Percentage of admissions leaving .......................................................................... 447 
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THE EXPONENTIAL EQUATIONS

Where: 

y = the number of patients that have been in the system for x days 

e = exponential constant = 2.7182818………

x = the length of stay in the system 

A = the calculated number of inpatients in the first sector of the system 

B = the rate of change in the first sector of the system 

C = the calculated number of inpatients in the second sector of the system 

D = the rate of change in the second sector of the system 

E = the calculated number of inpatients in the third sector of the system 

F = the rate of change in the third sector of the system 

G = the constant that is added to the equations below.  It represents the data 

that does not follow the calculated rates: these are described as bed-

blockers 

One Compartment Exponential Equation 

-BxAey = (i) 

Two Compartment Exponential Equation 

-Dx-Bx CeAey += (ii) 

Three Compartment Exponential Equation 

-Fx-Dx-Bx EeCeAey ++=  (iii) 

The co-efficients of these models are calculated when the curve is fitted to the data set.  It is these co-

efficients (A, B, C, D, E, F & G if a constant is used) that will be used to derive the following 

information that is presently in the results table created by the BOMPS program. 
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ACTUAL NUMBER

This is the actual number of residents/patients that are in the data set.  This must be a count function 

within the BOMPS program. 

ADMISSIONS PER DAY (P/D) 

This will be denoted as A0: 

( ) AeA B *10
−−=  one compartment model (1.1) 

The co-efficients A and B are obtained from equation (i). 

( )( ) ( )( )BeAeA DB *1*10
−− −+−=  two compartment model (1.2) 

The co-efficients A, B, C and D are obtained from equation (ii). 

( )( ) ( )( ) ( )( )EeCeAeA FDB *1*1*10
−−− −+−+−=  three compartment model (1.3) 

The co-efficients A, B, C, D, E and F are obtained from equation (iii). 

Note: If the release rate (ri) and the ‘number in the group’ (Ni) are known then the 

following equation can be used: 

∑
=

=
3,2,1

1
0

i
ii NrA    (1.4) 

CONVERSION RATE (C/P/D) 
Denoted as vi: 

( ) ( ) ( )( )DB
D

ee
A

Ce
v −−

−

−−−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −= 11
1

0
1  two compartment model (2.1.1) 

The co-efficients  B, C and D are obtained from equation (ii) and the parameter A0

from (1.2). 
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⎟
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⎠
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⎝

⎛ −

−−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −= 11
11

11
1

1 0

0
1

three compartment model (2.1.2) 

( ) ( ) ( )( ) ( ) ( )( )

1

1111
1

0
2 v

eeee
A

eE

v

FBFD
F

−−−−
−

−−−−−−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −

=   

three compartment model (2.2) 

The co-efficients B, C, D, E and F are obtained from equation (iii) and the parameter 

A0 from (1.3). 

RELEASE RATE (RI/P/D) 
Denoted as ri: 

( ) 11 1 ver B −−= −   (3.1) 

( ) 22 1 ver D −−= −   (3.2) 

( )Fer −−= 13   (3.3) 

The co-efficients of these equations depends on the type of model being used. For 

example, if a triple compartment model were being used then the co-efficients B, D 

and F would be obtained from equation (iii), the parameter v1 from equation (2.1.2) 

and the parameter v2 from equation (2.2). 
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NUMBER IN EACH GROUP

Denoted as Ni: 

1

0
1 r

N A= one compartment model (4.1.1) 

Parameter A0 obtained from equation (1.1) and parameter r1 obtained from equation 

(3.1). 

( )vr
AN

11

0
1 +

=  2&3 compartment model (4.1.2) 

Parameter A0 obtained from either equation (1.2) or (1.3) depending on the type of 

model being used. Parameter v1 obtained from either equation (2.1.1) or (2.1.2) and 

parameter r1 obtained from equation (3.1). 

( )rvr
vAN

211

10
2 +

=  two compartment model (4.2.1) 

Parameter A0 is obtained from equation (1.2).  Parameter v1 is obtained from equation 

(2.1.1), parameter r1 is obtained from equation (3.1) and parameter r2 is obtained from 

equation (3.2). 

( )( )vrvr
vAN

2211

10
2 ++

=  three compartment model (4.2.2) 

Parameter A0 is obtained from equation (1.3).  Parameter v1 is obtained from equation 

(2.1.2), parameters r1 and r2 are obtained from equations (3.1) and (3.2), respectively. 

( )( )rvrvr
vAN

32211

10
3 ++

=  three compartment model (4.3) 
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Parameter A0 is obtained from equation (1.3).  Parameters v1 and v2 are obtained from 

equations (2.1.2) and (2.2), respectively.  Parameters r1, r2 and r3 are obtained from 

equations (3.1), (3.2) and (3.3), respectively. 

RELEASE RATE (P/D) 
Denoted as Ri: 

rNR iii
=   where i = 1, 2, 3 (5.1) 

Parameter N1 is obtained from equation (4.1.1) or (4.1.2) depending on which model 

is being used and parameter r1 from equation (3.1). 

Parameter N2 is obtained from equation (4.2.1) or (4.2.2) depending on which model 

is being used and parameter r2 from equation (3.2). 

Parameter N3 is obtained from equation (4.3) and parameter r3 from equation (3.3). 

CONVERSION RATE (C/D) 
Denoted as Vi: 

vNV iii
=  where i =  1, 2 (6.1) 

Parameter N1 is obtained from equation (4.1.1) or (4.1.2) depending on which model 

is being used and parameter v1 from equation (2.1.1) or (2.1.2) depending on which 

model is being used. 

Parameter N2 is obtained from equation (4.2.1) or (4.2.2) depending on which model 

is being used and parameter v2 from equation (2.2). 
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DERIVED TOTAL

Denoted as T: 

∑
=

=
3,2,1

1i
iNT   (7.1) 

Parameter N1 obtained either from the equation (4.1.1) or (4.1.2). 

Parameter N2 obtained either from the equation (4.2.1) or (4.2.2). 

Parameter N3 obtained from the equation (4.3). 

ADMISSION RATE PER DAY (A/P/D) 
Denoted as a0: 

T
Aa 0

0
= (8.1) 

A0 is obtained from the equation (1.1), (1.2) or (1.3) depending on the compartment 

model being used. 

       OR 

For the one compartment model the Admissions per day is equal to the release rate per 

day because the system is assumed to be in equilibrium. 

( ) ( )vrvrra 121120
/ ++=  two compartment model (8.2) 

FRACTION OF BEDS OCCUPIED

Denoted by bi: 

 Note: for the single compartment model this is set to 100 per cent. 

( ) 100*/
1221 vrrb +=  2 & 3 compartment model (9.1.1) 

    OR 
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T
Nb 1

1
=  2 & 3 compartment model (9.1.2) 

r2 is obtained from equation (3.2) and v1 obtained either from equations (2.1.1) or 

(2.1.2) depending on the type of model being used. 

N1 is obtained either from equation (4.1.1) or (4.1.2) and T is obtained from equation 

(7.1). 

( ) 100*/
1212 vrvb +=  2 & 3 compartment model (9.2.1) 

     OR 

T
Nb 2

2
=  2 & 3 compartment model (9.2.2) 

r2 is obtained from equation (3.2) and v1 is obtained either from equations (2.1.1) or 

(2.1.2) depending on the type of model being used. 

N2 obtained either from equation (4.2.1) or (4.2.2) and T obtained from equation (7.1). 

T
Nb 3

3
=  2 & 3 compartment model (9.1.2) 

N3 is obtained from equation (4.3) and T is obtained from equation (7.1). 

EXPECTED LENGTH OF STAY

Denoted as Li: 

rL
1

1

1=   OR  
BL
1

1
=  one compartment model (10.1.1) 

( )vrL
11

1

1

+
=  2 & 3 compartment model (10.1.2) 

r1 is obtained from equation (3.1) and v1 is obtained either from equation (2.1.1) or 

(2.1.2) depending on the model being used.  B is obtained either from equation (i), (ii) 

or (iii). 
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rL
2

2

1=   OR  
DL
1

1
=  two compartment model (10.2.1) 

( )vrL
22

2

1

+
=  three compartment model (10.2.2) 

r2 is obtained from equation (3.2) and v2 is obtained from equation (2.2).  D is 

obtained either from equation (ii) or (iii). 

rL
3

3

1=  OR  
FL
1

3
=  three compartment model (10.3) 

r3 is obtained from equation (3.3) and v2 is obtained from equation (2.2).  F is 

obtained from equation (iii). 

The total length of stay, for all patients is denoted by TL: 

( ) ( ) ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

+
+
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

+
=

rvr
v

vr
TL

211

1

11

1
*

1
 two compartment model (10.4.1) 

r1 is obtained from equation (3.1), r2 is obtained from equation (3.2) and v1 is obtained 

from equation (2.1.1).   

( ) ( )( ) ( )( ) ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

++
+
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

+
=

++ rvrvr
vv

vrvr
v

vr
TL

2211
*

1

3

21

2211

1

11

three compartment model (10.4.2) 

r1 is obtained from equation (3.1), r2 is obtained from equation (3.2), r3 is obtained 

from equation (3.3), v1 is obtained from equation (2.1.2) and v2 is obtained from 

equation (2.2). 

HALF-LIFE

Denoted by hi: 
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( )ln
ln

11

2

1

1
r

h
−

⎟
⎠

⎞
⎜
⎝

⎛

=  one compartment model (11.1.1) 

( )ln
ln

111

2

1

1
rv

h
−−

⎟
⎠

⎞
⎜
⎝

⎛

=  2 & 3 compartment model (11.1.2) 

r1 is obtained from equation (3.1) and v1 is obtained either from equation (2.1.1) or 

(2.1.2). 

( )ln
ln

21

2

1

2
r

h
−

⎟
⎠

⎞
⎜
⎝

⎛

=  two compartment model (11.2.1) 

( )ln
ln

221

2

1

2
rv

h
−−

⎟
⎠

⎞
⎜
⎝

⎛

=  three compartment model (11.2.2) 

r2 is obtained from equation (3.2) and v2 is obtained from equation (2.2). 

( )ln
ln

31

2

1

3
r

h
−

⎟
⎠

⎞
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⎝

⎛

=  three compartment model (11.3) 

r3 is obtained from equation (3.3). 

REHABILITATION BENEFIT

Denoted by RBi: 

Note: The rehabilitation benefit for Group 1 in all the compartment models is set to 1. 

( )
( )vr

vrRB
12

11
1 +

+
=  Group2: two compartment model (12.1.1) 

r1 is obtained from equation (3.1) and v1 is obtained from equation (2.1.1). 

( ) ( )
TL

reeRB
DD

3
1

1

1

1

1
−− −

+
−

=  Group2: three compartment model (12.1.2) 

r3 is btained from equation (3.3), D is obtained from equation (iii) and TL is obtained 

from equation (10.4.2). 
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RB
⎟
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⎠

⎞

⎜
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⎝

⎛

= 3

2

1

 Group3: three compartment model (12. 2) 

r3 is obtained from equation (3.3) and TL is obtained from equation (10.4.2). 

REHABILITATION PERCENTAGE

Denoted by RPi: 

Note: Group1 in a single compartment model, Group2 in a double compartment model and Group3 in a 

triple compartment model is set to 100 per cent, respectively. 

( ) 100*
11

1
1 ⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛

+
=

vr
rRP  Group1: 2&3 compartment model (13.1) 

r1 obtained from equation (3.1) and v1 is obtained either from equation (2.1.1) or 

(2.1.2). 

( ) 100*
22

2
2 ⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛

+
=

vr
rRP  Group2: 3 compartment model (13.2) 

r2 is obtained from equation (3.2) and v2 is obtained either from equation (2.2). 

PERCENTAGE OF ADMISSIONS LEAVING

Denoted by APi: 

RPAP 11
=  Group1: All compartment model (14.1) 

RP1 obtained from equation (13.1). 

APAP −=100 12
 Group2:  2 compartment model (14.2.1) 

AP1 obtained from equation (14.1). 

( )
100

100
21

2
RPRPAP

−
=  Group2:  3 compartment model (14.2.2) 

RP1 is obtained from equation (13.1) and RP2 is obtained from equation (13.2). 
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( )
100

100
22

3
APRPAP

−
=  Group3:  3 compartment model (14.3) 

RP2 obtained from equation (13.2) and AP2 obtained from equation (14.2.2). 


	TITLE: Compartmental Flow Modelling of Acute Care Hospital Bed Occupancy for Strategic Decision-Making
	Table of Contents
	List of Figures
	List of Tables
	Abstract
	Declaration Statement
	Acknowledgments
	Glossary and Abbreviations

	Chapter 1 Introduction
	1.17 Conclusions

	Chapter 2 Hospital Bed Modelling - A Chequered History
	2.6 Overall conclusion

	Chapter 3 Setting the Scene
	3.5 Conclusion

	Chapter 4 Modelling – Some Theoretical Background
	4.7 Conclusion

	Chapter 5 Choice of Models for the Analysis and Forecasting of Acute Care Hospital Beds
	5.5 Conclusion

	Chapter 6 Modelling New Zealand Acute Care Occupancy
	6.5 Conclusion

	Chapter 7 Model choice and prediction: forecasting changes in bed occupancy profiles as a consequence of population change
	7.5 Conclusion

	Chapter 8 Incorporation of seasonal effects into the compartmental flow model: should model complexity increase or model design change?
	8.5 Conclusion

	Chapter 9 The use of compartmental flow bed occupancy models for forecasting service change
	9.5 Conclusion

	Chapter 10 Application of Bed Occupancy Compartmental Flow Modelling to Casemix
	10.5 Conclusion

	Chapter 11 The use of sensitivity and simulation analysis in conjunction with compartmental flow bed occupancy models
	11.5 Conclusion

	Chapter 12 Discussion
	12.6 Conclusion

	Chapter 13 Future Research and Application of Bed Occupancy Compartmental Flow Modelling
	13.4 Conclusion

	Chapter 14 Conclusions – The Beginning of a Longer Journey
	14.3 Final comments and observations

	References
	APPENDICES
	Appendix I List of academic publications and activities relating to hospital bed and health care modelling
	Appendix II BOMPS Formulae




