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ABSTRACT 

 

Agronomic and physiological traits associated with drought adaptation were 

assessed within the Seri/Babax recombinant inbred line population, derived from 

parents similar in height and maturity but divergent in their sensitivity to drought. 

Field trials under different water regimes were conducted over three years in Mexico 

and under rainfed conditions in Australia. 

Under drought, canopy temperature (CT) was the single-most drought-

adaptive trait contributing to a higher performance (R2= 0.71, p<0.0001), highly 

heritable (h2= 0.65, p<0.0001) and consistently associated with yield phenotypically 

(r= –0.75, p<0.0001) and genetically [R(g)= –0.95, p<0.0001]. CT epitomises a 

mechanism of dehydration avoidance expressed throughout the growing season and 

across latitudes, which can be utilised as a selection criteria to identify high-yielding 

wheat genotypes or as an important predictor of yield performance under drought. 

Early response under drought, suggested by a high association of CT with 

estimates of biomass at booting (r= –0.44, p<0.0001), leaf chlorophyll (r= –0.22,

p<0.0001) and plant height (r= –0.64, p<0.0001), contrast with the small relationships 

with anthesis and maturity (averaged, r= –0.10, p<0.0001), and with osmotic potential 

(r= –0.20, p<0.0001). Results suggest that the ability to extract water from the soil 

under increasing soil water deficit is a major attribute of drought adaptation. 

Ample genetic variation and significant transgressive segregation under 

drought suggested a polygenic governance feasible of dissection via molecular 

markers of CT and associated physiological and agronomic traits. Bulked segregant 

analysis of selected secondary traits was utilised as an alternative to complete 

genome mapping, due to a low polymorphism (27%) within the cross and limited 

chromosomic linkage of loci. The assessment of the extremes of expression in a 

genotypic subset with a composite molecular database of 127 markers (PCR-based 

and AFLPs) allowed evaluation of the three hexaploid wheat genomes and coverage 

of all chromosomic groups, except 3D. One-way analysis of variance indicated 

significant associations of loci explaining phenotypic variance under drought and 

rainfed conditions, of 20-70% in Mexico and 20-45% in Australia (F ≥ 5.00, p<0.05). 

Significant loci were established in both latitudes for all physiological and agronomic 



xiv

traits assessed via BSA, with CT being the trait with the most numerous associations 

(in Mexico, 34 loci; in Australia, 24). 

Results demonstrate an efficient development of molecular markers associated 

to physiological traits under specific soil water conditions in Mexico and Australia, 

and suggest further genomic and transcriptomic studies be conducted for 

unravelling the complex relationship between drought adaptation and performance 

under drought. 
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INTRODUCTION 

 

Drought stress is a permanent constraint to wheat (Triticum aestivum, L.) production 

on at least 40 million ha in the developing world and in ca.25 million ha in 

industrialised nations (Morris et al. 1991; Byerlee & Moya 1993). Modelling exercises 

suggest that yield in marginal wheat growing environments is typically reduced by 

between 50 and 90% of their theoretical irrigated yield potential due to factors 

associated with water-limited environments (Morris et al. 1991). As water resources 

are likely to decline in the coming decades (World Meteorological Organisation 

1997), the areas devoted to wheat production will be increasingly threatened by 

water availability. Hence, improving wheat adaptation to drought will acquire a 

greater socioeconomic importance across the globe than it currently has. 

Breeding for drought adaptation in wheat has been largely empirical to date, 

based on drought escape (phenology modification for hydration maintenance) or 

selection for traits contributing to improved water use efficiency indirectly, such as 

enhanced tolerance to soil toxicities or deficiencies, or resistance to root diseases 

(Richards 1996; Trethowan & Pfeiffer 2000). More strategic approaches have been 

advocated which target one or more specific drought-adaptive (physiological) traits 

consistently related to yield (Morgan 1983; Ludlow & Muchow 1990; Loss & Siddique 

1994; Richards 1996). 

Even though drought escape is recognised as an effective strategy in some 

wheat cultivars for overcoming the pernicious effects of drought stress by 

phenophasic modification (Ludlow & Muchow 1990; Richards 1991; Loss & Siddique 

1994), it compromises yield potential to an extent dependent on the timing of the 

stress during the crop cycle (Blum 1996). In contrast, adaptation to a drought-stressed 

environment via a number of bioenergetic (efficiency of the photosynthetic and 

respiratory systems for carbon fixation and energy consumption), metabolic (nutrient 

utilisation and assimilates distribution) and physiological (complex regulatory 

networking and environmentally responsive systems) mechanisms is conducive to 

maintaining a high level of hydration in varying moisture environments (Bálint 1984; 

Blum 1988; Goggin & Setter 2004; Xue et al. 2006). This is achieved either by reducing 

transpiration rate (thereby increasing water use efficiency) or by managing 

transpiration via attributes that sustain in planta availability of water resources 
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(Turner & Begg 1981; Blum 1988). When transpiration is reduced by stomatal closure, 

gas exchange is affected and carbon fixation is reduced (Turner & Begg 1981; Molnár 

et al. 2004). In contrast, when hydration is maintained through water expenditure, the 

plant is known to be characterised by a lower canopy temperature, a more open 

stomata and a higher carbon isotope discrimination (∆13C) (Araus et al. 2002), 

altogether associated with increased carbon fixation, biomass and yield (Condon et 

al. 1987). 

Physiological traits that are integrative, either in time or at an organisational 

level (Araus et al. 2002), constitute ideal selection criteria for drought adaptation. In 

recent years they have acquired increased importance in breeding programmes 

largely due to a greater understanding of their relative contribution to yield (Blum et 

al. 1982; Richards et al. 2001; Araus et al. 2002; Rebetzke et al. 2002; Reynolds et al. 

2005). An ample portfolio of novel indirect selection methodologies that assist in 

evaluating such integrative traits (Araus 1996; Araus et al. 2002) are not only 

practical, but increasingly cost-efficient tools that can support breeders in screening, 

early generation or advanced-line selection (Blum et al. 1982; Araus et al. 2001, 2002; 

Richards et al. 2001; Reynolds et al. 1994, 2005). However, there has been little 

systematic evaluation of these traits in large populations of sister lines over a range 

of environments and varying drought intensities. 

While conventional or physiological breeding strategies have utilised genetic 

diversity at its various levels of expression for developing drought-adapted 

genotypes for increased crop productivity, they have encountered limitations in 

dissecting the complex polygenic interactions associated to the quantitative 

genotypic response through phenotype selection (Cushman & Bohnert 2000; Ribaut 

et al. 2001). With the advent of an increased diversity of molecular markers (Liu 

1998), it has been possible to develop comprehensive genetic maps of virtually any 

crop species, permitting the location of the genetic factors responsible for subtle, 

quantitative differences (Sax 1923) or quantitative trait loci (QTLs) (Geldermann 1975), 

in specific genetic pools. However, the application of QTL mapping to the dissection 

of drought-adaptive physiological traits in hexaploid wheat has been limited not 

solely because of a restricted access to markers for map saturation, but as a 

consequence of the difficulty of obtaining a low repeatability when phenotyping 

under stressed conditions and, mainly, on the virtual inexistence of suitable genetic 

pools in where the response is amply diverse and significantly inherited.
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AIMS 

 

i. To investigate and understand the physiological and molecular basis for genotypic 

differences in wheat performance under drought. 

ii. To evaluate a number of traits linked to drought adaptation in the Seri/Babax 

recombinant inbred line population, which is characterised by a relatively low 

variation for phenology and height, factors that might obscure those drought-

adaptive traits that directly contribute to an increased performance under 

drought. 

iii. To identify genome regions in selected Seri/Babax recombinant inbred lines 

associated with physiological traits controlling drought adaptation via 

molecular markers. 

iv. To develop a better understanding of the genetics and physiology of drought 

adaptation in the Seri/Babax hexaploid wheat population. 

 

OBJECTIVES 

 

i. To evaluate the genetic diversity for drought adaptation in the Seri/Babax 

population under drought stress in a number of environments in terms of yield, 

phenology and physiological attributes. 

ii. To establish the traits best associated with yield under drought. 

iii. To discern the drought-adaptation strategy and inherent mechanisms 

contributing to a higher performance under drought. 

iv. To assess the feasibility of utilising secondary selection criteria to identify high-

yielding hexaploid wheat genotypes. 

v. To examine the possibility of efficiently develop molecular markers for locating 

genomic regions explaining the phenotypic variation of selected traits in a 

number of environments. 
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