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ABSTRACT 

Arid lands cover approximately 30% of the earth’s surface. Due to the broadness, 

remoteness, and harsh condition of these lands, land condition assessment and 

monitoring using ground-based techniques appear to be limited. Remote sensing 

imagery with its broad areal coverage, repeatability, cost and time-effectiveness has 

been suggested and used as an alternative approach for more than three decades. This 

thesis evaluated the potential of different remote sensing techniques for assessing and 

monitoring land condition of southern arid lands of South Australia. There were four 

specific objectives: 1) to evaluate vegetation indices derived from multispectral satellite 

imagery for prediction of vegetation cover; 2) to compare vegetation indices and field 

measurements for detecting vegetation changes and assessing land condition; 3) to 

examine the potential of hyperspectral imagery for discriminating vegetation 

components that are important in land management using unmixing techniques; and 4) 

to test whether spatial heterogeneity in land surface reflectance can provide additional 

information about land condition and effects of management on land condition. 

The study focused on Kingoonya and Gawler Soil Conservation Districts that were 

dominated by chenopod shrublands and low open woodlands over sand plains and 

dunes. The area has been grazed predominately by sheep for more than 100 years and 

land degradation or desertification due to overgrazing is evident in some parts of the 

region, especially around stock watering points. Grazing is the most important factor 

that influences land condition. Four full scenes of Landsat TM and ETM+ multispectral 

and Hyperion hyperspectral data were acquired over the study area. The imagery was 

acquired in dry seasons to highlight perennial vegetation cover that has an important 

role in land condition assessment and monitoring.  

Slope-based, distance-based, orthogonal transformation and plant-water sensitive 

vegetation indices were compared with vegetation cover estimates at monitoring points 

made by state government agency staff during the first Pastoral Lease assessments in 

1991. To examine the performance of vegetation indices, they were tested at two scales: 

within two contrasting land systems and across broader regional landscapes. Of the 

vegetation indices evaluated, selected Stress Related Vegetation Indices using red, near-

infrared and mid-infrared bands consistently showed significant relationships with 

vegetation cover at both land system and landscape scales. Estimation of vegetation 
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cover was more accurate within land systems than across broader regions. Total 

perennial and ephemeral plant cover was predicted best within land systems (R2=0.88), 

while combined vegetation, plant litter and soil cryptogam crust cover was predicted 

best at landscape scale (R2=0.39).  

The results of applying one of the stress related vegetation indices (STVI-4) to 1991 

TM and 2002 ETM+ Landsat imagery to detect vegetation changes and to 2005 Landsat 

TM imagery to discriminate Land Condition Index (LCI) classes showed that it is an 

appropriate vegetation index for both identifying trends in vegetation cover and 

assessing land condition. STVI-4 highlighted increases and decreases in vegetation in 

different parts of the study area. The vegetation change image provided useful 

information about changes in vegetation cover resulting from variations in climate and 

alterations in land management. STVI-4 was able to differentiate all three LCI classes 

(poor, fair and good condition) in low open woodlands with 95% confidence level. In 

chenopod shrubland and Mount Eba country only poor and good conditions were 

separable spectrally.  

The application of spectral mixture analysis to Hyperion hyperspectral imagery yielded 

five distinct end-members: two associated with vegetation cover and the remaining 

three associated with different soils, surface gravel and stone. The specific identity of 

the image end-members was determined by comparing their mean spectra with field 

reflectance spectra collected with an Analytical Spectral Devices (ASD) Field Spec Pro 

spectrometer. One vegetation end-member correlated significantly with cottonbush 

vegetation cover (R2=0.89), distributed as patches throughout the study area. The 

second vegetation end-member appeared to map green and grey-green perennial shrubs 

(e.g. Mulga) and correlated significantly with total vegetation cover (R2=0.68). The soil 

and surface gravel and stone end-members that mapped sand plains, sand dunes, and 

surface gravel and stone did not show significant correlations with the field estimates of 

these soil surface components.  

I examined the potential of a spatial heterogeneity index, the Moving Standard 

Deviation Index (MSDI), around stock watering points and nearby ungrazed reference 

sites. One of the major indirect effects of watering points in a grazed landscape is the 

development around them of a zone of extreme degradation called a piosphere. MSDI 

was applied to Landsat red band for detection and assessment of these zones. Results 
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showed watering points had significantly higher MSDI values than non-degraded 

reference areas. Comparison of two vegetation indices, the Normalized Difference 

Vegetation Index (NDVI) and Perpendicular Distance vegetation index (PD54), which 

were used as reference indices, showed that the PD54 was more sensitive than NDVI 

for assessing land condition in this perennial-dominated arid environment. Piospheres 

were found to be more spatially heterogeneous in land surface reflectance. They had 

higher MSDI values compared to non-degraded areas, and spatial heterogeneity 

decreased with increasing distance from water points.  

The study has demonstrated overall that image-based indices derived from Landsat 

multispectral and Hyperion hyperspectral imagery can be used with field methods to 

assess and monitor vegetation cover (and consequently land condition) of southern arid 

lands of South Australia in a quick and efficient way. Relationships between vegetation 

indices, end-members and field measurements can be used to estimate vegetation cover 

and monitor its variation with time in broad areas where field-based methods are not 

effective. Multispectral vegetation indices can be used to assess and discriminate 

ground-based land condition classes. The sandy-loam end-member extracted from 

Hyperion imagery has high potential for monitoring sand dunes and their movement 

over time. The MSDI showed that spatial heterogeneity in land surface reflectance can 

be used as a good indicator of land degradation. It differentiated degraded from non-

degraded areas successfully and detected grazing gradients slightly better than widely 

used vegetation indices. Results suggest further research using these remote sensing 

techniques is warranted for arid land condition assessment and monitoring in South 

Australia. 
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1 INTRODUCTION 

Arid lands occupy nearly one-third of the world's total land surface (Figure 1.1) and 

support about 13 percent of the world’s population (Matlock, 1981). Drought, low and 

variable rainfall and high temperature and evaporation are the main characteristics of 

these dry lands. Arid lands are defined as areas falling within the rainfall range of 0-300 

mm (FAO, 1987). Because of variability in rainfall and the short growing period of 

around less than 74 days (FAO, 1987), these areas are not suitable for cultivated 

agriculture. The main land use in these regions is grazing that depends entirely on native 

vegetation cover. Research by FAO in 36 dry countries showed that without changes in 

grazing areas, the numbers of stock increased from 400 million head in 1961 to 600 

million in 1995 (FAO, 1996). As a result, the increase of stock numbers has been one of 

the main reasons for land degradation in these low productive lands. Overgrazing has 

been documented widely as one of the main causes of land degradation in arid and 

semi-arid regions (Hostert et al., 2003b; Archer, 2004; Farahpour et al., 2004; Hahn et 

al., 2005; Kinloch and Friedel, 2005a; Kinloch and Friedel, 2005b; Zhao et al., 2005; 

Ruthven III, 2007; Zhao et al., 2007). It has been reported that approximately 80 

percent of arid and semi-arid land degradation in Australia has been caused by 

overgrazing (Figure 1.2).  

 

 

 

 

 

 

 

 

Figure 1.1 The distribution of arid lands in the world (Fraser, 1997) 
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NOTE:  This figure is included on page 2 of the print copy of the 
thesis held in the University of Adelaide Library. 
 

 
 
 
 
 
    
Figure 1.2 Arid and semi-arid Rangeland degradation from 1945 to 1995. Percentages 
indicate contribution of overgrazing to total degraded area (Sidahmed, 1996) 
 
 

Land degradation in arid lands, also called desertification, is a term that became 

widely known through the 1969-1973 drought in the Sahel region of Africa that 

caused the starvation of millions of people and livestock (Dregne, 1983). Since then 

have been documented widely the causes, processes, and consequences of this 

phenomenon (Dregne, 1983; Chisholm and Dumsday, 1987; Pickup, 1990; 

Schlesinger et al., 1990; Kassas, 1995; Rubio and Bochet, 1998; Arnalds and Archer, 

2000; Dregne, 2002; Reynolds and Stafford Smith, 2002; Symeonakis and Drake, 

2004; Zhao et al., 2005). The latest definition of desertification that was presented in 

Brazil in 1992 (UNCED, 1992) is "land degradation in arid, semi-arid, dry subhumid 

areas resulting from various factors including climate variations and human 

activities." The term desertification refers to a group of land degradation processes 

which have the most impact on the productivity of land. They include vegetation 

degradation, wind erosion, water erosion, salinisation, and soil compaction. The FAO 

and the United Nations Environment Programme (UNEP) developed a provisional 

methodology for assessment and mapping of desertification based on various criteria 

for each of the contributing processes (FAO, 1983). The evaluation of this 

internationally recognized technique in a pilot project in Kenya showed that applying 

this method across broad areas is timeconsuming and expensive (Grunblatt et al., 

1992). Hence, many studies (Rubio and 
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Bochet, 1998; Sharma, 1998; Jafari, 2001) have attempted to reduce the number of the 

criteria provided by FAO/UNEP in order to reduce the cost and use criteria that are 

more applicable to local scales. 

 
Among the various desertification processes, vegetation degradation is the main 

process in Australia's arid lands (Stanley, 1982; Woods, 1983; McKeon et al., 2004) 

(Table 1.1). It often occurs around stock watering points (Lange, 1969) and starts with 

the reduction of vegetation cover. This can result from single or combined effects of 

overgrazing, rainfall deficits. The effects of these are the appearance of barren soils 

and an increased susceptibility to wind and water erosion. 

 
Table 1.1 Vegetation degradation in Australian arid lands (Chisholm and Dumsday, 
1987) 
 

 
NOTE:  This table is included on page 3 of the print copy of the 
thesis held in the University of Adelaide Library. 
 

 
 
 
 
 
 
 

The arid lands of Australia cover about 75% of the continent. Half of these areas are 

not suitable for grazing, while the rest of them are used for stock grazing (Chisholm 

and Dumsday, 1987). Arid and semi-arid grazing lands cover 85% of South Australia. 

The grazing history of this area followed the settlement by Europeans about 100 years 

ago (Condon, 1982). Since then, because of mismanagement, a large amount of the 

arid lands in South Australia have been overgrazed and moved towards degradation. It 

has been estimated that approximately 35% of Australia’s arid lands were degraded 

within a few years of European settlement (Stanley, 1982), and a substantial loss of 

perennial vegetation and soil was reported in south Australian grazing lands in the 

1920s (McKeon et al., 2004). To protect these areas from degradation the south 

Australian Pastoral Land Management and Conservation Act was enacted in 1989. 

The land care objectives of the Act are to: (1) "ensure that all pastoral lands in the 

state are well managed and utilized prudently so that its renewable resources are 

maintained and its 
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yield sustained; and (2) provide for the effective monitoring of the condition of pastoral 

lands, the prevention of degradation of the land and its indigenous plant and animal 

life, and the rehabilitation of the land in cases of damage."  

A major problem that all landholders, administrators and researchers have confronted is 

the lack of suitable techniques to assess and monitor arid rangeland condition. 

Rangeland condition here refers to the health and stability of the land. It is determined 

by comparing soil and vegetation characteristics at different sites within the same area. 

The main aim of assessing rangeland condition is to determine the effect of grazing on 

land condition (Lay and Evans, 1973). A variety of different field assessment and 

monitoring methods have been used to evaluate land condition in rangelands, both in 

Australia and internationally (Lay and Evans, 1973; Wilson et al., 1987; Mesdaghi, 

1998; Arizona University, 2001). In South Australia, two field methods have been used 

for assessing and monitoring rangeland condition: the land condition index (LCI) and 

permanent monitoring sites. The LCI is used to provide a long term assessment of 

average land condition in the southern arid lands of South Australia every 14 years. It 

categorises land into three condition classes (poor, fair, and good) using visual 

assessments against defined criteria at many random sites. In contrast to the LCI, 

permanent monitoring sites have been established to determine shorter temporal trends 

in land condition (Department of Water Land Biodiversity and Conservation, 2002). 

Although these ground-based methods provide detailed data at small sites, they can not 

adequately cover the vast areas of the arid rangelands, and in addition they are time-

consuming, expensive and subject to human error (Walker, 1970; Friedel and Shaw, 

1987a; Friedel and Shaw, 1987b). 

Vegetation cover is one of the most important components of the earth's surface. It 

strongly influences evapotranspiration, infiltration, runoff and soil erosion. Vegetation 

cover is also the principal factor limiting stocking rates in managed grazing lands. It has 

been widely recognized as one of the best indicators for determining land condition 

(Bastin et al., 1998; Booth and Tueller, 2003; Bastin and Ludwig, 2006; Wallace et al., 

2006). Therefore, land condition can be assessed and monitored according to vegetation 

cover and its variations in time and space. This component is often used as the key 

indicator in the remote sensing of land condition. 
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Use of remote sensing for land condition assessment and monitoring started with the 

launch of the first Landsat satellite in 1972. Since then many other polar orbiting Earth-

observation satellites such as the Landsat series, Earth Observation-1 (EO-1), Satellite 

Pour l'Observation de la Terre (SPOT), National Oceanic and Atmospheric 

Administration (NOAA), Advanced Spaceborne Thermal Emission and Reflection 

Radiometer (ASTER), Moderate Resolution Imaging Spectroradiometer (MODIS) have 

been launched and their imagery have been used for a wide range of applications. The 

broad swaths and regular revisit frequencies of these multispectral satellites mean that 

they can be used to rapidly detect changes in land cover. However, their limited spectral 

resolution reduces the capability of these multispectral sensors for discriminating 

different land cover components. Airborne hyperspectral sensors such as the NASA 

Airborne Visible-InfraRed Imaging Spectrometer (AVIRIS) with high spectral and 

spatial resolution have overcome this problem (Asner and Heidebrecht, 2003). 

Furthermore, because of their high spectral resolution, their images can be calibrated to 

absolute reflectance and compared with field and laboratory spectra. However, despite 

the many advantages of airborne imagery, its application to arid lands, with their 

extensive areas, is limited by high cost. Spaceborne hyperspectral sensors such as 

Hyperion on board of NASA’s Earth Observing-1 (EO-1) satellite seem to overcome 

some of the limitations of both mutispectral and airborne hyperspectral sensors.  

Remotely sensed data has been applied successfully to the assessment and monitoring 

of vegetation cover, land degradation, forestation and deforestation, floods, fire and 

many other applications (Johannsen and Sanders, 1982; Yool, 2001; Metternicht et al., 

2002; Miller and Yool, 2002; Ostir et al., 2003; Symeonakis and Drake, 2004). The 

reason for using this technology in environmental studies is that it can provide 

calibrated, objective, repeatable and cost-effective information for broad regions and it 

can be empirically related to field data such as vegetation cover, collected by ground-

based methods (Graetz, 1987; Tueller, 1987; Pickup, 1989).  

Due to the importance of vegetation cover in the determination of land condition, a 

large number of remote sensing techniques have been suggested and used to extract 

vegetation information from the remotely-sensed images. One of the most widely used 

techniques is vegetation indices (Pickup et al., 1993; Bannari et al., 1995; Purevdorgy et 

al., 1998; Thiam and Eastman, 2001). These indices are based on numeric combinations 

of a sensor's spectral bands, mainly red and near-infrared, which are used to highlight 
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vegetation cover. The Normalized Difference Vegetation Index (NDVI) is the most 

commonly used vegetation index that has been used in environmental studies, globally 

(Myneni et al., 1997), continentally (Townshend and Justice, 1986) and at regional 

scales (Foran and Pearce, 1990; Al-Bakri and Tayor, 2003; Wang et al., 2004). 

However, most of the widely used vegetation indices have been shown to be 

inappropriate in arid and semi-arid lands of Australia (O' Neill, 1996). This appears to 

be the result of the low red and near-infrared spectral contrast in the perennial plants 

that are dominant in these areas. This makes it difficult to distinguish vegetation from 

soil background (Huete, 1988). Several indices have been proposed and demonstrated as 

more appropriate in Australian arid and semi-arid grazing lands (Pickup and Nelson, 

1984; Pickup et al., 1993). In addition to vegetation indices, other remote sensing 

techniques such as spectral mixture analysis (Smith et al., 1990) and landscape spatial 

heterogeneity indices (Tanser and Palmer, 1999) have been applied successfully for 

assessing and monitoring arid environments. Spectral mixture analysis estimates the 

fractional vegetation contribution to the reflectance measured by a sensor, thus it 

appears to be more applicable than vegetation indices in arid and semi-arid 

environments (Smith et al., 1990; Elmore et al., 2000). In contrast with vegetation 

indices and spectral mixture analysis, the spatial heterogeneity index may be less 

sensitive to the underlying substrate and does not depend on measurement of absolute 

reflectance. In other words, it does not require that imagery be calibrated to absolute 

reflectance and this is an important advantage for remote sensing of land conditions in 

areas with highly variable land cover.  

 The application of remote sensing in land management in Australia has a long history. 

Australia became one of the first users of remote sensing data shortly after the launch of 

the first earth observation satellite (Graetz, 1987). However, most of state-wide and 

national scale programs such as the Statewide Landcover and Trees Study (SLATS), 

Land Cover Change Project of the Australia Greenhouse Office National Carbon 

Accounting System (AGONCAS), and Australian Grassland and Rangeland Assessment 

by Spatial Simulation project (Aussie GRASS) have been developed in recent years. At 

state-wide scale, the SLATS project provides information about woody vegetation cover 

and their changes over time in Queensland based on the Landsat archive (Danaher, 

1998). Another Landsat-based program is the land cover change project of the 

AGONCAS. As one of the largest satellite monitoring programs in the world, 
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AGONCAS provides comprehensive information of land cover and its change over the 

Australian continent for the past 30 years (Richards and Furby, 2002). The Aussie 

GRASS project is a state-wide and national level project that is led by Queensland 

Department of Natural Resources, Mines and Water. It uses advanced simulation 

modelling techniques for assessing the land condition of Australia's grazing lands or 

rangelands (Queensland Department of Natural Resources Mines and Water, 2006). 

This model uses NOAA NDVI vegetation images in its modelling.  

At regional levels there has been considerable research in the use of remote sensing data 

to assess and monitor arid land condition (Pickup and Nelson, 1984; Foran and Pearce, 

1990; Bastin et al., 1993a; Holm et al., 2003a; Karfs et al., 2004; Karfs and Trueman, 

2005). Bastin et al. (1998) applied a grazing gradient method (Pickup and Chewings, 

1994) to northern arid rangelands of South Australia (cattle grazing country) to assess 

land condition. They found that land condition can be successfully detected using this 

remote sensing approach.  

In southern arid lands of South Australia, which are mainly sheep grazing country only 

field techniques are used to determine rangeland condition. This current study examines 

the potential for use of remote sensing techniques to augment these field measurements 

in land condition assessment and monitoring. To date there have been no studies that 

have evaluated the capability of different remote sensing techniques in these areas. 

Therefore, this research investigates the potential of different remote sensing techniques 

for arid land condition assessment and monitoring in the southern rangelands of South 

Australia.  

1.1 Research aims 

The overall aim of this research was to evaluate the potential of different remote sensing 

techniques for assessing and monitoring arid land condition in the southern rangelands 

of South Australia. The specific objectives of this study were: 

1 . to evaluate vegetation indices based on multispectral satellite imagery for 

prediction of vegetation cover; 

2 . to compare satellite imagery and field measurements as means for detecting 

vegetation changes and assessing land condition; 



                                                                        INTRODUCTION                                                 - 8 - 

             

3 . to test whether it is possible to separate vegetation reflectance from soil 

surface background and to discriminate more vegetation components using 

hyperspectral imagery; and 

4 . to examine whether spatial heterogeneity in reflectance can provide 

additional information about land condition and the impact of the 

management on land condition. 

1.2 Research significance and hypothesis 

The land condition index and sampling methods at permanent monitoring sites are used 

for determining land condition in the southern arid lands of South Australia. The first 

assessment of land condition, using the LCI, started in 1990 and continued until 2000. 

According to the Pastoral Land Management and Conservation Act (1989), this 

assessment must be repeated every 14 years. In addition to the limitations of field 

methods, land condition assessment and monitoring is labour-intensive and very 

expensive. Therefore, this project aimed to address this problem by reviewing and 

evaluating the suitability of different remote sensing techniques for assessing and 

monitoring land condition of southern arid rangelands of South Australia. The 

hypothesis was that remote sensing techniques can provide qualitative and quantitative 

information on land cover and they can be used as an adjunct to field methods to aid the 

assessment and monitoring of land condition in southern South Australia. 

1.3 Research structure 

This thesis is divided into seven chapters. A brief summary of the content of each 

chapter has been given below. Chapters 3, 4 and 5 focus on the remote sensing 

techniques in which information about vegetation and soil cover is derived from the 

spectral characteristics of these components, whereas Chapter 6 deals with the spatial 

heterogeneity in surface reflectance and investigates the potential of this factor in land 

condition assessment.  

Chapter 2 introduces the environment of the study area, history of land condition 

assessment and monitoring, satellite imagery and preliminary processing of imagery 

used in the study.  

Chapter 3 focuses on vegetation indices. It reviews and classifies different vegetation 

indices based on the concepts underlying their formation. It investigates relationships 
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between vegetation indices and field measurements of land cover. This chapter has been 

accepted for publication as Jafari, R., Lewis, M.M. and Ostendorf, B., 2007. Evaluation 

of vegetation indices for assessing vegetation cover in southern arid lands in South 

Australia, The Rangeland Journal 29 (1) 39-49.  

Chapter 4 uses the most suitable vegetation indices identified in Chapter 3 to monitor 

vegetation changes over time. It compares imagery against field cover data and land 

condition classes for monitoring changes in vegetation cover and land condition in the 

study area. This chapter also evaluates the suitability of vegetation indices for 

discriminating land condition classes identified by the current field assessment methods. 

Chapter 5 validates vegetation and soil components derived from the hyperspectral 

imagery against field measurements of spectral reflectance and abundance of ground 

cover. The components of the research in this chapter have been published as Jafari, R., 

Lewis, M.M. and Ostendorf, B., 2006. Use of EO-1 hyperspectral imagery for 

discriminating arid vegetation, Proceedings of the 13th Australian Remote Sensing and 

Photogrammetry Conference (ARSPC), The Photogrammetry Association of Australia,  

November 2006, Canberra, Australia. 

Chapter 6 uses a spatial heterogeneity index for assessing arid land degradation. It 

compares spatial heterogeneity in degraded and non-degraded areas and also 

investigates the spatial scale of variability around stock watering points by examining 

spatial heterogeneity with increasing distance from watering points. This chapter has 

been submitted to the Journal of Arid Environments as Jafari, R., Lewis, M.M. and 

Ostendorf, B., An image-based diversity index for assessing land degradation in an arid 

environment in South Australia.  

Chapter 7 reviews the results and findings for each chapter of the thesis, highlights the 

implications of the research findings in arid land condition assessment and monitoring 

and provides recommendations for future research. 
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2 STUDY AREA, FIELD AND SATELLITE IMAGE DATA 

2.1 Study area 

The study area was located in the southern arid lands of South Australia. It comprises 

123,600 km2 within two Soil Conservation Districts, including Kingoonya Soil 

Conservation District and Gawler Soil Conservation District. The region lies between 

latitudes 29° 00′ S and 33° 00′ S and longitudes 133° 00′ E to 138° 00′ E. Figure 2.1 

shows the location of the study area and also the extent of imagery that was used in this 

research. The information of the environment of the study area that is presented in this 

chapter has been drawn from the Kingoonya Soil Conservation District plan and lease 

assessment overview report on the Kingoonya and Gawler Soil Conservation Districts 

(Kingoonya Soil Conservation Board, 1991; Tynan, 1995; Kingoonya Soil Conservation 

Board, 1996).  

The choice of study area was influenced by the history of land condition assessment and 

availability of spatial and ecological data. The Pastoral Management Branch of 

Department of Water, Land and Biodiversity Conservation of South Australia 

established permanent monitoring sites throughout these districts in 1991 to record 

changes in land condition over time using sampling and photographic methods. They 

also recorded land system characteristics of the area and assessed land condition using 

the land condition index method. A second round of land condition assessment of the 

area was conducted in 2002 at a smaller sample of permanent monitoring sites. This 

time span from 1991 to 2002 enabled detection of changes in vegetation cover and land 

condition over time (Chapter 4). To meet the requirements of the Pastoral Land 

Management and Conservation Act, a comprehensive assessment of land condition of 

the entire Kingoonya and Gawler districts has commenced in 2004, using land condition 

index at random sites on each property. The field data that was collected in 1991, 2002 

and 2004 as a part of these assessments was used to validate remote sensing techniques 

that were applied in this study to the study area.  
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Figure 2.1 Location of study area  

2.1.1 Climate 

The climate in the study area is characterised by hot summers and cool mild winters. 

The mean daily maximum temperature ranges from 35°C in summer to approximately 

17°C in winter and mean daily minimum temperature ranges from 15°C in summer to 

about 5°C in winter. The mean annual evaporation rate is approximately 2500 mm. 

Winds are usually from the southeast in the north and southwest in the south of the 

study area. Rainfall is highly variable from year to year in this region. It varies across 

the districts from less than 150 mm in the north to about 300 mm in the south. Figure 

2.2 shows the annual rainfall at Coondambo station in the study area recorded from 

1990 to 2003 with a notable maximum in 1992. This station is located almost in the 

centre of the region. Because of the high variability in the rainfall, various water 

resources are used for domestic, industrial and pastoral purposes. These include local 

ground water (e.g. wells), local surface water (e.g. dams), network systems originating 

outside the area, temporal natural water, and rainfall tanks.  
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NOTE:  This figure is included on page 12 of the print copy of the 
thesis held in the University of Adelaide Library. 
 

 
 
 
 
 
 
Figure 2.2 Yearly rainfall at Coondambo station (Pastoral Board, 2002) 
 
2.1.2 Land use 
 
Because of the low and variable rainfall, the study area has not been cultivated. 

Grazing is the main land use in this area and sheep and wool production is one of the 

most important sources of income. Like other pastoral lands in South Australia, the 

study area has been divided into stations and held under pastoral leases. The region 

has been divided into 58 stations ranging from 35 to 6,000 km2. The stations have 

been fenced into smaller paddocks ranging from less than one to 252 km2. The 

paddocks are the main management units; they are mostly provided with artificial 

water sources such as dams, tanks and troughs, and that grazing is focused on these 

water points. The average number of sheep in the region over a 24-year period (1976-

2000) was approximately 325,000. Pastoralists often aim to increase income by 

increasing stocking rates and this may have negative effects on land condition. 

Inappropriate grazing reduces the cover of living and dead vegetation (plant litter) and 

this increases the susceptibility of the soil to erosion by water and wind. Overgrazing 

has been recognised as a main cause of land degradation in the area, though other 

factors such as mining and mineral exploration and military operations have caused 

some degradation in specific parts of the region. 

 
2.1.3 Geology and geomorphology 
 
Overall the study area is flat to undulating, with an elevation of about 300 m above 

sea level. Sand dunes with eastern-western ridges dominate the northern parts of the 

region. Plains of sandy loams and sandy soils, usually covered with gravel and stone 

(gibber) occur in different parts of the study area. The dominant vegetation cover on 

sand dunes 
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and sand plains is chenopod shrubs and open woodlands. Low hills, rock outcrops and 

salt lakes are distributed throughout the area, while tablelands occupy most of the 

Woomera and Arcoona regions towards the centre. These gently rolling tablelands are 

generally dominated by chenopod shrubs. 

The low topography of the area reflects the dominance of relatively young, flat-lying 

sediments, which have not been changed due to major earth movements. The rocky rises 

and hills along the western margin of the Lake Gairdner are the oldest outcrops formed 

from a succession of sedimentary, volcanic, and metamorphic rocks between 1600 and 

2600 million years ago. The younger volcanic rocks formed the Gawler Ranges in the 

southeast of the area about 1600 million years ago. 

Deposition of sandstone, siltstone and mudstone sediments occurred about 150 million 

years ago between the outcrops of the older rocks to the north of Lake Gairdner, 

northwest of Tarcoola and near Andamooka. The north and northeast of the Kingoonya 

district are mostly covered with gibbers or pebbles which were formed approximately 

two million years ago after the erosion of the sediments that contained silica elements. 

These gravels are usually brown due to high iron oxide concentration. The latest 

sediments which were commonly sand, silt, gypsum, and clay were deposited in hills, 

alluvial plains and salt lakes.  

2.1.4 Soil 

Sandy and calcareous soils dominate the study area. The sandy soils are infertile and 

coarse-textured with high rainfall infiltration rates. Although wind erosion and dune 

formation may occur in these soils, they have low susceptibility to erosion because of 

substantial covering with perennial vegetation. Calcareous soils are relatively infertile, 

with coarse to medium textures. They are less susceptible to wind erosion than sandy 

soils and mainly are covered with chenopod shrublands. Other soil types within the 

study area are cracking clay soils, loamy soils, lithosols (shallow stony soils), ironstone 

gravels and saline alluvia associated with salt lakes (Stanley, 1982). 

2.1.5 Land systems 

Soils, plants and geology are associated and create different landscapes or land systems 

in the environment. Land system here refers to a combination of land units with specific 
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patterns and land unit is an area that includes similar vegetation, soil type and 

landform (Rangeland Assessment Unit, 1988). Figure 2.3 shows the distribution of 

land systems in the Kingoonya and Gawler districts. The main land units of the study 

area are sand plains with open woodland, calcareous plains with pearl bluebush 

(Maireana sedifolia F.Muell) and bladder saltbush (Atriplex vesicaria Benth.), sand 

dunes with native pine (Callitris glaucophylla Joy Thoms and L.A.S.Johnson) or 

mulga (Acacia aneura F.Muell. ex Benth), tableland with bladder saltbush and 

samphire (Halosarcia pergranulata J.M.Black) and low hills with low bluebush 

(Maireana astrotricha L.A.S.Johnson) and mulga and granitic hills (White and Gould, 

2002). Appendix 1 shows photographs of these and other plant species that have been 

mentioned in coming chapters. Further details of specific land systems in which the 

research was based are given in Chapters 3, 5 and 6. 
 
 
 
 

 
NOTE:  This figure is included on page 14 of the print copy of the 
thesis held in the University of Adelaide Library. 
 

 
 
 
 
 
 
Figure 2.3 The distribution of land systems in Kingoonya and Gawler districts (Pastoral 
Board, 2002) 
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2.2 Land condition assessment and monitoring in the study area  

The system of land condition assessment in the South Australian arid rangelands 

comprise long term assessment of trends using the Land Condition Index and short term 

assessment at permanent monitoring sites (Burnside and Chamala, 1994; Department of 

Water Land Biodiversity and Conservation, 2002).  

2.2.1 Land condition index  

The Land Condition Index (LCI) is used to determine average land condition in the 

southern pastoral lands of South Australia every 14 years. Land condition is determined 

by visual estimation of land condition state and scored on a 3-point scale: 1= poor, 2= 

fair and 3= good, according to defined soil erosion status and vegetation criteria at about 

80-100 randomly located sites along tracks on each lease. Criteria used for determining 

land condition class differ according to the pasture type, and include vegetation cover 

and composition, presence of regeneration, unpalatable species and grazing effects. An 

average LCI is calculated for each lease by multiplying the percentage of sample sites 

for each condition state rating by the score. The values in this calculation for each lease 

range from 100 (high disturbance at all sample sites) to 300 (low disturbance at all 

sample sites), and then from these lease values, the average condition index of the 

district and the whole area is determined (Department of Water Land Biodiversity and 

Conservation, 2002). 

 The first land condition assessment in the Kingoonya and Gawler districts was 

performed by the Pastoral Management Branch over 10 years from 1990 to 2000. The 

survey recognized different pasture types in the region. Chenopod shrublands and low 

open woodlands were the main pasture types, covering more than 94% of the districts 

(Table 2.1). The survey showed that about 42% of the Kingoonya district was in land 

condition class 3, 28% in class 2 and 30% in class 1 and the results for Gawler district 

were 52%, 32% and 16% respectively. In this round of land condition assessment the 

LCI was used to determine land condition at monitoring sites, though it is not a site-

based technique (White and Gould, 2002). Figure 2.4 shows the LCI classes of the 

Kingoonya and Gawler Soil Conservation Districts (Tynan, 1995; Kingoonya Soil 

Conservation Board, 1991). Mean LCI scores for the Kingoonya and Gawler districts 

were 2.13 and 2.21, respectively. This means that land condition in the study area was 

laid in a fair condition. 
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Table 2.1 The percentage of various pasture types within the Kingoonya and Gawler Soil 
Conservation Districts 

 

 
 

 

 

 

 

 

 

 

Figure 2.4 Land condition classes in the Kingoonya and Gawler Soil Conservation 
Districts 

White and Gould (2002) used another method, the Functionality Index model (further 

described in Della Torre, 2005), for assessing land condition at some 180 randomly 

selected monitoring sites. The determination of land condition classes in the 

Functionality Index model is similar to the LCI classes. The rangeland condition classes 

are divided in 5 categories (excellent, good, fair, poor and very poor). These classes are 

determined according to the plant species composition, plant productivity and soil 

erosion status. The study observed that only very few sites had excellent and very poor 

conditions. Therefore, these classes were combined into the good and poor classes 

respectively. By using three condition classes a score similar to the LCI method was 

calculated. The mean score of the Functionality Index model for 180 sites in 2002 was 

2.36, which shows that the overall land condition in these sites was fair. Using three 

Pasture types Kingoonya (%) Gawler (%) 

Chenopod shrubland 64 77.42 

Low woodland 30 21.03 

Mt. Eba country 5 - 

Hummock grassland 0.5 1.55 

Ephemeral plains 0.5 - 

Total 100 100 
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similar classes for determining land condition means that the 2002 land condition 

assessment can be compared with the first 1991 assessment to detect changes in the land 

condition over time (Chapter 4).  

2.2.2 Permanent monitoring sites 

During the first land condition assessment using LCI in 1991, permanent monitoring 

sites were established in each paddock throughout the pastoral country to provide for 

shorter-term assessment of land condition and trend (Department of Water, Land 

Biodiversity and Conservation, 2002). There are about 5500 such monitoring sites 

throughout the South Australian pastoral lands, of which 1900 are located in the study 

area (Figures 2.5 and 2.6). They were located at moderate distances from water to avoid 

the heavily grazed areas, but still sample areas are that influenced by stock. In sheep 

stations the points were located about 1.5 km from water, while in cattle country they 

were located approximately 3 km from water. At each monitoring site two sampling 

methods, including Jessup and step-point transects and a photo-point are used for 

collecting ecological data and documenting changes in land condition. At some of these 

sites the Pastoral Management Branch records data every 5-7 years (ecological data, 

photographs, etc) and these data are compiled into a manual and given to landholders 

and who are encouraged to monitor the sites whenever they see a visible change in the 

land condition. 

 

 

 

 

 

  

 

 

Figure 2.5 The distribution of permanent monitoring sites in the study area 
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Figure 2.6 An example of a permanent monitoring site established in 1971   

The Jessup transect method measures the density and frequency of perennial plants such 

as chenopods and other shrubs and grasses. It consists of a 100 m transect that is fixed 

with two pegs at the end. The number of plants is recorded in ten 10×2 m quadrats on 

both sides of the transect, giving a total sample area of 400 m2. The quadrats enable 

subsequent changes in the abundance of perennial plants to be quantified easily. 

Although this method measures perennial vegetation cover, which is an important 

criterion in land condition assessment, it is time-consuming and difficult to apply in tall 

and dense vegetation areas (Cook and Stubbendieck, 1986; Department of Water Land 

Biodiversity and Conservation, 2002). 

The step-point method is used for determining the percentage of vegetation cover. 

Vegetation cover is the proportion of ground surface that is covered by a vertical 

projection of the foliage cover canopy. An observer with a pin or mark at the tip of his 

boots paces out in the same direction as the Jessup transect or other selected transects. 

Along these transects the observer records the ground cover components intercepted 

(plant species, litter, soil, stone etc) by each 'hit' of the 'mark'. The percentage of 

different ground cover is determined for each monitoring site by the proportions of hits. 

A minimum of 500 hits or points is usually recorded in each transect. Although the step-

point method is simple, easy to use and needs little experience, the results of this 

method can vary between observers. Furthermore, it is time-consuming in large areas 

(Cook and Stubbendieck, 1986; Friedel and Shaw, 1987a; Friedel and Shaw, 1987b; 

Department of Water Land Biodiversity and Conservation, 2002). 

The photographic method is used at the permanent monitoring sites as a supplementary 

tool for monitoring vegetation change. Photographs are taken using a camera at the 

Brendan Lay  Site labelling 
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photo-point monitoring sites. The photographer stands behind a marker peg that is about 

10 m from the Jessup transect and focuses on the centre of a sighter peg at the beginning 

of the Jessup transect (Department of Water Land Biodiversity and Conservation, 

2002). Some of the advantages of these photographs are that they are obtained rapidly 

and easily, the amount of change in vegetation and other events associated with that 

change are recorded, and they provide a good archive for monitoring vegetation or land 

condition over time. The limitations of this method are that photographs can present a 

biased selection when photographed and they are only useful for small and low growing 

vegetation areas (Harper et al., 1990). 

2.3 Satellite imagery 

Multispectral medium-resolution satellite imagery is one of the most widely used forms 

of remote sensing data for many environmental applications (see Chapter 1). The 

availability of extensive archives of this imagery makes it suitable for broad-area, 

operational monitoring programs. This current study used four full scenes of Landsat 

imagery and a Hyperion image, obtained from the Australian Centre for Remote 

Sensing (ACRES) (Table 2.2 and 2.3). The extent of the imagery is shown in Figure 

2.1. All the images were acquired in dry seasons to minimize the contribution of green 

ephemeral vegetation, maximise solar irradiance and land surface reflectance and also 

exclude cloud cover from the imagery. The October 1991 Landsat image was used to 

derive vegetation indices and investigate their suitability in the Kingoonya region 

(Chapter 3). The index identified as being most suitable in Kingoonya was applied to 

the 2002 image to detect changes in vegetation cover over an eleven-year period 

(Chapter 4). It was also applied to the 2005 image to evaluate the usefulness of this 

index for discriminating LCI classes which were collected by the staff of the South 

Australian Pastoral Program in 2005. The January 1991 image was used in Chapter 6 to 

examine the capability of a remotely-sensed diversity index to assess land degradation 

in the Kingoonya and Gawler districts. The 2005 hyperspectral Hyperion image was 

used to discriminate vegetation types that are important in land management (Chapter 

5). 
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Table 2.2 Acquisition dates of Landsat 5(TM), Landsat 7 (ETM+) and Hyperion images 

Image Acquisition date Path Row 

Landsat TM 20/10/1991 100 81 

Landsat ETM+ 13/01/2002 100 81 

Landsat TM 14/02/2005 100 81 

Landsat TM 31/01/1991 99 82 

Hyperion 29/12/2005 100 81 

 
Table 2.3 Spectral and spatial resolution of the Landsat-5 and Landsat-7 ETM+ sensors 

2.3.1 Radiometric calibration of Landsat imagery 

To compare multitemporal images, calibration of their radiometric values is needed. 

This is necessary because atmospheric conditions, sensor characteristics, and image pre-

processing influence the values recorded in the digital imagery (Campbell, 1996). 

Therefore, it is important to separate real changes in land cover components from 

radiometric changes associated with the images from different dates. Furby and 

Campbell (2001) used some invariant features which had approximately the same 

reflectance over time to calibrate a sequences of Landsat images. They recommended 

that 20-30 invariant features are required for image to image calibration and the features 

should be selected from a range of dark, middle and bright targets. The calibration 

involves identifying invariant features in the scenes and developing calibration 

relationships between them. 

In this current study, image-to-image radiometric calibration was done by selecting a 

reference image (2002 image) and calibrating the 1991 image by using some invariant 

targets. As the 2002 image was recorded before the failure of the Scan Line Corrector 

(SLC) of the Landsat 7 Enhanced Thematic Mapper plus (ETM+) on May 31 2003, this 

Band number Wavelength (µm) Spectral region Spatial resolution (m) 

1 0.45 – 0.52 Visible blue 30 

2 0.52 – 0.6 Visible green 30 

3 0.63 – 0.69 Visible red 30 

4 0.76 – 0.79 Near infra-red 30 

5 1.55 – 1.75 Middle infra-red 30 

7 2.08 – 2.35 Shortwave infra-red 30 
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malfunction did affect on the selected image. 24 invariant targets including roads, 

buildings, mine factories and bare soil were chosen as invariant features. Vegetation and 

dry salt lakes were excluded as invariant targets because they tend to show seasonal 

trends.  In addition, targets with the digital values of 255 (i.e., very bright or 

radiometrically saturated targets) were excluded from calculations. A mean of 3-5 

pixels for each target was calculated for both images. Linear regressions were 

established between these, with the 2002 image as the reference (dependent variable) 

and 1991 image as the independent variable. The resulting linear regression coefficients 

were then used to convert the 1991 image values to 2002-equivalent values. The linear 

equations and relationships (R2 values) between the 2002 and 1991 image reflectance 

values for invariant targets are shown in Table 2.4.  

Table 2.4 Relationship between the reflectance of invariant targets in the 2002 and 1991 
images 

2.3.2 Pre-processing of Hyperion hyperspectral imagery  

The Hyperion sensor is the first hyperspectral imager on-board NASA’s Earth 

Observing-1 (EO-1) satellite that was launched on 21 November 2000. The EO-1 

satellite follows the same orbit as Landsat 7 by about one minute. The spatial resolution 

of Hyperion is 30 m and standard scene is 7.7 km wide and 42 km long. This sensor has 

242 spectral bands ranging from 400 nm to 2500 nm, recorded at 12-bit radiometric 

resolution (Appendix 2).  Some of the bands of the image that was used in this study 

were affected by noise that might have been as a result of atmospheric or sensor effects. 

CSIRO’s Hyperspectral Processing Software was used to reduce noise in the image 

(Mason, 2002; Quigley et al., 2004). In addition to this software, Atmospheric 

Correction Now (ACORN) software (ImSpecLLC, 2004) and several standard 

hyperspectral processing techniques in ENVI (Research Systems Inc, 2000) were used 

Spectral bands Linear equations R2 values 

Band 1 y = 1.12x - 5.52 

R2 = 0.9508 

0.95 

Band 2 y = 1.97x - 4.41 0.96 

Band 3 y = 1.98x - 12.28 0.96 

Band 4 y = 1.08x - 3.03 0.97 

Band 5 y = 1.31x - 31.01 0.96 

Band 7 y = 1.68x - 10.64 0.95 
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to reduce noise in the Hyperion scene and covert the radiance at sensor values to surface 

reflectance (Chapter 5).  

2.3.3 Georegistration 

Georegistration is needed to enable comparison of images from different dates and to 

accurately relate image values to field and other spatially-referenced data.  A reference 

image that had been georectified to a 1:250,000 map (Map Grid of Australia, MGA 94) 

was used as a base to georegister the imagery of current study. 31 Ground Control 

Points (GCPs) were selected throughout the reference image and raw image (2002 

Landsat image). Road intersections or other man-made features were appropriate targets 

for this purpose.  The final Root Mean Square (RMS) error for the selected points was 

0.49 pixels. The raw image was transformed to the georectified image using a first order 

polynomial, then resampled using the nearest neighbour method to preserve radiometry. 

The same method was used to register the remaining Landsat images to the reference 

image. The Hyperion image was registered to the reference image using the same 

technique as above. The RMS error for registration of the Hyperion image using 15 

Ground Control Points was 0.10 pixels. 

2.4 Spatial data 

Several forms of Geographical Information Systems data were used in this research. 

These spatial data were used for interpreting the imagery, extracting information from 

the imagery, and determining the location and boundaries of areas of interest. These 

data were provided by the Department of Water, Land Biodiversity and Conservation 

and included land system boundaries, district boundaries, station boundaries, paddock 

boundaries, locations of permanent monitoring sites and water points, and 

meteorological stations. All spatial data were geometrically rectified to Map Grid of 

Australia (MGA 94). 

2.5 Summary 

The study area was located in the southern arid lands of South Australia. A region 

covered with young sedimentary deposits. The soil in this area has low fertility and 

sandy and calcareous soils dominate, mainly covered with open woodlands and 

chenopod shrublands. The climate is characterized by low and variable rainfall and high 

temperature and evaporation. The main land use is grazing of sheep for the production 
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of wool and meat on extensive pastoral leases which are subdivided into large, fenced 

paddocks. One of the indirect effects of grazing in the study area is land degradation, 

especially near the stock watering points.  

In South Australia two main field methods have been used in rangeland condition 

assessment and monitoring including the Land Condition Index (LCI) and permanent 

monitoring sites. According to the first land condition assessment in 1991, land 

condition status in the study area was fair. Although field methods that have been used 

for this land condition assessment provide detailed information about conditions at 

sample sites, this may not be representative of broad areas. Moreover, the application of 

these methods in broad areas is expensive and time-consuming. Thus, in the following 

chapters the potential of remote sensing techniques in land condition assessment and 

monitoring is investigated. 
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3 VEGETATION INDICES 

3.1 Introduction  

One of the most common applications of remote sensing is vegetation assessment and 

monitoring via vegetation indices (Pickup et al., 1993; Bannari et al., 1995; Purevdorgy 

et al., 1998; Thiam and Eastman, 2001; Metternicht, 2003). However, most of the 

widely used vegetation indices appear to be less applicable in arid and semi-arid lands 

of Australia (Pickup et al., 1993; O' Neill, 1996). Indices that are less dependent on 

infrared response, such as the Perpendicular Distance (PD54) and Soil Stability Index 

(SSI) have been shown to be more appropriate spectral indices in Australian arid and 

semi-arid lands (Foran and Pickup, 1984; Pickup and Nelson, 1984; Pickup and Foran, 

1987; Pickup et al., 1993; McGregor and Lewis, 1996; O' Neill, 1996; Edwards, 2001).   

Although ground-based methods provide detailed data about specific sites at infrequent 

monitoring intervals, they represent a very limited sample of the full extent and spatial 

variation within much broader areas of arid lands. Furthermore, such field assessment is 

time-consuming, expensive and subject to observer variation (Friedel and Shaw, 1987a; 

Friedel and Shaw, 1987b). Consequently, the aim of this part of the study was to 

evaluate the suitability of vegetation indices derived from multispectral satellite 

imagery as an adjunct to field methods for assessing and monitoring vegetation cover, 

and consequently land condition, in the southern arid lands of South Australia. 

Specifically, this component of the study aimed to identify the most suitable image 

indices for recording vegetation cover in these landscapes, to determine the scales at 

which they may be applied, and the components of vegetation cover that they best 

predict. The approach was to determine the relationships between a range of widely 

used spectral indices and vegetation cover as measured by the South Australian Pastoral 

Lease assessment program, with the intent of producing image maps that more fully 

document spatial and temporal variation in vegetation cover. 

3.1.1 Vegetation indices 

Vegetation indices combine reflectance measurements from different portions of the 

electromagnetic spectrum to provide information about vegetation cover on the ground 

(Campbell, 1996). Healthy green vegetation has distinctive reflectance in the visible and 

near-infrared regions of the spectrum. At visible, and in particular red wavelengths, 
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plant pigments strongly absorb the energy for photosynthesis, whereas in the near-

infrared region, the energy is strongly reflected by the internal leaf structures. This 

strong contrast between red and near-infrared reflectance has formed the basis of many 

different vegetation indices. When applied to multispectral remote sensing images, 

these indices involve numeric combinations of the sensor bands that record land surface 

reflectance at various wavelengths. Pearson and Miller (1972) first presented the near 

infrared/red ratio for separating green vegetation from soil background. Since then, 

numerous vegetation indices have been proposed, modified, analysed, compared and 

classified (Perry et al., 1984; Huete, 1988; Qi et al., 1994; Bannari et al., 1995; 

Rondeaux et al., 1996; Thiam and Eastman, 2001; Gilabert et al., 2002). In this current 

study vegetation indices have been grouped into four types including slope-based, 

distance-based, orthogonal transformation and plant-water sensitive vegetation indices 

on the basis of the spectral bands they use and the means by which these are combined. 

Definitions of these indices are provided in Table 3.1. 

3.1.1.1 Slope-based vegetation indices 

These vegetation indices comprise simple arithmetic combinations of reflectance 

measurements, contrasting the high infrared and low red reflectance that characterises 

photosynthetic vegetation. This contrast has been used widely to generate several 

vegetation indices such as the Simple Vegetation Index (SVI) (Pearson and Miller, 

1972), Normalized Difference Vegetation Index (NDVI) (Rouse et al., 1974), and Soil 

Adjusted Vegetation Index (SAVI-A) (Huete, 1988). Pixel values in this group produce 

vectors with differing slopes through the origin of the red and NIR bi-spectral plot. 

Figure 3.1 shows the distribution of pixel values in the NDVI. The NDVI has been used 

widely in many applications including regional and continental-scale monitoring of 

vegetation cover (Satterwhite and Henley, 1987; Huete, 1988; Foran and Pearce, 1990; 

Sattle and Drake, 1993; Rondeaux et al., 1996; Purevdorgy et al., 1998; Minor et al., 

1999; Schmidt and Karnieli, 2001; Al-Bakri and Tayor, 2003; Runnstorm, 2003; Wang 

et al., 2004; Wessels et al., 2004). 
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Table 3.1 Vegetation indices applied to the 1991 Landsat image 

 

3.1.1.2 Distance-based vegetation indices 

The second group consists of distance-based vegetation indices. These indices have 

been designed to remove the influence of soil brightness in sparsely vegetated areas; 

Vegetation 
index group 

Vegetation 
Index 

Acronym Author Formula Landsat TM 
bands 

Simple SVI Pearson & 
Miller, 1972 

NIR/R 4/3 

Normalised 
Difference 

NDVI Rouse, 1974 (NIR-R)/(NIR+R) (4-3) / (4+3) 

 

Group 1 

(Slope-based) 

Soil Adjusted-
A 

SAVI-A Huete, 1988 [(NIR-
R)/(NIR+R+L)] × 
(L+1) 

L= Soil adjusted 
factor 

[(4-3)/(4+3+0.25)] 
×1.25 

Perpendicular 
Vegetation 
Index-3 

PVI-3 Qi et al., 1994 A×NIR– B×R 

A= the intercept of 
soil line 

B= the slope of 
soil line 

A×4-B×3 

Perpendicular 
Distance 

PD54 Pickup et 
al.,1993 

Perpendicular 
distance from soil 
line toward 
vegetation line 

2 v 3 

 

Group 2 

(Distance-based) 

Soil Stability 
Index 

SSI Pickup & 
Nelson, 1984 

Perpendicular 
distance from soil 
line toward 
vegetation line 

2/4 v 3/4 

Soil 
Brightness 
Index 

SBI Kauth & 
Thomas, 1976 

Orthogonal 
Transformation 

All bands except 
band 6 

 

Group 3 

(Orthogonal 
transformations) 

 

Green 
Vegetation 
Index 

GVI Kauth & 
Thomas, 1976 

Orthogonal 
Transformation 

All bands except 
band 6 

Stress Related-
1 

STVI-1 Thenkabail et 
al. 1994 

(MIR×R)/NIR (5×3)/4 

Stress Related-
3 

STVI-3 Thenkabail et 
al. 1994 

NIR/(R+MIR) 4/(3+5) 

Mid-infrared-1 MSVI-1 Thenkabail et 
al. 1994 

NIR/MIR 4/5 

Mid-infrared-2 MSVI-2 Thenkabail et 
al. 1994 

NIR/SWIR 4/7 

 

Group 4 

(Plant-water 
sensitive) 

Mid-infrared-3 MSVI-3 Thenkabail et 
al. 1994 

NIR/(MIR+SWIR) 4/(5+7) 
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they are more effective at discriminating vegetation from bright soils when the two 
are mixed within the sensor field of view. 
 
 
 

 
NOTE:  This figure is included on page 27 of the print copy of the 
thesis held in the University of Adelaide Library. 
 

 
 
 
 
 
 
Figure 3.1 The distribution of pixel values in Normalised Difference Vegetation Index 
(Harison and Jupp, 1990) 
 
These indices take advantage of the fact that most soil-dominated pixels fall along a 

line in a red/near-infrared bi-spectral plot, with vegetation increasing with distance 

perpendicular to this line. The soil line can influenced by surface roughness, moisture, 

texture and colour (Huete et al., 1984; Baret et al., 1993). The Perpendicular 

Vegetation Index (PVI) (Richardson and Wiegand, 1977) was the first of this type of 

index (Figure 3.2). The PD54, which has been used with considerable success in 

Australian perennialdominated arid vegetation, also falls within this group (Pickup et 

al., 1993). All of the vegetation indices in this group require definition of the slope 

and intercept of the soil line. 

 
3.1.1.3 Orthogonal transformation vegetation indices 
 
The slope-based and distance-based vegetation indices generally use two spectral 

bands, most usually red and infrared. Orthogonal transformation vegetation indices, 

the third group, use multiple spectral bands to derive a new set of image components 

that are uncorrelated with one another and ordered with respect to the amount of scene 

variation they capture from the original band set (Kauth and Thomas, 1976; Fung and 

LeDrew, 1987). The first component usually represents overall land surface 

brightness or albedo while the second component often represents variation in 

vegetation cover. This group has been used in numerous environmental studies, 

mostly in agricultural and forest 
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environments (Byrne et al., 1980; Richards, 1984; Ingebritsen and Lyon, 1985; Fung 

and LeDrew, 1987; Deer and Longmore, 1994; Ribed and Lopez, 1995; Hirosawa et 

al., 1996; Wu, 2000; Caren et al., 2002; Price et al., 2002; Lu et al., 2004; Jin and 

Sader, 2005). The tasselled cap transformation is the best-known of this group (Kauth 

and Thomas, 1976): its two first components are the Soil Brightness Index (SBI) and 

the Green Vegetation Index (GVI). This transformation was adapted to the six bands 

of Landsat Thematic Mapper (TM) data by changing the empirical coefficients from 

those originally applied to the four bands of Landsat Multispectral Scanner imagery 

(Crist, 1985). 

 
In addition to the soil brightness that is considered in the second and third group of 

indices, soil colour can also influence vegetation indices. Red and yellow soils with 

high red reflectance can particularly interfere with vegetation estimation. To address 

this problem, Escadafal and Huete (1991) presented a colouration index, the Redness 

Index (RI), as a correction for the soil colour effect on vegetation indices (Bannari et 

al., 1995). The index, based on the contrast between red and green reflectance, was 

shown to double the sensitivity of vegetation indices, especially in sparsely vegetated 

areas. 
 
 
 

 
NOTE:  This figure is included on page 28 of the print copy of the 
thesis held in the University of Adelaide Library. 
 

 
 
 
 
 
 
Figure 3.2 The perpendicular vegetation index (Richardson and Wiegand, 1977) 
 
3.1.1.4 Plant-water sensitive vegetation indices 
 
The fourth group consists of vegetation indices that include mid and short-wave 

infrared regions of the electromagnetic spectrum, on the basis that vegetation has 

lower 
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reflectance than soil in these regions, a contrast that may assist their discrimination 

(Kimes et al., 1981; Dusek et al., 1985; Baret et al., 1988; Thenkabail et al., 1994). 

Since it is water content that largely determines plant reflectance in the near infrared, 

mid and shortwave infrared regions, these have been called plant-water sensitive 

vegetation indices. Thenkabail et al. (1994) proposed six different plant-water sensitive 

vegetation indices using Landsat TM mid-infrared and shortwave-infrared bands, 

including the Mid-infrared Vegetation Index (MSVI 1, 2 and 3) and the Stress Related 

Vegetation Index (STVI-1, 2 and 3). They found that these indices were as good or 

better predictors of yield, leaf area index, wet biomass, dry biomass, and plant height 

than slope-based vegetation indices in corn and soybean fields. O’ Neill (1996) applied 

these indices to chenopod shrublands in western New South Wales and suggested that 

STVI-1 can be a useful index for vegetation mapping and analysis in these 

environments. 

Most of the vegetation indices that use red and NIR regions of the spectrum appear to 

be inappropriate in Australian arid and semi-arid lands (O' Neill, 1996). because the 

perennial vegetation types of these regions do not reflect highly in the NIR (Graetz and 

Gentle, 1982). Moreover, the sparse cover and low leaf area index of the vegetation also 

contribute to low reflectance in the NIR channel. To address this problem Pickup et al. 

(1993) developed the Perpendicular Distance vegetation index (PD54). This index falls 

within group 2, but uses visible green and red reflectance to separate vegetation cover 

from soil (Bastin et al., 1999). Pickup et al. (1993) found that this index is less sensitive 

than red and NIR indices to differences in plant greenness. The PD54 has been widely 

used in rangeland monitoring and assessment in Australia (Bastin et al., 1993a; Bastin 

et al., 1993b; Pickup et al., 1994; McGregor and Lewis, 1996; Bastin et al., 1998). The 

Soil Stability Index (SSI) is another distance-based vegetation index developed to assess 

soil condition in Australian arid rangelands (Pickup and Nelson, 1984). Although the 

SSI provided useful information about soil erosion, stability, and deposition, it was 

much more sensitive than PD54 to the amount of vigorous green vegetation in the 

landscape and hence was considered less suitable for assessing perennial dominated 

landscapes. Due to the longevity and lower sensitivity of perennial plants to seasonal 

conditions, they are usually used as a key indicator of land condition. As a result, strong 

relationships between perennial cover and vegetation indices would mean that image 

indices have capability for land condition assessment and monitoring. 



                                                               VEGETATION INDICES                                               - 30 - 

             

3.2 Methods 

3.2.1 Study area 

The study area was located in the Kingoonya Soil Conservation District in the arid 

rangeland of South Australia (Figure 3.3) and was defined by the extent of Landsat 

scene path 100 and row 81. Detailed information of the environment of the study area 

has been presented in Chapter 2. 

The relationships between vegetation cover and satellite image indices were analysed at 

two scales: across 34,225 km2 covered by the Landsat scene, which encompassed ten 

different land systems, and within two particular land systems: Buckshot and Gina. 

Buckshot land system (498 km2) comprises “buckshot” gravel (iron-oxide coated 

gravels) plains and watercourses of mulga low woodland, while Gina land system 

(1,601 km2) is dominated by sandy calcareous plains of pearl bluebush (Table 3.2). 

 

 

 

 

 

 

 

 

Figure 3.3 The study area defined by Landsat scene path 100, row 81 within the 
Kingoonya Soil Conservation District. Shown also are the location of monitoring sites and 
Buckshot and Gina land systems which were used for land-system scale analysis. 

 

 

 

 



VEGETATION INDICES    -31- 
 
 
Table 3.2 Characteristics of Buckshot and Gina land systems (Pastoral Board, 2002) 

 
 
NOTE:  This table is included on page 31 in the print copy of the thesis 
held in the University of Adelaide Library. 
 

 
 
 
 
 

 
 

3.2.2 Field cover data 
 
The vegetation cover data used in this study were collected at permanent monitoring 

sites throughout the Kingoonya Soil Conservation District as part of lease assessments 

in 1990-1991: sites within Gina and Buckshot were recorded in October 1990 and 

April 1991, while sites across the district were recorded in October and December 

1990 and between March and June 1991. Rainfall in the study area was below average 

during these years (140 and 102 mm recorded at Bon Bon station in 1990 and 1991). 

Monthly rainfall during and immediately preceding the data collection periods was 

generally low, with some localised falls during January and May 1990 (Figure 3.4). 

 
 

 
 
 
 

 
Figu
area 
 
The 

with
 
NOTE:  This figure is included on page 31 in the print copy of the thesis 
held in the University of Adelaide Library. 

  

 

re 3.4 The distribution of monthly rainfall in Bon Bon station centrally located within study 
(Pastoral Board, 2002) 

field data comprised estimates of ground cover derived from step point transects 

 a minimum of 500 points or hits (Department of Water Land Biodiversity and 
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Conservation, 2002). Linear transects originated from the permanent monitoring sites, 

although the specific direction was not recorded. For this study the cover data were 

aggregated into three groups to compare with image indices: perennial plant cover, 

combined perennial and ephemeral plant cover, and total vegetation plus litter and soil-

covering cryptogam cover. Forty monitoring sites from across the district representing 

ten different land systems with varying land form, vegetation and soils were used to 

evaluate relationships of perennial plants and other cover components with image 

indices across the extent of the Landsat scene (landscape scale) (Figure 3.3), while eight 

and 19 sites were used to test relationships within Buckshot and Gina land systems. 

These two land systems were chosen for analysis because they are extensive, they have 

contrasting landscapes, and because they contained sufficient monitoring points to allow 

statistical comparisons of field and image variables. 

Total vegetation cover averages were similar for the two land systems, at 20% and 21% 

in Gina and Buckshot respectively, compared with a mean of 19% for all sites (Table 

3.3). Buckshot had higher ephemeral and grass cover (13%) and lower perennial cover 

(8%) than Gina and the regional average (12%). Litter and cryptogam cover were 

significant contributors to total ground cover at 23 and 30% for Buckshot and Gina, and 

27% for all sites, bringing total ground cover to 45-50%. 

Table 3.3 Vegetation cover components at landscape and land system scales 

3.2.3 Satellite image data 

The Landsat Thematic Mapper (TM) scene from 20 October 1991 (path 100, row 81) 

was used for this component of the study. Because field data collection spanned several 

Vegetation components 

 

% cover  
Study area  
Sample size= 40 

% cover  
Buckshot land 
system 
Sample size= 8 

% cover  
Gina land system 
Sample size= 19 

 Mean StdDev Mean StdDev Mean StdDev 

Perennial species 12.1 7.4 7.9 6.2 12.4 6.5 

Ephemeral & grass species 6.8 5.3 13.5 12.3 8 5.4 

Total vegetation (perennial, 
ephemeral and grass species) 

18.9 8.7 21.4 16.3 20.4 8.1 

Litter and cryptogams 27 14.5 22.7 9.3 29.5 10.1 

Total vegetation plus litter & 
cryptogams 

45.9 16.6 44.1 19.3 49.9 9.9 
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months in 1990-1991 it was not possible to acquire an image that coincided with all 

field data dates. The imagery captured similar dry conditions, however, with only 10 

mm of rain falling during the preceding four months. Preliminary radiometric 

calibration and georegistration of the image are described in Chapter 2. 

The vegetation indices detailed in Table 3.1 were calculated using the Landsat image 

bands. In addition to these indices, a new Stress Related Vegetation Index (STVI-4) was 

devised (Equation 3.1). This index is a variant of the plant-water sensitive group, and 

was designed to respond positively to increasing vegetation response, whereas the 

existing STVI indices decrease with increasing vegetation influence. It was calculated 

using Landsat red band 3 (0.63-0.69µm), near-infrared (NIR) band 4 (0.76-0.90µm) and 

mid-infrared (MIR) band 5 (1.55-1.75µm) with the following formula: 

STVI-4 = NIR-(RED×MIR) / (NIR+MIR)   (3.1) 

The index contrasts the higher NIR reflectance of vegetation with chlorophyll 

absorption in the red and water absorption in the MIR. Because of xeromorphic 

adaptations and low chlorophyll levels the visible red reflectance of arid plants may be 

high, but the MIR reflectance may be low in response to moisture content, particularly 

of semi-succulent chenopods. Therefore, in this study, the (NIR-(RED×MIR)) operation 

instead of (NIR-RED) that was used in the NDVI formula was used to highlight 

vegetation cover. By normalizing the (NIR-(RED×MIR)) operation over (NIR+MIR) 

instead of (NIR+RED) as in the NDVI formula, the effects of soil background were 

significantly reduced and highlighted the sparse vegetation cover in this arid 

environment. This normalization retains the ability of the index to minimize 

topographic and atmospheric effects. 

This index was also corrected using the Redness Index (Bannari et al., 1995). This 

index calculates the difference between red and green reflectance, normalised by their 

sum, defined by the following equation: 

Redness Index= (R-G)/(R+G)    (3.2) 

where 

R= the mean reflectance in the red channel 
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G= the mean reflectance in the green channel 

The method uses the slope “K” obtained from the correlation between RI and the 

vegetation index, in this case the STVI-4. This produced a corrected vegetation index, 

VI* as shown in the Equation 3.3: 

VI*= STVI-4 – KRI      (3.3) 

Each of the permanent monitoring sites was located on the rectified satellite image and 

average pixel values extracted for each of the vegetation indices within a 150 m radius 

from the point. Field data were collected from transects up to 750 m from the 

monitoring sites, although the direction of these was not recorded. Consequently there 

was some uncertainty about the precise image location and area that coincided with the 

field transects. To address this, the mean values from buffers of 100, 150, 300, and 400 

m were extracted around the monitoring points, and the comparative strength of 

relationships between the image and field data was evaluated. This preliminary 

assessment showed that the 150 m radius buffer yielded the strongest relationships with 

the field data. 

3.2.4 Data analysis 

The relationships between field cover data, aggregated into different categories, and 

vegetation indices were tested with linear regression analysis. Vegetation indices were 

used as independent variables and the dependent variables were different categories of 

field cover data. To investigate the influence of spectral variations on the vegetation 

indices, relationships between field cover data and vegetation indices were tested at two 

different scales: landscape scale, using the 40 monitoring sites across the whole Landsat 

scene, and land system scale with less spectral variation, using the 8 and 19 samples in 

Buckshot and Gina. 

3.3 Results 

The regression relationships between field cover data and vegetation indices across the 

Landsat scene are given in Table 3.4.  
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Table 3.4 Relationships between field cover (N=40) and vegetation indices at landscape 
scale across the whole Landsat scene.  Relationships significant at p< 0.05 are highlighted. 

 
At this scale, an area that includes 10 different land systems, all the slope-based 

vegetation indices were correlated significantly with field cover data, with the strongest 

relationships of NDVI with combined plant, litter and cryptogam cover explaining up to 

39% of the variation in field measurements. The PVI-3 and PD54 of the distance-based 

vegetation indices were also correlated significantly with total vegetation and total 

organic cover, explaining 18-20% of cover variation, but their relationships with 

perennial plant cover were not significant. Similar results were obtained with the 

orthogonal vegetation indices (SBI and GVI). The SBI, a weighted sum of the Landsat 

image bands, equating to total ground reflectance or albedo, correlated negatively with 

total ground cover, while the GVI showed a stronger positive relationship. The PVI-3 

Vegetation 
index group 

Vegetation 
Index 

% Cover 

Perennial 
plants 

% Cover 

Total 
vegetation 

% Cover 

Total vegetation & 
litter & cryptogams 

 R2 p R2 p R2 p 

SVI 0.22 0.002 0.26  0.001 0.37 0.001 

NDVI 0.22 0.002 0.27 0.001 0.39 0.001 

Group 1 

(Slope-based) 

SAVI-A 0.22 0.002 0.26 0.001 0.38 0.001 

PVI-3 0.04 0.208 0.14 0.019 0.20 0.003 

PD54 0.06 0.117 0.15 0.015 0.18 0.006 

Group 2 

(Distance-based) 

SSI -0.02 0.333 -0.01 0.387 -0.01 0.774 

SBI -0.09 0.061 -0.19 0.005 -0.22 0.002 Group 3 

(Orthogonal 
transformation) GVI 0.08 0.069 0.20 0.003 0.30 0.001 

STVI-1 -0.17 0.009 -0.26 0.001 -0.23 0.002 

STVI-3 0.28 0.001 0.12 0.029 0.01 0.917 

STVI-4 0.10 0.048 0.21 0.003 0.26 0.001 

MSVI-1 0.10 0.045 0.01 0.561 -0.09 0.063 

MSVI-2 0.04 0.225 -0.01 0.490 -0.24 0.001 

Group 4 

(Plant-water 
sensitive) 

MSVI-3 0.07 0.091 -0.01 0.964 -0.17 0.009 
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and PD54 predicted total vegetation cover and total organic ground cover, but the SSI 

from the same group of distance-based vegetation indices was not related significantly 

to any of the field cover components. The plant-water sensitive vegetation indices 

(group 4) showed variable relationships with field data. Among these indices, the Stress 

Related Vegetation Indices (STVI-1 and 4) were correlated significantly (R2=0.1-0.3) 

with all combinations of field cover components, although they explained relatively low 

proportions of the variance in the field measurements. Other vegetation indices in this 

group were less consistent predictors of field cover. 

Within the two land systems, as expected, there were stronger relationships between 

vegetation indices and field cover data than at the broader scale. Table 3.5 shows these 

relationships in Buckshot land system. The STVI-1 showed the strongest relationship 

with total vegetation cover (R2=0.88), followed by the SBI (R2=0.82) and STVI-4 

(R2=0.78). There were significant correlations between the slope-based indices and total 

vegetation cover (R2=0.6) but these indices were very poor predictors of perennial 

vegetation cover or total organic cover. In contrast to the regional analysis, all the 

distance-based and orthogonal transformation indices were correlated significantly with 

all categories of field cover data in this land system, although the strongest relationships 

were with total vegetation cover. However, the STVI-3 and MSVI versions 1, 2 and 3 

showed no significant correlations with field cover data.  

In Gina land system all the relationships were significant at the 95% confidence level 

with the exception of the slope-based indices that were poorly related to total ground 

cover (Table 3.6). The vegetation indices generally best predicted total plant cover, 

followed by perennial plant cover. The strongest relationships were between GVI and 

total vegetation cover (R2=0.74) followed by STVI-4 (R2=0.66). 

3.4 Discussion and conclusions 

The prediction of vegetation cover was stronger within the two land systems studied, 

rather than across the range of land systems within the region. Across the study area up 

to 39% of the variation in cover was explained, whereas within land systems the 

vegetation indices explained up to 90% of variation in cover measurements. The 

stronger predictive power of the vegetation indices within land systems is not 

unexpected, as soils and vegetation are usually more homogeneous and resultant 

spectral variations are lower at this scale. At regional or landscape scale the 
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relationships between cover and spectral response are more varied, and although they 

may be strong within land systems, are weaker when the land systems are aggregated 

together. 

Table 3.5 Relationships between field cover data (N=8) and vegetation indices in Buckshot 
land system. Relationships significant at p< 0.05 are highlighted. 

 
Across the region the vegetation indices best predicted total cover comprising the 

combination of perennial and ephemeral plants with surface plant litter and cryptogam 

crust, followed by the less abundant total plant cover and perennial plant cover, 

suggesting that it is the reduction in overall landscape reflectance brought about by the 

organic cover that is influencing the spectral indices. By contrast, the cover components 

predicted best within the two land systems were total plant cover and perennial plant 

Vegetation index 
group 

Vegetation 
Index 

% Cover 

Perennial 
plants 

% Cover 

Total vegetation 

% Cover 

Total vegetation 
& litter & 
cryptogams 

 R2 p R2 p R2 p 

SVI 0.02 0.325 0.57 0.030 0.24 0.215 

NDVI 0.03 0.314 0.58 0.020 0.26 0.196 

Group 1 

(Slope-based) 

SAVI-A 0.01 0.329 0.57 0.031 0.24 0.217 

PVI-3 0.71 0.008 0.78 0.003 0.61 0.022 

PD54 0.61 0.013 0.72 0.008 0.62 0.021 

Group 2 

(Distance-based) 

SSI -0.44 0.044 -0.61 0.022 -0.62 0.020 

SBI -0.71 0.008 -0.82 0.001 -0.63 0.018 Group 3 

(Orthogonal 
transformation) 

GVI 0.68 0.012 0.64 0.017 0.55 0.036 

STVI-1 -0.64 0.011 -0.88 0.001 -0.65 0.015 

STVI-3 -0.07 0.260 -0.08 0.500 -0.12 0.404 

STVI-4 0.71 0.008 0.78 0.003 0.62 0.019 

MSVI-1 -0.01 0.437 -0.01 0.914 -0.04 0.633 

MSVI-2 -0.39 0.057 -0.20 0.267 -0.20 0.264 

Group 4 

(Plant-water 
sensitive) 

MSVI-3 -0.16 0.178 -0.06 0.554 -0.11 0.421 
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cover, with the combined cover components predicted poorly. The strength of the cover 

prediction is noteworthy, since the total plant cover was only 20-21% and the perennial 

cover 8% and 12% in Buckshot and Gina. The poorer relationships between the spectral 

indices and total cover (plants, litter and cryptogams) within the land systems suggest 

that the indices are indeed responding to the reflectance characteristics of 

photosynthetic vegetation, rather than the simple “darkening” effect of cover on the soil. 

Table 3.6 Relationships between field cover data (N=19) and vegetation indices in Gina 
land system. Relationships significant at p< 0.05 are highlighted. 

 
Across the land systems the best vegetation indices were the slope-based group, which 

explained up to 39% of total cover variation, followed by some of the stress-related 

indices and the Green Vegetation Index (20-30% of cover variation). There was little 

Vegetation index 
group 

Vegetation 
Index 

% Cover 

Perennial plants 

% Cover 

Total 
vegetation 

% Cover Total 
vegetation & 
litter & 
cryptogams 

 R2 p R2 p R2 p 

SVI 0.37 0.005 0.65 0.001 0.12 0.146 

NDVI 0.36 0.006 0.64 0.001 0.10 0.168 

Group 1 

(Slope-based) 

SAVI-A 0.36 0.006 0.64 0.001 0.12 0.145 

PVI-3 0.49 0.001 0.61 0.001 0.47 0.001 

PD54 0.40 0.003 0.54 0.001 0.54 0.001 

Group 2 

(Distance-based) 

SSI -0.32 0.013 -0.22 0.040 -0.60 0.001 

SBI -0.53 0.001 -0.64 0.001 -0.32 0.004 Group 3 

(Orthogonal 
transformation) GVI 0.60 0.001 0.74 0.001 0.33 0.010 

STVI-1 -0.49 0.001 -0.60 0.001 -0.29 0.018 

STVI-3 -0.21 0.045 -0.22 0.004 -0.54 0.001 

STVI-4 0.51 0.001 0.66 0.001 0.41 0.001 

MSVI-1 -0.32 0.011 -0.46 0.001 -0.53 0.001 

MSVI-2 -0.24 0.035 -0.49 0.001 -0.37 0.006 

Group 4 

(Plant-water 
sensitive) 

MSVI-3 -0.30 0.015 -0.52 0.001 -0.48 0.001 
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difference between the performance of NDVI, the simple red/infrared ratio vegetation 

index (SVI) and the soil-adjusted vegetation index (SAVI-A) in predicting total cover at 

this scale. The distance-based indices performed less well at this scale, explaining only 

around 20% of total cover variation. These poor correlations result from the dependency 

of these indices on specific landscape spectral characteristics in the image. All distance-

based vegetation indices rely on the definition of a soil line, with vegetation cover 

estimated by the perpendicular distance from it in bi-spectral space. This soil line 

depends on soil type and colour and varies between different land systems. Thus, it 

would be poorly defined for the whole scene, which included 10 different land systems. 

In addition, these indices (e.g. PD54) require definition of a point of maximum 

vegetation cover in bi-spectral space, also a feature that is likely to vary across different 

land systems. 

Within Gina and Buckshot, many of the vegetation indices were correlated strongly 

with total plant cover, explaining 60-90% of the variation in the monitoring point cover 

measurements. Strong relationships were recorded for both land systems, despite their 

marked differences in soil type and colour and dominant vegetation species. The best 

image indices were from the orthogonal and stress-related (STVI) group, followed by 

the distance-based and slope-based indices. Predictions of total plant cover were 

somewhat stronger in Buckshot land system, even though it had lower perennial plant 

cover (8% vs 12%), and the soils are covered by iron-oxide coated “buckshot” gravels 

which considerably add to the visible red reflectance and may interfere with vegetation 

discrimination. However, the Buckshot predictions should be used with caution, since 

they were based on only eight sample sites. 

Of the orthogonal indices, both the Soil Brightness Index and the Green Vegetation 

Index  correlated strongly with all cover components, the Soil Brightness Index showing 

negative relationships with plant cover, as expected, because it is a weighted sum of the 

satellite image bands, recording brightness that is usually related to exposed soils. The 

orthogonal indices were somewhat poorer predictors of combined vegetation, litter and 

cryptogam cover, compared with vegetation cover alone. This may be because the 

spectral responses of dry plant litter and dark cryptogam crust are more likely to be 

found in the third component of the tasselled cap transformation rather than the first and 

second ones.  
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Responses of the stress-related indices were variable. The mid-infrared indices (MSVI 

1,2, and 3) were significantly correlated with all cover components in Gina, but were 

very poor predictors in Buckshot. Examination of the vegetation index images 

suggested that these indices were highly influenced by the variations in the soil 

background in this arid environment. However, the stress related indices, in particular 

STVI-1 and 4, were good predictors of cover in both land systems. The STVI-4, here 

applied with the soil colour correction, showed little improvement over existing indices 

of this type (STVI-1) in Buckshot, but performed better in Gina. Although the STVI-4 

did not perform statistically significantly better than STVI-1, it had positive 

relationships with vegetation cover and this made STVI-4 imagery easier to interpret 

than STVI-1. In addition, cover mapping using the red-corrected STVI-4 showed better 

discrimination of vegetation patterns. 

The distance-based indices were good predictors of total vegetation cover, and to a 

lesser degree of perennial vegetation cover within the two land systems. Within a land 

system soil types are more consistent and better represented by a single soil line in a bi-

spectral space. As a result, distance from the soil line was a better indicator of 

vegetation cover. Several of distance-based vegetation indices (e.g. PD54) have been 

used successfully as indicators of perennial plant cover which has important role in land 

condition assessment and monitoring, irrespective of plant greenness. The correlations 

here confirm their utility within land systems, but not across broader landscapes. 

In considering predictive relationships between image spectral indices and the field 

cover measurements at the monitoring points, it must be remembered that the cover data 

was collected over several months, and that the imagery has captured landscape 

conditions at one time during this period. The Gina and Buckshot field data were 

collected in two months, although they were six months apart, while the monitoring 

points across the whole region were measured over a nine-month period. Consequently 

temporal variation in vegetation cover and its photosynthetic status, resulting from 

continuing grazing and from response to changing weather and rain, must be considered 

as contributors to variability in the field data. In addition, slight mismatch between the 

precise area sampled in the field and the pixels extracted from the imagery could also 

potentially reduce the strength of relationships between the two data sets. The field 

cover data was collected from transects radiating up to 750 m from the monitoring 

points, while the image values came from areas of approximately 7 ha around the points 
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in order to include corresponding location. Finally, the field measurements were made 

by several different field workers, adding another source of variation to the data. For 

example, it has been shown that there may be up to 20% difference in measurements of 

plant cover made by experienced field workers, using objective methods similar to those 

made at the pastoral lease monitoring sites (Friedel and Shaw, 1987b; Wilson et al., 

1987). 

The findings of this study have several implications for the use of multispectral 

vegetation indices in vegetation cover assessment and monitoring in this environment. 

Firstly, it is clear that predictive relationships can be established between image-derived 

indices and vegetation cover assessed by familiar field techniques. While total organic 

ground cover and total plant cover can be quantified by some image indices, it is most 

significant that perennial plant cover can be predicted, since this is the vegetation that is 

most important in assessment of rangeland condition and monitoring of long term trend. 

This means that image indices could be used to determine vegetation cover and 

document its distribution across broad landscapes, providing more information about 

spatial variation than is possible with current ground-based methods. Image-derived 

maps can show variations in plant cover within paddocks, properties and land systems, 

and can direct grazing and land management. Image-based assessment of vegetation 

cover also opens the way for more frequent monitoring of land condition at land system 

level. At present the vegetation cover at some of the permanent monitoring points is 

surveyed at infrequent intervals, while the overall property and district condition is 

assessed on a 14 year cycle, as required by the Pastoral Land Management and 

Conservation Act. More frequent assessment and monitoring using conventional field 

methods would be prohibitively expensive. However, image-based assessment could be 

performed more frequently and cheaply to track short and longer-term trends in land 

condition. 

Secondly, prediction of vegetation cover from image indices is best approached on a 

land system basis, rather than across broader landscapes comprising a wider range of 

terrain, soils and vegetation. Comparisons of cover derived from image indices can be 

made within land systems, but should be used with caution across different land 

systems, since the relationships between plant cover and image indices vary with 

vegetation and soil types. Stratification into land systems should be undertaken if 

vegetation cover is to be quantified from image indices. For similar reasons, such 
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stratification has been an integral part of the image-based grazing-gradient approach to 

pastoral land condition assessment that has been implemented in northern arid 

rangelands of South Australia and in Central Australia (Bastin et al., 1993a; Bastin et 

al., 1998). 

One of the main objectives of this component of the research was to identify vegetation 

indices that were the best predictors of vegetation cover, and hence land condition, in 

the land systems of the Kingoonya Soil Conservation District. Criteria that make an 

image-based vegetation index suitable for regional monitoring are strong relationships 

with perennial cover in the vegetation types of the district, ability to predict this cover 

within land systems and across broader regional landscapes, and an objective means of 

computation to ensure consistent application across different images and dates. 

Although simple red-infrared contrast indices, in particular NDVI, have been widely 

used with success in arid land studies throughout the world, the results confirm that they 

are not the best indices for recording perennial plant or total plant cover within the Gina 

and Buckshot chenopod shrub-dominated land systems of southern Australia. However, 

this study found they were the best predictors of combined plant, plant litter and 

cryptogam cover at a broad landscape scale that included a diversity of land systems 

across the 34,225 km2 study region. This suggests that NDVI and simple red-infrared 

indices are useful for general cover monitoring regardless of more localised soil and 

vegetation variation. 

Although distance-based indices, in particular the PD54, have been used with success in 

other Australian rangeland studies, they were not the strongest predictors of perennial or 

total plant cover in the land systems studied, even though these were dominated by 

chenopods and other perennial shrubs, and had relatively low ephemeral plant cover. A 

further difficulty with distance-based vegetation indices that inhibits their use in broad-

scale repeated monitoring programs is the need to subjectively define a soil line and 

vegetation dominated pixels in bi-spectral space. This process requires considerable 

expertise in image analysis, is subjective and may lead to inconsistencies in application 

of the index. 

Of the indices evaluated, the Stress Related Indices 1 and 4 (STVI-1, 4) performed best 

in relation to the criteria of this study. They showed high to very high correlations with 

vegetation cover within land systems and significant relationships with cover at 
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landscape scale. Generally, they best predicted combined perennial and ephemeral plant 

cover, as did O’Neill (1996) in a vegetation community dominated with chenopod 

shrublands in western New South Wales. However, they were also good predictors of 

perennial vegetation and of total ground cover. Their consistency of performance at 

different landscape scales suggests that these indices are less sensitive than others to 

variations in soil and vegetation within the Kingoonya District. An additional strength 

of these indices is that they are calculated using arithmetic combination of Landsat TM 

image bands, and hence do not require subjective interpretation of soil and vegetation 

spectral expressions. Consequently, they are well suited for operational programs of 

broad-scale land cover monitoring. 

The results of this study provide a strong foundation for use of vegetation indices as an 

adjunct to field methods for assessment of land condition in southern Australia with 

stratification at land system level. Stress-related Vegetation Indices that use 

multispectral image bands in the red, near-infrared and mid-infrared appear to be good 

predictors of vegetation cover as measured by traditional monitoring methods at both 

land system and landscape scales within the Kingoonya District. Image-based 

monitoring can provide more information about vegetation condition and variation in 

space and time, and is more cost-effective than field methods. Image maps can provide 

a means of extrapolating from the current network of monitoring point locations, thus 

could potentially supplement field-based land condition assessments.  
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4 VEGETATION MONITORING AND LAND CONDITION 

ASSESSMENT  

4.1 Introduction  

Monitoring vegetation cover is an essential step in land management, because it is the 

single most effective indicator for preventing land from degradation. Accurate 

monitoring of this component provides information that helps to understand climatic 

and human impacts on the land condition. Monitoring is thus a very useful tool for land 

holders, government and different non-government organizations because it helps to 

detect potential problems and make better decisions for the future.  

Ground-based monitoring techniques used currently in arid lands are too inefficient and 

expensive for broad-scale applications. Interpolation of data to cover areas beyond 

sample sites is difficult because of the spatial and temporal variability of vegetation in 

arid environments. Satellite remote sensing with its broad coverage, frequent repetition 

and cost-effectiveness is apparently a clear choice.  

Monitoring land cover using satellite imagery has been recognized since the launch of 

the first earth resources technology satellite (ERTS-1) in 1972. The NOAA AVHRR 

NDVI imagery with its low spatial resolution (nominally 1.1 km) and high temporal 

frequency have been used widely for monitoring broad areas. For example, Tucker et al. 

(1983) used a sequence of AVHRR NDVI imagery to monitor green vegetation at  

continental scales (see also Myneni et al., 1997; Hountondji et al., 2006).  Sequences of 

the NDVI imagery have been used also for monitoring long-term trends in the 

rangelands of Australia at state and national levels (Queensland Department of Natural 

Resources, Mines and Water 2006). Landsat imagery with its moderate spatial 

resolution (30 m) is another source of satellite data that has been used extensively for 

long-term monitoring purposes. Most of the Landsat-based monitoring programs in 

Australia such as Australia Greenhouse Office National Carbon Accounting System 

project and Victoria River District project have been reviewed by Wallace et al. (2006). 

The Victoria River District (VRD) project was conducted by the Australian 

Collaborative Rangeland Information System (ACRIS) and the Northern Territory 

Government in the rangelands of Victoria River pastoral district in the Northern 

Territory. The project mapped vegetation changes successfully using a 20 year sequence 
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of Landsat cover index imagery (Karfs and Trueman, 2005). VegMachine is another 

monitoring project which uses time-series of imagery from different sensors for 

monitoring long-term trends in Australian rangelands. It is under way currently in the 

Northern Territory, southern Queensland and northern Western Australia (Karfs et al., 

2004). 

In addition to long-term monitoring using sequences of satellite imagery, a number of 

studies have used satellite imagery to monitor vegetation cover and land condition 

during specific periods (Graetz et al., 1983; Chavez and Mackinnon, 1994; Peters and 

Eve, 1995; Edwards, 2001; Al-Bakri and Tayor, 2003; Murwira and Skidmore, 2006; 

Johansen et al., 2007). Foran and Pearce (1990) applied the NOAA NDVI imagery to 

arid rangelands of central Australia and found that by using imagery from suitable dates 

it is possible to detect seasonal changes in vegetation cover. Bastin et al., (1998) used 

the grazing gradient approach to determine vegetation trends with increasing distance 

from stock watering points in dry and wet conditions. The assumption was that if the 

vegetation was not restored after a good rainfall grazing has had a deleterious effect on 

land condition. The result of the study showed that vegetation response to rainfall can 

be used as an appropriate indicator of land condition.  

To detect changes in vegetation cover, different change detection techniques can be 

applied to cover index images (i.e. simple spectral bands or vegetation indices). Such 

change detection techniques that use cover indices from different dates to detect trends 

in vegetation cover have been reviewed widely in the literature (Singh, 1989; Yool et 

al., 1997; Johnson and Kasischke, 1998; Mas, 1999; Rogan et al., 2002; Coppin et al., 

2004; Dewidar, 2004; Lu et al., 2004; Nackaerts et al., 2005). Of the change detection 

techniques mentioned in the literature, visual interpretation of true and false colour 

composites, image differencing, image ratios, image regression, change vector analysis, 

and principal component analysis have been used widely. Each technique has its 

advantages and disadvantages, thus there is no single method that is best used for 

monitoring purposes. Image differencing is however one of the most popular change 

detection techniques. In this method two spatially registered cover index images of two 

different times are subtracted to create a new difference image that represents the 

changes between those two dates. Pixels that show extreme change lie in the tails of the 

histogram of the difference image and pixels that show no change lie around the mean 

(Figure 4.1). Amongst the different methods, image differencing is simple, easy to 
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interpret and is one of the practical techniques that is used commonly for vegetation 

cover change detection (Chavez and Mackinnon, 1994; Lu et al., 2004). I adopted this 

approach for analysis of vegetation change with Landsat imagery. 

 

 

 

 

 

Figure 4.1 Histogram of values differencing resulting from two dates of imagery (date 1 
values subtracted from date 2 values)  

This component of my research aimed first to detect changes in vegetation cover in the 

Kingoonya Soil Conservation District between 1991 and 2002 by using Landsat 

vegetation indices that showed strongest correlations with vegetation cover (Chapter 3). 

The second aim was to compare field measurements and vegetation indices as different 

means of documenting changes in land cover. My third aim was to compare the Land 

Condition Index classes (Chapter 2) with vegetation indices to evaluate whether 

vegetation indices can be used to assess rangeland condition. 

4.2 Methods 

This section of the research, like Chapter 3, was conducted in the Kingoonya Soil 

Conservation District. Detailed information about characteristics of the environment of 

the study area can be found in Chapter 2. 

4.2.1 Field data 

Vegetation cover and land condition data used in this component of the study were 

collected by the Pastoral Management Branch in 1991 and White and Gould in 2002 at 

the permanent monitoring sites (Chapter 2). These data were compared with image data 

to see whether the Landsat imagery can detect changes in field cover data and land 

condition over time. Of the sites assessed in these field studies, 40 fell within the study 

area covered by the Landsat scene (Figure 4.2). Comparisons between the LCI from 
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1991 and Functionality Index from 2002 at these sites showed 5 sites improved in 

condition, 7 sites degraded and 28 sites remained unchanged. 

 

  

 

 

 

 

 

 

 

Figure 4.2 The distribution of permanent monitoring sites in the Kingoonya district 

The second round of assessment of all monitoring sites in Kingoonya and Gawler Soil 

Conservation districts began in late 2004. At these sites, the staff of the SA Pastoral 

Program measured perennial vegetation density using the Jessup transect. In addition to 

plant density, they determined land condition using the LCI at random sites on each 

station or property (Chapter 2). In contrast with the first round assessments in 1991, the 

location of all sites was recorded using a Global Positioning System (GPS). This makes 

it possible to compare field scores of the LCI with image indices for corresponding 

locations. Figure 4.3 shows the distribution of LCI sites in the Kingoonya District. Of 

LCI sites recorded in this district, 885 sites fell within the study area. The LCI scores 

recorded at these sites were compared with vegetation indices to see whether these 

indices were good indicators of land condition. 
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Figure 4.3 The distribution of LCI sites in the Kingoonya district 

Determination of land condition at a site using the LCI involves (1) identification of 

pasture type, and (2) determination of land condition score (LCI-1 (poor condition), 

LCI-2 (fair condition), and LCI-3 (good condition)) based on reference descriptions and 

photographs in the LCI manual (Department of Water Land Biodiversity and 

Conservation, 2002). Major pasture types in the study area are chenopod shrublands, 

low woodlands and Mount Eba country (plains covered by gravels and dominated with 

shrubs such as chenopod shrubs). Each of these pasture types was stratified into 

different sub-types according to the species composition and land forms in which they 

occurred. Species composition and abundance and also soil surface condition are the 

main land condition indicators that are used to determine the LCI classes. The criteria 

for determining the classes of LCI in an example pasture component within each major 

pasture type is given in Table 4.1. 
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Table 4.1 Criteria for determining land condition in examples of pasture components in 
dominant pasture types within Kingoonya Soil Conservation District (Department of 
Water Land Biodiversity and Conservation, 2002). CSR= crown separation ratio, a 
measure of plant density. 

4.2.2 Satellite image data 

I used the 1991 and 2002 TM and ETM+ scenes from path 100, row 81 to assess 

vegetation changes over an eleven-year period. In addition, the February 2005 TM 

Pasture type Pasture component Condition class descriptions 
Chenopod 
shrublands 

Atriplex vesicaria 
/Maireana astrotrica 
on treeless plains 

3: Shrubland of A. vesicaria and M. astrotrica, 
dense to rather spare (CSR 4-6). Some M. triptera, 
M. pyramidata and M. aphylla commonly occur also 
in parts. Scalds appear natural (no dead bush 
remains). 

2: Stands of M. astrotrica remain (CSR 1-4); 
however no A. vesicaria apart from isolated or 
heavily grazed plants. Sclerolaena spp more 
abundant than in 3; some accelerated (man-induced) 
scalding evident. 

1: No A. vesicaria, M. astrotrica also absent apart 
from isolated remnants (CSR 1). Reduced stands of 
M. triptera, M. pyramidata etc, may remain. 
Extensive Sclerolaena spp; scalding and / or drifting 
and dead bush remains.  

Low woodlands Acacia ramulosa/A. 
aneura on sandy 
countries  

3: No obvious browse line on A. anueura trees. 
Regeneration occurring of Acacia ramulosa/ or A. 
aneura, perennial grass cover includes palatable 
species e.g. Monachather sp. Palatable shrubs intact. 
No increase of unpalatable shrubs. 

2: No A. aneura regeneration; excising trees grazed. 
Reduction in palatable grasses, with an increase in 
unpalatable annuals. Palatable shrubs missing or 
damaged. Noticeable increase in unpalatable shrubs 
and fire bushes, or general reduction in plant cover. 

1: A. Aneura old and senescent, or mostly dead. No 
palatable perennials within grazing reach. Eragrostis 
eriopoda the only perennial grass remaining. Often 
significant woody weed encroachment of 
unpalatable shrubs. Annual growth dominates, 
especially Aristida sp., Salsola kali, melons. 

Mt. Eba country Mt. Eba gibber plains 
(plains with fine 
black and brown 
gibbers or sometimes 
coarser); groves of 
Acacian aneura and 
A. tetragonophylla 

3: Acacian aneura (where present) regenerating, 
palatable shrubs ungrazed. These include Cassia 
oligophylla and Maireana astrotrica. Annual growth 
of Aristida contorta with few Sclerolaena spp. 
Natural bare gibber areas occur in this country. 

2: Acacian aneura regeneration absent or grazed 
back; palatable shrubs grazed back or missing; 
annual grasses with significant Sclerolaena spp and 
cannonballs present. 

1: Country bare, with dominance of Sclerolaena spp 
or cannonballs, increase in A. tetragonophylla and 
Ptilotus obovatus. Any A. aneura present old and 
senescent with no regeneration. 
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scene for the same area was used to examine the potential of vegetation indices for 

differentiating LCI scores that were collected in 2005. 

 
Monthly rainfall distribution prior to the 1991 and 2002 images is shown in Figure 

4.4. According to the data recorded at Bon Bon station between January and April 

2005, approximately 13.5 mm fell in February 2005, prior to the February 2005 image 

date. 

 
 
NOTE:  This figure is included on page 50 of the print copy of the 
thesis held in the University of Adelaide Library. 
 

 
 
 
 
 
 
Figure 4.4 The monthly rainfall distribution in Bon Bon station in 1991, 2001 and 2002 
(Pastoral Board, 2002) 
 
4.2.3 Vegetation change analysis 
 
Analysis of different vegetation indices in relation to field cover measurements in 

1991 (Chapter 3), showed that the STVI-1 and STVI-4 were the best indices for 

predicting vegetation cover in the study area. Because the positive correlation of 

STVI-4 with vegetation cover was easier to interpret than the negative correlations of 

STVI-1, the STVI-4 was selected to investigate changes in vegetation cover over 

time. 

 
The STVI-4, corrected with the Redness Index (Equation 3.3), was applied to the 

1991 and 2002 images and then image differencing was used to highlight changes in 

vegetation cover. A significant problem with image differencing is selecting suitable 

thresholds to identify the change areas. Two methods for selecting thresholds have 

been used: 1) manual trial-and-error; and 2) statistical procedures (Khoudiedji, 1998; 

Lu et al., 2004; Singh, 1989). The statistical method bases change thresholds on 

standard deviations of values around the mean, although there is no general rule about 

the number of standard deviations to use. In this study, I found that the mean plus or 

minus one standard deviation identified extreme but not subtle changes in vegetation 

index, 
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therefore I used manual trial-and-error to distinguish all vegetation changes in the 

region.  

The agreement between changes in image and field cover data and also the agreement of 

changes in the LCI classes with the image and field data was assessed using the Kappa 

statistical test at 40 monitoring sites.  This test compares the strength of agreement 

between different categories (in this study, vegetation cover, LCI and image data) with 

that expected by chance. Kappa statistics or coefficients range from 0 to 1. A Kappa 

coefficient of less than 0.2 means slight agreement, Κ é=0.21-0.4 is interpreted as fair 

agreement, Κ é=0.41-0.6 means moderate agreement, Κ é=0.61-0.8 means substantial 

agreement, and Κ é=0.81-1 means near perfect agreement (Landis and Koch, 1977). The 

suitability of image data for predicting quantitative changes in vegetation was 

investigated also using linear regression analysis. For the purpose of this study, the 

vegetation cover data collected by step-point in 1991 and 2002 was aggregated into 

three groups including perennial plant cover, combined perennial and ephemeral plant 

cover (total vegetation cover), and total vegetation plus litter and soil-covering 

cryptogam cover (total organic cover). Image data were extracted using a 150 m buffer 

around permanent monitoring sites to enable comparison with corresponding field data.  

To extract vegetation values around LCI observation sites the same buffer was applied 

to the 2005 STVI-4 image and an independent-samples t-test was used to test for 

significant differences in the STVI-4 values in different LCI classes. To examine 

whether LCI classes can be discriminated using vegetation indices, analyses were 

applied in two steps: firstly all the sites with the same LCI class were grouped 

regardless of pasture type (non-stratified vegetation cover); secondly the LCI classes 

were stratified according to pasture type into chenopod shrublands (e.g. saltbushes and 

bluebushes), low woodlands (e.g. mulga) and Mount Eba country which included black 

and brown gibbers with different vegetation types (e.g. mulga, dead finish and 

chenopods). The same stratification was applied to the STVI-4 values for comparison 

with LCI. 
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4.3 Results 

4.3.1 Monitoring vegetation cover over time using STVI-4 vegetation index 

Figures 4.5 and 4.6 show STVI-4 vegetation index values across the study area in 1991 

and 2002, respectively. As can be seen from the Figures, this index shows different 

values in each land system due to differences in vegetation, soil and land form types. 

Very low index values relate to bare soil, mostly white shales (Figure 4.5 (a)) that 

dominate in the north, especially in Painted land system, and in the north east of the 

study area (e.g. north of Roxby Downs land system). Relatively high vegetation index 

values in the centre of the image represent high vegetation cover, mostly tree covers, in 

sand plains and watercourses that are associated with black gravels or buckshots (Figure 

4.5 (b)). Visual image inspection and also field checks showed that the STVI-4 appears 

to overestimate the amount of vegetation cover in buckshot country. 

Changes in the vegetation cover have been highlighted by subtracting 1991 vegetation 

index values from 2002 values (Figure 4.7). It appears that increased vegetation cover in 

the east and north east of the difference image (e.g. Roxby Downs land system) mostly 

corresponds with areas where rain fell prior to the 2002 image acquisition. Parakylia 

station which is located in this region recorded 47.6, 29 and 42 mm in October, 

November and December 2001 (Pastoral Board, 2002). This was almost more than 1.7 

times more than the rainfall in corresponding months at Bon Bon station 88 km to the 

west, as a result, it seems that ephemeral plant growth in these areas was much greater 

than other parts of the study area and has caused an increase in the STVI-4 values. 

For further investigation of vegetation changes in response to land management, a 

subset of the difference image of the southern part of the study area is presented in 

Figure 4.8. In this subset difference image, changes in vegetation cover can be seen 

easily within and along some of the paddock boundaries. These boundaries provide 

clear evidence for management related differences in vegetation cover.  

To illustrate vegetation changes within paddocks, three regions that showed the highest 

changes in vegetation index values are shown including area 'a' (a group of paddocks), 

and paddock 'b' and 'c' (Figure 4.8). These paddocks are located in Bon Bon and Mount 

Vivian stations in the Vivian land system. This land system comprises low dunes and 

sand sheets on calcareous plains. The dominant vegetation types include open 
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woodlands of mulga and western myall and chenopod shrublands of bluebushes and 

saltbushes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5 Spatial variability of vegetation cover (STVI-4 values) in 1991. Photographs 
and image locations: a) exposed hills with white shale in Painted land system; b) 
watercourse of mulga with black gravels in Buckshot land system; c) salt lake masked out. 
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Figure 4.6 Spatial variability of vegetation cover (STVI-4 values) in 2002 

Area 'a' shows a high increase in STVI-4 values, suggesting that vegetation cover 

increased over the eleven-year period between images. The Pastoral Branch reports that 

all water points were removed (between the two image dates) in these paddocks in 

response to degradation caused by high grazing pressure (Pastoral Board, 2002). It 

appears that the removal of stock has allowed some vegetation regeneration in these 

paddocks.  

Very high increase in STVI-4 values was also observed in the south-east corner of the 

image in paddock 'c'. The main reason for this increase was the regrowth of the 

vegetation cover after fire that occurred prior to the 1991 image. Because of the 
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remoteness of the area however, there are no official records of the exact date or extent 

of this fire (Department for Environment and Heritage, 2007).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.7 Spatial variability of changes in vegetation cover (STVI-4 values) from 1991 to 
2002. 1991 STVI-4 was subtracted from 2002 STVI-4, thus high values indicate increase 
in vegetation cover. 

In contrast with the paddocks in area 'a' and paddock 'c', paddock 'b' (east of area 'a') 

showed a decrease in STVI-4 values. This decrease can be seen clearly at the boundary 

shared between paddock 'b' and area 'a'. This indicates that management has been the 

main reason for this vegetation decrease, rather than differences in rainfall. This may be 
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the result of overgrazing in paddock 'b'. As can be seen from the difference image other 

areas showed varying levels of increase and decrease in STVI-4 values. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.8 Vegetation change (1991 STVI-4 values subtracted from 2002 values) at 
paddock scale in three selected paddocks. 

4.3.2 Comparisons of field cover data and STVI-4 vegetation index for monitoring 

vegetation changes  

1991 and 2002 records of aggregated cover data for 40 monitoring sites are compared in 

scatter plots in Figures 4.9 (a), 4.9 (b), and 4.9 (c). The diagonal dashed line indicates 
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the status of no change in cover. The Figure shows that a large number of sites had 

considerable decreases in cover in all components. Some of the sites showed very little 

or no change and some sites had increases in cover. Perennial plants had the lowest 

range of changes from 1991 to 2002 in comparison with other cover components. 

Perennial vegetation cover increase of up to 5% was recorded at a few sites, and 

decreases of up to 10% at some sites. In comparison, total vegetation cover decreases of 

up to almost 20% and total ground organic cover decreases of up to 45% were recorded 

at some sites. This indicates that perennial plants are less affected by seasonal climate 

effects and can be used as a good indicator of land condition. Decreases in perennial 

and ephemeral plants (total vegetation) and total vegetation plus litter and cryptogams 

(total organic cover) were much higher than perennial plants. These decreases are 

mainly related to the inclusion of ephemeral plants and cryptogams that are influenced 

by seasonal conditions.  

Changes in the STVI-4 vegetation index generally followed almost the same trends as 

field cover components (Figure 4.9 (d)). Eight sites showed an increase, some sites with 

very low changes and the rest of the sites showed large decreases in STVI-4 values. As 

can be seen from Figure 4.9 (d), the index shows a narrower range of deviation from no 

change from 1991 to 2002. More sites showed an increase in STVI-4 values (eight sites) 

than in total plant cover (four sites, Figure 4.9 (b)) and total organic cover (six sites, 

Figure 4.9 (c)) but less than the number of sites with increase in perennial plants (13 

sites, Figure 4.9 (a)). Figure 4.9(d) shows that one of the sites has had very low 

vegetation cover in both dates. The reason is that this site is located in a poorly 

vegetated area, mostly dominated by white shales in the north east of the study area in 

Roxby Downs land system. 

Of the 40 sites, 27 sites showing decrease in perennial cover in the field data also 

showed decrease in the vegetation index, and six of the 13 sites showing increase in 

perennial plants also showed increase in the vegetation index. Likewise for the total 

plant cover and total ground cover in comparison with vegetation index, corresponding 

decreases in the vegetation index were recorded in most of the cases, although increases 

in both cover components and vegetation index were lower compared with perennial 

cover. 
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STVI-4 vegetation index change from 1991 to 2002 are presented in Figure 4.10. As the 

Figure shows, a large number of sites fell within 5% variation in both field cover and 

image data, except in total ground cover in which only six sites showed no change over 

time. 

 

 

 

 

  

 

 

 

 

 

 

 

Figure 4.10 Comparisons between changes in STVI-4 and different vegetation cover 
components from 1991 to 2002 (no change shaded grey) 

To assess the extent of agreement between STVI-4 vegetation index quantitatively, field 

cover components, and LCI data in the change detection, they were grouped into three 

classes including increases, no changes and decreases. The result of applying the Kappa 

test to the classified data showed there was not a high agreement between changes in 

STVI-4 and vegetation cover classes. The STVI-4 change classes had a slight agreement 

with all cover components. The STVI-4 index change classes had the best agreement 

with total vegetation cover change classes (Κ é=0.1), followed by total ground cover 

change (Κ é=0.07) and perennial plant cover change (Κ é=0.01). The level of agreement of 

the change in LCI classes with change in vegetation cover and STVI-4 variables 
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appeared to be slightly better than STVI-4 and ground cover data (Table 4.2).  Changes 

in LCI classes showed the highest agreement coefficient with changes in STVI-4 classes 

(Κ é=0.14). It had almost similar agreement with total vegetation cover (Κ é=0.13), 

followed by perennial plant cover (Κ é=0.1) and its lowest agreement was with total 

ground cover (Κ é=0.08). 

Table 4.2 Changes in Land Condition Index (LCI) in comparison with changes in 
different cover components and STVI-4 vegetation index from 1991 to 2002 

Land Condition Index (LCI) 

class Increases No change Decreases Total 

Increases 0 3 0 3 

No change 4 18 3 25 

Decreases 1 7 4 12 

P
er

en
ni

al
 p

la
nt

s 

Total 5 28 7 40 

Land Condition Index (LCI) 

Category Increases No change Decreases Total 

Increases 0 0 0 0 

No change 3 13 1 17 

Decreases 2 15 6 23 

P
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Total 5 28 7 40 

Land Condition Index (LCI) 

class Increases No change Decreases Total 

Increases 1 2 0 3 

No change 1 4 0 5 

Decreases 3 22 7 32 
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Total 5 28 7 40 

Land Condition Index (LCI) 

class Increases No change Decreases Total 

Increases 1 0 0 1 

No change 2 19 4 25 

Decreases 2 9 3 14 

ST
V
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Total 5 28 7 40 

 
Kappa coefficients revealed that changes in the STVI-4 vegetation index had a slight 

agreement with changes in cover components and LCI classes. To examine the 

suitability of this vegetation index for predicting quantitative changes in vegetation 
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components, the changes in index values were regressed against changes in cover 

components from 1991 to 2002. As expected, the linear relationships were not strong 

because they were based on 40 sample sites located in different land systems. Changes 

in the STVI-4 showed very poor relationships with changes in perennial plant cover 

(R2=0.02) followed by total vegetation cover (R2=0.06). The predictive power of the 

STVI-4 change index was much higher when compared with changes in total organic 

cover (R2=0.30).  

4.3.3 Comparisons of LCI classes and STVI-4 vegetation index 

In this section the suitability of the STVI-4 applied to the 2005 Landsat TM image as an 

indicator of land condition was examined. The means of STVI-4 for all pasture types in 

different LCI classes are given in Table 4.3 and Figure 4.11. As it can be seen from the 

Figure, the STVI-4 has a higher mean value in LCI-2 and LCI-3 than LCI-1, suggesting 

vegetation cover in these classes is greater than LCI-1. LCI-3 sites which would be 

expected to have greater vegetation cover showed a lower mean STVI-4. The standard 

errors indicate however that vegetation index values are very highly variable due to 

vegetation variations within the LCI classes. The t-test comparisons of mean STVI-4 in 

different LCI classes showed that this index was unable to separate different LCI classes 

when vegetation cover was not grouped according to pasture types (p=0.129). 

Table 4.3 Results of t-tests for 
differences between mean STVI-4 in 
different LCI land condition classes   

 

 

 

 

 

 

 

 

 

4.11 Mean STVI-4 with standard  
error bars in different LCI land 
condition classes 

In the second analysis, the STVI-4 values were grouped in each LCI class according to 

the pasture type that dominated in the study area (Table 4.4). By stratifying pasture 

LCI 
classes 

No. of  
sample 
sites 

STVI-4  
comparisons 

P-value 

1 (poor) 156 LCI-1 vs LCI-2 0.129 

2 (fair) 266 LCI-1 vs LCI-3 0.726 

3 (good) 463 LCI-2 vs LCI-3 0.178 
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type, the STVI-4 followed the same trend as the LCI results (Figure 4.12): the STVI-4 

index increased with the improvement of the land condition from poor to a fair to good. 

The t-tests revealed that the STVI-4 values between LCI-1 and LCI-3 were significantly 

different in all the pasture types (p<0.05). The STVI-4 also showed significant 

differences between all LCI classes in the low woodlands (p<0.05). However, this index 

did not differentiate between LCI-1 and LCI-2 in chenopod shrublands and nor between 

LCI-2 and LCI-3 in Mt. Eba country.  

Comparisons between standard errors in stratified and non-stratified pasture types 

generally showed that the STVI-4 had low variations within and across LCI classes in 

stratified pasture types compared with combined vegetation types.  

Table 4.4 Results of t-tests for mean STVI-4 in different LCI classes based on pasture type 

 

 

 

 

 

 

 

 

 

 

 

4.4 Discussion and conclusions 

Vegetation indices as a remote sensing technique have been used widely for monitoring 

changes in vegetation cover. To evaluate the suitability of these indices in the southern 

rangelands of South Australia the Stress Related Vegetation Index (STVI-4) was 

Chenopod shrublands 

LCI classes No. of sample sites STVI-4 comparisons P-value 

1 (poor) 49 LCI-1 vs LCI-2 0.134 

2 (fair) 234 LCI-1 vs LCI-3 0.007 

3 (good) 233 LCI-2 vs LCI-3 0.052 

Low woodlands 

LCI classes No. of sample sites STVI-4 comparisons P-value 

1 (poor) 82 LCI-1 vs LCI-2 <0.001 

2 (fair) 181 LCI-1 vs LCI-3 <0.001 

3 (good) 29 LCI-2 vs LCI-3 0.049 

Mt. Eba Country 

LCI classes No. of sample sites STVI-4 comparisons P-value 

1 (poor) 156 LCI-1 vs LCI-2 0.096 

2 (fair) 266 LCI-1 vs LCI-3 0.047 

3 (good) 463 LCI-2 vs LCI-3 0.152 
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applied to Landsat images to detect vegetation changes in this area. Results showed that 

STVI-4 may be used as an appropriate vegetation index for identifying trends in 

vegetation cover.  

 

 

 

 

  

  

 

Figure 4.12 Results of STVI-4 with standard error bars in different LCI classes based on 
pasture type  

Changes in vegetation cover across the study area appeared to be the results of seasonal 

effects and differences in paddock management. Although the 2002 image was selected 

to represent the dry season and reduce the influence of ephemeral plants, the rainfall for 

the few months prior to this image was greater than that preceding the 1991 image. 

Visual inspection showed that this increased rainfall had little effects on most parts of 

the study area except in the east and north east where the rainfall was approximately 1.7 

times greater than Bon Bon station in the southern part of the region. High STVI-4 

values in these regions due to the presence of ephemeral plants were clearly observed. 

Examination of the STVI-4 difference image in the southern region showed clear 

evidence that changes in vegetation cover within and along some paddocks were the 

result of alterations in land management and that rainfall had little effect on the changes 

in land cover. The management influence on vegetation cover in this region was 

particularly evident in areas around some water points which displayed an increase in 

STVI-4 values after removal of grazing. The STVI-4 difference image also highlighted 

the regrowth of vegetation cover in the southeast part of the study area where a bushfire 

occurred prior to 1991 image.  

In spite of the good performance of STVI-4 in the detection of vegetation changes over 

time, the level of statistical agreement between changes in this vegetation index and 

different vegetation cover components was not high. All the Kappa coefficients between 
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STVI-4 and cover data were less than 0.2, which indicates slight agreement. Changes in 

STVI-4 index showed approximately 10% agreement with changes in total vegetation 

cover followed by approximately 0.7% and 0.1 % agreement with total ground cover 

and perennial plants, respectively. It seems the low agreement between image and field 

cover data in the detection of changes over time relates to the contribution of different 

classes in Kappa analysis: the number of sites in many classes was very low and this has 

influenced the strength of the statistical agreement. Kappa results should therefore be 

taken with caution. The regression analysis showed changes in the values of this index 

were not a strong predictor of changes in cover components. It had its highest 

relationships with changes in total ground cover, explaining up to 30% of the variation 

in this component. These results here confirmed the finding in Chapter 3 that STVI-4 is 

a better predictor of total ground cover than other vegetation components at broad 

scales. This analysis considered 40 sample sites from a range of land systems, and as the 

results of Chapter 3 showed, the STVI-4 is not best applied to the prediction of cover at 

this broad scale. The Chapter 3 results suggest it might better to predict cover change if 

analysed within land systems, however there were not sufficient sample sites assessed in 

2002 to allow this stratification.  

The comparison of LCI classes from 1991 to 2002 revealed that changes in the LCI 

were in a slight agreement with changes in field cover components and image data 

(Κ é<0.2). The LCI had the highest agreement with STVI-4 vegetation index (14%) 

followed by the total cover component (13%) and perennial plants (10%). LCI had 

lowest agreement with total ground cover (0.8%). The low agreement may relate to the 

limited classes of the LCI method. The LCI has three broad classes that are unlikely to 

be changed with small changes in the field cover components and image data. The 

relatively low agreement may relate alternatively to changes in abundance of 

unpalatable increasers and invader plant species. This causes an increase or decrease in 

the percentage of vegetation cover components and consequently vegetation index 

values, but may not lead to a change in the land condition class. Lastly, the low 

agreement may relate to the presence and absence of palatable plants. A site with a high 

number of small juveniles of palatable species would be classified as fair or good LCI 

class, whereas the vegetation index values in this site would be very low. 

Irrespective of the low Kappa coefficients of LCI compared with field cover 

components and the STVI-4 vegetation index, the field data showed that the majority of 
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sites had very little or no change in perennial plants (the most important ones for land 

condition assessment) and LCI, and that only a few sites showed minor increases in 

plant cover. The STVI-4 change image showed also that there was little change in 

cover, and increases, where they occurred, were very small. For management purposes, 

changes in perennial cover are of concern, and the STVI-4 change image followed the 

same trends of perennial cover at more than 40% of the sample sites. Land condition 

change in the area presented by the imagery is consistent overall with the LCI (at 

approximately 50% of the sites) and field cover data, although the imagery provided 

much more information about the degree and direction of cover change across the whole 

region, versus the 40 sample sites used in this analysis. 

The results of comparisons between the 2005 STVI-4 vegetation index and LCI classes 

recorded that year showed that this index had high potential to differentiate different 

land condition classes in stratified pasture types, which were low woodlands, chenopod 

shrubland and Mt. Eba country. The STVI-4 differentiated all LCI classes in low 

woodlands and extreme classes (LCI-1 and LCI-3) in chenopod shrublands and Mt. Eba 

country. The reason for the good performance of STVI-4 in differentiating LCI-1 and 

LCI-3 in all pasture types relates to the criteria that are used to differentiate these 

classes (see Table 4.1): vegetation density, regardless whether it is palatable or 

unpalatable, in LCI-3 is much higher than LCI-1. The crown separation ratio of 

vegetation cover in chenopod shrublands in LCI-3, for instance, is 4-6 in comparison 

with LCI-1, which is equal to one. This low vegetation cover in LCI-1 means that a 

higher level of eroded and bare soil areas increase the contrast between this class and 

LCI-3. Vegetation condition or quality is another factor that might influence this 

separation. Because senescent and heavily grazed vegetation in LCI-1 differs in 

reflectance from the fresh and ungrazed vegetation in LCI-3. As can be seen from Table 

4.1, the low differences between these factors in LCI-1 and LC-2 and also LCI-2 and 

LCI-3 has affected on the performance of STVI-4 and this index was unable to 

differentiate these classes in chenopod shrublands and Mt. Eba country. It appears that 

because of the dominance of tree cover in low woodlands and strong reflectance 

differences between this pasture type and background soil, the STVI-4 was able to 

separate all LCI classes. 

Among the indicators used to determine land condition in the LCI method (i.e. 

vegetation composition and abundance, palatability and soil surface condition), the 
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vegetation abundance, regardless of palatability, and exposure of bare soil appear to be 

determinable using image-based methods. It is clear that the abundance of vegetation 

cover is the most important factor that influences land condition and protects it from 

wind and water erosion. Results presented here indicate that STVI-4 is responsive to the 

same vegetation cover that forms the basis of the LCI classes. The STVI-4 index was 

able to discriminate LCI land condition classes in low woodlands and chenopod 

shrublands that comprise more than 90% of the pastures in the region. This shows that 

the STVI-4 with its broad coverage, simplicity and repeatability could be used to aid the 

LCI technique in land condition assessment. If the primary aim is, for example, to 

determine the density of vegetation cover, especially in its extreme crown separation 

ratio classes, then the STVI-4 could be very useful. Moreover, the STVI-4 can provide 

information about vegetation condition in areas far from the network tracks where direct 

observation for application of the LCI is impossible. Use of STVI-4 imagery would 

enable a more accurate and spatially-explicit estimate of land condition. It would be 

possible to more specifically identify the actual location or areas on a property or in a 

district that are in different condition classes. The STVI-4 vegetation index could 

therefore be used, not as a replacement, but as a valuable supplementary method to LCI 

in land condition assessment and monitoring. 

As shown in Chapter 3, almost all vegetation indices including STVI-4 had stronger 

relationships with different cover components at land system versus landscape scale due 

chiefly to the greater similarity in vegetation cover type within land systems. The STVI-

4 revealed the same results with the LCI classes in the stratified vegetation cover. This 

means that in areas with similar vegetation type, not only can vegetation indices be used 

as useful tools for predicting and monitoring vegetation cover, but they can also be used 

for determining land condition. Using these tools in large areas is more cost-effective 

and may overcome some of the limitations of field methods such as subjectivity and 

inconsistency. 

 



                                                         ARID LAND CHARACTERISATION                                     - 67 - 

 

5 ARID LAND CHARACTERISATION WITH HYPERSPECTRAL 

IMAGERY 

5.1 Introduction  

One of the main characteristics of vegetation cover in arid environments is its 

sparseness; consequently soil is the dominant land surface component in xeric regions. 

Remote sensing techniques such as vegetation indices have been used widely for 

assessing and monitoring vegetation cover (Chapters 3 and 4). It is well known that 

estimating vegetation cover from vegetation indices is often strongly influenced by soil 

background effects. Huete et al. (1985), for example, found that most of the slope-based 

vegetation indices (e.g. NDVI) and distance-based vegetation indices (e.g. PVI) 

overestimate the amount of vegetation cover in darker and brighter soils, respectively. I 

found similar results (Chapter 4): the Stress Related Vegetation Index (STVI-4), as one 

the most promising indices for cover assessment in the study area, appeared to 

overestimate vegetation cover in black gravel areas or buckshot country.     

Spectral Mixture Analysis (SMA) may overcome the limitations of vegetation indices 

by decomposing all the ground cover components within a sensor's ground resolution or 

pixel (Smith et al., 1990). It makes full use of all spectral bands in an image, rather than 

relying on combinations of a few selected bands to discriminate particular cover types. 

For each pixel in the image SMA estimates the proportions of that pixel covered by 

each component on the ground. The general assumption in spectral mixture analysis is 

that the reflectance recorded for each pixel is a linear mixture of the reflectance of 

different components in that pixel. This occurs when the radiation interacts with only 

one material type on its path between the earth surface and sensor (Campbell, 1996). 

SMA has been used in different environmental studies including land cover assessment 

and monitoring, land degradation assessment and mineral mapping. Several studies 

have shown that unmixed vegetation and soil components and their variations in space 

and time can be used as indicators of land condition or degradation (Metternicht and 

Fermont, 1998; Tromp and Epema, 1999; Harris and Asner, 2003; Hostert et al., 

2003a). Studies have also shown the benefit of this method in many different geological 

contexts. For example, Bierwirth (1990) applied spectral mixture analysis to 

multispectral imagery of a geological site in north Queensland, Australia and concluded 

that it successfully extracted two vegetation types (green and dry) and four different 
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mineral types. SMA has been shown to be a superior method to widely used vegetation 

indices in arid and semi-arid environments (Smith et al., 1990; Elmore et al., 2000). 

These studies found SMA predicted vegetation cover better than vegetation indices such 

as NDVI. Elmore et al., (2000) found, for example, that spectral mixture analysis 

determined correctly the changes in vegetation cover at 87% of sample sites while 

NDVI detected changes in only 67% of these sites. 

Known also as linear mixture analysis, linear unmixing and end-member analysis, SMA 

aims to map the relative abundances of different components present within a pixel. 

This is done by defining spectrally pure pixels known as end-members of the particular 

surface component (Bateson and Curtiss, 1996; Tompkins et al., 1997; Garcia-Haro et 

al., 1999). These end-members are drawn from the image itself, from field spectra, or 

from spectral libraries. Smith et al., (1990) applied SMA to Landsat TM imagery of a 

semi-arid environment in California and found that green or photosynthetic vegetation, 

non-photosynthetic vegetation, shade and water, and three soil or rock were common 

components in this region. Landsat TM imagery produced similar results in an arid 

region in New South Wales, Australia (Lewis and Wood, 1994). Research has shown, 

however, that the discrimination of different vegetation species in arid environments 

with less than 30% cover is limited, even using airborne hyperspectral imagery with 

high spectral and spatial resolution (Lewis, 2000; Okin et al., 2001).  

SMA was developed originally for satellite multispectral imagery (Smith et al., 1990) 

and various studies have shown the potential of spectral mixture analysis in these sorts 

of data sets (Adams et al., 1995; Asner and Heidebrecht, 2002; Small, 2004). This 

approach has also been applied successfully to the satellite hyperspectral imagery. The 

Hyperion sensor is the first space-borne hyperspectral imager on-board NASA’s Earth 

Observing-1 (EO-1) satellite (Pearlman et al., 2003; Ungar et al., 2003). Since the 

launch of EO-1, several studies have shown the potential of Hyperion data for 

vegetation and land degradation assessment in arid and semi-arid environments (Asner 

and Heidebrecht, 2003; Huete et al., 2003). These studies found that end-members 

extracted from Hyperion imagery using SMA were able to detect disturbance in the 

landscape due to grazing and other activities. Another study in woody and grassland 

landscapes of the southern USA showed Hyperion imagery could be decomposed into 

four different end-members that were combinations of different ground cover 

components including senescing foliage, cypress-tupelo trees, and trees without leaves; 
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shadows and green vegetation; senescing Chinese tallow species (i.e. a tree) with yellow 

leaves and foliage; and senescing Chinese tallow with red leaves (Ramsey et al., 2005). 

Chewings et al. (2002) applied Hyperion imagery to an arid environment near Alice 

Springs in central Australia and concluded the data have good potential for 

characterisation of vegetation components in this arid region. In this Australian study, 

abundance images of photosynthetic vegetation, non-photosynthetic vegetation and soil 

were produced using spectral mixture analysis. All the studies mentioned above focused 

on specific components of interest to decompose Hyperion imagery rather than 

attempting to extract all possible spectral end-members within this imagery. 

Apart from Chewings et al. (2002) no research has evaluated the potential of Hyperion 

data for mapping and assessing Australian arid lands. Niether has any work examined 

relationships between Hyperion data and ground measurements of vegetation and soil. 

This component of the study aimed, therefore, to evaluate the potential of Hyperion 

hyperspectral data to discriminate landscape components of arid rangelands of South 

Australia. The hypothesis was that Hyperion imagery with high spectral resolution 

should have greater potential for discriminating various vegetation and soil components 

than was possible with multispectral analysis. This study aimed, specifically, to 

discriminate some of the vegetation types such as chenopod shrubs that have an 

important role in land management. 

5.2 Methods 

5.2.1 Study area 

This component of the research focused on an area of 335 km2 within the Vivian land 

system, covered by a Hyperion image swath (Figure 5.1). A summary description of this 

land system is given in Table 5.1. 

5.2.2 Field data 

5.2.2.1  Collection of vegetation cover 

Quantitative data on ground cover from 52 sample sites were collected in January 2006 

using the step-point technique (Appendix 4). Sample sites were chosen to include 

different vegetation species and physical ground cover components that dominated in 
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the study area. The location of the sample sites was recorded using a Global Positioning 
System (GPS).  

 
Figure 5.1 Location of study area in Kingoonya Soil Conservation District. Shown also are 
sample sites across the Hyperion image subset.  

Table 5.1 A brief description of Vivian land system (Pastoral Board, 2002)  
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h sample site a minimum of 1000 points or hits were recorded to estimate field 

omponents (e.g. perennial and ephemeral vegetation species, litter and lichen, and 

al components including soil and surface gravel and stone) along eight radiating 

ts within a radius of 150 m, sampling an area of approximately 70,650 m
2 

(Figure 

)). The layout of the radiating transects was chosen to sample relatively 

eneous sites, and avoid mixes of different vegetation and soil types. The average 

tion cover for all sites in the study area was approximately 28 percent. The 

tage of different cover components was calculated by dividing the number of hits 

h component by the total hits and multiplying by 100.  
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For comparison with end-member images derived from the Hyperion imagery, field 

data on abundance of several field cover components were aggregated into groups. Raw 

and aggregated components included perennial plants with green colour or greenish 

canopies (e.g. mulga), greenish perennial plants plus grass and herbs (ephemerals), total 

greenish vegetation cover plus litter and lichen, cottonbush, bluish perennial plants plus 

litter, total photosynthetic vegetation, bare soil, gravel and stone, and bare soil plus 

gravel and stone (total physical components).  

 

 

 

 

 

 

 
Figure 5.2 Collecting field cover and spectra: a) step-point, b) portable spectrometer 

5.2.2.2 Collection of field spectra 

Field spectra were obtained with an Analytical Spectral Devices (ASD) Field Spec Pro 

spectrometer (Figure 5.2 (b)). This instrument includes three spectrometers to sample 

visible and near infrared (VNIR) and two shortwave infrared (SWIR1 and SWIR2) of 

the electromagnetic spectrum, from 350 to 2500 nm with a spectral resolution of 10 nm 

(Hatchell, 1999). The instrument is controlled and data displayed and stored using a 

notebook computer. In the study area, reflectance spectra of dominant vegetation 

species (e.g. Acacia aneura, Acacia papyrocarpa, Maireana aphylla, Maireana 

sedifolia, and Senna ft. petiolaris) and physical ground cover components such as sandy 

soil, sandy-loam, and gravel and stone were recorded in April 2006 (Appendix 1 and 3). 

The field spectra were acquired at a nadir position at 50 cm above the canopy of shrubs, 

foliage of trees, and physical components which had a plot of 25 cm in diameter on the 

ground (Hatchell, 1999). For each sample, ten spectra were recorded, with each 

spectrum being an average of 10 individual measurements that were obtained 

automatically by field spectrometer. The calibration of the spectrometer was done 

GPS location of 

sample site 

15
0 

m
 

a) b) 
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approximately every 4-5 minutes using a white spectralon reflectance panel and dark 

object. 

5.2.3 Hyperion hyperspectral imagery 

Detailed information about the characteristics of Hyperion imagery and the image 

acquired over the study on 29 December 2005 has been given in Chapter 2. Figure 5.3 

shows the distribution of rainfall which was recorded by the lessee of Vivian station 

prior to the image capture. Image visual inspection and field checks revealed that 

rainfall on 17 December 2005 had minimum effect and ephemeral plants were not 

present at the time of image acquisition. 

 

 

 

 

 

 

Figure 5.3 Monthly distribution of rainfall from January 2005 to January 2006 in Vivian 
station in relation to dates of image capture and field data collection 

5.2.4 Preliminary image analyses 

The image was delivered as a radiometrically calibrated Level 1R product. This image 

was georegistered using the image to image registration method (Chapter 2). Figure 5.4 

shows the sequence of analyses of the Hyperion image that included spatial and spectral 

subsetting, noise reduction, atmospheric correction, and end-member extraction. The 

Hyperion image was spatially subset to include study area. Spectral subsetting was 

performed to remove the first bands 1-7 (355.59-416.64 nm) and the last bands 225-242 

(2405.6-2577.07 nm) continuing null values. Bands 8-9 (426.82-436.99 nm) and bands 

222-224 (2375.3-2395.5 nm) were removed due to pixel to pixel variation related to 

sensor detector differences. Other bands excluded were 58-78 (936-1058 and 852-972 

nm) to remove the spectral overlap between the two detectors of the Hyperion sensor. A 

total of 51 bands were excluded with 191 bands remaining for further pre-processing. 
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Figure 5.4 Flowchart of Hyperion image analysis 

The Commonwealth Scientific and Industrial Research Organization (CSIRO)’s 

Mineral Mapping Technology Group (MMGT) A-List Hyperspectral Processing 

Software, as an extension in ENVI (ENVI Research Systems Inc, 2000), was used to 

reduce noise in the Hyperion image (Mason, 2002; Quigley et al., 2004). The software 

incorporates different modules including Pushbroom Plugger, Pushbroom Destriper, 

Outlier Mask Generation, Log Residuals, Normalisation and Background Removal, 

Spectral Indices, EFFORT Polishing and HyperPPI. From these modules the 
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Pushbroom Plugger and Pushbroom Destriper were used to remove bad sensor detector 

cells and stripes from the imagery.  

The MMTG Plugger module found noisy pixels or ‘bad’ pixels throughout the image. A 

pixel is known as ‘bad’ if it is completely different from the entire detector-array row 

based on mean or standard deviation calculations (Mason, 2002). Most of the noisy cells 

were detected in column 1 and 256 of the detector array. Visual inspection showed that 

some of the good cells were identified as noisy cells. These cells were deselected from 

the detector array. After visual correction and testing different window sizes a standard 

deviation window of (5×5) was used to correct noisy cells. The Plugger uses this 

window to replace the values of bad cells with ones interpolated from neighbouring 

good cells.  

One of the major problems with the Hyperion image was many along-track stripes in 

some of the bands. This might result from variations in the calibration of cells in the 

cross-track direction (Mason, 2002). The MMTG Destriper was applied to the image 

and it removed the stripes from the image successfully. This module calculates gain and 

offset values for each ‘bad’ cell in its row and then these values are applied to normalise 

the affected cell in the columns of each band. 

In order to utilize hyperspectral data for detecting different components on the ground, 

uncalibrated radiance recorded by the sensor should be corrected for atmospheric and 

solar illumination effects and converted to surface reflectance. This enables 

comparisons between image spectra and field or laboratory spectra. There are many 

methods for atmospheric correction of hyperspectral data that depend on image-based 

inputs (Green and Craig, 1985; Ben-Dor et al., 1994) and field measurements (Smith 

and Milton, 1999). Model-based methods such as Fast Line-of-sight Atmospheric 

Analysis of Spectral Hypercubes (FLAASH) (ENVI Research Systems Inc, 2000) and 

Atmospheric Correction Now (ACORN) (ImSpecLLC, 2004) rely on image 

characteristics and atmospheric variables for converting radiance to reflectance and are 

based on the MODTRAN radiative transfer models (Gao and Goetz, 1990). ACORN 

atmospheric correction software has been applied successfully to Hyperion data in 

different studies in Australia (Chewings et al., 2002; Quigley et al., 2004; Dutkiewicz, 

2005). One of the important benefits of ACORN over other models is that it removes 

water vapour and liquid from the imagery and produce separate images of water vapour 



                                                         ARID LAND CHARACTERISATION                                     - 75 - 

 

and liquid on a pixel-by-pixel basis (ImSpecLLC, 2004). This option reduces the 

probability of overestimating vegetation cover in areas with high water vapour and 

liquid.  

The noise-reduced image from the CSIRO software pre-processing was corrected for 

irradiance and atmospheric effects using ACORN atmospheric correction software. 

Parameters used in ACORN for atmospheric correction are given in Appendix 2. To 

derive water vapour, the 1140 nm channel was used instead of 940 nm because of high 

noise and overlapping between the VNIR and SWIR detectors in this region. 

To reduce noise in the atmospherically corrected image, subsequent analysis of the 

image was performed using ENVI software (ENVI Research Systems Inc, 2000). The 

Maximum Noise Fraction transform (MNF) was used to determine the dimensionality 

of the data (Green et al., 1988; Boardman and Kruse, 1994). This method produces 

images ranging from high (the first bands) to low (the last bands) coherence or scene 

information. The last bands usually have the most noise and least information about the 

landscape and can be removed from subsequent processing. Visual inspection of the 

MNF images determined that from 191 bands only 34 bands contained scene 

information with high Eigenvalues (71.51 to 1.01). These 34 bands were used to extract 

end-members from the noise-reduced Hyperion image.  

5.2.5 End-member generation 

The Pixel Purity Index (PPI) was used to extract the most pure pixels in the 

atmospherically corrected and noise-reduced MNF bands.  In this method, the pure 

pixels are calculated by repeatedly projecting n-dimension data set on to random 

vectors. The spectrally pure pixels in each projection locate at the apices of the data set 

and the total number of times each pixel is marked as pure pixel is noted. A "pure pixel" 

image is created in which the value of each pixel is the number of times that pixel was 

recorded by these projections. The pure pixel index was run on MNF image with 50,000 

iterations and the output image was thresholded to select 800 pixels with high values or 

numbers of hits marked in the projections. 

The n-Dimensional Visualiser function was used to locate and identify the purest pixels 

(end-members) in an n-dimensional visualisation of pure pixels (n=34, the number of 

dimensionality or bands of MNF image) (ENVI Research Systems Inc, 2000). Mean 
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spectra of the end-members were calculated. These potential end-members were used in 

unconstrained linear unmixing to decompose the MNF Hyperion image into different 

scene components. The unconstrained linear unmixing calculated an abundance image 

for each selected end-member. The value of each pixel in the abundance images was the 

proportion of that end-member in the corresponding pixel of the Hyperion image. A 

linear stretch enhancement was applied to the abundance images to highlight the high 

end-member abundance areas. For displaying purposes, in addition to abundance 

images, an error image was calculated. This image indicates the adequacy of selected 

end-members., An error image with low values and pattern shows, for example, that all 

the spectral information relating to scene features in the image has been extracted.  

5.2.6 Data analysis 

Each of the field sampling sites was located on the rectified end-member images and 

average pixel values extracted for each of the images within a 150 m buffer, covering an 

area of approximate 70,650 m2. In order to evaluate whether the image components 

could be used to predict field cover data, linear regressions were used to examine their 

relationships. The abundance of individual and aggregated field cover components was 

regressed against mean end-member abundance from the corresponding sample sites in 

the images. Abundance images were used as independent variables and the dependent 

variables were different categories of field cover data. Preliminary analysis and field 

checks revealed that one of the image components mostly related to cottonbush 

vegetation cover (Maireana aphylla). This species was one of the dominant vegetation 

cover at seven sites located in the north of the study area in Coondambo land system. 

Detailed information about this land system will be given in Chapter 6. It was also a 

dominant species at two sites in the south. These nine sites were only used, therefore, to 

correlate the field measurements of cottonbush to that image component and the rest of 

the sites (45 sites) were used to validate other image components. 

5.3 Results 

5.3.1 Abundance images 

Five spectrally distinct end-members were extracted from the Hyperion subscene in n-

dimensional spectral space (Figure 5.5). The five abundance images resulting from 

linear unmixing using these end-members are shown in Figure 5.6, together with the 
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residual error image. Two end-members appeared to be associated with photosynthetic 

vegetation, while the remaining three were associated with soil, surface gravel and 

stone. The error image had low values and little spatial pattern, which indicates that 

most of the spectral information about the scene has been extracted from the Hyperion 

image.  

Figure 5.7 compares mean spectra of the image end-members with selected spectra 

collected in the field using the ASD spectrometer. The selected field spectra were the 

most similar spectra to image end-member spectra that were chosen after reviewing all 

related field spectra (Appendix 3). Although the Hyperion mean spectra contain more 

band to band noise, they are very similar in general form and specific absorption 

features to selected field spectra. A summary of the end-members and their main 

spectral absorption features for characterising these end-members is presented below. 

The specific identity of the end-members was determined by examining their image 

spectra, distribution and abundance in the images, and by comparing their mean spectra 

with field spectra and their correlations with field cover data (Figure 5.8). 

 

 

 

 

 

 

 

 

 

Figure 5.5 End-member extraction in n-dimension visualiser using band 3, 4, and 5 of the 
MNF Hyperion image. 
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Figure 5.6 Abundance images of end-members resulted from unmixing of the Hyperion 
imagery: a) Photosynthetic vegetation (PVg), b) Photosynthetic vegetation (PVc), c) sandy 
soil, d) sandy-loam soil, e) gravel and stone, f) error image. High abundance areas shown 
as colour masks superimposed on a grey-scale image. 

a) 

f) e) d) 

c) b) 
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Figure 5.7 Mean reflectance spectra: a) Hyperion image spectra, b) field spectra. Noisy 
reflectances across water absorption bands (1400 and 1900 nm) have been removed.  
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Figure 5.8 Flowchart of steps involved in end-member identification 

The first end-member, photosynthetic vegetation (PVg), seems to be associated with a 

variety of green and grey-green vegetation, with the image spectrum quite similar to 

field spectra for mulga (Acacia aneura), a dominant plant in the study area. As can be 

seen from Figure 5.7, both field and image spectra of mulga have significant absorption 

features at 680 nm caused by the chlorophyll in the leaves, although they also display a 

clear absorption feature at 2200 nm, most likely attributed to the background soil. Water 

absorption features were also observed in both field and image spectra at 972-983 nm 

and 1134-1164 nm. The green and grey green vegetation end-member image (PVg) 

(Figure 5.9 (a)) appeared to record the distribution of several perennial shrub vegetation 

types such as Acacia ligulata and Acacia aneura. It showed high vegetation cover in 

watercourses and on sand dunes. The PVg image showed higher vegetation cover in the 

southern parts of the study area compared with the north due to higher green tree cover. 

In the north chenopod shrublands such as saltbushes (e.g. Atriplex vesicaria) and 

bluebushes (e.g. Maireana sedifolia) with grey colour were dominant.  

The second vegetation end-member (PVc) was associated with cottonbush (Maireana 

aphylla) that was distributed as patches throughout the study area. The PVc recorded all 

known patches of this species that were distributed throughout the study area (Figure 

5.10 (a)). This image also showed high abundance in sand plains and dunes where dry 

grasses such as Woollybutt (Eragrostis eriopoda) were dominant. The PVc also 

displayed high values in areas with dense pearl bluebushes. The spectral signature of 
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PVc was very noisy, especially at 915-983 nm (Figure 5.7). However, there were clear 

absorption features around 690 nm (680 nm in the field spectra) and at 2080-2100 nm. 

A shallow absorption feature was also observed at 2314-2351 nm. The absorptions at 

2080-2100 nm and 2314-2351 nm correspond to those for starch and cellulose 

absorption and lignin, cellulose, oil and waxes respectively, suggesting that this end-

member has mapped dry grass or non-photosynthetic vegetation and possibly woody 

chenopod shrubs with high levels of oil, wax, cellulose, and lignin in their canopies 

(Lewis et al., 2001). Like the PVg end-member, this end-member showed significant 

absorption at 1134-1164 nm, but the 972-983 nm feature was dominated by noise. 

One of the image components mapped the sandy soils in the sandy plains and dunes 

(Figure 5.11 (a)). This component has been successfully separated from others due to its 

high albedo. The image spectrum showed similar form and spectral features to the field 

spectra for sandy soil (Figure 5.7). Both had deep absorption features at 2200 nm that 

shows these soils have high level of clay minerals. They also showed significant 

absorption at 870 nm due to high iron oxide concentration. 

The second soil end-member recorded bare and eroded regions of the study area (Figure 

5.11 (b)). This end-member had a spectrum very similar in form and absorption features 

to the image spectrum of sandy soil. It appears to have mapped areas with little or no 

vegetation cover. As this end-member and also the sandy soil end-member both 

recorded the exposed soils of the study area, they were combined into one soil image 

and then the combined image was used to examine its relationship with the field 

estimates of soil cover component. This combined soil image also was combined with 

the gravel and stone end-member image to evaluate its relationship with the field 

estimate of total physical components. 

The final physical image component mapped black and brown gravels and stones that 

are distributed in some parts of the study area, especially in the centre (Figure 5.12). 

This end-member appears to overestimate the amount of surface gravel and stone in the 

centre of the image, corresponding to areas with dense vegetation cover. The spectral 

response of the image end-member was similar to field spectra with a distinct 

absorption feature at 870 nm and shallow absorption at 500 nm due to the concentration 

of iron oxide. It also showed a significant absorption feature at 2200 nm because of the 

clay context of the background soil underlying the gravels. 
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Figure 5.9 Photosynthetic vegetation image (PVg): high abundance areas shown as green 
mask superimposed on a grey-scale image. a) Photograph and image locations: dense 
mulga in watercourse; b) regression between total vegetation cover and PVg. 
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Figure 5.10 Photosynthetic vegetation image (PVc): high abundance areas shown as cyan 
mask superimposed on a grey-scale image. a) Photograph and image locations: dense 
cottonbush in watercourse surrounded with mulga; b) regression between total cottonbush 
cover and PVc. 
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Figure 5.11 Sandy soil and sandy-loam soil abundance images: high abundance areas 
shown as brown and yellow masks superimposed on a grey-scale image. Photographs and 
image locations: a) sandy soils (sand plains and dunes); b) exposed soil. 

 

 

 

 

 

 

 

 

 

 

 

a) 

b) 

a) 

Figure 5.12 Gravel and stone abundance image: high abundance areas shown as 
green mask superimposed on a grey-scale image. Photographs and image locations: 
a) area with dense gravel and stone; b) close-up of the gravels and stones. 
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5.3.2 Relationships between abundance images and field cover components 

Relationships between end-member abundance images and field cover components 

showed several significant correlations that helped confirm the identity of the image 

spectral components (Table 5.2). The regressions of image components against 

vegetation cover data have been presented in Figure 5.9 (b) and 5.10 (b). The strongest 

correlation was found between the image component PVc and field estimates of 

cottonbush (R2=0.89), followed by the PVg image end-member with field estimates of 

greenish perennial plants plus grasses and herbs (R2=0.69) and greenish perennial plants 

(R2=0.58). The PVc also showed some correlation with total cover of bluish perennial 

plants (e.g. bluebushes and saltbushes) plus litter (e.g. dry grasses and dead shrubs) 

(R2=0.23). The weakest relationship was found between PVg and the integration of total 

greenish cover plus litter and lichen. The combination of PVg and PVc correlated 

significantly with total photosynthetic vegetation (R2=0.32) but not as strongly as their 

individual relationships with greenish and cottonbush vegetation components. Although 

image visual inspection, mean field spectra and field checks revealed that soil and 

surface gravel and stone appeared to map corresponding field components, the 

correlations between these end-members and quantitative measurements of their 

abundance were not strong. The combination of these image physical components, 

however, showed better correlation with total field physical components (R2=0.28). 

5.4 Discussion and conclusions 

The low spectral resolution of multispectral satellite imagery limits its suitability for 

extracting information in arid environments with sparse vegetation cover. The higher 

spectral resolution of hyperspectral imagery may improve discrimination of different 

components especially various vegetation types, even with low cover. This component 

of the research evaluated the potential of Hyperion hyperspectral imagery to map 

vegetation and soil components through spectral mixture analysis.  Five distinct end-

members were produced using this method, including green and grey green 

photosynthetic vegetation (PVg), cottonbush photosynthetic vegetation (PVc), sandy 

soil, sandy-loam soil and gravel and stone. To identify the end-members, their image 

spectral responses were compared with field spectra. Results showed that the image 

end-members were very similar to field spectra and corresponded to selected 

components on the ground. 
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Table 5.2 Relationships between abundance images and field cover 

 
In addition to the soil end-members, the two vegetation end-members also had clear 

clay absorption features around 2200 nm. This indicates that none of the vegetation end-

members were “pure” and that soil has had a detectable influence on their image 

spectral responses. This might be expected since plant cover in the region was generally 

less than 30%: end-members derived from Hyperion imagery with 900 m2 ground 

resolution will inevitably comprise mixes of cover types. The strong absorption feature 

at 2200 nm in the soil end-members shows that the soil of the region contains high 

levels of clay minerals.  

The absorption features of the vegetation end-members showed they belonged to 

different vegetation types in the study area. Although both had clear chlorophyll 

absorption around 680 nm, this was much stronger in the PVg than PVc. The PVg 

mapped all the greenish vegetation cover with strong chlorophyll absorption. The high 

correlation between this end-member and field estimates of total greenish plants 

(perennials combined with grass and herbs) (R2=0.69) and its very poor correlation with 

the aggregation of total greenish cover with litter and lichen (R2=0.07) revealed that the 

PVg has only mapped the green and grey green photosynthetic vegetation cover. In 

contrast with PVg, the PVc showed not only a clear absorption feature around 680 nm 

Abundance image  Field component R2 P-value Sample 
size 

Photosynthetic vegetation 
(PVg) 

greenish perennial plants 0.58 <0.001 45 

Photosynthetic vegetation 
(PVg) 

greenish perennial plants+grass 
and herbs (total greenish plants) 

0.69 <0.001 45 

Photosynthetic vegetation 
(PVg)  

greenish perennial plants+grass 
and herbs + litter and lichen 

0.07 0.078 45 

Cottonbush photosynthetic 
vegetation (PVc) 

cottonbush 0.89 <0.001 9 

Cottonbush photosynthetic 
vegetation (PVc) 

bluish perennial plants+litter 0.23 <0.001 45 

PVg+PVc total photosynthetic vegetation 0.32 <0.001 45 

Sandy soil+sandy-loam 
soil 

bare soil 0.21 0.001 45 

Gravel and stone gravel and stone 0.11 0.027 45 

Image  physical 
components 

field  physical components 0.28 <0.001 45 
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but also shallow absorptions at 2100 nm and 2314-2351 nm. It mapped all cottonbush 

vegetation cover of the study area with a strong correlation with the field estimates of 

this component (R2=0.89). The lower correlation between this end-member and field 

estimates of total bluish perennial plants plus litter (R2=0.23) revealed that this end-

member may have also mapped other cover components such as chenopod shrubs and 

non-photosynthetic vegetation cover.  

Image physical components including soil and surface gravel and stone that were 

dominant components in the study area, comprising more than 70% of the land cover, 

had much clearer absorption features than the vegetation end-members. The spectral 

similarity between these end-members and field spectra and their distribution in the 

images revealed that they mapped sand plains, sand dunes, eroded areas, and gravel and 

stone in the region. However, their relationships with the field estimates of physical 

components on the ground were not strong. The combined image of physical 

components accounted for 28% of variation in the ground physical components. It 

seems that one of the main reasons for these low relationships relates to the different 

percentages of soil cover that have been recorded by the field measurements and 

Hyperion sensor: the step-point method used in this study was able to measure very low 

vegetation cover, for example less than 5%, within the Hyperion sensor's field of view 

(900 m2), whereas the sensor may not be able to record this amount of vegetation cover 

due to high reflectance of soil background. The amount of soil actually recorded by 

field measurements in sparsely vegetated areas was lower compared with the sensor 

response and this might have influenced the statistical relationships.  

Despite the high spectral resolution of the Hyperion scene, it was not possible to 

identify more than five meaningful spectral end-members in this arid environment. The 

number of end-members extracted here was similar to other studies in arid 

environments (Smith et al., 1990; Lewis, 1999) that used full set of scene spectra from 

Landsat multispectral imagery. This similarity in the number of end-members suggests 

that arid landscapes are dominated with few spectral components (usually three soil or 

rock and two vegetation components) and using imagery with low spatial and high 

spectral resolution may not produce more land surface components than multispectral 

imagery. Previous studies (e.g. Okin et al., 2001) conducted in arid environments with 

low vegetation cover (less than 30%) have also reported that the discrimination of 

different vegetation types is limited with hyperspectral imagery, even with high spatial 
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resolution. This may be the result of low vegetation cover of arid regions, the lack of 

spectral contrast between different arid vegetation types and soil background effects.  

The validation of end-members against field spectra and field cover data showed that 

the end-members corresponded to real vegetation components and soil types on the 

ground. Where image end-members provide quantitative estimates about the 

distribution of specific vegetation and soil components they can be used as appropriate 

metrics in land management in the region. For example, in a study in Utah, a vegetation 

end-member derived from spectral mixture analysis has been successfully used to assess 

land degradation around stock watering points (Harris and Asner, 2003). Image-derived 

end-members such as those mapped in this study have potential as metrics for land 

condition assessment and monitoring. For example, initial inspections showed that the 

PVg and soil end-members had low and high values near stock watering points, 

respectively.  

Although the spectral mixture analysis extracted vegetation end-members such as green 

and grey green vegetation and cottonbush from the Hyperion image, no meaningful end-

member was identified to show chenopod shrublands such as saltbushes and bluebushes 

that are major vegetation types in the study area and have an important role in land 

management. In addition to the low spectral contrast between vegetation types and soil 

background effects, one of the reasons that it was not possible to extract more 

vegetation components may relate to the high level of noise in this image, especially 

around the 915-983 nm regions. To date, no study has discriminated these kinds of 

vegetation types using satellite multispectral and hyperspectral imagery. A study that 

was conducted by Lewis (2000) in an arid environment in New South Wales, Australia 

showed chenopod shrubs can be discriminated using airborne imagery with high 

spectral and spatial resolution. It appears that high spatial resolution and also high 

image quality, because of less atmospheric effects, of airborne imagery are the main 

reasons for this separation (Harris and Asner, 2003).  Despite the potential of airborne 

hyperspectral imagery for detecting and mapping chenopod shrubs, applying this kind 

of imagery to arid environments with their extensive areas is expensive and is likely 

only to be suitable for pilot studies. Therefore, more research is needed to focus on the 

application of other imagery such as MODIS that are cheap and cover broad areas and 

have advanced spectral resolution.  
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6 LAND DEGRADATION ASSESSMENT WITH REMOTELY-

SENSED HETEROGENEITY INDEX 

6.1 Introduction 

Vegetation disturbance is one of the principal degradation processes in arid and semi-

arid lands of Australia (Chapter 1). It occurs mostly due to grazing, which is the main 

land use in these regions. To assist management of extensive arid lands, they have been 

fenced into paddocks extending from few to hundreds of square kilometres. Depending 

on the paddock size, one or more artificial watering points provide a source of drinking 

water for domestic stock, although they are used also by feral and native animals. As a 

result the watering points provide a focus for animals that lead to localised land 

degradation. Land degradation that has resulted from high grazing pressure can be seen 

easily around the watering points in arid and semi-arid regions, both in Australia and 

internationally (Andrew and Lange, 1986a; Andrew and Lange, 1986b; James et al., 

1999; Brits et al., 2002; Heshmatti et al., 2002; Harris and Asner, 2003; Nash et al., 

2003; Nangula and Oba, 2004).  In this zone, also called the piosphere or sacrifice area 

(Lange, 1969), grazing changes the distribution,  quality and abundance of soil particles 

and vegetation (Friedel et al., 2003; Tongway et al., 2003). 

Previous studies have shown that degraded landscapes or regions in Australian arid 

lands, especially around watering points, are more spatially homogeneous in cover than 

non-degraded areas (e.g. Holm et al., 2003b). The reduction in spatial heterogeneity is 

thought to occur as grazing reduces vegetative patches and causes changes in the soil 

surface, leading to more homogeneous landscapes. Tanser and Palmer (1999) used a 

satellite-derived diversity index called the Moving Standard Deviation Index (MSDI) to 

assess rangeland degradation in South Africa. In contrast to the Australian field studies, 

they found, however, that degraded areas were more heterogeneous in surface 

reflectance than non-degraded areas. Guo et al. (2004) found also that grazed prairie 

grasslands in North America had higher spectral variations than conserved regions. In 

contrast to these findings, a study by Fabricius et al. (2002) in the rangelands of South 

Africa showed that degraded areas were more homogeneous than non-degraded areas, 

which is similar to the findings of Australian field studies. They found that the 

coefficients of variation (CV) of image pixels in disturbed areas were smaller than in 

undisturbed areas.  



                                                       LAND DEGRADATION ASSESSMENT 

 

- 89 - 

Remote sensing has been successfully used in land degradation assessment and 

monitoring (Robinove et al., 1981; Pickup and Nelson, 1984; Pickup and Chewings, 

1988; Bastin et al., 1993a; Pickup and Chewings, 1994; Bastin et al., 1998; Harris and 

Asner, 2003; Geerken and Ilaiwi, 2004; Symeonakis and Drake, 2004; Wessels et al., 

2004; Wessels et al., 2007). In most instances the evaluation of land condition has been 

based on the spectral reflectance of vegetation cover using multispectral vegetation 

indices (Chapter 3). As an alternative to vegetation indices, spatial heterogeneity in land 

surface reflectance has potential for assessment of landscape condition and land 

degradation. In contrast to vegetation indices, MSDI as suggested by Tanser and Palmer 

(1999), does not rely on the spectral characteristics of vegetation cover and it is 

calculated simply from the variance of surface reflectance in a moving window across 

the imagery. Because of this simplicity, MSDI may provide useful information for the 

assessment of broad areas. MSDI uses image texture or spatial heterogeneity in land 

cover to assess land condition. Image texture, as an important spatial feature, has been 

used as a useful tool in other applications. For example, Fabbri et al., (1989) used image 

texture for exploring and assessing mineral resources, while He and Wang (1990) 

evaluated different image texture methods for image classification.  

This component of the current study investigates whether landscape spatial 

heterogeneity as recorded by Landsat multispectral imagery can be used to assess land 

degradation in southern arid lands of South Australia. The first aim was to evaluate 

spatial heterogeneity status within selected piospheres and nearby reference areas that 

have minimal grazing impact. In southern Australian arid lands, high grazing pressure 

generally reduces biodiversity and landscape pattern: this part of the study aimed to 

evaluate if this leads to findings different from those of Tanser and Palmer (1999). The 

second aim was to assess the spatial scale of variability around watering points by 

investigating spatial heterogeneity with increasing distance from watering points. As 

grazing pressure decreases with distance from watering points, a gradient of change in 

MSDI is expected. To evaluate the performance of MSDI, two widely used vegetation 

indices (PD54 and NDVI) were used as reference indices for comparison. 
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6.2 Methods 

6.2.1 Study area 

This part of the study was conducted in the same region as that described Chapter 2. 

This section focussed on four land systems; Coondambo, Yudnapinna, Kolendo and 

Arcoona, chosen because they were extensive and included reference sites that were not 

close to salt lakes or roads (Figure 6.1). This excluded the edge effect of these features 

in the calculation of the MSDI. A summary description of these land systems is given in 

Table 6.1. 

  

 

 

 

 

 

 

Figure 6.1 Location of study area within the  Kingoonya and Gawler Soil Conservation 
Districts. Shown also are Coondambo, Yudnapinna, Kolendo and Arcoona land systems 
which were used for land-system scale analysis. 

Grazing-induced piospheres are common in the region, with pronounced degradation 

within 500 m of stock watering points (James et al., 1999; Kinloch et al., 2000), 

extending up to 1500 m away from water (Department of Water Land Biodiversity and 

Conservation, 2002) (Figure 6.2). To assist assessment of land degradation, reference 

sites had been established by the SA pastoral land management authority as benchmark 

sites for comparison with grazed areas of the same land unit. The reference sites are 

located far from watering points (approximately 5 km in sheep grazing country) to 

ensure that grazing domestic stock can not reach them (Fleming et al., 2002). The 

carrying capacity of the area has been considered to be 5.5 to 11.6 sheep/km2 (Tynan, 

1995; Kingoonya Soil Conservation Board, 1991).  
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furthermore, that the red band provides more information about spectral contrasts in soil 

and vegetation cover than other Landsat spectral bands in arid and semi-arid 

environments (Pilon et al., 1988; Chavez and Mackinnon, 1994). For comparison with 

MSDI I used the NDVI (Rouse et al., 1974) and PD54 (Pickup et al., 1993) vegetation 

indices. The PD54 was calculated using Landsat TM band 2 (green) and band 3 (red) 

(Bastin et al., 1999). A mean 3×3 filter was applied to the PD54 and NDVI to transform 

data into the same filter size as the MSDI. 

6.2.3 Analysis 

Watering points and reference sites were used to compare degraded and non-degraded 

areas, respectively.  A reference site and its nearest ten water points in each land system 

were located on the MSDI, PD54 and NDVI images. The mean MSDI, NDVI and PD54 

values were extracted within a 500 m radius buffer around each watering point and the 

centre of associated reference sites. Fence lines were used to limit the extraction of data 

within the paddocks. An independent samples t-test was used to test for significant 

differences between the mean index values for degraded and non-degraded sites. In 

order to examine changes in the MSDI, PD54 and NDVI values with increasing 

distances from water points  a series of buffers at 50 m intervals ranging from 50 m to 

1500 m from the water points was used (Figure 6.3). The buffers formed concentric 

rings with widths of 50 m.  

 

 

 

 

 

 

 

 

Figure 6.3 The extraction of the MSDI values at a water point and reference site within 
the Coondambo land system 

Mid-lines of buffer rings 
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Paddock boundary 
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6.3 Results 

6.3.1 Comparison of degraded and non-degraded areas 

The mean values of MSDI, PD54 and NDVI within 500 m radius samples of the 

reference sites and their ten nearest water points in four different land systems are given 

in Figure 6.4. All degraded sites had higher mean MSDI and generally lower vegetation 

index values (PD54 and NDVI) than non-degraded areas in the four land systems (Table 

6.2). Although all the watering points had the highest and reference sites had lowest 

MSDI values, these values differed amongst land systems. Coondambo showed the 

highest MSDI for both watering points and the reference site, followed by Arcoona and 

Yudnapinna. Watering points and the reference site in Kolendo land system had the 

lowest MSDI values. In addition, the magnitude of difference between MSDI for 

degraded and non-degraded areas varied among the land systems. Arcoona showed the 

highest difference (1.2), followed by Kolendo land system (0.9). The differences in 

Coondambo and Yudnapinna were similar (0.7). These differences in the MSDI values 

within and between land systems may result from their different vegetation and land 

surface characteristics (Table 6.1). For example, the high MSDI for both watering 

points and the reference site in Coondambo may result from the high contrast between 

the dominant vegetation types (mulga and myall trees) and the sandy and calcareous 

soils in this land system. 

The NDVI showed different results in the various land systems. There were significant 

differences (p<0.001) between the watering points and reference site in Kolendo land 

system but these differences were not as strong in Arcoona and Coondambo land 

systems (p<0.05). There was no significant difference in the Yudnapinna land system 

(p=0.53). One of the main reasons for these differences was different vegetation types in 

different land systems (Table 6.1). The NDVI performs well in land systems with more 

green plant cover (e.g. woodlands) compared with shrublands (e.g. saltbushes and 

bluebushes) with grey colour and low near-infrared reflectance (Graetz and Gentle, 

1982). In addition, the reference site in Yudnapinna land system was closer to water 

points than those in other land systems and it appeared to be grazed more than other 

reference sites. As a result, there was less difference in plant cover between water points 

and the reference site which the NDVI was not able to capture. 
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Figure 6.4 Means and standard errors of MSDI, PD54 and NDVI values for ten water 
points compared with the associated reference site in different land systems 

The relative performance of the different indices across all land systems is presented in 

Table 6.2. The t-statistic is estimated on the difference between mean values for the ten 

degraded sites and the single reference site relative to the standard deviation of the 

sample differences. As the same number of sites (n=10) is used, the t-values are directly 

comparable. Assuming that the main systematic difference between areas around 

watering points and the adjacent reference areas is degradation through grazing, the t-

values are indicators of how well the image indices depict degradation. With the 

exception of Kolendo, PD54 had the highest t-values. The NDVI did not provide 

consistent performance, having very variable and low t-values. The MSDI was very 

consistent, with t-values ranging from 4.4 – 5.9, but the PD54 generally outperformed 

the MSDI as a land condition indicator. 
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Table 6.2 Comparison of spectral indices between watering points and reference sites in 
different land systems. The mean and standard deviation of the degraded conditions is 
based on the ten nearest watering points around the reference area. 

 

6.3.2 Trends with distance to water point 

Livestock grazing is more intensive near the water points and decreases with distance. 

Hence distance can be used as a surrogate for intensity of grazing pressure and land 

degradation. This means that image indices of degradation should show similar trends 

away from watering points. To examine in more detail how the spectral indices change 

with different levels of disturbance, the nearest water point to the reference site for all 

land systems used in the previous section was selected. Using the nearest water point 

has the advantage that soil, vegetation and land form are most similar to the undisturbed 

areas for comparison. The means of MSDI, PD54 and NDVI with distance from water 

points are shown in Figure 6.5 (a-c). All indices showed an effect of disturbance around 

watering points. However, the examples from different land systems showed marked 

differences and the performance of the different indices corroborates the previous 

results. MSDI and PD54 showed clear and consistent changes but NDVI showed only 

little gradual change with grazing gradients. The high MSDI values near the waterpoint 

in Coondambo land system may result from spectral contrast between green canopies of 

Land condition  
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mulga and western myall trees and sandy soils that were dominant features in this land 

system. 

To quantify the change of the indices over distance from water, regression slopes were 

computed for MSDI, PD54 and NDVI for distance intervals of 500 m (Figure 6.5 d-f). 

Each point in these figures represents the change of the indices over 10 distance bands 

(500 m). Grazing gradients are expected to show consistent positive slopes for PD54 

and NDVI and it was hypothesised that MSDI would exhibit the opposite trend, namely 

a decrease along grazing gradients. Most obvious is the clear depiction of grazing 

gradients in all land systems for the PD54 index. Slope remained positive for distances 

up to the interval of 950-1400 m for all but the Yudnapinna land system, where no 

increase in PD54 was detectable above the interval 250-700 m. NDVI, in contrast, only 

showed increase along the grazing gradient for Coondambo and Kolendo. In Arcoona 

and Yudnapinna land systems, NDVI decreased away from watering points, hence 

showing a very limited detection of grazing gradients. MSDI consistently decreased up 

to the interval of 1050-1500 m for Arcoona, 650-1100 m for Kolendo, 550-1000 m for 

Yudnapinna and 350-800 m for Coondambo. 

6.3.3 Relationships between MSDI diversity index and PD54 vegetation index 

The scatterplot of MSDI and PD54 shows clear trajectories away from watering points 

(Figure 6.6). This further demonstrates a high level of consistency between the two 

indices. For all but the Coondambo land system the trajectory terminates in a cluster of 

points, indicating that grazing gradients are limited to the 1500 m radius. For 

Yudnapinna, MDSI appears to detect a gradual difference away from the watering 

point, which PD54 does not reveal. The phase diagram representation also suggests the 

ability of MDSI and PD54 together to clearly separate the different land systems. 

Reference sites form distinct clusters, as do the tails of the trajectories. Also evident 

from this representation of the data is that final clusters of the trajectory generally do 

not end in the reference site cluster. This indicates a high spatial variability of 

reflectance in the region. It also suggests that even the far points of paddocks, where 

grazing intensity is least still show a difference in spatial heterogeneity from the 

undisturbed reference sites. However, both indices show a marked similarity of their 

response along a grazing gradient independent of large background variability. 
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Figure 6.5 Mean and regression slopes of MSDI, PD54 and NDVI with distance from 
water points in different land systems. The slopes were computed using a linear regression 
of image indices over distance for a 500 m moving interval. Positive slopes for PD54 and 
NDVI and negative slopes for MSDI indicate that the image indices are able to correctly 
detect grazing gradients (shaded grey). 
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Figure 6.6 The scatter plot of MSDI versus PD54 at different distances from water points 
and reference sites (50 m interval up to 1500 m) in different land systems. Grey points 
indicate values for pixels within reference sites in each land system. 

6.4 Discussion and conclusions 

The effect of degradation is usually more apparent in the piospheres than in areas far 

from the water points. The results of this study showed that these grazing gradients are 

detectable using satellite image indices. MSDI showed significantly higher values 

around the water points compared with the reference sites. Piospheres were thus found 

to be more heterogeneous in surface reflectance than comparable non-degraded 

reference areas. 

High spatial heterogeneity near stock watering points can result from various factors. 

Because of the high concentration of animals in these regions, soil condition changes 

dramatically and this directly influences surface reflectance characteristics. Usually soil 

compaction, sheep tracks and dung deposition are greater close to water than in areas far 
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away from water, or in reference areas (Andrew and Lange, 1986a). As a result these 

regions have higher variation in the soil surface reflectance. In addition to changes in 

the soil surface, alteration in vegetation cover and composition near watering points is 

another factor that may add to the reflectance variation. Vegetation in piospheres is 

often a combination of overgrazed, less-grazed and dead trees and shrubs or litter, and 

consequently has different reflectance from less-severely grazed or healthy vegetation 

far from water. 

According to previous studies (e.g. Holm et al., 2003b) vegetation patchiness in 

piospheres decreases due to high grazing pressure and potentially this makes degraded 

regions more homogeneous in appearance than non-degraded areas. Because of the high 

concentration of animals in piospheres and along preferred paths, however, soil and 

vegetation diversity are spectrally and spatially more variable than non-degraded or 

reference areas. This variability decreases gradually with distance from high impact 

areas.  

Detection of variability around watering points depends strongly on the spatial 

resolution of the imagery and the size of the analysis window. One of the limitations of 

MSDI, as mentioned by Tanser and Palmer (1999), is that this index can not estimate 

degradation in an area less than 8100 m2 due to the filter size (3×3) applied to the 

Landsat TM imagery with 30 m ground resolution. A high variability is evident if the 

piosphere is denuded and if the radius of the MSDI window is large enough to include 

relatively undisturbed, vegetated pixels with different reflectance characteristics. This 

index is sensitive also to the edges of natural features as well as any disturbance in the 

landscape. High MSDI is expected at the edge of rivers, salt lakes and any man-made 

features such as roads. 

The PD54 and NDVI vegetation indices that were used as reference indices for 

comparison with MSDI showed different results. PD54 performed better for all the land 

systems in the study area and this confirms that this index is more appropriate than 

NDVI for assessing and monitoring land condition in this arid environment. PD54 had 

the most consistent differences between degraded and non-degraded areas across the 

land systems and this confirmed that it can be used as a good indicator of land 

degradation. This study supports the findings of Chapter 3 that the usefulness of NDVI 

may be reduced in perennial-dominated arid environments. Whereas the index showed 
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significant differences between degraded and non-degraded areas in most land systems, 

its performance was less consistent than PD54. In Yudnapinna, the land system which is 

dominated by chenopod shrublands in gilgai plains, the low near-infrared reflectance of 

the vegetation limited the usefulness of NDVI for detecting degradation (Graetz and 

Gentle, 1982).  

As expected, the degradation around the stock watering points was apparent with all the 

indices studied, though each showed this impact differently along gradients away from 

water. The MSDI successfully distinguished grazing gradients around the water points. 

It showed decreasing values with increasing distances from the water points, though 

these trends were different in various paddocks and land systems due to varying 

vegetation and soil characteristics and grazing intensities. This index had high values in 

areas of low vegetation cover and it decreased with increasing vegetation cover or PD54 

and NDVI values. The PD54 appeared to perform better and consistently showed an 

increase with distance from watering points in all land systems. However, in 

Yudnapinna, the expected increase was weak and limited to a narrow band. The NDVI 

showed no clear grazing gradient for Yudnapinna and the Arcoona land system.  

Despite the good performance of PD54 in land condition assessment and monitoring in 

Australian perennial-dominated landscapes, it has the disadvantage of subjectivity in its 

calculation. Hence the relatively good performance of MSDI indicates its potential 

usefulness as a simple indicator of land condition. It requires less image calibration than 

vegetation indices and this is a very important factor in remote sensing of land condition 

over broad areas on a repetitive basis. This index does not depend on the multispectral 

response of vegetation cover but utilizes spatial pattern in land cover. This component 

of the study showed that spatial heterogeneity in land surface reflectance may be used 

as an indicator of land degradation in arid lands of South Australia which are naturally 

heterogeneous.
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7 DISCUSSION AND CONCLUSION 

The size, remoteness, and harsh condition of arid lands make it difficult and expensive 

to assess and monitor condition using field-based techniques. Space-based remote 

sensing with its broad coverage, repeatability, and cost- and time-effectiveness has been 

suggested and used as an appropriate tool for this purpose for more than 30 years. 

Sequences of remote sensing imagery can provide baseline information on vegetation 

cover, productivity, biomass and also soil status that have essential roles in the 

determination of land condition. By developing relationships between the imagery and 

ground measurements and converting the imagery according to the predictive 

relationships, the imagery allows interpolation of point-based measurements to broader 

areas, which means land condition could be assessed and monitored efficiently.  

This study aimed to evaluate the potential of remote sensing techniques to overcome the 

limitations of field methods in arid land condition assessment and monitoring. The 

remote sensing techniques evaluated were vegetation indices, spectral mixture analysis 

and a landscape diversity index. These techniques were applied to multispectral and 

hyperspectral imagery of Kingoonya and Gawler Soil Conservation Districts in southern 

arid lands of South Australia. 

Vegetation indices derived from Landsat multispectral imagery were used to investigate 

their suitability for predicting arid vegetation cover. Strong relationships between 

vegetation indices and field cover measurements especially at land system scale 

revealed these spectral indices are good predictors of vegetation cover within stratified 

land systems in the region (Chapter 3). The most suitable vegetation index, STVI-4, was 

used in Chapter 4 to monitor vegetation cover and assess land condition. Results 

showed the STVI-4 detected changes in vegetation cover due to seasonal conditions and 

management effects. STVI-4 was able also to differentiate the LCI land condition 

classes in low woodlands, chenopod shrublands and Mt. Eba country, but was limited in 

non-stratified pasture types.  In Chapter 5, the spectral mixture analysis approach was 

applied to Hyperion hyperspectral imagery to separate vegetation cover from other soil 

surfaces. My specific aim was to separate vegetation types that have important role in 

land management. Despite the high resolution of the Hyperion image only two 

vegetation components were separable and the Hyperion image was unable to provide a 

meaningful vegetation component for chenopod shrubs that are dominant in the study 
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area. In contrast with vegetation indices and the spectral mixture analysis, the landscape 

spatial heterogeneity index depends on the spatial diversity in land cover reflectance for 

extracting vegetation information. The aim of using this index, derived from Landsat 

imagery, was to assess land degradation around stock watering points where the highest 

vegetation disturbance occurs (Chapter 6). This index successfully separated degraded 

from less degraded or reference areas and also detected grazing gradients near water 

points. 

Following sections review the results and findings of the research for each chapter, 

highlight the implications of research findings for arid land assessment and monitoring 

and provide recommendations for future research. 

7.1 Review of results and findings 

7.1.1 Vegetation indices 

Different groups of vegetation indices including slope-based, distance-based, 

orthogonal transformation, and plant-water sensitive vegetation indices were evaluated 

across land systems (landscape scale) and within land systems (land systems scale). It 

was observed generally that all vegetation indices were better predictors of vegetation 

cover within land systems compared with broader landscape scales. 

Slope-based vegetation indices were the best indices for predicting plant cover at 

regional or landscape scale where 10 different land systems were aggregated. These 

indices accounted for up to 39% of variation in total cover, followed by plant-water 

sensitive and orthogonal indices. Distance-based indices did not perform well at this 

scale. It appeared that different soil types and colours and also different vegetation types 

between land systems influenced the definition of the soil line in these indices.  

At land system scale, most of the vegetation indices were strongly correlated with total 

plant cover within the two land systems studied and explained 60-90% of the variation 

in the field measurements. Best indices at this scale were from the orthogonal and plant-

water sensitive groups, followed by the distance-based and slope-based indices. 

Distance-based indices were much better predictors of cover components within the two 

land systems compared with regional scale because of the greater similarity in soil and 

vegetation types within land systems. Several distance-based indices (e.g. PD54) have 
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been used widely for assessing and monitoring perennial-dominated vegetation cover in 

arid lands of Australia (Pickup et al., 1993). Results here confirmed the use of these 

indices within land systems rather than across broader areas. One of the limitations of 

the distance-based indices is, however, the need to define subjectively soil and 

vegetation-dominated pixels in bi-spectral space, which may lead to inconsistent results 

in monitoring applications. 

Among the vegetation indices evaluated in this study, stress-related indices (e.g. STVI-

4) performed best in terms of consistency at both landscape and land system scales. 

These indices had high to very high correlations with vegetation cover components. 

Stress-related indices best predicted combined perennial and ephemeral plants, followed 

by perennial plants at land system and total ground cover at landscape scale. In addition 

to the lower sensitivity of these indices to the spectral variation in soil and vegetation, 

they are calculated using arithmetic combination of Landsat image bands, thus are more 

objective than distance-based indices and can be used in assessment and monitoring 

vegetation cover, consequently land condition, across broad areas.  

Stress-related vegetation indices, designed originally for agricultural applications, have 

been shown to be better predictors of stressed crops than slope-based vegetation indices 

(Thenkabail et al., 1994). O'Neill (1996) applied these indices to a semi-arid rangeland 

in New South Wales, Australia and found that they perform better than slope-based 

indices in this natural environment. Results of this current study confirmed stress-

related indices to be superior to slope-based indices in arid areas. The reason for this 

good performance of stressed-related indices is that they are not based on solely the red 

and near-infrared regions of electromagnetic spectrum. In these spectral regions, arid 

and semi-arid plants due to their xeromorphic adaptations and low chlorophyll levels, 

like stressed crops, usually have poor spectral contrast. Conversely, because of their low 

moisture levels and high proportions of woody and dry plant materials, arid plants 

typically show considerable variation in mid and short-wave infrared reflectance. 

Consequently indices that include these spectral regions, such as the stress-related 

vegetation indices, are better recorders of arid perennial plant cover.  

7.1.2 Vegetation monitoring and land condition assessment 

The application of the STVI-4 to dry season 1991 and 2002 Landsat imagery showed 

this vegetation index was an appropriate method for detecting vegetation changes. In the 
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study area, changes in vegetation were highlighted by subtracting 1991 from 2002 

STVI-4 images. The vegetation difference image provided useful information about 

changes in vegetation cover resulting from variations in climate and alterations in land 

management. It displayed an increase in the STVI-4 values in the east and north east of 

the study area due to the presence of ephemeral plants in these regions thought to be in 

response to localised rainfall. Examination of the difference image in relation to 

paddocks revealed changes in cover within and across boundaries in this region that 

resulted from management rather than seasonal variations. The impact of management 

also was observed clearly in this area as there was a high increase in the STVI-4 values 

around artificial water points where grazing pressure had been removed.  

Statistical analysis, however, showed that changes in the STVI-4 did follow trends in 

cover components (i.e. perennial vegetation cover, total vegetation cover and total 

ground cover) and also LCI land condition classes from 1991 to 2002.  Changes in this 

vegetation index were in a slight agreement with changes in the cover components and 

LCI classes. Changes in STVI-4 and total cover had the highest Kappa coefficient 

(approximately 10%). Kappa coefficients for changes in the STVI-4 versus LCI classes 

were slightly better than STVI-4 versus cover components. The STVI-4 change 

accounted for up to 15% of variations in the LCI classes over an eleven-year period.  

Despite low agreements between changes in the STVI-4 and LCI classes from 1991 to 

2002, the 2005 STVI-4 vegetation index was able to differentiate the LCI classes which 

were recorded at 885 sites in this year. The STVI-4 discriminated successfully all LCI 

classes in low open woodlands, good and poor classes in chenopod shrublands and Mt. 

Eba country. The performance of STVI-4 in non-stratified vegetation cover appeared 

limited as this index did not show significant differences between different LCI classes. 

Because STVI-4 is an indicator of vegetation abundance and this component is one of 

the main criteria for determining land condition in LCI approach, this suggests that the 

STVI-4 could be used to aid LCI in the assessment of land condition. Before starting a 

new LCI land condition assessment, for example, the comparison of STVI-4 from last 

assessment and STVI-4 derived from recent imagery may provide an overview of 

vegetation condition and changes at last LCI sites as well as entire region.  
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7.1.3 Arid land characterisation with hyperspectral imagery  

Vegetation indices have been used widely to differentiate the reflectance of vegetation 

cover from other physical materials. Such indices appear to be less applicable in arid 

environments, however, where vegetation is sparse and soil and other physical features 

are dominant and contaminate the reflectance of vegetation cover. In this study, for 

example, the discrimination of vegetation cover in some land types was influenced by 

the background black and brown surface gravels and stones. Most of the vegetation 

indices, including one of the most promising vegetation indices (STVI-4), appeared to 

overestimate vegetation cover. Spectral mixture analysis (SMA) appears to be superior 

to vegetation indices in arid environments, because it can decompose all components 

within imagery and thus minimise the effect of different components on one another. 

By applying SMA to the Hyperion image, two vegetation and three soil surface end-

members were extracted: the soil surface end-members mapped sand plains, sand dunes, 

eroded areas, and surface gravel and stone. The vegetation end-members discriminated 

two types of vegetation cover in the region. The first end-member (PVg) mapped all 

vegetation cover with green and grey green colour (e.g. mulga and western myall) and  

correlated highly with field estimates of these components. In contrast with PVg, the 

second end-member (PVc) showed spectral features more characteristic of non-

photosynthetic vegetation with lower photosynthetic activity. PVc correlated strongly 

with field estimates of cottonbush and explained 89% of variation in the sample sites. 

The spectral signature of this component suggested PVc also mapped other vegetation 

components such as chenopod shrubs and non-photosynthetic vegetation cover. PVc 

accounted for up to 23% of variation in these components in the study area. 

Despite the favourable hyperspectral resolution of the Hyperion imagery, only two 

meaningful vegetation end-members were extracted. This may relate to the low 

vegetation cover of the study area (average 28%), lack of spectral contrast between 

different vegetation types, background effects of soil, and possibly the high noise 

content of the Hyperion image. Although the two vegetation end-members extracted 

from the Hyperion imagery accounted for approximately 70-90% of variations in cover 

of green and grey green vegetation and cottonbush, no meaningful end-member was 

produced for chenopod shrubs that are the dominant vegetation in the region and play a 

key role in management decisions. It seems this limitation of the Hyperion image in the 
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discrimination of this vegetation type relates mostly to the noisiness of the Hyperion 

image because of atmospheric or sensor effects and also its moderate spatial resolution 

(30 m). Research in a similar arid environment (Lewis, 2000) showed it was possible to 

discriminate chenopod shrubs with hyperspectral CASI (Compact Airborne 

Spectrographic Imager) imagery with high spatial resolution. The lack of discrimination 

of these shrubs in the present study thus appears to relate to their low cover relative to 

the Hyperion spatial resolution, as well as the lower radiometric quality of the satellite 

imagery. 

While spectral mixture analysis is a useful approach in the discrimination of arid 

landscape components, SMA has limitations for monitoring applications: one of the 

main limitations is the influence of spectral end-members on one another. Because of 

the sparseness of vegetation cover in arid environments, the instrument field of view is a 

mixture of different components and as result of this the availability of a single pixel as 

a representative of a particular end-member is very rare. Reliance on the image 

reference spectra thus means that it is difficult to identify "pure" end-member spectra 

suitable for unmixing. Because of this sensitivity, using this method for monitoring 

purposes is questionable.  

7.1.4 Land degradation assessment with a remotely-sensed heterogeneity index 

Due to the dependency of the spatial heterogeneity index (MSDI) on the spatial 

diversity in ground surface reflectance, this index has high potential in land condition 

assessments in varied landscapes. To evaluate the usefulness of the MSDI in the study 

area, spatial heterogeneity in selected piospheres (degraded areas) and nearby reference 

areas (non-degraded areas) was compared in four different land systems. Results 

showed piospheres were more heterogeneous in surface reflectance, with high MSDI 

values compared to non-degraded areas. The higher spatial variations in piospheres 

seem to result from factors such as soil compaction, sheep tracks and dung deposition, 

which are usually much greater near water points compared to more distant or reference 

areas. Another factor that might increase spatial heterogeneity in piospheres may relate 

to vegetation condition, as overgrazed vegetation in near water has different spectral 

responses from less-grazed or non-grazed vegetation in reference areas. 

The PD54 and NDVI used as comparisons with the spatial diversity index performed 

differently: the PD54 performed better in all land systems and had consistent 
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differences between degraded and non-degraded areas, with high values near reference 

sites. By comparison, the NDVI appeared to be less applicable in the study area. While 

NDVI showed significant differences between degraded and non-degraded areas in 

most of the land systems, it could not differentiate these areas in Yudnapinna land 

system where chenopod shrubs dominated. 

The MSDI, PD54, and NDVI indices were able to detect grazing gradients near the 

artificial stock water points in the study area. MSDI values decreased with increasing 

distance from water points and showed high values in areas with low vegetation cover. 

It decreased with increasing vegetation cover as shown by PD54 and NDVI values. The 

PD54 increased with distance from water in all land systems except Yudnipinna. The 

NDVI showed no clear grazing gradients either in Yudnapinna or Arcoona land system. 

These land systems are dominated by chenopod shrubs and the vegetation indices 

appeared to have limitations for detecting grazing gradients in these landscapes.   

7.2 Implications of research findings for arid land assessment and monitoring 

As a major land use in arid environments, grazing is the main cause of land degradation. 

Overgrazing reduces the cover of living and dead vegetation (plant litter) and this 

promotes soil erosion by water and wind. The continuation of this trend leads land 

towards desert-like conditions or desertification. High levels of vegetation degradation 

have been reported widely in Australian’s arid lands that cover approximately 75% of 

the continent. Usually most of the degradation occurs around watering points where 

grazing pressure is higher than surrounding areas. Because of the broad extent of arid 

lands, land condition monitoring and assessment using ground-based methods is limited 

in relation to the information they can provide. Results of this research showed remote 

sensing techniques, including vegetation indices, spectral mixture analysis and spectral 

landscape spatial heterogeneity could be used as complementary approaches.  

It is clear there are predictive relationships between vegetation indices and quantitative 

field cover data. While total vegetation cover (perennial and ephemeral plants) was 

predicted best by image indices, there was a significant correlation between vegetation 

indices and perennial vegetation cover. Because perennial vegetation is less affected by 

seasonal variations, it is the most important indicator in land condition assessment and 

monitoring. These relationships show that certain vegetation indices can be used to 
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estimate perennial vegetation cover and monitor its variation with time in broad areas 

where field-based methods are less applicable. 

The results showed limitations to the use of vegetation indices in broad areas with 

different terrains, soils and vegetation types. Vegetation indices were better predictors 

of field cover data at land system scale rather than regional or landscape scale. Similar 

results were also obtained when vegetation indices were used to discriminate LCI land 

condition classes. These indices performed better in stratified compared with non-

stratified vegetation cover. This means that stratification into land systems and 

vegetation cover should be undertaken, and that vegetation indices should be used 

cautiously across land systems and heterogeneous vegetation cover. As vegetation type 

in each land system is usually similar, stratification into land systems appears to be 

adequate. 

Despite the extensive use of NDVI, results showed it is not the most sensitive 

vegetation index in the study area. Its applicability was highly reduced in landscapes 

dominated by chenopod shrublands. NDVI was, however, the best predictor of total 

vegetation cover and total vegetation cover plus non-photosynthetic vegetation cover at 

regional scale. This confirms NDVI is more useful for general vegetation quantification, 

assessment and monitoring regardless of localized soil and vegetation variation.  

Landscape components derived from remote sensing imagery can play an important role 

in land management. Land managers may, for example, want to know the distribution of 

different vegetation types and their variations over time resulting from seasonal 

conditions and management strategies, or they may also want to know the location and 

distribution of other sensitive land components such as sand dunes. Monitoring sand 

dunes can help to identify their movement and recognize the most threatened areas 

early. Image-based components such those derived from Hyperion hyperspectral 

imagery in this study have high potential for land condition assessment and monitoring. 

For example, the sandy soil component that clearly mapped all sand dunes could be 

used as an indicator for monitoring the risk of wind erosion.  

As vegetation cover is the most important factor in land condition assessment and 

monitoring and usually links to both the causes and consequences of land degradation, 

appropriate image-based techniques are needed to extract vegetation information. 

Although STVI-4 provided considerable information about vegetation cover and its 
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variation through time due to seasonal and management effects, the MSDI enhanced 

land condition assessment, exploiting the spatial patterns in land cover.  In this study 

environment the MSDI detected successfully areas disturbed by overgrazing around 

stock watering points. The MSDI showed much greater spatial heterogeneity in these 

areas compared to reference regions. In applying the MSDI more widely the appropriate 

filter size needs to be chosen in relation to the spatial scale of the landscape pattern and 

degradation influences: a filter other than the 3×3 moving window used here with 

Landsat imagery may be more sensitive. In addition, this index needs to be interpreted 

with caution to exclude artifacts of apparently high spatial heterogeneity at the edges of 

natural and man-made features such as rivers and roads. 

The STVI-4 and MSDI offer the potential to aid field methods in land condition 

assessment and monitoring. The STVI-4 detected successfully changes in vegetation 

cover due to seasonal conditions and changes in land management practices and was 

able to separate LCI land condition classes with high confidence levels within pasture 

types. The good performance of MSDI in the detection of degradation in perennial-

dominated landscapes showed that it may be used as an appropriate indicator of land 

condition. Because of the simplicity and repeatability of the MSDI heterogeneity index 

and STVI-4 vegetation index, they could be used as rapid methods for assessing and 

monitoring land condition of arid lands of South Australia.  

7.3 Recommendations for future research  

Recommendations span for several decades for the use of remote sensing methods, 

usually via vegetation indices, in arid land assessment and monitoring. Despite 

compelling arguments, however, uptake of remote sensing by arid land management 

agencies has not been universal. Impediments to wider use of the techniques include 

lack of remote sensing specialists in monitoring and assessment agencies, and lack of 

understanding amongst land holders about the information that can be derived from 

remote sensing. There can, additionly, be uncertainty about the interpretation of image 

indices in relation to more conventional field data in particular environments. The 

current research has addressed this last question for selected environments in the 

southern Australian arid lands and showed that information derived from remote 

sensing imagery using different methods such as vegetation indices, unmixing 

approaches and the landscape spatial heterogeneity index have high potential in land 
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condition assessment and monitoring. Such information can assist land management 

agencies in planning and managing broad areas.  

To address some of the limitations of the methods raised in this research and to improve 

their use and maximise their benefits, the following areas for further research are 

recommended: 

• Land system stratification 

• Chenopod shrub discrimination 

• Land condition monitoring with the landscape diversity index 

Land system stratification would be a logical strategy for vegetation assessment and 

monitoring in the region. The favourable performance of vegetation indices at land 

system scale versus broader landscape scales suggests they are land-type dependent 

indices. At land system scale, vegetation similarity promoted strong relationships with 

field cover data. It was interesting to see that an index that had the strongest relationship 

in one land system was weaker in another. This means that according to the definition 

of vegetation indices, some indices are more suitable for a particular land system. 

Further research is therefore required to map each land system with the vegetation index 

that has the strongest relationship with vegetation cover in that land system. Each land 

system will thus have its specific vegetation index. As the land systems have already 

been mapped by South Australian government agencies, this mapping in GIS form 

provides a good basis for stratifying the landscape and developing these relationships 

for a wider range of the land systems across the South Australian pastoral lands. In 

order to do this more field data might be needed than were available in this current 

study. Such data might come from existing programs such as pastoral land monitoring 

or it might need to be collected specifically for this purpose. Another appropriate way to 

develop relationships between vegetation index imagery and field cover data is to use 

stratified pasture types rather than individual land systems. As the results of this study 

showed vegetation indices performed better in stratified compared with non-stratified 

pasture types. Using pasture type to establish these relationships appears to be more 

applicable and quicker and also covers much broader areas. 
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Use of remote sensing for discrimination of chenopod shrubs, which are the dominant 

vegetation types in the region, is another important direction for future work. Results 

from this study showed the Hyperion data were unable to provide a meaningful image 

vegetation component for chenopod shrubs. Airborne imagery with high spectral and 

spatial resolution is a good solution for this limitation, though more expensive than 

satellite imagery. In the near future satellite hyperspectral sensors with high signal to 

noise ratio  may be a cost-effective alternative in arid lands and provide more detailed 

information about vegetation cover than achieved by Hyperion (Stuffler et al., 2005). 

Future work should examine the landscape diversity index for monitoring purposes. If 

this index can detect changes in land condition over time, its application is highly 

recommended due to its objectivity and requirement for less image calibration. The 

MSDI performed as well as widely used vegetation indices, for example PD54, in 

Australian arid lands. MSDI was able to highlight disturbed areas due to overgrazing 

with high levels of confidence. Further work is needed to investigate the capability of 

this index for monitoring land condition.  
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APPENDIX 1 

Examples of vegetation species in the study area 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Maireana sedifolia (Pearl bluebush) Maireana astrotricha (Low bluebush) 

Acacia aneura (Mulga) Acacia papyrocorpa (Western myall) 

Maireana aphylla (Cottonbush) Atriplex vesicaria (Bladder saltbush) 
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Eragrostis eriopoda (Woollybutt) 

Senna. ft. petiolaris (Desert cassia) Callitris glaucophylla (Native pine) 

Halosarcia pergranulata (Samphire) 

Sand dune with dry sandhill canegrass  

Acacia tetragonophylla (Dead finish) 
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APPENDIX 2 

Atmospheric correction parameters 

ACORN input parameters for Hyperion 

Image format 1 

Integer format 0 

Image dimensions (bands, samples, lines, offset) 191    256    3412    0 

Longitude (degree, minute, second) -30°     55'    33" 

Date ( day, month, year)  29     12     2005 

Time (UTC) (hour, minute, second)  02    36    20     

Elevation 150 m 

Altitude 705000 m 

Model Mid-latitude-summer (1) 

Derive water vapour 1140 nm (2) 

Include path in water fit 1 

Visibility 100000 m 

Estimate visibility 1 

Artifact suppression (type1, type2, type3) 1    1     1 
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Hyperion wavelength, FWHM and gain values for ACORN. Offset values of all bands 
were null. 

Band number Wavelength FWHM Gain 

10 447.17 11.3871 0.025 

11 457.34 11.3871 0.025 

12 467.52 11.3871 0.025 

13 477.69 11.3871 0.025 

14 487.87 11.3784 0.025 

15 498.04 11.3538 0.025 

16 508.22 11.3133 0.025 

17 518.39 11.258 0.025 

18 528.57 11.1907 0.025 

19 538.74 11.1119 0.025 

20 548.92 11.0245 0.025 

21 559.09 10.9321 0.025 

22 569.27 10.8368 0.025 

23 579.45 10.7407 0.025 

24 589.62 10.6482 0.025 

25 599.8 10.5607 0.025 

26 609.97 10.4823 0.025 

27 620.15 10.4147 0.025 

28 630.32 10.3595 0.025 

29 640.5 10.3188 0.025 

30 650.67 10.2942 0.025 

31 660.85 10.2857 0.025 

32 671.02 10.298 0.025 

33 681.2 10.3349 0.025 

34 691.37 10.3909 0.025 

35 701.55 10.4591 0.025 

36 711.72 10.5322 0.025 

37 721.9 10.6004 0.025 

38 732.07 10.6562 0.025 

39 742.25 10.6933 0.025 

40 752.43 10.7058 0.025 

41 762.6 10.7276 0.025 

42 772.78 10.7907 0.025 

43 782.95 10.8833 0.025 

44 793.13 10.9938 0.025 

45 803.3 11.1045 0.025 

46 813.48 11.198 0.025 

47 823.65 11.26 0.025 

48 833.83 11.2823 0.025 

49 844 11.2821 0.025 

50 854.18 11.2815 0.025 

51 864.35 11.2809 0.025 

52 874.53 11.2796 0.025 

53 884.7 11.2782 0.025 

54 894.88 11.2771 0.025 

55 905.05 11.2764 0.025 

56 915.23 11.2756 0.025 

57 925.41 11.2754 0.025 

Band number Wavelength FWHM Gain 

79 932.64 11.0457 0.0125 

80 942.73 11.0457 0.0125 

81 952.82 11.0457 0.0125 

82 962.91 11.0457 0.0125 

83 972.99 11.0457 0.0125 

84 983.08 11.0457 0.0125 

85 993.17 11.0457 0.0125 

86 1003.3 11.0457 0.0125 

87 1013.3 11.0457 0.0125 

88 1023.4 11.0451 0.0125 

89 1033.5 11.0423 0.0125 

90 1043.59 11.0371 0.0125 

91 1053.69 11.0302 0.0125 

92 1063.79 11.0218 0.0125 

93 1073.89 11.0122 0.0125 

94 1083.99 11.0013 0.0125 

95 1094.09 10.9871 0.0125 

96 1104.18 10.9732 0.0125 

97 1114.18 10.9572 0.0125 

98 1124.28 10.9418 0.0125 

99 1134.38 10.9248 0.0125 

100 1144.48 10.9064 0.0125 

101 1154.58 10.8884 0.0125 

102 1164.68 10.8696 0.0125 

103 1174.77 10.8513 0.0125 

104 1184.87 10.8335 0.0125 

105 1194.97 10.8154 0.0125 

106 1205.07 10.7979 0.0125 

107 1215.17 10.7822 0.0125 

108 1225.17 10.7662 0.0125 

109 1235.27 10.752 0.0125 

110 1245.36 10.7385 0.0125 

111 1255.46 10.727 0.0125 

112 1265.56 10.7174 0.0125 

113 1275.66 10.7091 0.0125 

114 1285.76 10.7022 0.0125 

115 1295.86 10.697 0.0125 

116 1305.96 10.6946 0.0125 

117 1316.05 10.6937 0.0125 

118 1326.05 10.6949 0.0125 

119 1336.15 10.6996 0.0125 

120 1346.25 10.7058 0.0125 

121 1356.35 10.7163 0.0125 

122 1366.45 10.7283 0.0125 

123 1376.55 10.7437 0.0125 

124 1386.64 10.7612 0.0125 

125 1396.74 10.7807 0.0125 

126 1406.84 10.8034 0.0125 
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Band number Wavelength FWHM Gain 

127 1416.94 10.8267 0.0125 

128 1426.94 10.8534 0.0125 

129 1437.04 10.8818 0.0125 

130 1447.14 10.911 0.0125 

131 1457.23 10.9422 0.0125 

132 1467.33 10.9743 0.0125 

133 1477.43 11.0073 0.0125 

134 1487.53 11.0414 0.0125 

135 1497.63 11.0759 0.0125 

136 1507.73 11.1108 0.0125 

137 1517.83 11.1461 0.0125 

138 1527.92 11.1811 0.0125 

139 1537.92 11.2155 0.0125 

140 1548.02 11.2496 0.0125 

141 1558.12 11.2826 0.0125 

142 1568.22 11.3146 0.0125 

143 1578.32 11.3461 0.0125 

144 1588.42 11.3753 0.0125 

145 1598.51 11.4037 0.0125 

146 1608.61 11.4302 0.0125 

147 1618.71 11.4538 0.0125 

148 1628.81 11.476 0.0125 

149 1638.81 11.4958 0.0125 

150 1648.91 11.5133 0.0125 

151 1659.01 11.5286 0.0125 

152 1669.1 11.5404 0.0125 

153 1679.2 11.5505 0.0125 

154 1689.3 11.558 0.0125 

155 1699.4 11.5621 0.0125 

156 1709.5 11.5634 0.0125 

157 1719.6 11.5617 0.0125 

158 1729.7 11.5562 0.0125 

159 1739.69 11.5477 0.0125 

160 1749.79 11.5346 0.0125 

161 1759.89 11.5193 0.0125 

162 1769.99 11.5002 0.0125 

163 1780.09 11.4789 0.0125 

164 1790.19 11.4548 0.0125 

165 1800.29 11.4279 0.0125 

166 1810.38 11.3994 0.0125 

167 1820.48 11.3688 0.0125 

168 1830.58 11.3366 0.0125 

169 1840.58 11.3036 0.0125 

170 1850.68 11.2696 0.0125 

171 1860.78 11.2363 0.0125 

172 1870.87 11.2007 0.0125 

173 1880.97 11.1666 0.0125 

174 1891.07 11.1334 0.0125 

175 1901.17 11.1018 0.0125 

176 1911.27 11.0714 0.0125 

Band number Wavelength FWHM Gain 

177 1921.37 11.0424 0.0125 

178 1931.47 11.0155 0.0125 

179 1941.57 10.9913 0.0125 

180 1951.56 10.9698 0.0125 

181 1961.66 10.9508 0.0125 

182 1971.76 10.9355 0.0125 

183 1981.86 10.923 0.0125 

184 1991.96 10.9139 0.0125 

185 2002.06 10.9083 0.0125 

186 2012.16 10.9069 0.0125 

187 2022.25 10.9057 0.0125 

188 2032.35 10.9013 0.0125 

189 2042.45 10.895 0.0125 

190 2052.45 10.8854 0.0125 

191 2062.55 10.8739 0.0125 

192 2072.65 10.8591 0.0125 

193 2082.75 10.8429 0.0125 

194 2092.84 10.8243 0.0125 

195 2102.94 10.8039 0.0125 

196 2113.04 10.782 0.0125 

197 2123.14 10.7591 0.0125 

198 2133.24 10.7341 0.0125 

199 2143.34 10.7092 0.0125 

200 2153.34 10.6834 0.0125 

201 2163.43 10.6572 0.0125 

202 2173.53 10.6313 0.0125 

203 2183.63 10.6052 0.0125 

204 2193.73 10.5804 0.0125 

205 2203.83 10.556 0.0125 

206 2213.93 10.5328 0.0125 

207 2224.02 10.5101 0.0125 

208 2234.12 10.4904 0.0125 

209 2244.22 10.4722 0.0125 

210 2254.22 10.4552 0.0125 

211 2264.32 10.4408 0.0125 

212 2274.42 10.4285 0.0125 

213 2284.52 10.4197 0.0125 

214 2294.62 10.4129 0.0125 

215 2304.71 10.4088 0.0125 

216 2314.81 10.4077 0.0125 

217 2324.91 10.4077 0.0125 

218 2335.01 10.4077 0.0125 

219 2345.11 10.4077 0.0125 

220 2355.21 10.4077 0.0125 

221 2365.21 10.4077 0.0125 
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APPENDIX 3 

Representative examples of field spectra collected with ASD Field Spectrometer in 

April 2006 
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APPENDIX 4  

Percentage cover collected from approximately 1000 points at each site in January 2006 (Sample size= 52) 
Sites 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 

         Coordinates 

          (Easting & Northing) 

Components 
 

56
53

46
 

66
16

50
4 

56
59

41
 

66
16

37
0 

56
68

17
 

66
15

68
7 

56
73

71
 

66
12

86
9 

56
67

40
 

66
11

50
8 

56
64

12
 

66
10

76
6 

56
62

94
 

66
08

14
3 

56
71

46
 

66
07

51
3 

56
76

18
 

66
07

26
6 

56
82

97
 

66
07

27
9 

56
62

44
 

66
04

89
8 

56
91

07
 

66
03

62
6 

56
91

66
 

66
03

06
3 

56
86

32
 

66
03

73
0 

56
86

71
 

66
03

05
6 

56
79

97
 

66
03

49
7 

56
72

72
 

66
03

59
5 

56
63

95
 

66
02

76
1 

56
60

56
 

66
01

07
3 

56
60

30
 

65
98

57
3 

56
60

08
 

65
96

28
8 

56
64

23
 

65
94

00
9 

56
95

45
 

66
06

88
4 

57
06

64
 

66
06

76
2 

56
99

64
 

66
06

73
0 

56
92

66
 

66
06

90
9 

Bare soil 45.3 54.9 53.2 49.8 40.8 41.9 50.1 23.1 58.5 54.5 33.9 35.4 44.0 47.4 49.1 52.6 35.0 28.3 50.0 22.7 24.4 40.7 61.7 52.7 40.6 55.3 
Gravel and stone 17.8 25.0 33.3    0.6             40.7 38.2 10.6  27.4  2.4 
Litter 9.2 2.6 5.5 45.7 43.8 43.0 4.3 57.8 23.4 38.0 43.1 44.3 7.9 21.1 11.8 10.6 44.4 23.6 30.4 8.4 9.2 26.9 35.9 6.8 35.4 24.9 
Cryptogams       0.4              0.8      
Ephemeral (Grass+Herbs) 2.2 4.2 0.5 0.4 6.5  4.4 5.8 1.3 1.9 18.3 9.2 0.5 7.4 4.7 0.9 13.5 37.2 10.3 5.6 0.3 15.4 0.7  9.0 10.8 
Acacia aneura  0.8 1.4 1.8 9.0 15.1 3.1 1.7 3.5 4.4 4.6 11.1  3.2 8.3 6.7 7.2 7.6 4.9 15.8 27.1 6.3 1.7 7.4 2.2 3.8 
Acacia burkittii                           
Acacia kempeana                           
Acacia papyrocarpa   0.2 2.3   11.7 9.2 0.7 1.2   24.1  12.3 15.9    1.7      0.5 

Acacia tetragonophylla 1.7 1.3 1.1                0.5        
Atriplex vesicaria 8.8 0.8 1.4    21.3 1.2     0.8  3.9 1.1           
Casuarina pauper                        2.9  1.7 
Chenopodium nitrariaceum         9.8                  
Dissocarpus biflorus                           
Eremophila duttonii   0.6                        
Eremophila latrobei                           
Eremophila longifolia                           
Eremophila rotundifolia                           
Eremophila scoparia                           
Grevillea juncifolia         2.9                  
Lawrencia squamata 1.4                          
Maireana aphylla                           
Maireana appressa 0.1                          
Maireana astrotricha 9.2 3.3     0.6                    
Maireana pentatropis                           
Maireana pyramidata                           
Maireana sedifolia  2.2     2.6      22.6 1.1 6.9 10.1           
Maireana triptera 3.4 5.0 0.5                        
Melaleuca glomerata                           
Sclerolaena obliquicuspis 0.8                          
Senna artemisioides                           
Senna ft.gawlerensis                           
Senna ft.oligophylla   1.2                        
Senna ft.petiolaris   0.4    0.9 1.2       2.9 2.0  3.4 3.8 5.2    2.7 12.8 0.7 
Senna sp.   0.7                        
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Sites 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 

         Coordinates 

          (Easting & Northing) 

Components 
 

56
63

87
 

66
07

58
6 

56
80

98
 

66
13

27
0 

56
87

15
 

66
12

00
0 

56
96

43
 

66
11

12
5 

57
14

14
 

66
10

13
8 

56
71

56
 

65
94

01
3 

56
61

54
 

65
92

06
1 

56
59

81
 

65
91

34
6 

56
66

47
 

65
90

92
6 

56
67

82
 

65
90

57
2 

56
60

15
 

65
89

52
1 

56
78

66
 

66
08

01
6 

56
64

59
 

66
06

12
7 

56
67

39
 

66
01

58
0 

56
67

24
 

65
97

85
7 

56
60

42
 

65
87

92
2 

56
72

54
 

66
13

50
8 

56
67

79
 

66
13

23
4 

56
68

10
 

66
14

55
1 

57
03

02
 

66
14

72
1 

57
16

31
 

66
14

86
3 

56
77

29
 

66
19

02
2 

57
00

21
 

66
26

30
1 

56
78

59
 

66
18

17
0 

56
78

91
 

66
19

41
9 

57
09

02
 

66
19

62
2 

Bare soil 33.6 28.1 26.3 47.0 37.7 42.4 32.9 29.3 27.3 31.3 32.1 41.0 25.4 29.5 19.8 27.7 62.4 47.2 9.9 40.5 29.0 29.2 28.5 26.7 40.0 56.2 
Gravel and stone  26.3  41.0    3.3   10.3  30.3 16.4 30.6 17.1 3.6 32.7 41.8 1.4 15.5   25.8 10.2 13.1 
Litter 21.1 34.0 35.4 2.4 49.4 30.5 40.5 23.4 29.1 21.3 29.6 39.9 12.1 26.6 20.6 29.5 13.2 1.1 13.6 17.5 9.4 29.7 13.2 10.6 13.6 11.5 
Cryptogams        11.3  3.6   4.4  7.1 3.6         0.8  
Ephemeral (Grass+Herbs) 14.7 7.3 23.3 5.8 7.3 13.6 9.9 12.2 32.0 9.0 8.6 5.3 5.6 5.5 11.5 9.3 1.2 7.7 6.4 5.2 8.8 10.8 8.1 4.5 6.4 1.8 
Acacia aneura 3.0 4.2 14.8 2.2 2.4 2.8 1.3 2.3 3.3 1.1 1.6  2.1 5.5 7.7 2.9     1.9  14.3 2.8  1.9 
Acacia burkittii          11.5 1.1     3.2           
Acacia kempeana                  3.9         
Acacia papyrocarpa 4.3    1.2     1.7  9.1 2.7   0.8 17.6 3.6         
Acacia tetragonophylla      0.8    0.3              2.5 0.4 1.7 
Atriplex vesicaria                        2.5 15.3  
Casuarina pauper           1.5     2.3           
Chenopodium nitrariaceum                           
Dissocarpus biflorus      3.7        1.3             
Eremophila duttonii        1.5       1.0    3.7 15.2 2.0      
Eremophila latrobei               1.7 2.7    5.2       
Eremophila longifolia              8.7             
Eremophila rotundifolia                   19.3  27.1      
Eremophila scoparia                  2.6  1.5       
Grevillea juncifolia      2.3 15.4  2.2  12.4                
Lawrencia squamata                           
Maireana aphylla          14.5         4.1 7.5 6.3 30.3 31.2 22.1 10.2 12.2 
Maireana appressa                           
Maireana astrotricha                           
Maireana pentatropis      0.9   0.9  1.1                
Maireana pyramidata                         0.4  
Maireana sedifolia        2.3  1.4 1.5 1.2 17.4 0.9           2.7 1.7 
Maireana triptera                   1.3        
Melaleuca glomerata 21.8                      4.8    
Sclerolaena obliquicuspis                           
Senna artemisioides         5.2           6.1       
Senna ft.gawlerensis        14.6  1.4     1.1            
Senna ft.oligophylla                           
Senna ft.petiolaris 1.6   1.4 1.9 1.0      1.4  5.5   1.9 1.1      2.5   
Senna sp.      1.8    2.8  2.1               
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