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Accurate and precise optical testing with a differential
Hartmann wavefront sensor

Thu-Lan Kelly, Peter J. Veitch, Aidan F. Brooks, and Jesper Munch

A novel differential Hartmann sensor is described. It can be used to determine the characteristics of an
optic accurately, precisely, and simply without detailed knowledge of the wavefront used to illuminate the
optical system or of the geometry of the measurement system. We demonstrate the application of this
sensor to both zonal and modal optical testing of lenses. We also describe a dual-camera implementation
of the sensor that would enable high-speed optical testing. © 2007 Optical Society of America

OCIS codes: 010.7350, 220.4840, 120.4640.

1. Introduction

The optical characteristics of systems that transmit
or reflect light can be determined using a variety of
techniques, including Hartmann1–7 (H) and Shack–
Hartmann8–10 (S-H) wavefront sensors. S-H sensors,
for example, are widely used to measure and control
the effect of atmospheric turbulence in astronomical
adaptive optics, as they are compatible with low light
intensities and can operate at sampling rates of sev-
eral kHz.8,11 In many other applications, however,
more light is available for the measurement, and the
measurement time is less important. Thus a wave-
front sensor that provides greater precision and ac-
curacy, such as a Hartmann sensor, can be used.5,12

In H sensors, the centroids of the spots on the CCD
camera and thus the transverse aberration produced
by the optical system can be determined more pre-
cisely than in S-H sensors.5 Furthermore, they are
less sensitive to spatial variations in pixel responsiv-
ity and defective pixels and are obviously unaffected
by defects in the micro-lens array.10 The larger dis-
tance between the wavefront sampling element and
the CCD, compared to that in a S-H sensor, further
improves the precision with which the local slope of

the wavefront can be determined. These significant
improvements in precision can compensate for the
reduced spatial resolution of the H sensor to yield an
improved measurement of the wavefront and of the
characteristics of the optical system. Accurate deter-
mination of the characteristics, however, usually re-
quires detailed knowledge of the incident reference
wavefront and of the location of some of the cardinal
planes.6

In this paper, we describe a differential Hartmann
wavefront sensor that provides accurate, precise, and
simple measurements of the characteristics of an op-
tical system. This is achieved by combining trans-
verse aberrations measured in two planes that are
separated by an accurately and a precisely known
distance. An alternative differential H sensor, in
which a converging lens was placed in the back focal
plane of the optical system and the transverse aber-
rations were measured in two planes equally spaced
about that plane, was proposed by Roddier2 as a
means of doubling the sensitivity of the sensor. It did
not consider the accuracy of the sensor, however.

We demonstrate the application of the differential
Hartmann sensor to zonal and modal analyses of
lenses, showing that the spherical power is reproduc-
ible to 0.1% for measurements spread over 1 week.
The accuracy is demonstrated by comparing the mea-
sured power of a set of reference ophthalmic lenses
with the nominal values. The modal analysis is per-
formed using a dual-camera system that could enable
high-speed measurement of the optical characteris-
tics.

2. Differential Hartmann Sensor

The layout of the differential Hartmann sensor is
shown schematically in Fig. 1. We will assume here
that a transmissive optic is being characterized. The
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extension of the technique to reflective optics is
straightforward.

As in the prototypic Hartmann optical testing
system,1,3–6 an opaque plate containing an array of
holes, usually referred to as the Hartmann plate, is
illuminated by a reference wavefront, thereby gener-
ating a set of Hartmann rays. The transverse position
of these rays at a distant plane is recorded using a
CCD camera. The optic is then inserted between the
Hartmann plate and the CCD, and the “aberrated”
transverse positions are recorded.

The wavefront aberration introduced by the optic,
W, can be written as a linear combination of m modes:
W � �i�0

m�1 �i�i�x, y�, where �x, y� denotes the coordi-
nates at the optic. The transverse aberrations can
thus be written13:

TAx � �l
�W
�x � �

i�0

m�1

aiXi, TAy � �l
�W
�y � �

i�0

m�1

aiYi,

(2)

where

Xi �
��i

�x , Yi �
��i

�y , ai � ��il,

and l is the lever-arm distance between the optic and
the CCD.

The coefficients ai can be determined by defining

�2 � �
j�1

N ��TAxj
� �

i�0

m�1

aiXi�xj, yj��2

� �TAyj
� �

i�0

m�1

aiYi�xj, yj��2�, (3)

where N is the number of Hartmann rays, and solv-
ing ��2��ai � 0. The resulting equations can be writ-
ten conveniently as a matrix equation:

Ma � b, (4)

where

M � XTX � YTY,

X ��X0�x1, y1� · · · Xm�1�x1, y1�
· · · · · · · · ·

X0�xN, yN� · · · Xm�1�xN, yN�
�,

Y ��Y0�x1, y1� · · · Ym�1�x1, y1�
· · · · · · · · ·

Y0�xN, yN� · · · Ym�1�xN, yN�
�,

a �� a0

· · ·
am�1

�,

b � XTbx � YTby,

bx ��TAx1

· · ·
TAxN

�, by ��TAy1

· · ·
TAyN

�.

The coefficients ai are then calculated using a �
M�1b, where M�1 is usually determined using singu-
lar value decomposition (SVD).14

In a conventional Hartmann sensor, it is assumed
that the lever-arm distance l is well defined, and thus
the modal coefficients �i can be calculated using Eq.
(2). In systems that use a collimated reference wave-
front, this assumption requires that the locations of
the second principal plane of the optic and the active
surface of the detector are known accurately.6 While
the second requirement may be reasonable, the first
will limit the applicability and accuracy of this tech-
nique. This calculation would be even more problem-
atic if the reference wavefront was not collimated, as
the plane from which l should be measured cannot
a priori be well defined. Furthermore, the coordinates
of the Hartmann rays at the optic must be estimated
from the layout of the system (see Ref. 7 for example),
which may further reduce the accuracy and precision.

The reliance on the accuracy of l can be eliminated
by using an additional set of transverse aberrations,
measured after moving the CCD to a second location
CCD 2, separated from the first recording location,
CCD 1, by a precisely and accurately known distance
�l. The modal coefficients �i are then calculated using

�i � �ai1 � ai2���l, (5)

where ai1 and ai2 are the coefficients in the first and
second planes. A detailed example of this analysis
using Seidel aberrations is given in Appendix A. This
procedure can be extended to multiple measurement
planes by plotting aik as a function of �lk and deter-
mining the slope of the line of best fit.

Using a collimated reference wavefront simplifies
the analysis, as the Hartmann ray coordinates at the
optic can be obtained directly from the centroids of
the reference spots at the CCD. The relative separa-
tion of the reference spots at the two CCD locations

Fig. 1. Schematic layout of the differential Hartmann testing
system. Only one of the rays produced by the Hartmann plate is
traced through the optical system. When the unknown optic is
placed in the path of the Hartmann ray, the ray is deflected to
produce the “aberrated ray.” A possible deflection is shown. The
CCD camera is positioned at the locations denoted CCD 1 and CCD
2, to yield two transverse aberrations.
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can be used to determine whether the reference
wavefront is collimated.

The differential Hartmann sensor can be used for
both modal and zonal analysis of the optic. For zonal
analysis, the Hartmann rays are divided into sets of
adjacent rays. For example, spots produced by a
square-array Hartmann plate could be divided into
subsets of nine spots, and the analysis might be cen-
tered on the central spot (“spot-centered”), as shown in
Fig. 2, or at a point between the spots. Other hole
patterns, such as hexagonal-close-packed (hcp), which
would improve the spatial resolution, could also be
used. However, as discussed further in Subsection 3.A,
hcp arrays are not suitable for distinguishing between
defocus and spherical aberration.

3. Demonstration of the Differential Hartmann Sensor

The differential Hartmann sensor can be implemented
using a variety of techniques: the camera can be moved
between the measurement planes, or a transparent
optical flat could be used to change the optical length of
the lever arm, or a beam splitter and two cameras
could be used to measure simultaneously the trans-
verse aberrations.

In this section we describe two proof-of-principle
tests that use the moving-camera and dual-camera
implementations and demonstrate the sensitivity
and accuracy of the differential Hartmann sensor.
First, we describe the zonal analysis of a high-quality
microscope objective lens using a single movable cam-
era in which �l was set using a solid spacer block. We
then describe the modal analysis of a series of oph-
thalmic reference lenses using a dual-camera system.
For both tests, spot centroids were determined using
image processing to detect the spots and iterative
fractional pixel interpolation to determine the cen-
troids, as will be detailed in another paper.15

A. Zonal Spherical Power Map of a Microscope
Objective Lens

A Hartmann plate consisting of a hexagonally close-
packed array of 0.3 mm diameter holes separated by

0.6 mm was used for this measurement. The camera
was mounted on an optical rail, and the distance �l
was set using a solid spacer block that had parallel
faces, the length of which was measured using Vernier
calipers. Due to the short focal length, f 	 30 mm, of
the objective lens, the second set of transverse aber-
rations was recorded with the CCD located beyond
the back focal plane of the lens. A combination of
prismatic, defocus, and, astigmatic aberrations was
used to describe the optic. The analysis was per-
formed using seven-element spot-centered subsets,
yielding defocus values at locations as shown in Fig.
3(a), which are within the central 50% of the lens
aperture. The defocus at each position was reproduc-
ible to �0.03 diopter, corresponding to 	f�f � 1 

10�3 or 	f � 30 �m, for measurements spread over 1
week. A contour map, shown in Fig. 3(b), was gener-
ated using these defocus values. Note that the contour
interval in this map is 3 times larger than the repro-
ducibility of the values used to construct the map.

The “spot-centered” analysis was extended to in-
clude spherical aberration and coma but it produced

Fig. 3. (a) Plot of the 17 locations at which the zonal spherical
power of the microscope objective lens was calculated. The central
location is near the optical axis of the lens. (b) A contour map of the
spherical power of a microscope objective lens. The zonal measure-
ments of spherical power were transformed into a 10 
 10 regular
grid with smoothness parameter � 0.6 using the correlation (Krig-
ing) method in the Microcal Origin package. The 0.1 diopter con-
tour interval is 3 times larger than the reproducibility of the
measurements used to generate the plot.

Fig. 2. Schematic of a Hartmann plate with a 6 
 6 square array
of holes. Dividing the holes into 3 � 3 subsets, one of which is
shown, and using a spot-centered analysis would allow the optical
parameters to be determined at 16 locations. Including non-spot-
centered subsets would allow the parameters to be calculated at
other locations.
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large variations in the spherical power and much
larger residuals, due to the difficulty in distinguish-
ing between defocus and spherical aberration using a
set of spots that have essentially the same radial
distance from the central spot. This ill-conditioning
was removed when using a non-spot-centered analy-
sis. Alternatively, a square array or an array opti-
mized to differentiate between these two particular
aberrations would also prevent the ill-conditioning
but may have lower spatial resolution. This reveals
the opportunity to optimize the array for a particular
measurement. If, for example, power and spherical
aberration were to be differentiated, and since they
have different dependences on radius, a purpose-
designed Hartmann plate with a spiral array of holes
could yield improved results.

B. Dual-Camera Modal Analysis of Ophthalmic
Reference Lenses

A schematic of the measurement system used to
characterize the ophthalmic lenses is shown in Fig.
4. The light source for these measurements was a
fiber-coupled superluminescent LED (SLED) emit-
ting 50 �W at 820 nm. The Hartmann plate initially
consisted of a square array of 1.0 mm diameter holes
separated by 3.0 mm. A pellicle beam splitter was
used to divide the Hartmann rays and to prevent
multiple reflections. The cameras used 6.66 mm 

5.32 mm complementary metal-oxide semiconductor
(CMOS) sensors and 8-bit digitization but had 1–2
bits of noise. The difference between the distances to
the two sensors, �lsensors, was determined by using an
optical wedge to introduce a known prismatic aber-
ration.

Since the Hartmann array was larger than the
CMOS sensor, and indeed the CCD sensor used pre-
viously, a flat-field projector lens was used to reduce
the lateral extent of the Hartmann spot pattern. How-
ever, as the sensors were necessarily at different dis-
tances from this lens, the reduction factors, R1 and
R2 �R1, R2 � 1�, were also different. Typical Hartmann
spot patterns are shown in Fig. 5.

The reduction factors were measured using a Hart-
mann plate located at the position of the unknown
optic, illuminating it with a collimated reference

wave and comparing the spot positions with those
measured without the reduction lens. The measured
transverse aberrations, TA1 and TA2, and �lsensors,
were then transformed using TA1� � TA1�R1,
TA2� � TA2�R2 and �l� � �lsensors�R1R2, and these
values were used for the analysis.

Alternatively, the analysis could have been per-
formed using the measured transverse aberrations
and the differential arm length calibrated with the
reduction lens in place. However, this would require
either a prior measurement of the Hartmann beam
coordinates at the optic or that these coordinates
were calculated using the reference spot positions
and the measured reduction factors. Additionally,
the maximum wedge angle that could be used for the
length calibration would be reduced. Using a large
CMOS or CCD sensor would remove the need for the
reduction lens and thus simplify the analysis signif-
icantly.

The transverse aberrations were analyzed for
prism �P�, spherical �S�, and cylindrical �C� powers,
coma �B�, and spherical aberration �A�. Initially, a
3 � 3 set of holes was used for the analysis; however,
the SVD indicated that the M matrix was singular,
due to the very small spherical aberration expected
for these lenses. Increasing the number of holes, typ-
ically to 13–21 holes, removed the ill-conditioning but
could lead to including barrel distortion from the re-
duction lens.

The measured P, S, and C are listed in Table 1.
They are similar to those determined by analyzing
the 3 � 3 sets for P, S, and C only, and show good
agreement with the nominal values and a reproduc-
ibility of 
1%. The tolerance on the nominal power of
the reference lenses is unknown but is assumed to be
less than the 
0.06 diopter manufacturing tolerance
on single-vision ophthalmic lenses.6

The nonzero P values in Table 1 may indicate that
the Hartmann plate was not accurately aligned
with the center of the lens. The nonzero C values
may indicate an angular misalignment of the ref-

Fig. 4. Schematic layout of the differential Hartmann sensor
used for the modal analysis of the reference lenses. A beam splitter
and two CMOS sensors were used to implement the differential
measurement. A fiber-coupled (F-C) SLED light source was used to
prevent unwanted interference fringes. The demagnifying lens, L2,
reduces the size of the Hartmann spot pattern to that of the CMOS
sensors.

Fig. 5. Images of Hartmann spot patterns for a 4 diopter lens
with �lsensors � 9.20 mm, R1 � 0.360, and R2 � 0.450: (a), (b)
reference spots at planes 1 and 2; (c), (d) “aberrated” spot at planes
1 and 2, located after the focal plane of the 4 diopter lens.
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erence wavefront and the optical axis of the lens.
Coma �B� and spherical aberration �A� were also ex-
pected to be small for these lenses. Coma values were
generally nonzero, which is consistent with the non-
zero C values, and were reproducible. The spherical
aberration coefficients, by contrast, were not reproduc-
ible, even though the M matrix was not ill-conditioned.
The difference in reproducibility between coma and
spherical aberration is probably because spherical ab-
erration dominates over other third-order aberrations
for large apertures, as TAspherical aberration � aperture3

while TAcoma � aperture,2 and thus it is more sensi-
tive to readout noise. This problem could be fixed by
using cameras with larger dynamic range (more digi-
tization bits and�or less noise). Additionally, a Hart-
mann plate with an optimized hole pattern that
enabled the transverse aberration to be measured at
a larger number of radii might improve the reproduc-
ibility of A, as discussed above.

4. Conclusion

We have described a differential Hartmann wavefront
sensor that can simply, precisely, and accurately de-
termine the properties of an optical system without the
need for accurate knowledge of the location of the car-
dinal planes of the optical system, of the geometry of
the measurement system, or of the reference wave-
front. We have demonstrated that the sensor has ex-
cellent reproducibility over extended time frames, has
good accuracy, and can be used for both modal and
zonal analysis. We have also described a dual-camera
implementation of the differential sensor that can be
used for high-speed characterization and would be
suitable for industrial lens quality assurance.

Further optimization of the Hartmann wavefront
sensor using 12-bit dynamic range CCD cameras and

averaging can enable measurement of wavefront
changes with a reproducibility of about ��4000 over
second time scales and about ��250 over 24 hours.12

Using these optimized sensors in the differential lay-
out described here would allow ultraprecise and ac-
curate characterization of optical systems.

Appendix A: Example of Modal Analysis for Seidel
Aberrations

The wavefront might be described using Seidel aber-
rations, giving up to third order3

W � P�x cos � � y sin �� � 0.5S�x2 � y2�
� 0.5C�x sin � � y cos ��2 � B�x cos � � y sin ��

 �x2 � y2� � A�x2 � y2�2, (A1)

where P is the prism, � is the orientation of the prism,
S is the defocus or spherical power, C is the astigma-
tism or cylindrical power, � is the orientation of the
cylinder, B is the coma, � is the orientation of the
coma, A is the spherical aberration, and x and y are
the coordinates of the Hartmann ray at the optic.

Using Eq. (2), the expected transverse aberrations
can be written

TAx � a0 � a1x � a2y � 2a3xy � 3a4x
2 � a4y2 � a5x

3

� a5xy2, (A2a)

TAy � a6 � a2x � a7y � 2a4xy � a3x
2 � 3a3y2 � a5y3

� a5x
2y, (A2b)

where the coefficients are given by

a0 � �lP cos �, a1 � �l�S � C sin2 ��,

a2 � l�C sin � cos ��, a3 � �lB sin �,

a4 � �lB cos �, a5 � �l4A,

a6 � �lP sin �, a7 � �l�S � C cos2 ��.
(A2c)

The coefficients ai can be determined by defining

where TAx and TAy are the measured transverse ab-
errations in the x and y directions, and by solving the

�2 � �
j�1

N

��TAxj
� �a0 � a1xj � a2yj � 2a3xjyj � 3a4xj

2 � a4yj
2 � a5xj

3 � a5xjyj
2�
2

� �TAyj
� �a6 � a2xj � a7yj � 2a4xjyj � a3xj

2 � 3a3yj
2 � a5yj

3 � a5xj
2yj�
2�, (A3)

Table 1. Measured and Nominal Values of S, C,a and P

Nominal Measured

S C P S C P

1.5 0.0 0.0 1.49 � 0.02 0.001 � 0.01 0.0002 � 0.0001
2.0 0.0 0.0 1.98 � 0.01 �0.09 � 0.01 0.0002
2.25 0.0 0.0 2.23 � 0.02 �0.15 � 0.03 0.0003
3.0 0.0 0.0 3.02 � 0.04 �0.01 � 0.01 �0.0001
3.5 0.0 0.0 3.52 � 0.01 �0.01 � 0.002 �0.0001
4.0 0.0 0.0 3.94 � 0.08 0.03 � 0.02 �0.001 � 0.0003
4.5 0.0 0.0 4.54 � 0.02 0.01 � 0.03 0.0002 � 0.0006
5.0 0.0 0.0 5.07 � 0.02 0.04 � 0.03 �0.0001

aS and C are in diopters.
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set of equations arising from ��2��ai � 0. Note that
since the reference wavefront is collimated, the
(relative) positions of the Hartmann rays, �x, y�, at
the input aperture of the optic are the same as their
reference positions at the CCD. Comparison of Eq.
(A3) with Eq. (3) yields

X0 � 1, Y � 0,
X1 � x, Y1 � 0,
X2 � y, Y2 � x,
X3 � 2xy, Y3 � x2 � 3y2,
X4 � 3x2 � y2, Y4 � 2xy,

X5 � x3 � xy2, Y5 � y3 � x2y,
X6 � 0, Y6 � 1,
X7 � 0, Y7 � y. (A4)

The matrix M is formed as described in Eq. (4) and
inverted to yield the coefficients ai, and the orienta-
tion angles and characteristic-length products are
calculated using

tan � � a6�a0, (A5a)

tan 2� � 2a2��a1 � a7�, (A5b)

tan � � a3�a4, (A5c)

Pl � �a0
2 � a6

2�1�2, (A5d)

Cl ���a1 � a7��cos 2�, cos 2� � 0
a2�cos � sin �, cos 2� � 0, (A5e)

Sl � ��a1 � a7 � Cl��2, (A5f)

Bl � �a3
2 � a4

2�1�2, (A5g)

Al � �a5�4. (A5h)

By convention, � is assumed to be between 0 and 	.
Since the distance l is not known accurately, the

measurements are repeated in a second plane and
the parameters described in Eqs. (A5a)–(A5h) recal-
culated. Then, the optical characteristics are calcu-
lated using

P � �Pl2 � Pl1���l, (A6a)

C � �Cl2 � Cl1���l, (A6b)

S � �Sl2 � Sl1���l, (A6c)

B � �Bl2 � Bl1���l, (A6d)

A � �Al2 � Al1���l, (A6e)

where Plk is the characteristic-length product esti-
mate in the kth plane, and similarly for the other
quantities, obtained from Eqs. (A5d)–(A5h). The re-
sults of Eqs. (A5a)–(A5c) can be averaged to yield an
improved value for the orientation angles.

T.-L. Kelly gratefully acknowledges the support of
the Australian Research Council.
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