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Abstract 

The human jaw, like all other articulated body parts, exhibits small oscillatory 

movements during isometric holding tasks.  These movements, known as physiological 

tremor, arise as a consequence of the interaction of various factors.  One of these factors 

is reflex feedback from peripheral receptors.  In the human jaw, receptors that innervate 

the periodontium are able to transduce minute changes in force.  This thesis examines 

the contribution of these periodontal mechanoreceptors (PMRs) to the genesis of 

physiological tremor of the human jaw.   

By using frequency domain analysis of time series recorded during isometric biting 

tasks, the character of physiological jaw tremor can be revealed.  Physiological jaw 

tremor was observed in force recorded from between the teeth as well as from 

electromyograms recorded from the principal muscles of mastication.  These recordings 

have shown us that jaw physiological tremor consists of a frequency invariant 

component between 6 and 10Hz.  This frequency remains unaltered under various load 

conditions where the mechanical resonance of the jaw would be expected to vary 

greatly (Chapter 2).  Such findings indicate a ‘neurogenic’ origin for this tremor.  A 

possible candidate for this neurogenic component of physiological tremor in the jaw is 

the reflex feedback arising from the PMRs.   

Using local anaesthetisation, it has been shown in this thesis, that by blocking outflow 

from the PMRs, the amplitude of neurogenic physiological jaw tremor can be reduced 

dramatically.  This procedure caused a dramatic reduction in not only the mechanical 

recordings of tremor but also in the coupling between masseteric muscles bilaterally 

(Chapter 3) and between single motor units recorded from within a homonymous 

muscle (Chapter 4).   
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The obvious mechanism by which periodontal mechanoreceptor anaesthetisation could 

reduce the amplitude of physiological tremor in the jaw would be by reducing the 

amplitude of the oscillatory input to the motoneurones driving the tremor.  This 

interpretation remains controversial however as physiological tremor in the jaw can be 

observed at force levels above which the PMRs are supposedly saturated in their 

response.  In light of this knowledge, the saturating characteristics of these receptors in 

terms of reflex output were examined.  To do this, a novel stimulation paradigm was 

devised whereby the incisal teeth were mechanically stimulated with identical stimulus 

waveforms superimposed upon increasing tooth preloads.  This necessitated the use of a 

frequency response method to quantify the reflexes.  An optimal frequency for 

stimulation was identified and used to confirm that the hyperbolic saturating response 

of PMRs observed previously, translated to a similar phenomenon in masticatory 

reflexes (Chapter 5).   

These data reinforced the idea that physiological tremor in the jaw was not just a 

consequence of rhythmic reflex input from PMRs, as the dynamic reflex response 

uncoupled from the input as the receptor-mediated reflex response saturated.  An 

alternative hypothesis was then developed that suggested the effect of PMR suppression 

in physiological tremor was via tonic rather than rhythmic effects on the masseteric 

motoneurone pool. 

By utilising a novel contraction strategy to manipulate the mean firing rate of the motor 

neuron pool at a given level of force production, data contained in Chapter 6 shows that 

population motor unit firing statistics influence the expression of physiological tremor, 

and such manipulations mimic, to an extent, the changes in firing statistics and tremor 

amplitude seen during anaesthetisation of the PMRs.  This thesis therefore posits a 
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mechanism whereby periodontal input influences the firing rate of motoneurones in 

such a way as to promote tremulous activity (Chapter 5).  However, as this proposed 

mechanism did not explain the full extent of tremor suppression seen during PMR 

anaesthetisation it can therefore only be considered a contributing factor in a multifactor 

process.   
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