Improved Actions in Lattice QCD

Frédéric D.R. Bonnet
Supervisors: Dr. Derek B. Leinweber and A/Prof. Anthony G. Williams.

May 4, 2008

Special Research Centre for the Subatomic Structure of Matter (CSSM) and Department of Physics and Mathematical Physics, University of Adelaide, 5005, Australia.

Thesis in Theoretical Physics submitted to fulfill the requirements of the the degree of Doctor of Philosophy.

Abstract

In this thesis I explore the physical effects of improved actions combined with improved operators in the framework of lattice QCD. All calculations are done in the quenched approximation, that is, when all of the dynamical fermion interactions have been suppressed by setting the determinant of the fermion matrix to a constant.

The thesis first briefly introduces lattice QCD to familiarize the reader with the basic concepts. It then describes the common numerical procedures used. It is made up of three major sections.

The first is the exploration of gauge field configurations and the study of the role of instantons in lattice QCD. In this work the Wilson gauge action and a standard 1 loop topological charge operator are used to determine the relative rates of standard cooling and smearing algorithms in pure $S U_{c}(3)$-color gauge theory. I consider representative gauge field configurations on $16^{3} \times 32$ lattices at $\beta=5.70$ and $24^{3} \times 36$ lattices at $\beta=6.00$. I find the relative rate of variation in the action and topological charge under various algorithms may be succinctly described in terms of simple formulae ${ }^{1}$. The results are in accord with recent suggestions from fat-link perturbation theory. This work is then extended to $\mathcal{O}\left(a^{2}\right)$-improved gauge action and $\mathcal{O}\left(a^{2}\right)$-improved operators ${ }^{2}$. In particular, an $\mathcal{O}\left(a^{2}\right)$-improved version of APE smearing is motivated by considerations of smeared link projection and cooling. The extent to which the established benefits of improved cooling carry over to improved smearing is critically examined. I consider representative gauge field configurations generated with an $\mathcal{O}\left(a^{2}\right)$-improved gauge field action on $16^{3} \times 32$ lattices at $\beta=4.38$ and $24^{3} \times 36$ lattices at $\beta=5.00$ having lattice spacings of $0.165(2) \mathrm{fm}$ and $0.077(1) \mathrm{fm}$ respectively. While the merits of improved algorithms are clearly displayed for the coarse lattice spacing, the fine lattice results put the various algorithms on a more equal footing and allow a quantitative calibration of the smoothing rates for the various algorithms. I find that the relative rate of variation in the action may also be described in terms of simple calibration formulae for $\mathcal{O}\left(a^{2}\right)$-improvement which accurately describes the relative smoothness of the gauge field configurations at a microscopic level.

In the second section the first calculation of the gluon propagator using an $\mathcal{O}\left(a^{2}\right)$ improved action with the corresponding $\mathcal{O}\left(a^{2}\right)$-improved Landau gauge fixing ${ }^{3}$ condition is presented ${ }^{4}$. The gluon propagator obtained from the improved action and improved Landau gauge condition is compared with earlier unimproved results on similar physical lattice volumes of $3.2^{3} \times 6.4 \mathrm{fm}$. It is found that there is good agreement between the improved propagator calculated on a coarse lattice with lattice spacing $a=0.35 \mathrm{fm}$ and the unimproved propagator calculated on a fine lattice with spacing $a=0.10 \mathrm{fm}$. This motivated us to calculate the gluon propagator on a coarse very large-volume lattice of $5.6^{3} \times 11.2 \mathrm{fm}$. The infrared behavior observed in previous studies is confirmed. The gluon propagator is enhanced at intermediate momenta and

^[${ }^{1}$ F. D. R. Bonnet, P. Fitzhenry, D. B. Leinweber, M. R. Stanford \& A. G. Williams, Phys. Rev. D 62, 094509 (2000) [hep-lat/0001018]. ${ }^{2}$ F. D. R. Bonnet, D. B. Leinweber, A. G. Williams \& J. M. Zanotti, Submitted to Phys. Rev. D. [hep-lat/0106023]. ${ }^{3}$ F. D. R. Bonnet, P. O. Bowman, D. B. Leinweber, D. G. Richards \& A. G. Williams, Aust. J. Phys. 52, 939 (1999). ${ }^{4}$ F. D. R. Bonnet, P. O. Bowman, D. B. Leinweber \& A. G. Williams, Infrared behavior of the gluon propagator on a large volume lattice, Phys. Rev. D 62, 051501, (2000).]

suppressed at infrared momenta. The observed infrared suppression of the Landau gauge gluon propagator is not a finite volume effect. This work is then extended to a variety of lattices with spacing ranging from $a=0.17$ to $a=0.4 \mathrm{fm}^{5}$ to further explore finite volume and discretization effects. In this work a technique previously used for minimizing lattice artifacts, known as "tree-level correction", has also been extended. It is demonstrated that by using tree-level correction, determined by the tree-level behavior of the action being considered, it is possible to obtain scaling behavior over a very wide range of momenta and lattice spacings. This makes it possible to explore the infinite volume and continuum limits of the Landau-gauge gluon propagator.

As a final part of this thesis I present the first results for the quark propagator using an Overlap fermionic quark action ${ }^{6}$. I compare the results with those obtained from the standard Wilson fermion. The overlap quark action is $\mathcal{O}(a)$-improved compared with the Wilson fermion. This action realizes exact chiral symmetry on the lattice unlike the Wilson fermion and it demonstrates that the fastest way forward in this field is with improved lattice operators.

The idea of studying improved actions in lattice gauge theory was suggested to me by A/Prof. Anthony G. Williams during the "Nonperturbative Methods in Quantum Field Theory" workshop in early February 1998. Initially it was suggested to me that a calculation of the gluon propagator using improved action on large volumes, following a study just done with standard gauge action in Ref. [62]. The point of interest was to study the effect an improved gauge field action would have on the gluon propagator. This study would then be extended to quark actions. In the meantime when generating gauge field configurations using a computer code written in Fortran 77 (provided by Dr. Derek B. Leinweber), it occurred to me that it would be good to explore the content of these gauge field configurations. In order to do realistic calculations on large lattices we needed a gauge field configuration generator that would run on our CM5 computer and so Connection Machine Fortran (CMF) became the adopted language.

I started writing the computer code to generate the gauge field configuration in the $S U_{c}(2)$ with the help of Dr. Derek B. Leinweber, who introduced me to the basic concepts in lattice QCD. I then extended this code to the $S U_{c}(3)$ gauge group. This is commonly known as the standard Wilson gauge action. After investigating with some of the optimization possibilities, I moved on to code an $\mathcal{O}\left(a^{2}\right)$-improved gauge action. The code uses a masking procedure for the link update. I have generalized the masking procedure for any planar gauge field action in $S U_{c}(N)$, Ref. [18].

From there it was very obvious that by applying a continuous repetition of some sections of code that I written, that some bigger Wilson loops could easily be included in the action and hence highly improved actions could be easily constructed. The only difficulty was to calculate the improvement coefficients.

I then moved on to study smearing algorithms. I adapted the gauge field configuration code to a cooling and a 1×2 and 2×1 improved cooling code in which we inserted higher order loop operators. This was the tool used to explore gauge field configurations and their topological structures. Once the short range quantum fluctuations are removed it is possible to see instantons. Instantons are believed to play a crucial role in the spontaneous chiral symmetry breaking mechanism. We improved

[^1]the topological charge operator from the clover term to an $(1 \times 2$ and $2 \times 1) \mathcal{O}\left(a^{2}\right)-$ improved topological charge operator (see Appendices, Sections E. 16 and E.17). This code was subsequently adapted by Sundance Bilson-Thompson so that he could insert higher order loops. I have also inserted my $\mathcal{O}\left(a^{2}\right)$-improved operator to construct an $\mathcal{O}\left(a^{2}\right)$-improved smearing algorithm. Using these tools I have calibrated the relative rates of cooling and smearing.

Another piece of work on gauge fixing, reviewed in Chapter 8, was led by Dr. Patrick O. Bowman, Ref. [63]. There I supplied the gauge field configurations and checked some of the analytical work. For the gluon propagator work I supplied all of the lattice configurations with the exception of the $32^{3} \times 64$ used in Ref. [62]. The analysis was primarily carried out by Dr. Patrick O. Bowman and partly inspired by the one carried out in hep-lat/0106023. While this gluon propagator work is not being presented here as my own Ph. D. qualifying work, I am a co-author on the subsequent papers and so I have therefore decided to include a review of this work in Chapter 9.

I have also made some contribution in the construction of the Fat-link quark action (with and without the clover term) developed by James M. Zanotti. These contributions involve the code for the Reunitarization of the smeared links, Appendix E.21. Because of the code developed for the improved lattice definition of the $F_{\mu \nu}(x)$ term I have also made some contribution to the Fat-link clover quark action although I will not discuss about this work in the following thesis.

My main contribution for the overlap quark propagator study was in the analysis of the propagator data. The overlap propagators were generated by Dr. Jianbo Zhang and the research was also carried out in collaboration with A/Prof. Anthony G. Williams and Dr. Derek B. Leinweber. The quark propagators for the Wilson fermion were generated by a computer code parallelized by James M. Zanotti and originally written by Prof. Frank X. Lee.

The anisotropic lattice code has not been used in any calculations yet although it has been tested and verified. The code was extended from the isotropic improved generator code in $S U_{c}(3)$. After a literature search, we decided to implement the action described in Ref. [31] for the anisotropic Wilson action and in Ref. [11, 32] for the improved anisotropic case.

Apart from the work on the gauge fixing and the gluon propagator, done in collaboration with Dr. Patrick O. Bowman, and which for completeness is briefly reviewed in Chapters 8 and 9 respectively, this thesis contains no material which has been accepted for the award of any other degree or diploma in any university or other institution and to the best of knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent to this copy of my thesis, when deposited in the University Library, being available for loan and photocopying.

Frédéric D. R. Bonnet
Date: $20^{\text {th }}$ of September 2001.

Acknowledgement

I would like to thank my supervisors Assoc. Prof. Anthony G. Williams and Dr. Derek B. Leinweber for their help and their guidance throughout my studies. I would like to give special thanks to Assoc. Prof. Anthony G. Williams for encouraging me to take a project in Lattice Gauge Theory and for his clear vision which lead to this thesis. I would also like to thank Dr. Derek B. Leinweber for helping me with most of the aspects of this thesis.

I would like to gratefully acknowledge Dr. Patrick O. Bowman for analysing all of the gauge field configurations in the study of the gluon propagator, James M. Zanotti for calculating the various lattice spacings and allowing me to use the quark propagator code, Dr. Jianbo Zhang for generating the overlap quark propagators, Francis Vaughan and Paul Coddington of the South Australian Centre for Parallel Computing and the Distributed High-Performance Computing Group for support in some of the technical problems and for keeping the CM5 running, and to Ramona Adorjan for her hard and dedicated work on daily computer maintenance.

Special thanks to Prof. Anthony W. Thomas and Assoc. Prof. Anthony G. Williams for working so hard to keep the CSSM running as a research centre and providing a stimulating and pleasant research environment.

I would also like to thank Olivier Leitner and Francois Bissey for their friendship and for sharing some of their research interests with me.

Finally I acknowledge all of the people at the CSSM for providing such a good environment for studying physics. I think that Adelaide University is extremely fortunate to have such a world-class research centre as the CSSM.

Contents

1 Introduction 1
2 Lattice Gauge Theory 9
2.1 QCD on the Lattice 9
2.1.1 The Basic Elements of Lattice QCD 9
2.1.2 The General Method in Lattice QCD 11
2.1.3 The Simplest Formulation of the Actions 13
3 Numerical Simulations and Markov Chains 17
3.1 Markov Chains 17
3.2 The Metropolis Algorithm 19
3.2.1 The 2D Ising Model with the Metropolis Algorithm 20
4 Generating Gauge Field Configurations 23
4.1 The Algorithm for the $S U_{c}(2)$ Gauge Group 23
4.2 Computer Code for $S U_{c}(2)$ 26
4.2.1 Masking and Parallel Computing 26
4.2.2 Masking for the Standard Wilson Action 27
4.2.3 The Program for the Pseudoheat Bath Algorithm 30
4.2.4 The Staples with the C-shifts 31
4.3 Numerical Results for $S U_{c}(2)$ 31
4.3.1 Reuniterizing the Links Every n Sweeps 31
4.4 The Algorithm for the $S U_{c}(3)$ gauge group 34
4.4.1 The Number of $S U_{c}(2)$ subgroups 36
5 Improved Actions in the $S U_{c}(3)$ Gauge Group 37
5.1 Gauge Action 38
5.2 Code for the improved action in $S U_{c}(3)$ 40
5.2.1 Factors for the Rectangles and Staples 40
5.2.2 Masking the Lattice When Using Improved Action 41
5.2.3 Generalization of the Masking Procedure for an $n \times m$ Wilson Loop 45
5.2.4 Non-planar Considerations 48
5.3 Estimating the Lattice Spacing 50
6 Anisotropic Lattices with Standard Wilson and Improved Action 52
6.1 Wilson Action 52
6.1.1 With Time Improvement 52
6.2 Improved Action 53
6.2.1 With Time Improvement 53
6.2.2 Without Time Improvement 53
6.3 The Computer Code for the Anisotropic Lattices 54
6.3.1 The Various Switches 54
6.3.2 The calculation of the Anisotropic Squares and Rectangles 55
6.4 Some Numerical results 55
6.4.1 Results for the Anisotropic Wilson Gauge Action 55
6.4.2 Results for the Peardon and Morningstar Gauge Action 56
7 Cooling and Smearing $S U_{c}(3)$ Gauge Field configurations 58
7.1 Topological Charge Density on the Lattice and Instantons 60
7.1.1 Topological Charge Operator on the lattice 62
7.2 Gauge Action 64
7.3 Cooling 65
7.4 Improved Cooling 66
7.5 Smearing 68
7.5.1 APE Smearing 68
7.5.2 AUS Smearing 68
7.6 Improved Smearing 69
7.6.1 The Reunitarization of the Links 69
7.6.2 Improved Smearing 70
7.7 Numerical Simulations with Standard Wilson Gauge Action: Calibration work 70
7.7.1 Action Analysis 71
7.7.2 Topological Charge Density Analysis 80
7.7.3 Summary 86
7.8 Numerical Simulations with Improved Gauge action 88
7.8.1 The Influence Of The Number Of Subgroups On The Gauge Group 89
7.8.2 The Action 91
7.8.3 Topological Charge from Cooling and Smearing 94
7.8.4 Smoothing Algorithm Calibration 99
7.8.5 Summary 112
8 Gauge Fixing in Landau Gauge 115
8.1 Landau Lattice Gauge Fixing 115
8.2 Monitoring Discretisation Errors on the Lattice 117
8.2.1 Numerical Simulations 118
9 Gluon Propagator with Improved action 122
9.1 Introduction 122
9.2 Landau Gauge Gluon Propagator 124
9.3 Uncorrected Gluon Propagator 125
9.4 Tree-level Correction on the Gluon Propagators 125
9.5 Analysis of Lattice Artifacts on Coarse Lattices 129
9.6 Infinite volume behaviour of the Propagator 136
9.6.1 Extrapolation to the Continuum Limit 138
9.7 Conclusions 141
10 Quark Propagators in Lattice $Q C D$ Using Improved Actions 143
10.1 Lattice Gauge Action for $S U_{c}(3)$ 144
10.2 Fermion Actions on the Lattice 144
10.2.1 Wilson Fermions Revisited 144
10.2.2 Next-to-Nearest Neighbour Action 146
10.2.3 Overlap Fermions 147
10.3 The Quark Propagator on the Lattice 148
10.3.1 Corrected Mass and Renormalization Functions 151
10.4 Numerical Results 152
10.4.1 Data Cuts 155
10.4.2 The Results for the Overlap Fermion 155
10.4.3 Wilson Fermion versus the Overlap Fermion 161
10.4.4 Linear Extrapolated Values 163
10.5 Conclusion 169
11 Summary and Prospects 172
11.1 Summary 172
A Gauge Group Representation and Conventions 176
A. $1 \quad S U_{c}(2)$ 176
A. $2 S U_{c}(3)$ 176
A. 3 The Spinor matrices 177
B Mathematical Background and Definitions 178
B. 1 Mathematical Background 178
B. 2 Definitions 182
B. 3 Classification of the Sphere 184
C Markov Chain Terminology 185
D Generating Uniformly Distributed Random Numbers 186
D. 1 Random Numbers with a Gaussian Probability Distribution Function 186
E Computer Codes to Generate Gauge Fields Configurations 188
E. 1 Masking Routine for the Wilson Action 188
E. 2 Generating Random $S U_{c}(2)$ Matrices with a Heat-Bath Method 189
E. 3 Generating Random $S U_{c}(2)$ Matrices 192
E. 4 Generating Random $S U_{c}(3)$ Matrices 194
E. 5 Reunitarization of the $S U_{c}(2)$ Matrices 196
E. 6 Calculating the Staples 197
E. 7 Calculating the 1×1 Wilson Loop 199
E. 8 Calculating the $(1 \times 1),(1 \times 2)$ and (2×1) Wilson Loop 202
E. 9 Constructing $S U_{c}(3)$ Matrices 212
E. 10 Front End of the Gauge Field Generator for Anisotropic Lattices 220
E. 11 Anisotropic Version for Constructing $S U_{c}(3)$ Matrices 229
E. 12 The Anisotropic Version for the Squares Routine 237
E. 13 The Anisotropic Version for the Rectangle Routine 241
E. 14 Calculating the Gauge Action 253
E. 15 Calculating the Tadpole Factor, u_{0} 254
E. 16 Constructing the Topological Charge Operator on the Lattice 256
E. 17 Constructing The non-Abelian field strength Tensor 258
E. 18 Cooling the $S U_{c}(3)$ matrices 281
E. 19 Cooling the Gauge Field Configurations at the $S U_{c}(2)$ Level 288
E. 20 APE Smearing and AUS Smearing 289
E. 21 Reunitarization Method Based on maxRe $\operatorname{Tr}\left(U U^{\dagger}\right)$ 293
E. 22 The Reunitarization of the Gauge Transformation 299
E. 23 Program to calculate the $\mathcal{C}_{\mu}(p)$ and $\mathcal{B}(p)$. 301
E. 24 Program to extract $M\left(q^{2}\right)$ and $Z\left(q^{2}\right)$ with Jacknife analysis 333
F Articles Published in Journals and Publication in Progress 383
F. 1 Published Works in Journals 383
F. 2 Published Works in Proceeding 384
F. 3 Publications in Progress 384

List of Figures

1.1 A naive diagram of the nucleon with its constituent quarks 1
1.2 The six quarks all with spin $1 / 2$ with their respective masses. The gluon has spin 1 , it is a vector boson. The gluons are the mediator of the strong interaction. 2
1.3 The six leptons. 2
1.4 Illustration of the Feynman graph for the quark propagator. The $M(p)$ is the quark mass function and $Z(p)$ is the quark renormalization momen- tum function. The propagator is created at a source point propagated along to a sink point where it is annihilated. 4
1.5 A three dimensional lattice at a fixed time in Euclidean space, i.e., a single time "slice". The quarks live at the sites while the gluon fields reside on the gauge link $U_{\mu}(x)$. Each sites are separated by a space of dimension a. The spacing a is called the lattice spacing and can be tuned for a given simulation. 6
1.6 The 1×1 plaquette $U_{\mathrm{sq}}(x)$ with base at x lying in the $\mu \nu$-plane. The lattice spacing is denoted by a. 6
1.7 Graphical representation of the action density after 11 sweeps of im- proved cooling on a $24^{3} \times 36$ lattice at $\beta=5.00$ 7
2.1 The link variable joining two lattice sites in the $\mu \nu$-plane. The lattice spacing is denoted by a. 10
2.2 The 1×1 plaquette $U_{\mathrm{sq}}(x)$ with base at x lying in the $\mu \nu$-plane. The lattice spacing is denoted by a. 10
2.3 Rotating the 1×1 plaquette sitting in the $\hat{x} \hat{y}$ plane about the \hat{x}-axis into the $\hat{x} \hat{z}$ and $\hat{x} \hat{t}$ planes (left) and a staple (right). 11
2.4 The lattice momentum k_{μ} plotted versus the discrete momentum p_{μ} over the the interval $[-\pi / a, \pi / a]$. The small dash-dot line is $k_{\mu}=1$ and the dash line is line $k_{\mu}=p_{\mu}$. The continuum limit is determined by the momenta in the neighbourhood of $p_{\mu}=0$ and $p_{\mu}= \pm \pi / a$. 15
3.1 Schematic illustration of the 2D Ising Model. 21
3.2 Numerical illustration of the 2D Ising Model for single hit Metropolis. 21
3.3 Numerical illustration of the 2D Ising Model for multiple hit Metropolis. 22
4.1 Checkerboard masking as seen in an $\hat{x}-\hat{y}$ plane of the lattice when using the standard Wilson action. The highlighted links with arrows can be updated simultaneously. 27
4.2 Linear masking of the lattice when using standard Wilson action. The highlighted arrows represents the link variable that can be updated si- multaneously. 29
$4.3 S U_{c}(2)$ Gauge Configuration at different β. Pseudo-heatbath algorithm versus Metropolis algorithm without reunitarizing the links. Note that the Metropolis algorithm is ten times slower than the Pseudo-heatbath method. 32
$4.4 S U_{c}(2)$ Gauge Configuration at different β. Pseudo-heatbath algorithm versus Metropolis algorithm with a reunitarization scheme. There we can see that the Metropolis algorithm is slower than the Pseudo-heatbath method by a factor of ten. 33
5.1 The integration contour for the Wilson loops used in a 1×1 contour and $2 \times 1,1 \times 2$ improved contours. The expansion is done about x_{0}. 39
5.2 The staples containing the six elementary rectangular plaquettes with base at x. 39
5.3 The set of all possible 1×2 plaquettes containing the link $U_{\hat{x}}(x)$. The dashed-dotted line is to be understood as being in the $\hat{x}-\hat{t}$ plane. 42
5.4 The highlighted links with arrows are the ones that can be simultane- ously updated for an action containing both 1×1 and 1×2 plaquettes. 42
5.5 Rotating the two dimensional plane onto the \hat{x} axis to give visual access to the other dimensions. 43
5.6 Schematic illustration of the lattice masking when using the 1×2 pla- quette improved action. 44
5.7 Illustration of the cyclic plane rotation in the improved masking. 44
5.8 The highlighted links with arrows are the ones that can be simultane- ously updated for an action containing up to $n \times m$ plaquettes, where here n refers to the \hat{x} direction and m applies to the other three Cartesian directions. 46
5.9 Plane 1 with the $(m+1)$ updatable sites on the main diagonal of the $\hat{y}-\hat{z}$ plane. 46
5.10 Plane 2. 47
5.11 Plane 3. 47
5.12 Two elementary cells for an action involving 1×1 and 1×2 Wilson loops are nested together such that one need not restrict the mask to every second link in the direction of the links being updated. The links with the positions labelled are the ones that can be simultaneously updated. The out of plane plaquette-plus-rectangle illustrates additional links that cannot be simultaneously updated. 49
5.13 The four planes to be cycled through in the elementary $4 \times 4 \times 4$ cube. One-quarter of the links may be updated simultaneously and are indi- cated by the solid dot. The circled sites are an example of the sites surviving when the out of plane "chair" or "parallelogram" link paths are included in the action. 49
5.14 Graph to extract the running coupling using a fitted curve: the 2 loop perturbative β function. The fitted value for Λ is $\Lambda=0.0719152 \mathrm{fm}^{-1}$. 51
7.1 Graphical representation of the action density after 50,100,150 and 200 sweeps of improved cooling on a $24^{3} \times 36$ lattice at $\beta=5.00$. 60
7.2 Graphical representation of the 2 loop improved topological charge den- sity after $50,100,150$ and 200 sweeps of improved cooling on a $24^{3} \times 36$ lattice at $\beta=5.00$. The configuration is the same as in Fig. 7.1. Here the topological charge is -4 61
7.3 Graphical representation of the topological charge operator. 62
7.4 Graphical representation of the improved topological charge operator 63
7.5 The ratio S / S_{0} as a function of cooling sweeps n_{c} for five configurations on the $24^{3} \times 36$ lattice at $\beta=6.00$. The single instanton action is $S_{0}=8 \pi^{2} / g^{2}$. 72
7.6 The ratio S / S_{0} as a function of APE smearing sweeps $n_{\text {ape }}(\alpha)$ for a configuration on a $24^{3} \times 36$ lattice at $\beta=6.00$. Each curve has an associated smearing fraction α. 72
7.7 The ratio S / S_{0} as a function of AUS smearing sweep $n_{\text {aus }}(\alpha)$ for a con- figuration on a $24^{3} \times 36$ lattice at $\beta=6.00$. Each curve has an associated smearing fraction α. 73
7.8 The ratio $n_{\text {ape }}(0.50) / n_{\text {ape }}(\alpha)$ versus $n_{\text {ape }}(\alpha)$ for numerous threshold ac- tions on the $24^{3} \times 36$ lattice at $\beta=6.00$. From top down the data points correspond to $\alpha=0.70,0.55,0.45$ and 0.30 74
7.9 The ratio $n_{\text {aus }}(0.55) / n_{\text {aus }}(\alpha)$ versus $n_{\text {aus }}(\alpha)$ for numerous threshold ac- tions on the $24^{3} \times 36$ lattice at $\beta=6.00$. From top down the data points correspond to $\alpha=1.00,0.85,0.70,0.55,0.45,0.30$. 74
7.10 Illustration of the α dependence of $c_{1}=\left\langle n\left(\alpha^{\prime}=0.55\right) / n(\alpha)\right\rangle$ for APE smearing. The solid line fit to the data indicates $c_{1}=1.838 \alpha-0.011$ whereas the dashed line, constrained to pass through the origin, provides a slope of 1.818 75
7.11 Illustration of the α dependence of $c_{1}=\left\langle n\left(\alpha^{\prime}=0.55\right) / n(\alpha)\right\rangle$ for AUS smearing. Fits to the data exclude the point at $\alpha=1$. The solid line fit to the data indicates $c_{1}=1.857 \alpha-0.021$ whereas the dashed line, constrained to pass through the origin, provides a slope of 1.818 76
7.12 Illustration of the degree to which the relations of (7.45) are satisfied for the action under APE smearing. Here $\alpha<\alpha^{\prime}$ and $\alpha^{\prime}=0.30,0.45,0.55$, and 0.70. Data are from the $24^{3} \times 36$ lattice at $\beta=6.0$. 76
7.13 Illustration of the degree to which the relations of (7.45) are satisfied for the action under AUS smearing. Here $\alpha<\alpha^{\prime}$ and $\alpha^{\prime}=0.30,0.45,0.55$, 0.70 and 0.85 . Data are from the $24^{3} \times 36$ lattice at $\beta=6.0$. 77
7.14 Illustration of the degree to which the relations of (7.45) are satisfied for the action under APE smearing. Here $\alpha<\alpha^{\prime}$ and $\alpha^{\prime}=0.30,0.45,0.55$, and 0.70. Data are from the $16^{3} \times 32$ lattice at $\beta=5.7$. 77
7.15 Illustration of the degree to which the relations of (7.45) are satisfied for the action under AUS smearing. Here $\alpha<\alpha^{\prime}$ and $\alpha^{\prime}=0.30,0.45,0.55$, 0.70 and 0.85 . Data are from the $16^{3} \times 32$ lattice at $\beta=5.7$. 78
7.16 Ratio of cooling to APE smearing sweeps as a function of the number of APE smearing sweeps. From top down $\alpha=0.700 .55,0.45$ and 0.30 79
7.17 Ratio of cooling to AUS smearing sweeps as a function of the number of AUS smearing sweeps. From top down $\alpha=1.00,0.850 .700 .55,0.45$ and 0.30. 79
7.18 Typical evolution curve of the lattice topological charge operator as a function of the number of sweeps for APE smearing. Data are from the $24^{3} \times 36$ lattice at $\beta=6.00$. Each curve corresponds to a particular α value and indicated.
7.19 Typical evolution curve of the lattice topological charge operator under AUS smearing. Data are from the $24^{3} \times 36$ lattice at $\beta=6.00$. Each curve corresponds to a particular α value and indicated.
7.20 Typical evolution curve of the lattice topological charge operator as a function of the number of sweeps for cooling with three diagonal $S U_{c}(2)$ subgroups on a $24^{3} \times 36$ lattice at $\beta=6.00$.
7.21 The trajectories of the lattice topological charge density operator as a function of the number of sweeps for cooling on typical $24^{3} \times 36, \beta=6.00$ configurations.82
7.22 The ratio $n_{\text {ape }}(0.50) / n_{\text {ape }}(\alpha)$ versus $n_{\text {ape }}(\alpha)$ for Q_{L} from the data of Table 7.2 extracted from the $24^{3} \times 36$ configurations at $\beta=6.00$. From the top down, the horizontal sets of points correspond to $\alpha=0.70,0.55$, 0.45 and 0.30 .84
7.23 The ratio $n_{\text {aus }}(0.55) / n_{\text {aus }}(\alpha)$ versus $n_{\text {aus }}(\alpha)$ for Q_{L} from the data of Table 7.2 extracted from the $24^{3} \times 36$ configurations at $\beta=6.00$. From the bottom up, the symbols correspond to $\alpha=0.30,0.45,0.55,0.70,0.85$ and 1.00 .84
7.24 Calibration of cooling and APE smearing via the ratio $n_{\mathrm{c}} / n_{\text {ape }}(0.50)$ versus $n_{\text {ape }}(0.50)$. 85

7.25 Calibration of cooling and AUS smearing via the ratio $n_{\mathrm{c}} / n_{\text {aus }}(0.55)$
versus $n_{\text {aus }}(0.55)$. 86
7.26 Topological charge density of a $24^{3} \times 36$ lattice for fixed x coordinate. Positive (negative) windings are coloured red to yellow (blue to green). Fig. (a) illustrates the topological charge density after 21 APE smearing steps at $\alpha=0.7$. Fig. (b) illustrates the topological charge density after 49 APE smearing steps at $\alpha=0.3$. Relation (7.45) suggests these configurations should be similar and we see they are to a remarkable level of detail. Fig. (c) illustrates the topological charge density after 20 AUS smearing steps at $\alpha=0.7$. Relation (7.49) suggests these configurations should be similar and again the detail of the agreement is excellent. Finally (d) illustrates the topological charge density after 9 cooling sweeps, motivated by relation (7.48). While the level of agreement is not as precise, the qualitative features of the smoothed configurations are compatible.
7.27 The evolution of the topological charge estimated by the improved operator as a function of standard cooling sweeps n_{c} for various numbers of $S U_{c}(2)$ subgroups. The curves are for a typical configuration from the $16^{3} \times 32$ lattices where $a=0.165(2) \mathrm{fm}$. The parameter cycle describes the number of times the three diagonal $S U_{c}(2)$ subgroups are cycled over. 90
7.28 The evolution of the topological charge estimated by the improved operator as a function of improved cooling sweeps $n_{\text {Ic }}$ for various numbers of cycles over the three diagonal $S U_{c}(2)$ subgroups. The curves are for the same configuration illustrated in Fig. 7.27.
7.29 The evolution curve for the topological charge estimated via the improved operator as a function of cooling sweeps n_{c} for six configurations on the $24^{3} \times 36$ lattices at $\beta=5.00$ where $a=0.077(1) \mathrm{fm}$.
7.30 The evolution curve for the topological charge estimated via the improved operator as a function of improved cooling sweeps $n_{\text {Ic }}$ for the same six configurations from the $24^{3} \times 36$ lattices at $\beta=5.00$ illustrated in Fig. 7.29.

$$
92
$$

7.31 The ratio S / S_{0} as a function of standard cooling sweeps n_{c} for five configurations on the $24^{3} \times 36$ lattice at $\beta=5.0$. The single instanton action is $S_{0}=8 \pi^{2} / g^{2}$.
7.32 The ratio S / S_{0} as a function of improved cooling sweeps $n_{\text {Ic }}$ for five configurations on the $24^{3} \times 36$ lattice at $\beta=5.0$. The rate of cooling is seen to be somewhat slower than that for the standard cooling.
7.33 The ratio S / S_{0} as a function of APE smearing sweeps $n_{\text {ape }}(\alpha)$ for one configuration on the $24^{3} \times 36$ lattice at $\beta=5.0$. Each curve has an associated smearing fraction α. The rate of lowering the action for the maximum stable smearing fraction (≈ 0.75) is seen to be less than that for the other standard or improved cooling.
7.34 The ratio S / S_{0} as a function of improved smearing sweeps $n_{\text {Iape }}(\alpha)$ for one configuration on the $24^{3} \times 36$ lattice at $\beta=5.0$. Each curve has an associated smearing fraction α. We see that this is the slowest of the four algorithms for lowering the action as a function of the sweep number.
$7.35 Q_{\mathrm{L}}^{\text {Imp }}$ versus n_{c} for six configurations on the $16^{3} \times 32$ lattices at $\beta=4.38$, $a=0.165(2) \mathrm{fm}$. Each line corresponds to a different configuration.
$7.36 Q_{\mathrm{L}}^{\text {Imp }}$ versus $n_{\text {Ic }}$ for six configurations on the $16^{3} \times 32$ lattices. The different line types identifying different configurations match the configurations identified in Fig. 7.35.
$7.37 Q_{\mathrm{L}}^{\text {Imp }}$ versus $n_{\text {Ic }}$ calculated over a thousand sweeps. Also shown is the
normalized to a single instanton action, S / S_{0}. The action and topologi-
cal curve are converging to each other for each configuration, illustrating
Eq. (7.55). 96
7.38 The evolution of $Q_{\mathrm{L}}^{\text {Imp }}$ using APE smearing as a function of APE smearing sweep $n_{\text {ape }}(\alpha)$ on the $16^{3} \times 32$ lattice at $\beta=4.38$. Here different line types correspond to different smearing fractions.
7.39 The evolution of $Q_{\mathrm{L}}^{\operatorname{Imp}}$ using improved smearing as a function of APE smearing sweep $n_{\text {Iape }}(\alpha)$ on the $16^{3} \times 32$ lattice at $\beta=4.38$. Here different line types correspond to different smearing fractions.
7.40 The evolution of $Q_{\mathrm{L}}^{\operatorname{Imp}}$ using APE smearing as a function of APE smearing sweep $n_{\text {ape }}(\alpha)$ on the $24^{3} \times 36$ lattice at $\beta=5.00$. Here different line types correspond to different smearing fractions.98
7.41 The evolution of $Q_{\mathrm{L}}^{\text {Imp }}$ using APE smearing as a function of APE smearing sweep $n_{\text {Iape }}(\alpha)$ on the $24^{3} \times 36$ lattice at $\beta=5.00$. Here different line types correspond to different smearing fractions.98

7.42 The evolution of the improved topological charge, $Q_{\mathrm{L}}^{\text {Imp }}$, as a function of
standard APE smearing sweeps, $n_{\text {ape }}(\alpha)$, for $0.1 \leq \alpha \leq 0.7$ (solid lines) is
compared to improved smearing sweeps, $n_{\text {Iape }}(\alpha)$, (dotted-dashed lines)
for the same smearing fractions $0.1 \leq \alpha \leq 0.5$ on the $24^{3} \times 36$ lattice at
$\beta=5.00$. The horizontal dotted-dashed line is $Q_{\mathrm{L}}^{\text {Imp }}=-4$. 99
7.43 The ratio $n_{\text {ape }}(0.50) / n_{\text {ape }}(\alpha)$ versus $n_{\text {ape }}(\alpha)$ for numerous S / S_{0} thresholds on the $16^{3} \times 32$ lattice at $\beta=4.38$. From top to bottom the data point bands correspond to $\alpha=0.7,0.6,0.5,0.4,0.3,0.2$, and 0.1 .
7.44 The ratio $n_{\text {Iape }}(0.50) / n_{\text {Iape }}(\alpha)$ versus $n_{\text {Iape }}(\alpha)$ for numerous S / S_{0} thresholds on the $16^{3} \times 32$ lattice at $\beta=4.38$. From top to bottom the data point bands correspond to $\alpha=0.5,0.4,0.3,0.2$, and 0.1 .
7.45 Illustration of the dependence of $\left\langle n_{\text {ape }}(0.50) / n_{\text {ape }}(\alpha)\right\rangle$ for APE smearing on the smearing fraction α. The solid line is a linear fit to the data constrained to pass through the origin.
7.46 Illustration of the dependence of $<n_{\text {Iape }}(0.50) / n_{\text {Iape }}(\alpha)>$ for APE smearing on the improved smearing fraction α. The solid line fit is constrained to pass through the origin.
7.47 Illustration of the dependence of $\ln \left(<n_{\text {Iape }}(0.50) / n_{\text {Iape }}(\alpha)>\right)$ on the improved smearing fraction α for improved smearing. The solid line fit indicates $\delta=0.914$.
7.48 Illustration of the degree to which the relation Eq. (7.57) is satisfied for improved smearing. Here the entire data set is plotted for α and $\alpha^{\prime}=0.5,0.4,0.3,0.2$ and 0.1. Data are from $16^{3} \times 32$ lattice at $\beta=4.38 .103$
7.49 The ratio $n_{\text {ape }}(0.50) / n_{\text {Iape }}(\alpha)$ versus $n_{\text {Iape }}(\alpha)$ for numerous threshold ac-
tions on the $16^{3} \times 32$ lattice at $\beta=4.38$. From top to bottom the data
point bands correspond to improved smearing fractions $\alpha=0.5,0.4$,
$0.3,0.2$, and 0.1 . 104
7.50 Illustration of the degree to which the relation Eq. (7.58) is satisfied for calibration of the action under APE and improved smearing. Here the entire data set is plotted.

$$
\begin{aligned}
& \text { 7.51 The ratio } n_{\mathrm{c}} / n_{\text {ape }}(\alpha) \text { versus } n_{\text {ape }}(\alpha) \text { for numerous action thresholds for } \\
& \text { the } 16^{3} \times 32 \text { lattice at } \beta=4.38 \text {. From top down the data point bands } \\
& \text { correspond to } \alpha=0.7,0.6,0.5,0.4,0.3,0.2 \text {, and } 0.1 \text {. } 107
\end{aligned}
$$

7.52 The ratio $n_{\text {Ic }} / n_{\text {ape }}(\alpha)$ versus $n_{\text {ape }}(\alpha)$ for numerous action thresholds on
the $16^{3} \times 32$ lattice at $\beta=4.38$. From top down the data point bands
correspond to $\alpha=0.7,0.6,0.5,0.4,0.3,0.2$, and 0.1 .
7.53 The ratio $n_{\text {Ic }} / n_{\text {ape }}(\alpha)$ versus $n_{\text {ape }}(\alpha)$ for numerous action thresholds on the $24^{3} \times 36$ lattice at $\beta=5.00$. From top down the data point bands correspond to $\alpha=0.7,0.6,0.5,0.4,0.3,0.2$, and 0.1 .
7.55 The ratio $n_{\mathrm{c}} / n_{\text {Iape }}(\alpha)$ versus $n_{\text {Iape }}(\alpha)$ for numerous action thresholds on the $16^{3} \times 32$ lattice at $\beta=4.38$. From top down the data point bands correspond to $\alpha=0.5,0.4,0.3,0.2$, and 0.1 .

7.56 The ratio $n_{\mathrm{c}} / n_{\text {Ic }}$ versus $n_{\text {Ic }}$ for numerous action thresholds on the $16^{3} \times 32$
lattice at $\beta=4.38$. The significant differences between the algorithms
are revealed by the gauge-configuration dependence of the trajectories.7.57 The ratio $n_{\mathrm{c}} / n_{\text {Ic }}$ versus $n_{\text {Ic }}$ for numerous action thresholds on the $24^{3} \times 36$lattice at $\beta=5.00$.111
7.58 The topological charge density of a $24^{3} \times 36$ lattice for fixed x coordinate. The instantons (anti-instantons) are coloured red to yellow (blue to green). Fig. a) shows the topological charge density after 9 cooling sweeps. Each of the following figures display the result of a different smoothing algorithm calibrated according to Table 7.9 to reproduce as closely as possible the results depicted in Fig. a). Fig. b) illustrates the topological charge density after 11 sweeps of improved cooling. Fig. c) shows the topological charge density after 21 APE smearing steps at $\alpha=0.70$. Fig. d) illustrates the topological charge density after 49 APE smearing steps at $\alpha=0.30$. In Fig. e) the topological charge density is displayed after 35 sweeps of improved smearing at $\alpha=0.50$. Finally, Fig. f) shows the topological charge density after 55 sweeps of improved smearing at $\alpha=0.30$. Apart from Fig. b) for improved cooling, which differs largely due to round off in the sweep number, all the plots compare very favourably with each other.

8.1 The gauge fixing measures for a 6^{4} lattice with Wilson action at $\beta=6.0$.
This lattice was gauge fixed with Δ_{1}, so θ_{1} drops steadily whilst θ_{2} and
$\theta_{\text {Imp }}$ plateau at much higher values.

9.1 Uncorrected gluon propagator from lattice $1 \mathrm{w}\left(\beta=5.70,16^{3} \times 32\right.$, Wilson action), plotted as a function of \hat{q}. The dramatic "fanning" is caused by finite spacing errors which quickly destroy the signal at large momenta.

9.2 Uncorrected gluon propagator from lattice $1 \mathrm{i}\left(\beta=4.38,16^{3} \times 32\right.$, im-
proved action), plotted as a function of \hat{q}. Lattice artifacts are reduced
by the improved action, but are still large. 126
9.3 Uncorrected gluon propagator from lattice $1 \mathrm{w}\left(\beta=5.70,16^{3} \times 32\right.$, Wilson action), plotted as a function of \hat{q} with the momentum "half-cut" applied. 127
9.4 Uncorrected gluon propagator from lattice $1 \mathrm{i}\left(\beta=4.38,16^{3} \times 32\right.$, im-
proved action), plotted as a function of \hat{q} with the momentum "half-cut"
applied. The improved propagator has different normalization to the
Wilson case due to a difference in the Z_{3} renormalization constant. . . 127
9.5 Uncut gluon propagator from lattice $1 \mathrm{w}\left(\beta=5.70,16^{3} \times 32\right.$, Wilson
action), plotted as a function of q^{W} for all momenta. The tree-level
correction has greatly reduced discretization errors from those seen in
Fig. 9.1. 130
9.6 Uncut gluon propagator from lattice 1i $\left(\beta=4.38,16^{3} \times 32\right.$, improved action), plotted as a function of q^{I} for all momenta. The combination of improved action and tree-level correction has produced a remarkably clean signal over the entire range of accessible momenta. This figure should be compared with Fig. 9.2, and with Fig. 9.5 for the Wilson action at a similar lattice spacing.

9.7 Gluon propagator from 75 standard, Wilson configurations, on a $32^{3} \times 64$
lattice with spacing $a=0.10 \mathrm{fm}$.
9.8 Gluon propagator from 75 tree-level improved configurations on a $10^{3} \times$ 20 lattice with spacing $a=0.35 \mathrm{fm}$, and a physical volume of $3.5^{3} \times 7 \mathrm{fm}^{4} .131$
9.9 Comparison of the gluon propagator from lattices 1 w at $\beta=5.70$ and 1 i at $\beta=4.38$. Data has been cylinder cut and tree-level correction has been applied. We have determined $Z_{3}($ improved $) / Z_{3}($ Wilson $)=1.09$ by matching the vertical scales of the data.
9.10 Comparison of the gluon propagator from the finest improved lattice (lattice 1i, $\beta=4.38$) and the finest Wilson lattice (lattice $6, \beta=6.0$). Data has been cylinder cut and the appropriate tree-level corrections have been applied. The data from lattice 6 is half-cut whereas lattice 1 i displays the full Brillouin zone. We have determined $Z_{3}($ improved $) / Z_{3}($ Wilson $)=$ 1.08 by matching the vertical scales of the data.
9.11 Gluon propagator from 75 tree-level improved configurations, on a $16^{3} \times$ 32 lattice with spacing $a=0.35 \mathrm{fm}$ and a physical volume of $5.6^{3} \times 11.2 \mathrm{fm}^{4} .134$
9.12 Comparison of the gluon propagator on the three different lattices. The volumes are $3.2^{3} \times 6.4 \mathrm{fm}^{4}, 3.5^{3} \times 7.0 \mathrm{fm}^{4}$, and $5.6^{3} \times 11.2 \mathrm{fm}^{4}$.
9.13 Gluon propagator from lattice 5 at $\beta=4.10$, which has spacing $a \simeq$ 0.27 fm on $12^{3} \times 24$. This has the same physical volume as lattice 3 of Fig. 9.15. The propagator is shown for all momenta (no data cuts) after tree-level correction.
9.14 Gluon propagator from lattice 2 , the smaller lattice at $\beta=3.92$ which has spacing $a \simeq 0.35 \mathrm{fm}$ on a $10^{3} \times 20$ lattice. Finite volume errors are just detectable as indicated by momenta along the time axis (filled triangles) falling below the rest of the data. Tree-level correction has been used, but no data cuts have been applied.
9.15 Gluon propagator from lattice 3 at $\beta=3.75$, which has spacing $a \simeq 0.41$ fm on $8^{3} \times 16$. The propagator is shown for all momenta (no data cuts) after tree-level correction. This propagator is consistent with that obtained on much finer lattices.
9.16 Comparison of the gluon propagator from lattices $1 \mathrm{i}(\beta=4.38)$, $2(\beta=$ 3.92 , small), $3(\beta=3.75)$, and $5(\beta=4.10)$, which have a variety of lattice spacings. Data has been cylinder cut and tree-level correction has been applied. Data from the two finest improved lattices (0.165(2) and $0.27 \mathrm{fm})$ are consistent. A clear violation of scaling is seen in the coarsest two lattices (0.35 and 0.41 fm), where the spacing is too coarse for treelevel correction to completely restore the full Brillouin zone behavior.
9.17 Gluon propagator from lattice 4 , the larger lattice at $\beta=3.92$, which has
9.17 Gluon propagator from lattice 4 , the larger lattice at $\beta=3.92$, which has
spacing $a \simeq 0.35 \mathrm{fm}$ on a $16^{3} \times 32$ lattice providing the largest physical volume of any in this study. Tree-level correction has been used, but no data cuts have been applied.
9.18 Comparison of the gluon propagator generated with an improved action on five different lattices. We find good agreement down to $q \simeq 500$ MeV . At the lowest accessible momenta the data points drop monotonically with increasing volume, but the lowest point (on the largest lattice) shows signs of having converged to its infinite volume value. For comparison with perturbation theory, a plot of the continuum, tree-level gluon propagator (i.e., $1 / q^{2}$ appropriately scaled) has been included. . .
9.19 Comparison of the lattice gluon propagator with that obtained from perturbation theory, in the ultraviolet to intermediate regime. The continuum expressions are tree-level (i.e., $1 / q^{2}$ appropriately scaled) and the three-loop expression used in Ref. [2].

$$
\begin{aligned}
& \text { 9.20 The renormalized gluon propagator is shown in the infrared region, in- } \\
& \text { cluding the points at zero four-momentum, from five lattices. } 141
\end{aligned}
$$

9.21 Values for the gluon propagator at zero four-momentum, $D(0)$, plotted as a function of the inverse lattice volume. The solid line represents a linear fit to the lattice results. The fit indicates the largest volume results are very close to the infinite volume limit and $D(0)=7.95(13)$ GeV^{-2} in the infinite volume limit.
10.1 The lattice momentum q versus the discrete momentum p, both in GeV . The points going up are for the overlap fermion (\square) and those heading down (o) with a sinusoidal shape are for the Wilson fermion. Top graph is for the full data and the bottom graph is for the cylinder cut data.
10.2 The uncorrected mass function $M\left(q^{2}\right)$ for the Wilson fermions. 151
10.3 The uncorrected mass function $M\left(q^{2}\right)$ for the Wilson fermions, on a
smaller scale. 151
10.4 The tree-level values for the $A^{(0)}(p)$ and $B^{(0)}(p)$ functions in GeV versus the lattice momentum q. Showing that $B^{(0)}(p)=\mathcal{Z}_{\psi}^{(0)} \mu=m_{q}$ and $A^{(0)}(p)=1$. The top strip of points corresponds to the heaviest mass as opposed to the bottom band which corresponds to the lightest $m_{q} . .$.
10.5 The functions $M\left(q^{2}\right)$ and $Z^{(\mathrm{R})}\left(q^{2}\right)$, (half cut data), for the Overlap fermions plotted versus the discrete momentum values defined in Eq. (10.7), $p=\sqrt{\sum p_{\mu}^{2}}$, over the interval of $[0,5] \mathrm{GeV}$. The $Z^{(\mathrm{R})}\left(q^{2}\right)$ function has been renormalized at $\zeta \sim 3.9 \mathrm{GeV}$. The μ values, from top to bottom set of points, are $\mu=\{0.14,0.12,0.10,0.08,0.06\}$ for the first five and $\{0.048,0.040,0.032,0.028,0.024\}$ for the other five, on the $12^{3} \times 24$ at $\beta=4.60$.
10.6 The functions $M\left(q^{2}\right)$ and $Z^{(\mathrm{R})}\left(q^{2}\right)$, (half cut data), for the Overlap fermions plotted versus the lattice momentum values defined in Eq. (10.25), $q=\sqrt{\sum q_{\mu}^{2}}$, over the interval of $[0,12] \mathrm{GeV}$. The $Z^{(\mathrm{R})}\left(q^{2}\right)$ function has been renormalized at $\zeta \sim 8.2 \mathrm{GeV}$. The μ values, from top to bottom set of points, are $\mu=\{0.14,0.12,0.10,0.08,0.06,0.048,0.040,0.032,0.028,0.024\}$, on the $12^{3} \times 24$ at $\beta=4.60$. 157
10.7 The function $M\left(q^{2}\right)$ and $Z^{(\mathrm{R})}\left(q^{2}\right)$, (cylinder cut) for the Overlap fermions plotted versus the discrete momentum values defined in Eq. (10.7), $p=\sqrt{\sum p_{\mu}^{2}}$, over the interval of $[0,5] \mathrm{GeV}$. The $Z^{(\mathrm{R})}\left(q^{2}\right)$ function has been renormalized at $\zeta \sim 3.9 \mathrm{GeV}$. The μ values, from top to bottom set of points, are $\mu=\{0.14,0.12,0.10,0.08,0.06\}$ for the first five and $\{, 0.048,0.040,0.032,0.028,0.024\}$ for the other five, on the $12^{3} \times 24$ at $\beta=4.60$.
10.8 The functions $M\left(q^{2}\right)$ and $Z^{(\mathrm{R})}\left(q^{2}\right)$, (cylinder cut) for the Overlap fermions plotted versus the lattice momentum values defined in Eq. (10.25), $q=$ $\sqrt{\sum q_{\mu}^{2}}$, over the interval of $[0,12] \mathrm{GeV}$. The $Z^{(\mathrm{R})}\left(q^{2}\right)$ function has been renormalized at $\zeta \sim 8.2 \mathrm{GeV}$. The μ values, from top to bottom set of points, are $\mu=\{0.14,0.12,0.10,0.08,0.06\}$ for the first five and $\{0.048,0.040,0.032,0.028,0.024\}$ for the other five, on the $12^{3} \times 24$ at $\beta=4.60$.
10.9 The function $\mathcal{B}(p)$, (full data) plotted versus both the discrete momentum (\times) and the lattice momentum values defined in Eq. (10.25) (\square), over the interval of $[0,12] \mathrm{GeV}$. The graph corresponds to $\mu=0.0240$. The bottom graph shows an enlargement of a subset of points. The points (\square) are more stretched out and form a smoother curve than when the function is plotted versus $p(\times)$.
10.10The corrected mass function, $M^{(c)}(p)$, and $Z^{(c)}(p)$ (half cut) for the Wilson fermions plotted versus the discrete momentum values defined in Eq.(10.7), $p=\sqrt{\sum p_{\mu}^{2}}$, over the interval of $[0,5] \mathrm{GeV}$. The kappa values, from top to bottom set of points, are $\kappa=0.1337,0.1346,0.1356,0.1365,0.1374$ corresponds to a current quark mass of $m_{q} \sim 221,181.5,138.3,99.91,62.04$ MeV respectively, on the $12^{3} \times 24$ at $\beta=4.60$.
10.11The corrected mass function, $M^{(c)}(p)$, and $Z^{(c)}(p)$ (half cut) for the Wilson fermions plotted versus the discrete momentum values defined in Eq.(10.25), $q=\sqrt{\sum q_{\mu}^{2}}$, over the interval of $[0,5] \mathrm{GeV}$. The kappa values, from top to bottom set of points, are $\kappa=0.1337,0.1346,0.1356,0.1365,0.1374$ corresponds to a current quark mass of $m_{q} \sim 221,181.5,138.3,99.91,62.04$ MeV respectively, on the $12^{3} \times 24$ at $\beta=4.60$.
10.12The corrected mass function, $M^{(c)}(p)$, and $Z^{(c)}(p)$ (cylinder cut) for the Wilson fermions plotted versus the discrete momentum values defined in Eq.(10.25), $p=\sqrt{\sum p_{\mu}^{2}}$, over the interval of $[0,5] \mathrm{GeV}$. The kappa values, from top to bottom set of points, are $\kappa=0.1337,0.1346,0.1356,0.1365,0.1374$ corresponds to a current quark mass of $m_{q} \sim 221,181.5,138.3,99.91,62.04$ MeV respectively, on the $12^{3} \times 24$ at $\beta=4.60$.
10.13The linearly extrapolated mass function, $M\left(q^{2}\right)$, (full data) for the Overlap fermions plotted versus both the discrete momentum values defined in Eq. (10.7) and the momentum extracted from the lattice, Eq. (10.25). Here $M(0)=297(11) \mathrm{MeV}$.
10.14The linearly extrapolated mass function, $M\left(q^{2}\right)$, (cylinder cut) for the Overlap fermions plotted versus both the discrete momentum values defined in Eq. (10.7) and the momentum extracted from the lattice, Eq. (10.25). Here $M(0)=297(11) \mathrm{MeV}$ and $Z(0)=0.48(2)$.
10.15The linearly extrapolated mass, $M\left(q^{2}\right)$, and $Z^{(c)}(p)$ function (cylinder cut), for the Wilson fermions plotted versus the discrete momentum values defined in Eq.(10.25), $p=\sqrt{\sum p_{\mu}^{2}}$. Here $M(0)=237(13) \mathrm{MeV}$. The lowest momentum value gives $Z(0)=0.65(3)$.
10.16The linearly extrapolated mass function, $M\left(q^{2}\right)$, (full data) for the Overlap fermions plotted versus the lattice momentum (\square) defined in Eq. (10.25), $q=\sqrt{\sum q_{\mu}^{2}}$ (top graph). The quark condensate estimated from Eq. (10.36), gives $\langle\bar{q} q\rangle_{\zeta=1 \mathrm{GeV}}=-(607 \mathrm{MeV})^{3}$. In the bottom graph we show the graph when the $M\left(q^{2}\right)$ is plotted and fitted versus the discrete momentum $p=\sqrt{\sum p_{\mu}^{2}}$, the resulting condensate is $\langle\bar{q} q\rangle_{\zeta=1 \mathrm{GeV}}=-(286 \mathrm{MeV})^{3} . \Lambda_{\mathrm{QCD}}=0.234 \mathrm{GeV}$.
D. 1 The unit circle in $2 D, r=x^{2}+y^{2}=1$. 186

List of Tables

5.1 Parameters used in the fit of $a(\beta)$. The conversion of the $\beta_{\text {Lee }}$ definition
is done through $\beta=(3 / 5) \beta_{\text {Lee }}$. 50

6.1 Simulation results for the renormalization of the anisotropy, $\eta=\xi / \xi_{0}$.
Simulation was done a $16^{3} \times 48$. The table has been carved from Table I
in Ref. [31]. 55
6.2 Parameters used to generate the anisotropic lattices. The coupling value is denoted as before by β, ξ is the renormalized anisotropy and the spatial and temporal tadpole factors are denoted by u_{s} and u_{t} respectively. 56
6.3 Parameters used to generate the anisotropic lattices. The coupling value is denoted as before by β, ξ is the renormalized anisotropy and the spatial and temporal tadpole factors are denoted by u_{s} and u_{t} respectively. 57
7.1 Parameters of the numerical simulations. 65
7.2 Summary of the number of sweeps required to pass through various topo- logical charge thresholds. The selection of the thresholds is described in the text. Smearing fractions α are indicated in the table headings. Omissions in the table indicate either the threshold was not met within 200 sweeps or that the trajectory diverged from the most common tra- jectory among the algorithms. 83
7.3 The average of the ratio $<n_{\text {ape }}(0.50) / n_{\text {ape }}(\alpha)>$ or $<n_{\text {aus }}(0.55) / n_{\text {aus }}(\alpha)>$ for the action analysis, (S), and the topological charge analysis, (Q) from the $24^{3} \times 36$ lattice 85
7.4 The averages of the ratios $<n_{\text {ape }}(0.50) / n_{\text {ape }}(\alpha)>$ and $<n_{\text {Iape }}(0.50) / n_{\text {ape }}(\alpha)>$ for various smearing fractions α from the $16^{3} \times 32$ lattice at $\beta=4.38$. . 105
7.5 The averages of the ratios $<n_{\text {ape }}(0.50) / n_{\text {Iape }}(\alpha)>$ and $<n_{\text {Iape }}(0.50) / n_{\text {Iape }}(\alpha)>$ for various smearing fractions α from the $16^{3} \times 32$ lattice at $\beta=4.38$. . 105
7.6 The averages of the ratios $<n_{\text {ape }}(0.50) / n_{\text {ape }}(\alpha)>$ and $<n_{\text {Iape }}(0.50) / n_{\text {ape }}(\alpha)>$ for various smearing fractions α from the $24^{3} \times 36$ lattice at $\beta=5.00$. 105
7.7 The averages of the ratios $<n_{\text {ape }}(0.50) / n_{\text {Iape }}(\alpha)>$ and $<n_{\text {Iape }}(0.50) / n_{\text {Iape }}(\alpha)>$ for various smearing fractions α from the $24^{3} \times 36$ lattice at $\beta=5.00$. 105
7.8 Calibration coefficients for various smoothing algorithms on the $16^{3} \times 32$ lattice at $\beta=4.38$. Entries describe the relative smoothing rate for the algorithm ratio formed by selecting an entry from the numerator column and dividing it by the heading of the denominator columns. For example equation Eq. (7.59) corresponds to the first column of the third row. .
7.9 Calibration coefficients for various smoothing algorithms on the $24^{3} \times 36$ lattice at $\beta=5.00$. Entries describe the relative smoothing rate for the algorithm ratio formed by selecting an entry from the numerator column and dividing it by the heading of the denominator columns. For example equation Eq. (7.58) corresponds to the second column of the first row.
8.1 Parameters of the gauge fixing numerical simulation. 118
8.2 Left side of the table, the Values of the gauge-fixing measures obtained using the Wilson gluon action on 6^{4} lattices at three values of the lattice spacing, fixed to Landau gauge with the one-link, two-link and improved functionals respectively. The ones obtained using the improved gluon action on 6^{4} lattices at three values of the lattice spacing are shown in the right side of the table. 119
9.1 Parameters of the gluon propagator numerical simulation. Lattices 1 w and 1 i have the same dimensions and approximately the same lattice spacing, but were generated with the Wilson and improved actions re- spectively. Lattice 6 was generated with the Wilson action. Hundred configurations were used for the lattice $1 \mathrm{w}, 1 \mathrm{i}, 2,3,4,5$ and seventy-five for lattice 6 123
9.2 The value of gluon propagator at zero four-momentum for each of the lattices created in this investigation, in order of increasing volume. The raw (dimensionless) and physical values are given. In obtaining the physical values we have set the renormalization condition $D\left(\mu^{2}\right)=1 / \mu^{2}$ at $\mu=4.0 \mathrm{GeV}$. An estimate of the uncertainty in the last figure is given in parentheses. 140
10.1 Parameters of generated lattices. 144
10.2 Summary of the lattice parameters for the quark propagators. $N_{[U]}$ is the number of gauge field configurations considered in the simulation. The second kappa was selected to match the strange quark mass. The corresponding masses for the $12^{3} \times 24$ are $\{221,181.5,138.3,99.91,62.04\}$ MeV 153
10.3 Parameters for Overlap fermions. $N_{[U]}$ is the number of gauge field configurations considered in the simulation. The corresponding masses, $m_{q}=\mathcal{Z}_{\psi}^{(0)} \mu$ for the $12^{3} \times 24$ are $\{103.69,120.97,138.25,172.81,207.38\}$ MeV for the first five and $\{259.22,345.63,432.04,518.45,604.85\} \mathrm{MeV}$ for the remaining five. 153
10.4 Summary of the results for $\langle\bar{q} q\rangle_{\zeta}$ extracted from Eq. (10.37) in MeV and renormalized at $\zeta=1.0 \mathrm{GeV}$. The fit was done using Eq. (10.36) at various scales $\Lambda_{\mathrm{QCD}}=200,234,300$ and 380 MeV on various momentum windows for the discrete momentum p in GeV 169
10.5 Summary of the results for $\langle\bar{q} q\rangle_{\zeta}$ extracted from Eq. (10.37) in MeV and renormalized at $\zeta=1.0 \mathrm{GeV}$. The fit was done using Eq. (10.36) at various scales $\Lambda_{\mathrm{QCD}}=200,234,300$ and 380 MeV on various momentum windows for the lattice momentum q in GeV 170

[^1]: ${ }^{5}$ F. D. R. Bonnet, P. O. Bowman, D. B. Leinweber, A. G. Williams \& J. M. Zanotti, Infinite volume and continuum limits of the landau gauge gluon propagator, Phys. Rev. D 64, 034501 (2001) [hep-lat/0101013].
 ${ }^{6}$ F. D. R. Bonnet, P. O. Bowman, D. B. Leinweber, A. G. Williams \& J. Zhang, Overlap Propagator in Landau Gauge, to be Submitted to Phys. Rev. D.

