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Abstract 

Half a century ago Richard Skalak [1] published a paper with the title "An extension of the 

theory of water hammer" [24], which has been the basis of much subsequent work on 

hydraulic transients with fluid-structure interaction (FSI). The paper considers the propagation 

of pressure waves in liquid-filled pipes and the coupled radial/axial response of the pipe walls. 

In a tribute to Skalak's work, his paper is revisited and some of his less-known results are used 

to assess the dispersion of pressure waves in long-distance pipelines. Skalak’s theory predicts 

that the spreading of wave fronts due to FSI is small, at most of the order of ten pipe 

diameters. 

 

Key words: Pipelines; Hydraulic transients; Pressure surges; Fluid-structure interaction; 

Wave front dispersion; Precursor wave. 
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Nomenclature 

a  inner radius of pipe [m] 

A  twice the ratio of fluid mass to pipe-wall mass [-] 

Ai  Airy function of the first kind 

c  speed of sound in unconfined fluid [m/s] 

ce  elementary (water-hammer) wave speed in fluid [m/s] 

c0  elementary (thin-plate) wave speed in pipe wall [m/s] 

c1  (water-hammer) wave speed in fluid [m/s] 

c2  (precursor) wave speed in pipe wall [m/s] 

Cpn  constant [Pa/m] 

Cwn  constant [m] 

dn  constant characterising dispersion of wave front [m
3
/s] 

dn
*
  dimensionless dn [-] 

Dn  constant [1/s
2
] 

E  Young’s modulus of elasticity of pipe wall material [Pa] 

fn  average wake frequency [Hz] 

fn
*
  dimensionless fn [-] 

fring  ring frequency [Hz] 

FSI  fluid-structure interaction 

h  pipe wall thickness [m] 

I  basic integral [-] 

K  bulk modulus of fluid [Pa] 

L  length of pipeline [m] 

Ln  length of wave front [m] 

Ln
*
  dimensionless Ln [-] 

pn  asymptotic solution for pressure [Pa] 

p0  initial fluid pressure for z < 0 [Pa] 

R  square of wave-speed ratio c0/c [-] 

t  time [s] 

t
*
  dimensionless time [-] 

v0  initial axial fluid velocity for z < 0 [m/s] 

z  axial distance along pipe [m] 

zn
*
  dimensionless axial distance along pipe [-] 

 

Greek 

  added mass coefficient [-] 

n  dimensionless constant characterising propagation of wave front [-] 

   gamma function 
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  wavelength [m] 

  Poisson’s ratio [-] 

 0  (initial) mass density of fluid [kg/m
3
] 

s  mass density of pipe wall material [kg/m
3
] 

 

Subscripts 

n = 1 water hammer 

n = 2 precursor 
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Introduction 

The classical theory of water hammer [5] describes the propagation of pressure waves in fully 

liquid-filled pipe systems. The theory correctly predicts extreme pressures and wave periods, but 

it usually fails in accurately calculating damping [6] and dispersion [7] of wave fronts. In 

particular, field measurements usually show much more damping and dispersion than the 

corresponding standard water-hammer calculations. The reason is that a number of effects are not 

taken into account in the standard theory. These include: dissolved and free air in the liquid, 

solidified sediment deposit at the pipe walls, unsteady friction and unsteady minor losses in the 

transient flow, non-elastic behaviour of the pipe wall material, and acoustic radiation to the 

surroundings (for buried pipes, sub-sea pipes and rock-bored tunnels). Another omitted effect is 

fluid-structure interaction (FSI) [8] manifesting itself in different ways: longitudinal pipe and 

bend motion, rubbing and non-elastic behaviour at supports, radial pipe hoop motion (breathing), 

wall bending and shear near steep wave fronts, and buckling and flutter of tubes conveying flow 

at (very) high velocity. 

 

Bergant et al. [910] studied several of the aforementioned effects in a systematic way, but they 

did not consider the wave dispersion due to FSI. The present investigation fills this deficiency 

and attempts to quantify the dispersion of steep pressure wave fronts due to dynamic effects 

caused by radial/axial pipe motion. The focus is on the amount of spreading of the wave front 

and on the frequency of oscillation generated by a step pressure load. The paper is entirely based 

on important theoretical work of Skalak [2]. It pays tribute to his articles published half a century 

ago [34], which form a milestone in FSI research. Skalak’s work is summarised and some of his 

main results are further explored. Dimensionless charts are presented that characterise wave 

dispersion in water-filled steel and plastic pipes. 

 

 

Skalak's problem 

Skalak [24] considered wave propagation in an infinitely long tube of inner radius a and wall 

thickness h, which is filled with a fluid of density  0 and elasticity K. The tube wall material 

has density s, elasticity E and a Poisson’s ratio of . The assumed non-equilibrium situation 

at time t = 0 is shown in Fig. 1. The pressure p and axial fluid velocity v have positive initial 

values p0 and v0 in the left half of the tube (z < 0), respectively, related by 

 

  0 0 0p cv ,       (1) 

where  
0

K
c


 .       (2) 
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All other pressures, velocities and displacements are zero. These initial conditions correspond 

to a step wave moving in the positive axial direction (z > 0) at speed c. The wave would 

propagate in an unchanged form in a pipe with entirely rigid walls, but not so in a pipe with 

elastic walls. 

 

Skalak used the following data in his test problem: a = 0.3048 m, h = 4.857 mm,  0 = 999.8 

kg/m
3
, K = 2.322 GPa, s = 7849 kg/m

3
, E = 206.8 GPa,  = 0.3, and herein p0 = 100 kPa. 

Thus, c = 1524 m/s and v0 = 0.06563 m/s. 

 

 

Skalak's model 

Skalak considered axisymmetric thin-walled tubes. His mathematical model included  in 

addition to standard water-hammer theory  the effects of radial inertia of liquid and pipe, and 

longitudinal stress waves in the pipe wall. Bending stresses and rotatory inertia in the pipe 

wall, that may be of importance near steep wave fronts and near pipe anchors, were also taken 

into account. Axisymmetric shear deformation, fluid viscosity and lobar (non-circular) modes 

of wall vibration were neglected. The influence of lobar modes on axial vibration is small at 

low frequencies because there is no significant oval-axial interaction mechanism. 

 

FSI four-equation model 

In addition, Skalak presented a simplified model that is the low-frequency limit of the two-

dimensional fluid and shell representations. This so-called "FSI four-equation model" describes 

the axial/radial vibration of liquid-filled pipes. Two equations for the liquid are coupled with two 

equations for the pipe, through terms proportional to Poisson’s contraction ratio, and through 

mutual boundary conditions. Skalak showed that the "FSI four-equation model" permits 

solutions that are waves of arbitrary shape travelling without dispersion at the phase velocity of 

either the liquid or the pipe, but he made no attempt to solve the four equations in general. The 

model has been validated experimentally by many researchers [8], most notably by Vardy and 

Fan [11], and it can be solved exactly [1213]. This model is well-known and not pursued herein. 

 

 

Skalak's solution 

Skalak applied Fourier and Laplace transforms to find dispersion relationships for the modes 

of free vibration of the coupled fluid-pipe system. He applied inverse Fourier and Laplace 

transforms to arrive at solutions in the form of single indefinite integrals of real-valued 

functions. The integrals were too difficult to solve exactly, but Skalak was able to find 

asymptotic solutions for large values of axial distance z and time t. An important result, 
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analysed herein, and recognised by others: "His doctoral dissertation [2] was on the water-

hammer effect, and it received enough attention that the engineering director of the Grand 

Coulee Dam project used the theoretical results to predict pressure wave propagation effects 

at distances of several miles from the dam" [1]. 

 

Skalak's asymptotic solutions revealed that wave fronts spread out proportionally to the cube 

root of time, and that the pressure near a sharp wave front may exceed the classical 

Joukowsky value as a result of radial pipe/fluid vibration. Skalak predicted and quantified 

precursor waves in the fluid. These are pressure changes provoked by axial stress waves in the 

pipe wall and thus preceding the main water-hammer waves. Precursor waves were actually 

observed in metal and plastic pipes by Thorley [14] and by Williams [15]. 

 

The re-calculated solution to Skalak's test problem is shown to scale in Fig. 2(a). The water-

hammer wave has travelled a distance of c1 t = 980.9 m at time t = 1 s. The precursor, hardly 

visible at the scale of Fig. 2(a), but magnified in Fig. 2(b), has travelled a distance of c2 t = 

5279 m. The wave speeds c1 and c2 are 

 
1

22 2 2 2 2 2 2

1,2

2 (1 ) 2 (1 ) 4 (1 )(2 )

2(2 )

AR R R AR R R R A R
c c

A R

              
  

 
 

, (3) 

 

where c1 has the minus sign and c2 the plus sign, and where 

 

  A = 0

s

a

h
   and   R = 

2

0 
 
 

c

c
,     (4) 

 

with c0 defined below. Here A = 7.994 and R = 12.47. The water-hammer wave speed c1 is an 

extension of the Korteweg formula ce, and the precursor wave speed c2 is approximately the 

wave speed in thin plates c0, with 

 

  
2

1

e

c
c

K a

Eh





     and    0 2(1 )s

E
c

 



.    (5) 

Here, ce = 981.9 m/s and c0 = 5381 m/s. 

 

The pressure at z = 0 in Fig. 2(a) is substantially lower than p0 = 10
5
 Pa, because the 

impedance p/v (at z = 0) is not equal to p0/v0, but to  0 c1 = (c1/c)(p0/v0). The oscillations 
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trailing the wave fronts are not due to numerical error, but predicted by the theory. Figure 3 

shows these oscillations in a non-dimensional diagram, which is assumed to be independent 

of the early history. The horizontal axis gives the dimensionless distance relative to the wave 

front, 

 

   * 3( ) n n nz z c t d t ,      (6) 

 

where the index n is 1 for the water-hammer wave and 2 for the precursor wave. The 

constants dn are defined by 

 

  

5 3

2

2
2 2

( 4) (1 )

16 (2 ) 8 (2 1) 8 (1 )

n n n

n

n

c c c
A R R

c c c
d ca

c
A R R A R

c


       
          

          
  

        
 

.   (7) 

Here, d1 = 2.926 m
3
/s and d2 = 11.48 m

3
/s. The original dn given by Skalak contains a (h/a)

2
-

term that has been left out here, not only because it is small, but also because it could not be 

re-derived. The vertical axis in Fig. 3 gives the dimensionless wave height through the 

integral 

 

3

1

33

0 0

sin( )1 1 1
( ) d Ai( )d

2 3


  

   





   
  

n

n
nI ,   (8) 

which has been drawn as a function of * 31 n nz  with 

  
3( )

n
n

n

d t

z c t
 


.       (9) 

The upper bound in the first integral is +∞ for n > 0 and ∞ for n < 0. Three integrals can be 

calculated analytically: 

  (0 ) 1I   ,   (0 ) 0I      and   
1

( )
3

 I .   (10) 

The other integrals have been calculated numerically for 1000 values of n in the range 10
7

 

to 10
+3

, with the upper bound in the first integral in Eq. (8) as large as possible [16]. Using 

tables of Ai  the Airy function of the first kind  Skalak [17] computed numerically the 

second integral in Eq. (8). The integral I, and hence the wave height, is constant when n is 

constant, which is along the curves 
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  3
n

n
n

d t
z c t


         (11) 

in the distance-time plane. The wave front, where n = ±∞ and 31 n = 0, is clearly 

identified as the only point travelling at both constant speed, cn, and constant dimensionless 

height, 1/3. 

 

The dimensional pressure for water-hammer (n =1) and precursor (n =2) waves travelling in 

the positive z direction is (up to a constant, vertical shift): 

 

  

3

0

sin( )
( ) dn

n n n np Cp Cw
  

 





  ,    (12) 

with   2
0

2

2

2

1

n
n

n

c
Cp

c
a

c




 
  

 

,  0

1
n

n
s n

p
Cw

c
h D

c



 

  
 

,  4 2 2
20 0

2 2 2
2 2

2 0
2 2

4 2
1

1 1

n
n

n
s

n

c c
D

ac c
hc a

c c

 




 
 
 

    
    

        
    

, 

where a (h/a)
2
-term has been neglected in Dn. Here, Cp1 Cw1 = 26105 Pa and Cp2 Cw2 = 

146.5 Pa. 

 

FSI wave front spreading 

From Fig. 3 it is seen that the initial step wave front spreads out, that is, the steepness of the 

front slope continuously diminishes. Skalak defined a measure for the length Ln of the wave 

front, namely the reciprocal of the slope at the point ( *
nz = 0, I = 1/3) for the unit jump in Fig. 

3. He derived the following formula: 

  
3

3
1
3 3

3
( ) 4

( ) sin( ) 


 

n
n n

d t
L t d t ,     (13) 

where  is the gamma function. For the data given in Skalak’s test problem, L1(1 s) = 5.810 m 

(water-hammer wave) and L2(1 s) = 9.163 m (precursor wave), as shown in Fig. 4. The length 

of the wave front increases proportionally to the cube root of time t. For non-step excitation 

one might start at the proper initial length in Fig. 4, noting that the diagram is not valid for 

small t, say t < 1 s. 

 

FSI wave front oscillation 

From Fig. 3 it is seen that the passage of a wave front causes a decaying oscillation of 

increasing frequency. The maximum overshoot is 1.2744, where the classical Joukowsky 

value would be 1. The average frequency estimated from the 10 maxima in Fig. 3, 
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propagating at almost the speed cn, is 

  
3

( ) 0.36 1.44 n n
n

nn

c c
f t

Ld t
.     (14) 

This average frequency decreases in time as displayed in Fig. 5. The average frequency f1 

decreases from about 250 Hz at t = 1 s to about 100 Hz at t = 10 s, which is much lower than 

the ring frequency of a freely vibrating pipe hoop, 

  ring

0

1
( )

2


  




s

E
f

aa

h

,     (15) 

where the coefficient  determines the added fluid mass. In the literature values of  of 1/4, 

1/3 and 1/2 have been proposed [1821], depending on the assumed distribution of the radial 

fluid velocity. Here, the values fring(1/4) = 1550 Hz, fring(1/3) = 1400 Hz and fring(1/2) = 1200 

Hz are much higher than the values of f1 (t > 1 s) in Fig. 5. Interaction with longitudinal fluid 

and pipe modes has been totally ignored in the derivation of fring. The cut-on frequency of the 

lowest lobar mode (ovaling) of vibration is 16 Hz [16]. 

 

 

Dimensionless charts 

Introducing the dimensionless quantities 

 * 
c

t t
a

,  *  n
n

L
L

a
,  * n n

a
f f

c
,  *  n

n

c
c

c
,  

*

2
 n

n

d
d

c a
,   (16) 

Eqs. (13) and (14) become 

 

  * * * *3( ) 4n nL t d t       (17) 

and 

  
*

* *

* *3
( ) 0.36 n

n

n

c
f t

d t
.      (18) 

The parameters *
nc  and *

nd  depend on A, R and . The wave speed c in Eq. (16) depends 

only on the properties of the contained fluid, and c is about 1500 m/s for water. It should be 

noted that for water-hammer problems the real time t is related to t
 *
 by * *1

1

 
a c a L

t t t
c c L c

, 

where L is the length of the pipeline and L/c1 is the fundamental time scale in water hammer. 

 

Water-filled steel pipe 
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Typical values of A, R and  for a water-filled steel pipe are: A =
1

8

a

h
, R = 12.5 and  = 0.3. 

Figure 6 displays the dependence of * *
1( )L t  on the ratio a/h of pipe radius to wall thickness. 

The length of the water-hammer wave front is at most of the order of ten pipe diameters, and 

thicker pipe walls lead to shorter wave fronts. Correspondingly, thicker pipe walls give higher 

frequencies of wave front oscillation, as shown in Fig. 7. 

 

Water-filled plastic pipe 

In plastic pipes viscoelastic behaviour of the wall material influences wave dynamics [9, 22], 

but in the vicinity of steep wave fronts an instantaneous elastic response is expected instead of 

a retarded viscous response. Additionally, the strong dependence of c1 on a/h in plastic pipes 

makes it worthwhile pursuing the elastic approximation. 

 

Typical values of A, R and  for a water-filled plastic pipe are: A =
a

h
, R = 1 and  = 0.4. 

Because R = 1, the dimensionless wave speeds are * 2
1 (1 ) /(2 1)  c A  and *

2 1c , so 

that the precursor wave speed c2 is independent of A and . Figures 8 and 9 display * *
1( )L t  

and * *
1 ( )f t . Like the steel pipe, the wave front length is of the order of ten diameters, but 

 surprisingly  the front length decreases for increasing ratio a/h. This means that for given 

pipe radius, thicker pipe walls cause more dispersion. Further investigation of this fact 

showed that for a very thin-walled steel pipe the same phenomenon occurs: for ratios a/h 

larger than 112, *
1L  decreases for increasing a/h. Similarly, for very thick-walled plastic 

pipes, with a/h smaller than 0.24, *
1L  decreases for decreasing a/h. This behaviour can be 

explained from the strong a/h-dependence of the wave-speed ratio *
1 1/ c c c , shown in Fig. 

10, as a consequence of pipe hoop elasticity. The plastic pipe (Fig. 10(b)) has much smaller 

values of 1 /c c  than the corresponding steel pipe (Fig. 10(a)), and this has according to Eq. 

(7) a strong effect on 
*
nd . The much smaller values of 

*
1 1/c c c  also explain (see Eq. (18)) 

that the frequencies in the plastic pipe (see Fig. 9) are much smaller than the corresponding 

frequencies in the steel pipe (see Fig. 8). 

 

Practical considerations 
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Skalak’s theory describes reflection-free wave propagation in long liquid-filled pipes. In 

cross-country pipelines, the pressure waves in the liquid may travel long distances without 

significant reflection, but the stress waves in the wall will meet pipe supports and/or anchors 

at regular intervals. The stress waves will partly reflect from these supports, and most likely 

non-axisymmetric bending will be generated. The influence of these reflections on Skalak’s 

results is unknown. 

 

Skalak’s instantaneous and flat excitation is difficult to realise in practice [23]. Only the 

collapse of column separation regions [24] and the impact of gas shock waves [2528] may 

be similar to such an extreme excitation. This means that the trailing oscillations associated 

with radial vibration will be difficult to generate. 

 

The smoothing of the wave front is found to be very small and will be difficult to distinguish 

from other damping effects in laboratory tests and field measurements. For example, in an 

analysis similar to Skalak’s, Bahrar et al. [29] have shown that fluid viscosity has a significant 

long-term effect on the dispersion of the wave front. 

 

Skalak’s asymptotic solution is valid for large time t and z (compared to radius a). In his 

approximations, terms of the order of 1/t have been neglected, which formally means that 

1t . Unfortunately, Skalak has not made the time t non-dimensional. Also, long wavelength 

approximations have been made, where the wavelength 2 a  and 1 12 /   d c , 

although the local behaviour near wave fronts includes short wavelengths. The loss of 

accuracy caused by the truncation of several integrals is another matter of concern. 

Nevertheless, Skalak’s theory has been partly confirmed by others in the impact of elastic bars 

[17, 23, 30] and in water hammer in liquid-filled pipes [29, 3132]. 

 

 

Conclusion 

Skalak’s asymptotic solution describing the propagation and dispersion of water-hammer (n=1) 

and precursor (n=2) waves has been investigated. The solution is shown in the “universal” 

Fig. 3 and it is valid for large zn = cn t. Skalak defined the important length scale 3
nd t , 

which stretches the wave front and trailing oscillation in Fig. 3. Skalak presented results for 

one test problem, the solution of which is shown to scale in Fig. 2. New estimates of front 

length and average frequency of oscillation are given for a range of situations in the 

dimensionless diagrams Figs. 69. The main conclusion from these diagrams is that in 
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unrestrained water-filled steel and plastic pipes wave front spreading due to FSI is small, at 

most of the order of ten pipe diameters. This may be considered as the worst-case steepness of 

pressure wave fronts in liquid-filled pipes. 
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Fig 1.  Initial conditions for wave propagation (adapted from [3]). 

 

0 1000 2000 3000 4000 5000 6000
2 10

4

0

2 10
4

4 10
4

6 10
4

8 10
4

1 10
5

1.2 10
5

distance z (m)

p
re

ss
u
re

 p
 (

P
a)

w

p

 

4000 5000 6000
100

0

100

200

300

400

500

600

distance z (m)

p
re

ss
u
re

 p
 (

P
a)

p

 

  (a)     (b) 

Fig. 2.  Pressure as function of distance at time t = 1 s.  (a) Water-hammer with precursor 

wave.  (b) Precursor wave front (detail of Fig. 2(a)). 
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Fig. 3.  Wave front dispersion; horizontal axis: *
nz  (Eq. 6), vertical axis: I (Eq. 8). 
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Fig. 4.  Wave front spreading.  Lengths of water-hammer (L1 , solid line) and precursor (L2 , 

dashed line) wave fronts as function of time. 
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Fig. 5.  Wave front oscillation.  Average frequencies of water-hammer (f1 , solid line) and 

precursor (f2 , dashed line) waves as function of time. 
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Fig. 6.  Water-filled steel pipe.  Water-hammer wave front length *
1 1 /L L a  as function 

of time * /t ct a for five different values of a/h.  From top line to bottom line: a/h = 80, 40, 

20, 10 and 5. 
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Fig. 7.  Water-filled steel pipe.  Water-hammer wave front frequency *
1 1 /f a f c  as 

function of time * /t ct a for five different values of a/h.  From top line to bottom line: a/h 

= 5, 10, 20, 40 and 80. 
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Fig. 8.  Water-filled plastic pipe.  Water-hammer wave front length *
1 1 /L L a  as function 

of time * /t ct a for five different values of a/h.  From top line to bottom line: a/h = 5, 10, 

20, 40 and 80. 
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Fig. 9.  Water-filled plastic pipe.  Water-hammer wave front frequency *
1 1 /f a f c  as 

function of time * /t ct a for five different values of a/h.  From top line to bottom line: a/h 

= 80, 40, 20, 10 and 5. 
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Fig. 10.  Water-hammer wave speed *
1 1 /c c c  as function of a/h, for (a) water-filled steel 

pipe, and (b) water-filled plastic pipe. 


