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Abstract: The thickness of a sample material for a transmission-mode
terahertz time-domain spectroscopy (THz-TDS) measurement is the subject
of interest in this paper. A sample that is too thick or too thin can raise the
problem of measurement uncertainty. Although greater thickness allows
the terahertz radiation—or T-rays—to interact more with bulk material,
the SNR rolls off with thickness due to signal attenuation. A sample that
is too thin renders itself nearly invisible to T-rays, in such a way that the
system can hardly sense the difference between the sample and a free space
path. The optimal trade-off is analyzed and revealed in this paper, where
our approach is to find the optimal thickness that results in the minimal
uncertainty of measured optical constants. The derived model for optimal
thickness is supported by the results from experiments performed with
polyvinyl chloride (PVC), high-density polyethylene (HDPE), and lactose
samples.
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1. Introduction

Teraherz time-domain spectroscopy (THz-TDS) is a promising tool of determining the com-
plex response of materials at T-ray frequencies, bounded between 0.1 and 10 THz [1]. In a
transmission measurement, the system generates and detects coherent broadband pulses, which,
once transmitted through a sample, have their shape changed in accordance with the sample’s
frequency response. This enables estimation of optical constants, or related quantities, of the
sample from the measured pulses. Recent developments for the system mainly aim for wider
bandwidth [2, 3] and faster scan rates [4, 5, 6]. Another important aspect that needs considera-
tion is the uncertainty in the extracted optical constants.

The uncertainty in the optical constants is deemed crucial in many THz-TDS applications.
Some applications that require a remarkably low uncertainty in measurement include quantify-

(C) 2008 OSA 12 May 2008 / Vol. 16,  No. 10 / OPTICS EXPRESS  7383



ing the sample amount [7, 8, 9], determining resonance frequencies [10], etc. In certain cases,
a lower uncertainty assists the interpretation of data at a critical point. An example is when
a small resonance is overwhelmed by noise, resulting in an ambiguous observation. A lower
uncertainty in measurement could resolve the issue.

A major contribution to the uncertainty in the measured optical constants is from the fluctu-
ations and noise in the measured signals [11], which are mainly due to electronic [12], optical
[13], and mechanical [14] components. Thus, in order to reduce the uncertainty in optical con-
stants, one may attempt to tackle the noise in the signals directly. It is known that using a
lock-in amplifier with optical chopper to modulate T-ray signals [15] can reduce 1/ f noise
due to laser fluctuations. Also increasing the signal strength in the first place helps to lessen the
effect of electrical and optical noise sources, by increasing the SNR. However, both of these ap-
proaches cannot solve the problem of mechanical drift. Alternatively, multiple scans are taken
so that repeated measurements can be averaged in an attempt to reduce noise—however, this
does not work if mechanical drift manifests between successive scans. A further approach to
reduction of the uncertainty in optical constants is hidden in the details of sample geometry
and its optimization—for the first time we now analyze this case and back up our theory with
experimental results in this paper.

It is well known to every THz-TDS experimentalist that, in transmission-mode spectroscopy,
a sample that is too thick has considerable bulk absorption and can significantly reduce the
signal power. In fact, the upper bound of the thickness for a given absorption value is determined
from the system’s dynamic range [16]. Therefore, a sample is usually made very thin as long as
it can be mechanically supported. However, a sample that is too thin can also cause problems,
as the system might not be sufficiently sensitive to detect the resultant changes in the amplitude
and phase of the signal. Both thickness extremes result in higher uncertainty in the measured
optical constants. In this paper, the optimal trade-off between the two extremes is determined,
in order to minimize the uncertainty in optical constants.

This paper is organized as follows: In Section 2, an analytical model relating the variance in
signals to the variance in optical constants is introduced. This model leads to the optimization
of the sample thickness based on minimization of the variance in optical constants, as shown in
Section 3. An analytical formula for optimum thickness is verified by THz-TDS experiments
with various materials in Section 4. The usage of the formula is discussed in Section 5.

2. Uncertainty in optical constants

The amplitude of T-ray signals is prone to noise induced by many sources. These sources in-
clude laser intensity fluctuations, optical and electronic noise, jitter in the delay stage, alignment
error, mechanical drift, etc. Whilst most of the sources of error obey a normal distribution, align-
ment error and mechanical drift do not. However, via the Central Limit Theorem [17, 18], we
might expect the resultant of all the errors tends towards a normal distribution. Hence, consid-
ered here is an amplitude variance model, which unifies all these errors and assumes a normal
probability distribution. The influence of this amplitude variance on the uncertainty in extracted
optical constants is shown in this section.

Given that the sample under a transmission-mode measurement has parallel and polished
surfaces, and the angle of incidence of the incoming T-ray beam is normal to the surfaces, the
transfer function of the sample is expressed as

H(ω) =
Esam(ω)
Eref(ω)

= ττ ′ · exp

{
−κ(ω)

ω l
c

}
· exp

{
− j[n(ω)−n0]

ω l
c

}
, (1)

where Eref(ω) and Esam(ω) are the reference and sample signals in the frequency domain, l is
the sample thickness, n(ω) and κ(ω) are the refractive index and the extinction coefficient of

(C) 2008 OSA 12 May 2008 / Vol. 16,  No. 10 / OPTICS EXPRESS  7384



the sample, n0 is the refractive index of air, and τ and τ ′ are the transmission coefficients at
the sample interfaces. The refractive index and the extinction coefficient can be deduced from
Eq. (1) as

n(ω) = n0 − c
ω l

� H(ω) , (2a)

κ(ω) =
c

ω l

{
ln |ττ ′|− ln |H(ω)|} . (2b)

Influenced by the variance in measured signals, the variances in refractive index, s 2
n(ω), and

in extinction coefficient, s2
κ(ω), can be derived from Eq. (2) using the law of propagation of

uncertainty. In brief, from the signal amplitudes in the time domain, the variance is transferred
to the variance of the magnitude and phase spectra in the frequency domain via Fourier trans-
form, as shown in [19]. Then the combination between the variances of sample and reference
measurements produces the variance in the transfer function of a sample. The variance even-
tually appears at the optical constants. From this analysis, the variances in the refractive index
and in the extinction coefficient are given by, respectively,

s2
n(ω) =

( c
ω l

)2
{

Asam(ω)
|Esam(ω)|4 +

Aref(ω)
|Eref(ω)|4

}
, (3a)

s2
κ(ω) =

( c
ω l

)2
{

Bsam(ω)
|Esam(ω)|4 +

Bref(ω)
|Eref(ω)|4 +

(
n(ω)−n0

n(ω)+n0

)2 s2
n(ω)

n(ω)2

}
, (3b)

where

Asam(ω) = ∑
k

ℑ2[Esam(ω)exp( jωkΔ)]s2
Esam

(k) , (4a)

Aref(ω) = ∑
k

ℑ2[Eref(ω)exp( jωkΔ)]s2
Eref

(k) , (4b)

Bsam(ω) = ∑
k

ℜ2[Esam(ω)exp( jωkΔ)]s2
Esam

(k) , (4c)

Bref(ω) = ∑
k

ℜ2[Eref(ω)exp( jωkΔ)]s2
Eref

(k) . (4d)

Here, s2
Eref

(k) and s2
Esam

(k) are the variances associated with the reference and sample signals,
respectively; k is the sampling index number and Δ is the sampling interval, and thus kΔ is the
time; ℜ2 and ℑ2 denote the square of real and imaginary parts, respectively. The summation is
carried out over the time duration of the recorded T-ray signal. In the equations, all parameters
utilize mean values. The proposed model in Eq. (3) is successfully validated using a Monte
Carlo method [19]. The complete derivation for Eq. (3) can be found in [19].

3. Optimisation of the sample thickness

From Eq. (3a) and (3b) in Section 2, it can be inferred that four major variables, n(ω), κ(ω), l,
and |Eref|, govern the amplitude-related variance, s2

n or s2
κ . Optimising one of these parameters

might help reduce the variance. Two of them, n(ω) and κ(ω), are intrinsic to materials, and thus
cannot be optimized. The signal strength, |E ref|, without doubt, must be as large as possible—
provided there is no damage to the sample—in order to minimize the variance. The sample
thickness, l, can usually be controlled and thus may lend itself to optimization.

The intricate relation between the sample thickness and the standard deviation in the refrac-
tive index, sn, is simulated and demonstrated via a contour plot in Fig. 1. As we can see, at
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every frequency, there is an optimum sample thickness that gives the lowest s n. Figure 2 re-
veals the magnitude of sn and sκ as a function of the thickness, estimated at three different
example frequencies. The optimum thicknesses for the simulated sample at these frequencies
approximately span from 300 μm to 1 mm. Moving towards a thicker sample by an order of
magnitude sees an increment of the standard deviation by three orders. Moreover, moving to-
wards a thinner sample by an order of magnitude results in increased standard deviation by one
order of magnitude. Selecting the sample thickness to correspond to desired minimum in Fig. 2
is therefore advantageous.

According to the transfer function in Eq. (1),

|Esam(ω)|4 = (ττ ′)4 exp

{
−4κ(ω)

ω l
c

}
|Eref(ω)|4 . (5)

Substituting Eq. (5) into Eq. (3a) and reassigning the notation gives

s2
n(ω) =

C
l2

{
A′

sam(ω)
exp(−4κω l/c)

+Aref(ω)
}

, (6)

where

C =
c2

ω2|Eref(ω)|4 and A′
sam(ω) =

Asam(ω)
(ττ ′)4 . (7)

Assuming that s2
E in A(ω) is not a function of l, we are now able to minimise s2

n(ω) with respect
to the thickness l. By taking the derivative of Eq. (6) with respect to l, we arrive at

∂ s2
n(ω)
∂ l

=
(

4
C
l2

κω
c

−2
C
l3

)
A′

sam(ω)
exp(−4κω l/c)

−2
C
l3 Aref(ω) . (8)

frequency (THz)

sa
m

p
le

 t
h
ic

kn
es

s

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
10 μm

100 μm

1 mm

10 mm
optimum thickness: numerical
optimum thickness: analytical

global minimum

s
n sn

s
n

Fig. 1. Standard deviation in the refractive index against the sample thickness and fre-
quency. The contours represent the simulated magnitude of sn, which is in fact comparable
to that of sκ . The optical constants are set to n− jκ = 3.0−0.1 j at all frequencies (κ = 0.1
equals α = 41.9 cm−1 at 1 THz). Additive white Gaussian noise limits the maximum dy-
namic range of the reference spectrum to 40 dB. The position of the global minimum rela-
tive to the frequency corresponds to the peak position of the reference spectrum. The profile
of the optimum thickness determined numerically appears jagged due to the discrete nature
of the simulation.

(C) 2008 OSA 12 May 2008 / Vol. 16,  No. 10 / OPTICS EXPRESS  7386



st
an

d
ar

d
 d

ev
ia

ti
on

�

�

sample thickness

10 μm 100 μm 1 mm 10 mm

101

100

10-1

10-2

10-3

10-4

0.
5 

T
H
z

1.
0 

T
H
z

1.
5 

T
H
z

std. dev. of refractive index, sn
std. dev. of extinction coefficient, sκ

optimum thickness

n = 3

κ = 0.1

Fig. 2. Standard deviation in the optical constants against the sample thickness. The plots
are cross-sectional profiles of Fig. 1, at selected frequencies 0.5, 1.0, and 1.5 THz. The op-
timum thicknesses, where the standard deviation is minimal, are indicated by arrowheads.
By moving towards a thicker sample, the standard deviation rapidly increases to the point
comparable to the optical constants’ values. The standard deviation at high frequency is
more sensitive to the thickness increment, as the T-ray magnitude at high frequencies is
relatively low.

The variances in the reference and sample spectra, A ref(ω) and Asam(ω), can be related via the
transfer function, as does the magnitude of the spectra in Eq. (5),

Asam(ω) ≈ (ττ ′)4 exp

{
−4κ(ω)

ω l
c

}
Aref(ω) . (9)

Note that the dependency of Asam(ω) on the sample thickness is an approximation, and does
not affect the optimisation. Substituting Eq. (9) into Eq. (8) and equating to zero gives,

(
4

C
l2

κω
c

−2
C
l3

)
Aref(ω)−2

C
l3 Aref(ω) = 0 , (10)

and further manipulation yields the optimum thickness:

lopt =
c

ωκ(ω)
=

2
α(ω)

. (11)

The resultant optimum thickness obtained using Equation 11 is in accordance with the result
obtained numerically, as demonstrated in Fig. 1.

By substituting the optimum thickness in Equation 11 into Equation 5 and ignoring reflection
at the interfaces, we see that a sample with optimum thickness attenuates the magnitude of the
incident pulse by the factor of 1/e. The optimum thickness turns out to be a distance that is equal
to twice the penetration depth. Optimization of the sample thickness by starting from Eq. (3b)
also delivers the same outcome. Notice that the optimum thickness, l opt, relies on neither the
index of refraction, n(ω), nor the signal magnitude, |E(ω)|. This is because the transmittance
at the sample interfaces is not a function of thickness. In addition, the sensitivity of the detector

(C) 2008 OSA 12 May 2008 / Vol. 16,  No. 10 / OPTICS EXPRESS  7387



Table 1. Optimum sample thickness for some common materials determined by the pro-
posed method. The optimum thickness for THz-TDS measurement is determined using
Eq. (11). The absorption coefficients, measured at room temperature, are taken from vari-
ous sources: water [20]; PMMA, TPX [21]; HDPE [22]. Note that the absorption coefficient
can widely vary from sample to sample, in particular for plastics.

Material
0.5 THz 1.0 THz 1.5 THz

α (cm−1) lopt α (cm−1) lopt α (cm−1) lopt

Water 150 130 μm 200 100 μm - -
PMMA 5 4 mm 20 1 mm 40 0.5 mm
HDPE 2.0 10 mm 2.2 9.1 mm 2.4 8.3 mm
TPX 0.1 20 cm 0.5 4 cm 0.8 2.5 cm

is not involved, as the analysis aims for minimization of the uncertainty, i.e. stability of the
measurement, for a given sensitivity.

In Table 1, some common dielectric materials with their optimal thicknesses are given, ac-
cording to Eq. (11). In addition, it appears that the resultant thickness calculated from this
equation is in close agreement with the result found numerically in [23], in which the optimiza-
tion is for a differential thickness THz-TDS measurement. For example, at 1 THz, the optimum
thickness for dioxane, which has κ = 0.013 or α = 5.45 cm−1, is reported to be 4 mm, and
the optimum thickness for water, κ = 0.478 or α = 200 cm−1, is 100 μm [23]. Using the same
parameters, the derived analytical expression given in Eq. (11) estimates the thicknesses for
dioxane and water to be 3.7 mm and 100 μm, respectively.

4. Experiments and results

The experiments are performed using a fiber-coupled T-ray Picometrix 2000 system, equipped
with photoconductive antennas for T-ray generation and detection. The pumping laser is a
mode-locked Ti:Sa laser (MaiTai, Newport) with a central wavelength of 800 nm, a pulse du-
ration of <80 fs, and a repetition rate of 80 MHz. The system generates pulsed T-ray radiation
spanning from 0.05 to 1.5 THz, with a maximum dynamic range of 30 dB. The collimated beam
diameter is approximately 25.4 mm. The sample materials that are used in this study are PVC,
HDPE, and polycrystalline lactose, which have unique absorption characteristics. The reference
measurement is made with a free path in two runs, ten scans each, before and after every run of
ten individual sample measurements. The similarity of the variances of the two runs confirms
no significant change to the hardware during sample measurement.

4.1. Polyvinyl chloride: PVC

The measurement is carried out with normal-grade PVC, which is preformed in a rod shape.
The rod with a diameter of 50 mm is cut into four cylindrical segments, with the thickness of
1 (0.967), 10 (9.977), 20 (19.869), and 50 (50.338) mm—the values in parentheses are the aver-
age of five measurements with one standard deviation of ≈±0.005 mm. The surfaces of these
samples are well polished to minimize scattering. Each sample is measured with a collimated
beam from the THz-TDS system in the axial direction for ten scans, and each scan is made after
the previous scan within 30 sec.

The optical constants of PVC are extracted from the measurements of the 10-mm sample.
The phase at low frequencies is extrapolated from the phase value between 0.05 and 0.1 THz.
Figure 3 shows the extracted optical constants. Clearly, the refractive index is nearly constant
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to 0.55 THz. The ripples in the curves are due to Fabry-Pérot reflections.
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Fig. 4. Optimum thickness for PVC. The optimum thickness is determined from the meas-
ured absorption coefficient. The solid line is a second-order polynomial fit to the absorp-
tion coefficient between 0.05 and 0.55 THz. The horizontal dotted lines indicate the sample
thicknesses of 1, 10, 20, and 50 mm, available for the measurements.

at 1.63, lower than the previously published value at 1.67 [24]. The absorption coefficient in-
creases quadratically, also in accordance with [24]. Note that small shifts in the refractive in-
dices of plastics at T-ray frequencies are known to be caused by slight hygroscopicity [11] and
differences in the manufacturing process.

The optimum thickness for PVC, which supposedly yields the lowest variance in the meas-
ured optical constants, is determined from the absorption coefficient using the proposed model
in Eq. (11). However, the measured absorption coefficient contains error from noise, water-
vapor absorption, and Fabry-Pérot fringes. By assuming that the absorption coefficient is well
described by a parametric function, the measured coefficient is initially smoothed by a second-
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order polynomial, which also enables extrapolation of the coefficient towards a higher fre-
quency range. Figure 4 illustrates the optimum thickness determined directly from the measured
coefficient and from the fitting model. It can be seen that at frequencies around 1.0 THz, a sam-
ple thickness of 1 mm would provide the lowest variance of the optical constants. In addition,
at low frequencies the optimum thickness increases by around one order of magnitude.

Figure 5 shows the standard deviations of the optical constants for the four PVC samples,
in terms of the unprocessed scatter plots and the fitting parametric curves. It is evident that at
0.05-0.2 THz, the 50-mm-thick sample provides the lowest standard deviation among the four
samples; at 0.2-0.25 THz, the 20-mm-thick sample; at 0.25-0.6 THz, the 10-mm-thick sample;
and above 0.6 THz, the 1-mm-thick sample. This optimum relation is in perfect agreement with
the prediction in Fig. 4, which is derived using the proposed optimal-thickness model. The im-
provement in measurement accuracy can be observed, for example, by comparing the standard
deviations of the 1-mm-thick and 50-mm-thick sample. At around 0.1 THz the standard devi-
ation for the thicker sample is ≈4×10−5, and that for the thinner sample is ≈2×10−3, or the
improvement of the standard deviation is by almost two orders of magnitude.

4.2. High-density polyethylene: HDPE

The material used in this experiment is a high-density polyethylene (HDPE), supplied as a long
cylindrical rod with a diameter of 50 mm. The rod is sliced into six samples, with the thickness
of 1 (1.006), 10 (9.809), 20 (19.943), 50 (50.040), 100 (100.697), and 200 (201.294) mm.
THz-TDS measurements are made in the axial direction of the samples with ten scans for each
sample. The interval between each scan is 45 sec.

Figure 6 shows the optical properties of HDPE, extracted from the 50-mm sample. The phase
at low frequencies is extrapolated from that between 0.05 and 1 THz. Obviously, the refractive
index is constant at 1.512 over the frequency range, and the absorption coefficient is nearly
zero. The estimated refractive index is slightly lower than previously published values at 1.53
[22, 24], but the extinction coefficient is comparable to that in [24].

Further analysis shows that the optimum thickness of HDPE determined using Eq. (11) is
higher than 20 mm for the frequency below 2 THz, as shown in Fig. 7. These sample thick-
nesses, although relatively thick, are expected to provide the lowest uncertainty in the measure-
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Fig. 6. Optical constants of HDPE. The constants are calculated from the average signal
probing the 50-mm-thick sample. The noise in the refractive index at low frequencies is
due to the low SNR of the probing signal.
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Fig. 7. Optimum thickness for HDPE. The optimum thickness is determined from the meas-
ured absorption coefficient. The solid line is a second-order polynomial fit to the absorption
coefficient between 0.05 and 1 THz. The horizontal dotted lines indicate the sample thick-
nesses of 1, 10, 20, 50, 100, and 200 mm, available for the measurements.
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Fig. 8. Standard deviations in the optical constants of HDPE. Each standard deviation is
determined from ten reference and ten sample signals. The dotted lines represent the raw
profiles obtained from Eq. (3), whereas the solid lines are from an analytical function,
exp(a1x5 +a2x4 + . . .+a5x+a6), fitted to the dotted lines. The missing part of the profiles
in the high frequency range corresponds to the low SNR portion of the measured spectra.

ment of the optical constants. It is evident that the prepared thicknesses of 1, 10, and 20 mm are
suboptimal at all frequencies of interest, and, thus, measurement at these thicknesses is vulner-
able to high uncertainty. Besides, the sample thicknesses of 50, 100, and 200 mm are the best
for measurement at 1.6, 1.0, and 0.6 THz, respectively.

Figure 8 confirms the predicted optimum thickness for HDPE. By measuring the samples at
various thicknesses, the standard deviations of the measured optical constants can be compared.
The sample thickness of 1 mm results in the highest standard deviation for the given samples,
and increase of the thickness reduces the deviation proportionally. The 50 mm sample leads
to the lowest standard deviation around 1.1 to 1.5 THz; the 100 mm sample, around 0.8 to
1.1 THz; and the 200 mm sample, below 0.8 THz. The results are in excellent agreement with
the optimum thickness predicted earlier in Fig. 7. In addition, between 0.05 and 1.0 THz, the
standard deviation for the 200-mm-thick sample is better than that for the 1-mm-thick sample
by two orders of magnitude.

4.3. Lactose

The sample materials used so far in Sections 4.1 and 4.2 have rather featureless spectra. In con-
trast, for a more general case, polycrystalline α-lactose monohydrate is selected for this exper-
iment, because it has a distinctive absorption spectrum due to intermolecular resonance modes
at lower T-ray frequencies. The sample pellets of lactose with different thicknesses are prepared
from lactose powder ground together with ultra-high molecular weight (u.h.m.w.) polyethylene
powder in the mass ratio of 1:3. The mixture powder is pressed at 10 tonnes by a hydraulic
press to produce six pellets with the diameter of 13 mm and the thicknesses from 0.4 (0.440),
0.8 (0.876), 1.6 (1.658), 2.4 (2.385), 3.2 (3.196), to 4.0 (4.014) mm, all with optical-graded
surfaces. The pellets are measured with a focused T-ray beam. Eight scans are recorded for
each pellet, and another eight for the reference. For this experiment, the ambient measurement
atmosphere is purged with nitrogen to reduce the effects of water vapor absorption. It is worth
noting that the measured results are not for pure α-lactose monohydrate, but rather a α-lactose
monohydrate/u.h.m.w. PE mixture. However, for conciseness, this mixture is referred to as the
lactose mix hereafter.

The optical constants for the lactose mix, shown in Fig. 9, are determined from the 1.6-mm
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Fig. 9. Optical constants of the lactose mix. The constants are calculated from the average
signal probing the 1.6-mm sample. The absorption peaks are pronounced at 0.53, 1.2, and
1.37 THz, as indicated by the arrowheads, before the spectrum is overwhelmed by noise
beyond 1.6 THz.
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Fig. 10. Optimum thickness for the lactose mix. The optimum thickness is determined
from the measured absorption coefficient. The horizontal dotted lines indicate the sample
thicknesses of 0.4, 0.8, 1.6, 2.4, 3.2, to 4.0 mm, available for the measurements.

sample. The phase data at the frequencies lower than 0.05 THz are extrapolated from the data
from 0.05 to 1.0 THz. Below 1.6 THz, the average value of the refractive index is 1.513, and
the absorption coefficient is less than 30 cm−1. The strong absorption peaks, clearly observable
at 0.53, 1.2, and 1.37 THz, reproduce the results published in [25].

The optimum thickness for the lactose mix, plotted in Fig. 10, is determined from the meas-
ured absorption coefficient using the developed equation. For those frequencies below 1.2 THz,
which contain no absorption peak, the optimum thickness is higher than 4.0 mm. The available
thicknesses of the sample are likely to provide the lowest measurement uncertainty of the op-
tical constants around the vicinities of absorption peaks. More specifically, the 1.6-mm sample
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Fig. 11. Standard deviation in the extinction coefficient of the lactose mix. The values at
each thickness, indicated by the crosses, are determined from eight reference and eight
sample signals, using the Monte Carlo method. The frequencies 0.53 and 1.37 THz corre-
spond to the two first significant absorption peaks of the lactose spectrum. The missing part
of the 1.37-THz profile is due to the low SNR portion of the measured spectra. The standard
deviation in the index of refraction has a comparable value, and hence is not shown here.
The dotted lines are fitted to the measurements only for visualization.

should give the lowest uncertainty for the absorption peak at 0.53 THz, and the 0.8-mm sample
gives the lowest uncertainty for the peak at 1.37 THz.

To confirm the prediction of the optimum thickness, the standard deviation in the optical
constants is determined, via the Monte Carlo method, from the repeated measurements. As
shown in Fig. 11, the values of the standard deviation at each interesting frequency are plotted
against the thickness for clarity. Two frequencies at 0.53 and 1.37 THz are the locations of the
absorption peaks of lactose, whilst another two frequencies at 0.4 and 1.0 THz are the locations
of the baseline away from the peaks. It is clear from Fig. 11 that at 0.53 and 1.37 THz, the
sample thicknesses of 1.6 and 0.8 mm provide the lowest standard deviation in measurement,
respectively. At the frequencies of baseline, i.e. 0.4 and 1.0 THz, no optimum thickness is found
in the thickness range between 0.4 and 4 mm, and the standard deviation profiles become lower
towards a thicker sample thickness. The results in Fig. 11 hence justify the prediction of the
optimum thickness in Fig. 10.

5. Usage of the model

The proposed model for optimum thickness is frequency-dependent, and thus it can determine
the thickness for materials with any type of absorption response, provided that the absorption
coefficient is available. In practice, this absorption coefficient can be measured from a prelimi-
nary sample or obtained from a published value.

When selecting the optimum thickness, two options are available: (i) have the widest
measurement bandwidth, or (ii) have the lowest uncertainty at a particular frequency. If the
widest bandwidth is required, the maximum absorption value within the reliable frequency
range of the system should be used in determination of the optimum thickness. This results in a
thinner sample thickness thus retaining the bandwidth of the system and avoids dynamic range
limited distortion, while providing a reasonably low uncertainty in the measurement. There is
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a possibility that one might need to observe a sample’s response in a narrow frequency range,
with the highest precision available from the instrument, for example, in order to resolve a weak
absorption peak hidden beneath the noise or to quantify the ratio of a mixture. In such cases,
the optimum thickness calculated at the frequency of interest is indeed the best selection.

Despite the thickness optimality, there are some unrestricted lower and upper limits of the
thickness that are worth consideration. For a very thin sample, the non-uniformities in the sam-
ple geometry and in the bulk material tend to be pronounced. Combined with the effects of
the frequency-dependent spatial distribution of the T-ray beam, relocation of the sample during
measurements may cause a large variation among measured signals [26]. Although the vari-
ance in the signal’s amplitude encompasses these effects, the dependence of the effects on the
thickness is not taken into account in the optimization. In addition, thickness measurement for
a thin sample is prone to imprecision. Due to these concerns, special care must be given to
the uniformity of a sample with very thin optimum thickness and to the method of thickness
measurement. Concern for reflection removal may arise in the case of optimally thin samples,
for which the succeeding reflections temporally overlap and inseparable. However, an itera-
tive parameter extraction process can cope with those overlapping reflections [27, 28]. For a
very thick sample, beam defocusing may cause an overestimation of the measured absorption
coefficient. A collimated beam or long-focal length beam system can alleviate the effect.

6. Conclusion

Currently, for a transmission THz-TDS measurement, there is no explicit criterion for deter-
mining an appropriate thickness for a sample under measurement in the existing literature.
Traditionally, the selection of the sample thickness depends wholly on the experience of an ex-
perimentalist. In many cases, the sample thickness is preferably thin, to preserve the bandwidth
of the signal. This is favorable so long as the uncertainty in optical constants is properly con-
sidered. An excessively thin sample can cause significant rise in the uncertainty of the optical
constants that is influenced by measurement noise.

This work offers a criterion in selecting the optimum thickness of a sample. Provided that
the absorption of a sample material at a frequency of interest can be estimated or approximated,
the proposed model can predict the optimum thickness, which gives the lowest uncertainty in
measurement. The derivation of the criterion is carried out via minimizing the uncertainty in
optical constants—in terms of the variance or standard deviation—which is affected by the
variance in measured time-resolved signals.

The experiments, performed with PVC and HDPE, representing typical and low absorption
materials, confirm the validity and applicability of the derived thickness criterion. By selecting
an optimum thickness for a sample under measurement, significant improvement in the stan-
dard deviation of the optical constants can be observed. These examples with monotonically
increasing absorption sufficiently support the model, because the model determines the optimal
thickness based on the absorption value at a particular frequency, regardless of the morphol-
ogy of the absorption spectrum. In addition, as a case study, another experiment is performed
with polycrystalline lactose, containing strong THz modes. An excellent agreement between
the theory and the experimental results is achievable. Validated by the experiments, the pro-
posed model can be used as a rule of thumb in selecting the thickness for a sample to achieve
the minimum uncertainty in measured optical constants.

Another point, in conclusion, is that our analysis may apply in principle to optical and other
regimes. However, generally speaking, the T-ray experimentalist more readily has control over
the thickness, whereas the optical experimentalist tends to have more control over signal power.
This explains why the analysis herein becomes generally of greater interest in the T-ray domain.
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