Chapter 1
Introduction

1.1

Research background

Under the pressure of rapid development around the globe, power
demand has increased drastically during the past decade. To meet this
demand, the development of power system technology has become
increasingly important in order to maintain a reliable and economic
electric power supply. One major concern of such development is the
optimisation of power plant maintenance scheduling. Maintenance is
aimed at extending the lifetime of power generating facilities, or at least
extending the mean time to the next failure for which repair costs may be
significant. In addition, an effective maintenance policy can reduce the
frequency of service interruptions and the consequences of these
interruptions. In other words, having an effective maintenance schedule is
very important for a power system to operate economically and with high

reliability.

Determination of an optimum maintenance schedule is not an easy
process. The difficulty lies in the high degree of interaction between
several subsystems, such as commitment of generating units, economical
planning and asset management. Often, an iterative negotiation is carried
out between asset managers, production managers and schedule planners
until a satisfactory maintenance schedule is obtained. In addition, power
plant maintenance scheduling is required to be optimized with regard to a
number of uncertainties, including power demand, forced outage of
generating units, hydrological considerations in the case of hydropower
systems and trading value forecasts in a deregulated electricity market.
Consequently, the number of potential maintenance schedules is
generally extremely large, requiring a systematic approach in order to
ensure that optimal or near-optimal maintenance schedules are obtained

within an acceptable timeframe.

Ant Colony Optimisation (ACO) is a relatively new metaheuristic for
combinatorial optimisation problems that is based on the foraging

behavior of ant colonies. Compared to other optimisation methods, such
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as genetic algorithms (GA), ACO has been found to produce better
solutions in terms of computational efficiency and quality when applied
to a number of benchmark combinatorial optimisation problems.
Recently, ACO has also been successfully applied to scheduling, including
the job-shop, flow-shop, machine tardiness and resource-constrained
project scheduling problems. ACO is highly suitable for scheduling
optimisation problems, especially in handling various constraints, such as
the precedence and sequential constraints, which can be attributed to the
decision-tree based structure adopted by the ACO metaheuristic. In
addition, multiple alternative schedules of similar quality can be
produced in an ACO run, which is extremely useful in real-world power
plant maintenance scheduling for negotiation with the asset manager, for
example. A major drawback when using metaheuristics is not being able
to incorporate non-quantifiable criteria, such as the operational or trading
protocols adopted by a power system organization, in the optimisation
process. This drawback can be overcome by having alternative
maintenance schedules of similar quality that can be critically assessed
using criteria not specified as part of the formal optimisation. In addition,
the ability of ACO to utilize heuristic information in the optimisation

process can effectively reduce the search space of a problem.

Research objectives

The major goal of this research is given as follows:

To develop, test and apply an ACO-based formulation to real

power plant maintenance scheduling optimisation problems.

In order to meet the goal, a number of objectives are addressed, including;:

Objective 1: To develop a generalized formulation for the power plant
maintenance scheduling problem. Various issues, such as objectives and
constraints commonly encountered in real-world power plant

maintenance scheduling problems, are examined.

Objective 2: To develop a framework for utilizing ACO for the
generalized PPMSO problem.
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Objective 3: To test the ACO-PPMSO formulation with two benchmark

case studies.

Objective 4: To apply the ACO-PPMSO formulation to real-world
maintenance scheduling problems, including a simplified version and a

full version of the Hydro Tasmania system.

Thesis layout

In Chapter 2, the research background related to power plant
maintenance scheduling optimisation is reviewed. The objectives and
constraints commonly used in past studies are discussed (Section 2.1).
Optimisation methods previously adopted for power plant maintenance
scheduling, namely heuristic approaches, mathematical programming,
expert systems and metaheuristics, are reviewed in terms of the strengths
and drawbacks of each method (Section 2.2). The motivation for

considering metaheuristics in solving the problem are discussed.

In Chapter 3, various aspects of the Ant Colony Optimisation
metaheuristic are presented, including the derivation of a metaheuristic
from the foraging behaviour of real ant colonies (Section 3.1), the general
framework for ACO to solve a combinatorial optimisation problem
(Section 3.2), the two major categories of ACO algorithms (Section 3.3)
and the previous applications of ACO to benchmark and real-world
scheduling problems (Section 3.4). The chapter is concluded by the
motivation for adopting the ACO metaheuristic for power plant

maintenance scheduling in this research.

The proposed approach developed in this research for power plant
maintenance scheduling problems is presented in detail in Chapter 4. A
generalized formulation for the power plant maintenance scheduling
problem is detailed (Section 4.1). The new ACO formulation proposed for
the maintenance scheduling problem, including a new heuristic
formulation and a proposed local search strategy, is introduced (Section
4.2). In Section 4.3, the mechanisms of the ACO algorithm implemented
utilizing the proposed ACO formulation are detailed. Lastly, the two
categories of constraints commonly encountered in power plant

maintenance scheduling problem, as well as the techniques proposed to
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address these constraints in the ACO formulation, are discussed in

Section 4.4.

In Chapter 5, an experiment is carried out to test the effectiveness of the
new heuristic formulation and the local search strategy, as well as the
overall performance of the proposed ACO formulation for power plant
maintenance scheduling problems using four benchmark case studies,
namely the 21-unit case study, the 22-unit case study and the modified
version of the two case studies (Sections 5.1 to 5.3). The results and

analysis derived from the experiment are detailed in Section 5.4.

In Chapter 6, the proposed ACO-PPMSO formulation is applied to real-
world maintenance scheduling problems, including a five-station
hydropower system (Section 6.2) and a full Hydro Tasmania system
(Section 6.3).
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Chapter 2
Literature Review

In this chapter, the background of the research work presented in this thesis is
reviewed. In particular, the definition of power plant maintenance scheduling
optimisation adopted in past studies and the methods previously applied to

this problem are discussed.

2.1 Power plant maintenance scheduling optimisation

Power plant maintenance scheduling optimisation (PPMSO) has been
described as a “multi-criterion constrained combinatorial optimisation problem,
with non-linear objective and constraint functions” (Aldridge et al., 1999). The
definition of a combinatorial optimisation problem P = (S, f) has been

given by Blum et al. (2003) as:
e asetof variables R = {ry, ..., 7};
e variable domains Dy, ..., D,;
* a set of constraints; and

* an objective function f to be minimized (for a minimization

problem).
The search space of a problem, S, can thus be defined as:
S={s={(r1, v1), ..., (tn, va)} | vi UD;, s satisfies all the constraints}

The aim of an optimisation problem is to find a set of globally optimum
solutions S*U S for (S, f) such that f{s*) < f(s) U s*LIS*, sLIS.

In relation to PPMSO, the aim has been specified as the determination of
the timing and sequence of the maintenance periods of each of the
generating machines (units) used for power generation, assuming

maintenance durations are fixed (Dopazo et al., 1975; Yamayee et al., 1983;
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Mukerji et al., 1991; Satoh et al., 1991; Kim et al., 1997; Aldridge et al., 1999;
Dahal et al., 1999; Dahal et al., 2000; El-Amin et al., 2000; Foong et al., 2005a;
Foong et al., 2005b). The set of variables X in a PPMSO problem is

therefore implicitly represented by the maintenance commencement time

for all generating units considered, with the optional commencement

times given by the variable domains D. The objectives and constraints of

PPMSO on the other hand, are less well defined and were a research area

of their own at earlier stages of PPMSO research. Generally, the objectives

and constraints being employed for maintenance scheduling in the past

have been quite different, depending on the concerns of individual power

utilities. In this section, different objectives and constraints being adopted

in previous studies are reviewed.

2.1.1 Objectives

The objectives commonly utilized for PPMSO are generally reliability or

cost based (Figure 2.1):
Objectives
Reliability Cost
| - minimize production
costs
| - minimize
Deterministic Probabilistic maintenance costs
- maximize - level out loss of load
minimum reserve probability (LOLP)
- level out reserve -level out incremental
- minimize  annual risk/ minimize LOLP

unserved energy

Hybrid approach
- Well-being analysis

Figure 2.1: Objectives of power plant maintenance scheduling optimisation

2.1.1.1

Reliability-based criteria

Apart from meeting demands, a power system needs to provide a reserve

generation capacity to secure the provision of electricity to customers in

Page 6



Chapter 2 Literature Review

the event of a sudden breakdown of generating units or unexpectedly
high peak demands. Reliability-based criteria previously used can be
roughly divided into two categories: deterministic and probabilistic

approaches (Figure 2.1). In addition, hybrid approaches can also be used.

Deterministic approaches

Deterministic approaches usually utilize historical data for the assessment
of maintenance schedules. An example of such data are daily peak
demands averaged over the past 5 years. Some deterministic reliability-
based criteria aim to maximize the minimum reserve in the planning
horizon (Christiaanse et al., 1971; Mukerji et al., 1991; El-Amin et al., 2000),
level the reserve throughout the planning horizon (Escudero et al., 1980;
Kim et al., 1997; Moro et al., 1999; Dahal et al., 2000; El-Amin et al., 2000;
Wang et al., 2000) or minimise the annual expected unserved energy
(Ahmad et al., 2000).

Probabilistic approaches

Some elements of a power system are naturally stochastic, including
system demands, the forced outage rates of generating units and the
system inflows in the case of a power system with hydropower plants. If
one or more of these elements are modelled probabilistically during the
assessment of the reliability of a trial maintenance schedule, a
probabilistic reliability-based approach is employed. A number of surveys
revealed that from 1964 to 1987, all Canadian utilities changed their
reliability assessment approach from deterministic to probabilistic
(Billinton, 1991). By taking into account the uncertainties associated with
the forced outage of generating units by incorporating their effective load
carrying capabilities, Garver (1972) was able to achieve uniform loss of
load probability (LOLP) for all time periods in a year. The method was
extended by Stremel et al. (1981) to account for load forecast uncertainty.
In the proposed method, equivalent loads were calculated for the three
time periods where peak loads and their corresponding probabilities were
specified. Maintenance scheduling was then carried out such that the
overall LOLP was minimized, based on the calculated equivalent loads.
The maintenance schedules obtained in this way were claimed to be much
more representative of actual planning operations (Stremel ef al., 1981). In
another study, Garver (1972) method was modified by Chen et al. (1990) to
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level incremental risks, which is equivalent to the minimization of annual
LOLP.

Hybrid approach

Well-being analysis that combined deterministic and probabilistic
approaches in a single framework was developed by Billinton et al. (1996).
As part of the framework, the reserve capacity of a system is analysed
using a probabilistic formulation and compared with an accepted
deterministic criterion, such as the loss of the largest unit, in order to
measure overall system comfort (Billinton et al.,, 1996). A probability of
health (PH) index used as part of the well-being analysis, which
represents the probability that the available reserve is equal to or greater
than the required capacity reserve, was later used as a fitness function for
the genetic algorithm optimisation formulation proposed by Abdulwhab
et al. (2004).

Despite the existence of many different formulations for reliability-based
criteria, it has been shown that the final optimisation outcome (optimized
schedule(s)) obtained based on a reliability criterion is usually acceptable

in terms of other reliability-based criteria (Ziirn et al., 1977).

2.1.1.2 Cost-based criteria

For planned maintenance scheduling, the major costs involved are energy
production cost and maintenance cost. The latter is only important if
outage durations are allowed to vary within a given limit (Yamayee et al.,
1983). A survey carried out by Mukerji et al. (1991) on 25 major power
plants in the US found that 16 had chosen production cost minimisation
as the only objective in determining an optimum maintenance schedule.
The author addressed two major modelling problems in such an
approach, the first being production cost as a complex non-linear function
of the maintenance schedule; the second that the cost function is
dependent on load shapes and forced outage rates, which generally
required extensive simulations for the cost calculations. To overcome the
first problem, Egan et al. (1976) suggested that reasonable production cost
could be achieved by maximizing system reliability under uncertainties
(loads and random forced outages) and minimizing the capital plant

needed to achieve a given reliability in the future. With regard to the
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second problem, load uncertainty and probability of forced outage can be
modelled using a fuzzy logic approach that incorporates economic and
technical knowledge of the problem domain (Dahal et al., 1999).

A study by Chattopadhyay et al. (1995) that investigated the performance
of different objectives for maintenance scheduling optimisation of two
interconnected power utilities in India found that using annual operating
cost was an ineffective objective when used alone. In the study, two of the
three reliability-based objectives tested produced maintenance schedules
associated with reasonable annual operating costs, but the reliability
criterion was found to be unsatisfactory when cost was used as the only
objective function (Chattopadhyay et al., 1995). In contrast, a study
conducted by Ahmad et al. (2000) revealed that optimisation based on a
cost criterion can produce schedules that result in significant savings with
an associated reliability level that is almost as good as that produced
when only the reliability criterion is used. The contradictory conclusions
of the two studies might be attributed to the differences in the search

space characteristics exhibited by the two case study systems.

Potential problems with local minima in the search space have been
reported by Arzamascev et al. (1970), who also used only production cost
as the objective function in their optimisation algorithm. In such
situations, difficulties in finding near globally optimal solutions could be
overcome by using evolutionary algorithm optimisation methods, which
work with a set of solutions, and not on a single solution, thus reducing

the chance of convergence to local optima (Ekwue, 1999).

In other studies, production cost was found to be an insensitive objective,
i.e. production costs were almost constant in the vicinity of the optimum
region of the search space (Ziirn, 1975; Hoover et al., 1976; Yamayee et al.,
1983). However, during the discussion on the study carried out by
Yamayee et al. (1983), Stremel (1983) pointed out that an appropriate
objective function of PPMSO should comprise of production cost and the

value of unserved energy.

In previous studies, maintenance scheduling of power plants has been
treated at its lowest level of complexity, without consideration of a
number of complicating factors. For example, the cost of hydropower

plant maintenance is influenced by loss-of-revenue due to spill at
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storages, which is caused by machines being taken off-line for
maintenance. Since spill is the major cause of energy loss, it also affects
the reliability of power supply systems. In order to cater for such issues, a
simulation model is often utilized to assist in planning activities such as
generation dispatch and unit commitment, given a proposed maintenance
schedule. Consequently, there is a need to develop an optimisation model

capable of incorporating such simulation models.

2.1.1.3 Other criteria

Other objectives addressed in the literature include the earliest possible
schedule and the minimum change from an existing schedule (Dopazo et
al., 1975). In an earliest possible schedule, maintenance tasks are
scheduled to commence as early as possible within individual timeframe
windows without violating system constraints. A criterion can also be
specified such that a new maintenance schedule that minimizes
disruption to an existing schedule is desired. Assuming the event of a
sudden breakdown of a major generating unit, the existing optimum
maintenance schedule must be reviewed. A new optimum schedule is
determined such that the least disruption is introduced to the original
schedule (minimum change from existing schedule) while the machine

broken down unexpectedly could be taken offline.

2.1.1.4 Multiple criteria

Although maintenance scheduling optimisation has been defined as a
multi-objective problem, only few researchers have successfully included
more than one criterion in their optimisation model. In the expert system
developed by Lin ef al. (1992), whether a reliability (maximization of the
minimum reserve margin) or cost (minimization of production cost)
criterion is used depends on an operation index, which is defined by the
amount of reserve generation capacity for maintenance activities. Mukerji
et al. (1991), Yamayee et al. (1983), El-Amin et al. (2000) and Moro et al.
(1999) considered more than one criterion in their studies by carrying out
separate optimisation runs using each of the cost and reliability criteria,
which resulted in two different sets of optimised schedules for each
criterion. However, the optimized maintenance schedules produced by
these studies only represent a subset of the Pareto-optimal solutions of the
case studies being solved. In contrast, a complete set of Pareto-optimal

solutions of a multi-objective PPMSO problem should consist of
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maintenance schedules that cannot be improved in any one objective
without degrading one other objective. A decision maker can then choose
from these schedules either based on other non-quantifiable criteria or

during negotiations with an asset manager, for example.

2.1.2 Constraints

A feasible maintenance schedule must not only achieve its objectives, but
must also be practical in terms of implementation. Therefore, constraints
must be specified in an optimisation model to ensure solutions are

feasible. The following are the most commonly used constraints:

(A)Demand Constraints

In providing power supply, energy demand has to be met. In addition to
the actual expected demand, a certain level of energy reserve is generally

provided to cover accidental loss of generating plants.

(B) Maintenance window constraints

Generating units in power plants should be inspected and maintained on
a regular basis. This is to ensure that they are performing at reasonable
efficiency, to reduce the likelihood of forced outages and to extend the
lifetime of the machines (Egan et al., 1976). Normally, the earliest and
latest possible start time for the maintenance activities of generating units
are specified. In addition, if more than one regular maintenance task for a
generating unit is required to be scheduled, it is important that the

duration between these tasks is longer than a prescribed time period.

(C) Resource constraints

Experienced personnel should be involved in maintenance to avoid
possible major damage (Lin et al., 1992). Therefore, the number of
machines that can be maintained at one time is usually limited by the
availability of manpower. Also, other resources, such as specialist tools,
might be required during a maintenance session and their availability
must be taken into account when a maintenance schedule is proposed.
Failure to take into account the availability of appropriate tools may cause

unnecessary delays in machinery maintenance, making the machinery
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unavailable and thus further delaying the overall plant maintenance
schedule (Egan et al., 1976).

(D) Precedence and sequence constraints

Some maintenance tasks can only commence when other tasks have been
completed. In some cases, minimum and maximum gaps between
consecutive outages of a particular unit need to be specified. For example,
investigative maintenance is carried out prior to the major overhaul of
some large generating units. Also, the major overhaul might not be able to
start earlier than 2 weeks (to organize for maintenance resources), or later
than 6 weeks, for example (for the validity of investigation results), after
completion of the investigative task. In such a scenario, it has to be
ensured that the optimised maintenance schedule(s) is/are feasible with
regard to these constraints. Other constraints might include the
specification of a minimum gap between outages of two units operating in
the same plant (Mukerji et al., 1991).

(E) Exclusion constraints

Constraints can also be used to ensure that two machines of high capacity

are not taken off-line for maintenance activities at the same time.

It should be noted that individual power plant utilities generally have
unique sets of restrictions that influence maintenance scheduling, which
are related to power system operation characteristics, seasonal variations,

geographical conditions and usual practice (Lin et al., 1992).

In view of the number of constraints that may need to be imposed in a
PPMSO problem, it is desirable that a method proposed for PPMSO can
effectively handle some, if not all, of these constraints. In addition, the
degree of rigidity with which certain constraints have to be satisfied
should be able to be specified in the formulation of the optimisation
problem. For instance, demand constraints generally have to be satisfied
at all times to ensure an adequate supply of electricity. On the other hand,
additional personnel can sometimes be brought in if the resulting increase
in reliability achieved outweighs the cost imposed. Hence, flexibility in

manpower constraints might be desirable so that the search for schedules
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with better objective values that result in the violation of certain

constraints is allowed.

It should be noted that much of the debate on the number and type of
objectives for PPMSO took place before 2000, when power systems were
mostly independent utilities that sell electricity to their customers at
tariffs regulated by governments. Since the spread of electricity market
deregulation around the globe, the context in which PPMSO research is
carried out, in particular the objectives and constraints used for

optimisation, has changed dramatically.

2.1.3 Deregulation of electricity market

A deregulated electricity system is a system for effecting the purchase and
sale of electricity using supply and demand to set the price. Competing
generators trade their electricity to retailers in a wholesale electricity
market. Among the countries that have developed wholesale electricity
markets and the corresponding management bodies are (Wikipedia,
2006a):

* Australia - National Electricity Market Management Company
(NEMMCO)

* Canada - Independent Electricity System Operator (IESO) Ontario
Market and Alberta Electric System Operator (AESO)

e New Zealand - M-co

* Denmark, Finland, Sweden and Norway - Nordic Power

Exchange

Following the increasing popularity of electricity market deregulation
around the globe, the fundamental objective of a power utility (competing
generator) when scheduling for maintenance has become the
maximization of benefits derived from the electricity wholesale market.
This is far more complicated than the reliability- and cost-based criteria
discussed in Section 2.1.1. For instance, a power utility may no longer
treat system demands as a hard constraint, especially when market

clearing price is forecasted to be low, as cheap electricity can be purchased
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2.2

from the wholesale market. As a result, large generating units may be
taken offline for maintenance during such periods so that they are

available for generation when the market prices are forecasted to be high.

Changes in maintenance scheduling practices as a result of electricity
market deregulation also has a significant impact on the applicability of
maintenance schedulers’ accumulated  experience/engineering
judgement. Power utilities relying heavily on schedulers’” experience for
maintenance scheduling could face a difficult situation due to the change
of context in which scheduling is carried out. Therefore, a desirable
method for PPMSO must be able to adapt to changes of optimisation

objectives and system constraints with relative ease.

Optimisation methods previously adopted for PPMSO

221 Design requirements for a maintenance scheduling tool

When developing an optimisation method for PPMSO problems, the

follow characteristics of a method are desired:

Criterion 1: Simple to implement

The proposed method is preferably a generalised algorithmic framework

that can be readily applied to PPMSO with only little modifications.
Criterion 2: Easily incorporate a simmulation model

As mentioned previously, simulation models are used extensively due to
the complexity of operations involved in a power system. Therefore, the
proposed optimisation method must be able to incorporate a simulation
model as part of its algorithm.

Criterion 3: A priori information on case study systems is not required
The proposed method should not require a large number of inputs from
users of the case study system to be solved. Furthermore, objectives and

constraints must be able to be addressed easily.

Criterion 4: Effective handling of constraints
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In view of the large number and complexity of constraints involved in a
real-world PPMSO problem, the proposed method must be able to handle
practical constraints effectively. In this way, a problem search space can

be reduced and computational run-time can be cut down significantly.

Criterion 5: Manage to adapt to changes in case problem easily

Although maintenance scheduling is a long-term planning activity,
unexpected changes in a power system, such as the purchase of new
generating units or the permanent loss of a power station due to a new
environmental policy, for example, are not uncommon. An ideal
maintenance-scheduling tool must be able to be modified with relative

ease in response to the changes.

Criterion 6: Able to find more than one desired schedule

In a PPMSO problem where the global optimum is often unknown,
maintenance schedule(s) associated with the lowest objective function cost
found in an optimisation run is/are desired. It should be noted that there
may be different schedules associated with the lowest objective function
cost, or the objective functions for a number of schedules might be similar.
It is desirable to identify a number of these alternatives schedules as part
of this optimisation, as this leaves room for negotiation with assets
managers, for example, in order to identify the optimal maintenance

schedule from a practical point of view.

Criterion 7: Able to find good solutions in reasonable computational time

An optimisation method should ideally find the globally optimum
solution for a given problem. However, the size of a real-world case study
system maybe too large so that determination of the true optimum
maintenance schedule of a case study system is almost impractical.
Therefore, a desirable optimisation method for PPMSO is one that is able
to identify good or near-optimal maintenance schedule(s) for a case

system with reasonable computational effort.

Over the past two decades, many studies have been conducted on
developing methods for the maintenance scheduling optimisation of

power plants. These methods, when differentiated based on searching
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mechanism, can be categorised into heuristic approaches, mathematical

programming, expert systems and metaheuristics (Figure 2.2).

Optimisation methods

Heuristic Mathematical Expert Metaheuristics
approaches programming systems (Section 2.2.5)
(Section 2.2.2) (Section 2.2.3) (Section 2.2.4)
| I | I
- Dynamic Local search- Global searc-
programming (DP) based based
- Integer | |
pr_ogramming (IP) .
- Mixed integer - Simple local - Genetic
programming (MIP) search algorithms

- Simulated (GASs)

annealing (SA)
- Tabu search
(TS)

Figure 2.2: Optimisation methods adopted previously for PPMSO

2.2.2 Heuristic approaches

Heuristic approaches were developed to solve PPMSO mostly during the
early stages of maintenance scheduling research. In general, heuristic
approaches involve allocating maintenance unit outages sequentially by
utilizing a set of rules, such as the biggest capacity generating units first,
the generating units that require most maintenance resources first etc. A
heuristic approach employing a branch-and-bound technique was
proposed by Christiaanse et al. (1972) to maximize the system’s lowest net
reserve over the planning horizon. In the proposed method, a
maintenance schedule is constructed sequentially by scheduling for the
personpower category that is required by the largest number of
maintenance tasks. In addition, the period during whom a maintenance
task is scheduled to begin depends on the current level of minimum
reserve capacity. If any of the system constraints were violated by the
allocation of a maintenance task to a timeslot within the planning horizon,
the procedure would be reversed and other arrangements would be made

such that a feasible maintenance schedule is obtained. A similar heuristic
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has also been used by Garver (1972), which is aimed at equalizing the
system’s loss-of-load-probability (LOLP) throughout the planning

horizon.

Despite being able to incorporate constraints during optimisation,
heuristic approaches perform an exhaustive search and usually suffer
from the possibility of not being able to find a feasible schedule, even
when one exists. Therefore, the likelihood of the optimal solution(s) being
found by using a heuristic method is relatively small. In addition, a
heuristic method is developed based on the characteristics, in particular
the objectives and constraints, of a specific case study system. Hence, it
has limited applicability to other PPMSO case study systems.
Furthermore, a slight change in the original objective functions or
constraints might affect the utility of a heuristic method. Another
shortcoming of purely heuristic approaches is the need for the objective
function value associated with a partially built schedule to be calculated
every time a maintenance task is added, which cannot be done for
complex power systems. For example, in a hydropower system, storages
are interconnected and the dispatch of generating units (i.e. the decision
about which generating units should be used for meeting a demand) must
utilize a simulation model. For this purpose, the maintenance schedule

used must be complete.

2.2.3 Mathematical programming

Since the 1960s, mathematical programming methods have been
investigated for their application to generator maintenance scheduling
optimisation. The most commonly used methods in this category are
dynamic programming (DP), integer programming (IP), mixed integer

programming (MIP) and linear programming (LP) (Figure 2.2).

2.2.3.1 Dynamic programming (DP

Dynamic programming (DP) was considered to be suitable for solving
PPMSO problems due to the following reasons (Yamayee et al., 1983): (1)
It is suitable for solving optimisation problems where a sequence of
decisions is involved; (2) The objective function used in DP does not need
to be a continuous function of decision and state variables; and (3) Neither

the objective function or constraint functions are required to be
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represented in analytic forms, provided these function values can be
obtained by other means (eg. through a simulation model) when required.
However, application of pure dynamic programming to complex
combinatorial problems has been limited due to the “curse of
dimensionality’, which states that a problem that is complex enough to be
interesting is too large to be solved within practical computational time
and storage. In addition, the constraint representation in the DP
formulation is not stringent enough to limit the number of feasible
solution (Christiaanse et al., 1972). However, this problem was later
resolved by Ztrn (1975) and Zirn et al. (1977) using dynamic
programming successive approximations (DPSA). The DPSA method was
also used by Yamayee et al. (1983) to solve a PPMSO case study that

considered a reliability and a cost criterion in separate optimisation runs.

2.2.3.2 Integer programming (IP

Integer programming (IP), coupled with the branch-and-bound technique,
has been applied to maintenance optimisation problems previously
(Dopazo et al., 1975; Egan et al., 1976, Mukerji et al., 1991). However, IP
was considered to be unable to model stochastic uncertainties efficiently
(Ahmad et al., 2000). Also, the computational time required for IP for
solving optimisation problems tends to grow prohibitively with problem
size (Satoh et al., 1991).

2.2.3.3 Mixed integer programming (MIP)

A mixed integer programming model has been proposed by
Chattopadhyay et al. (1995) to obtain least-cost maintenance schedules (in
monthly time blocks) for two large interconnected Indian power utilities.
The mixed integer programming model developed by Chattopadhyay et
al. (1995) was later deemed incapable of handling the large number of
decision variables introduced when the exact start dates, rather than the
month/week of the maintenance tasks, are considered (Chattopadhyay,
1998). Also, the computational time taken to run such a model, when
using the computing power at that time, would be impractically long
when uncertainties are to be taken into account by repetitive Monte Carlo
simulations (Chattopadhyay, 1998). In order to overcome the
shortcomings associated with using the mixed integer programming
model, a similar model employing linear programming (LP) was

proposed by Chattopadhyay et al. (1998). However, this approach results
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in the selection of real-numbered values for the decision variables, which
might produce invalid maintenance schedules. In order to rectify this

problem, a heuristic algorithm was implemented.

Moro et al. (1999) developed a two-stage mixed integer programming
formulation to solve the maintenance scheduling problem of a Spanish
electric power system. In their formulation, optimisation based on cost
criteria was carried out and the best-cost schedule obtained was used as
an input for the second-stage optimisation, where reliability is maximized
without exceeding a prescribed level of the cost associated with the best-
cost schedule (Moro et al., 1999). However, the impact of optimizing the
two criteria in a different order has not been discussed. In addition, the
search space of the stage-2 optimisation could be restricted by the results
from stage 1, which may result in finding only the local optima of the
problem search space. Therefore, depending on the characteristics of the
fitness landscape of the case study system being investigated, the “true’

optimum solution might not be identified by the formulation.

Mixed integer programming models accounting for transmission
constraints have been developed by Ahmad et al. (2000) and Moro et al.
(1999), and applied to an existing Indian power utility. As neither of the
case studies investigated by Chattopadhyay et al. (1995), Moro et al. (1999)
and Ahmad et al. (2000) have previously been solved by other
optimisation methods, the relative performance of mixed integer

programming in solving PPMSO problems remains unknown.

In general, the performance of mathematical programming methods for
solving power plant maintenance scheduling optimisation is
unsatisfactory due to the need to specify mathematical equations to
represent the power system as part of the problem formulation. These
equations are difficult, if not impossible, to derive for real life
applications. Very often, simplified equations that do not fully reflect the
power system at hand were used. Secondly, difficulties arise when
changes made to the power plant system have to be reflected in the
problem formulation, as this requires modification of the equations
mentioned above. Thirdly, the relative importance of constraints cannot
be specified. For example, slight violation of constraints would not be

permitted, even though the resulting objective values might be much
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better. Furthermore, the computational time needed to implement this

approach increases prohibitively with problem size.

2.2.4 Expert systems

An expert system formulation was developed by Lin et al. (1992) to
schedule maintenance tasks for the Taiwan Power Company. As part of
the expert system, whether branch-and-bound or dynamic programming
is used during the optimisation process depends on the objective criterion
used, which in turn is governed by the satisfaction of system demands
throughout the planning horizon. The drawback of the proposed
formulation is that the heuristics and rules embedded in the expert system
need to be updated when there is a slight change in system inputs (eg.
constraints, objectives or decision maker’s preference). For the same
reason, it is difficult to apply the same expert system to other PPMSO case

studies.

2.2.5 Metaheuristics

Due to the shortcomings of heuristic and mathematical programming
approaches, the possibility of applying metaheuristics to solving PPMSO
problems has intrigued researchers over the last 10 years. Metaheuristics,

as defined in the literature:

* Are high-level algorithmic frameworks which utilize algorithms
ranging from simple local search to complex learning processes
(Blum et al., 2003).

* Are approximate and usually non-deterministic, and therefore
may avoid being trapped in local minima in a search space (Blum
et al., 2003).

* Are not problem-specific, and can be applied to different
combinatorial optimisation problems with relatively little

modification (Dorigo et al., 2004a).

Metaheuristics can be categorised in different ways depending on the
characteristics considered for differentiating them. For instance, “nature-

inspired” vs. ‘non-nature inspired’ categorisation traces the origin of
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metaheuristics, whereas the ‘memory usage vs. memory-less methods’
categorisation differentiates metaheuristics that use long term and short
term memories (Blum et al., 2003). In their review of metaheuristics, Blum
et al. (2003) categorised metaheuristics based on the number of solutions
used at the same time. Based on this characteristic, algorithms operating
on a single solution are called trajectory methods, whereas population-
based methods perform the search process via the evolution of a set of
trial solutions (Blum et al., 2003).

In this thesis, rather than presenting a thorough discussion on all
metaheuristics, the focus is on metaheuristics that have been used
previously for PPMSO problems, including Simulated Annealing (Satoh et
al., 1991), Tabu Search (El-Amin et al., 2000) and genetic algorithms
(Aldridge et al., 1999). These methods are categorised based on whether a
local search procedure or a global search procedure is adopted in the

metaheuristics (Figure 2.2).

2.2.5.1 Local search-based metaheuristics

A local search-based metaheuristic is essentially a higher-level algorithmic
framework that consists of a simple local search algorithm and additional
features designed to enhance the performance of the algorithm. A simple
local search method is firstly described, followed by the discussion of two

local search-based metaheuristics.

Simple local search

Given a combinatorial optimisation problem with a search space S, the

following formal definitions are given by (Blum et al., 2003):

* A neighborhood structure is a function N:5—25 that assigns to
every sOS a set of neighbours N(s) OS. N(s) is called the
neighborhood of s.

* A locally minimal solution (or local minimum) with respect to a
neighborhood structure N is a solution § such that
OsON(s):f(S)<f(s). We call § a strict locally minimal solution if

fi$)<f(s) O's ON(S)-
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Starting from a single solution, s, generated either at random or by using
some heuristics, local search scans the neighborhood, N(s), of the current
solution for better neighbour solutions. Either a first-improvement or a
best-improvement technique is usually used to determine the move to be
performed (Blum et al., 2003). Using the first-improvement technique, the
first improving neighbour found in N(s) is used to replace the current
solution. On the other hand, exhaustive search is performed to find the
best-improving neighbour among k neighbours being assessed. It should
be noted that a move is only performed when a neighbour solution is
found such that a better objective function cost is achieved. The local

search is stopped when a local minimum is reached.

Defining a neighborhood structure is essential before utilizing local search
in solving a combinatorial optimisation problem. Some examples of

neighborhood structures previously used for PPMSO problems are:

* In the studies conducted by Satoh et al. (1991) and El-Amin et al.
(2000), a neighbour trial maintenance schedule is generated by
randomly modifying the maintenance commencement time of a
randomly selected generating unit from the current trial

maintenance schedule.

* In the local search procedure used by Kim et al. (1997), a neighbour
trial maintenance schedule is generated by adding 1 to or
subtracting 1 from the maintenance start day of a randomly
chosen generating unit contained in the current trial maintenance

schedule.

The performance of a simple local search algorithm alone in solving
combinatorial optimisation problems is unsatisfactory (Blum et al., 2003),
the main shortcoming being the inability to escape local minima, once
trapped. In order to overcome this problem, various features have been
proposed to be added to simple local search algorithms, which result in
different local search-based metaheuristics. Examples of such
metaheuristics include Simulated Annealing (SA), Tabu Search (TS), the
Greedy Randomized Adaptive Search Procedure (GRASP), Variable
Neighborhood Search (VNS), Guided Local Search (GLS) and Iterated
Local Search (ILS). As Simulated Annealing (SA) and Tabu Search (TS)
have been proposed for PPMSO previously (Satoh et al., 1991; Kim et al.,
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1995; Kim et al., 1997; Burke et al., 2000; Dahal et al., 2000; El-Amin et al.,
2000), a more detailed discussion of these methods is included in this

thesis.

Simulated Annealing (SA)

Annealing is a process in metallurgy that involves heating and controlled
cooling of a material to increase the size of its crystals and reduce their
defects. Starting with a high temperature, the particles of a material
escape from their initial positions and randomly wander while the
temperature is progressively lowered until a highly structured lattice
associated with a minimal internal energy is formed. By analogy with this
process, Simulated Annealing (SA) is a metaheuristic that uses an
enhanced local search procedure and was first applied to combinatorial
optimisation problems by Kirkpatrick et al. (1983). In order to utilize SA
for a combinatorial optimisation problem, the following equivalences are
assumed between the annealing process and an optimisation problem
(Satoh et al., 1991):

1. The solutions in a combinatorial optimisation problem are equivalent

to the states of a physical system, and

2. The cost of a solution is equivalent to the energy of a state.

As shown in Figure 2.3 SA starts with an initial temperature T and an
initial trial solution is generated as with a simple local search algorithm.
Then, at each iteration, the defined neighborhood N(s), of a trial solution,
s, is scanned for first-improving or best-improving neighbours
(depending on the user’s preference), s. In a case where no improving
neighbour is identified, § can be represented by the best-objective function
cost neighbour. When deciding whether a move is performed i.e. the
current solution s is replaced by the newly found s, the following rules are

employed:

1. If § is better than the current solution, s, the probability of replacing s

with §is 1.
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2. If § is worse than the current solution, s, the probability of replacing s

with §is €T, where A = f($) - f(s), and T is the current temperature of the

annealing process.

The rules presented are a unique feature that distinguishes SA from a
simple local search, where non-improving moves are performed
probabilistically for the sake of finding an even better solution later
during the search. With a high initial temperature, the probability of
accepting a non-improving move is higher and therefore, the optimisation
search at this stage resembles a simple randomised local search. As the
temperature is progressively reduced in accordance with a cooling
schedule, g(T), non-improving trial solutions are more likely to be rejected
and eventually only improving solutions are accepted if a minimum
temperature is set to a sufficiently low value. A SA algorithm stops when

the temperature reaches a predefined minimum value, Tyin.

A cooling schedule, which contains the initial temperature, the cooling
rate, the minimum temperature and the size of the neighborhood at each
temperature, must be defined beforehand. As pointed out by Van
Laarhoven et al. (1987), a cooling schedule must be carefully defined for
successful applications of SA to combinatorial optimisation problems.
Numerical tests conducted by Satoh et al. (1991) concluded that a lower
cooling rate should be chosen for problems of larger search space to allow

for sufficient exploration.

For the sake of brevity, the SA algorithm has only been introduced in its
simplest form in this thesis. Readers are referred to Downsland et al.
(1993) for a more theoretical and mathematical description of SA. Areas to
which SA has recently been applied include scheduling (Suresh et al.,
2006), chemical process studies (Agostini et al., 2006) and transportation
(Zhao et al., 2005), to name a few. Examples of applications to power
systems and related optimisation problems are the economic emission
load dispatch of fixed head hydrothermal power systems (Basu, 2005),
power-system load forecasting (Liao et al., 2006) and dynamic economic
dispatch (Panigrahi et al., 2006).
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Figure 2.3: Typical Simulated Annealing (SA) algorithm
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Tabu Search (TS)

Proposed by Glover (1989), Tabu Search (TS) is a metaheuristic used to
manage a local search procedure with the utilization of adaptive memory.

A flowchart of a simple Tabu Search is shown in Figure 2.4

Tabu Search begins by initialisation of a Tabu List. A local search is then
used to scan the neighborhood, N(s), and an initial trial solution, s is
chosen randomly. Among the k neighbours of s, the best neighbour, S, is
selected to replace the current solution, s. Upon execution of a move,
selected attributes of the move are stored in a Tabu List, and are declared
‘tabu-active’ for a predefined number of iterations. An example of a move
attribute is the exchange of the cities at positions 4 and 5 in the case of a
Travelling Salesman Problem (TSP). For the remainder of the TS run, a
move to the best neighbour found at an iteration is banned if one or more
of the attributes involved in the move are flagged as ‘tabu-active’ in the
Tabu List. However, an aspiration criterion can be specified such that a
prohibited move can still be admissible if this criterion is satisfied. The
iterative process of the memory-enhanced local search is repeated until a
termination criterion is met. The best solution found during a TS run is

regarded as the optimized solution.

It can be envisaged that by prohibiting repetition of previously performed
moves, the likelihood of reversal of moves and cycling of solutions is
reduced. More importantly, the utilization of adaptive memory in TS
helps a local search procedure to escape local optima by allowing non-

improving moves.
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Figure 2.4: Typical Tabu Search (TS) algorithm
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Apart from the definition of a neighborhood structure, as required for any
simple local search algorithm, the following parameters need to be

defined in the application of TS to a combinatorial optimisation problem:

(1) The memory structure:

Short-term memory is the unique feature of TS that is mainly used to
avoid reversal of local search moves and cycling of neighbour solutions.
The memory used in TS is both explicit and attributive (Glover et al.,
1997). Explicit memory records complete trial solutions previously visited.
For example, the 10 best found trial solutions are stored. On the other
hand, attributive memory is used to record information on changes made
by moving from one solution to another. These memories are stored in a
Tabu List, which is updated after every move. As pointed out by Glover et
al. (1997), the effect of memory utilization in TS may be viewed as
modifying the neighborhood N(s) of the current solution s. The modified
neighborhood, denoted by N*(s), is essentially a selective record of the
history of a search. As part of the memory structure of TS, the length of
tabu lists (tabu tenure) must be specified. Tabu tenure can be fixed or
dynamic throughout a TS run. The choice of an appropriate memory
structure is deemed crucial for the success of TS when applied to any

combinatorial optimisation problem (Glover et al., 1997).

(2) The aspiration criterion:

The aspiration criterion is formulated to override the ‘tabu-active’ status
of a move in a case where the move is thought to be beneficial to the
search. A common aspiration criterion used is that any move that results
in a solution that is better than any solution generated so far is
permissible (Kim et al., 1997).

(3) The termination criterion:

As with other optimisation methods, a termination criterion needs to be
specified. Examples include the maximum number of iterations, the
maximum CPU time and the maximum number of iterations during

which solution quality does not improve significantly.
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TS has been used extensively for a wide range of benchmark optimisation
problems. More recent applications include manufacturing (Lei et al.,
2006), production planning (Baykasoglu et al., 2006), electromagnetic
design problems (Hajji et al., 2005), real-world scheduling (Xu et al., 2006)
and chemistry studies (Blazewicz et al., 2005). In power system and
related research areas, TS, or the hybridized version of TS, have been
applied to the optimal planning of power distribution systems (Ramirez-
Rosado et al., 2006), the unit commitment problem (Victoire et al., 2005)
and a long-term hydro-scheduling problem (Mantawy et al., 2003). More
importantly, TS has previously been applied to PPMSO as a stand-alone
algorithm (El-Amin et al., 2000) and as part of a hybridized algorithm
(Kim et al., 1997; Burke et al., 2000).

2.2.5.2 Global search-based metaheuristics

Genetic algorithms

Genetic algorithms (GAs) are optimisation methods inspired by
evolutionary adaptation in nature. They were introduced by Holland
(1975) in the early 1970s and implemented for optimisation problems by
Goldberg (1989) in the late 1980s. In terms of searching behaviour, simple
GAs fall into the category of global optimisation methods, as trial
solutions of a GA run are generated based on global information accrued
throughout the search process. The optimisation mechanism of GAs can
be briefly described as follows (Figure 2.5): GAs operate on a population
of chromosomes, each representing a trial solution to the problem being
solved. The fitness of a chromosome, which is normally defined to
correspond to the criterion of the optimisation problem being solved, is
evaluated. In each iteration (or generation), relatively fit chromosomes are
selected to undergo a series of genetic operations to produce a population
of offspring. In this way, better chromosomes (trial solutions) are evolved
throughout the optimisation process, and the fittest chromosome(s) found

during a GA run is/are regarded as the optimized solution.
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Figure 2.5: Typical simple genetic algorithm

Implementation of GAs for PPMSO problems requires the following

issues to be resolved:

(1) Solution representation:

When adopting GAs for combinatorial optimisation problems, trial
solutions to the problem are represented by strings of chromosomes, in
which the solution parameters are encoded and stored (Aldridge et al.,
1999). The encoding scheme used to represent the solutions of a problem
defines the fitness landscape of the problem search space (Dahal et al.,
2000). Binary encoding (strings of Os and 1s) was adopted when GAs were
originally developed, but this might not be suitable for all types of
optimisation problems. Generally, an appropriate solution representation
must be developed for an optimisation problem such that (a) the encoding

and decoding of chromosome strings does not significantly increase the
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optimisation computational overhead, and (b) the new offspring
generated by the genetic operators (eg. crossover and mutation) are

feasible/near feasible.

The selection of an appropriate solution representation has been
investigated in order to increase the performance of GAs in solving
PPMSO problems. Binary coding was used by Kim et al. (1994), Kim et al.
(1997), Burke et al. (1998) and Dahal et al. (1998). However, an integer
representation was later found to be more appropriate for PPMSO (Dahal
et al., 1997), as it respects maintenance window constraints and greatly
reduces the size of the problem search space, when compared with binary
coding. When an integer representation is used, a trial maintenance
schedule is represented as a string of integers representing the
maintenance start time of all generating units considered. A code-specific
and constraint-transparent integral coding method that explicitly specifies
the order in which maintenance tasks are carried out was proposed by
Wang et al. (2000). However, despite an improvement in computational
efficiency, a large number of the ‘offspring’ solutions produced were still
found to be infeasible with the new coding scheme (Wang et al., 2000).
Burke et al. (2000) considered using bit-string encoding, where the start
period of each maintenance task is grey-coded, but due to a heavy
computational requirement for encoding and decoding, an integer

representation was adopted instead.

(2) Fitness function:

In GAs, whether or not a chromosome is selected for reproduction
depends on its fitness function. Therefore, a fitness function that evaluates
the quality of individual trial maintenance schedules must be specified
beforehand. As PPMSO is a constrained problem, the overall fitness
function comprises the objective and constraint violation terms. The merit
of a trial solution (a trial maintenance schedule in PPMSO) is therefore
evaluated based on the value of the calculated objective function value,
which affects the probability that this trial solution is chosen to participate

in subsequent genetic operations.
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(3) Genetic operators:

In an attempt to explore the decision space of an optimisation problem,
GAs operate on a population of trial solutions by iteratively modifying
the components of chromosomes contained in the population. In
particular, a number of chromosomes are selected to produce offspring
chromosomes, which undergo a series of genetic operations, generally

known as recombination.

Selection

In order for a population of chromosomes to evolve towards better
solutions, “parent trial solutions’ are stochastically chosen, based on
relative fitness, from the current iteration for the reproduction of
‘offspring trial solutions’. Although trial solutions of higher fitness should
be chosen by higher probability, selection pressure should not be too high

to avoid premature convergence.

Crossover & mutation

‘Parent trial solutions’ selected are recombined to produce a new
generation of ‘offspring’ trial solutions. Recombination methods
commonly used include crossover and mutation. Crossover is performed
by exchanging chromosome elements (genes) between selected parents,
governed by a crossover probability. The objective of performing
crossover is to obtain a better chromosome by exploiting partial
information contained in two relatively good chromosomes. On the other
hand, mutation is essentially a random change made, governed by a
mutation probability, to part of a parent chromosome, and is therefore a
means for further exploration of the problem search space to maintain

solution diversity.

(4) Population updating method

Recombined chromosomes and parent chromosomes of the current
generation are combined to form the next generation using the operations
described above. Normally, the best chromosome(s) identified in the

current generation is/are retained. More importantly, sufficient diversity
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should be maintained in any new generations to increase the likelihood of

finding the global optimum.

(5) Termination criterion

A GA run is stopped when a prescribed maximum number of generations
has been reached. Alternatively, termination criteria such as stagnation of

the best-found objective function value (cost), can be adopted.

It can be seen that in order to implement GAs, a number of parameters are
required to be defined beforehand, including the size of the population, a
crossover probability, a mutation probability, a selection method, a

population updating method and a termination criterion.

In contrast to SA, GAs generate a population of trial solutions every
generation and perform their search from multiple starting points in the
problem search space. As a result, the probability of being trapped in local
optima is lower and multiple optimal/near-optimal solutions can be
found. However, a shortcoming of GAs is that the search is rather coarse-
grained and very often, only promising regions, but not the optimum of a
search space, are identified. A detailed discussion regarding the
implementation of GAs to combinatorial optimisation problems is
presented in Reeves (1993). GAs have been applied extensively, either as a
stand-alone algorithm or as part of a hybridized algorithm, to many
research areas. Some research areas to which GAs have been applied
recently include water distribution system design (Goldberg et al., 1987;
Simpson et al., 1994; Halhal et al., 1997), transportation (Caputo et al., 2006;
Gen et al., 2006), steel-related research (Hodge et al., 2006), remote sensing
(Jubai et al., 2006), manufacturing (Li et al., 2006), magnetics (Lovat et al.,
2006), chemical process studies (Chang et al., 2006; Sarkar et al., 2006), web

communications (Tug et al., 2006), and power systems.

In power systems, various genetic algorithms have recently been
proposed for power distribution planning (Pregej et al., 2006), evaluation
of power flow (Ting et al., 2006; Todorovski et al., 2006; Yan et al., 2006),
short-term load forecasting (Liao et al., 2006), service restoration studies
(Kumar et al., 2006) and optimal meter placement problems (El-Zonkoly,
2006).
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2.2.5.3 Previous applications of metaheuristics to PPMSO

problems
In the study conducted by Satoh et al. (1991), a small, medium and large

case study system was solved separately using a Simulated Annealing
(SA) formulation and Integer Programming (IP). When IP is used, the
results obtained are guaranteed to be globally optimal. However, IP is
generally only applicable to relatively small problems for computational
reasons. The study of Satoh et al. (1991) indicated that, for the small
system investigated, the global optimum was found by using both SA and
IP. For the medium-sized system, the solution obtained by SA was better
than that given by IP, which was not optimal, as termination was
executed due to long run-times. Finally, by using SA, a solution to the
large-sized system was found, which could not be solved by IP from a

computational point of view (Satoh et al., 1991).

Aldridge et al. (1999) applied a genetic algorithm to a case study that
involves maintaining 21 generating units over a planning horizon of 52
weeks. Results showed that the GA formulation was able to outperform
simple heuristic methods tested in the study. The same case study system
was later investigated by Dahal et al. (1999) by examining the performance
of a GA-fuzzy logic hybrid algorithm for PPMSO. The fuzzy logic
approach, which is able to include knowledge-based experience in the
problem formulation, resulted in a better objective value (in terms of cost
and reliability), although there were slight violations of manpower
constraints. A SA formulation was compared to the GA’s in relation to
solving the 21-unit case study by Dahal et al. (2000). It was found that
while the performance of SA is mainly affected by the cooling schedule,
the GA requires many more parameters to be defined empirically.
Overall, both the GA and SA outperformed the two simple heuristic
methods tested in the study. Apart from being used as a stand-alone
algorithm for PPMSO problems, the GA algorithm was also modified by
the fuzzy system formulation proposed by Huang (1998) in order to
optimise the parameters required for the construction of membership

functions of objectives and constraints.

A Tabu Search (TS) formulation was applied to both a 4-unit and a 22-unit
case study systems by El-Amin et al. (2000). The objective function costs
associated with the best-found maintenance schedules for these case

studies were not reported, but were calculated based on the information
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provided as part of this thesis. Interestingly, the results given by the TS
formulation (LVL = 256.93MW) are worse than those obtained by
Escudero et al. (1980) using implicit enumeration (LVL = 118.81MW) for
the 22-unit case study.

SA, GA and TS are based on different search philosophies and are
therefore differentiated by unique optimisation mechanisms. While the
acceptance of non-improving solutions in SA and the tabu lists in TS are
used to avoid becoming trapped in local optima, GAs perform a coarse-
grained search for promising regions of a problem search space. In view
of these characteristics, hybridization of these metaheuristics has been
proposed and claimed to successfully overcome drawbacks and utilize the

positive features of individual methods (Song, 1999).

A study comparing the impacts of incorporating a SA, a TS and a hill-
climbing algorithm into a GA was carried out by Burke et al. (2000). It was
concluded that a GA employing a TS operator is the most effective
method. In the hybridised algorithm, the GA was responsible for
identifying a trial solution that is not too far from the optimum and TS
was used to locate the optimum by searching the neighbourhoods of the
solution given by the GA. The concept of using a local search algorithm to
refine the solutions given by a global optimisation method is similar to
what was termed ‘memetic algorithm” by Moscato (1989) later in 1989.

Kim et al. (1995) used the acceptance probability of SA to improve the
convergence speed of GAs, resulting in a GA+SA algorithm. However, it
was found that the genetic operators in GAs have difficulties in finding
the optimum solutions. In order to improve the optimisation ability of the
hybrid algorithm, Kim et al. (1997) hybridized TS with the GA+SA
algorithm to include the features of global and local search in one
algorithm. The hybridized algorithm was tested on a 23-unit test system
and found to improve upon the results obtained by a simple GA, a simple
SA, as well as the GA+SA algorithm. However, the performance of the
GA+SA+TS algorithm could not be verified by applying mathematical
programming, as the size of the case study would be too large for the
latter method, again highlighting the shortcomings of using mathematical

programming for PPMSO.

Page 35



Chapter 2 Literature Review

2.2.6 Comparison of optimisation methods for PPMSO

Table 2.1 assesses the four optimisation methods for PPMSO presented in this section

against the seven performance criteria outlined in Section 2.2.1.

Table 2.1: Summary of optimisation methods for PPMSO

L. Mathematical Expert .
Heuristic . Metaheuristic
programming system

Simple to implement? NO NO NO YES
Easily incorporate a

. , NO NO NO YES
simulation model?
A priori information

. YES YES YES NO

required?
Effective handling o

i , 8 of YES YES YES YES
constraints?
Easily adapt to changes
. NO NO NO YES
in a problem?
Obtain more than one NO NO NO YES
desired schedule?
Find good solutions in
reasonable NO NO NO YES
computational time?

Among the four categories of optimisation method categories presented,
metaheuristics satisfy all the criteria outlined for an ideal maintenance-
scheduling tool (Table 2.1). In particular, they present the following
advantages and therefore appear to be the most promising approach for
PPMSO:

* Metaheuristics are not problem-specific. They can be applied to a

wide range of optimisation problems with only little modification.

* Metaheuristics are approximate algorithms that sacrifice the
guarantee of finding the exact solution(s) in exchange for the
ability to find near-optimal solutions within a reasonable
computational time. This is especially important when solving
real-world PPMSO problems, which are mostly large in size and

contain a high degree of complexity.
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Metaheuristics can be linked easily with a simulation model.
Therefore there is no need for representing a power system by

simplified mathematical equations in the optimisation algorithm.

Global search-based metaheuristics perform extensive, coarse-
grained search and are therefore able to find multiple promising

regions of a search space simultaneously.

Local search-based metaheuristics can identify optimum points of
a problem search space by performing small moves within

different solution neighbourhoods.

Different metaheuristic methods can be easily hybridised to take

advantage of the positive features of individual methods.

Global search-based metaheuristics, such as GAs, work on a
population of trial solutions and may therefore obtain more than
one schedule associated with the best-found objective function
cost for a problem. A decision maker can then choose between
these schedules based on some non-quantitative objectives (e.g.
political), or as part of negotiations with asset managers, for

example.

Despite their strengths for solving PPMSO problems, the metaheuristics

that have previously been used for PPMSO have the following

shortcomings:

(1) Depending on the nature of individual metaheuristics, some

constraints cannot be taken into account explicitly, necessitating the
use of other constraint-handling methods such as penalty functions.
Penalty functions often require more parameters to be specified in
addition to those contained in the metaheuristics. In addition, the
inability to avoid the construction of some infeasible trial solutions

results in computational inefficiencies.

Many realistic PPMSO problems have very large search spaces,
which results in high computational loads and makes it difficult to
find globally optimal solutions. However, in most instances, heuristic

information exists that would enable the search to be directed
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towards promising regions of the search space, thereby increasing
computational efficiency and the chances of finding near-globally
optimal solutions. Although heuristic information has been used to
generate initial populations of trial solutions (Dahal et al., 2000),
intrinsically, commonly used metaheuristics such as SA, TS and GAs,

are unable to incorporate heuristic information into their search.

(3) The best parameter sets used in an algorithm have to be determined
for individual optimisation problems. Most metaheuristics require
repetitive tuning of parameter settings before being used and hence

can be computationally inefficient.

Ant colony optimisation (ACO) is a relatively new global search-based
metaheuristic that has been gaining increasing popularity for
combinatorial optimisation problems since 1990s. Despite being driven by
similar “evolutionary forces” as the GAs, ACO is deemed more suitable
for PPMSO due to its ability to overcome some of the drawbacks of other

metaheuristics discussed above, including:

(1) The decision tree-based solution construction mechanism of ACO
allows some constraints to be addressed explicitly during the
construction of trial solutions. The advantages of this are two-fold: (1)
Some of infeasible trial solutions are avoided, thereby reducing the
problem search space that needs to be assessed during thr
optimisation process; and (2) There is a decreased need to use penalty
functions, as some constraints are dealt with explicitly. This feature of
ACO is particularly advantageous for solving optimisation problems

that involve sequential decision making, such as PPMSO.

(2) The use of heuristic information is imbedded in the ACO algorithm as
an optional mechanism. In this way, the preference of a decision
maker, based on past experience, can be reflected throughout the
optimisation process in order to find better solutions within reduced

computational runtime.

Due to the advantages mentioned above, the potential utilisation of ACO
for PPMSO is deemed worthwhile to be further investigated in this

research.
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2.3

Summary and conclusions

In this chapter, two aspects of PPMSO have been reviewed: (1) The
definition of PPMSO adopted in the literature and (2) The optimisation
methods applied to PPMSO previously.

Various objectives adopted in past studies on PPMSO have been
categorised as reliability-based and cost-based criteria. Commonly
encountered constraints in PPMSO have also been presented. Following
the increasing popularity of electricity market deregulation, its impacts on
the practice of many power utilities, especially in relation to the objectives

and constraints used for PPMSO, have been discussed.

Optimisation methods previously used for PPMSO have been divided
into four categories. Heuristic approaches, mathematical programming
and expert systems played an important role in solving PPMSO problems
when the optimisation problem was first investigated more than a decade
ago. These methods usually suffer from shortcomings such as the inability
to handle non-linearity objectives and constraints, requiring impractical
computational overhead and having difficulties in adapting to changes
made to a power system. In order to overcome these drawbacks,
metaheuristics have been proposed and appear promising for solving
PPMSO. However, despite their advantages over more traditional
optimisation methods, commonly used metaheuristics, such as SA and
GAs, have a number of shortcomings in relation to their application to
PPMSO. These include the inability to account for heuristic information
and constraints explicitly. Ant colony optimisation overcomes some of
these shortcomings of more commonly used metaheuristics, and will

therefore provide the focus of the remainder of this thesis.
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Ant Colony Optimisation Metaheuristic

“A metaheuristic is a general algorithmic framework which can be applied
to different optimisation problems with relatively few modifications to make

them adapted to a specific problem.” - (Dorigo et al., 2004a)

“A metaheuristic refers to a master strategy that guides and modifies other
heuristics to produce solutions beyond those that are normally generated in a
quest for local optimality.” - (Glover et al., 1997)

Proposed by Dorigo in 1992 (Blum et al., 2003), the Ant Colony Optimisation
(ACO) metaheuristic can be seen as a higher-level optimisation strategy that
adopts the basic mechanisms underlying the foraging behaviour of ant

colonies, which are enhanced by artificial intelligence techniques.

The objective of this chapter is to introduce the Ant Colony Optimisation
metaheuristic. Section 3.1 reviews the historical background of ACO, including
its origin based on the behaviour of real ants and the additional features given
to artificial ants in order to solve complex optimisation problems.
Subsequently, various issues regarding the implementation of ACO are
addressed, including the representation of a combinatorial problem, a general
framework of the ACO metaheuristic and the prerequisites of an ACO
application. In Section 3.3, five different ACO algorithms that grew out of the
ACO metaheuristics are presented. Various ACO applications in the literature
are reviewed in Section 3.4, mainly focusing on benchmark scheduling
problems and real-world optimisation problems. Lastly, the characteristics that
contribute to the choice of ACO for solving the power plant maintenance

scheduling problem in this research are discussed.

3.1 From Real Ants to Artificial Ants

3.1.1 Foraging behavior of real ants

Ant Colony Optimisation (ACO) was inspired by the behaviour of ant
colonies searching for the shortest route to a food source. Although ants

are almost blind (Deneubourg et al., 1983) and thus a single ant has
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limited capabilities, ants in colonies exhibit foraging behaviour! to find the
shortest distance between their nest and the food (Dorigo et al., 2004b).

When an ant encounters an intersection (e.g. an obstacle) that has two
possible routes (Figure 3.1), it locates the shortest possible route via
pheromone laid by previous ants, as ants following a path will deposit
some pheromone on that path. Ants detect the concentration of
pheromone on each path and tend to choose, by probability, the path with
the higher intensity of pheromone (Dorigo et al., 1991).

Food Source

Ant's nest

Figure 3.1: Path from nest to food source

For a better understanding, the following diagrams (Figures 3.2a to 3.2h)
are shown to illustrate the ants” behaviour when searching for the shortest
route (Foong et al., 2000). The symbol 7is the pheromone trail intensity in
unit concentration and 4 is the unit distance. To simplify the illustration,
the ants are assumed to move one unit distance, d, for each unit time, ¢,
and to deposit one unit of 7 after reaching the next node. An ant’s
complete trip consists of reaching the food source from the nest and
returning to the nest from the food source. The numbers of ants are

shown in brackets in the diagrams.

! Foraging behaviour is the behaviour of ants expipa large area.
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16 ants

The length of each path is shown in unit
distance. Note that the two possible routes
from the nest to the food, namely AEDFB and
AECFB, have lengths d of 4 and 6 units,

respectively.

At t =0, 16 ants are assumed to depart from A
and each ant moves 1 unit distance per unit
time, depositing 1 unit of pheromone per unit
distance along the paths they are following. In
other words, the intensity of pheromone on a
path is equal to the number of ants that have

traversed the path.

At t = 1, when the ants arrive at E, the
probability of ants choosing the left or right
path is the same, as there is no previous
pheromone deposited on the trail. As a result,
it is assumed that 8 ants follow path EC and 8
ants follow path ED.

At t = 2, the 8 ants following path ED have
already reached D and have deposited 8 units
of pheromone on ED. Since path EC is twice as
long as path ED, the ants following path EC
have not reached C at t = 2, thus, pheromone

has not been laid on the entire EC trail.
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As path EDF is shorter than path ECF, the ants
following path EDF will reach the food at
node B faster at t = 4. The 8 ants with food
return to F at t = 5, meeting the ants following
path ECF at the same node. At this stage, the
pheromone intensity on FD and FC are both 8,
thus, by equal probability, 4 returning ants
choose path FC and the other 4 choose path
FD.

At t =7, the 8 ants that have taken the longer
way (ECF) have reached the food and are
making their way back to nest, when they
encounter paths FC and FD at F with the same
amount of pheromone intensity (7 = 12).
Again, by equal probability, 4 ants will choose
FC and another 4 ants will choose FD. At the
same time, the 4 ants that have chosen the
shorter path have reached node E and are
ready to return to the nest to complete their

trip.

At t =9, the first 4 returning ants have reached
their nest and start a new trip back to E where
they have to make a decision again. Due to the
different path lengths, the pheromone
concentration on ED (7 = 16) is higher than
that on EC (r = 12), corresponding to
probabilities that these paths will be chosen of
57% and 43%, respectively. Stimulated by the

stronger pheromone intensity, more ants (say

3, by probability) select path ED, laying more
(g)t=9 pheromone on this trail than on EC, again

reinforcing the shorter route.
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At t = 10, the pheromone intensity on ED (7=
19) is higher than the intensity on EC (7= 12).
In this way, the action of an ant choosing a
particular path and laying pheromone on that
path increases the probability of the same path
being chosen by future ants. This is referred to
as an autocatalytic process (Dorigo et al., 1991).
Details of the pheromone intensity updated on

each path are given in Table 3.1.

(h) t=10

Figure 3.2: Illustration of the ants’ foraging behaviour

Table 3.1: Pheromone intensity updated on paths

¢ Pheromone trail intensity, T (unit concentration)
(unit time) AE | ED | DF EC CF FB
0 0 0 0 0 0 0
1 16 0 0 0 0 0
2 16 8 0 0 0 0
3 16 8 8 8 0 0
4 16 8 8 8 0 8
5 16 8 8 8 8 16
6 16 8 12 8 8 24
7 16 12 12 8 12 32
8 20 12 16 8 12 32
9 20 16 16 12 16 32
10 28 19 16 12 16 32
Shorter route Longer route

As the process illustrated above continues, the difference in pheromone
concentration between the shorter and longer route will increase, and
eventually most ants will follow the shorter path. As a summary, a shorter
route allows more ants to travel on it than a longer path does in a limited
time span. Figures 3.2a to 3.2h demonstrate a simplified version of the

ants’ foraging behaviour. In reality, there will be more than two readily
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provided possible routes. Consequently, ants will continuously explore
the search space to find the shortest possible route. In this process,
evaporation of pheromone plays an important role. Pheromone will be
gradually evaporated and the trail not utilised much will eventually
disappear. Hence, this eliminates the possibility of ants following the
longer and less favourable routes. In addition, evaporation avoids
premature convergence to a frequently-travelled path in the early stages
of the search process and therefore allows a continuous exploration for

new routes that may be shorter than the ones explored previously.

3.1.2 Artificial ants

The inspiration derived from the foraging behaviour of real ants, after the
undertaking of extensive experimentation, has been transformed into a
strategy that can be used to solve complex optimisation problems. While
the readers are referred to the first chapter of Dorigo et al. (2004b) for a
detailed coverage of this topic, the final outcome of the transformation

process is described in this section.

The ant agents used in the ACO metaheuristic (referred to as ACO
hereafter) are generally known as ‘artificial ants’. In contrast to their
natural counterparts, artificial ants are given the following additional

abilities to solve more complex real-world optimisation problems:

(1) Visibility: Artificial ants are given “visibility” when they encounter an
intersection. With this given artificial intelligence, ants are able to judge
the distances of different paths at the intersection so that shorter paths are

more favourable.

(2) Memory: Real ants are assumed have no memory and make decisions
based only on the pheromone intensities of decision paths. In contrast,
memory is given to artificial ants for storing records of previously visited

paths.

(3) Higher pheromone evaporation rate: Pheromone evaporation reduces
the intensity of all pheromone trails by an amount directly proportional to
the intensity. Consequently, it can be seen as a means of encouraging
exploration of unvisited paths by reducing the overall gap between

pheromone trail intensities. Pheromone evaporation also takes place
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during the foraging process of real ants, but at a much slower rate. In
contrast, higher evaporation rates are suggested for artificial ants,

especially when solving more complex problems (Dorigo et al., 2004b).

(4) Daemon actions: Daemon actions are those actions that cannot be
performed by an individual ant, for example, additional pheromone being
laid on the shortest route found so far, and is optional in the ACO

metaheuristic.

3.2  ACO for Combinatorial Problems
Before any optimisation metaheuristic is applied to solve a combinatorial
optimisation problem, it is essential that the problem can be represented
in a form that is recognizable by the metaheuristic. The objectives of this
section are to introduce the representation of a general combinatorial
optimisation problem, to introduce the main mechanisms of the ACO
metaheuristic and the adaptations that need to be made prior to the
application of ACO to a combinatorial problem.
3.2.1 Problem representation

Consider a combinatorial minimization problem (S, f, Q) where S is the set
of trial solutions, f is the objective function that assigns an objective
function cost f{s), sLUS, and Q is a set of constraints. The aim of the
problem is to find a globally optimal set, S*, of solutions such that f(s*) <
f(s), where s*[1S* and S*[1S. The optimal solutions must also satisfy all
constraints contained in set Q. In order to apply ACO to the optimisation
problem, a link between the two must be established. In general, a
problem representation with the following characteristics is adopted
(Dorigo et al., 2002):

* A finite set of N. components C = {Cl, C, ,...,CNC} and a set | of arcs

fully connecting the components contained in C.

* The states of the problem are defined in terms of sequences

x=<ci,cj,...,q<,...> over the components contained in C,x0O X,

where X is the set of all possible sequences. The length of a

sequence i.e. the number of components contained in a sequence X,
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is termed|x|. A sequence x is equivalent to a complete trial solution
s if |X| = D, where D is the total number of decision variables and
sLIS. A complete trial solution is called ‘trial solution” for short,
and the sequences contained in the set X \ S are incomplete trial
solutions, or “partial solutions’ for short. It should be noted that a
trial solution s is not necessarily feasible with respect to constraint
set Q.

« A finite set S of feasible trial solutions is defined by the set of

constraints Q, where Sos.

* A cost f(s) is associated with each trial solution s. In some
problems, it is possible to calculate the partial cost f,(x) associated

with the state x (partial solution x) of a problem.

Having the problem representation established, artificial ants can then
incrementally construct trial solutions by exploiting the construction
graph G(C, L) (Dorigo et al., 2004b), as part of the procedures contained in
the ACO metaheuristic.

3.2.2 The ACO metaheuristic: a general framework

The basic form of the ACO metaheuristic can be described as the interplay
among the following procedures (Dorigo et al., 2004b):

(i) Ant activities: In this procedure, artificial ants incrementally
construct trial solutions to the problem being solved. Starting from
an empty sequence,|[X=0, an artificial ant progressively adds
components to the sequence by moving on the construction graph
G(C, L). An ant currently at component ¢; chooses which component
from set C to visit next (that is, a component to be added to its
sequence) by utilizing a random proportional rule. In general, the
probability of an ant currently at ¢ travelling to ¢ (the next
component in its sequence) is directly proportional to the
pheromone trail intensity and heuristic information associated with
the move. The pheromone concentration on the arc connecting c;

and ¢;j is a reflection of the ant colony’s acquired experience about
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this connection based on trial solutions previously generated in the
current optimisation search. On the other hand, the heuristic or
‘visibility” is the estimated quality of the individual arc, which
incorporates the user’s knowledge about the problem at hand. A
trial solution s to the problem is obtained when the length of the
sequence reaches the total number of variables D. An objective

function cost f(s) associated with the trial solution is then calculated.

(ii) Pheromone updating: Pheromone updating involves two different
mechanisms, pheromone deposition and pheromone evaporation. The
general idea behind pheromone deposition is to reward the arcs that
connect the components contained in a trial solution based on the
objective function cost of the solution. Pheromone evaporation is a
process where all pheromone trail intensities contained in a problem
search space are decreased by a factor, hence reducing the difference in
pheromone intensities among arcs. In this way, a scenario where certain
arcs are travelled much more frequently than others, can be avoided,

hence increasing the probabilities of unvisited arcs being visited.
(iif) Daemon actions

As an optional procedure in the ACO metaheuristic, daemon actions
implement centralized actions that cannot possibly be performed by
single ants (Dorigo et al., 2004b). Daemon actions can take the form of (a) a
local search procedure, which searches for the local minima of the
neighbourhood of solutions given by ACO or/and (b) global information
that can be used to further bias the optimisation search. For example, the
components of the best solution found so far can be rewarded an

additional amount of pheromone.

It should be noted that the scheduling and synchronization of the three
procedures to be executed are not specified in the metaheuristic, allowing
them to be tailored to the problems at hand. In summary, the ACO
metaheuristic is an optimisation process whereby a population of artificial
ants generates trial solutions by exploiting information distributed over a
search space, and at the same time, iteratively modifying the search space

environment to reflect the artificial ants” search experience. In this way,
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the search is gradually biased towards promising areas of the search

space.

3.2.3 Prerequisites of ACO implementation

The ACO metaheuristic outlined in the previous section is a high-level
algorithmic framework that needs to be customized to solve a specific
optimisation problem. In this thesis, the adaptations made in order to
apply the ACO metaheuristic (Section 3.2.2) to a problem P (Section 3.2.1)
is referred to as ‘an ACO formulation for problem P’. In this section, the
issues required to be resolved as part of an ACO formulation, as

suggested by Dorigo et al. (2004b), are discussed:
(1) Construction of a trial solution

In the search for optimal solution(s) to a specific problem using any
metaheuristic, a number of ‘candidate solutions’ are constructed and
evaluated during the optimisation process before one or more ‘best-found
solution(s)” is/are obtained. These candidate solutions are called ‘trial

solutions’, while the latter is/are called the ‘lowest-cost solution(s)’.

Given a problem representation (see Section 3.2.1), a construction graph G
= (C, L) is utilized by artificial ants in building trial solutions to an
optimisation problem. Starting from scratch, a trial solution is constructed
by adding solution components, one at a time, to a partially completed
trial solution. For example, the Traveling Salesman Problem (TSP) is a
combinatorial optimisation problem in which a salesman is given k cities
and he has to visit each city once and finally return to the starting city. In
previous studies of TSP using ACO, component set C is defined as the set
of cities ¢;, ¢j, ..., ¢k given to the salesman, and connection set L is a set of

all arcs connecting any two cities, which include I~ij OL as the set of

optional paths connecting city ¢; and ¢;. During the construction of a trial
solution, an ant currently at city c; chooses the next city to visit by
implementing a random proportional rule, which takes into account the
pheromone trails and heuristic values associated with all arcs connecting
ci and other unvisited cities. The city chosen is then added to the partial

solution of the ant.
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(2) Definition of pheromone trails

During an optimisation process using ACO, artificial ants utilise the
information about the decision variable space? of a problem captured by
pheromone trails and at the same time, iteratively modify the pheromone
trails to reflect their search experience. In other words, the ant search
process is mainly driven by the distribution of pheromone trails over the
problem decision space. Therefore, an appropriate definition of
pheromone trail, which is normally problem-specific, must be given.
Studies comparing the effectiveness of different pheromone trail
definitions concluded that a bad choice of such a definition has an adverse
effect on the optimisation outcome. Two different pheromone trail
definitions for the TSP have been investigated by Dorigo et al. (2004b): (i)
a pheromone trail 7; is interpreted as the desirability of visiting city j
directly after a city i and (ii) 7 is interpreted as the desirability of visiting
city i as the jth stop during the salesman’s tour. It has been shown that
since the relative order of the city being visited is more significant in

solving TSP, pheromone trail definition (i) is more effective.

(3) Heuristic formulation

Prior knowledge about a problem can be incorporated into an ACO
formulation by means of heuristic information, which is taken into
account during the construction of trial solutions. During the early stages
of an ant’s search, before pheromone trails are significantly distinct,
heuristic information is the dominant factor affecting the selection of
decision paths. In other words, heuristic information provides the
optimisation search with a prediction of regions within the search space in
which promising solutions are located. Without heuristic information, the
initial search would almost be random until dominant paths are
established during the latter stages of the search. On the other hand, if
heuristic information is heavily emphasized, the behaviour of ACO would
be similar to that of a greedy algorithm. As the way in which heuristic
information is represented mathematically is problem specific (Dorigo et
al., 1999), transformation of any heuristic information into a formulation

to be used in the ACO algorithm is an important task. A heuristic value

2 The decision variable space is the n-dimensiorede@ssociated with values of the decision variabl&his is different from
the objective function space, which is defined tes i-dimensional space associated with the m dbge@inctions. Two
different points in the decision variable space mmaynapped to the same point in the objective fanapace.
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3.3

given to a solution component can be static or dynamic. In the static case,
the heuristic value is defined a posteriori and remains fixed throughout the
ACO run. On the other hand, dynamic heuristic values of a solution
component are calculated based on the current partially built trial

solution.

(4) Local search (optional)

Local search can be used optionally as a form of daemon action in the
ACO metaheuristic. Local search has been found to result in significant
improvements when coupled with ACO for a number of ACO
applications (Dorigo et al., 1997b; den Besten et al., 2000) and little in
others (Merkle et al., 2002). In general, local search and ACO are
conjectured to complement each other in the following way: The ACO
metaheuristic is a global-search based metaheuristic that identifies
promising regions of a problem search space, whereas local search can
perform a detailed search within these promising regions to determine the
optimum solution(s) to the problem. Local search has also been used to
enhance the performance of the ACO metaheuristic in solving an
optimisation problem when heuristic information about the problem at
hand is not easily obtained (Dorigo et al., 2004b).

The definition of each of these issues in the development of an ACO
formulation is clearly demonstrated using previous ACO applications in
Section 3.4.

Variants of Ant Colony Optimisation algorithms

Despite its original inspiration from the foraging behaviour of ant
colonies, various ACO algorithms have evolved. It should be noted that
‘ACO metaheuritsic’ refers to the higher-level algorithmic framework,
which is customized and refined by algorithm designers to form various
‘ACO algorithms’. An ACO algorithm consists of the details of the
optimisation mechanism that can be executed to solve an optimisation

problem.

The three earliest ACO algorithms, namely ant-cycle, ant-density and ant-
quantity, were proposed by Dorigo in 1992 as part of his doctoral

dissertation (Dorigo, 1992). As ant-cycle was found to outperform its two
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counterparts, it was regarded as the first ACO algorithm in existence and
called the Ant System (AS). It is interesting to note that the ACO
metaheuristic introduced in Section 3.2.2 was defined a posteriori, rather
than before the existence of AS, as a result of extensive studies conducted
by Dorigo et al. (1999; 2002). The ACO metaheuristic has since provided a

general framework for the design of new ACO algorithms.

In this section, the classification technique of ACO algorithms adopted by
Dorigo et al. (2004b) is used. The first category comprises AS and its direct
successors, including Rank-Based Ant System (ASrank) and Max-Min Ant
System (MMAS). ASun and MMAS are largely similar to AS and can be
described using the algorithmic framework shown in Figure 3.3. ACO
algorithms that cannot be completely described by the framework in
Figure 3.3, such as the Ant Colony System (ACS) and the Hyper-Cube
Framework for ACO (HCF), belong to the second category. While
inspired by AS, these algorithms utilize additional mechanisms that aim
to improve the exploitation and exploration features of simple AS-based
algorithms. In particular, the synchronisation of the ACO procedures
(Section 3.2.2) of ACS and HCF are quite different to those of AS, ASank
and MMAS.

3.3.1 Ant System (AS) and its direct successors

The Ant System (AS) is the first of all ACO algorithms and more
importantly, the one that leads to the definition of the ACO metaheuristic
outlined in Section 3.2.2. Various ACO algorithms have since been
developed by slightly modifying AS, with the goal of improving its
optimisation ability. As mentioned previously, ACO algorithms of this
kind can be generally described by the framework shown in Figure 3.3.
Two major ACO algorithms that belong to this group are the Rank-Based
Ant System (ASrank) and the Max-Min Ant System (MMAS).
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Initialize ACO run

A 4
Construct trial solutions

A 4

\ 4

Update pheromone

Termination criterion
met?

Record optimisation
outcome

Figure 3.3: Ant-System-based algorithmic framework

Ant System (AS)

Construction of trial solutions: In AS, m ants construct trial solutions in
parallel, utilizing the random proportional rule (Eq. 3.1). It should be noted
that the ants are given memory to store the partial solutions constructed.

Given a partial solution sequence x :<...,q>, the probability that an ant k

adds ¢j as the next component in x given by:

a B
o = [i] 7] i1
1) a B .
Z[Til] [’7i|] G1)
10LK
where 7; is the pheromone trail of arc(i, j); /7; is the heuristic information

of arc(i, j, @ and [ are the parameters that control the relative

importance of pheromone and heuristic, respectively;L¥ is the set of

optional components considered by ant k given a partial solution

X=(...G).

Pheromone updating: In AS, pheromone evaporation reduces all existing

pheromone trails by a factor, given by:
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Iy < (l—p)rij foralli,j (3.2)

where 7 is the pheromone trail of arc(i, j) and 0 < p <1 is the pheromone

evaporation rate.

After pheromone evaporation, all ants deposit pheromone on the arcs

they have followed, the value of which is given by:

m
1y « 1; + Y AT foralli,j (33)

k=1

where AT; is the pheromone deposited by ant k on arc(i, j), the value of

which is given by:
1/ OFC¥, if i,j) bel tes*
Ari'j‘={ if arc(i, j) e9ngs (63 (3.4)
0, otherwise.

where OFCk is the objective function cost of the trial solution constructed
by ant k, s*. In other words, the pheromone rewarded/deposited on the
arcs constituting a trial solution is higher if the objective function cost of

the trial solution is lower.

AS was first proposed in the context of solving the Travelling Salesman
Problem (TSP). In spite of the encouraging results obtained by AS in its
application to TSP, it was found to be inferior to other state-of-the-art
optimisation algorithms that had been applied to the problem (Dorigo et
al., 2002). Many ACO algorithms have since been proposed with the goal
of improving the performance of AS, such as Rank-Based Ant System
(ASrank) and Max-Min Ant System (MMAS), for example, which differ
slightly from AS and generally can be described by the algorithmic
framework shown in Figure 3.3. In particular, ASnnw and MMAS are
different from AS mainly in the way pheromone deposition is carried out.
The particulars of the two algorithms with respect to pheromone

deposition are given below:

Rank-Based Ant System (AS;ank)

Rank-Based Ant System (ASink) was proposed by Bullnheimer et al.
(1999). In contrast to AS, where pheromone deposition applies to all ants,

only g ants are rewarded in each iteration in AS;nk, where g is a user-
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defined parameter. It should be noted that g includes the best-so-far trial
solution (st). Consequently, in each iteration, (g - 1) trial solutions are

ranked by increasing objective function values. Eq. 3.3 is thus changed to:

9

r=1

where the values of A7} and A7{® are given by:

; _{l/OFCr, if arc(i, j) belongs ta'
Arij =

3.6

0, otherwise. (3.6)

Az.il_)sf ={1/ OFCY', if arc(i, j) belongs tePst o)
J 0, otherwise.

It can be seen that the best-so-far ant always deposits the most pheromone
with weight g, while the other (g - 1) ants in an iteration deposit a quantity
of pheromone in proportion to the objective function costs and ranks of

tours.

Elitist-Ant System (EAS) is the first ACO algorithm introduced by Dorigo
(1992) and Dorigo et al. (1996) as an improvement to AS, as part of which
an additional quantity of pheromone is deposited on the arcs contained in
the best-so-far trial solution (s?) in each iteration. This can be viewed as a

special case of AS,.nk, whereby:

* gis the size of the ant population used;

* the best-so-far trial solution (s*) is ranked 1 while all trial

solutions are ranked 2.
Experimental analysis carried out by Bullnheimer et al. (1999) showed that
ASpan performs  slightly better than the Elitist-Ant System and

significantly better than AS.

Max-Min Ant System (MMAS)

A significant improvement over AS was achieved by the introduction of
the Max-Min Ant System (MMAS) (Stuitzle et al., 1997; Stiitzle et al., 2000),
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which was proposed to enhance both the exploitation and exploration
features of AS. Two important features of MMAS that contribute to the

robustness of the algorithm are:

(1) Updating only the best-so-far (sf) or the iteration-best (st) trial

solution:

As a measure to better exploit the artificial ants’ search experience,
pheromone is deposited only on the arcs belonging to either the best-so-
far trial solution (st¥) or the best trial solution of the current iteration (si).
The corresponding pheromone deposition equation is:

where

best_{Ari?Sf =1/ OFC" if only the best - so-far solutiorsT') is updated (.9)

" | a7 =1/OFC” if only the iteration - best solutiorst) is updated

where OFC'f is the objective function cost of the best-so-far trial solution,
sbsf;, OFC? is the objective function cost of the iteration-best trial solution,
sib.

(2) Pheromone trails are bounded by an interval [rmin , rmax]:

If only either st or s are rewarded with pheromone, convergence to a
solution during an early stage of the optimisation search is likely to occur.
This is undesirable, as many regions of the problem search space are
likely to have been left unexplored. In order to overcome this problem, all
pheromone trails within a problem search space are bounded by upper
and 7

and lower trail limits ( 7, ), the values of which are given by:

may min

1 Q

Tma(t+1)= ?0 GOFCT(t) - (3.10)
Tmin(t +1)= Z-max(t +1)(1_’n\/ pbest) ) (3.11)

(an_ 1)%/ Pyest

where t is an iteration index; 0 < p <1 is the pheromone evaporation rate;
Q is the reward factor, OFCtest = OFCbtsf and OFCtest = OFCit(t) for the
update of the best-so-far and iteration t’s best trial solutions, respectively;

n is the number of decisions an ant has to make (number of cities in the
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case of a TSP); when MMAS has converged, pr: is the probability that the

sbest trial solution has been constructed once the algorithm has converged.

For further details of the derivation of Egs. 3.10 and 3.11, readers are
referred to Stiitzle et al. (2000). It can be envisaged that the narrower the
bound interval, the smaller the difference of the pheromone levels
between arcs and hence the higher the exploration level. In fact, the
desired exploration and exploitation levels of a MMAS run can be defined
by the user through a number of parameters. A detailed discussion of the
impact each of the parameters in Eqs. 3.10 and 3.11 has on the searching
behaviour of MMAS is given by Stiitzle et al. (2000). Another important
note on the implementation of MMAS is that all pheromone trails must be
initialized to a sufficiently high value such that in the second iteration,
they are reset to 7, .
MMAS is one of the most studied ACO algorithms and has been used as a
tool for the development of new ACO algorithms (Socha, 2003; Al-
Shihabi, 2004; de Franca et al., 2004), as well as a comparison benchmark
for other ACO algorithms (Socha et al., 2003; Rajendran et al., 2004;
Solimanpur et al., 2004; Zecchin et al., 2006).

3.3.2 Non-AS-based ACO algorithms

Some ACO algorithms, while inspired by AS, incorporate some additional
mechanisms that cannot be described by the AS-based algorithmic
framework shown in Figure 3.3. Two ACO algorithms that belong to this
category are the Ant Colony System (ACS) and the Hyper-Cube
Framework for ACO (HCF). The additional features of these algorithms

are briefly pointed out below.

Ant Colony System (ACS)

Ant Colony System (ACS) was proposed by Dorigo et al. (1997a; 1997b)
based on the Ant-Q algorithm (Gambardella et al., 1995). ACS differs from

AS in three main aspects:

1. The random proportional rule (Eq. 3.1) utilized by AS for the
construction of trial solutions is modified in ACS so that stronger

exploitation of an ant’s search experience is achieved. The algorithm uses
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a new pseudorandom proportional rule, as part of which an ant selects
the path with the best [Tij]a[mj ]ﬂvalue by a probability of go. It can be

envisaged that a high go-value will result in strong exploitation, as the best
available option is chosen with a high probability. The value of go can thus

be adjusted in accordance with the desired level of exploitation.

2. In ACS, both pheromone evaporation and deposition are applied only
to the best-so-far trial solution, s. Moreover, the quantity of pheromone
deposited on the arcs belonging to st is discounted by the pheromone
evaporation coefficient, p, which results in the new pheromone trails
being a weighted average of the old pheromone value and the amount of

pheromone deposited.

3. A local pheromone updating rule applies such that when an ant
chooses to travel on an arc, the pheromone trail of the arc is reduced by a
factor. This mechanism reduces the attractiveness of a travelled arc to

subsequent ants.

Dorigo et al. (2004b) pointed out a very interesting observation that in
order to manipulate the exploitation and exploration level of the
algorithms, both MMAS and ACS implement upper and lower limits for
pheromone trails However, the specification of such limits is explicit in
MMAS and implicit in ACS. It can be seen from the unique features of
ACS that there are many additional parameters, in addition to those
already involved in AS, that need to be defined prior to the
implementation of ACS. This is, undoubtedly, a major drawback of this

algorithm.

Hyper-Cube Framework for ACO (HCF)

The Hyper-Cube Framework (HCF) for ACO was proposed by Blum et al.
(2001). The main difference introduced by HCF is the normalization of
pheromone trails such that they always lie in the interval [0,1]. This is

implemented by the following pheromone update equations:

1y — @-P)ry + P ATS (3.12)

k=1

where
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k
_VOFC ifarc(i,])is used by ark.

AT = ié/OFCh) (3.13)

h=1 )
0, otherwise.

Dorigo et al. (2004b) pointed out that the resulting pheromone vector can

be seen as “a shift of the old pheromone vector toward the vector given by the

weighted average of the solutions used in the pheromone update” .

Table 3.2 summarizes the distinguising features of the ACO algorithms

presented in this section.

Table 3.2: A summary of the distinguishing features of the ACO algorithms

discussed
ACO
Main features
variants
AS The earliest ACO algorithm
All trial solutions apply pheromone update
AS ik Similar to AS, but only the best g trial solutions are rewarded
EAS Similar to ASum, but only the iteration-best trial solutions are
rewarded
Only the iteration-best or best-so-far trial solutions are
MMAS rewarded
Minimum and maximum pheromone trails apply
Use of pseudorandom proportional rule during construction of trial
solutions
ACS Pheromone evaporation and reward are applied only to the
best-so-far trial solutions.
A local pheromone updating rule applies
HCF Pheromone trails always lie in the interval [0,1]
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3.4

Ant Colony Optimisation Applications

Since its first application to TSP and the encouraging results obtained, the
ACO metaheuristics have been applied to a wide range of combinatorial
optimisation problems, including benchmark and real-world problems. In
this thesis, benchmark problems refer to those used by researchers in the
field of evolutionary computation in testing the effectiveness of new
optimisation algorithms. Among the most famous benchmark problems
are the Travelling Salesman Problem (TSP), the Quadratic Assignment
Problem (QAP) etc. Previous applications of ACO to various benchmark
optimisation problems are detailed in Dorigo et al. (2004b).

As the optimisation problem addressed by the research presented in this
thesis is a scheduling problem, previous implementations of ACO
metaheuristics to some benchmark scheduling optimisation problems are
reviewed. ACO applications to three real-world optimisation problems

are discussed subsequently.

3.4.1 Benchmark scheduling optimisation problems

(A) Resource-Constrained Project Scheduling Problem (RCPSP)

The Resource-Constrained Project Scheduling Problem (RCPSP) is a
scheduling problem where the set of activities of a project are scheduled
such that the total makespan, which is the completion time of the last
scheduled operation of the project, is minimized, subject to resource and
precedence constraints amongst activities. The Elitist-Ant System-based
algorithm proposed by Merkle et al. (2002), EAS-RCPSP, is at this time, the
best performing approach for RCPSP (Dorigo et al., 2004b). In the ACO

formulation for RCPSP, the following components are defined:

Construction of trial solutions: The construction graph is comprised of
(act + 2) fully connected nodes, where act is the total number of activities
to be scheduled and the additional two nodes represent dummy start and
end nodes. Starting from a dummy start node, an ant is considered to
travel to each node (activity) once. Given an ant currently at position (i-1),
a schedule generation method is utilized to generate a set of optional and
feasible activities to be visited next (position i), based on the current

partial solution. The probability of activity j being scheduled at position i
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follows the random proportional rule (Eq. 3.1). A complete trial solution,
which comprises a sequence of scheduled activities, is obtained when all

(act + 2) construction steps are visited exactly once.

Definition of pheromone trails: The pheromone trail 7; refers to the
desirability of scheduling activity j as the i-th activity (that is, putting

activity j in position 7).

Heuristic: 1 refers to the desirability of scheduling activity j as the ith
activity based on some user-defined information. The best-known
heuristic formulation for this problem is based on the normalized version
of the latest start time heuristic (Dorigo et al., 2004b), given
by:n7; =max 5 LS —LS; +1, where LS; is the latest possible start time of

activity j and AL is the set of activities that are available given a partial

schedule.

Local search: A 2-opt local search algorithm that considers swapping the
position of two activities in a trial solution is adopted (Dorigo et al.,
2004b).

(B) Group-shop scheduling problem

In a Group Shop Scheduling problem (GSP), a set of act operations O is
partitioned into (Dorigo et al., 2004b):

A set of subsets M ={M1,...,Mm}, where each M; corresponds to the

operations to be processed by machine i; and

A set of subsetsJ :{311---’41}/ where each set |; corresponds to the
operations belonging to job j. Subset | is further partitioned into groups

G ={Gle} where G corresponds to operations belonging to group k.

The objective of GSP is to minimize the makespan of operations. The

constraints to be satisfied include (Dorigo et al., 2004b):
* Each machine i can process at most one operation at a time.

*  Operations must be processed without pre-emption.
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* Operations within one group can be processed in any order but

the groups of a job are totally ordered.

GSP can be seen as a general shop scheduling problem, with special cases
including the Job Shop Scheduling problem (JSP), the Open Shop
Scheduling problem (OSP) and the Mixed Shop Scheduling problem
(MSP). Among the ACO approaches previously used for shop scheduling
problems (Colorni et al., 1994; Pfahringer, 1996; Blum, 2002), a Max-Min
Ant System-based algorithm, namely the ACO-MMAS-HC-GSP proposed
by Blum (2002), is the current best-performing ACO algorithm for GSP.
The formulation adopted by the ACO-MMAS-HC-GSP algorithm is now
described.

Construction of trial solutions: The construction graph and the way a
trial solution to this problem is constructed are identical to those of
RCPSP.

Definition of pheromone trails: The pheromone model used in MMAS-
HC-GSP assigns a pheromone value to a pair of related operations. Two
operations are related if they belong to the same group or must be
processed on the same machine. A high pheromone value of two related
operations o; and o; means operation o; is favoured to be processed before
(but not necessarily immediately before) operation o;. This model was
claimed to be the best pheromone representation for this problem type,
where relative positioning rather than absolute positioning of operations

is more important.

Heuristic: An earliest start heuristic that favors operations with the
earliest valid starting time with respect to the partial schedule is adopted.
Given a partial schedule, the heuristic information is calculated based on
the inverse of the earliest possible starting time of an operation and then

normalized over all eligible operations.

Local search: The best local search algorithm used in conjunction with
MMAS-HC-GSP applies an iterative improvement algorithm to each trial
solution, and then applies a tabu search algorithm to the best local
optimum. A local neighborhood definition introduced by Nowicki et al.
(1996) for JSP, where a job placed at the a-th position is moved to a b-th

position, is utilized in the local search algorithm.
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(C) Single-machine total weighted tardiness scheduling problem

In a single machine total weighted tardiness scheduling problem
(SMTWTP), n jobs have to be processed on a single machine, without
interruption. Each job is given a known processing time p;, a weight wj,
and a due date d; and all jobs are available to be scheduled from time zero.

The objective of SMTWTP is to schedule all the jobs in a sequence such
n

that the sum of the weighted tardiness, ZWiTi, is minimized. Given a
j=1

trial solution (schedule), the tardiness of a job i is defined

asT; =max{QCT; -d,;}, where CT; is its completion time in the schedule

under consideration. ACO has been applied to SMTWTP concurrently by
den Besten et al. (2000) and Merkle et al. (2003) and the formulations

proposed in the two studies are similar for many characteristics.

Construction of trial solutions: The construction graph comprises of fully
connected components C representing the n positions to which the # jobs
are assigned. In order to construct a trial solution, an ant chooses a job for

position 1, another for position 2 until all 7 jobs are scheduled.

Definition of pheromone trails: 7; indicates the attractiveness of placing
job j at position i. A problem with solely using 7; when choosing the next
job to be placed on a schedule was identified by Merkle et al. (2003), and
the problem was resolved by implementing a new pheromone summation
rule. The new rule takes into account the pheromone values of placing job
j at positions [, i-1, ..., 1] when estimating the desirability of placing job j
at position i. In this way, even if a job j with high 7 was not placed at
position i, it is highly likely to be placed at a position close to i influenced
by the high value of 7;.

Heuristic: Three different formulations were tested by den Besten et al.

(2000) to compute the heuristic information:
1. Earliest Due Date (EDD): 77; = 1/d;, where d; is the due date of job j.

2. Modified Due Date (MDD): Similar to EDD, but the sum of processing

times of already scheduled jobs (partial schedule) is taken into account (77;
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= 1/mdd;, where mdd; = max{C + p;, dj}), where C is the total processing

time of a partial schedule.

3. Apparent Urgency (AU): In this heuristic, the average processing time

of the remaining jobs, P, is taken into consideration (7 = 1/au;, where au;

= (wj/pj)-exp(-max{d; - C;, 0})/k P), k is a parameter set).

Merkle et al. (2003) identified a problem with using the MDD heuristic,
whereby the value of max{C + pj, dj} is too large due to the total processing
time, C, which is large when the sequence of a partial schedule becomes
too long. As a consequence, the heuristic difference becomes insufficiently
apparent to ants when choosing the next job to schedule. In order to
rectify this problem, Merkle et al. (2003) improved the MDD heuristic by
subtracting the total processing time, C, such that 77; = 1/mdd;, where mdd;
=max{C + p;, dj} - C.

Local search: Two neighborhood definitions have been used for the
SMTWTP, including;:

1. Exchanging the pair of jobs placed at the i-th and j-th positions

(interchange).

2. Removal of the job at the i-th position and inserting it to the j-th

position of the schedule (insertion).

3.4.2 Real-world optimisation problems

In spite of some very encouraging results obtained by ACO for
benchmark optimisation problems, there are not many applications to
real-world problems, or operational research. Given the context of the
research work presented in this thesis, this section is devoted to the
review of ACO applications to three different real-world optimisation

problems.
(A) Design of Water Distribution System (WDS)
A formulation based on ACO was proposed by Maier et al. (2003b) to

minimise the costs associated with the size of pipelines for a water

distribution system (WDS), subject to constraints such as demand and
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pressure criteria. The adaptations made in order to apply ACO to the

WDS optimisation problem can be summarized as follows:

Construction of trial solutions: The ACO construction graph is formed by
a set of nodes representing the set of pipes whose sizes are to be
optimized, fully connected by arcs representing optional pipe diameters.
A complete trial solution to the WDS problem comprises a size for each
pipeline of the pipeline system considered. In order to construct a trial
solution, a single ant agent visits each node (pipe) in a random (or
heuristically defined) order. An ant at node i (pipe i) considers a
randomly chosen, unvisited node k (k#i), and in order to travel to node k,
the ant needs to make a decision, based on the random proportional rule

(Eq. 3.1), about which pipe size to choose.

Definition of pheromone trails: 7; represents the desirability of pipe size

index j being used for pipe i.

Heuristic: n; = % ost is a myopic value of using pipe size index j for pipe

i, based on the users” experience, where cost;j is the cost per unit of pipe

size index j.
Local search: Local search was not considered in the formulation.

The ACO formulation for the WDS optimisation problem has been tested
with two case studies: a 14-pipe Problem and the New York City Water
Supply Tunnels Problem (Maier et al., 2003a). The performance of the
ACO approach for the 14-pipe Problem is comparable to those of a genetic
algorithm, both in terms of the ability of finding the global optimum and
the computational time required. On the other hand, the ACO approach
found a better solution to the New York City Water Supply Tunnels
Problem than that given by a GA. A later study by Zecchin et al. (2006)
confirmed the performance of the ACO formulation against a genetic
algorithm when applied to the New York City Water Supply Tunnels
Problem and the Hanoi Problem. In addition, experiments conducted in
the latter study indicated that MMAS is a more robust ACO algorithm
compared to its ancestor, AS, due to the upper and lower limits imposed

on pheromone trails.
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A study conducted by Afshar (2006) investigated the optimisation of the
layout of pipe networks using ACO. This optimisation problem can be
seen as a special instance of the generalised water distribution design

specification introduced by Zecchin et al. (2005).
(B) Pump Scheduling

The optimal scheduling of pump operations problem is described by
Goldman et al. (2000) as:

“Given a water distribution network, where diurnal demands, initial tank levels
and electricity tariffs are known, the goal of this problem is to find the optimal
pump schedules over a time period, typically 24 hours, such that the operational

costs are minimized and constraints are satisfied.”

This problem has been studied by using Simulated Annealing (Goldman
et al., 2000) and genetic algorithms (Mackle et al., 1995; Savic et al., 1997;
Kazantzis et al., 2002; van Zyl et al., 2004). The ACO formulation proposed
by Prasad et al. (2006) to solve the pump scheduling problem is comprised

of the following elements:

Construction of trial solutions: A representation of trial solutions based
on time triggers proposed by Lopez-lbanez et al. (2005) was adopted,
where a trial solution is comprised of a set of strings, each associated with
the operational schedule of a pump. A string is formed by a finite pair of
integers representing the number of hours a pump is off and remains on
when it is switched, respectively. If a pump switch is defined by
switching a pump from off to on, and the status of a pump (being on or
off) as an interval, the length of a string (number of integers) is 2 x
maximum allowable number of pump switches, S. When an ant constructs
a trial solution, it travels to each interval (randomly) and chooses a
duration for the interval from a set of available options. It should be noted
that this type of solution representation enables maximum pump switch
constraints to be satisfied explicitly during the construction of trial
solutions, avoiding the need for a penalty factor. Once a duration is

chosen for all intervals, a complete trial solution is obtained.

Definition of pheromone trails: T; represents the utility of assigning a

duration j to interval i for a particular pump.
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Heuristic: Heuristic information was not considered in the formulation.
Local search: Local search was not considered in the formulation.

An AS-based algorithm was implemented to solve two pump scheduling
case studies - a test case study proposed by van Zyl et al. (2004) and a real
system in the United Kingdom (Prasad et al., 2006). At each iteration, trial
solutions are ranked and only the best-iteration trial solutions are
rewarded. While the results obtained for the test network were shown to
be comparable with those given by a hybrid GA approach proposed by
van Zyl et al. (2004), the ACO algorithm was found to be inferior to the

genetic algorithm for the real system.
(C) Optimal Siting of New Fire Stations

An ACO algorithm (ANT) has been coupled with a geographical
information system (GIS) to determine the optimum locations of six new
fire stations, aiming at increasing the effectiveness of the fire stations in
covering the transportation routes of hazardous materials (HAZMATS)
through Singapore (Liu et al., 2006). Using GIS, the map of Singapore is
represented by a grid coordinate system by means of a finite number of

discrete cells. Each cell is assigned a coordinate (i, j).

Construction of trial solutions: Each of the six ants in ANT is used to

search for the optimal location of a fire station.

Definition of pheromone trails: 1; represents the desirability of locating a

new fire station in a discrete cell of coordinate (i, j).

Heuristic: Heuristic information was not considered in the ACO

formulation.

Local search: Each trial solution (a complete set of proposed locations
of all six fire stations) is applied to a 2-phase local search. In phase 1, a
neighborhood random search (NRS) strategy is used, where all ants
randomly move from their current coordinate to other cells within a
certain distance (eg. 3km). The current solution is replaced if a local
solution associated with a better objective function value is found. The

NRS search is repeated for a predefined number of iterations before the
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3.5

second phase of local search is triggered. In phase 2, an adaptive
enumeration neighborhood search (AENS) is activated, where in an AENS
routine, each of the six ants moves to every cell within a certain distance
from its current cell while keeping the other five ants fixed at their
original cells. Similar to the phase-1 search, a current solution is replaced
by an improved local solution. The AENS search is repeated until all local

solutions are evaluated.

The performance of ANT was found to be superior to those of a genetic
algorithm (GA) and a random start 2-phase local search procedure
(RANDOM LS).

Motivation for Applying ACO to PPMSO

As part of the research work presented in this thesis, a formulation based
on the ACO metaheuristic is proposed for the power plant maintenance
optimisation problem (PPMSO). The choice of the ACO metaheuristic for
PPMSO is mainly motivated by the following;:

* The decision tree-based solution construction mechanism of ACO
fits in well with PPMSO, which is naturally an optimisation
problem with sequential decisions. By using the decision-tree
based structure, many constraints commonly encountered in
PPMSO problems can be explicitly addressed, eliminating the
need to use penalty factors. In addition, the search space of an
optimisation problem can be greatly reduced by progressively
eliminating optional solution components that no longer satisfy

problem constraints, given a current partial solution.

* As a population-based metaheuristic, ACO is highly suitable for
real-world optimisation problems that usually have a large search
space and involve complex mathematical functions. As a global
optimisation method, ACO performs coarse-grained search to
quickly identify decision space regions where promising solutions
are located. Local search strategies can then be used to search
within local neighbourhoods of trial solutions generated
throughout the ACO optimisation process. Secondly, existing

simulation models corresponding to the case study in hand can be
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easily incorporated into an ACO formulation, without the need for

simplifying complex mathematical equations.

Heuristic information that reflects the experience of a user can be

optionally incorporated into the formulation.

As a population-based metaheuristicc, ACO searches different
regions of a problem search space and is thus able to produce
different solutions of similar criteria quality (objective function
cost). Taking PPMSO as an example, a list of the best 20
maintenance schedules produced during an ACO run might be
recorded. The decision maker can then consider each of these
schedules based on other non-quantifiable criteria, which were not

included in the optimisation run.

Since ACO explores many feasible as well as infeasible trial
solutions to a problem, the increased speed of modern computers
enables real-world-sized problems to be solved in reasonable run-

times.

For real-world problems, it is unrealistic to aim for a globally
optimal solution. Near-optimal, or reasonable good, solutions,
which can normally be obtained by global optimisation

metaheuristics such as ACO, are sufficient for practical purposes.

The ACO metaheuristic has been applied to both benchmark and
real-world optimisation problems and the results obtained are

promising when compared with other metaheuristics.
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Chapter 4
Proposed Approach to Maintenance
Scheduling Optimisation

In this chapter, the main contributions of the research work presented in this

thesis are covered, which are:

4.1

The definition of power plant maintenance scheduling optimisation
(PPMSO) is generalized. In particularly, the options of outage duration

shortening and deferral of maintenance tasks are incorporated.

A new formulation based on Ant Colony Optimisation (ACO) is
proposed for a more generalized PPMSO problem.

Different constraints commonly encountered in maintenance scheduling
problems are categorized. Methods for addressing these constraints are

also proposed.

A new heuristic formulation is developed for ACO to solve PPMSO

problems more effectively.

Two local search operators are developed to refine the rather coarse-

grained search of ACO in a problem search space.

The ACO-PPMSO algorithm is coded in the Fortran 90 programming

language.

Definition of power plant maintenance scheduling
optimisation (PPMSO)

The requirements of an optimisation problem have to be defined before
any proposed optimisation methods can be properly formulated to solve
the problem. The power plant maintenance scheduling optimisation
(PPMSO) problem has been defined previously as an optimisation
problem that involves the determination of the optimum timing of the

maintenance periods of each of the generating machines (units) used for
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power generation, assuming maintenance durations are fixed (Dopazo et
al., 1975; Yamayee et al., 1983; Mukeriji et al., 1991; Satoh et al., 1991; Kim et
al., 1997; Aldridge et al., 1999; Dahal et al., 1999; Dahal et al., 2000; El-Amin
et al., 2000; Foong et al., 2005a; Foong et al., 2005b). Such a PPMSO
definition is insufficient, as there are times when certain generating
machines cannot be taken offline much longer than a certain period of
time in order to meet system demand or to achieve system reliability. In
this case, maintenance duration of these tasks can be shortened by
employing more personpower, or maintenance tasks can be deferred. As
part of the contribution of the research presented in this thesis, the
PPMSO problem definition is generalized to include the options of
‘maintenance duration shortening” and ‘deferral of maintenance tasks’. As
a result, not only the optimum commencement time, but also the
optimum duration is sought for each maintenance task to be scheduled

within a planning horizon.

PPMSO is generally considered as a minimization problem (S, f, Q), where
S is the set of all maintenance schedules, fis the objective function which
assigns an objective function value f{s) to each trial maintenance schedule
s S, and Q is a set of constraints. Mathematically, PPMSO can be defined
as the determination of a set of globally optimal maintenance schedules S*
0 S, such that the objective function is minimized f(s* 0 §¥) < f(s O S) (for a
minimization problem) subject to a set of constraints Q. Specifically,
PPMSO has the following characteristics:

* It consists of a finite set of decision points D = {di, d,,.., dn}

comprised of N maintenance tasks to be scheduled;

* Each maintenance task d, 0 D has a normal (default) duration

NormDur, and is carried out during a planning horizon Tp;

Two decision variables start, and chdur, need to be defined for each task

d, including:

1. The start time for the maintenance task, start,, with the associated set

of options: T, gy = {t U Tptan; chdur, O Koz eary <t<lat, - chdur, + 1} where

n
the terms in brackets denote the set of time periods when maintenance of

unit d, may start; ear, is the earliest time for maintenance task d, to begin;

Page 71



Chapter 4 Proposed Approach To Maintenance Scheduling Optimisation

lat, is the latest time for maintenance task d, to end and chdur, is the

chosen maintenance duration for task d,.

2. The duration of the maintenance task, chdur,, with the associated finite
set of decision paths: K,, = {0, s, 2s,, ..., NormDur, — s,, NormDur, }, where
the terms in brackets denote the set of optional maintenance durations for
task d,, and s, is the time step considered for maintenance duration

shortening.

A trial maintenance schedule, s O S = ((start;, chdury), (start;, chdur,), ...,
(startn, chdury)) is comprised of maintenance commencement times, start,,
and durations, chdur,, for all N maintenance tasks that are required to be
scheduled.

Binary variables, which can take on values 0 or 1, are used to represent
the state of a task in a given time period in the mathematical equations of
the PPMSO problem formulation. X, is set to 1 to indicate that task d, [
D is scheduled to be carried out during period t O Ty Otherwise, X, is

set to a value of 0, as given by:

X _{1 if taskd,, is being maintained in periad
"o otherwise

In addition, the following sets of variables are defined:

Sn,t = {k D T

nchdug - Chdury O Ku: t = chdury +1 < k < t} is the set of start times

k, such that if maintenance task d,, starts at time k for a duration of chdur,,

that task will be in progress during time ¢;

Dy = {d,: t O T, } is the set of maintenance tasks that is considered for

period t.

Objectives and constraints

Traditionally, cost minimization and maximization of reliability have
been the two objectives commonly used when optimizing power plant
maintenance schedules. Two examples of reliability objectives are evening
out the system reserve capacity throughout the planning horizon, and

maximizing the total reservoir storage water volumes at the end of the
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planning horizon, in the case of a hydropower system. An additional
objective associated with the more generalized definition of PPMSO
presented in this thesis is the minimization of the total maintenance
duration shortened/deferred. The rationale behind this objective is that
shortening of maintenance duration (i.e. speeding up the completion of
maintenance tasks) requires additional personnel and equipment,
whereas deferral of maintenance tasks might result in unexpected
breakdown of generating units, and in both events, additional costs are

incurred by the power utility operator.

Constraints specified in PPMSO problems are also power plant specific.
The formulation of some common constraints including the allowable
maintenance window, continuity, load, availability of resources,
precedence of maintenance tasks, reliability and the minimum

maintenance duration required, which are presented in Eqgs. 4.2 to 4.8.

The timeframes within which individual tasks in the system are required
to start and finish maintenance form maintenance window constraints,

which can be formulated as:

eary < start, < lat, - chdur, +1  foralld, O D. 4.2)

where start, and chdur, are the start time and maintenance duration,

respectively, chosen for task d..

The continuity constraint states that once a maintenance task d,
commences, it should not finish before completion and the time
corresponding to the chosen outage duration chdur, has elapsed, and is
given by:

_J1 fort=[start,, . . .start, +chduy, -1]

Xn t . (43)
0 otherwise

where start, and chdur, are the start time and maintenance duration

chosen for task d,..
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Load constraints (Eq. 4.4) are usually rigid/hard constraints in PPMSO
problems, which ensure that feasible maintenance schedules that do not
cause demand shortfalls throughout the whole planning horizon are

obtained:

DPm 2, DX Pzl foralltOT,, 4
d, 0D d, 0D, kOS¢
where L; is the anticipated load for period t and P, is the loss of

generating capacity associated with maintenance task d...

Resource constraints are specified in the case where the availability of
certain resources, such as highly skilled technicians, is limited. In general,
resources of all types assigned to maintenance tasks should not exceed the

associated resource capacity at any time period, as given by:

Z an’kReiks ResAvai forallt O T,,,,r O R. (4.5)

d, 0D, kOS,,

where Re§, is the amount of resource of type r available that is required

by task d, at period k; ResAvdiis the associated capacity of resource of

type r available at period t and R is the set of all resource types.

Precedence constraints that reflect the relationships between the order of
maintenance of generating units in a power system are usually specified
in PPMSO problems. An example of such a constraint is a case where task

2 should not commence before task 1 is completed, as given by:

starty > start; + chdur, - 1 (4.6)

where start, is the start time chosen for task d,,.

Depending on particular system characteristics and requirements,
reliability constraints can be formulated in various ways, including
provision of reserve generation capacity as a certain proportion of

demand throughout the planning horizon. This is given by:
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4.2

DPim D, D Xubh 2L+ O foralltO T, "

d, 0D d, 0D, kKOS,

where L; is the anticipated load for period f; P, is the loss of generating
capacity associated with maintenance task d, and f.s is the factor of load

demand required for reserve.

In the case of maintenance duration shortening, there is usually a practical
limit to the extent that the duration can be shortened. Due to the different
characteristics of maintenance tasks, minimum maintenance durations

may vary with individual tasks:

NormDury, 2 chdur, 2 MinDury, for all 4, O D. (4.8)

where chdur, is the maintenance duration of task d,; MinDur, is the
minimum shortened outage duration for task d,; NormDur, is the normal

duration of maintenance task d,..

Proposed ACO formulation for PPMSO

Before the PPMSO problem can be optimized using ACO, it has to be
mapped onto a graph, which is expressed in terms of a set of decision
points consisting of the N maintenance tasks that need to be scheduled D
= {d1, dp, d3,..., dn}. In accordance with the formulation introduced, there
are three variables that need to be defined V = {v1, vy, v3} for each

maintenance task:

e Variable 1, v1: the overall state of the maintenance task under
consideration (i.e. if maintenance currently being carried out or
not),

e Variable 2, v2: the duration of the maintenance task, and

* Variable 3, v3: the commencement time for the maintenance task.

For maintenance task d,, a set of decision paths DP., is associated with

decision variable v, (Where subscript ¢ =1, 2 or 3) (shown as dashed lines

in Figure 4.1). For decision variable v1,,, these correspond to the options of
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Decision Decision Decision
variable vy, variable vy, variable v, ___] earn
. -
: Dt --mo| earytl
| NormDury, T
/ =7 lat,- NormDury

NormDur,: normal duration of \

carrying out the maintenance tasks d, at normal duration, shortening the
maintenance duration and deferring maintenance tasks. For decision
variable v, these correspond to the optional shortened durations
available for the maintenance tasks. For decision variable v, these
correspond to the optional start times for maintenance tasks d,. It should
be noted that, as the latest finishing time of maintenance tasks is usually
fixed, there are different sets of start time decision paths, each
corresponding to a maintenance duration decision path (Figure 4.1). This
graph can then be utilized to construct trial solutions using the ACO-
PPMSO algorithm introduced in Section 4.3.

' - - eary

|
|
!
I / ~~<Jlat,- NormDur, +1
|
|
|

' ST eary,+1

1 —
! S —_—
; @ Tt
AN lat,- s, + 1
normal .

eary

/ -

---"| earyt+1

\\I laty-2s, +1 |

————— eary+1

Notation:

maintenance task d, \

sn: timestep of duration \III—. -------- NIL

shortening for task d.

Figure 4.1: Proposed ACO-PPMSO graph
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4.3 The ACO-PPMSO algorithm

The new formulation proposed in this research for power plant
maintenance scheduling using Ant Colony Optimisation is implemented
via an ACO-PPMSO algorithm, represented by the flowchart given in
Figure 4.2. The mechanisms involved in each procedure of the proposed
ACO-PPMSO algorithm are detailed in Sections 4.3.1 to 4.3.6.

4.3.1 Initialization

4.3.2 Construction of a trial maintenance schedule |

|

4.3.3 Evaluation of the trial
maintenance schedule

A
y

Ant=Ant+1

NO

Finished m ants?

4.3.4 Local search
(optional)

YES

<.
[ + 19)] = J9)]

4.3.5 Pheromone updatin%l— ——e e

EXIT . YES 4.3.6 Termination

Optimized schedule(s) criteria reached?
recorded

NO

Figure 4.2: Proposed ACO-PPMSO algorithm

4.3.1 Initialization

The optimisation process starts by reading details of the power system
under consideration (eg. generating capacity of each unit, daily system
demands, time step for duration shortening etc.). In addition, various
ACO parameters (eg. initial pheromone trails ( 7,), number of ants used,

pheromone evaporation rate etc.) need to be defined.
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4.3.2 Construction of a trial maintenance schedule

A trial maintenance schedule is constructed using the ACO-PPMSO graph
shown in Figure 4.1. In order to generate one trial maintenance schedule,
an ant travels to one of the decision points (maintenance tasks) at a time.
At each decision point, d,, a three-stage selection process that corresponds

to the three decision variables, v1,1, v2,» and v3,,, is performed.

At each stage, the probability that decision path opt is chosen for

maintenance of task d, in iteration t is given by:

[Tn,opt(t)]a E[”n,opt]ﬂ
Z[Tn,y(t)]a E[ﬂn,y]ﬂ 4.9)

yODP, ,

pn,opt(t) =

subscripts ¢ = 1, 2 and 3 refer to the three decision variables, v1,,, v2, and
U3,1; Tnopt(f) is the pheromone intensity deposited on the decision path opt
for task d, in iteration t; /Juq is the heuristic value of decision path opt for
task d,; a and Fare the relative importance of pheromone intensity and

the heuristic, respectively.

It should be noted that the term opt in Eq. 4.9 represents the decision path
under consideration, of all decision paths contained in set DP.,. When
used for stages 1, 2 and 3, respectively, the terms opt and DP., are
substituted with those associated with the decision variable considered at
the corresponding stage (Table 4.1). The pheromone level associated with
a particular decision path (e.g. deferral of a particular maintenance task) is
a reflection of the quality of the maintenance schedules that have been
generated previously that contain this particular option. The heuristic
associated with a particular decision path is related to the likely quality of
a solution that contains this option, based on user-defined heuristic
information. The following paragraphs detail the three-stage selection
process for decision point (maintenance task) d,, including the

adaptations required when using Eq. 4.9 for each stage.
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Table 4.1: Adaptations for Eq. 4.9 in stages 1, 2 and 3 of the selection process

Stage 1 Stage 2 Stage 3
c 1 2 3
opt stat[] DP;, dur 0 DP,,, day 0 DRy, cnays

DP, ,={normal, shorten, DP25 = {0, s, DP; , chay = {chdur, O DP,,: ear,
DP¢n ' defe 2S,..., g
it NormDur} earn+1,...,lat, —chdur, + 1}
Tn,opt T T T
n,stat n,dur n,chduy, day
_ (R \" —_Load

’7n,0pt nn,defer<’7n,shorten</7n,normal ,7n dug Odur Hn,chduﬁ,day— @n,iiduﬁ,day mn?ciduﬁ,day

In stage 1, a decision needs to be made whether to perform the
maintenance task under consideration at normal or shortened duration, or
to defer it (decision variable vy, in Figure 4.1). In this case, ¢ =1 and opt =
stat O DP;,,={normal, shorten, defer} is the set of decision paths associated
with decision variable v1, for task d,. The probability of each of these
options being chosen is a function of the strength of the pheromone trails
and heuristic value associated with the option (Eq. 4.9). For the PPMSO
problem, the heuristic formulation should generally be defined such that
normal maintenance durations are preferred over duration shortening,
and deferral is the least favored option (Eq. 4.10). However, real costs
associated with duration shortening and deferral options can be used if
the extra costs incurred associated with these options are quantifiable and
available. The adaptations required for Eq. 4.9 to be used at the stage 1
selection process are summarized in Table 4.1. It is suggested that values
of the heuristics should be selected such that:

nn,defer<,7n,shorten<nn,normal (410)

Once a decision has been made at stage 1, the selection process proceeds
to stage 2 (decision variable v,, in Figure 4.1), where the duration of the
maintenance task under consideration, d,, is required to be selected from
a set of available decision paths DP,, = {0, s,, 2s, . . . , NormDur,}. The
symbols s, and NormDur, denote the time step for maintenance duration
shortening, and the normal maintenance duration, respectively. For Eq.
49 to be used at stage 2, the terms ¢ and opt in the equation are

substituted by the values 2 and dur O DP,,, respectively. It should be
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noted that if the ‘normal” or ‘defer” options were chosen at stage 1, the
normal duration of the maintenance task, or a duration of 0, respectively,
are automatically chosen for the task. In the case of duration shortening, a
constraint is normally specified where each maintenance task has a
minimum duration at which the completion of the task cannot be further
accelerated due to limitations such as the availability of highly specialized
technicians. This constraint can be addressed at this stage such that only
feasible trial maintenance schedules (with regard to this constraint) are
constructed (see Section 4.4 for details of such constraint-handling
techniques). The pheromone trails and heuristic values associated with
optional durations are used to determine the probability that these
durations are chosen. In order to favor longer maintenance durations (i.e.
the smallest amount of shortening compared with the normal
maintenance duration), it is suggested that the heuristic value associated
with a decision path should be directly proportional to the maintenance
duration (Eq. 4.11).

”n,dudeur (411)

The substitutions for the various terms in Eq. 4.9 when used in stage 2 are

summarized in Table 4.1.

Once a maintenance duration has been selected, the solution construction
process enters stage 3 (decision variable v3, in Figure 4.1), where a start
time for the maintenance task is selected from the set of optional start

times available DP, ., = {chdur, O DPy: eary, earnt1,..., lat, - chdur, +

1}, given a chosen duration of chdur,. In order to utilize Eq. 4.9 at stage 3,

adjustments are made such that ¢ = 3 and opt = day O DP; It should

n,chduy *
be noted that this stage is skipped if the ‘defer” option is chosen at stage 1.
The probability that a particular start day is chosen is a function of the
associated pheromone trail and heuristic value. The suggested heuristic
formulation for selection of the maintenance start day is given by Egs.
4.12to4.17.

— [,Res " Load
”n,chdu;,,day - (/7n,chdu5,day m]n,chdup;,day (412)
ZYResV(kyo |:Rnchdug,day(k)
Res — kDJn,chduh,day

nn,chdug,day - (413)

Z (YResV (k¥0 -1) [Rnchdug, day(k)

k D‘]n,chduh day
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ZYLoadV(k)zo [Cn,chdu;,,day(k)
Load — kDJn,chduh.day (4 14)

nn,chdug,day -
Z(YLoadV(k):O -1) [Cn,chdug,day(k)

kDJn,cht:lurhday
_J1 if no violation of resource constraints in timeiperk
Tresvigo = 0 otherwise (4.15)
v _]1 if no violation of load constraints in time perikd 116
toaVi® o otherwise (4.16)
1 if resource constraints are considered
w= ) (4.17)
0 otherwise
where 77, chau day(t) is the heuristic for start time day O DRy, jq, for task

dn, given a chosen duration chdur,; R, gy day(K) Tepresents the

prospective resources available in reserve in time period k if task d, is to
commence at start time day and takes chdur, to complete (less than 0 in the

case of resource deficits); C, gnay aay(K) is the prospective power

generation capacity available in reserve in time period k if task d, is to
commence at start time day and takes chdur, to complete (less than 0 in the

case of power generation reserve deficits); J, chay gay=197y U DP;

day

n,chdug :
< k < day + chdur, - 1} is the set of time periods k such that if task d, starts

at start time day, that task will be in maintenance during period k.

As mentioned above, the heuristic formulation in Eq. 4.12 includes a

Res

. chdug, day and a load-related term, 7-° These

resource-related term, 77 . chdupday”
two terms are expected to evenly distribute maintenance tasks over the
entire planning horizon, which potentially maximizes the overall
reliability of a power system. For PPMSO problem instances that do not
consider resource constraints, the value of w in Eq. 4.12 can be set to 0 (Eq.
417). In order to implement the heuristic, each ant is provided with a
memory matrix on resource reserves and another matrix on generation
capacity reserves prior to construction of a trial solution. This is updated
every time a unit maintenance commencement time is added to the

partially completed schedule.

The three-stage selection process is then repeated for another
maintenance task (decision point). A complete maintenance schedule is

obtained once all maintenance tasks have been considered.
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4.3.3 Evaluation of trial maintenance schedule

Once a complete trial maintenance schedule, s00S, has been constructed
by choosing a maintenance commencement time and duration at each
decision point (i.e. for each maintenance task to be scheduled), an ant-
cycle has been completed. The trial schedule’s objective function cost
(OFC) can then be determined by an evaluation function, which is a

function of the values of objectives and constraint violations:

OFC(s)= f(objl(s),obL(s),...,obLT(s),viq(s),viq(s),...,viQT(s)) (4.18)

where OFC(s) is the objective function cost associated with a trial
maintenance schedule, s; obji(s) is the value of the first objective; vioi(s) is
the degree of violation of the first constraint; Zr is the total number of
objectives; Cr is the total number of constraints that cannot be satisfied

during the construction of trial solutions.

It should be noted that not all constraints specified in a problem are
accounted for using Eq. 4.18. Maintenance windows, precedence and
minimum duration constraints, just to name a few, can be satisfied during
the construction of a trial solution and would not appear in Eq. 4.18. In
other words, a complete trial solution would have satisfied these
constraints already before the evaluation process is carried out. On the
other hand, load and reserve constraints can only be checked upon
completion of a complete trial solution and therefore the violation of these
constraints, if there is any, can only be reflected through penalty terms in
the objective function (Eq. 4.18). Detailed categorizations of constraints
commonly encountered in PPMSO problems, as well as the appropriate
methods of handling them, are presented in Section 4.4. In general, the
trial schedule has to be run through a simulation model in order to
calculate some elements of the objective function and whether certain
constraints (those accounted for through penalty terms) have been

violated.

After m ants have performed procedures 4.3.2 and 4.3.3, where m (the
number of ants) is predefined in procedure 4.3.1, an iteration cycle has
been completed. At this stage, a total of m maintenance schedules have
been generated for this iteration. It should be noted that all ants in an

iteration can generate their trial solutions concurrently, as they are
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working on the same set of pheromone trail distributions in decision

space.

4.3.4 Local search

Recently, local search has been utilized to improve the optimisation
ability of ACO. While it has been found to result in significant
improvements in some applications (Dorigo et al., 1997b; den Besten et al.,
2000), little success has been obtained in others (Merkle et al., 2002). Local
search has also been found useful for some problems where the

formulation of heuristics is difficult (Dorigo et al., 2004b).

In this research, local search is coupled with ACO to solve the PPMSO
problem. As part of the local search algorithm proposed in this thesis, a
‘target maintenance schedule’ is selected from the trial solutions
generated by the ACO algorithm, an example being the best maintenance
schedule obtained in each iteration. A ‘neighbor maintenance schedule’ is
then generated by performing local search based on the neighborhood
definition, which must be specified beforehand, as discussed later.
Satisfaction of constraints that can be checked during the construction of
trial maintenance schedules (see Section 4.4), such as the allowable
maintenance window and precedence constraints, are then checked. A
simulation model is used to assess the quality of the ‘neighbor
maintenance schedule’. If the neighbor results in a better objective
function cost (OFC), the original ‘target maintenance schedule’ is
replaced. Based on the definition of neighborhood, more ‘neighbor
maintenance schedules” are generated until a termination criterion, which
must be predefined, is met. A common termination criterion is the
maximum number of ‘neighbor maintenance schedules” allowable per
‘target maintenance schedule’. By the end of the local search, the best-
found ‘neighbor maintenance schedule’, or the original ‘target
maintenance schedule’” in an event where no better local solution can be
found, is adopted to proceed to the next step of the ACO-PPMSO
algorithm (Figure 4.3).
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Select a “target
maintenance schedule’

A 4

A 4

Perform neighborhood search

Constraints satisfied?

NO

YES

Run simulation model

‘Target maintenance | yfg NO | ‘Target maintenance
schedule’ replaced Better OFC? schedule’ retained

NO/\
T .

erminate local search? <

YESl

EXIT

Figure 4.3: Local search framework for ACO-PPMSO algorithm

The definition of the neighborhood is problem-specific, and therefore
must be carefully considered when applied to new optimisation
problems. In this research, two local search operators are defined for the
ACO-PPMSO algorithm, namely the Duration Extender and the PPMSO-2-
opt, respectively. These operators search in different neighborhoods of the

‘target maintenance schedule’.

(1) The Duration Extender operator is developed to increase the
robustness of the ACO metaheuristic by dealing directly with the
optimisation objectives. In particular, the operator looks for a reduced
number of solutions that have shortened and/or deferred durations,

which in turn, results in better OFCs.

As part of the Duration Extender, if the ‘target maintenance schedule” does
not include any shortening or deferral decisions, the local search routine
is aborted. However, if this is not the case, local search is applied, as part

of which a shortened or deferred task, chosen_d,, is randomly selected. If
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the selected task, chosen_d, was originally shortened, local search will be
performed in two neighborhoods: (i) The maintenance duration of the
chosen task, chosen_d,, is extended by s, time periods, where s, is the
maintenance duration time step of task d,. (ii) The maintenance duration
of the chosen shortened task, chosen_d,, is rescheduled by s, periods
earlier and s, time periods are added to its maintenance duration.
Otherwise, if the selected task was originally deferred, the minimum non-
deferral maintenance duration is chosen and a start time is randomly
selected for the task. For the Duration Extender, a termination criterion can
be specified such that local search is aborted when all shortened/deferred

task(s) in the ‘target maintenance schedule” is/are considered.

(2) The PPMSO-2-opt operator is developed by modifying the 2-opt
strategy used when solving the Travelling Salesman Problem (TSP)
(Stutzle et al., 1997), where two edges of connected cities are exchanged. In
PPMSO-2-opt, the maintenance start times of a pair of randomly selected
tasks of the ‘target maintenance schedule” are exchanged. It should be
noted that the maximum number of possible ‘neighbor maintenance
schedules” formed based on a ‘target maintenance schedule’
("c, = _ NP

21N -2)!

search. Otherwise, a smaller number of local solutions can be defined as

) can be specified as the termination criterion of the local

the stopping criterion.

4.3.5 Pheromone updating

As described previously in Section 3.2.2, two mechanisms, namely
pheromone evaporation and pheromone rewarding, are involved in the
pheromone updating process. Pheromone evaporation reduces all
pheromone trails by a factor. In this way, exploration of the search space
is encouraged by preventing a rapid increase in pheromone on
frequently-chosen paths. Pheromone rewarding is performed in a way

that reinforces good solutions.

In Section 3.3, various ACO algorithms were reviewed. As pointed out in
the same section, these algorithms are distinguished from each other in
the way pheromone updating is performed. In the ACO-PPMSO
formulation, pheromone updating is performed on the pheromone

matrices used for the three-stage selection process. A general pheromone
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updating formulation (regardless of the ACO algorithm adopted) is

introduced for this purpose:

7.(t+1) = plz.(t)+A7.(t) (4.19)
Q .
N~ N\ If * l:l SJ date
AT(t)= D, q=10FC(Spum P (4.20)
oo 0 pdat otherwise

where ¢ is the index of iteration; (1 - o) is the pheromone evaporation rate;
lower asterisk * of 7 denotes the element of the pheromone matrix under
and 1 for decision variables vy, v2 and vs,

consideration ( 7 T

n,opt/ °n,dur n,dur,day

respectively); §4ae is any trial schedule contained in Solupaa(t), which is
the set of trial schedules chosen to be rewarded in iteration f; Az (t) is the
amount of pheromone rewarded to pheromone trail 7, by the end of
iteration t; OFC(§pae) is the objective function cost associated with the

trial schedule S that contains element *; Q is the reward factor (a user-

update

defined parameter).

In order to apply the different ACO algorithms reviewed in Section 3.3 to
the PPMSO problem, additional specifications are made to the general

pheromone updating rules:
(A) Ant System (AS)

In AS, the trial maintenance schedules obtained by all ants are rewarded
by an amount of pheromone (Eq. 4.21), which is a function of the

individual objective function cost (OFC).

SOpaat) = Sok (t) 4.21)

where Solipaae(t) is the set of trial maintenance schedules for which
schedule components are rewarded by pheromone; Solu(t) is the set of all

trial maintenance schedules generated in iteration .
(B) Elitist-Ant System (EAS)

In EAS, only the least-OFC schedule(s) in every iteration is/are rewarded
(Eq. 4.22).
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SOLpdate(t) = Ster—best(t) (422)

where ¢ (t) is the best maintenance schedule evaluated in iteration ¢.

iter—bes
(C) Max-Min Ant System (MMAS)

Similarly to EAS, MMAS only rewards iteration-best trial solution(s) (Eq.
4.22). Additionally, upper and lower bounds are imposed on the
pheromone trails in order to prevent premature convergence and greater

exploration of the solution surface. These bounds are given by:

1 Q

Tax(1+1) = ﬁ E’m . (4.23)
Tc,min(t +l) - Z-max(t +1)(1_ V pbest) (424)

(an: - 1)%/ Poest

where 7. is the number of decision points for decision variable v.; avg. is
the average number of decision paths available at each decision point for
decision variable v; subscript ¢ = 1, 2 and 3 refers to the three decision
variables considered in procedure 4.3.2; prs is the probability that the
paths of the current iteration-best-solution, siersest(t), will be selected,
given that non-iteration best-options have a pheromone level of 7:,(f) and

all iteration-best options have a pheromone level of Fu(t).

The lower and upper bound of pheromone are applied to all decision

paths in the search space:

Tomin(t) S Ty op(t) < Ty (t) ;0pt O DR, , €=1,2,3 for all t,n. (4.25)

4.3.6 Termination of run

Procedures 4.3.2 to 4.3.5 are repeated until the termination criterion of an
ACO run is met, e.g. either the maximum number of evaluations allowed
has been reached or stagnation of the objective function cost has occurred.
A set of maintenance schedules resulting in the minimum OFC is the final

outcome of the optimisation run.
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4.4

Constraint handling techniques in ACO-PPMSO

ACO is an unconstrained optimisation metaheuristic. As constraints are
inevitable in PPMSO problems, there is a need to find ways of
incorporating constraints during optimisation. In this research, two
different constraint handling techniques are adopted. In order to decide
which of the two techniques should be used, constraints encountered in
PPMSO problems have been characterized using the following

classification scheme:

Direct vs. indirect constraints: Constraints can be characterized based on
the earliest stage at which they can be addressed during optimisation. The
maintenance window (Eq. 4.2), continuity (Eq. 4.3), precedence (Eq. 4.6)
and minimum maintenance duration (Eq. 4.8) constraints can be
addressed when trial solutions are being generated during ant cycles
(procedure described in Section 4.3.2). On the other hand, the violation of
load (Eq. 4.4), reliability (Eq. 4.7) and resource (Eq. 4.5) constraints often
cannot be identified from a partially built trial maintenance schedule. As
part of the classification scheme introduced in this paper, the former
constraints are referred to as direct constraints and the latter as indirect

constraints.

Rigid vs. soft constraints: Constraints can also be classified based on their
“rigidity”. For rigid constraints, such as maintenance windows,
continuity, minimum maintenance duration, precedence and load
constraints, even the slightest violations are generally intolerable. On the
other hand, constraints, such as resource and reliability constraints, may
be able to be violated to a degree specified by decision makers and are

therefore referred to as “soft” constraints.

The two constraint handling techniques used in the ACO-PPMSO
formulation and the constraint types they are able to accommodate

include:

Graph-based technique: This technique utilizes candidate lists during ant
cycles when trial solutions are being constructed (Figure 4.1). Given a
partially built trial schedule, a candidate list consists of the optional start
times that are available for a maintenance task, such that the constraints

under consideration are not violated. Direct and some rigid constraints,
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such as the maintenance window, precedence and minimum duration
constraints, can be accounted for using this technique. During the
construction of a trial maintenance schedule, an ant incrementally adds
start times to a partially built schedule. By dynamically updating the
candidate lists of “unvisited units’, only start times that would result in
solutions that satisfy the maintenance window and precedence

constraints are considered.

In order to illustrate the mechanism of the graph-based technique, the
following example is considered. As part of a case study system, two
maintenance tasks, namely task 1 and 2, are required to be scheduled over
year 2006. Each task normally takes 16 days, which can be shortened by a
time step of 4 days or deferred altogether if necessary. In addition, the

following constraints must be satisfied:

Constraint 1 - Each task can be shortened only up to 50% of normal

duration.

Constraint 2 - Both tasks can start as early as in 1 Jan 2006 and must
finish no later than 30 June 2006.

Constraint 3 - No maintenance task should start on a public holiday.

Constraint 4 - Task 1 must precede task 2.

During the construction of trial maintenance schedules, either task 1 or
task 2 can be considered first. For demonstration purposes, let us assume
that task 1 is being considered first (Figure 4.4). As detailed in section
4.3.2, the selection of a maintenance duration and start time for task 1 is a
three-stage process. At stage 1, decision has to be made whether
maintenance task 1 is carried out as normal, is shortened in duration, or is
deferred (Figure 4.4).
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Decision
variable v;

o @

normal

Figure 4.4: Stage-1 selection process

Once a decision has been made at stage 1, the decision path set available
at stage 2 is updated correspondingly. If the ‘normal” option was chosen
at stage 1, the normal maintenance duration (16 days) would
automatically be assigned to task 1. Similarly, a duration of 0 day is
assigned if deferral was the decision made for task 1 at stage 1.
Alternatively, if the ‘shorten” option was chosen, decision paths of
shortened durations 12, 8 and 4 days are available at stage 2. However,
due to constraint 1, only a maximum of 50% of normal maintenance
duration can be shortened, hence the 4-day duration decision path is no
longer a valid decision path) and is therefore crossed out (as otherwise, an
infeasible maintenance schedule that violates constraint 1 could be

constructed (Figure 4.5)).

Decision Decision
variable v; variable v,

i

i Decision path excluded

i due to minimum
- maintenance duration

constraint.

- .

- p
.
.
.
’ d

Figure 4.5: Handling of constraint 1
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Once a decision has been made at stage 2, stage-3 selection is carried out.
As the earliest start time and the latest finish time of task 1 are fixed
(constraint 2), the start day decision paths available for task 1 are adjusted
dynamically corresponding to the maintenance duration chosen at stage
2. Let us assume that a 12-day maintenance duration was chosen at stage
2. Consequently, the earliest and latest start days for task 1 are 1 Jan 2006
and 19 Jun 2006, respectively (Figure 4.6). In contrast, if a duration of 8
days was selected, the latest start day available at stage 3 would be 23

June 2006 (Figure 4.6).
Decision Decision Decision
variable v; variable v variable U3
N N I
! I I 1 Jan 06
! ! ;.- 2]Jan 06
! ! @
i i -
i *v_ 122 Jun 06
; SO 23 Jun 06
s @77 @
el [17an 06
;.- 2]an 06

<118 un 06
19 Jun 06

Figure 4.6: Handling of constraint 2
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At stage 3, a start day is required to be chosen from the decision paths
corresponding to start days of 1 Jan 2006 to 19 Jun 2006. However, Easter
holidays fall on 14-17 April in 2006 and due to constraint 3, these decision
paths are eliminated (Figure 4.7) so that only feasible trial schedules with

regard to the public-holiday constraints are built.

Decision Decision Decision
variable v; variable v, varlall)le U3
] !

| ‘< ’

1 Jan 06
A \ | 2 Jan 06

Seeel____. o Decision paths
12 days .>< 14 Apr 06 } excluded due to

y 17 Apr 06 public holiday
AN : constraints
18 Jun 06
19 Jun 06

Figure 4.7: Handling of constraint 3

Once the decisions regarding the maintenance duration and start day for
task 1 have been made, the three-stage selection process is repeated for
task 2. It should be noted , however, that tasks 1 and 2 are related due to
constraint 4. Therefore, the decisions made for task 1 have an impact on
the options available for task 2. For example, if the maintenance of task 1
starts on Jan 1 2006, the earliest optional start day available for task 2 is 13

Jan 2006, if task 2 is carried out at normal duration (Figure 4.8).
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If task 1 starts on 1 Jan 2006, it will
finish on 12 Jan 2006. Due to the
precedence constraint that specifies
task 1 must precede task 2, the
earliest possible start day for task 2
is 13 Jan 2006.

Decision Decision Decision

variable v; variable v, variable v;
1

’ ’

7’ 1
’ 1
Task 1 . --—-| shorten |- .
\ \
\ \
\\ \

N \ s

R o

W
S
\

N N

~
RS

Similarly, if task 1 starts on 13 Apr
2006, it will finish on 24 Apr 2006.
Due to the precedence constraint, the
earliest possible start day for task 2 is
25 Apr 2006.

Figure 4.8: Handling of constraint 4

In short, the graph-based constraint handling technique dynamically
adjusts the ACO-PPMSO graph (Figure 4.1) as trial maintenance

schedules are being constructed incrementally.

Penalty-based technique: Penalties are the most common technique used
for constraint handling when using metaheuristics (Coello Coello, 2002).
A penalty function is used to transform a constrained optimisation
problem into an unconstrained problem by adding or subtracting a value
to/from the objective function cost based on the degree of constraint
violation (Coello Coello, 2002). When applying ACO to the design of
water distribution systems, Maier et al. (2003a) used penalty functions to
negatively reinforce pipe diameters that result in trial solutions that
violate pressure constraints. In ACO-PPMSO, penalty functions are used

to address indirect or potentially soft constraints, such as the availability
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4.5

of personpower to perform the maintenance and load constraints. When
dealing with soft constraints, penalty factors may be varied to reflect the
amount of constraint violation that may be tolerated. Penalty costs also
have to be used to account for indirect constraints, as the degree of
constraint violation is not known until a complete trial solution has been
constructed, as discussed earlier. In such cases, the degree of violation

generally has to be obtained with the aid of a simulation model.

Using the last example, if load constraints were considered, they would
have to be addressed using the penalty-based technique. This is because
whether or not the system load could be met is unknown until a complete
trial maintenance schedule has been constructed and run through a

simulation model.

The ability to implement direct and some rigid constraints using the
graph-based technique is one of the attractive features of using ACO for
PPMSO. Firstly, by preventing the generation of infeasible solutions, the
number of simulation model runs required is reduced. This is
advantageous for real-world PPMSO problems, as the number of times
the simulation model has to be run is a major source of computational
overhead. Moreover, there are difficulties associated with the use of
penalty-based techniques that remain unresolved at the time of writing, in
spite of extensive research into this area (Coello Coello, 2002). For
example, hand tuning is required for assigning appropriate penalty
factors to each constraint and objective term in the objective function.
Many researchers have proposed automated approaches for estimating
penalty factors (Coello Coello, 2002). However, these approaches often
introduce additional parameters for which appropriate values have to be
provided. For the reasons outlined above, the graph-based approach is
preferred over the penalty-based technique. However, in some instances,
such as for indirect constraints, this approach cannot be used, as the
degree of constraint violation can only be ascertained once a complete
trial schedule has been generated. In such situations, the penalty-based

technique has to be used (as discussed above).

Software development

A program has been coded in the Fortran 90 programming language to
implement the ACO-PPMSO formulation. The full source code and
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4.6

sample of input files are attached in Appendix A. The random number
generator subroutine used in the program was written by Nishimura
(1997).

Summary

In this chapter, important contributions of the research work presented in
this thesis have been detailed. The definition of a power plant
maintenance scheduling optimisation (PPMSO) problem has been
generalized by incorporating the options of duration shortening and
maintenance deferral. Shortening of the duration and deferral of
maintenance tasks are inevitable when scheduling for maintenance in a
real world power system, such as in the event of anticipated demand
increase. Incorporation of these options before proposing a new
optimisation formulation allows PPMSO problems to be solved more

practically.

A new formulation has been proposed to enable Ant Colony Optimisation
(ACO) to be applied to PPMSO. Several issues with regard to the practical
utilization of the proposed formulation have been resolved. These include
the constraint-handling techniques, heuristic information and local search

algorithms (optional in the formulation).

Constraints commonly encountered in PPMSO have been categorized
based on whether they can be accounted for during the construction of a
trial solution and whether they can be violated to achieve better objective
values. Techniques for handling different constraint types have been
proposed correspondingly. In particular, an advantage of using ACO for
PPMSO is the possibility of incorporating some constraints during the
construction of trial solutions, eliminating the need for complicated

penalty functions in the formulation.

In order to improve the performance of the ACO formulation, a new
heuristic formulation has been proposed. The heuristic formulation
guides the optimisation algorithm to search in promising regions of a
problem space, which should be extremely useful in the earlier stage of an
optimisation run when the pheromone intensity is uniformly distributed
over the search space. The algorithms adopted by two different local
search operators, namely the Duration Extender and the PPMSO-2-opt,
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have been presented. Given a “target maintenance schedule’, the Duration
Extender searches the neighborhood of the schedule for trial solutions
that include less duration shortening, whereas the PPMSO-2-opt
exchanges the maintenance start times of two randomly chosen tasks.
These local search operators are designed to conduct a more refined
search within the neighborhood of iteration-best maintenance schedules

given by ACO, which were obtained using pheromone and heuristics.
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Chapter 5
Testing On Benchmark Case Studies

Power plant maintenance scheduling optimisation (PPMSO) case studies can
have completely different fitness landscapes, depending on the objectives,
constraints, and number of variables of a particular problem. Adopting the
representation of combinatorial optimisation problems outlined in Section

3.2.1, the definition of fitness landscapes given by Merz (2000) is as follows:

“The fitness landscape L = (S, f, d) of a problem instance for a given combinatorial
optimisation problem consists of a set of trial solutions, S, an objective function f: X —
R, which assigns a real-valued fitness to each of the trial solutions in S, and a distance

measure d, which defines the spatial structure of the landscape.”

In other words, the fitness landscape is a characteristic of the search space of an
optimisation problem, which is defined by the fitness function evaluated over
the spectrum of different solutions to the problem. Therefore, it is important to
test whether the new ACO-PPMSO formulation, the new heuristic formulation
and the local search operator, developed as part of the contribution of this
research can be effectively used for PPMSO case studies with different

characteristics.

To test the utility of the new ACO-PPMSO formulation, two benchmark case
studies that have been previously published in the literature (Escudero et al.,
1980; Yamayee et al., 1983; Aldridge et al., 1999; Dahal et al., 1999; Dahal et al.,
2000; El-Amin et al., 2000), as well as modified versions of both case studies, are
considered. These case studies involve finding optimum maintenance
schedule(s) for a 21-unit and a 22-unit power system, respectively. Despite the
similarity in the number of generating units, the case studies are different in
objectives and constraint requirements. The system specification and the
application of the proposed ACO-PPMSO formulation to the original and the
modified versions of the 21- and 22-unit case studies are detailed in Sections 5.1
and 5.2, respectively. Experimental procedures, results and analysis follow in

Sections 5.3 and 5.4. A summary of the chapter is given in Section 5.5.
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Benchmark case studies

As mentioned above, in order to test the new ACO-PPMSO formulation
developed as part of this research, two benchmark case studies from the
literature, namely a 21- and 22-unit case study, are utilized. The
motivation for choosing these case studies is the availability of results
obtained by other optimisation methods, with which the results obtained
using the new ACO-PPMSO formulation can be compared. The
specifications of the two case studies are detailed in Sections 5.1.1 and

5.1.2, respectively.

5.1.1 21-unit system

The first case study considered in this research is the 21-unit power plant
maintenance problem investigated by Aldridge et al. (1999) and Dahal et
al. (1999; 2000) using a number of metaheuristics. This case study is a
modified version of the 21-unit problem introduced by Yamayee et al.
(1983), and consists of 21 generating facilities, of which 20 units are
thermal and one is hydropower. System details are listed in Table 5.1. All
of the machines are to be scheduled for maintenance either in the first or
second half of a year’s planning horizon, which results in a combinatorial
optimisation problem with approximately 518 x 102 total possible
solutions. The objective of the problem is to even out reserve generation
capacity over the planning horizon, which can be achieved by minimizing

the sum of squares of the reserve (SSR) generation capacity in each week.
Constraints to be satisfied include:

1. Maintenance window constraints: The earliest start time and latest
finish time of maintenance tasks for each machine are detailed in Table

5.1.

2. Resource constraints: A limit of 20 maintenance personpower is

available each week.

3. Demand constraints: A single peak load of 4739 MW has to be met.
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As mentioned previously, a number of metaheuristics have been applied
to this problem. Aldridge et al. (1999) used generational (GN) and steady
state (SS) genetic algorithms (GAs) and found that the GAs outperformed
a heuristic method, which schedules maintenance outages in order of
decreasing capacity. By coupling GAs with fuzzy logic, which utilizes
knowledge-based experience in the problem formulation, Dahal et al.
(1999) obtained a maintenance schedule that resulted in a better objective
function value than the best-known solution given by Aldridge et al.
(1999), although this required slight violations of personpower
constraints. In another study, Dahal et al. (2000) applied Simulated
Annealing (SA), a Simple GA and an Inoculated GA to this problem,
further highlighting the ability of metaheuristics to outperform more
traditional methods used for optimizing power plant maintenance
scheduling. The best results obtained by the studies mentioned above are

summarized in Section 5.4.
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Table 5.1: Details of 21-unit system (Aldridge et al., 1999)

NOTE: This table is included on page 100 of the print copy of the
thesis held in the University of Adelaide Library.
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Problem formulation

Mathematically, this optimisation problem can be defined as the
determination of maintenance schedule(s) such that SSR, which is defined
as the sum of square of reserve generation capacity within the planning

horizon, is minimized:

2
N
Min{SSRE > | D R = D0 D X.P L (.1)

0Ty, \ N=1 d, 0D, kOS,,

where P, is the generating capacity of unit d,; L; is anticipated load for

period t.

subject to the maintenance window, load and personpower constraints, as

given by:
ear, < start, < lat, - NormDur, +1  forall d, O D. (5.2)
z Z:X,LkRe%’k <ResAvai foralltOTg,, (5.3)
d, 0D, KOS, '
DP- Y DX P (2L foralltOT,,, (5.4)
n d, 0D, kOS,,

where ear, is the earliest start time for unit d,,; lat, is the latest start time for
unit d,; NormDur, is the outage duration (week) for unit d,; start, is the
maintenance start time for unit d, and ResAvgi is the personpower

available at period .

It should be noted that personpower is considered as a type of resource
constraint. The maintenance window constraints are taken into account
by the construction graph-based technique (Section 4.4), whereas both
load and personpower constraints are indirect and are therefore taken

into account by using penalty-based techniques (Section 4.4).

When applying the ACO-PPMSO formulation to this case study, the
heuristic developed as part of this research (Egs. 4.12 to 4.17) was used
together with pheromone for selection of start times when generating trial
maintenance schedules. It should be noted that the value of w in Eq. 4.12
was set to 1, as utilization of resource (personpower) constraints is

involved in this case. Upon completion of a trial maintenance schedule, a
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simulation model was used to calculate the SSR value and any violations
of personpower or load constraints associated with schedule s. The
quality of individual maintenance schedules in this problem is given by
an objective function cost (OFC), which is a function of the value of SSR

and the total violation of personpower and load constraints (Eq. 5.5).
OFC(s)= SSR(s)(ManVigy(s)+1)[(LoadVig,(s)+1) (5.5)

where OFC(s) is the objective function cost ($) associated with schedule s;
SSR(s) is the sum of squares of reserve generation capacity (MW2)
associated with schedule s; ManVio:(s) is the total personpower shortfall
(person) associated with schedule s; LoadViowi(s) is the total demand
shortfall (MW) associated with schedule s.

The calculation of constraint violations is given in Egs. 5.6 to 5.9. For a
trial maintenance schedule, the total personpower shortfall associated
with schedule s, ManViow(s), is given by summation of the personpower

shortage in all periods within the planning horizon:

ManViq,(s)= z [ z zxn’kReﬁyk—ResAvqi] (5.6)
tOTyy \d, OD; kOS;;
where Twmv is the period where personpower constraints are violated, and
is given by:
Tuv :[t: Z an,kRegyk > ResAvai] (5.7
d, 0D, kOS,;

The total demand shortfall associated with schedule s, LoadViosw(s), is the
summation of demand shortfall in all periods within the planning
horizon. The calculation of this value may be represented by the

following equation.
LoadViqot(S): Z [Z Pn - Z Z Xn,kpn} (58)
taT,, \ n d, 0D, KOS,

where Tyy is the period where load constraints are violated, and is given

by:

Toy =(t: an - Z zxn,kpn <L) (5.9)

d, 0D, kOS,
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The OFC can be viewed as the virtual cost associated with a maintenance

schedule.

5.1.2 22-unit system

The 22-unit power plant maintenance scheduling optimisation problem
was first solved by Escudero et al. (1980) using an implicit enumeration
algorithm and later by El-Amin et al. (2000) using tabu search. In this
problem, each generating unit is required to be scheduled for
maintenance once within a planning horizon of 52 weeks. Details of the
system are shown in Table 5.2. The objective when scheduling for
maintenance is to even out reserve generation capacity over the planning

horizon subject to the following constraints:

(1) The maintenance window constraints specify that all units can be
maintained anytime within the planning horizon and have to finish
maintenance by week 52, except for unit 10, which can only be taken
offline between weeks 6 and 22.

(2) Load constraints require peak demands (Table 5.3) to be met.

(3) The reliability constraint requires a minimum reserve of 20% of the

peak demand throughout the planning horizon.

(4) The two precedence constraints specify that maintenance of units 2

and 5 has to be carried out before that of units 3 and 6, respectively.

(5) Units 15 and 16, as well as units 21 and 22, cannot be maintained

simultaneously due to personpower constraints.
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Table 5.2: Details of 22-unit system (Escudero et al., 1980)

NOTE: This table is included on page 104 of the print copy of the
thesis held in the University of Adelaide Library.
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Table 5.3: Weekly peak load of the 22-unit system (El-Amin et al., 2000)

Week | Demand (MW) | Week Demand (MW) | Week | Demand (MW)
1 1694 19 1695 37 2089
2 1714 20 1675 38 1989
3 1844 21 1805 39 1999
4 1694 22 1705 40 1982
5 1684 23 1766 41 1672
6 1763 24 1946 42 1782
7 1663 25 2116 43 1772
8 1583 26 1916 44 1556
9 1543 27 1737 45 1706
10 1586 28 1927 46 1806
11 1690 29 2137 47 1826
12 1496 30 1927 48 1906
13 1456 31 1907 49 1999
14 1396 32 1888 50 2109
15 1443 33 1818 51 2209
16 1273 34 1848 52 1779
17 1263 35 2118
18 1655 36 1879

Problem formulation

In order to even out reserve generation capacity, the formulation used in
both Escudero et al. (1980) and El-Amin et al. (2000) for the 22-unit
problem was designed to minimize the summed deviation of generation
reserve from the average reserve over the entire planning horizon, LVL.
Mathematically, the optimisation of this case study can be described as
the minimization of the summed deviation of generation reserve from the

average reserve over the planning horizon (Egs. 5.6 to 5.8):
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Regy,~ Re$|} (5.6)

plan

Min{LVL: >

taT

where the generation reserve ( Res) and average reserve ( Reg,,) are given

by:

N
R6$ :zpn - Z zxn,kpn - Lt (57)
n=1

nOD, kOS,,

Z Res

—_ tDTplan (58)
T

Res,, =

where L; is the anticipated load demand for period ¢; P, is the generating
capacity of unit d,; T is the total number of time indices, subject to the

following constraints:

eaty < start, < lat, - NormDur, +1  forall d, O D. (5.9)
[Z P- D an,kPn}Z L, for allt O T, (5.10)
n d, 0D, kOS,;

[an— > ZXnYkPn]Zl.ZLt for allt 0 Ty, (5.11)
n

d, 0D, kOS,,

{start3 > start, + NormDuy, —1

start; > start, + NormDug, -1 (-12)
X5 =0 fork =[starts,..., starfs + NormDugs —1]
=0 fork =|start.,...,start- + NormDur. -1
X6k [ ts Is Is ] (5.13)

X,y =0 fork =[start,,,...,start, + NormDur, 1]
Xpp =0 fork= [startﬂ,...,stargﬁ NormDuEl—l]

It is interesting to note that, given the same objective, the objective
formulations used by Escudero et al. (1980) and El-Amin et al. (2000) are
quite different from that of Aldridge ef al. (1999).

As there is no resource utilization throughout the planning horizon, there
is no need for the inclusion of the resources term in the heuristic
formulation (Eq. 4.12) for this case study (thus w may be set to 0). The
precedence and maintenance window constraints of this system are direct
and rigid constraints, which can be incorporated by using the graph-
based technique, whereas the load and reliability constraints were taken

into account using penalty functions. The objective function cost (OFC)
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5.2

used in this case study is a function of the reserve generation capacity
LVL value and the total violation of load and reliability constraints (Eq.
5.14).

OFC(s)=LVL(S) (LoadResVig,(s)+1) (5.14)

where OFC(s) is the objective function cost ($) associated with schedule s;
LVL(s) is the level of reserve generation capacity (MW) associated with
schedule s; LoadResViow(s) is the total demand and reserve shortfall (MW)

associated with schedule s.

It should be noted that the inclusion of a load constraint violation term in
Eq. 5.14 is not necessary because violation of load constraints would be
reflected as violation of reserve constraints. The calculation of constraint
violations is given by Eqs. 5.15 and 5.16. The total load and reserve
shortfall associated with schedule s, LoadResViow(s), is the summation of

load and reserve shortfall in all periods within the planning horizon:

LoadResVig,(s)= Y [an— > an,kpn} (5.15)

tOTy \ N d, 0D, kOS,,

where Tyv is the period where load and reserve constraints are violated,

and is given by:

T =t 2 P= D D X B<l2L) (5.16)

d, 0D, kO,

Modified case studies

The general approach to PPMSO presented in this research includes
options for maintenance duration shortening and deferral of maintenance
tasks (Section 4.2). However, these options were not considered in
previous studies that investigated the two case studies presented in
Section 5.1 (Escudero et al., 1980; Yamayee et al., 1983; Aldridge et al., 1999;
Dahal et al., 1999; Dahal et al., 2000; El-Amin et al., 2000). Therefore, in
order to test the utility of the new ACO-PPMSO formulation, especially
with regard to the impact of having the options of shortening and
deferring maintenance tasks, modifications have been made to the 21- and

22-unit case study systems.
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With their original system load, neither the 21-unit nor the 22-unit case
study system require shortening or deferral of maintenance tasks. In order
to create a need for these options, the system loads of both case studies
have been increased and the options of shortening and deferral have been
made available. Details of the modified case study systems, as well as the
modifications made to the formulation for the application of ACO-

PPMSO, are given in the following sections.

5.2.1 Modified 21-unit case study

5300 -

The 21-unit case study system described in Section 5.1.1 is modified in the

following ways:

(1) As shown in Figure 5.1, the original system load (4739MW) is
increased by 5% throughout the whole planning horizon, and another 5%

increment for weeks 15 to 25.

(2) Some maintenance tasks can be carried out in durations shorter than
the original outage duration or deferred altogether (shown in Table 5.4).
Essentially, outage durations can be shortened by a time step of 2 weeks
to a certain minimum duration for each individual task (Table 5.4). The
personpower requirements for shortened durations are also detailed in
Table 5.4.

Original load

=== Modified load

Load (MW)

5200 -

5100

5000 -

4900 -

4800 -

4700

Time (week)

Figure 5.1: Original and modified system load for the 21-unit case study
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Table 5.4: Personpower utilization for the modified 21-unit case study system

) ) Personpower required for each
Unit No., ] Optional Outage
Option _ week, Res, wkwk=1,2...., chdur,)
n Duration, (weeks)
(person)
Normal 7 10, 10, 5,5,5, 5, 3
5 10, 10, 10, 8,5
1 Shorten
3 15, 14, 14
Defer 0 NIL
Normal 5 10, 10, 10, 5,5
2 Shorten 3 15, 15, 10
Defer 0 NIL
Normal 2 15, 15
3
Defer 0 NIL
Normal 1 20
4
Defer 0 NIL
Normal 5 10, 10, 10, 10, 10
5 Shorten 3 17,17, 16
Defer 0 NIL
Normal 3 15, 15, 15
6
Defer 0 NIL
Normal 3 15, 15, 15
7
Defer 0 NIL
Normal 6 10, 10, 10,5, 5,5
8 Shorten 4 13, 13,13, 6
Defer 0 NIL
Normal 10 3,2,2,2,2,2,2,2,2,3
8 3,3,3,2,2,3,3,3
6 4,4,3,3,4,4
9 Shorten
4 6,5,5,6
2 11,11
Defer 0 NIL
10 Normal 4 10, 10, 5,5
Shorten 2 15, 15
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Defer 0 NIL
Normal 1 20
11
Defer 0 NIL
Normal 3 10, 15, 15
12
Defer 0 NIL
Normal 2 15, 15
13
Defer 0 NIL
Normal 4 10, 10, 10, 10
14 Shorten 2 20, 20
Defer 0 NIL
Normal 2 15, 15
15
Defer 0 NIL
Normal 2 15, 15
16
Defer 0 NIL
Normal 1 20
17
Defer 0 NIL
Normal 2 15, 15
18
Defer 0 NIL
Normal 1 15
19
Defer 0 NIL
Normal 4 10, 10, 10, 10
20 Shorten 2 20, 20
Defer 0 NIL
Normal 3 10, 10, 10
21
Defer 0 NIL

Problem formulation

Despite the possibility of shortening and deferral options in this case
study, they are unfavorable from both an economic and operations points
of view. Therefore, the objective function used for the original version of

this case study (Eq. 5.5) has been modified to:
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OFC(s)= SSR(s)(ManViq,(s)+1)[(LoadVig,(s)+1)

(5.17)
[{DurCut(s)+1)

where OFC(s) is the objective function cost ($) associated with schedule s;
SSR(s) is the sum of squares of reserve generation capacity (MW2)
associated with schedule s; ManVios(s) is the total personpower shortfall
(person) associated with schedule s; LoadViow(s) is the total demand
shortfall (MW) associated with schedule s; DurCutq(s) is the total
reduction in maintenance duration (weeks) due to shortening and deferral

associated with schedule s.

While the calculation of total demand shortfall associated with schedule s,
LoadViow(s), total personpower shortfall associated with schedule s,
ManViow(s), and the sum of squares of reserve generation capacity
associated with schedule s, SSR(s), are detailed in Section 5.1.1, the value

of DurCuti(s) is given by:

total_n

DurCut,,(s) = Z(NormDurn —chdur, (s)) (5.18)

n=1
where 7 is the index of maintenance task d,, n=1,2, 3, . . ., total_n, where
total_n is the total number of maintenance tasks to be scheduled (fotal_n =
21 in this case); NormDur, is the normal duration of maintenance task d,,
and chdur,(s) is the maintenance duration (week) of task d, associated

with schedule s.

It should be noted that by using Eq. 5.17 to direct the search during an
ACO run, a trial maintenance schedule that includes shortened and/or
deferred maintenance tasks is being assigned a higher OFC, which

represent an unfavorable solution to ACO during pheromone update.

As an additional constraint in this modified case study, the minimum-
duration constraints can be addressed during the stage-2 selection process
when a trial solution is being constructed (Section 4.3.2) by allowing only
optional durations that are greater than the minimum duration for each
maintenance task. In this way, trial solutions constructed will not violate
the minimum duration constraints. For example, machine unit 1 that
normally requires 7 days to be maintained, can be shortened to 5 or 3
days, or be deferred altogether (Table 5.4).
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5.2.2 Modified 22-unit case study

3500

3000

2500

2000

1500

Load (MW)

1000

500

The 22-unit case study detailed in Section 5.1.2 has been modified as

follows:

1. The weekly loads for the modified 22-unit case study system are
increased by 60% (Figure 5.2).

2. As shown in Table 5.5, the maintenance tasks are allowed to be
performed within either the first or second half of the planning horizon

(except for unit 10).

3. In the case of duration shortening, outage duration is reduced by a
time step of two weeks until the corresponding minimum outage

duration of a machine unit is reached (Table 5.5).

——original

—a—modified

11 21 31 41 51
Week

Figure 5.2: Modified 22-unit case study system - Weekly system load

Problem formulation

The objective function used for the original 22-unit case study (Eq. 5.14)
has been modified to accommodate the options of shortening and

deferral, and is given by:
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OFC(s)= LVL(s)! (LoadResVig,(s)+1)[(DurCut,(s)+1) (5.19)

where OFC(s) is the objective function cost ($) associated with schedule s;
LVL(s) is the level of reserve generation capacity (MW) associated with
schedule s; LoadResViosw(s) is the total load constraint violation (MW)
associated with schedule s; DurCutw(s) is the total reduction in
maintenance duration (weeks) due to shortening and deferral associated

with schedule s.

The calculation of the total load constraint violation associated with
schedule s, LoadResViowi(s), and the level of reserve generation capacity
associated with schedule s, LVL(s) have been detailed previously in
Section 5.1.2, whereas the value of the total duration shortened and
deferred associated with schedule s, DurCut.(s), is given by Eq. 5.18,

where total n =22 in this case.
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Table 5.5: Details of the modified 22-unit system

Normal outage Latest Shortening
Unit No., Capacity, duration, Earliest finish, allowed? [Optional| Deferral
Pn start,ear,
n MW) NormDur, (week) lat, shortened durations allowed?
(weeks) (week) (week)]

1 100 6 1 26 Y [4, 2] Y
2 100 3 1 26 N Y
3 100 3 1 26 N Y
4 100 3 1 26 N Y
5 90 6 1 26 Y [4, 2] Y
6 90 4 1 26 Y [2] Y
7 95 3 1 26 N Y
8 100 4 1 26 Y [2] Y
9 650 5 1 26 Y [3] Y
10 610 12 6 22 Y [10, 8, 6, 4] Y
11 91 4 1 26 Y [2] Y
12 100 8 1 26 Y [6, 4] Y
13 100 3 1 26 N Y
14 100 6 27 52 Y [4] Y
15 220 5 27 52 Y [3] Y
16 220 6 27 52 Y [4] Y
17 100 5 27 52 Y [3] Y
18 100 5 27 52 Y [3] Y
19 220 3 27 52 N Y
20 220 3 27 52 N Y
21 240 3 27 52 N Y
22 240 5 27 52 Y [3] Y
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5.3

Experimental Procedure

Experiments have been conducted on both the original and modified
versions of the 21-unit and 22-unit case studies to assess the utility of the
proposed ACO-PPMSO formulation. Particular emphasis was given to
assessing the usefulness of the heuristics developed, the impact of the two
local search operators and the overall performance of the proposed ACO-
PPMSO formulation.

A. Usefulness of heuristic formulation

The effectiveness of the new heuristic formulations for general PPMSO
problems (Egs. 4.10 to 4.12) introduced in Section 4.3.2 was examined by
conducting optimisation runs with and without the heuristics (the latter
was achieved by setting the relative weight of the heuristic, £, in Eq. 4.9 to
0). In addition, the sensitivity of optimisation results to increasing values
of Bwas checked. It should be noted that, as a control, the value of & in

Eq. 4.9 was fixed at 1.
B. Impact of local search operators

The impact of local search on the performance of the ACO-PPMSO
algorithm was also investigated, both with and without heuristic. While
the PPMSO-2-opt local search operator (see Section 4.3.4) can be tested
with both original and modified versions of the 21- and 22-unit case
studies, the Duration Extender local search operator (see Section 4.3.4) can
only be tested with the modified version of these case studies, due to the
availability of shortening and deferral options. The total number of trial
solutions evaluated in the ACO runs with local search was identical to

those without local search.
C. Overall performance of ACO-PPMSO

In order to check the overall performance of ACO for solving PPMSO
problems, the results obtained for the two original case studies were
compared with those obtained using other optimisation methods in
previous studies. The optimised maintenance schedules obtained for the

modified case studies were analysed and are discussed in detail. In
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54

addition, the ability of ACO-PPMSO to handle soft constraints was

investigated.

In order to achieve the objectives outlined above, the testing procedure
shown in Figure 5.3 was implemented separately for each of the four case
studies. Items A, B and C mentioned above were investigated at Stages A,
B and C in the testing procedure, respectively. To minimize the impact the
ACO algorithm and parameters used have on the evaluation of the
effectiveness of the heuristic, local search and overall performance of the
ACO-PPMSO algorithm, two ACO algorithms, namely Elitist-Ant System
parameters (shown in the dashed box in Figure 5.3) were used to solve the
problem instance under consideration. In addition, each run was repeated
50 times with different random number seeds in order to minimize the
influence of random starting values in the solution space on the results
obtained and to enable Student’s t-tests to be conducted to determine
whether any differences in the results obtained were significant. In total,
3,024 different combinations of parameters, each with 50 different starting
random number seeds, were evaluated as part of this study. In order to
facilitate fair comparisons, the same number of evaluations per
optimisation run were used as in previous studies that investigated the
21-unit case problem (30,000 evaluations). In this research, ‘one ACO run’
is defined as the use of an ACO algorithm with or without using heuristic
information, with or without local search and with a defined set of
parameters to solve a PPMSO instance. An example of an ACO run is the
use of EAS to solve the modified 21-unit case study with heuristic
information and Duration Extender local search and a defined parameter
set of m = 200; p=0.9; 1 = 0.1, Q = 500,000; a =1, f= 11, repeated for 50
random number seeds. The overall performance of a parameter set is then
assessed based on the objective function cost (OFC) averaged over the 50
simulations using different random number seeds. An analysis of the
results obtained with the testing procedure outlined in Figure 5.3 is given

in Section 5.4.

Results and analysis

The experimental results obtained for the original 21- and 22-unit case
studies are summarized in Tables 5.6 to 5.9, while those for the modified
case studies are presented in Tables 5.10 to 5.13. The detailed results can

be found in Appendices B and C.
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Figure 5.3: Testing procedure

t: PPMSO-2-opt or Duration Extender.

Notation

EAS: Elitist-Ant System

MMAS: Max-Min Ant System

m: number of ants

(1-p): pheromone evaporation rate

Ty: initial pheromone trail

a, [ relative weight of pheromone and
heuristic in Eq. 4.9

Peest: see Eq. 4.24

Q: reward factor
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Table 5.6: Results for the 21-unit unit problem instance given by Elitist-Ant

System (EAS)

[deviation from best-known OFC of $13.66M]

Best
Best parameter
Heur | Local Average Worst Std dev. Average )
Lo OFC . settings
-istic | search OFC ($M) | OFC ($M) (M) evaluations?
(M) im; o
o; B
14.84 140.49 365.13 {300; 0.9;
XX 86.00 28,841
[8.64%] | [928.48%] | [2572.99%] 0.01; 0}
13.68 13.71 13.85 {200; 0.9;
JI X 0.03 20,692
[0.15%] | [0.37%] [1.39%] 0.01; 9}
PPMSO | 13.74 51.62 138.80 {300; 0.8;
). & 33.72 25,494
-2-opt | [0.59%] | [277.89%] | [916.11%] 0.1; 0}
PPMSO | 13.66 13.70 13.82 {200; 0.9;
J 0.03 22,434
-2-opt [0%] [0.29%] [1.17%)] 0.01; 9}

aNumber of evaluations to reach the best solution in one run averaged over 50 runs with different

random starting positions.
bm: number of ants; (1-0): pheromone evaporation rate; 7: initial pheromone trail; £ relative weight

of heuristic in Eq. 4.9.

Table 5.7: Results for the 21-unit unit problem instance given by Max-Min Ant
System (MMAS)
[deviation from best-known OFC of $13.66M]

Best
Best parameter
Heur | Local Average Worst Std dev. Average )
OFC settings
-istic | search OFC ($M) | OFC ($M) ($™M) evaluations®
($M) {m; o
phest; ﬂd
13.86 16.11 43.35 {10; 0.3;
XX 5.95 16,480
[1.46%] | [17.94%] | [217.35%] 0.2; 0}
13.66 13.68 13.72 {20; 0.4;
JI X 0.01 13,593
[0%] [0.15%] [0.44%] 0.35; 5}
PPMSO| 13.80 17.90 69.04 {50; 0.2;
). & 1051 18,089
-2-opt | [1.02%] | [31.04%] | [405.42%] 0.05; 0}
PPMSO | 13.66 13.69 13.78 {50; 0.5;
J 0.02 15,867
-2-opt [0%] [0.22%] [0.88%] 0.5; 11}

¢Number of evaluations to reach the best solution in one run averaged over 50 runs with different

random starting positions.

dm: number of ants; (1-0): pheromone evaporation rate; py.s: refer to Eq. 4.24; S relative weight of

heuristic in Eq. 4.9.
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Table 5.8: Results for the 22-unit unit problem instance given by Elitist-Ant
System (EAS)
[deviation from best-known OFC of $52.06]

Best
Best parameter
Heur | Local Average Worst Std dev. Average .
OFC settings
-istic | search OFC ($M) | OFC ($M) ($™M) evaluations?
(M) {m; p,
; A°
63.41 72.27 81.15 {200; 0.9;
X X 417 29,294
[21.80%] | [38.82%] | [55.88%] 100; 0}
58.41 64.31 73.25 {300; 0.9;
g R 321 28,384
[12.20%] | [23.53%] [40.70%] 1; 11}
PPMSO| 58091 67.03 79.99 {300; 0.8;
X 4.70 25,858
-2-opt | [13.16%] | [28.76%] | [53.65%] 1; 0}
PPMSO | 55.67 60.55 67.97 {300; 0.8;
J 2.90 26,931
-2-opt | [6.93%] | [16.31%] | [30.56%] 10; 11}

aNumber of evaluations to reach the best solution in one run averaged over 50 runs with different

random starting positions.

bm: number of ants; (1-0): pheromone evaporation rate; 7: initial pheromone trail; £ relative weight of

heuristic in Eq. 4.9.

Table 5.9: Results for the 22-unit unit problem instance given by Max-Min Ant
System (MMAS)
[deviation from best-known OFC of $52.06M]

Best
Best parameter
Heur | Local Average Worst Std dev. Average .
OFC settings
-istic | search OFC ($M) | OFC ($M) ($M) evaluations®
(M) {m; p
Phest; ﬂd
59.91 66.90 76.17 {100; 0.9;
X X 3.67 24,597
[15.08%] | [28.51%] [46.31%] 0.5; 0}
55.72 62.22 68.65 {200; 0.9;
g X 297 28,433
[7.03%] | [19.52%] [31.87%] 0.2; 11}
PPMSO | 57.64 64.81 76.65 {200; 0.8;
) & 427 27,455
-2-opt | [10.72%] | [24.49%] [47.23%] 0.5; 0}
PPMSO | 54.56 59.42 66.56 {200; 0.8;
J 287 24,537
-2-opt | [4.80%] | [14.14%] [27.85%] 0.35; 11}

¢Number of evaluations to reach the best solution in one run averaged over 50 runs with different

random starting positions.
dm: number of ants; (1-0): pheromone evaporation rate; py.s: refer to Eq. 4.24; S relative weight of

heuristic in Eq. 4.9.
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Table 5.10: Results for the Modified 21-unit unit problem instance given by Elitist-
Ant System (EAS) [deviation from best-known OFC of $15.71M]

Best Average Average Best parameter
Heu- | Local Worst OFC |Std dev. Average .
OFC OFC DurCutyor settings
ristic | search ($M) ($M) evaluations?
(M) M) (weeks) {m; g w; B
65.61 120.39 209.05
XX 3916 | 176 27538 | {300;0.9; 0.01; 0}
[317.63%] | [666.33%] | [1230.68%]
16.15 24.42 31.06
J ) & 5.16 6.4 29,029 | {500;0.9; 0.01; 1}
[2.80%] | [55.44%] | [97.71%]
Duration 51.17 105.02 216.85
) & 3763 | 166 20226 | {200;0.9; 0.01; 0}
Extender | [225.72%] | [568.49%] | [1280.33%]
Duration 15.94 25.73 47.65
J 7.22 6.6 28,929 {500; 0.9; 0.01; 1}
Extender | [1.46%] | [63.78%] | [203.31%]
PPMSO- 68.42 135.13 219.07
x 36.67 19.3 28,784 {300; 0.9; 0.01; 0}
2-opt | [335.52%] | [760.15%] | [1294.46%]
PPMSO- 16.12 26.87 41.24
J 517 6.9 28,213 {500; 0.9; 0.01; 1}
2-opt | [2.61%] | [71.04%] | [162.51%]

aNumber of evaluations to reach the best solution in one run averaged over 50 runs with different random starting

positions.

bm: number of ants; (1-p): pheromone evaporation rate; 7: initial pheromone trail; £ relative weight of heuristic in Eq.

4.9.

Table 5.11: Results for the Modified 21-unit problem instance given by Max-Min
Ant System (MMAS) [deviation from best-known OFC of $15.71M]

Best Average Average Best parameter
Heu- | Local Worst OFC |Std dev. Average .
L. OFC OFC DurCutyor . settings
ristic | search ($M) ($M) evaluationsc
(M) (8M) (weeks) {m; @ poess; P14
2869 | 6132 119.15
XX 1954 | 118 16934 | {20;02;0.2; 0}
[82.62%] | [290.32%] | [658.43%]
1597 | 19.69 29.03
J x 402 5.6 18551 | {50;0.2;0.05; 1)
[1.65%] | [2533%] | [84.79%]
Duration | 2725 | 5948 106.45
) & 1746 | 113 27207 | {300;0.9; 0.2; 0}
Extender | [73.46%] | [278.61%] | [577.59%]
Duration 15.74 20.13 29.72
J 432 5.7 18871 | {50;0.1; 0.05; 1}
Extender | [0.19%] | [28.13%] | [89.18%]
PPMSO-| 3364 | 7167 132.10
X 2464 | 126 24,898 | {500;0.1; 0.05; 0}
2opt | [114.13%] | [356.21%] | [740.87%]
PPMSO-| 1571 | 2204 29.66
J 4.86 6.1 23713 | {500;0.7; 0.05; 1}
2-opt [0%] | [4029%] | [88.80%]

¢Number of evaluations to reach the best solution in one run averaged over 50 runs with different random starting

positions.

dm: number of ants; (1-0): pheromone evaporation rate; py.: refer to Eq. 4.24; . relative weight of heuristic in Eq. 4.9.
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Table 5.12: Results for the Modified 22-unit unit problem instance given by Elitist-
Ant System (EAS) [deviation from best-known OFC of $916.12]

Best Average Best parameter
Heu- Local Average | Worst (Std dev. Average .
OFC DurCutyos settings
ristic search OFC ($) | OFC (%) %) evaluations?
®) (weeks) {m; p w; AP
2186.22 2797.85 4267.31
Xl X 41033 | 219 2789 | {300;0.9;0.01; 0}
[138.64%] | [205.40%] | [365.80%]
1365.60 1756.34 2153.97
J ) & 17555 | 138 28,648 | {500;0.9;0.01; 11}
[49.06%] | [91.72%] | [135.12%]
Duration | 1953.99 | 2529.19 | 4140.45
). & 45471 | 193 26,844 | {300;0.9;0.01; 0}
Extender |[113.29%] | [176.08%] | [351.96%]
Duration 1194.27 1652.63 2135.76
J 167.85 12.7 27,448 {500; 0.9; 0.01; 11}
Extender | [30.36%] | [80.39%] |[133.13%]
PPMSO-2-| 2331.92 2876.16 4357.14
). & 50114 | 232 26,187 | {300;0.9;0.01; 0}
opt | [154.54%] | [213.95%] | [375.61%]
PPMSO-2-| 1174.10 1724.37 2238.34
J 172.63 13.7 21,718 {300; 0.9; 0.01; 11}
opt [28.16%] | [88.23%] |[144.33%]

aNumber of evaluations to reach the best solution in one run averaged over 50 runs with different random starting

positions.

bm: number of ants; (1-0): pheromone evaporation rate; 7: initial pheromone trail; £ relative weight of heuristic in Eq. 4.9.

Table 5.13: Results for the Modified 22-unit unit problem instance given by Max-Min
Ant System (MMAS) [deviation from best-known OFC of $916.12]

Best Average Best parameter
Heu- Local Average | Worst |Std dev. Average .
L. OFC DurCutior . settings
ristic search OFC ($) | OFC (%) %) evaluations
® (weeks) {m; @ poes; B4
143933 | 207643 | 3998.67
XI X 44016 | 156 26219 | {300;0.6;0.2; 0}
[57.11%] | [126.65%] | [336.78%]
100813 | 1489.54 | 2017.44
J x 28045 | 121 23329 | {20;03;0.35;11)
[10.04%] | [62.59%] |[120.22%]
Duration 1632.25 2099.93 4085.77
x 46737 | 152 21,676 {20;0.3;0.2; 0}
Extender | [78.17%] |[129.22%] | [345.99%]
Duration | 100947 | 14926 | 204926
J 26738 | 123 22,254 50; 0.3; 0.2; 11}
Extender | [10.19%] | [62.93%] | [123.69%]
PPMSO-2-| 161439 | 20688 | 3936.71
) & 42587 | 150 20,767 20: 0.3; 0.2; 0}
opt | [76.22%] | [125.82%] | [329.72%]
PPMSO-2-| 1001.12 | 151386 | 208459
J 30626 | 124 21,347 | {50;0.1;0.35;11)
opt [9.28%] | [65.25%] |[127.55%]

2Number of evaluations to reach the best solution in one run averaged over 50 runs with different random starting

positions.

bm: number of ants; (1-0): pheromone evaporation rate; py.: refer to Eq. 4.24; S relative weight of heuristic in Eq. 4.9.
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Stage A: Impact of heuristic

The effectiveness of the new heuristic formulations (as detailed in Section
4.3.2) was checked using a Student’s t-test at a 95% significance level
(calculations are shown in Appendices B2 and C2). Overall, the new
heuristic formulation for applying ACO to PPMSO problems significantly
improved the results obtained for all four case studies, with and without
the use of a local search operator and for both ACO algorithms (Table
5.14). It can be seen that when the heuristic was used, not only were the
average OFCs improved, but the standard deviations of the OFCs were
also significantly smaller for all case studies (Tables 5.6 to 5.13), indicating
that use of the new heuristic formulation enables good solutions to be

found consistently.

Table 5.14: Impact of the new heuristic formulation with and without using

local search

. . Modified Modified
2-unit system | 22-umit system | 1y system | 22-unit system
EAS | MMAS | EAS | MMAS | EAS | MMAS | EAS | MMAS
Without local + + + + + + + +
search
Duration
Extender (see NT NT NT NT + + + +
Section 4.3.4)
PPMSO-2-opt
(see Section + + + + + + + +
4.3.4)
Notation:
+: Significant positive impact; —: Significant negative impact; NIL: Insignificant impact; NT:
Not tested.

In order to gain a better understanding of the searching behavior of the
ACO algorithms in solving each of the four case studies with and without
heuristic, the optimisation process of ACO runs was examined. The
investigation is firstly facilitated by comparing the iteration-best objective
function value (SSR and LVL) curves (referred to as IB-SSR and IB-LVL
curves hereafter) of ACO runs with and without heuristic. Secondly, in
order to investigate constraint satisfaction during ACO runs with and
without heuristic, the ability of ACO in accessing the feasible and
infeasible regions of the case studies’ solution space was assessed with the
aid of a measure proposed in this research called the “infeasibility ratio”,

(. Y is defined as the ratio of the number of infeasible solutions to the
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total number of solutions evaluated in a particular iteration ¢ and is given

by:

number of infeasible trial solutior3(
total number of trial solutions evaluafed

W)= (5.20)
For the four case studies investigated, the following curves generated by
selected EAS and MMAS runs when heuristics were and were not used

are shown in Figures 5.4 to 5.11:

* Objective function values (SSR, LVL and DurCuti) associated
with iteration-best schedules (referred to as IB-SSR, IB-LVL and
IB-DurCutio hereafter)

* Violation of various constraints (demand and personpower
shortfall) associated with iteration-best schedules (referred to as
IB-LoadVioy, IB-ManViow: and IB-LoadResVioi: hereafter)

* Infeasibility ratio, ¢

It should be noted that the curves plotted in Figures 5.4 to 5.11 are given
by the ACO runs using the best parameter settings (shown in last rows of
Tables 5.6 to 5.13) obtained during the test. The random number seeds

used in those runs are also shown (Figures 5.4 to 5.11).

Overall, the ACO-PPMSO algorithm is shown to search the problem
search space effectively by minimizing the objective function values (SSR,
LVL and DurCutw) for the four case studies investigated. This is
illustrated by the decreasing trends of IB-SSR, IB-LVL and IB-DurCut.
over iterations during ACO runs as shown in (a) and (b) of Figures 5.4 to
5.11. In addition, the process of evolution of feasible trial solutions (i.e.
solutions that do not violate constraints) using ACO-PPMSO is clearly
shown in (c) and (d) of Figures 5.4 to 5.11.

It can also be observed that convergence occurs at latter stages of runs
where relatively larger ant populations (m > 50) are used. Interestingly,
when smaller ant populations are used (m < 50), the ACO search seems to
restart several times during a run, as depicted by the multiple spikes
followed by decreasing IB-SSR and IB-LVL curves shown in Figure 5.5, 5.9
and 5.11b.
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By interpreting Figures 5.4 to 5.11 in detail, it can also be deduced that the
four case studies investigated have quite different fitness landscapes. The
original 21-unit case study is more highly constrained, as indicated by the
large number of demand and personpower shortfalls associated with trial
solutions constructed during the early stages of the optimisation runs
(Figures 5.4c and 5.5¢c). On the other hand, the load constraints of the
original 22-unit case study are easily satisfied, as the infeasibility ratio is
approaching or equal to zero throughout the ACO run (Figures 5.6c and
5.7¢c). As for the modified versions of case studies, it can be observed that
the optimisation process of the modified 21-unit case study is dominated
by personpower constraints (Figures 5.8c and 5.9¢c), whereas the load
constraints of the modified 22-unit case study are tighter compared to its
original counterpart (Figures 5.10c and 5.11). It is interesting to find that
for MMAS, smaller populations of ants are found to be more effective for
more highly constrained problems, such as the original 21-unit problem
(Table 5.7), the modified 21-unit problem (Table 5.11) and the modified
22-unit problem (Table 5.13). The ability of smaller ant populations to
solve more highly constrained problems might be attributed to the
occasional selection of non-best solutions after convergence, as explained
previously. In addition, smaller ant populations results in a larger number
of iterations, which is equivalent to a larger number of pheromone
updates during an ACO run. Given more information from past searching
experience (via pheromone updates), feasible regions of a search space

may be better identified.

An interesting observation made from Figure 5.11d is that the average of
the infeasibility ratio during iterations 200 to 600 is higher than that of
previous iterations. This is corresponding well with the iteration-best total
duration shortened/deferred (IB-DurCutiw:) of those stages during the
ACO run (Figure 5.11b). The decrease in the total duration
shortened/deferred means more maintenance tasks are performed,
resulting in tighter constraints and thus a larger portion of trial solutions

constructed is infeasible.

For all case studies, it can be seen that when the heuristic is used, the IB-
SSR and IB-LVL obtained during the early stages of the optimisation runs
were substantially lower (compare (a) and (b) of Figures 5.4 to 5.11). In
addition, it can be observed that at the early stages of the ACO runs,

fewer trial solutions that violated constraints were constructed when the
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heuristic was utilized (compare (c) and (d) of Figures 5.4 to 5.11). It was
also found that the improvement in OFCs obtained when the heuristic is
used for the modified 21- and 22-unit case studies is partly attributed to a
significant reduction in duration shortened. This is clearly shown in the
comparison between (a) and (b) of Figures 5.8 to 5.11 by the fact that the
IB-DurCuti curve is consistently lower throughout an ACO run when the

heuristic formulation is used.

In view of the experimental results, the heuristic formulation is useful for
ACO-PPMSO in three ways. Firstly, as the distribution of pheromone
intensity within the search space of a problem is uniform at the beginning
of an ACO run (assuming a single initial pheromone value is used), the
optimisation process initially resembles a random search. During this
period, the heuristic formulation can guide the algorithm to search in
regions where feasible solutions are located with a higher probability. In
this way, the number of infeasible solutions being constructed and
rewarded with pheromone can be reduced. Secondly, even if a heuristic is
not essential for constructing feasible/near feasible trial solutions (as is
the case when the PPMSO problem is not highly constrained), the
heuristic can assist with constructing trial solutions that consist of fewer
overlapping tasks. In this way, the generation capacities throughout the
planning horizon associated with trial maintenance schedules being
constructed are more evenly distributed, which is one of the common
objectives of PPMSO problems. Thirdly, when shortening and deferral
options are allowed, use of the heuristic increases the probabilities that
longer outage durations are chosen throughout an entire ACO run. This is
particularly useful when shortening and deferral options are frequently

chosen at random during the early stage of an ACO run.
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Figures 5.4(a) & (b): Performance of Elitist-Ant System (EAS) in solving the
original 21-unit case study with and without heuristic (Comparison of the SSR-
values associated with iteration-best schedules during optimisation run; Best-
known SSR =13.36 x 106 MW?2)

Figures 5.4(c) & (d): Performance of Elitist-Ant System (EAS) in solving the
original 21-unit case study with and without heuristic (Comparison of the
violation of constraints associated with iteration-best schedules and
infeasibility ratio during optimisation run)
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Figures 5.5(a) & (b): Performance of Max-Min Ant System (MMAS) in solving

the original 21-unit case study with and without heuristic (Comparison of the

SSR-values associated with iteration-best schedules during optimisation run;
Best-known SSR = 13.36 x 106 MW?2).

Figures 5.5(c) & (d): Performance of Max-Min Ant System (MMAS) in solving
the original 21-unit case study with and without heuristic (Comparison of the
violation of constraints associated with iteration-best schedules and
infeasibility ratio during optimisation run).
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Figures 5.6(a) & (b): Performance of Elitist-Ant System (EAS) in solving the
original 22-unit case study with and without heuristic (Comparison of the LVL-
values associated with iteration-best schedules during optimisation run; Best-

known LVL = 52.06 MW).

Figures 5.6(c) & (d): Performance of Elitist-Ant System (EAS) in solving the
original 22-unit case study with and without heuristic (Comparison of the
violation of constraints associated with iteration-best schedules and

infeasibility ratio during optimisation run).
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Figures 5.7(a) & (b): Performance of Max-Min Ant System (MMAS) in solving

the original 22-unit case study with and without heuristic (Comparison of the

LVL-values associated with iteration-best schedules during optimisation run;
Best-known LVL = 52.06 MW).

Figures 5.7(c) & (d): Performance of Max-Min Ant System (MMAS) in solving
the original 22-unit case study with and without heuristic (Comparison of the
violation of constraints associated with iteration-best schedules and
infeasibility ratio during optimisation run).
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Figures 5.8(a) & (b): Performance of Elitist-Ant System (EAS) in solving the
modified 21-unit case study with and without heuristic (Comparison of the
SSR- and total duration shortened values associated with iteration-best
schedules during optimisation run; Best-known SSR = 2.62 x 106 MW2 with 5-
week deferral).

Figures 5.8(c) & (d): Performance of Elitist-Ant System (EAS) in solving the
modified 21-unit case study with and without heuristic (Comparison of the
violation of constraints associated with iteration-best schedules and
infeasibility ratio during optimisation run).

Page 135



Chapter 5 Testing On Benchmark Case Studies

20 60
18
: 1 —IB-SSR + 50
b
164 ! — " IB-DurCutyy,
14 L 40
< g
§ 124 &
2
E 30 ¢
x S
~ 104 5
7] 5
4] a
8 t 20
6 4
r 10
4 4
2 T T T T T T T 0
1 201 401 601 801 1001 1201 1401
Iteration
(a) Without heuristict
100
i)
5 IS
; >
2 E . =
—_ 1 i ©
= i L
B 1 H c
S ' + 04—
& 1
801 —— IB-LoadVio,
20 4 IB-ManVioy, all
----- Infeasibility ratio T02
10+
0 - T T T T T T T -0
1 201 401 601 801 1001 1201 1401

Iteration

(c) Without heuristict

T Parameter settings used shown in the first row, last column of Table 5.11 (random number seed = 655)

't1 Parameter settings used shown in the second row, last column of Table 5.11 (random number seed =
655)

IB-SSR: Sum of squares of reserve associated with iteration-best schedules; IB-DurCut: Total reduction

in outage duration due to shortening and deferral associated with iteration-best schedules; IB-Load Vio:
IDemand shortfalls associated with iteration-best schedules; IB-ManVio: Personpower shortfalls

lassociated with iteration-best schedules

Page 136



Chapter 5 Testing On Benchmark Case Studies

N
o

70

—IB-SSR

=
=]
L

T 60
— -~ IB-DurCut,

i
o
L

-+ 50

i
N
L

[N
N
L
t
N
o

SSR (x10° MW?)
w
o

Duration (weeks)

1 101 201 301 401 501
Iteration

(b) With heuristictt

100

2

S 5]
5 1o06%
S 504 £
: 2
= @
£ 40 £
g — IB-LoadVioy, o4

30

—— IB-ManVio,y fall

200 Infeasibility ratio 1o2

104

0 T T T T T 0

1 101 201 301 401 501
Iteration
(d) With heuristictt

Figures 5.9(a) & (b): Performance of Max-Min Ant System (MMAS) in solving
the modified 21-unit case study with and without heuristic (Comparison of the
SSR- and total duration shortened values associated with iteration-best
schedules during optimisation run; Best-known SSR = 2.62 x 106 MW2 with 5-
week deferral).

Figures 5.9(c) & (d): Performance of Max-Min Ant System (MMAS) in solving
the modified 21-unit case study with and without heuristic (Comparison of the
violation of constraints associated with iteration-best schedules and
infeasibility ratio during optimisation run).
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Figures 5.10(a) & (b): Performance of Elitist-Ant System (EAS) in solving the
modified 22-unit case study with and without heuristic (Comparison of the
LVL- and total duration shortened values associated with iteration-best
schedules during optimisation run; Best-known LVL =101.791 MW with 8-
week shortening).

Figures 5.10(c) & (d): Performance of Elitist-Ant System (EAS) in solving the
modified 22-unit case study with and without heuristic (Comparison of the
violation of constraints associated with iteration-best schedules and
infeasibility ratio during optimisation run).
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Figures 5.11(a) & (b): Performance of Max-Min Ant System (MMAS) in solving
the modified 22-unit case study with and without heuristic (Comparison of the
LVL- and total duration shortened values associated with iteration-best
schedules during optimisation run; Best-known LVL =101.791 MW with 8-
week shortening).

Figures 5.11(c) & (d): Performance of Max-Min Ant System (MMAS) in solving
the modified 22-unit case study with and without heuristic (Comparison of the
violation of constraints associated with iteration-best schedules and
infeasibility ratio during optimisation run).
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In relation to the two ACO algorithms investigated (EAS and MMAS), the
results obtained indicate that the heuristic has a significant positive
impact on both EAS and MMAS. This is probably due to the ability of
heuristic information to identify regions of the search space where high-
quality initial solutions lie, reducing the number of low-quality trial
solutions being reinforced at the beginning of an optimisation run. In
addition, the results indicate that the ACO-PPMSO heuristic has a bigger
positive impact on EAS compared to MMAS. EAS tends to stagnate after a
number of iterations, which increases the impact of the quality of the
initial solutions. The importance of the regions where the ants initially
search using EAS is also highlighted by the relatively larger number of
ants found for the best parameter settings than those for MMAS (Tables
5.6, 5.8, 5.10 and 5.12), implying that a search with more ants in each
iteration (resulting a smaller number of iterations during an optimisation
run, as the total number of function evaluations is fixed) works better
than one with fewer ants (resulting a larger number of iterations during
an optimisation run, as the total number of function evaluations is fixed).
On the other hand, relatively smaller ant populations are found to
perform best for MMAS (Tables 5.7, 5.8, 5.11 and 5.13), which might be
attributed to the continuous exploration during an MMAS run (Figures
5.5, 5.7, 59 and 5.11) as a result of the lower and upper bound for
pheromone values. It is interesting to observe that despite the expected
overall downward trends throughout an optimisation run, the IB-SSR and
IB-LVL curves spike occasionally throughout a run when a small
population of ants is used (Figures 5.5, 5.9 and 5.11b). This phenomenon
is found to be caused by the choice of non-best solutions after a short
convergence (stagnation in OFC), which altered the distribution of
pheromone over the problem search space. It should be noted that the
possibility of having an iteration-best solution that is not the best-so-far

solution is higher when a smaller population of ants is used.

B. Impact of local search

The optimisation results obtained by coupling two different local search
operators, namely the PPMSO-2-opt (Section 4.3.4) and Duration Extender
(Section 4.3.4), with the ACO algorithms investigated (Stage B of the
testing procedure in Figure 5.3) are tabulated in Tables 5.5 to 5.13. The
unpaired Student’s t-test (calculations are shown in Appendices B2 and

C2) was used to check the significance of the impact of the two local
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search operators in solving the four case studies with and without
heuristic (Tables 5.15 and 5.16). It should be noted that while PPMSO-2-
opt was applied to all case studies, Duration Extender was only tested with

the modified case studies for reasons given previously.

Table 5.15: Impact of PPMSO-2-opt local search operator with and without

heuristic
Modified 21-unit Modified 22-unit
21-unit system | 22-unit system
system system
Heuristic | EAS | MMAS | EAS | MMAS EAS MMAS EAS MMAS
). & + NIL + + - - NIL NIL
J | NL| o NLo| o+ + - - NIL NIL

Notation:

+: Significant positive impact; —: Significant negative impact; NIL: Insignificant impact.

Table 5.16: Impact of Duration Extender local search operator with and

without heuristic

Modified 21-unit system Modified 22-unit system

Heuristic EAS MMAS EAS MMAS
X + NIL + NIL
J NIL NIL + NIL

Notation:
+: Significant positive impact; —: Significant negative impact; NIL: Insignificant impact.

PPMSO-2-opt

Overall, the impact of the local search PPMSO-2-opt operator ranges from
being insignificant, to significantly improving or degrading the
performance of the ACO algorithm investigated. While having a positive
impact on solving the original 22-unit case study regardless of which of
the two ACO algorithms was used, the PPMSO-2-opt local search operator
was found to improve only the performance of EAS when the heuristic
was not used for solving the original 21-unit case study. As for the
modified case studies, the performance of ACO in solving the modified

21-unit case study was reduced significantly when the PPMSO-2-opt local
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search operator was adopted, while the impact of the local search was not

significant when applied to the modified 22-unit case study.

From the results of the Stage B testing, it is interesting to observe that
despite the similarity in the number of generating units for the 21- and 22-
unit case study systems, the impact of the PPMSO-2-opt local search
algorithm on the optimisation results of these case studies was quite
different, which is likely to be caused by the difference in the problem

characteristics of the two systems.

In order to better understand the results obtained, a series of tests was
carried out to investigate the mechanism of PPMSO-2-opt in detail. The
satisfaction of constraints associated with iteration-best solutions (target
solutions) used for the local search operation and the % of infeasible local
solutions generated when using EAS and MMAS were examined and are
plotted in Figures 5.12 to 5.19. It should be noted that the results were
obtained using the proposed heuristic formulation. It can be seen that for
the original 21-unit case study (Figures 5.12 and 5.13) and the modified
version of both the 21- and 22-unit case studies (Figures 5.16 to 5.19), a
large number of infeasible local solutions were generated by PPMSO-2-opt
in every iteration, even with feasible iteration-best solutions (target
maintenance schedules). As discussed previously, these three case studies
are highly constrained. A local solution generated by simply exchanging
the maintenance start time of two randomly chosen generating units
without any guidelines is likely to result in infeasible solutions in such a
highly constrained search space. As a result, PPMSO-2-opt seems to have
an insignificant or even detrimental impact when coupled with ACO for
solving the aforementioned case studies. This is particularly evident for
the modified 21-unit case study, where as many as 50% to 80% of the local
solutions generated by PPMSO-2-opt in every iteration are infeasible with
regard to both load and personpower constraints, which is responsible for
the significant decrease in ACO performance. These results suggest that
the PPMSO-2-opt local search operator is not well suited to problems with

highly constrained search spaces.

On the other hand, it can be seen that the local solutions generated by
PPMSO-2-opt in solving the original 22-unit case study are all feasible, as
the iteration-best solutions are also feasible (Figures 5.14 and 5.15). In
fact, this is the only case study for which PPMSO-2-opt has been found to
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be effective in improving the optimisation ability of ACO. As discussed
previously, the constraints of the original 22-unit case study are easily
satisfied. Therefore, the results obtained indicate that PPMSO-2-opt can be

useful for solving problems that are not highly constrained.
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Figure 5.12: Infeasible local solutions obtained using PPMSO-2-opt (original 21-
unit case study using EAS)
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Figure 5.13: Infeasible local solutions obtained using PPMSO-2-opt (original 21-
unit case study using MMAS)
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Figure 5.14: Infeasible local solutions using PPMSO-2-opt (original 22-unit case

study using EAS)
1 100
0.9+ + 90
—— Demand shortfalls of target solutions
0.8 T 80
—E—% of local solutions that violated personpower
constraints

0.7 +70 2
< 2
% =
< 061 160 &
e 8
k<] o
O 0.5 T50 o
£ 2
z g
© E + £
g 0.4 40 €
© =
a )

0.3 ta ¥

0.2 T 20

0.1 T 10

0 0
1 11 21 31 41 51 61 71 81 91
Iteration

Figure 5.15: Infeasible local solutions using PPMSO-2-opt (original 22-unit case
study using MMAS)
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Figure 5.17: Infeasible local solutions using PPMSO-2-opt (modified 21-unit case
study using MMAS)
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Figure 5.18: Infeasible local solutions using PPMSO-2-opt (modified 22-unit case

study using EAS)
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Figure 5.19: Infeasible local solutions using PPMSO-2-opt (modified 22-unit case
study using MMAS)
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Duration Extender

The Duration Extender local search operator, which is only applicable to
PPMSO problems for which duration shortening or deferral options are
available, was found to improve the performance of EAS in solving the
modified 21-unit case study when the heuristic is not used, and also to
produce significantly better results with and without heuristic when
applied to the modified 22-unit case study (Table 5.16). On the other
hand, the local search operator has an insignificant impact when the
MMAS algorithm is used to solve both modified case studies (Table 5.16).
The difference in the impacts the Duration Extender local search operator
has on the performance of EAS and MMAS may be attributed to the
different searching mechanisms involved in the algorithms. As MMAS is
equipped with a robust explorative mechanism, it exhibits relatively
stronger optimisation ability than EAS, thus the improvement of results

using local search is less or insignificant.

Without the presence of the heuristic, it was observed that the average
duration shortened or deferred decreased when the Duration Extender
local search operator was used for both case studies and both ACO
algorithms (comparing rows 1 and 3 of Tables 5.10 to 5.13), indicating the
usefulness of the local search algorithm in improving the performance of
ACO-PPMSO when heuristic information is not readily available.

Duration Extender is mainly used to locally optimize ACO solutions with
regard to shortening/deferral decisions. Compared to real PPMSO case
studies, the modified 21- and 22-unit case studies have only a small
number of shortening and deferral options available, which may make a
rigorous examination of the performance of the Duration Extender
algorithm difficult. Therefore, the usefulness of the Duration Extender
algorithm was further investigated with real PPMSO case studies
(Chapter 6).
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C. Overall performance of ACO-PPMSO

Original 21-unit and 22-unit case studies

By using the ACO-PPMSO algorithm, a new best-known objective value
has been found for both the original 21-unit case study (SSR = 13.66 x 10¢
MW?2) and the original 22-unit case study (LVL = 52.06 MW).

A comparison of the results obtained by ACO-PPMSO with those
obtained by various metaheuristics in other studies for the 21-unit case
study is shown in Figure 5.20. As mentioned previously, the number of
evaluations (trial solutions) allowed in the ACO runs and those of the
other metaheuristics was identical. In particular, the best and average
results of the metaheuristics were compared. While the best and average
results given by the simple GA, SSGA, GNGA, inoculated GA and SA
were obtained by 10 runs with different starting positions (Aldridge et al.,
1999; Dahal et al., 1999; Dahal et al., 2000), those of EAS and MMAS were

obtained using 50 runs.

It can be seen that the EAS and MMAS algorithms have outperformed the
algorithms that have been applied to this case study previously. It should
be noted that a new best-found solution (SSR = 13.66 x 106 MW2) for the
21-unit case study has been found by EAS and MMAS using the new
ACO-PPMSO formulation. In addition, it can be seen that the differences
between the average and best results of the ACO algorithms are much
smaller than those for other metaheuristics (Figure 5.20), which indicates

a consistent performance of the ACO-PPMSO formulation.

Among the metaheuristics previously used for solving the 21-unit case
study, the inoculated GA, where the initial population is generated using
a heuristic that ranks the generating units in order of decreasing capacity,
was found to perform best in terms of the average results obtained. This
indicates the potential of the benefit of a heuristic in solving PPMSO

problems.
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Notation
ACO: Ant Colony Optimisation
EAS: Elitist-Ant System
MMAS: Max-Min Ant System
Simple GA: Simple Genetic Algorithm
GNGA: Generational Genetic Algorithm
SSGA: Steady State Genetic Algorithm
Inoculated GA: Inoculated Genetic Algorithm
SA: Simulated Annealing

Figure 5.20: Comparison between results obtained using other optimisation
methods (Aldridge et al., 1999; Dahal et al., 1999; Dahal et al., 2000) and the ACO
algorithms used in this thesis

As mentioned previously, a new best-found solution (SSR = 13.66 x 106
MW?2) has been found by the ACO-PPMSO formulation proposed in this
thesis. In fact, different maintenance schedules were found that are
associated with the new best-found SSR solution. Two maintenance
schedules associated with the best-found SSR of 13.66 x 106 MW?2, along
with the corresponding generation reserve levels and personpower

utilization over the planning horizon, are presented in Figures 5.21 and

Page 151



Chapter 5 Testing On Benchmark Case Studies

5.22. It can be seen that there is no demand or personpower shortfall
associated with the two schedules. Despite the identical SSR-values, the
two schedules are different, indicating there is more than one optimal
solution in the problem search space. The two schedules that result in
different personpower allocation profiles provides great flexibility during
a negotiation with the asset manager. Maintenancs schedules associated
with sub-optimal SSR values were also investigated, as such schedules
may sometimes be preferred when some non-quantifiable criteria are
taken into account. The maintenance schedule associated with a near-best-
known SSR solution (SSR = 13.68 x 106 MW?2) is shown in Appendix B3.

Page 152



Chapter 5 Testing On Benchmark Case Studies

SSR=13.66 x 16MW*
Personpower contraint violation = 0
Load constraint violation = 0

13 17 21 25 29 33 37 41 45 49
Time (week)

(@)

204 ===

Personpower limitation =20 =@ = = = = = = = = = = = -

5700

13 17 21 25 29 33 37 41 45 49
Time (week)

(b)

5600

5500

o
i
S
=1

5300+

5200+

5100+

Generation capacity (MW)

5000
4900

4800

4700

JL[L System load = 4739 MW

I e

13 17 21 25 29 33 37 41 45 49
Time (week)

(©

Figure 5.21: The (a) maintenance schedule of the 21-unit case study best-
found-SSR solution A, the associated (b) personpower allocation and (c)

reserve capacity levels
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Figure 5.22: The (a) maintenance schedule of the 21-unit case study best-
found-SSR solution B, the associated (b) personpower allocation and (c)
reserve capacity levels
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LVL (MW)

In Figure 5.23, the reserve level across the planning horizon associated
with the best-known schedule found by ACO-PPMSO for the original 22-
unit case study is compared with those obtained by implicit enumeration
(Escudero et al., 1980) and tabu search (El-Amin ef al., 2000). It can be seen
that the reserve level given by the ACO schedule is more evenly spread
out (summed deviation of generation reserve from the average reserve,
LVL = 52.06 MW) than those obtained with implicit enumeration (LVL =
118.81 MW) and tabu search (LVL = 256.93 MW). It should be noted that
due to insufficient information about the optimum solution in El-Amin et
al. (2000), the LVL value of tabu search shown in Figure 5.23 was
calculated using the best available published information (including a

maintenance schedule shown in Appendix C3).

—<— tabu search —x=ACO —e— implicit enumeration

2400+

2200+ \ \
2000+
1800
N
1600

1400

1200

Time (week)

Figure 5.23: Comparison of reserve levels obtained using ACO, implicit
enumeration (Escudero et al., 1980) and tabu search (El-Amin et al., 2000)

The best maintenance schedule found by ACO-PPMSO for this case study
is shown in Figure 5.24, which is associated with the ACO reserve level
presented in Figure 5.23. Another maintenance schedule associated with a
near-best-known objective function value is presented in Figure 5.25. It
can be seen that the two schedules are different but the objective function
values associated with these schedules differ only by less than 1% (52.06
MW and 53.02 MW). In general, more than two different schedules can be
produced by an ACO run according to the requirements specified by the
user. For example, the best ten schedules obtained throughout an ACO

run are examined. The availability of a wide range of different schedules
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that share similar objective function values provide a great flexibility to a

scheduler when dealing with non-quantitative criteria (eg. operation and

trading protocols, availability of resources etc.).
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Figure 5.24: Best-known (a) schedule and (b) the associated generation reserve

levels for the 22-unit case study
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Figure 5.25: A near best-known (a) schedule and (b) the associated generation

reserve levels for the 22-unit case study

Modified 21-unit and 22-unit case studies

As the modified versions of the 21- and 22-unit case studies have been
introduced in this research to test the developed ACO-PPMSO
formulation, there are no previous results available for comparison
purposes. As can be seen in Tables 510 to 5.13, the optimized
maintenance schedules of both the modified 21- and 22-unit case studies

include the shortening and/or deferral of maintenance tasks (average
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duration shortened/deferred > 0). Two maintenance schedules associated
with the best-found objective function cost for the modified 21-unit case
study are shown in Figures 5.26 and 5.27 (OFC = $15.71M) and for the
modified 22-unit case study in Figures 5.28 and 5.29 (OFC = $916.12). In
both schedules for the modified 21-unit case study, the maintenance tasks
for generating units 11 and 21 are deferred, while all other tasks are
carried out as normal. For the modified 22-unit case study, maintenance
tasks for generating units 10, 16 and 17 are shortened by 2, 4 and 2 weeks,
respectively. It should be noted that all constraints are satisfied by the
schedules presented in Figures 5.26 to 5.29.

The results for the modified versions of the 21-unit and 22-unit case
studies indicate that the ACO-PPMSO formulation introduced in this
thesis is able to provide maintenance schedules that satisfy hard system
constraints (eg. system demands) by shortening and deferring
maintenance tasks. More importantly, the shortening and deferral options
were not used if not necessary, as only a few, but not all, maintenance
tasks were shortened /deferred (Figures 5.26 to 5.29).
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Figure 5.26: The (a) maintenance schedule of the modified 21-unit case study
best-found-SSR solution A, the associated (b) personpower allocation and (c)

reserve capacity levels
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Figure 5.27: The (a) maintenance schedule of the modified 21-unit case study
best-found-SSR solution B, the associated (b) personpower allocation and (c)
reserve capacity levels
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Figure 5.28: (a) Maintenance schedule A associated with the best-found OFC for
the modified 22-unit case study and (b) the associated generation reserve levels
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Figure 5.29: (a) Maintenance schedule B associated with the best-found OFC for
the modified 22-unit case study and (b) the associated generation reserve levels
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5.5

Summary and conclusions

In this chapter, the new ACO-PPMSO formulation introduced in Chapter
4 was tested on four case studies (original and modified versions of two
benchmark case studies from the literature). In particularly, the
performance of the heuristic formulation developed, the two local search
algorithms introduced and the overall utility of the ACO-PPMSO

formulation were investigated.

A testing procedure consisting of three stages was used to assess the
utility of the proposed ACO-PPMSO formulation. In order to examine the
impact that the ACO algorithms and parameters have on the performance
of the ACO-PPMSO formulation, two ACO algorithms, namely Elitist-Ant
System (EAS), Max-Min Ant System (MMAS) and a wide range of ACO
parameters were utilized as part of the testing procedure. In addition,
each ACO run was repeated with 50 random number seeds to minimize
the impact of different initial positions in the search space. The
significance of the experimental results obtained were checked using the
Student’s t-test.

Results of the testing have shown that the heuristic formulation improves
the performance of the ACO-PPMSO algorithm significantly when
applied to the four case studies investigated. It was found that while the
PPMSO-2-opt local search operator seems to work well for unconstrained
problems, it is not suitable for highly-constrained PPMSO problems. On
the other hand, the performance of the Duration Extender local search
operator has resulted in significant improvements in cases where duration
shortening is applicable. Lastly, the results obtained by ACO-PPMSO for
the two original case studies were better than those obtained by other
optimisation methods, such as various genetic algorithm (GAs)
formulations and simulated annealing (SA). For the 21-unit and 22-unit
case studies, a new optimal solution has been found by the ACO-PPMSO
formulation. In addition, the results given by ACO-PPMSO were more
consistent compared with those obtained using other metaheuristics
previously applied to the two benchmark case studies. The maintenance
schedules found for the modified case studies have also been examined
and it was found that the ACO-PPMSO formulation is able to meet hard

system constraints by shortening and deferring maintenance.
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The results of experiments carried out using the original and modified
versions of the 21-unit and 22-unit case studies indicated that the ACO-
PPMSO formulation developed as part of the research work presented in

this thesis has potential for solving real-world PPMSO problems.
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Chapter 6
Hydroelectric Power Case Studies

In this chapter, a five-station case study derived from the Hydro Tasmania
hydropower system is used to test the utility of the ACO-PPMSO formulation
for real-world maintenance scheduling problems. As part of the testing
procedure, the impacts of shortening and deferral options on practical
maintenance scheduling are investigated. In addition, the usefulness of a local
search operator (Duration Extender) introduced in Chapter 4 is examined. The
ACO-PPMSO formulation is subsequently utilized to schedule the 2006
maintenance tasks for the full Hydro Tasmania system, which consists of 55
generating units and a total of 118 maintenance tasks. In addition, four
different scenarios are investigated, which represent various circumstances that
a decision maker might encounter during maintenance scheduling, including
routine maintenance scheduling, an increase in system demand, the
unavailability of a major generating unit and the late return of a major

generating unit from maintenance.

6.1 Background

Tasmania is the smallest and the only island state of Australia, lying south
of the south-east corner of the Australian mainland (Figure 6.1). Tasmania
has a total area of 68,332 km? (Wikipedia, 2006b) and a total population of
487,185 (Jackson, 2005). With its high rainfall and mountainous terrain,
Tasmania has abundant water resources for renewable energy
production. Having harnessed Tasmania’s water for energy production
for over 80 years, Hydro Tasmania is Australia’s largest renewable energy
generator with 29 small- to medium-sized hydroelectric power stations
and one thermal power station. The thermal stations are used in
emergency situations where there is a demand shortfall and their use is
avoided if possible as a result of the high costs incurred. With an installed
generating capacity of 2,260 MW, the Hydro Tasmania system produces
over 10,000 GWh of renewable energy on an annual basis, which is
approximately 60% of Australia’s total renewable energy production’
(Beswick et al., 2003).
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6.2

AUSTRALIA

o
Tasmania—)

Figure 6.1: Geographical location of Tasmania

Five-Station Hydropower System

In order to further test the utility of the proposed formulation, a subset of
the Hydro Tasmania power system was investigated in this study, which
includes two catchment areas (Pieman-Anthony and Gordon-Pedder) and
five power stations. The five power stations considered include eight
generating units with an installed generating capacity of 893 MW (Figure
6.2).

Lake Anthony
Tribute Power Station

A

Lake Mackintosh
Mackintosh Power Station

v

Lake Rosebery Lake Gordon (major)
Bastyan Power Station Gordon Power Station
Lake Pieman l

.
Reece Power Station OCEAN

Figure 6.2: Schematic diagram of the five-station hydropower system

Of the five storages where water is drawn for power generation, three are
run-of-the-river storages (Lakes Anthony, Rosebery and Pieman), while
the other two are major storages (Lakes Mackintosh and Gordon). Run-of-
river storages have limited storage capacity and in order to avoid spilling,
they are given priority to operate, especially during high-inflow periods.

On the other hand, major storages can store large volumes of water, and
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are normally relied upon for power generation during low inflow periods.

Details of the five storages and the associated power stations are given in

Table 6.1.

Table 6.1: Power station and headwater data

Power station Tribute Mackintosh | Bastyan Reece Gordon
Number of generators 1 1 1 2 3
Generating capacity
of each generator 83 80 80 115 140
(MW)

Maximum discharge 34 145 145 144 86
(cumec)
Average efficiency
factor (MW/cumec) 242 0.55 0.55 0.8 1.62
Headwater storage Lake Lake Lake Lake Lake
8 Anthony | Mackintosh | Rosebery | Pieman Gordon
i 6
f’;;;rage capacity (10 2 336 51 100 10,990
6.2.1 Problem specification

This case system requires a total of 14 maintenance tasks to be scheduled
once over a planning horizon of 365 days from Jan 1, 2006 (Table 6.2). The
task IDs denoted by “Inv” are investigative tasks in which the condition
of generators is examined prior to the actual maintenance (task IDs
denoted by “Act”). Among all maintenance tasks, the biggest loss of
generation capacity occurs during the upgrade of the Gordon power
station, when all three generating units of the station are inoperable. The
starting levels of Lake Gordon and other storages are assumed to be 60%
and 75% full, respectively, in this problem (Stolp, S., personal

communication, 2004).
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Table 6.2: Details of maintenance tasks

Normal
mainte- Loss of
Power Machine | Maintenance generating
. Task ID nance .
Station number type . capacity
duration (MW)
(days)
) 1 Investigative Tri_Inv 5 83
Tribute
1 Actual Tri_Act 12 83
Mackin- 1 Investigative Mac_Inv 5 80
tosh 1 Actual Mac_Act 19 80
1 Investigative Bst_Inv 5 80
Bastyan
1 Actual Bst_Act 12 80
1 Investigative Rece#1_Inv 5 115
1 Actual Rce#1_Act 19 115
Reece
2 Investigative Rce#2_Inv 5 115
2 Actual Rce#2_Act 19 115
1 Actual Gor#1_Act 19 140
2 Actual Gor#2_Act 19 140
Gordon 3 Actual Gor#3_Act 19 140
Station Actual Gor_stn 42 420
upgrade

The aim of this optimisation problem is to determine a commencement
time and duration for each maintenance task in the hydropower case
system, such that the system reliability is maximized (Eq. 6.1) and the
total duration shortened/deferred is minimized (Eq. 6.2), subject to a
number of constraints. In this case study, the maximization of system
reliability is achieved by maximizing the expected total final energy in

storage of the two major storages at the end of the planning horizon:

Objective 1: Max { ETFEIS (sF EFEISj,ckintosi(S)+ EFEIS50rdon(S)} 6.1)

where ETFEIS(s) is the expected total final energy in storage (GWh) of
Lakes Mackintosh and Gordon associated with maintenance schedule s, at
the end of the planning horizon; EFEISuackintosi(s) and EFEISGoraon(s) are the
expected energy in storage (GWh) of Lakes Mackintosh and Gordon,
respectively, associated with maintenance schedule s at the end of the

planning horizon.

Objective 2: Min{DurCut, (s} 6.2)
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Demand (MW)

where the value of the total duration shortened and deferred associated
with schedule s, DurCut(s), is given by Eq. 5.18, where tofal_n = 14 in

this case.

The constraints to be satisfied are (Stolp, S., personal communication,
2004):

1. The earliest time a maintenance task can start is January 1 and all
tasks should be finished by December 31.

2. An investigative task has to finish between 4 to 6 weeks prior to the

commencement of the actual maintenance task.

3. There is no maintenance during the Easter, Christmas and New Year

public holidays.

4. The maintenance duration of all tasks can be shortened by a time

step of 2 days.

5. The system power demands (Figure 6.3) have to be met throughout
the planning horizon. The total expected unserved energy (EUE)
over the planning horizon should not be greater than 0.002% of the

total annual energy demand.
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Time (month)

Figure 6.3: Forecasted system demand for 2006
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6.2.2 Problem formulation

In the ACO-PPMSO formulation, constraints are incorporated at the
earliest possible stage during the optimisation process, using either the
graph-based or penalty-based techniques introduced in Section 4.4. In the
five-station case study system, constraints 1, 2, 3 and 4 are related to the
timeframe during which maintenance tasks are allowed to commence.
Therefore, it is more computationally effective to take these constraints
into account during the construction of trial solutions, so that the trial
solutions generated are feasible with regard to these constraints
(construction graph-based technique in Section 4.4). For example, in order
to incorporate constraints 1 and 2, the decision paths associated with
investigative and actual tasks are dynamically updated during
construction of each trial maintenance schedule. In the construction of a
trial maintenance schedule, if May 18 was chosen as the commencement
date for the actual maintenance task of the unit at Tribute power station,
the corresponding investigative task will be dynamically assigned
optional start days from April 1 to April 15 (Figure 6.4). It should be noted
that if the investigative task was assigned a start time first, the optional
start days for the corresponding actual task would be updated
dynamically in the same way. Similarly, constraint 3 is handled by
eliminating the optional start days associated with public holidays during
the construction of trial solutions. Constraint 4 is addressed by allowing
only durations that are greater than the minimum maintenance durations

during the construction of trial maintenance schedules.

Tribute Tribute
Actual Investigative

{May 16[>>, -2~ Apr 1}~

s Evava gl 3\
A EVINNET A A -

May 20} ~|Apr 15}~

Figure 6.4: Handling of constraints 1 and 2

Unlike constraints 1 to 4, whether or not constraint 5 (system demand) is
satisfied by a trial maintenance schedule is not known until the complete
schedule has been constructed and a simulation model has been run,
necessitating the use of penalty-based techniques in order to meet this

constraint (see Section 4.4).
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Adapting Eq. 4.18, the objective function used for this problem is
comprised of the actual objective terms i.e. the expected total final energy
in storage (ETFEIS) and the total duration cut down (DurCuti), as well as
an additional term to address the violation of load constraints (EUE), and

is given by:

OFC(S)= (Ceue DEUE<s>+E$;TTFIE§(S; [DUrCuty(sy (63)

where OFC(s) is the objective function cost ($) associated with a trial
maintenance schedule, s; EUE(s) is the total annual expected unserved
energy (GWh) associated with a trial maintenance schedule, s; ETFEIS(s)
is the expected total final energy in storage (GWh) associated with a trial
maintenance schedule, s; crue is the penalty cost per unit EUE ($/ GWh);
cerrers is the cost per unit of the inverse of ETFEIS ($GWh); DurCuti (s)
is the total reduction in maintenance duration (day) associated with a

trial maintenance schedule, s due to shortening and deferral.

The OFC can be viewed as the virtual cost associated with a trial
maintenance schedule. It should be noted that the values of crue and
cerress in the objective function (Eq. 6.3) can be varied to reflect the relative
importance of the objectives and constraints, as perceived by the decision
maker. Hard constraints (demand constraints in this case) are usually
assigned relatively higher costs, such that trial solutions that violate these
constraints are more heavily penalized. It can also be seen that the greater
the reduction in maintenance duration in a trial maintenance schedule,
the higher the associated OFC. The values of ceur and cerreis used in the
optimisation runs for this problem were chosen to be 1000 and 10000,
respectively. As a hard constraint, the penalty cost associated with
violation of demand constraints (cg  [EUE(S)in Eq. 6.3) should be much

higher than that associated with an objective term, which is the total final

CETFEIS

energy in storage term ( ETFEIS(S)
S

in Eq. 6.3) in this case.

The value of DurCutiw: (Eq. 6.3) associated with a trial schedule can be
easily calculated once the complete schedule has been obtained, or even
during the construction of the schedule using Eq. 5.18. However, the
values of expected unserved energy (EUE) and expected total final energy
in storage (ETFEIS) associated with a trial maintenance schedule are

calculated using a simplified version of the SYSOP (SYStems-OPeration)
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simulation model currently used by Hydro Tasmania for the assessment
of proposed maintenance schedules for its full system. In SYSOP,
dispatching rules that specify the order in which storages are used for
power generation when meeting demands are employed. For example,
run-of-river storages that have exceeded certain storage levels are given
higher priority during dispatch to avoid spilling. During the ACO-
PPMSO optimisation process, the trial maintenance schedule generated
by individual ants, along with the system demand, storage inflows, and
the initial level of storages at the start of the planning horizon are input
into the simplified SYSOP model. The outputs of the simplified SYSOP
model, including the expected total final energy in storage of the major
storages and the expected unserved energy over the planning horizon, are
used to calculate the objective function cost, OFC, associated with a trial

maintenance schedule using Eq. 6.3.

6.2.3 Analysis conducted

An experiment has been conducted to assess the utility of the proposed
ACO-PPMSO formulation for real PPMSO problems. Particular emphasis
was given to assessing the utility of the shortening and deferral options,
the impact of the Duration Extender local search operator and the overall

performance of the proposed ACO-PPMSO formulation.

The optimisation runs in the experiment described above are performed
on a Linux Symmetric Multi Processor Kernel (Memory: 1GB; CPU: AMD
Athlon(tm) MP 2600+) utilizing the ACO-PPMSO program described in
Section 4.5. The simulation model routine used in the program is a
simplified version of the SYSOP model that caters only for the five power
stations investigated in this case study. In order to facilitate its use within
the ACO-PPMSO program, the simplified SYSOP model originally
written in the PASCAL language has been translated to the Fortran 90

language as part of this research.

A. Utility of shortening and deferral options

The impact of shortening and deferral options in the ACO-PPMSO
formulation for real-world PPMSO problems was investigated by

considering the following scenarios:

Page 172



Chapter 6 Hydroelectric Power Case Studies

Scenario 1: All maintenance tasks must be completed at normal outage
duration within the specified planning horizon. In other words, neither

shortening nor deferral are allowed.

Scenario 2: The options of shortening outage duration and deferral of

maintenance tasks are considered.

For both scenarios, the optimum maintenance schedules obtained as a
result of different storage inflows were examined. The three storage
inflow conditions tested were extracted from 80 years of historical inflow
data at the 13th percentile (dry year), 64th percentile (intermediate year)
and 92nd percentile (wet year) (Stolp, S., personal communication, 2004).
The monthly average inflows of individual storages for dry, intermediate

and wet years are shown in Figures 6.5 to 6.7.

B. Performance of the Duration Extender local search operator

The performance of the Duration Extender local search strategy (see
Section 4.3.4) was examined by carrying out separate ACO runs with and
without using the local search. The effectiveness of the Duration Extender
was then checked using a Student’s t-test at a 5% significance level. It
should be noted that Duration Extender is only applicable to cases where

shortening and deferral options are considered.

C. Overall performance of ACO-PPMSO for real-world PPMSO

problems

The results obtained by ACO-PPMSO were compared with those found
by a random evaluation method and a maintenance schedule proposed by
Hydro Tasmania practitioners based on conventional techniques and
engineering judgment. In a random evaluation run, the number of
maintenance schedules generated was identical to the number of

schedules generated in an equivalent ACO run.
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Figure 6.5: Dry year storage inflows
300
— Anthony
250 —— Mackintosh|
— Rosebery
200 Pieman
— Gordon

Month

Figure 6.6: Intermediate year storage inflows
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Figure 6.7: Wet year storage inflows
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In order to achieve the objectives outlined above, the testing procedure
shown in Figure 6.8 was implemented. Items A, B and C aforementioned
were investigated at stages A, B and C in the testing procedure,
respectively. The Max-Min Ant System (see Section 3.3.1), which was
found to be superior to the Elitist-Ant System (see Section 3.3.1) for the 21-

unit and 22-unit case problems, was adopted for this problem.

To minimize the impact the parameters used have on the evaluation of
the effectiveness of the shortening and deferral options, local search and
overall performance of the ACO-PPMSO algorithm, a wide range of ACO
parameters (shown in the dashed box in Figure 6.8) was used to solve the
problem. It should be noted that investigations into the effect of the
reward factor Q (Eq. 4.23) and initial pheromone % (Section 4.3.1) are not
considered in this study, as they were found to have no impact on
algorithm performance. The values of both a and f were set to 1.0. In
addition, each run was repeated 30 times with different random number
seeds in order to minimize the influence of random starting values in the
solution space on the results obtained and to enable statistical significance
testing of the results to be conducted. In each ACO run, a maximum of
100,000 trial solutions were generated, where ‘an ACO run’ is defined as
the use of a particular set of parameters (for example, m = 800; p=0.9; prest
= 0.01) to solve the hydropower case study system maintenance
scheduling problem, given a storage inflow condition (for example, wet
year inflow), using a specified random number seed (for example, 8998).
The performance of a parameter setting is then gauged by the best OFC
obtained in each run, averaged over 30 ACO runs with different random

number seeds.
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6.2.4 Results and discussion

The results of stages A and B of the testing procedure shown in Figure 6.8
are summarized in Table 6.3 (detailed results are shown in Appendix D).
For each inflow condition depicted in Table 6.3, the first and second rows
are the results for scenarios 1 and 2 of stage-A testing, respectively, while
the third rows contain the results for stage-B testing. The results for the
parameter sets that resulted in the best overall performance (averaged
over 30 simulations with different random number seeds) are also shown
in Table 6.3. The various statistics presented were calculated using the
OFC values obtained in the 30 trials with 30 different random starting
positions in decision variable space. It should be noted that in this
problem, maintenance schedules that violate load constraints (i.e.

expected unserved energy (EUE) > 0) are considered to be infeasible).

Table 6.3: Results given by ACO-PPMSO for different inflow conditions

investigated
Best
- AVg. AVg- AVg. Avg_ Std
f{:;w ::;:-:}11 EUE | ETFEIS | DurCutio OIIS;Z“g($) evalua | dev. of E:;??e{t::_
(GWh) | (GWh) | (day) -tion | OFC g um;
Y2 pbest}
K | 131.06* | 631.80 0 [131,078 | 76,700 | 2,270 {80(?;3 ?.7;
Dry 0 542.35 341 | 22,679 | 84,987 | 546 {10(?8;1 ?.7;
J 0 | sa350 | 37 |22 | 7708 | sz | % g.}99,-
R | 3245 | 252376 0 32,455 | 90,241 | 785 {508;3?}'95;
{1000; 0.9;
me | R 0 | 252777 | 299 | 3525 | 83,614 | 336 005)
J 0 | 23165 | 271 | 3115 | su7sa | 213 | %07
0.05)
K | 000 | 471011 0 212 | 68,731 | 0.0 {50(?;3 ?-3;
Wet {100; 0.3;
X 0 | 469933 0 212 | 51,223 | 0.003 0,
J 0 4713.45 0 212 | 65935 | 0.001 {10(? 5?3

*+ Expected unserved energy (EUE) > 0 i.e. load constraints violated
Notation: EUE: Expected unserved energy, ETFEIS: Expected total final energy in storage, DurCuty:

Total reduction in maintenance duration due to duration shortening and deferral of
maintenance tasks; OFC: Objective function cost.

* m: number of ants; (1-0): pheromone evaporation rate; prs:: see Eq. 4.24.
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Scenario 1: No shortening and deferral options

Stage-A results

It is shown in Table 6.3 that infeasible solutions (expected unserved
energy > 0.002% of total annual energy demand) were obtained for the
dry and intermediate inflow conditions. Further investigations have
shown that, given the storage inflows in dry and intermediate years, it is
not possible to meet demand constraints if all maintenance tasks are

performed within the given planning horizon.

The best-found schedules obtained by ACO-PPMSO for the three inflow
conditions investigated, as well as the associated unserved energy and
spillage conditions, are shown in Figures 6.9 to 6.11. In order to better
understand the optimisation process of the ACO-PPMSO algorithm, the
objective function costs (IB-OFC), expected unserved energy (IB-EUE) and
expected total final energy in storage (IB-ETFEIS) associated with the
iteration-best schedules recorded throughout the runs that produced the

schedules in Figures 6.9 to 6.11 are shown in Figures 6.12 to 6.14.
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Figure 6.9: (a) The best-OFC schedule for wet inflow conditions and (b) the

associated unserved energy and spillage conditions
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Figure 6.10: (a) The best-OFC schedule for intermediate inflow conditions and
(b) the associated unserved energy and spillage conditions
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Figure 6.11: (a) The best-OFC schedule for dry inflow conditions and (b) the
associated unserved energy and spillage conditions
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schedules recorded throughout the ACO run that produced the schedule in

Figure 6.9 (wet inflow condition)

Page 182




Chapter 6 Hydroelectric Power Case Studies

55,000

50,000+

45,000

40,000

Objective Function Cost ($)

35,000

30,000 T T

61 81 101 121
Iteration

(@)

,_\
N
A
N
=

55

504

IS
@

Energy (GWh)

N
o

354

30 T T T
21 41 61 81 101 121
Iteration

(b)

-

Page 183



Chapter 6: Hydroelectric Power Case Studies

2540

25304

2520+

N
13
i
IS

Energy (GWh)

N
133
=
S

2490+

2480+

2470

1 21 41 61 81 101 121
Iteration

©

Figure 6.13: (a) IB-OFC, (b) IB-EUE and (c) IB-ETFEIS associated with iteration-
best schedules recorded throughout the ACO run that produced the schedule in
Figure 6.10 (intermediate inflow condition)
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Figure 6.14: (a) IB-OFC, (b) IB-EUE and (c) IB-ETFEIS associated with iteration-
best schedules recorded throughout the ACO run that produced the schedule in

Figure 6.11 (dry inflow condition)

The optimized schedules for each inflow condition (Figures 6.9 to 6.11)
were examined in relation to the rationale of the optimisation outcome. It
was found that, given wet inflow conditions, meeting energy demand is
not difficult and the driving force behind the optimisation process is the
maximization of total energy in storage of the system. This is clearly
shown in the decreasing IB-OFC values (Figure 6.12a) as a result of
increasing IB-ETFEIS (Figure 6.12b), while the IB-EUE curve is not
presented, as IB-EUE = 0 throughout the ACO-PPMSO run.

It can be seen that during wet inflow conditions, maintenance tasks are
scheduled for the early periods of the year, when the storage inflows are
relatively lower and all storages are not full yet. The Gordon power
station upgrade and the maintenance of its generators are performed
during the low-demand, low-inflow periods (Jan to May) so that small
storages can be emptied to cater for the inflows later in the year. In this

way, the total final energy in storage of the system can be maximized.

On the other hand, as there were no feasible schedules for both dry and

intermediate inflow conditions, the degree of load constraint violation
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was minimized in the optimisation runs for these scenarios. The down-
sloping IB-OFC curves for both intermediate and dry inflow conditions
(Figures 6.13a and 6.14a) correspond closely to the decreasing IB-EUE
values shown in Figures 6.13b and 6.14b, indicating the minimization of
expected unserved energy as the dominant objective in these optimisation
runs. On the other hand, maximization of the ETFEIS objective for
intermediate and dry inflow conditions is not apparent, as indicated by
the fluctuating, and later rather stagnant, IB-ETFEIS values recorded

during the corresponding runs.

It can be seen that in a dry inflow year, the run-of-river and Lake
Mackintosh storages are available for power generation from January
until June and are taken offline for maintenance from July to September
(Figure 6.11a). The rationale behind this is that these smaller storages
need to be emptied in summer (January to June) to be able to
accommodate the much higher inflows in winter (July to September)
without spilling when they are being maintained. In this way, these
storages are full and able to operate at their maximum capacity when
Gordon power station and its generators are being maintained in late
September, which minimizes the total unserved energy over the planning
horizon. For an intermediate inflow condition, the optimized maintenance
schedule resembles that of the dry inflow condition, except that
maintenance of the Gordon generators is performed before July, as the
smaller storages are receiving sufficient inflows to meet the relatively low

energy demand in that period.

Stage-C results

A schedule obtained by conventional techniques using engineering
judgment (Stolp, S., personal communication, 2005) is shown in Figure
6.15. It can be seen that using traditional techniques, maintenance tasks
for the units at Gordon power station and the upgrade of the station are
scheduled during winter, assuming that run-of-river storages are
receiving sufficient inflows to meet energy demands within that period.
The values of objective function cost (OFC), expected total final energy in
storage (ETFEIS) and expected unserved energy (EUE) associated with the
schedule obtained by engineering judgment (Figure 6.15) and random
evaluation are compared with those obtained by ACO-PPMSO (Figures
6.9 to 6.11) in Table 6.4. It should be noted that the ACO-PPMSO results
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presented correspond to the best results obtained from the 30 runs with
different random number seeds, and are therefore slightly better than the
results presented in Table 6.3. The detailed results obtained by random

evaluation are shown in Appendix D2.
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Rce#z_lnvﬁ ]
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MacﬁAct’ [ ]
Mac_in | ]
TrLActi [ ]
Tri_Invi ]
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Time
Figure 6.15: Schedule obtained by engineering judgment
Table 6.4: Comparison of results obtained by different methods
Wet Intermediate Dry
EUE | ETFEIS |OFC| EUE | ETFEIS OFC EUE | ETFEIS OFC
(GWh) | (GWh) | ($) | (GWh) | (GWh) ) (GWh) | (GWh) &)
e §
'§ '§ 0.00 | 4,668.9 | 214 | 3480 | 2,498.30 | 34,774.29 | 141.20 | 626.00 | 141,209
S s
ol

0.00 |4,584.28| 218 | 59.44 | 2,571.69 | 59,444.00 | 282.64 | 745.90 282,653

Engineering
judgment

0.00 |4,719.22| 212 | 3213 | 2,533.87 | 32,134.00 | 126.96 | 631.85 126,976

ACO-
PPMSO

Notations: EUE: Expected unserved energy, ETFEIS: Expected total final energy in storage, OFC: Objective

function cost.
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It can be seen that the OFC associated with the best schedule obtained by
ACO-PPMSO for each of the dry, intermediate and wet inflow conditions
is lower than those obtained with engineering judgment and random
evaluation (Table 6.4). However, it should be noted that the schedule
obtained by conventional techniques was proposed based on the
maintenance scheduler’s experience on the full hydropower system,
which might be different when applied to the simplified system
considered in this study. In addition, the schedules obtained by ACO-
PPMSO were the outcome of optimisation assuming perfect knowledge of
inflow conditions. Nevertheless, the results obtained highlight the
potential of using ACO for PPMSO in light of the context of this research.
It can be seen that the schedules obtained by random evaluation are
inferior to those obtained using ACO-PPMSO for all three inflow
conditions. Based on the same inflow data and number of trial solutions
evaluated, the results thus indicate that the ACO-PPMSO algorithm is

useful in obtaining good solutions for maintenance scheduling problems.

Scenario 2: Options of shortening and deferral considered

Stage-A results

For dry and intermediate inflow conditions, it can be seen that the best-
OFC maintenance schedules obtained are feasible (Average EUE = 0)
when the durations of some maintenance tasks are shortened (Average

DurCut; > 0) (last two rows of each inflow results in Table 6.3).

The best-OFC schedules for wet, intermediate and dry inflow conditions
are presented in Figures 6.16 to 6.18. The rationale behind these schedules
was analysed, by taking into account storage inflows and system demand,
as well as the rules implemented in the simulation model (SYSOP) with

regard to the priorities of power stations being called for generation.
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Figure 6.16: The best-OFC schedule for the wet year
(EUE = 0 GWh; ETFEIS = 4718 GWh)
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Figure 6.17: The best-OFC schedule for the intermediate year
(EUE = 0 GWh; ETFEIS = 2539 GWh)

Page 190




Chapter 6 Hydroelectric Power Case Studies

Task ID

Gor_stn
Gor#3 |
Gor#2 ]
Gor#l |

Rce#ziActi
Rce#2_| nvﬁ
Rce#lfAct’
Ree#l_| nvﬁ
Bst_Act |
Bst_Inv |
Mac_Act ]
Mac_Inv ]

Tri_Act

Tri_lnv

[ shortened (10 day
]
]
]
(]
]
]
]
=]
5]
(]
]
=]
]

Jan

T T T T T
Feb Apr May Jun Jul Aug Sep Oct

Time

Figure 6.18: The best-OFC schedule for the dry year
(EUE = 0 GWh; ETFEIS = 544 GWh)

For the wet inflow condition (Figure 6.16), neither duration shortening
nor deferral of maintenance tasks is required, as demand constraints are
easily satisfied. In addition, it can be seen that all maintenance tasks are
scheduled in the first quarter of the planning horizon. All storages are
75% full at the start of the planning horizon, and are still able to
accommodate inflows during maintenance. By winter, when storage
inflows are even higher, run-of-river storages are almost full, if not
spilling, and are able to provide the relatively high demand in this period
without having to draw down major storages (Lakes Mackintosh &
Gordon). In this way, generation from major storages is minimized and
the expected total energy-in-storage is maximized. It can be seen that the
iteration-best objective function cost (IB-OFC) decreases (Figure 6.19a) as
a result of the increasing expected total final energy in storage (IB-ETFEIS)
(Figure 6.15b) throughout the ACO run. It should be noted that none of
the iteration-best schedules violate the demand constraints (ie. IB-EUE =0

for all iterations).
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Figure 6.19: (a) IB-OFC and (b) IB-ETFEIS associated with iteration-best
schedules recorded throughout the ACO run that produced the maintenance
schedule shown in Figure 6.16 (wet inflow condition)
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For the intermediate inflow condition (Figure 6.17), the Gordon station
upgrade task, which normally takes 42 days to complete, had to be
shortened by 61.9% in order to satisfy demand constraints. In addition,
most of the maintenance tasks are not scheduled in the period from April
to August. This is because although the highest storage inflows take place
in August, run-of-river storages are still incapable of meeting winter
demands (May to August, Figure 6.3), therefore requiring the major
storages for generation. Only when the demand is relatively lower in
September and the storage inflows are still quite high, Gordon station is
taken offline for maintenance. However, as the run-of-river storage levels
decrease rapidly as a result of the loss of Gordon, Gordon station had to
be brought back on-line to avoid demand shortfalls. The schedules
obtained also indicated that the maintenance tasks for Mackintosh,
Gordon#2 and Gordon#3 machines are scheduled in a way such that Lake

Mackintosh is emptied before its maintenance to reduce spilling.

The ACO optimisation process that produced the Figure 6.17 maintenance
schedule is shown in Figure 6.20. It can be seen that the IB-OFC curve
(Figure 6.20a) decreases in stages, mainly corresponding to the reduction
in total outage duration shortened/deferred (Figure 6.20c). Figure 6.20c
also illustrates that when a new minimum IB-DurCuti: is found (eg.
Iteration 2, 43 and 52), IB-ETFEIS undergoes maximization (Figure 6.20b).
As IB-EUE = 0 throughout the run, it can be deduced that the
optimisation process for the intermediate inflow condition was driven
primarily by the total duration shortened/deferred and secondarily by

the total final energy in storage.
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Figure 6.20: (a) IB-OFC, (b) IB-ETFEIS and (c) IB-DurCuttot associated with

iteration-best schedules recorded throughout the ACO run that produced the
maintenance schedule shown in Figure 6.17 (intermediate inflow condition)

Compared to the intermediate inflow condition, the duration of the
Gordon station upgrade task is shortened even more (by 76%) for the dry
inflow condition (Figure 6.18). This is as expected, as the expected
unserved energy during dry conditions is higher than that during
intermediate inflows. Similar to the intermediate inflow condition, all
maintenance tasks are not scheduled in winter (May-September, Figure
6.3) when demand is the highest in a low-inflow year. Specifically, as
inflows are exceptionally low in the Jan-Mar period (Figure 6.3), all
storages are used to meet demand. Only in April, when storage inflows
start to increase, are run-of-river storages fully relied on for meeting
demand while the shortened upgrade task of Gordon station is carried
out. In addition, the last quarter of the planning horizon is deemed to be
the best period for maintaining the run-of-river stations, as these storages

are already running quite low at that time.

The optimisation process for the dry inflow condition (Figure 6.21) is
similar to that for the intermediate inflow condition, except that IB-EUE >
0 for the first 11 iterations of the run that caused the high IB-OFCs at the
beginning of the run (Figures 6.21a and b).
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Figure 6.21: (a) IB-OFC, (b) IB-EUE, (c) IB-ETFEIS and (d) IB-DurCuttot
associated with iteration-best schedules recorded throughout the ACO run that
produced the maintenance schedule shown in Figure 6.18 (dry inflow
condition)
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Stage-B results

The usefulness of the Duration Extender local search operator is shown to
be statistically significant (p-value < 0.01) for both dry and intermediate
inflow conditions when checked with an unpaired, 2-sided Student’s t-
test (calculations are shown in Appendix D5). The improvement in
Average OFC when local search is used is mainly attributed to the
reduction of total duration shortened and deferred (last row of each
inflow result in Table 6.3). However, it should be noted that the local
search strategy is only performed for iteration-best trial schedules that
contain one or more decisions of shortening. Therefore, the local search
was of little use, if any, during the optimisation for wet inflow conditions,
as demand constraints are well satisfied in that scenario without the need

for shortening and deferral of maintenance tasks.

Stage-C results

The best maintenance schedules obtained by ACO-PPMSO for the three
inflow conditions are compared with those found by the random
evaluation method. The detailed results obtained by random evaluation
are shown in Appendix D4. Table 6.5 depicts that the results of ACO-
PPMSO are superior as indicated by the much lower objective function
costs for all inflow conditions. In addition, as a result of having the
shortening and deferral options available, there were no demand
shortfalls during the intermediate and dry inflow conditions. It should be
noted that comparison with a practitioner’s schedule is not made as
maintenance tasks are not deferred or shortened as part of current Hydro

Tasmania practice.
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Table 6.5: Results obtained by different methods

EUE ETFEIS DurCut;
Inflow Method OFC ($
(GWh) | (GWh) (day) ®)
Random 0.00 520.30 44 38921.37
Dry ACO-
PPMSO 0.00 544.20 32 20011.77
Random 0.00 2489.30 42 7427.71
Intermediate
ACO-
PPMSO 0.00 2539.30 26 2870.85
Random 0.00 4562.60 2 19.73
Wet
ACO-
PPMSO 0.00 4718.37 0 212

Notation: EUE: Expected unserved energy, ETFEIS: Expected total final energy in storage;
DurCutor: Total reduction in maintenance duration due to shortening and deferral; OFC:
Objective function cost.

6.2.5 Summary

A testing procedure was carried out on a five-station hydropower
maintenance scheduling case study. It was shown that the shortening and
deferral options of maintenance tasks allow PPMSO problem to be solved
practically, especially when not all maintenance tasks can be performed
under unfavourable system conditions. In addition, the Duration Extender
local search operator was shown to be statistically significant in
improving the performance of ACO-PPMSO when shortening and
deferral options are considered. Comparison with maintenance schedules
obtained by other methods, including a random evaluation method and
that based on conventional techniques and engineering judgments of
maintenance schedulers, indicated that ACO-PPMSO is a competitive

optimisation method for real-world PPMSO problems.

It should be noted that the five-station hydro PPMSO case study provided
a platform for the development and refinement of the ACO-PPMSO
formulation in this research. In particular, the availability of shortening
and deferral options as part of the ACO-PPMSO formulation is an
outcome of extensive analysis carried out on different scenarios and
numerous discussions with Hydro Tasmania maintenance schedulers. In
addition, the constraints handling methods used in ACO-PPMSO were
tested extensively and undergone repeated modifications throughout the

investigation of this case study.
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6.3 Full Hydro Tasmania Maintenance Scheduling Case
Study
6.3.1 Problem specification

The full Hydro Tasmania case system considers an integrated system of
38 storages (including run-of-river and major storages), 28 hydropower
stations, 55 generating units and a total of 118 maintenance tasks to be
performed over a planning horizon of 365 days from Jan 1, 2006. The
maintenance scheduling problem aims to find a start date for each of the
109 maintenance tasks shown in Table 6.7, while the commencement date
of nine other maintenance tasks have been fixed (Table 6.6) (Stolp, S.,
personal communication, 2006). A maintenance schedule is sought such
that expected total final energy in storage (ETFEIS) of the hydropower
system is maximized, thermal generation (THERM) is minimized and
total reduction in maintenance duration due to shortening and deferral
(DurCut) is minimized, subject to the following constraints (Stolp, S.,

personal communication, 2006):

1. Demand constraints: Forecasted system demand must be met (i.e.

Expected unserved energy = 0) under specified inflow conditions.

2. Reliability constraints: Reserve capacity = 30% of system demand at all
times. However, violation of the constraints by a maximum of 2 days

can be tolerated.

3. Timeframe window constraints: Timeframe window constraints of
individual maintenance tasks are presented under the ‘Earliest start
date’” and ‘Latest finish date” headings in Table 6.7.

4. Precedence constraints: Precedence constraints are presented under
the ‘Other constraints” heading in Table 6.7.

5. Completion constraints: All maintenance tasks must be completed

within the planning horizon.

As part of constraint 1, the forecasted system demand, as well as inflow
conditions, are given beforehand. Based on a forecasted average demand
of 1193.3 MW, hourly system demand is calculated by SYSOP using a
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series of load shape functions (not shown due to confidentiality

requirements). Due to space limitations, the daily average demand is

presented in this thesis (Figure 6.22). A total of 77 historical system
inflows (1924~2000) are stored in SYSOP to assess the performance of a

given maintenance schedule. Although daily inflows are used in SYSOP,

the monthly average inflows from 2001 to 2005 are shown in Figure 6.23

for illustration. The total storage inflows are the highest from June to

October during winter in Tasmania (Figure 6.23). The water levels of

storages in the system at the start of the planning horizon (1 Jan 2006) are

given in Table 6.8.

Table 6.6: Fixed-date maintenance tasks

Number of . . Outage
Station T.ask machines | Machine # Fixed maintenance duration
id involved commencement date (days)

Cluny 33613 1 1 13-Feb-06 1

Gordon 30630 1 2 1-Jan-06 67

Gordon 33485 3 123 14-Jan-06 1

Margaret 33543 7 1234567 9-Jan-06 2

Meadowbank | 33528 1 1 1-Jan-06 5

Paloona 33611 1 1 30-Jan-06 1

Reece 33530 1 2 1-Jan-06 6

Rowallan 33539 1 1 19-Jan-06 1

Table 6.7: Maintenance tasks that need to be scheduled
Number
Station of tasks Task id Machine | Earliest start | Latest finish Other Optional outage
in the # date date constraints duration (days)
group

Bastyan 1 30555 1 18-Mar-06 18-Jun-06 3,0
Bastyan 1 30556 1 21-Apr-06 24-Jul-06 5,3,0
ButlersG 1 32095 1 1-Jan-06 31-Dec-06 16,14,12,10,8,0
ButlersG 1 32941 1 21-Apr-06 22-May-06 12,10,8,6,0
ButlersG 1 32111 1 23-Jun-06 31-Dec-06 5,3,0
Catagunya 1 30139 2 1-Jan-06 10-Jul-06 53,0
Catagunya 1 33628 1 1-Jan-06 31-Dec-06 2,0
Catagunya 1 33498 1 15-Jan-06 4-Feb-06 1,0
Catagunya 1 33578 2 5-Feb-06 26-Feb-06 2,0
Cethana 1 33462 1 1-Jan-06 31-Dec-06 3,0
Cethana 1 33468 1 1-Jan-06 27-Jan-06 1,0
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Table 6.7: Maintenance tasks that need to be scheduled (cont)

Number
Stati of tasks Task id Machine | Earliest start | Latest finish Other Optional outage
ation inthe | 25¢! # date date constraints | duration (days)
group
Cluny 1 33499 1 13-Jan-06 2-Feb-06 1,0
Devils_Gate 1 33463 1 1-Jan-06 31-Dec-06 3,0
Devils_Gate 1 33465 1 1-Jan-06 27-Jan-06 1,0
Echo 1 32970 1 1-Jan-06 31-Dec-06 19,17,15,13,11,0
Echo 1 33223 1 1-Jan-06 31-Dec-06 1,0
Echo 1 33548 1 1-Jan-06 31-Dec-06 1,0
Fisher 1 32460 1 1-Jan-06 10-Jul-06 11,9,7,0
Fisher 1 33459 1 1-Jan-06 31-Dec-06 3,0
Fisher 1 33470 1 1-Jan-06 22-Jan-06 2,0
Fisher 1 33605 1 1-Jan-06 31-Dec-06 1,0
213,200,190,180,170
Gordon 1 30072 1 1-Jan-06 31-Dec-06 ,160,150,140,130,12
0,110,0
Gordon 1 30773 | 1,2,3 1-Jan-06 31-Dec-06 22,20,18,16,14,12,0
At least two
months apart
33601 1,23 1-Jan-06 31-Dec-06 from 3,0
30998,30999&
31002
At least two
months apart
31002 2,3 1-Jan-06 31-Dec-06 from 3,0
30998,30999&
33601
Gordon 4
At least two
months apart
30998 2,3 1-Jan-06 31-Dec-06 from 3,0
30999,31002&
33601
At least two
months apart
30999 | 1,2,3 1-Jan-06 31-Dec-06 from 3,0
30998,31002&
33601
Following
Gordon 2 33456 1 1-Jan-06 29-Jan-06 33456 2,0
33457 3 1-Jan-06 29-Jan-06 1,0
JButters 1 33511 1 26-Jan-06 9-Feb-06 1,0
Lemonthyme 1 30553 1 1-Jan-06 19-Jul-06 14,12,10,8,0
Lemonthyme 1 33461 1 1-Jan-06 31-Dec-06 4,2,0
Lemonthyme 1 33467 1 1-Jan-06 27-Jan-06 1,0
32279 1 20-Jan-06 | 24-Apr-06 Precedes 5,3,0
. 33592
Liapootah 2
33592 1 25-Apr-06 25-Jul-06 26’24’22’28 /18,16,14
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Table 6.7: Maintenance tasks that need to be scheduled (cont)

Number
Stati of tasks Task id Machine | Earliest start | Latest finish Other Optional outage
atton inthe | 2%¢! # date date constraints | duration (days)
group

33625 1 1-Jan-06 31-Dec-06 1,0

Liapootah 5 [ 33626 2 1-Jan-06 | 31-Dec-06 F";g’g;’;“g 1,0
Following

33627 3 1-Jan-06 31-Dec-06 33626 1,0

33480 3 1-Jan-06 27-Jan-06 1,0
Liapootah 2 Followin

Tan Tan- g

33481 1 1-Jan-06 27-Jan-06 33480 1,0
Liapootah 1 33551 1 1-Jan-06 27-Jan-06 1,0
Liapootah 1 33579 2 7-Feb-06 27-Feb-06 1,0
Mackintosh 1 33474 1 1-Jan-06 28-Jan-06 1,0
Meadowbank 1 30134 1 1-Jan-06 11-Jul-06 12,10,8,6,0
Meadowbank 1 33505 1 1-Jan-06 27-Jan-06 1,0
Meadowbank 1 33600 1 13-Jan-06 27-Jan-06 1,0
Paloona 1 30560 1 1-Jan-06 31-Dec-06 26’24’22’28 /18,16,14
Paloona 1 30558 1 1-Jan-06 31-Dec-06 5,3,0
Paloona 1 30557 1 1-Jan-06 31-Dec-06 3,0
Paloona 1 33464 1 1-Jan-06 31-Dec-06 3,0
Paloona 1 33466 1 1-Jan-06 27-Jan-06 1,0
Poatina 1 32512 2 7-Feb-06 28-Sep-06 54’50’46’43 :38,34,30
Poatina 1 30185 6 20-May-06 | 10-Dec-06 26’24’22’28 18,16,14
Poatina 1 31446 3 1-Jan-06 31-Dec-06 54’50’46’43 38,34,30
Poatina 1 33473 2 1-Jan-06 31-Dec-06 16,14,12,10,8,0
Poatina 1 33559 1 20-Jan-06 12-Feb-06 42,0
Poatina 1 33285 4 1-Jan-06 29-Jan-06 3,0
Poatina 1 33286 5 1-Jan-06 28-Jan-06 2,0
Poatina 1 33612 3 5-Feb-06 26-Feb-06 2,0
Reece 1 33555 1 1-Jan-06 31-Jan-06 1,0
Repulse 1 32967 1 1-Jan-06 20-May-06 21,19,17,15,13,11,0
Repulse 1 33614 1 1-Jan-06 14-Jan-06 1,0
Repulse 1 33563 1 2-Feb-06 16-Feb-06 1,0
Rowallan 1 33469 1 1-Jan-06 27-Jan-06 1,0
Rowallan 1 33460 1 1-Jan-06 31-Dec-06 3,0
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Table 6.7: Maintenance tasks that need to be scheduled (cont)

Number
Station of tasks Task id Machine | Earliest start | Latest finish Other Optional outage
in the # date date constraints | duration (days)
group
atleast 10
30792 | 1,2,3,4 | 1-Jan-06 31-Dec-06 |months apart 5,3,0
Tarraleah 2 from 30793
atleast 10
30793 | 1,2,3,4 1-Jan-06 31-Dec-06 |months apart 6,4,0
from 30792
Tarraleah 1 30076 5 6-Mar-06 11-Dec-06 1 02’100’59 8 ’g 070,60,
33444 1,2 1-Jan-06 31-Jan-06 1,0
following
33446 3 1-Jan-06 31-Jan-06 33444 1,0
Tarraleah 5 33450 6 1-Jan-06 28-Jan-06 2,0
following
33447 2 1-Jan-06 28-Jan-06 33450 1,0
following
33448 3 1-Jan-06 28-Jan-06 33447 1,0
33449 5 1-Jan-06 27-Jan-06 1,0
Tarraleah 2 :
Following
32981 1 1-Jan-06 27-Jan-06 33449 1,0
Tarraleah 1 32939 2 1-Jan-06 31-Dec-06 4,20
Tarraleah 1 32940 1 1-Jan-06 31-De