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Chapter 1  
Introduction 

1.1 Research background 

Under the pressure of rapid development around the globe, power 

demand has increased drastically during the past decade. To meet this 

demand, the development of power system technology has become 

increasingly important in order to maintain a reliable and economic 

electric power supply. One major concern of such development is the 

optimisation of power plant maintenance scheduling. Maintenance is 

aimed at extending the lifetime of power generating facilities, or at least 

extending the mean time to the next failure for which repair costs may be 

significant. In addition, an effective maintenance policy can reduce the 

frequency of service interruptions and the consequences of these 

interruptions. In other words, having an effective maintenance schedule is 

very important for a power system to operate economically and with high 

reliability. 

Determination of an optimum maintenance schedule is not an easy 

process. The difficulty lies in the high degree of interaction between 

several subsystems, such as commitment of generating units, economical 

planning and asset management. Often, an iterative negotiation is carried 

out between asset managers, production managers and schedule planners 

until a satisfactory maintenance schedule is obtained. In addition, power 

plant maintenance scheduling is required to be optimized with regard to a 

number of uncertainties, including power demand, forced outage of 

generating units, hydrological considerations in the case of hydropower 

systems and trading value forecasts in a deregulated electricity market. 

Consequently, the number of potential maintenance schedules is 

generally extremely large, requiring a systematic approach in order to 

ensure that optimal or near-optimal maintenance schedules are obtained 

within an acceptable timeframe. 

Ant Colony Optimisation (ACO) is a relatively new metaheuristic for 

combinatorial optimisation problems that is based on the foraging 

behavior of ant colonies. Compared to other optimisation methods, such 
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as genetic algorithms (GA), ACO has been found to produce better 

solutions in terms of computational efficiency and quality when applied 

to a number of benchmark combinatorial optimisation problems. 

Recently, ACO has also been successfully applied to scheduling, including 

the job-shop, flow-shop, machine tardiness and resource-constrained 

project scheduling problems. ACO is highly suitable for scheduling 

optimisation problems, especially in handling various constraints, such as 

the precedence and sequential constraints, which can be attributed to the 

decision-tree based structure adopted by the ACO metaheuristic. In 

addition, multiple alternative schedules of similar quality can be 

produced in an ACO run, which is extremely useful in real-world power 

plant maintenance scheduling for negotiation with the asset manager, for 

example. A major drawback when using metaheuristics is not being able 

to incorporate non-quantifiable criteria, such as the operational or trading 

protocols adopted by a power system organization, in the optimisation 

process. This drawback can be overcome by having alternative 

maintenance schedules of similar quality that can be critically assessed 

using criteria not specified as part of the formal optimisation. In addition, 

the ability of ACO to utilize heuristic information in the optimisation 

process can effectively reduce the search space of a problem.  

1.2 Research objectives 

The major goal of this research is given as follows: 

To develop, test and apply an ACO-based formulation to real 

power plant maintenance scheduling optimisation problems. 

In order to meet the goal, a number of objectives are addressed, including: 

Objective 1: To develop a generalized formulation for the power plant 

maintenance scheduling problem. Various issues, such as objectives and 

constraints commonly encountered in real-world power plant 

maintenance scheduling problems, are examined.  

Objective 2: To develop a framework for utilizing ACO for the 

generalized PPMSO problem. 
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Objective 3: To test the ACO-PPMSO formulation with two benchmark 

case studies. 

Objective 4: To apply the ACO-PPMSO formulation to real-world 

maintenance scheduling problems, including a simplified version and a 

full version of the Hydro Tasmania system. 

1.3 Thesis layout 

In Chapter 2, the research background related to power plant 

maintenance scheduling optimisation is reviewed. The objectives and 

constraints commonly used in past studies are discussed (Section 2.1). 

Optimisation methods previously adopted for power plant maintenance 

scheduling, namely heuristic approaches, mathematical programming, 

expert systems and metaheuristics, are reviewed in terms of the strengths 

and drawbacks of each method (Section 2.2). The motivation for 

considering metaheuristics in solving the problem are discussed.  

In Chapter 3, various aspects of the Ant Colony Optimisation 

metaheuristic are presented, including the derivation of a metaheuristic 

from the foraging behaviour of real ant colonies (Section 3.1), the general 

framework for ACO to solve a combinatorial optimisation problem 

(Section 3.2), the two major categories of ACO algorithms (Section 3.3) 

and the previous applications of ACO to benchmark and real-world 

scheduling problems (Section 3.4). The chapter is concluded by the 

motivation for adopting the ACO metaheuristic for power plant 

maintenance scheduling in this research. 

  The proposed approach developed in this research for power plant 

maintenance scheduling problems is presented in detail in Chapter 4. A 

generalized formulation for the power plant maintenance scheduling 

problem is detailed (Section 4.1). The new ACO formulation proposed for 

the maintenance scheduling problem, including a new heuristic 

formulation and a proposed local search strategy, is introduced (Section 

4.2). In Section 4.3, the mechanisms of the ACO algorithm implemented 

utilizing the proposed ACO formulation are detailed.  Lastly, the two 

categories of constraints commonly encountered in power plant 

maintenance scheduling problem, as well as the techniques proposed to 
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address these constraints in the ACO formulation, are discussed in 

Section 4.4. 

In Chapter 5, an experiment is carried out to test the effectiveness of the 

new heuristic formulation and the local search strategy, as well as the 

overall performance of the proposed ACO formulation for power plant 

maintenance scheduling problems using four benchmark case studies, 

namely the 21-unit case study, the 22-unit case study and the modified 

version of the two case studies (Sections 5.1 to 5.3). The results and 

analysis derived from the experiment are detailed in Section 5.4. 

 In Chapter 6, the proposed ACO-PPMSO formulation is applied to real-

world maintenance scheduling problems, including a five-station 

hydropower system (Section 6.2) and a full Hydro Tasmania system 

(Section 6.3).  
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Chapter 2  
Literature Review 

In this chapter, the background of the research work presented in this thesis is 

reviewed. In particular, the definition of power plant maintenance scheduling 

optimisation adopted in past studies and the methods previously applied to 

this problem are discussed. 

2.1 Power plant maintenance scheduling optimisation 

Power plant maintenance scheduling optimisation (PPMSO) has been 

described as a “multi-criterion constrained combinatorial optimisation problem, 

with non-linear objective and constraint functions” (Aldridge et al., 1999). The 

definition of a combinatorial optimisation problem P = (S, f) has been 

given by Blum et al. (2003) as: 

• a set of variables R = {r1, …, rn}; 

• variable domains D1, …, Dn; 

• a set of constraints; and 

• an objective function f to be minimized (for a minimization 

problem). 

The search space of a problem, S, can thus be defined as: 

S = {s = {(r1, v1), …, (rn, vn)}| vi ∈Di, s satisfies all the constraints}  

The aim of an optimisation problem is to find a set of globally optimum 

solutions S*⊆S for (S, f) such that f(s*) ≤ f(s)∀ s*∈S*, s∈S.  

In relation to PPMSO, the aim has been specified as the determination of 

the timing and sequence of the maintenance periods of each of the 

generating machines (units) used for power generation, assuming 

maintenance durations are fixed (Dopazo et al., 1975; Yamayee et al., 1983; 
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Mukerji et al., 1991; Satoh et al., 1991; Kim et al., 1997; Aldridge et al., 1999; 

Dahal et al., 1999; Dahal et al., 2000; El-Amin et al., 2000; Foong et al., 2005a; 

Foong et al., 2005b). The set of variables X in a PPMSO problem is 

therefore implicitly represented by the maintenance commencement time 

for all generating units considered, with the optional commencement 

times given by the variable domains D. The objectives and constraints of 

PPMSO on the other hand, are less well defined and were a research area 

of their own at earlier stages of PPMSO research.  Generally, the objectives 

and constraints being employed for maintenance scheduling in the past 

have been quite different, depending on the concerns of individual power 

utilities. In this section, different objectives and constraints being adopted 

in previous studies are reviewed. 

2.1.1 Objectives 

The objectives commonly utilized for PPMSO are generally reliability or 

cost based (Figure 2.1): 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1: Objectives of power plant maintenance scheduling optimisation 

 

2.1.1.1 Reliability-based criteria 

Apart from meeting demands, a power system needs to provide a reserve 
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the event of a sudden breakdown of generating units or unexpectedly 

high peak demands. Reliability-based criteria previously used can be 

roughly divided into two categories: deterministic and probabilistic 

approaches (Figure 2.1). In addition, hybrid approaches can also be used.  

Deterministic approaches 

Deterministic approaches usually utilize historical data for the assessment 

of maintenance schedules. An example of such data are daily peak 

demands averaged over the past 5 years. Some deterministic reliability-

based criteria aim to maximize the minimum reserve in the planning 

horizon (Christiaanse et al., 1971; Mukerji et al., 1991; El-Amin et al., 2000), 

level the reserve throughout the planning horizon (Escudero et al., 1980; 

Kim et al., 1997; Moro et al., 1999; Dahal et al., 2000; El-Amin et al., 2000; 

Wang et al., 2000) or minimise the annual expected unserved energy 

(Ahmad et al., 2000).  

Probabilistic  approaches 

Some elements of a power system are naturally stochastic, including 

system demands, the forced outage rates of generating units and the 

system inflows in the case of a power system with hydropower plants. If 

one or more of these elements are modelled probabilistically during the 

assessment of the reliability of a trial maintenance schedule, a 

probabilistic reliability-based approach is employed. A number of surveys 

revealed that from 1964 to 1987, all Canadian utilities changed their 

reliability assessment approach from deterministic to probabilistic 

(Billinton, 1991). By taking into account the uncertainties associated with 

the forced outage of generating units by incorporating their effective load 

carrying capabilities, Garver (1972) was able to achieve uniform loss of 

load probability (LOLP) for all time periods in a year. The method was 

extended by Stremel et al. (1981) to account for load forecast uncertainty. 

In the proposed method, equivalent loads were calculated for the three 

time periods where peak loads and their corresponding probabilities were 

specified. Maintenance scheduling was then carried out such that the 

overall LOLP was minimized, based on the calculated equivalent loads. 

The maintenance schedules obtained in this way were claimed to be much 

more representative of actual planning operations (Stremel et al., 1981). In 

another study, Garver (1972) method was modified by Chen et al. (1990) to 
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level incremental risks, which is equivalent to the minimization of annual 

LOLP.  

Hybrid  approach 

Well-being analysis that combined deterministic and probabilistic 

approaches in a single framework was developed by Billinton et al. (1996). 

As part of the framework, the reserve capacity of a system is analysed 

using a probabilistic formulation and compared with an accepted 

deterministic criterion, such as the loss of the largest unit, in order to 

measure overall system comfort (Billinton et al., 1996). A probability of 

health (PH) index used as part of the well-being analysis, which 

represents the probability that the available reserve is equal to or greater 

than the required capacity reserve, was later used as a fitness function for 

the genetic algorithm optimisation formulation proposed by Abdulwhab 

et al. (2004). 

Despite the existence of many different formulations for reliability-based 

criteria, it has been shown that the final optimisation outcome (optimized 

schedule(s)) obtained based on a reliability criterion is usually acceptable 

in terms of other reliability-based criteria (Zürn et al., 1977). 

2.1.1.2 Cost-based criteria 

For planned maintenance scheduling, the major costs involved are energy 

production cost and maintenance cost. The latter is only important if 

outage durations are allowed to vary within a given limit (Yamayee et al., 

1983). A survey carried out by Mukerji et al. (1991) on 25 major power 

plants in the US found that 16 had chosen production cost minimisation 

as the only objective in determining an optimum maintenance schedule. 

The author addressed two major modelling problems in such an 

approach, the first being production cost as a complex non-linear function 

of the maintenance schedule; the second that the cost function is 

dependent on load shapes and forced outage rates, which generally 

required extensive simulations for the cost calculations. To overcome the 

first problem, Egan et al. (1976) suggested that reasonable production cost 

could be achieved by maximizing system reliability under uncertainties 

(loads and random forced outages) and minimizing the capital plant 

needed to achieve a given reliability in the future. With regard to the 
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second problem, load uncertainty and probability of forced outage can be 

modelled using a fuzzy logic approach that incorporates economic and 

technical knowledge of the problem domain (Dahal et al., 1999). 

A study by Chattopadhyay et al. (1995) that investigated the performance 

of different objectives for maintenance scheduling optimisation of two 

interconnected power utilities in India found that using annual operating 

cost was an ineffective objective when used alone. In the study, two of the 

three reliability-based objectives tested produced maintenance schedules 

associated with reasonable annual operating costs, but the reliability 

criterion was found to be unsatisfactory when cost was used as the only 

objective function (Chattopadhyay et al., 1995). In contrast, a study 

conducted by Ahmad et al. (2000) revealed that optimisation based on a 

cost criterion can produce schedules that result in significant savings with 

an associated reliability level that is almost as good as that produced 

when only the reliability criterion is used. The contradictory conclusions 

of the two studies might be attributed to the differences in the search 

space characteristics exhibited by the two case study systems. 

Potential problems with local minima in the search space have been 

reported by Arzamascev et al. (1970), who also used only production cost 

as the objective function in their optimisation algorithm. In such 

situations, difficulties in finding near globally optimal solutions could be 

overcome by using evolutionary algorithm optimisation methods, which 

work with a set of solutions, and not on a single solution, thus reducing 

the chance of convergence to local optima (Ekwue, 1999).  

In other studies, production cost was found to be an insensitive objective, 

i.e. production costs were almost constant in the vicinity of the optimum 

region of the search space (Zürn, 1975; Hoover et al., 1976; Yamayee et al., 

1983). However, during the discussion on the study carried out by 

Yamayee et al. (1983), Stremel (1983) pointed out that an appropriate 

objective function of PPMSO should comprise of production cost and the 

value of unserved energy.  

In previous studies, maintenance scheduling of power plants has been 

treated at its lowest level of complexity, without consideration of a 

number of complicating factors. For example, the cost of hydropower 

plant maintenance is influenced by loss-of-revenue due to spill at 
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storages, which is caused by machines being taken off-line for 

maintenance. Since spill is the major cause of energy loss, it also affects 

the reliability of power supply systems. In order to cater for such issues, a 

simulation model is often utilized to assist in planning activities such as 

generation dispatch and unit commitment, given a proposed maintenance 

schedule. Consequently, there is a need to develop an optimisation model 

capable of incorporating such simulation models. 

2.1.1.3 Other criteria 

Other objectives addressed in the literature include the earliest possible 

schedule and the minimum change from an existing schedule (Dopazo et 

al., 1975). In an earliest possible schedule, maintenance tasks are 

scheduled to commence as early as possible within individual timeframe 

windows without violating system constraints. A criterion can also be 

specified such that a new maintenance schedule that minimizes 

disruption to an existing schedule is desired. Assuming the event of a 

sudden breakdown of a major generating unit, the existing optimum 

maintenance schedule must be reviewed. A new optimum schedule is 

determined such that the least disruption is introduced to the original 

schedule (minimum change from existing schedule) while the machine 

broken down unexpectedly could be taken offline. 

2.1.1.4 Multiple criteria 

Although maintenance scheduling optimisation has been defined as a 

multi-objective problem, only few researchers have successfully included 

more than one criterion in their optimisation model. In the expert system 

developed by Lin et al. (1992), whether a reliability (maximization of the 

minimum reserve margin) or cost (minimization of production cost) 

criterion is used depends on an operation index, which is defined by the 

amount of reserve generation capacity for maintenance activities. Mukerji 

et al. (1991), Yamayee et al. (1983), El-Amin et al. (2000) and Moro et al. 

(1999) considered more than one criterion in their studies by carrying out 

separate optimisation runs using each of the cost and reliability criteria, 

which resulted in two different sets of optimised schedules for each 

criterion. However, the optimized maintenance schedules produced by 

these studies only represent a subset of the Pareto-optimal solutions of the 

case studies being solved. In contrast, a complete set of Pareto-optimal 

solutions of a multi-objective PPMSO problem should consist of 
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maintenance schedules that cannot be improved in any one objective 

without degrading one other objective. A decision maker can then choose 

from these schedules either based on other non-quantifiable criteria or 

during negotiations with an asset manager, for example. 

2.1.2 Constraints 

A feasible maintenance schedule must not only achieve its objectives, but 

must also be practical in terms of implementation. Therefore, constraints 

must be specified in an optimisation model to ensure solutions are 

feasible. The following are the most commonly used constraints: 

(A) Demand Constraints 

In providing power supply, energy demand has to be met. In addition to 

the actual expected demand, a certain level of energy reserve is generally 

provided to cover accidental loss of generating plants.  

(B) Maintenance window constraints 

Generating units in power plants should be inspected and maintained on 

a regular basis. This is to ensure that they are performing at reasonable 

efficiency, to reduce the likelihood of forced outages and to extend the 

lifetime of the machines (Egan et al., 1976). Normally, the earliest and 

latest possible start time for the maintenance activities of generating units 

are specified. In addition, if more than one regular maintenance task for a 

generating unit is required to be scheduled, it is important that the 

duration between these tasks is longer than a prescribed time period.  

(C) Resource constraints 

Experienced personnel should be involved in maintenance to avoid 

possible major damage (Lin et al., 1992). Therefore, the number of 

machines that can be maintained at one time is usually limited by the 

availability of manpower. Also, other resources, such as specialist tools, 

might be required during a maintenance session and their availability 

must be taken into account when a maintenance schedule is proposed. 

Failure to take into account the availability of appropriate tools may cause 

unnecessary delays in machinery maintenance, making the machinery 
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unavailable and thus further delaying the overall plant maintenance 

schedule (Egan et al., 1976).  

(D) Precedence and sequence constraints 

Some maintenance tasks can only commence when other tasks have been 

completed. In some cases, minimum and maximum gaps between 

consecutive outages of a particular unit need to be specified. For example, 

investigative maintenance is carried out prior to the major overhaul of 

some large generating units. Also, the major overhaul might not be able to 

start earlier than 2 weeks (to organize for maintenance resources), or later 

than 6 weeks, for example (for the validity of investigation results), after 

completion of the investigative task. In such a scenario, it has to be 

ensured that the optimised maintenance schedule(s) is/are feasible with 

regard to these constraints. Other constraints might include the 

specification of a minimum gap between outages of two units operating in 

the same plant (Mukerji et al., 1991). 

(E) Exclusion constraints 

Constraints can also be used to ensure that two machines of high capacity 

are not taken off-line for maintenance activities at the same time. 

It should be noted that individual power plant utilities generally have 

unique sets of restrictions that influence maintenance scheduling, which 

are related to power system operation characteristics, seasonal variations, 

geographical conditions and usual practice (Lin et al., 1992). 

In view of the number of constraints that may need to be imposed in a 

PPMSO problem, it is desirable that a method proposed for PPMSO can 

effectively handle some, if not all, of these constraints. In addition, the 

degree of rigidity with which certain constraints have to be satisfied 

should be able to be specified in the formulation of the optimisation 

problem. For instance, demand constraints generally have to be satisfied 

at all times to ensure an adequate supply of electricity. On the other hand, 

additional personnel can sometimes be brought in if the resulting increase 

in reliability achieved outweighs the cost imposed. Hence, flexibility in 

manpower constraints might be desirable so that the search for schedules 
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with better objective values that result in the violation of certain 

constraints is allowed. 

It should be noted that much of the debate on the number and type of 

objectives for PPMSO took place before 2000, when power systems were 

mostly independent utilities that sell electricity to their customers at 

tariffs regulated by governments. Since the spread of electricity market 

deregulation around the globe, the context in which PPMSO research is 

carried out, in particular the objectives and constraints used for 

optimisation, has changed dramatically. 

2.1.3 Deregulation of electricity market 

A deregulated electricity system is a system for effecting the purchase and 

sale of electricity using supply and demand to set the price. Competing 

generators trade their electricity to retailers in a wholesale electricity 

market. Among the countries that have developed wholesale electricity 

markets and the corresponding management bodies are (Wikipedia, 

2006a): 

• Australia – National Electricity Market Management Company 

(NEMMCO) 

• Canada - Independent Electricity System Operator (IESO) Ontario 

Market and Alberta Electric System Operator (AESO) 

• New Zealand – M-co 

• Denmark, Finland, Sweden and Norway – Nordic Power 

Exchange 

Following the increasing popularity of electricity market deregulation 

around the globe, the fundamental objective of a power utility (competing 

generator) when scheduling for maintenance has become the 

maximization of benefits derived from the electricity wholesale market. 

This is far more complicated than the reliability- and cost-based criteria 

discussed in Section 2.1.1. For instance, a power utility may no longer 

treat system demands as a hard constraint, especially when market 

clearing price is forecasted to be low, as cheap electricity can be purchased 
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from the wholesale market. As a result, large generating units may be 

taken offline for maintenance during such periods so that they are 

available for generation when the market prices are forecasted to be high.  

Changes in maintenance scheduling practices as a result of electricity 

market deregulation also has a significant impact on the applicability of 

maintenance schedulers’ accumulated experience/engineering 

judgement. Power utilities relying heavily on schedulers’ experience for 

maintenance scheduling could face a difficult situation due to the change 

of context in which scheduling is carried out. Therefore, a desirable 

method for PPMSO must be able to adapt to changes of optimisation 

objectives and system constraints with relative ease. 

2.2 Optimisation methods previously adopted for PPMSO 

2.2.1 Design requirements for a maintenance scheduling tool 

When developing an optimisation method for PPMSO problems, the 

follow characteristics of a method are desired: 

Criterion 1: Simple to implement 

The proposed method is preferably a generalised algorithmic framework 

that can be readily applied to PPMSO with only little modifications. 

Criterion 2: Easily incorporate a simulation model 

As mentioned previously, simulation models are used extensively due to 

the complexity of operations involved in a power system. Therefore, the 

proposed optimisation method must be able to incorporate a simulation 

model as part of its algorithm. 

Criterion 3: A priori information on case study systems is not required 

The proposed method should not require a large number of inputs from 

users of the case study system to be solved. Furthermore, objectives and 

constraints must be able to be addressed easily. 

Criterion 4: Effective handling of constraints 
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In view of the large number and complexity of constraints involved in a 

real-world PPMSO problem, the proposed method must be able to handle 

practical constraints effectively. In this way, a problem search space can 

be reduced and computational run-time can be cut down significantly.  

Criterion 5: Manage to adapt to changes in case problem easily 

Although maintenance scheduling is a long-term planning activity, 

unexpected changes in a power system, such as the purchase of new 

generating units or the permanent loss of a power station due to a new 

environmental policy, for example, are not uncommon. An ideal 

maintenance-scheduling tool must be able to be modified with relative 

ease in response to the changes.  

Criterion 6: Able to find more than one desired schedule 

In a PPMSO problem where the global optimum is often unknown, 

maintenance schedule(s) associated with the lowest objective function cost 

found in an optimisation run is/are desired. It should be noted that there 

may be different schedules associated with the lowest objective function 

cost, or the objective functions for a number of schedules might be similar. 

It is desirable to identify a number of these alternatives schedules as part 

of this optimisation, as this leaves room for negotiation with assets 

managers, for example, in order to identify the optimal maintenance 

schedule from a practical point of view.  

Criterion 7: Able to find good solutions in reasonable computational time 

An optimisation method should ideally find the globally optimum 

solution for a given problem. However, the size of a real-world case study 

system maybe too large so that determination of the true optimum 

maintenance schedule of a case study system is almost impractical. 

Therefore, a desirable optimisation method for PPMSO is one that is able 

to identify good or near-optimal maintenance schedule(s) for a case 

system with reasonable computational effort. 

Over the past two decades, many studies have been conducted on 

developing methods for the maintenance scheduling optimisation of 

power plants. These methods, when differentiated based on searching 
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mechanism, can be categorised into heuristic approaches, mathematical 

programming, expert systems and metaheuristics (Figure 2.2). 

 

 

 

 

 

 

 

 

Figure 2.2: Optimisation methods adopted previously for PPMSO 

 

2.2.2 Heuristic approaches 

Heuristic approaches were developed to solve PPMSO mostly during the 

early stages of maintenance scheduling research. In general, heuristic 

approaches involve allocating maintenance unit outages sequentially by 

utilizing a set of rules, such as the biggest capacity generating units first, 

the generating units that require most maintenance resources first etc. A 

heuristic approach employing a branch-and-bound technique was 

proposed by Christiaanse et al. (1972) to maximize the system’s lowest net 

reserve over the planning horizon. In the proposed method, a 

maintenance schedule is constructed sequentially by scheduling for the 

personpower category that is required by the largest number of 

maintenance tasks. In addition, the period during whom a maintenance 

task is scheduled to begin depends on the current level of minimum 

reserve capacity.  If any of the system constraints were violated by the 

allocation of a maintenance task to a timeslot within the planning horizon, 

the procedure would be reversed and other arrangements would be made 

such that a feasible maintenance schedule is obtained. A similar heuristic 
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has also been used by Garver (1972), which is aimed at equalizing the 

system’s loss-of-load-probability (LOLP) throughout the planning 

horizon. 

Despite being able to incorporate constraints during optimisation, 

heuristic approaches perform an exhaustive search and usually suffer 

from the possibility of not being able to find a feasible schedule, even 

when one exists. Therefore, the likelihood of the optimal solution(s) being 

found by using a heuristic method is relatively small. In addition, a 

heuristic method is developed based on the characteristics, in particular 

the objectives and constraints, of a specific case study system. Hence, it 

has limited applicability to other PPMSO case study systems. 

Furthermore, a slight change in the original objective functions or 

constraints might affect the utility of a heuristic method. Another 

shortcoming of purely heuristic approaches is the need for the objective 

function value associated with a partially built schedule to be calculated 

every time a maintenance task is added, which cannot be done for 

complex power systems. For example, in a hydropower system, storages 

are interconnected and the dispatch of generating units (i.e. the decision 

about which generating units should be used for meeting a demand) must 

utilize a simulation model. For this purpose, the maintenance schedule 

used must be complete. 

2.2.3 Mathematical programming 

Since the 1960s, mathematical programming methods have been 

investigated for their application to generator maintenance scheduling 

optimisation. The most commonly used methods in this category are 

dynamic programming (DP), integer programming (IP), mixed integer 

programming (MIP) and linear programming (LP) (Figure 2.2). 

2.2.3.1 Dynamic programming (DP) 

Dynamic programming (DP) was considered to be suitable for solving 

PPMSO problems due to the following reasons (Yamayee et al., 1983): (1) 

It is suitable for solving optimisation problems where a sequence of 

decisions is involved; (2) The objective function used in DP does not need 

to be a continuous function of decision and state variables; and (3) Neither 

the objective function or constraint functions are required to be 



Chapter 2  Literature Review 

Page 18 

represented in analytic forms, provided these function values can be 

obtained by other means (eg. through a simulation model) when required. 

However, application of pure dynamic programming to complex 

combinatorial problems has been limited due to the “curse of 

dimensionality’, which states that a problem that is complex enough to be 

interesting is too large to be solved within practical computational time 

and storage. In addition, the constraint representation in the DP 

formulation is not stringent enough to limit the number of feasible 

solution (Christiaanse et al., 1972). However, this problem was later 

resolved by Zürn (1975) and Zürn et al. (1977) using dynamic 

programming successive approximations (DPSA). The DPSA method was 

also used by Yamayee et al. (1983) to solve a PPMSO case study that 

considered a reliability and a cost criterion in separate optimisation runs. 

2.2.3.2 Integer programming (IP) 

Integer programming (IP), coupled with the branch-and-bound technique, 

has been applied to maintenance optimisation problems previously 

(Dopazo et al., 1975; Egan et al., 1976; Mukerji et al., 1991). However, IP 

was considered to be unable to model stochastic uncertainties efficiently 

(Ahmad et al., 2000). Also, the computational time required for IP for 

solving optimisation problems tends to grow prohibitively with problem 

size (Satoh et al., 1991). 

2.2.3.3 Mixed integer programming (MIP) 

A mixed integer programming model has been proposed by 

Chattopadhyay et al. (1995) to obtain least-cost maintenance schedules (in 

monthly time blocks) for two large interconnected Indian power utilities. 

The mixed integer programming model developed by Chattopadhyay et 

al. (1995) was later deemed incapable of handling the large number of 

decision variables introduced when the exact start dates, rather than the 

month/week of the maintenance tasks, are considered (Chattopadhyay, 

1998). Also, the computational time taken to run such a model, when 

using the computing power at that time, would be impractically long 

when uncertainties are to be taken into account by repetitive Monte Carlo 

simulations (Chattopadhyay, 1998). In order to overcome the 

shortcomings associated with using the mixed integer programming 

model, a similar model employing linear programming (LP) was 

proposed by Chattopadhyay et al. (1998). However, this approach results 
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in the selection of real-numbered values for the decision variables, which 

might produce invalid maintenance schedules. In order to rectify this 

problem, a heuristic algorithm was implemented. 

Moro et al. (1999) developed a two-stage mixed integer programming 

formulation to solve the maintenance scheduling problem of a Spanish 

electric power system. In their formulation, optimisation based on cost 

criteria was carried out and the best-cost schedule obtained was used as 

an input for the second-stage optimisation, where reliability is maximized 

without exceeding a prescribed level of the cost associated with the best-

cost schedule (Moro et al., 1999). However, the impact of optimizing the 

two criteria in a different order has not been discussed. In addition, the 

search space of the stage-2 optimisation could be restricted by the results 

from stage 1, which may result in finding only the local optima of the 

problem search space.  Therefore, depending on the characteristics of the 

fitness landscape of the case study system being investigated, the ‘true’ 

optimum solution might not be identified by the formulation.  

Mixed integer programming models accounting for transmission 

constraints have been developed by Ahmad et al. (2000) and Moro et al. 

(1999), and applied to an existing Indian power utility. As neither of the 

case studies investigated by Chattopadhyay et al. (1995), Moro et al. (1999) 

and Ahmad et al. (2000) have previously been solved by other 

optimisation methods, the relative performance of mixed integer 

programming in solving PPMSO problems remains unknown. 

In general, the performance of mathematical programming methods for 

solving power plant maintenance scheduling optimisation is 

unsatisfactory due to the need to specify mathematical equations to 

represent the power system as part of the problem formulation. These 

equations are difficult, if not impossible, to derive for real life 

applications. Very often, simplified equations that do not fully reflect the 

power system at hand were used.  Secondly, difficulties arise when 

changes made to the power plant system have to be reflected in the 

problem formulation, as this requires modification of the equations 

mentioned above. Thirdly, the relative importance of constraints cannot 

be specified. For example, slight violation of constraints would not be 

permitted, even though the resulting objective values might be much 
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better. Furthermore, the computational time needed to implement this 

approach increases prohibitively with problem size.  

2.2.4 Expert systems 

An expert system formulation was developed by Lin et al. (1992) to 

schedule maintenance tasks for the Taiwan Power Company. As part of 

the expert system, whether branch-and-bound or dynamic programming 

is used during the optimisation process depends on the objective criterion 

used, which in turn is governed by the satisfaction of system demands 

throughout the planning horizon. The drawback of the proposed 

formulation is that the heuristics and rules embedded in the expert system 

need to be updated when there is a slight change in system inputs (eg. 

constraints, objectives or decision maker’s preference). For the same 

reason, it is difficult to apply the same expert system to other PPMSO case 

studies.  

2.2.5 Metaheuristics 

Due to the shortcomings of heuristic and mathematical programming 

approaches, the possibility of applying metaheuristics to solving PPMSO 

problems has intrigued researchers over the last 10 years. Metaheuristics, 

as defined in the literature: 

• Are high-level algorithmic frameworks which utilize algorithms 

ranging from simple local search to complex learning processes 

(Blum et al., 2003).  

• Are approximate and usually non-deterministic, and therefore 

may avoid being trapped in local minima in a search space (Blum 

et al., 2003).  

• Are not problem-specific, and can be applied to different 

combinatorial optimisation problems with relatively little 

modification (Dorigo et al., 2004a). 

Metaheuristics can be categorised in different ways depending on the 

characteristics considered for differentiating them. For instance, ‘nature-

inspired’ vs. ‘non-nature inspired’ categorisation traces the origin of 
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metaheuristics, whereas the ‘memory usage vs. memory-less methods’ 

categorisation differentiates metaheuristics that use long term and short 

term memories (Blum et al., 2003). In their review of metaheuristics, Blum 

et al. (2003) categorised metaheuristics based on the number of solutions 

used at the same time. Based on this characteristic, algorithms operating 

on a single solution are called trajectory methods, whereas population-

based methods perform the search process via the evolution of a set of 

trial solutions (Blum et al., 2003).  

In this thesis, rather than presenting a thorough discussion on all 

metaheuristics, the focus is on metaheuristics that have been used 

previously for PPMSO problems, including Simulated Annealing (Satoh et 

al., 1991), Tabu Search (El-Amin et al., 2000) and genetic algorithms 

(Aldridge et al., 1999). These methods are categorised based on whether a 

local search procedure or a global search procedure is adopted in the 

metaheuristics (Figure 2.2). 

2.2.5.1 Local search-based metaheuristics 

A local search-based metaheuristic is essentially a higher-level algorithmic 

framework that consists of a simple local search algorithm and additional 

features designed to enhance the performance of the algorithm. A simple 

local search method is firstly described, followed by the discussion of two 

local search-based metaheuristics. 

Simple local search 

Given a combinatorial optimisation problem with a search space S, the 

following formal definitions are given by (Blum et al., 2003): 

• A neighborhood structure is a function N:S→2S that assigns to 

every s∈S a set of neighbours N(s) ⊆ S. N(s) is called the 

neighborhood of s. 

• A locally minimal solution (or local minimum) with respect to a 

neighborhood structure N is a solution ŝ such that 

∀ s∈N(s):f(ŝ)≤f(s). We call ŝ a strict locally minimal solution if 

f(ŝ)<f(s) ∀ s ∈N(ŝ). 
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Starting from a single solution, s, generated either at random or by using 

some heuristics, local search scans the neighborhood, N(s), of the current 

solution for better neighbour solutions. Either a first-improvement or a 

best-improvement technique is usually used to determine the move to be 

performed (Blum et al., 2003). Using the first-improvement technique, the 

first improving neighbour found in N(s) is used to replace the current 

solution. On the other hand, exhaustive search is performed to find the 

best-improving neighbour among k neighbours being assessed. It should 

be noted that a move is only performed when a neighbour solution is 

found such that a better objective function cost is achieved. The local 

search is stopped when a local minimum is reached. 

Defining a neighborhood structure is essential before utilizing local search 

in solving a combinatorial optimisation problem. Some examples of 

neighborhood structures previously used for PPMSO problems are: 

• In the studies conducted by Satoh et al. (1991) and El-Amin et al. 

(2000), a neighbour trial maintenance schedule is generated by 

randomly modifying the maintenance commencement time of a 

randomly selected generating unit from the current trial 

maintenance schedule.  

• In the local search procedure used by Kim et al. (1997), a neighbour 

trial maintenance schedule is generated by adding 1 to or 

subtracting 1 from the maintenance start day of a randomly 

chosen generating unit contained in the current trial maintenance 

schedule.  

The performance of a simple local search algorithm alone in solving 

combinatorial optimisation problems is unsatisfactory (Blum et al., 2003), 

the main shortcoming being the inability to escape local minima, once 

trapped.  In order to overcome this problem, various features have been 

proposed to be added to simple local search algorithms, which result in 

different local search-based metaheuristics. Examples of such 

metaheuristics include Simulated Annealing (SA), Tabu Search (TS), the 

Greedy Randomized Adaptive Search Procedure (GRASP), Variable 

Neighborhood Search (VNS), Guided Local Search (GLS) and Iterated 

Local Search (ILS). As Simulated Annealing (SA) and Tabu Search (TS) 

have been proposed for PPMSO previously (Satoh et al., 1991; Kim et al., 
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1995; Kim et al., 1997; Burke et al., 2000; Dahal et al., 2000; El-Amin et al., 

2000), a more detailed discussion of these methods is included in this 

thesis. 

Simulated Annealing (SA) 

Annealing is a process in metallurgy that involves heating and controlled 

cooling of a material to increase the size of its crystals and reduce their 

defects. Starting with a high temperature, the particles of a material 

escape from their initial positions and randomly wander while the 

temperature is progressively lowered until a highly structured lattice 

associated with a minimal internal energy is formed. By analogy with this 

process, Simulated Annealing (SA) is a metaheuristic that uses an 

enhanced local search procedure and was first applied to combinatorial 

optimisation problems by Kirkpatrick et al. (1983). In order to utilize SA 

for a combinatorial optimisation problem, the following equivalences are 

assumed between the annealing process and an optimisation problem 

(Satoh et al., 1991): 

1. The solutions in a combinatorial optimisation problem are equivalent 

to the states of a physical system, and 

2. The cost of a solution is equivalent to the energy of a state. 

As shown in Figure 2.3 SA starts with an initial temperature T and an 

initial trial solution is generated as with a simple local search algorithm. 

Then, at each iteration, the defined neighborhood N(s), of a trial solution, 

s, is scanned for first-improving or best-improving neighbours 

(depending on the user’s preference), ŝ. In a case where no improving 

neighbour is identified, ŝ can be represented by the best-objective function 

cost neighbour. When deciding whether a move is performed i.e. the 

current solution s is replaced by the newly found ŝ, the following rules are 

employed: 

1. If ŝ is better than the current solution, s, the probability of replacing s 

with ŝ is 1. 
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2. If ŝ is worse than the current solution, s, the probability of replacing s 

with ŝ is Te ∆− , where ∆ = f(ŝ) – f(s), and T is the current temperature of the 

annealing process.  

The rules presented are a unique feature that distinguishes SA from a 

simple local search, where non-improving moves are performed 

probabilistically for the sake of finding an even better solution later 

during the search. With a high initial temperature, the probability of 

accepting a non-improving move is higher and therefore, the optimisation 

search at this stage resembles a simple randomised local search. As the 

temperature is progressively reduced in accordance with a cooling 

schedule, g(T), non-improving trial solutions are more likely to be rejected 

and eventually only improving solutions are accepted if a minimum 

temperature is set to a sufficiently low value. A SA algorithm stops when 

the temperature reaches a predefined minimum value, Tmin.  

A cooling schedule, which contains the initial temperature, the cooling 

rate, the minimum temperature and the size of the neighborhood at each 

temperature, must be defined beforehand. As pointed out by Van 

Laarhoven et al. (1987), a cooling schedule must be carefully defined for 

successful applications of SA to combinatorial optimisation problems. 

Numerical tests conducted by Satoh et al. (1991) concluded that a lower 

cooling rate should be chosen for problems of larger search space to allow 

for sufficient exploration. 

For the sake of brevity, the SA algorithm has only been introduced in its 

simplest form in this thesis. Readers are referred to Downsland et al. 

(1993) for a more theoretical and mathematical description of SA. Areas to 

which SA has recently been applied include scheduling (Suresh et al., 

2006), chemical process studies (Agostini et al., 2006) and transportation 

(Zhao et al., 2005), to name a few. Examples of applications to power 

systems and related optimisation problems are the economic emission 

load dispatch of fixed head hydrothermal power systems (Basu, 2005), 

power-system load forecasting (Liao et al., 2006) and dynamic economic 

dispatch (Panigrahi et al., 2006). 
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Figure 2.3: Typical Simulated Annealing (SA) algorithm 
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Tabu Search (TS) 

Proposed by Glover (1989), Tabu Search (TS) is a metaheuristic used to 

manage a local search procedure with the utilization of adaptive memory. 

A flowchart of a simple Tabu Search is shown in Figure 2.4  

Tabu Search begins by initialisation of a Tabu List. A local search is then 

used to scan the neighborhood, N(s), and an initial trial solution, s is 

chosen randomly. Among the k neighbours of s, the best neighbour, ˆ s , is 

selected to replace the current solution, s. Upon execution of a move, 

selected attributes of the move are stored in a Tabu List, and are declared 

‘tabu-active’ for a predefined number of iterations. An example of a move 

attribute is the exchange of the cities at positions 4 and 5 in the case of a 

Travelling Salesman Problem (TSP). For the remainder of the TS run, a 

move to the best neighbour found at an iteration is banned if one or more 

of the attributes involved in the move are flagged as ‘tabu-active’ in the 

Tabu List. However, an aspiration criterion can be specified such that a 

prohibited move can still be admissible if this criterion is satisfied. The 

iterative process of the memory-enhanced local search is repeated until a 

termination criterion is met. The best solution found during a TS run is 

regarded as the optimized solution.  

It can be envisaged that by prohibiting repetition of previously performed 

moves, the likelihood of reversal of moves and cycling of solutions is 

reduced. More importantly, the utilization of adaptive memory in TS 

helps a local search procedure to escape local optima by allowing non-

improving moves. 
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Figure 2.4: Typical Tabu Search (TS) algorithm 
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Apart from the definition of a neighborhood structure, as required for any 

simple local search algorithm, the following parameters need to be 

defined in the application of TS to a combinatorial optimisation problem: 

(1) The memory structure: 

Short-term memory is the unique feature of TS that is mainly used to 

avoid reversal of local search moves and cycling of neighbour solutions. 

The memory used in TS is both explicit and attributive (Glover et al., 

1997). Explicit memory records complete trial solutions previously visited. 

For example, the 10 best found trial solutions are stored. On the other 

hand, attributive memory is used to record information on changes made 

by moving from one solution to another. These memories are stored in a 

Tabu List, which is updated after every move. As pointed out by Glover et 

al. (1997), the effect of memory utilization in TS may be viewed as 

modifying the neighborhood N(s) of the current solution s. The modified 

neighborhood, denoted by N*(s), is essentially a selective record of the 

history of a search. As part of the memory structure of TS, the length of 

tabu lists (tabu tenure) must be specified. Tabu tenure can be fixed or 

dynamic throughout a TS run. The choice of an appropriate memory 

structure is deemed crucial for the success of TS when applied to any 

combinatorial optimisation problem (Glover et al., 1997). 

(2) The aspiration criterion: 

The aspiration criterion is formulated to override the ‘tabu-active’ status 

of a move in a case where the move is thought to be beneficial to the 

search. A common aspiration criterion used is that any move that results 

in a solution that is better than any solution generated so far is 

permissible (Kim et al., 1997). 

(3) The termination criterion: 

As with other optimisation methods, a termination criterion needs to be 

specified. Examples include the maximum number of iterations, the 

maximum CPU time and the maximum number of iterations during 

which solution quality does not improve significantly.  
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TS has been used extensively for a wide range of benchmark optimisation 

problems. More recent applications include manufacturing (Lei et al., 

2006), production planning (Baykasoglu et al., 2006), electromagnetic 

design problems (Hajji et al., 2005), real-world scheduling (Xu et al., 2006) 

and chemistry studies (Blazewicz et al., 2005). In power system and 

related research areas, TS, or the hybridized version of TS, have been 

applied to the optimal planning of power distribution systems (Ramirez-

Rosado et al., 2006), the unit commitment problem (Victoire et al., 2005) 

and a long-term hydro-scheduling problem (Mantawy et al., 2003). More 

importantly, TS has previously been applied to PPMSO as a stand-alone 

algorithm (El-Amin et al., 2000) and as part of a hybridized algorithm 

(Kim et al., 1997; Burke et al., 2000). 

2.2.5.2 Global search-based metaheuristics 

Genetic algorithms 

Genetic algorithms (GAs) are optimisation methods inspired by 

evolutionary adaptation in nature. They were introduced by Holland 

(1975) in the early 1970s and implemented for optimisation problems by 

Goldberg (1989) in the late 1980s. In terms of searching behaviour, simple 

GAs fall into the category of global optimisation methods, as trial 

solutions of a GA run are generated based on global information accrued 

throughout the search process. The optimisation mechanism of GAs can 

be briefly described as follows (Figure 2.5): GAs operate on a population 

of chromosomes, each representing a trial solution to the problem being 

solved. The fitness of a chromosome, which is normally defined to 

correspond to the criterion of the optimisation problem being solved, is 

evaluated. In each iteration (or generation), relatively fit chromosomes are 

selected to undergo a series of genetic operations to produce a population 

of offspring. In this way, better chromosomes (trial solutions) are evolved 

throughout the optimisation process, and the fittest chromosome(s) found 

during a GA run is/are regarded as the optimized solution.  
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Figure 2.5: Typical simple genetic algorithm 
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optimisation computational overhead, and (b) the new offspring 

generated by the genetic operators (eg. crossover and mutation) are 

feasible/near feasible.  

The selection of an appropriate solution representation has been 

investigated in order to increase the performance of GAs in solving 

PPMSO problems. Binary coding was used by Kim et al. (1994), Kim et al. 

(1997), Burke et al. (1998) and Dahal et al. (1998). However, an integer 

representation was later found to be more appropriate for PPMSO (Dahal 

et al., 1997), as it respects maintenance window constraints and greatly 

reduces the size of the problem search space, when compared with binary 

coding. When an integer representation is used, a trial maintenance 

schedule is represented as a string of integers representing the 

maintenance start time of all generating units considered. A code-specific 

and constraint-transparent integral coding method that explicitly specifies 

the order in which maintenance tasks are carried out was proposed by 

Wang et al. (2000). However, despite an improvement in computational 

efficiency, a large number of the ‘offspring’ solutions produced were still 

found to be infeasible with the new coding scheme (Wang et al., 2000). 

Burke et al. (2000) considered using bit-string encoding, where the start 

period of each maintenance task is grey-coded, but due to a heavy 

computational requirement for encoding and decoding, an integer 

representation was adopted instead.  

(2) Fitness function: 

In GAs, whether or not a chromosome is selected for reproduction 

depends on its fitness function. Therefore, a fitness function that evaluates 

the quality of individual trial maintenance schedules must be specified 

beforehand. As PPMSO is a constrained problem, the overall fitness 

function comprises the objective and constraint violation terms. The merit 

of a trial solution (a trial maintenance schedule in PPMSO) is therefore 

evaluated based on the value of the calculated objective function value, 

which affects the probability that this trial solution is chosen to participate 

in subsequent genetic operations. 
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(3) Genetic operators: 

In an attempt to explore the decision space of an optimisation problem, 

GAs operate on a population of trial solutions by iteratively modifying 

the components of chromosomes contained in the population. In 

particular, a number of chromosomes are selected to produce offspring 

chromosomes, which undergo a series of genetic operations, generally 

known as recombination. 

Selection 

In order for a population of chromosomes to evolve towards better 

solutions, ‘parent trial solutions’ are stochastically chosen, based on 

relative fitness, from the current iteration for the reproduction of 

‘offspring trial solutions’. Although trial solutions of higher fitness should 

be chosen by higher probability, selection pressure should not be too high 

to avoid premature convergence. 

Crossover & mutation 

‘Parent trial solutions’ selected are recombined to produce a new 

generation of ‘offspring’ trial solutions. Recombination methods 

commonly used include crossover and mutation. Crossover is performed 

by exchanging chromosome elements (genes) between selected parents, 

governed by a crossover probability. The objective of performing 

crossover is to obtain a better chromosome by exploiting partial 

information contained in two relatively good chromosomes.  On the other 

hand, mutation is essentially a random change made, governed by a 

mutation probability, to part of a parent chromosome, and is therefore a 

means for further exploration of the problem search space to maintain 

solution diversity. 

(4) Population updating method 

Recombined chromosomes and parent chromosomes of the current 

generation are combined to form the next generation using the operations 

described above. Normally, the best chromosome(s) identified in the 

current generation is/are retained. More importantly, sufficient diversity 
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should be maintained in any new generations to increase the likelihood of 

finding the global optimum. 

(5) Termination criterion 

A GA run is stopped when a prescribed maximum number of generations 

has been reached. Alternatively, termination criteria such as stagnation of 

the best-found objective function value (cost), can be adopted. 

It can be seen that in order to implement GAs, a number of parameters are 

required to be defined beforehand, including the size of the population, a 

crossover probability, a mutation probability, a selection method, a 

population updating method and a termination criterion.  

In contrast to SA, GAs generate a population of trial solutions every 

generation and perform their search from multiple starting points in the 

problem search space. As a result, the probability of being trapped in local 

optima is lower and multiple optimal/near-optimal solutions can be 

found. However, a shortcoming of GAs is that the search is rather coarse-

grained and very often, only promising regions, but not the optimum of a 

search space, are identified. A detailed discussion regarding the 

implementation of GAs to combinatorial optimisation problems is 

presented in Reeves (1993). GAs have been applied extensively, either as a 

stand-alone algorithm or as part of a hybridized algorithm, to many 

research areas. Some research areas to which GAs have been applied 

recently include water distribution system design (Goldberg et al., 1987; 

Simpson et al., 1994; Halhal et al., 1997), transportation (Caputo et al., 2006; 

Gen et al., 2006), steel-related research (Hodge et al., 2006), remote sensing 

(Jubai et al., 2006), manufacturing (Li et al., 2006), magnetics (Lovat et al., 

2006), chemical process studies (Chang et al., 2006; Sarkar et al., 2006), web 

communications (Tug et al., 2006), and power systems.  

In power systems, various genetic algorithms have recently been 

proposed for power distribution planning (Pregej et al., 2006), evaluation 

of power flow (Ting et al., 2006; Todorovski et al., 2006; Yan et al., 2006), 

short-term load forecasting (Liao et al., 2006), service restoration studies 

(Kumar et al., 2006) and optimal meter placement problems (El-Zonkoly, 

2006).  
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2.2.5.3 Previous applications of metaheuristics to PPMSO 
problems 

 In the study conducted by Satoh et al. (1991), a small, medium and large 

case study system was solved separately using a Simulated Annealing 

(SA) formulation and Integer Programming (IP). When IP is used, the 

results obtained are guaranteed to be globally optimal. However, IP is 

generally only applicable to relatively small problems for computational 

reasons. The study of Satoh et al. (1991) indicated that, for the small 

system investigated, the global optimum was found by using both SA and 

IP. For the medium-sized system, the solution obtained by SA was better 

than that given by IP, which was not optimal, as termination was 

executed due to long run-times. Finally, by using SA, a solution to the 

large-sized system was found, which could not be solved by IP from a 

computational point of view (Satoh et al., 1991). 

Aldridge et al. (1999) applied a genetic algorithm to a case study that 

involves maintaining 21 generating units over a planning horizon of 52 

weeks. Results showed that the GA formulation was able to outperform 

simple heuristic methods tested in the study. The same case study system 

was later investigated by Dahal et al. (1999) by examining the performance 

of a GA-fuzzy logic hybrid algorithm for PPMSO. The fuzzy logic 

approach, which is able to include knowledge-based experience in the 

problem formulation, resulted in a better objective value (in terms of cost 

and reliability), although there were slight violations of manpower 

constraints. A SA formulation was compared to the GA’s in relation to 

solving the 21-unit case study by Dahal et al. (2000). It was found that 

while the performance of SA is mainly affected by the cooling schedule, 

the GA requires many more parameters to be defined empirically. 

Overall, both the GA and SA outperformed the two simple heuristic 

methods tested in the study. Apart from being used as a stand-alone 

algorithm for PPMSO problems, the GA algorithm was also modified by 

the fuzzy system formulation proposed by Huang (1998) in order to 

optimise the parameters required for the construction of membership 

functions of objectives and constraints. 

A Tabu Search (TS) formulation was applied to both a 4-unit and a 22-unit 

case study systems by El-Amin et al. (2000). The objective function costs 

associated with the best-found maintenance schedules for these case 

studies were not reported, but were calculated based on the information 
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provided as part of this thesis. Interestingly, the results given by the TS 

formulation (LVL = 256.93MW) are worse than those obtained by 

Escudero et al. (1980) using implicit enumeration (LVL = 118.81MW) for 

the 22-unit case study. 

SA, GA and TS are based on different search philosophies and are 

therefore differentiated by unique optimisation mechanisms.  While the 

acceptance of non-improving solutions in SA and the tabu lists in TS are 

used to avoid becoming trapped in local optima, GAs perform a coarse-

grained search for promising regions of a problem search space. In view 

of these characteristics, hybridization of these metaheuristics has been 

proposed and claimed to successfully overcome drawbacks and utilize the 

positive features of individual methods (Song, 1999). 

A study comparing the impacts of incorporating a SA, a TS and a hill-

climbing algorithm into a GA was carried out by Burke et al. (2000). It was 

concluded that a GA employing a TS operator is the most effective 

method. In the hybridised algorithm, the GA was responsible for 

identifying a trial solution that is not too far from the optimum and TS 

was used to locate the optimum by searching the neighbourhoods of the 

solution given by the GA. The concept of using a local search algorithm to 

refine the solutions given by a global optimisation method is similar to 

what was termed ‘memetic algorithm’ by Moscato (1989) later in 1989.  

Kim et al. (1995) used the acceptance probability of SA to improve the 

convergence speed of GAs, resulting in a GA+SA algorithm. However, it 

was found that the genetic operators in GAs have difficulties in finding 

the optimum solutions. In order to improve the optimisation ability of the 

hybrid algorithm, Kim et al. (1997) hybridized TS with the GA+SA 

algorithm to include the features of global and local search in one 

algorithm. The hybridized algorithm was tested on a 23-unit test system 

and found to improve upon the results obtained by a simple GA, a simple 

SA, as well as the GA+SA algorithm. However, the performance of the 

GA+SA+TS algorithm could not be verified by applying mathematical 

programming, as the size of the case study would be too large for the 

latter method, again highlighting the shortcomings of using mathematical 

programming for PPMSO. 
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2.2.6 Comparison of optimisation methods for PPMSO 

Table 2.1 assesses the four optimisation methods for PPMSO presented in this section 

against the seven performance criteria outlined in Section 2.2.1. 

Table 2.1: Summary of optimisation methods for PPMSO 

 Heuristic 
Mathematical 

programming 

Expert 

system 
Metaheuristic 

Simple to implement? NO NO NO YES 

Easily incorporate a 

simulation model? 
NO NO NO YES 

A priori information 

required? 
YES YES YES NO 

Effective handling of 

constraints? 
YES YES YES YES 

Easily adapt to changes 

in a problem? 
NO NO NO YES 

Obtain more than one 

desired schedule? 
NO NO NO YES 

Find good solutions in 

reasonable 

computational time? 

NO NO NO YES 

 

Among the four categories of optimisation method categories presented, 

metaheuristics satisfy all the criteria outlined for an ideal maintenance-

scheduling tool (Table 2.1). In particular, they present the following 

advantages and therefore appear to be the most promising approach for 

PPMSO: 

• Metaheuristics are not problem-specific. They can be applied to a 

wide range of optimisation problems with only little modification. 

• Metaheuristics are approximate algorithms that sacrifice the 

guarantee of finding the exact solution(s) in exchange for the 

ability to find near-optimal solutions within a reasonable 

computational time. This is especially important when solving 

real-world PPMSO problems, which are mostly large in size and 

contain a high degree of complexity.  
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• Metaheuristics can be linked easily with a simulation model. 

Therefore there is no need for representing a power system by 

simplified mathematical equations in the optimisation algorithm. 

• Global search-based metaheuristics perform extensive, coarse-

grained search and are therefore able to find multiple promising 

regions of a search space simultaneously. 

• Local search-based metaheuristics can identify optimum points of 

a problem search space by performing small moves within 

different solution neighbourhoods.  

• Different metaheuristic methods can be easily hybridised to take 

advantage of the positive features of individual methods. 

• Global search-based metaheuristics, such as GAs, work on a 

population of trial solutions and may therefore obtain more than 

one schedule associated with the best-found objective function 

cost for a problem. A decision maker can then choose between 

these schedules based on some non-quantitative objectives (e.g. 

political), or as part of negotiations with asset managers, for 

example. 

Despite their strengths for solving PPMSO problems, the metaheuristics 

that have previously been used for PPMSO have the following 

shortcomings: 

(1) Depending on the nature of individual metaheuristics, some 

constraints cannot be taken into account explicitly, necessitating the 

use of other constraint-handling methods such as penalty functions. 

Penalty functions often require more parameters to be specified in 

addition to those contained in the metaheuristics. In addition, the 

inability to avoid the construction of some infeasible trial solutions 

results in computational inefficiencies.  

(2) Many realistic PPMSO problems have very large search spaces, 

which results in high computational loads and makes it difficult to 

find globally optimal solutions. However, in most instances, heuristic 

information exists that would enable the search to be directed 
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towards promising regions of the search space, thereby increasing 

computational efficiency and the chances of finding near-globally 

optimal solutions. Although heuristic information has been used to 

generate initial populations of trial solutions (Dahal et al., 2000), 

intrinsically, commonly used metaheuristics such as SA, TS and GAs, 

are unable to incorporate heuristic information into their search.  

(3) The best parameter sets used in an algorithm have to be determined 

for individual optimisation problems. Most metaheuristics require 

repetitive tuning of parameter settings before being used and hence 

can be computationally inefficient.  

Ant colony optimisation (ACO) is a relatively new global search-based 

metaheuristic that has been gaining increasing popularity for 

combinatorial optimisation problems since 1990s. Despite being driven by 

similar “evolutionary forces” as the GAs, ACO is deemed more suitable 

for PPMSO due to its ability to overcome some of the drawbacks of other 

metaheuristics discussed above, including: 

(1) The decision tree-based solution construction mechanism of ACO 

allows some constraints to be addressed explicitly during the 

construction of trial solutions. The advantages of this are two-fold: (1) 

Some of infeasible trial solutions are avoided, thereby reducing the 

problem search space that needs to be assessed during thr 

optimisation process; and (2) There is a decreased need to use penalty 

functions, as some constraints are dealt with explicitly. This feature of 

ACO is particularly advantageous for solving optimisation problems 

that involve sequential decision making, such as PPMSO. 

(2) The use of heuristic information is imbedded in the ACO algorithm as 

an optional mechanism. In this way, the preference of a decision 

maker, based on past experience, can be reflected throughout the 

optimisation process in order to find better solutions within reduced 

computational runtime.  

Due to the advantages mentioned above, the potential utilisation of ACO 

for PPMSO is deemed worthwhile to be further investigated in this 

research. 
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2.3 Summary and conclusions 

In this chapter, two aspects of PPMSO have been reviewed: (1) The 

definition of PPMSO adopted in the literature and (2) The optimisation 

methods applied to PPMSO previously.  

 Various objectives adopted in past studies on PPMSO have been 

categorised as reliability-based and cost-based criteria. Commonly 

encountered constraints in PPMSO have also been presented. Following 

the increasing popularity of electricity market deregulation, its impacts on 

the practice of many power utilities, especially in relation to the objectives 

and constraints used for PPMSO, have been discussed.  

 Optimisation methods previously used for PPMSO have been divided 

into four categories. Heuristic approaches, mathematical programming 

and expert systems played an important role in solving PPMSO problems 

when the optimisation problem was first investigated more than a decade 

ago. These methods usually suffer from shortcomings such as the inability 

to handle non-linearity objectives and constraints, requiring impractical 

computational overhead and having difficulties in adapting to changes 

made to a power system. In order to overcome these drawbacks, 

metaheuristics have been proposed and appear promising for solving 

PPMSO.  However, despite their advantages over more traditional 

optimisation methods, commonly used metaheuristics, such as SA and 

GAs, have a number of shortcomings in relation to their application to 

PPMSO. These include the inability to account for heuristic information 

and constraints explicitly. Ant colony optimisation overcomes some of 

these shortcomings of more commonly used metaheuristics, and will 

therefore provide the focus of the remainder of this thesis. 
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Chapter 3  
Ant Colony Optimisation Metaheuristic 

 “A metaheuristic is a general algorithmic framework which can be applied 

to different optimisation problems with relatively few modifications to make 

them adapted to a specific problem.” - (Dorigo et al., 2004a) 

“A metaheuristic refers to a master strategy that guides and modifies other 

heuristics to produce solutions beyond those that are normally generated in a 

quest for local optimality.” - (Glover et al., 1997) 

Proposed by Dorigo in 1992 (Blum et al., 2003), the Ant Colony Optimisation 

(ACO) metaheuristic can be seen as a higher-level optimisation strategy that 

adopts the basic mechanisms underlying the foraging behaviour of ant 

colonies, which are enhanced by artificial intelligence techniques.  

The objective of this chapter is to introduce the Ant Colony Optimisation 

metaheuristic. Section 3.1 reviews the historical background of ACO, including 

its origin based on the behaviour of real ants and the additional features given 

to artificial ants in order to solve complex optimisation problems. 

Subsequently, various issues regarding the implementation of ACO are 

addressed, including the representation of a combinatorial problem, a general 

framework of the ACO metaheuristic and the prerequisites of an ACO 

application. In Section 3.3, five different ACO algorithms that grew out of the 

ACO metaheuristics are presented.  Various ACO applications in the literature 

are reviewed in Section 3.4, mainly focusing on benchmark scheduling 

problems and real-world optimisation problems. Lastly, the characteristics that 

contribute to the choice of ACO for solving the power plant maintenance 

scheduling problem in this research are discussed.  

3.1 From Real Ants to Artificial Ants 

3.1.1 Foraging behavior of real ants 

Ant Colony Optimisation (ACO) was inspired by the behaviour of ant 

colonies searching for the shortest route to a food source. Although ants 

are almost blind (Deneubourg et al., 1983) and thus a single ant has 
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limited capabilities, ants in colonies exhibit foraging behaviour1 to find the 

shortest distance between their nest and the food (Dorigo et al., 2004b).  

When an ant encounters an intersection (e.g. an obstacle) that has two 

possible routes (Figure 3.1), it locates the shortest possible route via 

pheromone laid by previous ants, as ants following a path will deposit 

some pheromone on that path. Ants detect the concentration of 

pheromone on each path and tend to choose, by probability, the path with 

the higher intensity of pheromone (Dorigo et al., 1991). 

 

Ant’s nest 

 Food Source 

Obstacle 

 

Figure 3.1: Path from nest to food source 

For a better understanding, the following diagrams (Figures 3.2a to 3.2h) 

are shown to illustrate the ants’ behaviour when searching for the shortest 

route (Foong et al., 2000). The symbol τ is the pheromone trail intensity in 

unit concentration and d is the unit distance. To simplify the illustration, 

the ants are assumed to move one unit distance, d, for each unit time, t, 

and to deposit one unit of τ after reaching the next node. An ant’s 

complete trip consists of reaching the food source from the nest and 

returning to the nest from the food source. The numbers of ants are 

shown in brackets in the diagrams. 

 

                                                 
1 Foraging behaviour is the behaviour of ants exploring a large area. 
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 B 

C 

F 
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d=1 

d=1 
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d=2 

d=2 

d= 1 

d= 1 

 

(a) 

The length of each path is shown in unit 

distance. Note that the two possible routes 

from the nest to the food, namely AEDFB and 

AECFB, have lengths d of 4 and 6 units, 

respectively. 

 

A 

B 

C D 

F 

E 

16 ants 

 

(b) t = 0 

At t = 0, 16 ants are assumed to depart from A 

and each ant moves 1 unit distance per unit 

time, depositing 1 unit of pheromone per unit 

distance along the paths they are following. In 

other words, the intensity of pheromone on a 

path is equal to the number of ants that have 

traversed the path. 

   

τ = 0 τ = 0 

τ  = 0 τ  = 0 

A 

 B 

C D 

F 

E 

(8) (8) 

τ = 16 

τ = 0 

 
(c) t = 1 

At t = 1, when the ants arrive at E, the 

probability of ants choosing the left or right 

path is the same, as there is no previous 

pheromone deposited on the trail. As a result, 

it is assumed that 8 ants follow path EC and 8 

ants follow path ED. 

 

(8) 

τ = 8 

A 

B 

C D 

F 

E 

(8) 

τ = 16 

τ = 0 

τ = 0 

τ = 0 

τ = 0 

 
(d) t = 2 

At t = 2, the 8 ants following path ED have 

already reached D and have deposited 8 units 

of pheromone on ED. Since path EC is twice as 

long as path ED, the ants following path EC 

have not reached C at t = 2, thus, pheromone 

has not been laid on the entire EC trail. 
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τ = 8 τ = 8 

τ = 8 τ = 8 

A 

B 

C D 

F 

E 

(4) (4) 

(8) 

τ = 16 

τ = 16 

 
(e) t = 5 

As path EDF is shorter than path ECF, the ants 

following path EDF will reach the food at 

node B faster at t = 4. The 8 ants with food 

return to F at t = 5, meeting the ants following 

path ECF at the same node. At this stage, the 

pheromone intensity on FD and FC are both 8, 

thus, by equal probability, 4 returning ants 

choose path FC and the other 4 choose path 

FD. 

 B 

τ = 12 τ = 12 

τ = 8 τ = 12 

A 

C D 

F 

E 

(4) (4) 

(4) 

(4) 

τ = 32 

τ = 16 

 
(f) t = 7 

At t = 7, the 8 ants that have taken the longer 

way (ECF) have reached the food and are 

making their way back to nest, when they 

encounter paths FC and FD at F with the same 

amount of pheromone intensity (τ = 12). 

Again, by equal probability, 4 ants will choose 

FC and another 4 ants will choose FD. At the 

same time, the 4 ants that have chosen the 

shorter path have reached node E and are 

ready to return to the nest to complete their 

trip. 

   B 

τ = 16 τ = 16 

τ = 12 τ = 16 

A 

C 

F 

E 
(4 + 4) 

(4) (1) (3) D 

τ = 20 

τ = 32 

 
(g) t = 9 

At t = 9, the first 4 returning ants have reached 

their nest and start a new trip back to E where 

they have to make a decision again. Due to the 

different path lengths, the pheromone 

concentration on ED (τ = 16) is higher than 
that on EC (τ = 12), corresponding to 

probabilities that these paths will be chosen of 

57% and 43%, respectively. Stimulated by the 

stronger pheromone intensity, more ants (say 

3, by probability) select path ED, laying more 

pheromone on this trail than on EC, again 

reinforcing the shorter route. 
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τ = 16 τ = 16 

τ = 12 τ = 19 

A 

B 

C D 

F 

E 

(8) 

(4) 
(1) (3) 

τ = 32 

τ = 28 

 
(h) t = 10 

At t = 10, the pheromone intensity on ED (τ = 
19) is higher than the intensity on EC (τ = 12). 
In this way, the action of an ant choosing a 

particular path and laying pheromone on that 

path increases the probability of the same path 

being chosen by future ants. This is referred to 

as an autocatalytic process (Dorigo et al., 1991). 

Details of the pheromone intensity updated on 

each path are given in Table 3.1. 

Figure 3.2: Illustration of the ants’ foraging behaviour 

 

Table 3.1: Pheromone intensity updated on paths 

Pheromone trail intensity, ττττ (unit concentration) t 

(unit time) AE ED DF EC CF FB 

0 0 0 0 0 0 0 

1 16 0 0 0 0 0 

2 16 8 0 0 0 0 

3 16 8 8 8 0 0 

4 16 8 8 8 0 8 

5 16 8 8 8 8 16 

6 16 8 12 8 8 24 

7 16 12 12 8 12 32 

8 20 12 16 8 12 32 

9 20 16 16 12 16 32 

10 28 19 16 12 16 32 

 

 

 

As the process illustrated above continues, the difference in pheromone 

concentration between the shorter and longer route will increase, and 

eventually most ants will follow the shorter path. As a summary, a shorter 

route allows more ants to travel on it than a longer path does in a limited 

time span. Figures 3.2a to 3.2h demonstrate a simplified version of the 

ants’ foraging behaviour. In reality, there will be more than two readily 

Shorter route Longer route 
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provided possible routes. Consequently, ants will continuously explore 

the search space to find the shortest possible route. In this process, 

evaporation of pheromone plays an important role. Pheromone will be 

gradually evaporated and the trail not utilised much will eventually 

disappear. Hence, this eliminates the possibility of ants following the 

longer and less favourable routes. In addition, evaporation avoids 

premature convergence to a frequently-travelled path in the early stages 

of the search process and therefore allows a continuous exploration for 

new routes that may be shorter than the ones explored previously.  

3.1.2 Artificial ants 

The inspiration derived from the foraging behaviour of real ants, after the 

undertaking of extensive experimentation, has been transformed into a 

strategy that can be used to solve complex optimisation problems. While 

the readers are referred to the first chapter of Dorigo et al. (2004b) for a 

detailed coverage of this topic, the final outcome of the transformation 

process is described in this section. 

The ant agents used in the ACO metaheuristic (referred to as ACO 

hereafter) are generally known as ‘artificial ants’. In contrast to their 

natural counterparts, artificial ants are given the following additional 

abilities to solve more complex real-world optimisation problems: 

(1) Visibility: Artificial ants are given ‘visibility’ when they encounter an 

intersection. With this given artificial intelligence, ants are able to judge 

the distances of different paths at the intersection so that shorter paths are 

more favourable. 

(2) Memory: Real ants are assumed have no memory and make decisions 

based only on the pheromone intensities of decision paths. In contrast, 

memory is given to artificial ants for storing records of previously visited 

paths. 

(3) Higher pheromone evaporation rate: Pheromone evaporation reduces 

the intensity of all pheromone trails by an amount directly proportional to 

the intensity. Consequently, it can be seen as a means of encouraging 

exploration of unvisited paths by reducing the overall gap between 

pheromone trail intensities. Pheromone evaporation also takes place 
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during the foraging process of real ants, but at a much slower rate. In 

contrast, higher evaporation rates are suggested for artificial ants, 

especially when solving more complex problems (Dorigo et al., 2004b).  

(4) Daemon actions: Daemon actions are those actions that cannot be 

performed by an individual ant, for example, additional pheromone being 

laid on the shortest route found so far, and is optional in the ACO 

metaheuristic. 

3.2 ACO for Combinatorial Problems 

Before any optimisation metaheuristic is applied to solve a combinatorial 

optimisation problem, it is essential that the problem can be represented 

in a form that is recognizable by the metaheuristic. The objectives of this 

section are to introduce the representation of a general combinatorial 

optimisation problem, to introduce the main mechanisms of the ACO 

metaheuristic and the adaptations that need to be made prior to the 

application of ACO to a combinatorial problem. 

3.2.1 Problem representation 

Consider a combinatorial minimization problem (S, f, Ω) where S is the set 

of trial solutions, f is the objective function that assigns an objective 

function cost f(s), s∈S, and Ω is a set of constraints. The aim of the 

problem is to find a globally optimal set, S*, of solutions such that f(s*) ≤ 

f(s), where s*∈S* and S*⊆S. The optimal solutions must also satisfy all 

constraints contained in set Ω. In order to apply ACO to the optimisation 

problem, a link between the two must be established. In general, a 

problem representation with the following characteristics is adopted 

(Dorigo et al., 2002):  

• A finite set of Nc components { }
cNcccC ,...,, 21=  and a set J of arcs 

fully connecting the components contained in C. 

• The states of the problem are defined in terms of sequences 

x = ci ,c j ,...,ck ,...  over the components contained in C, x ∈ X , 

where X is the set of all possible sequences. The length of a 

sequence i.e. the number of components contained in a sequence x, 
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is termed x . A sequence x is equivalent to a complete trial solution 

s if x  = D, where D is the total number of decision variables and 

s∈S. A complete trial solution is called ‘trial solution’ for short, 

and the sequences contained in the set X \ S are incomplete trial 

solutions, or ‘partial solutions’ for short. It should be noted that a 

trial solution s is not necessarily feasible with respect to constraint 

set Ω. 

• A finite set ˜ S  of feasible trial solutions is defined by the set of 

constraints Ω, where ˜ S ⊆S. 

• A cost f(s) is associated with each trial solution s. In some 

problems, it is possible to calculate the partial cost fp(x) associated 

with the state x (partial solution x) of a problem. 

Having the problem representation established, artificial ants can then 

incrementally construct trial solutions by exploiting the construction 

graph G(C, L) (Dorigo et al., 2004b), as part of the procedures contained in 

the ACO metaheuristic. 

3.2.2 The ACO metaheuristic: a general framework 

The basic form of the ACO metaheuristic can be described as the interplay 

among the following procedures (Dorigo et al., 2004b): 

(i) Ant activities: In this procedure, artificial ants incrementally 

construct trial solutions to the problem being solved. Starting from 

an empty sequence, x = 0, an artificial ant progressively adds 

components to the sequence by moving on the construction graph 

G(C, L). An ant currently at component ci chooses which component 

from set C to visit next (that is, a component to be added to its 

sequence) by utilizing a random proportional rule. In general, the 

probability of an ant currently at ci travelling to cj (the next 

component in its sequence) is directly proportional to the 

pheromone trail intensity and heuristic information associated with 

the move. The pheromone concentration on the arc connecting ci 

and cj is a reflection of the ant colony’s acquired experience about 
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this connection based on trial solutions previously generated in the 

current optimisation search. On the other hand, the heuristic or 

‘visibility’ is the estimated quality of the individual arc, which 

incorporates the user’s knowledge about the problem at hand. A 

trial solution s to the problem is obtained when the length of the 

sequence reaches the total number of variables D. An objective 

function cost f(s) associated with the trial solution is then calculated. 

(ii) Pheromone updating: Pheromone updating involves two different 

mechanisms, pheromone deposition and pheromone evaporation. The 

general idea behind pheromone deposition is to reward the arcs that 

connect the components contained in a trial solution based on the 

objective function cost of the solution.  Pheromone evaporation is a 

process where all pheromone trail intensities contained in a problem 

search space are decreased by a factor, hence reducing the difference in 

pheromone intensities among arcs. In this way, a scenario where certain 

arcs are travelled much more frequently than others, can be avoided, 

hence increasing the probabilities of unvisited arcs being visited. 

(iii)  Daemon actions 

As an optional procedure in the ACO metaheuristic, daemon actions 

implement centralized actions that cannot possibly be performed by 

single ants (Dorigo et al., 2004b). Daemon actions can take the form of (a) a 

local search procedure, which searches for the local minima of the 

neighbourhood of solutions given by ACO or/and (b) global information 

that can be used to further bias the optimisation search. For example, the 

components of the best solution found so far can be rewarded an 

additional amount of pheromone.  

It should be noted that the scheduling and synchronization of the three 

procedures to be executed are not specified in the metaheuristic, allowing 

them to be tailored to the problems at hand. In summary, the ACO 

metaheuristic is an optimisation process whereby a population of artificial 

ants generates trial solutions by exploiting information distributed over a 

search space, and at the same time, iteratively modifying the search space 

environment to reflect the artificial ants’ search experience. In this way, 
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the search is gradually biased towards promising areas of the search 

space.  

3.2.3 Prerequisites of ACO implementation 

The ACO metaheuristic outlined in the previous section is a high-level 

algorithmic framework that needs to be customized to solve a specific 

optimisation problem. In this thesis, the adaptations made in order to 

apply the ACO metaheuristic (Section 3.2.2) to a problem P (Section 3.2.1) 

is referred to as ‘an ACO formulation for problem P’. In this section, the 

issues required to be resolved as part of an ACO formulation, as 

suggested by Dorigo et al. (2004b), are discussed: 

(1) Construction of a trial solution 

In the search for optimal solution(s) to a specific problem using any 

metaheuristic, a number of ‘candidate solutions’ are constructed and 

evaluated during the optimisation process before one or more ‘best-found 

solution(s)’ is/are obtained. These candidate solutions are called ‘trial 

solutions’, while the latter is/are called the ‘lowest-cost solution(s)’.  

Given a problem representation (see Section 3.2.1), a construction graph G 

= (C, L) is utilized by artificial ants in building trial solutions to an 

optimisation problem. Starting from scratch, a trial solution is constructed 

by adding solution components, one at a time, to a partially completed 

trial solution. For example, the Traveling Salesman Problem (TSP) is a 

combinatorial optimisation problem in which a salesman is given k cities 

and he has to visit each city once and finally return to the starting city. In 

previous studies of TSP using ACO, component set C is defined as the set 

of cities ci, cj, …, ck given to the salesman, and connection set L is a set of 

all arcs connecting any two cities, which include ˜ l ij ⊆ L  as the set of 

optional paths connecting city ci and cj. During the construction of a trial 

solution, an ant currently at city ci chooses the next city to visit by 

implementing a random proportional rule, which takes into account the 

pheromone trails and heuristic values associated with all arcs connecting 

ci and other unvisited cities. The city chosen is then added to the partial 

solution of the ant. 
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(2) Definition of pheromone trails 

During an optimisation process using ACO, artificial ants utilise the 

information about the decision variable space2 of a problem captured by 

pheromone trails and at the same time, iteratively modify the pheromone 

trails to reflect their search experience. In other words, the ant search 

process is mainly driven by the distribution of pheromone trails over the 

problem decision space. Therefore, an appropriate definition of 

pheromone trail, which is normally problem-specific, must be given. 

Studies comparing the effectiveness of different pheromone trail 

definitions concluded that a bad choice of such a definition has an adverse 

effect on the optimisation outcome. Two different pheromone trail 

definitions for the TSP have been investigated by Dorigo et al. (2004b): (i) 

a pheromone trail τij is interpreted as the desirability of visiting city j 
directly after a city i and (ii) τij is interpreted as the desirability of visiting 
city i as the jth stop during the salesman’s tour. It has been shown that 

since the relative order of the city being visited is more significant in 

solving TSP, pheromone trail definition (i) is more effective. 

(3) Heuristic formulation 

Prior knowledge about a problem can be incorporated into an ACO 

formulation by means of heuristic information, which is taken into 

account during the construction of trial solutions. During the early stages 

of an ant’s search, before pheromone trails are significantly distinct, 

heuristic information is the dominant factor affecting the selection of 

decision paths. In other words, heuristic information provides the 

optimisation search with a prediction of regions within the search space in 

which promising solutions are located. Without heuristic information, the 

initial search would almost be random until dominant paths are 

established during the latter stages of the search. On the other hand, if 

heuristic information is heavily emphasized, the behaviour of ACO would 

be similar to that of a greedy algorithm. As the way in which heuristic 

information is represented mathematically is problem specific (Dorigo et 

al., 1999), transformation of any heuristic information into a formulation 

to be used in the ACO algorithm is an important task. A heuristic value 

                                                 
2 The decision variable space is the n-dimensional space associated with values of the decision variable, x. This is different from 
the objective function space, which is defined as the m-dimensional space associated with the m objective functions. Two 
different points in the decision variable space may be mapped to the same point in the objective function space. 
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given to a solution component can be static or dynamic. In the static case, 

the heuristic value is defined a posteriori and remains fixed throughout the 

ACO run. On the other hand, dynamic heuristic values of a solution 

component are calculated based on the current partially built trial 

solution.  

(4) Local search (optional) 

Local search can be used optionally as a form of daemon action in the 

ACO metaheuristic. Local search has been found to result in significant 

improvements when coupled with ACO for a number of ACO 

applications (Dorigo et al., 1997b; den Besten et al., 2000) and little in 

others (Merkle et al., 2002). In general, local search and ACO are 

conjectured to complement each other in the following way: The ACO 

metaheuristic is a global-search based metaheuristic that identifies 

promising regions of a problem search space, whereas local search can 

perform a detailed search within these promising regions to determine the 

optimum solution(s) to the problem. Local search has also been used to 

enhance the performance of the ACO metaheuristic in solving an 

optimisation problem when heuristic information about the problem at 

hand is not easily obtained (Dorigo et al., 2004b).   

The definition of each of these issues in the development of an ACO 

formulation is clearly demonstrated using previous ACO applications in 

Section 3.4.  

3.3 Variants of Ant Colony Optimisation algorithms 

Despite its original inspiration from the foraging behaviour of ant 

colonies, various ACO algorithms have evolved. It should be noted that 

‘ACO metaheuritsic’ refers to the higher-level algorithmic framework, 

which is customized and refined by algorithm designers to form various 

‘ACO algorithms’. An ACO algorithm consists of the details of the 

optimisation mechanism that can be executed to solve an optimisation 

problem.   

The three earliest ACO algorithms, namely ant-cycle, ant-density and ant-

quantity, were proposed by Dorigo in 1992 as part of his doctoral 

dissertation (Dorigo, 1992). As ant-cycle was found to outperform its two 
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counterparts, it was regarded as the first ACO algorithm in existence and 

called the Ant System (AS). It is interesting to note that the ACO 

metaheuristic introduced in Section 3.2.2 was defined a posteriori, rather 

than before the existence of AS, as a result of extensive studies conducted 

by Dorigo et al. (1999; 2002). The ACO metaheuristic has since provided a 

general framework for the design of new ACO algorithms.  

In this section, the classification technique of ACO algorithms adopted by 

Dorigo et al. (2004b) is used. The first category comprises AS and its direct 

successors, including Rank-Based Ant System (ASrank) and Max-Min Ant 

System (MMAS). ASrank and MMAS are largely similar to AS and can be 

described using the algorithmic framework shown in Figure 3.3. ACO 

algorithms that cannot be completely described by the framework in 

Figure 3.3, such as the Ant Colony System (ACS) and the Hyper-Cube 

Framework for ACO (HCF), belong to the second category. While 

inspired by AS, these algorithms utilize additional mechanisms that aim 

to improve the exploitation and exploration features of simple AS-based 

algorithms. In particular, the synchronisation of the ACO procedures 

(Section 3.2.2) of ACS and HCF are quite different to those of AS, ASrank 

and MMAS.  

3.3.1 Ant System (AS) and its direct successors 

The Ant System (AS) is the first of all ACO algorithms and more 

importantly, the one that leads to the definition of the ACO metaheuristic 

outlined in Section 3.2.2. Various ACO algorithms have since been 

developed by slightly modifying AS, with the goal of improving its 

optimisation ability. As mentioned previously, ACO algorithms of this 

kind can be generally described by the framework shown in Figure 3.3. 

Two major ACO algorithms that belong to this group are the Rank-Based 

Ant System (ASrank) and the Max-Min Ant System (MMAS). 
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Figure 3.3: Ant-System-based algorithmic framework 

 

Ant System (AS) 

Construction of trial solutions: In AS, m ants construct trial solutions in 

parallel, utilizing the random proportional rule (Eq. 3.1). It should be noted 

that the ants are given memory to store the partial solutions constructed. 

Given a partial solution sequence x = ...,ci , the probability that an ant k 

adds cj as the next component in x given by: 

pij
k =

τ ij[ ]α
η ij[ ]β

τ il[ ]α η il[ ]β

l ∈Li
k

∑
 (3.1) 

where ijτ  is the pheromone trail of arc(i, j); ijη  is the heuristic information 

of arc(i, j); α  and β  are the parameters that control the relative 

importance of pheromone and heuristic, respectively; Li
k  is the set of 

optional components considered by ant k given a partial solution 

x = ...,ci .  

Pheromone updating: In AS, pheromone evaporation reduces all existing 

pheromone trails by a factor, given by: 

Initialize ACO run 

Construct trial solutions 

Update pheromone 

Termination criterion 
met? 

Record optimisation 
outcome 
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τ ij ← 1− ρ( )τ ij  for all i, j (3.2) 

where τij is the pheromone trail of arc(i, j) and 0 < ρ < 1 is the pheromone 

evaporation rate. 

After pheromone evaporation, all ants deposit pheromone on the arcs 

they have followed, the value of which is given by: 

τ ij ← τ ij + ∆τ ij
k

k=1

m

∑  for all i, j (3.3) 

where k
ijτ∆ is the pheromone deposited by ant k on arc(i, j), the value of 

which is given by: 

∆τ ij
k = 1/ OFCk ,

0,
   

if arc(i , j) belongs to sk

otherwise.

 
 
 

 (3.4) 

where OFCk is the objective function cost of the trial solution constructed 

by ant k, sk. In other words, the pheromone rewarded/deposited on the 

arcs constituting a trial solution is higher if the objective function cost of 

the trial solution is lower.  

AS was first proposed in the context of solving the Travelling Salesman 

Problem (TSP). In spite of the encouraging results obtained by AS in its 

application to TSP, it was found to be inferior to other state-of-the-art 

optimisation algorithms that had been applied to the problem (Dorigo et 

al., 2002). Many ACO algorithms have since been proposed with the goal 

of improving the performance of AS, such as Rank-Based Ant System 

(ASrank) and Max-Min Ant System (MMAS), for example, which differ 

slightly from AS and generally can be described by the algorithmic 

framework shown in Figure 3.3. In particular, ASrank and MMAS are 

different from AS mainly in the way pheromone deposition is carried out. 

The particulars of the two algorithms with respect to pheromone 

deposition are given below: 

Rank-Based Ant System (ASrank) 

Rank-Based Ant System (ASrank) was proposed by Bullnheimer et al. 

(1999). In contrast to AS, where pheromone deposition applies to all ants, 

only g ants are rewarded in each iteration in ASrank, where g is a user-
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defined parameter. It should be noted that g includes the best-so-far trial 

solution (sbsf). Consequently, in each iteration, (g - 1) trial solutions are 

ranked by increasing objective function values. Eq. 3.3 is thus changed to: 

τ ij ← τ ij + (g− r )∆τ ij
r

r=1

g

∑ + g∆τ ij
bsf (3.5) 

where the values of r
ijτ∆ and bsf

ijτ∆ are given by: 

∆τ ij
r = 1/ OFCr ,

0,
   

if arc(i , j) belongs to sr

otherwise.

 
 
 

 (3.6) 

∆τ ij
bsf = 1/ OFCbsf ,

0,
   

if arc(i , j) belongs to sbsf

otherwise.

 
 
 

 (3.7) 

 

It can be seen that the best-so-far ant always deposits the most pheromone 

with weight g, while the other (g - 1) ants in an iteration deposit a quantity 

of pheromone in proportion to the objective function costs and ranks of 

tours.  

Elitist-Ant System (EAS) is the first ACO algorithm introduced by Dorigo 

(1992) and Dorigo et al. (1996) as an improvement to AS, as part of which 

an additional quantity of pheromone is deposited on the arcs contained in 

the best-so-far trial solution (sbsf) in each iteration. This can be viewed as a 

special case of ASrank, whereby: 

• g is the size of the ant population used; 

• the best-so-far trial solution (sbsf) is ranked 1 while all trial 

solutions are ranked 2. 

Experimental analysis carried out by Bullnheimer et al. (1999) showed that 

ASrank performs slightly better than the Elitist-Ant System and 

significantly better than AS. 

Max-Min Ant System (MMAS) 

A significant improvement over AS was achieved by the introduction of 

the Max-Min Ant System (MMAS) (Stützle et al., 1997; Stützle et al., 2000), 
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which was proposed to enhance both the exploitation and exploration 

features of AS. Two important features of MMAS that contribute to the 

robustness of the algorithm are: 

(1) Updating only the best-so-far (sbsf) or the iteration-best (sib) trial 

solution: 

As a measure to better exploit the artificial ants’ search experience, 

pheromone is deposited only on the arcs belonging to either the best-so-

far trial solution (sbsf) or the best trial solution of the current iteration (sib). 

The corresponding pheromone deposition equation is: 

τ ij ← τ ij + ∆τ ij
best (3.8) 

where  

∆τ ij
best =

∆τ ij
bsf =1/ OFCbs

∆τ ij
ib =1/ OFCib

 
 
 

  
if only the best - so - far solution (sbsf ) is updated

if only the iteration -best solution (sib ) is updated
 (3.9) 

where OFCbsf is the objective function cost of the best-so-far trial solution, 

sbsf; OFCib is the objective function cost of the iteration-best trial solution, 

sib. 

(2) Pheromone trails are bounded by an interval τ min ,τ max[ ]: 

If only either sbsf or sib are rewarded with pheromone, convergence to a 

solution during an early stage of the optimisation search is likely to occur. 

This is undesirable, as many regions of the problem search space are 

likely to have been left unexplored. In order to overcome this problem, all 

pheromone trails within a problem search space are bounded by upper 

and lower trail limits ( τ maxand τ min), the values of which are given by: 

τ max(t +1) = 1

1− ρ
⋅ Q

OFCbest(t)
. (3.10) 

τ min(t +1) =
τ max(t +1)(1− pbest

n )

(avg−1) pbest
n

. (3.11) 

where t is an iteration index; 0 < ρ < 1 is the pheromone evaporation rate; 

Q is the reward factor, OFCbest = OFCbsf and OFCbest = OFCib(t) for the 

update of the best-so-far and iteration t’s best trial solutions, respectively; 

n is the number of decisions an ant has to make (number of cities in the 
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case of a TSP); when MMAS has converged, pbest is the probability that the 

sbest trial solution has been constructed once the algorithm has converged. 

For further details of the derivation of Eqs. 3.10 and 3.11, readers are 

referred to Stützle et al. (2000). It can be envisaged that the narrower the 

bound interval, the smaller the difference of the pheromone levels 

between arcs and hence the higher the exploration level. In fact, the 

desired exploration and exploitation levels of a MMAS run can be defined 

by the user through a number of parameters. A detailed discussion of the 

impact each of the parameters in Eqs. 3.10 and 3.11 has on the searching 

behaviour of MMAS is given by Stützle et al. (2000). Another important 

note on the implementation of MMAS is that all pheromone trails must be 

initialized to a sufficiently high value such that in the second iteration, 

they are reset toτ max.  

MMAS is one of the most studied ACO algorithms and has been used as a 

tool for the development of new ACO algorithms (Socha, 2003; Al-

Shihabi, 2004; de Franca et al., 2004), as well as a comparison benchmark 

for other ACO algorithms (Socha et al., 2003; Rajendran et al., 2004; 

Solimanpur et al., 2004; Zecchin et al., 2006). 

3.3.2 Non-AS-based ACO algorithms 

Some ACO algorithms, while inspired by AS, incorporate some additional 

mechanisms that cannot be described by the AS-based algorithmic 

framework shown in Figure 3.3. Two ACO algorithms that belong to this 

category are the Ant Colony System (ACS) and the Hyper-Cube 

Framework for ACO (HCF). The additional features of these algorithms 

are briefly pointed out below. 

Ant Colony System (ACS) 

Ant Colony System (ACS) was proposed by Dorigo et al. (1997a; 1997b) 

based on the Ant-Q algorithm (Gambardella et al., 1995). ACS differs from 

AS in three main aspects: 

1. The random proportional rule (Eq. 3.1) utilized by AS for the 

construction of trial solutions is modified in ACS so that stronger 

exploitation of an ant’s search experience is achieved. The algorithm uses 
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a new pseudorandom proportional rule, as part of which an ant selects 

the path with the best τ ij[ ]α
η ij[ ]β

value by a probability of q0. It can be 

envisaged that a high q0-value will result in strong exploitation, as the best 

available option is chosen with a high probability. The value of q0 can thus 

be adjusted in accordance with the desired level of exploitation. 

2. In ACS, both pheromone evaporation and deposition are applied only 

to the best-so-far trial solution, sbsf. Moreover, the quantity of pheromone 

deposited on the arcs belonging to sbsf is discounted by the pheromone 

evaporation coefficient, ρ, which results in the new pheromone trails 

being a weighted average of the old pheromone value and the amount of 

pheromone deposited. 

3. A local pheromone updating rule applies such that when an ant 

chooses to travel on an arc, the pheromone trail of the arc is reduced by a 

factor. This mechanism reduces the attractiveness of a travelled arc to 

subsequent ants. 

Dorigo et al. (2004b) pointed out a very interesting observation that in 

order to manipulate the exploitation and exploration level of the 

algorithms, both MMAS and ACS implement upper and lower limits for 

pheromone trails However, the specification of such limits is explicit in 

MMAS and implicit in ACS. It can be seen from the unique features of 

ACS that there are many additional parameters, in addition to those 

already involved in AS, that need to be defined prior to the 

implementation of ACS. This is, undoubtedly, a major drawback of this 

algorithm.  

 Hyper-Cube Framework for ACO (HCF) 

The Hyper-Cube Framework (HCF) for ACO was proposed by Blum et al. 

(2001). The main difference introduced by HCF is the normalization of 

pheromone trails such that they always lie in the interval [0,1]. This is 

implemented by the following pheromone update equations: 

τ ij ← 1− ρ( )τ ij + ρ ∆τ ij
k

k=1

m

∑  (3.12) 

where  
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∆τ ij
k =

1/ OFCk

1/ OFCh( )
h=1

m

∑
,if arc i , j( ) is used by ant k.

0, otherwise.

 

 
 
 

 
 
 

 (3.13) 

Dorigo et al. (2004b) pointed out that the resulting pheromone vector can 

be seen as “a shift of the old pheromone vector toward the vector given by the 

weighted average of the solutions used in the pheromone update”. 

Table 3.2 summarizes the distinguising features of the ACO algorithms 

presented in this section.  

Table 3.2: A summary of the distinguishing features of the ACO algorithms 
discussed 

ACO 

variants 
Main features 

AS 
o The earliest ACO algorithm 

o All trial solutions apply pheromone update 

ASrank o Similar to AS, but only the best g trial solutions are rewarded 

EAS 
o Similar to ASrank, but only the iteration-best trial solutions are 

rewarded 

MMAS 

o Only the iteration-best or best-so-far trial solutions are 

rewarded 

o Minimum and maximum pheromone trails apply 

ACS 

o Use of pseudorandom proportional rule during construction of trial 

solutions 

o Pheromone evaporation and reward are applied only to the 

best-so-far trial solutions. 

o A local pheromone updating rule applies 

HCF o Pheromone trails always lie in the interval [0,1] 
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3.4 Ant Colony Optimisation Applications 

Since its first application to TSP and the encouraging results obtained, the 

ACO metaheuristics have been applied to a wide range of combinatorial 

optimisation problems, including benchmark and real-world problems. In 

this thesis, benchmark problems refer to those used by researchers in the 

field of evolutionary computation in testing the effectiveness of new 

optimisation algorithms. Among the most famous benchmark problems 

are the Travelling Salesman Problem (TSP), the Quadratic Assignment 

Problem (QAP) etc. Previous applications of ACO to various benchmark 

optimisation problems are detailed in Dorigo et al. (2004b).  

As the optimisation problem addressed by the research presented in this 

thesis is a scheduling problem, previous implementations of ACO 

metaheuristics to some benchmark scheduling optimisation problems are 

reviewed. ACO applications to three real-world optimisation problems 

are discussed subsequently. 

3.4.1 Benchmark scheduling optimisation problems 

(A) Resource-Constrained Project Scheduling Problem (RCPSP) 

The Resource-Constrained Project Scheduling Problem (RCPSP) is a 

scheduling problem where the set of activities of a project are scheduled 

such that the total makespan, which is the completion time of the last 

scheduled operation of the project, is minimized, subject to resource and 

precedence constraints amongst activities. The Elitist-Ant System-based 

algorithm proposed by Merkle et al. (2002), EAS-RCPSP, is at this time, the 

best performing approach for RCPSP (Dorigo et al., 2004b). In the ACO 

formulation for RCPSP, the following components are defined: 

Construction of trial solutions: The construction graph is comprised of 

(act + 2) fully connected nodes, where act is the total number of activities 

to be scheduled and the additional two nodes represent dummy start and 

end nodes. Starting from a dummy start node, an ant is considered to 

travel to each node (activity) once. Given an ant currently at position (i-1), 

a schedule generation method is utilized to generate a set of optional and 

feasible activities to be visited next (position i), based on the current 

partial solution. The probability of activity j being scheduled at position i 
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follows the random proportional rule (Eq. 3.1). A complete trial solution, 

which comprises a sequence of scheduled activities, is obtained when all 

(act + 2) construction steps are visited exactly once.  

Definition of pheromone trails: The pheromone trail τij refers to the 
desirability of scheduling activity j as the i-th activity (that is, putting 

activity j in position i). 

Heuristic: ηij refers to the desirability of scheduling activity j as the ith 
activity based on some user-defined information. The best-known 

heuristic formulation for this problem is based on the normalized version 

of the latest start time heuristic (Dorigo et al., 2004b), given 

by:η ij = maxl ∈ALLSl − LSj +1, where LSj is the latest possible start time of 

activity j and AL is the set of activities that are available given a partial 

schedule.  

Local search: A 2-opt local search algorithm that considers swapping the 

position of two activities in a trial solution is adopted (Dorigo et al., 

2004b). 

(B) Group-shop scheduling problem 

In a Group Shop Scheduling problem (GSP), a set of act operations O is 

partitioned into (Dorigo et al., 2004b):  

• A set of subsets M = M1,...,Mm{ }, where each Mi corresponds to the 

operations to be processed by machine i; and 

• A set of subsets J = J1,...,Jn{ }, where each set Jj corresponds to the 

operations belonging to job j. Subset J is further partitioned into groups 

G = G1,...,Gp{ } where Gk corresponds to operations belonging to group k. 

The objective of GSP is to minimize the makespan of operations. The 

constraints to be satisfied include (Dorigo et al., 2004b): 

• Each machine i can process at most one operation at a time. 

• Operations must be processed without pre-emption. 
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• Operations within one group can be processed in any order but 

the groups of a job are totally ordered. 

GSP can be seen as a general shop scheduling problem, with special cases 

including the Job Shop Scheduling problem (JSP), the Open Shop 

Scheduling problem (OSP) and the Mixed Shop Scheduling problem 

(MSP). Among the ACO approaches previously used for shop scheduling 

problems (Colorni et al., 1994; Pfahringer, 1996; Blum, 2002), a Max-Min 

Ant System-based algorithm, namely the ACO-MMAS-HC-GSP proposed 

by Blum (2002), is the current best-performing ACO algorithm for GSP. 

The formulation adopted by the ACO-MMAS-HC-GSP algorithm is now 

described. 

Construction of trial solutions: The construction graph and the way a 

trial solution to this problem is constructed are identical to those of 

RCPSP. 

Definition of pheromone trails: The pheromone model used in MMAS-

HC-GSP assigns a pheromone value to a pair of related operations. Two 

operations are related if they belong to the same group or must be 

processed on the same machine. A high pheromone value of two related 

operations oi and oj means operation oi is favoured to be processed before 

(but not necessarily immediately before) operation oj. This model was 

claimed to be the best pheromone representation for this problem type, 

where relative positioning rather than absolute positioning of operations 

is more important. 

Heuristic: An earliest start heuristic that favors operations with the 

earliest valid starting time with respect to the partial schedule is adopted. 

Given a partial schedule, the heuristic information is calculated based on 

the inverse of the earliest possible starting time of an operation and then 

normalized over all eligible operations. 

Local search: The best local search algorithm used in conjunction with 

MMAS-HC-GSP applies an iterative improvement algorithm to each trial 

solution, and then applies a tabu search algorithm to the best local 

optimum. A local neighborhood definition introduced by Nowicki et al. 

(1996) for JSP, where a job placed at the a-th position is moved to a b-th 

position, is utilized in the local search algorithm. 
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(C) Single-machine total weighted tardiness scheduling problem 

In a single machine total weighted tardiness scheduling problem 

(SMTWTP), n jobs have to be processed on a single machine, without 

interruption. Each job is given a known processing time pj, a weight wj, 

and a due date dj and all jobs are available to be scheduled from time zero. 

The objective of SMTWTP is to schedule all the jobs in a sequence such 

that the sum of the weighted tardiness, wiTi

j =1

n

∑ , is minimized. Given a 

trial solution (schedule), the tardiness of a job i is defined 

asT j = max 0,CTj − d j{ }, where CTj is its completion time in the schedule 

under consideration. ACO has been applied to SMTWTP concurrently by 

den Besten et al. (2000) and Merkle et al. (2003) and the formulations 

proposed in the two studies are similar for many characteristics. 

Construction of trial solutions: The construction graph comprises of fully 

connected components C representing the n positions to which the n jobs 

are assigned. In order to construct a trial solution, an ant chooses a job for 

position 1, another for position 2 until all n jobs are scheduled. 

Definition of pheromone trails: τij indicates the attractiveness of placing 
job j at position i. A problem with solely using τij when choosing the next 

job to be placed on a schedule was identified by Merkle et al. (2003), and 

the problem was resolved by implementing a new pheromone summation 

rule. The new rule takes into account the pheromone values of placing job 

j at positions [i, i-1, …, 1] when estimating the desirability of placing job j 

at position i. In this way, even if a job j with high τij was not placed at 

position i, it is highly likely to be placed at a position close to i influenced 

by the high value of τij.  

Heuristic: Three different formulations were tested by den Besten et al. 

(2000) to compute the heuristic information: 

1. Earliest Due Date (EDD): ηij = 1/dj, where dj is the due date of job j. 

2. Modified Due Date (MDD): Similar to EDD, but the sum of processing 

times of already scheduled jobs (partial schedule) is taken into account (ηij 
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= 1/mddj, where mddj = max{C + pj, dj}), where C is the total processing 

time of a partial schedule. 

3. Apparent Urgency (AU): In this heuristic, the average processing time 

of the remaining jobs, p , is taken into consideration (ηij = 1/auj, where auj 

= (wj/pj).exp(-max{dj – Cj, 0})/k p ), k is a parameter set).  

Merkle et al. (2003) identified a problem with using the MDD heuristic, 

whereby the value of max{C + pj, dj} is too large due to the total processing 

time, C, which is large when the sequence of a partial schedule becomes 

too long. As a consequence, the heuristic difference becomes insufficiently 

apparent to ants when choosing the next job to schedule. In order to 

rectify this problem, Merkle et al. (2003) improved the MDD heuristic by 

subtracting the total processing time, C, such that ηij = 1/mddj, where mddj 

= max{C + pj, dj} – C. 

Local search: Two neighborhood definitions have been used for the 

SMTWTP, including: 

1. Exchanging the pair of jobs placed at the i-th and j-th positions 

(interchange). 

2. Removal of the job at the i-th position and inserting it to the j-th 

position of the schedule (insertion). 

3.4.2 Real-world optimisation problems 

In spite of some very encouraging results obtained by ACO for 

benchmark optimisation problems, there are not many applications to 

real-world problems, or operational research. Given the context of the 

research work presented in this thesis, this section is devoted to the 

review of ACO applications to three different real-world optimisation 

problems.  

(A) Design of Water Distribution System (WDS) 

A formulation based on ACO was proposed by Maier et al. (2003b) to 

minimise the costs associated with the size of pipelines for a water 

distribution system (WDS), subject to constraints such as demand and 
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pressure criteria. The adaptations made in order to apply ACO to the 

WDS optimisation problem can be summarized as follows: 

Construction of trial solutions: The ACO construction graph is formed by 

a set of nodes representing the set of pipes whose sizes are to be 

optimized, fully connected by arcs representing optional pipe diameters. 

A complete trial solution to the WDS problem comprises a size for each 

pipeline of the pipeline system considered. In order to construct a trial 

solution, a single ant agent visits each node (pipe) in a random (or 

heuristically defined) order. An ant at node i (pipe i) considers a 

randomly chosen, unvisited node k (k≠i), and in order to travel to node k, 
the ant needs to make a decision, based on the random proportional rule 

(Eq. 3.1), about which pipe size to choose.  

Definition of pheromone trails: τ ij  represents the desirability of pipe size 

index j being used for pipe i. 

Heuristic: η ij = 1
costj

 is a myopic value of using pipe size index j for pipe 

i, based on the users’ experience, where costj is the cost per unit of pipe 

size index j. 

Local search: Local search was not considered in the formulation. 

The ACO formulation for the WDS optimisation problem has been tested 

with two case studies: a 14-pipe Problem and the New York City Water 

Supply Tunnels Problem (Maier et al., 2003a). The performance of the 

ACO approach for the 14-pipe Problem is comparable to those of a genetic 

algorithm, both in terms of the ability of finding the global optimum and 

the computational time required. On the other hand, the ACO approach 

found a better solution to the New York City Water Supply Tunnels 

Problem than that given by a GA. A later study by Zecchin et al. (2006) 

confirmed the performance of the ACO formulation against a genetic 

algorithm when applied to the New York City Water Supply Tunnels 

Problem and the Hanoi Problem. In addition, experiments conducted in 

the latter study indicated that MMAS is a more robust ACO algorithm 

compared to its ancestor, AS, due to the upper and lower limits imposed 

on pheromone trails.  
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A study conducted by Afshar (2006) investigated the optimisation of the 

layout of pipe networks using ACO. This optimisation problem can be 

seen as a special instance of the generalised water distribution design 

specification introduced by Zecchin et al. (2005).  

(B) Pump Scheduling 

The optimal scheduling of pump operations problem is described by 

Goldman et al. (2000) as: 

“Given a water distribution network, where diurnal demands, initial tank levels 

and electricity tariffs are known, the goal of this problem is to find the optimal 

pump schedules over a time period, typically 24 hours, such that the operational 

costs are minimized and constraints are satisfied.” 

This problem has been studied by using Simulated Annealing (Goldman 

et al., 2000) and genetic algorithms (Mackle et al., 1995; Savic et al., 1997; 

Kazantzis et al., 2002; van Zyl et al., 2004). The ACO formulation proposed 

by Prasad et al. (2006) to solve the pump scheduling problem is comprised 

of the following elements: 

Construction of trial solutions: A representation of trial solutions based 

on time triggers proposed by Lopez-Ibanez et al. (2005) was adopted, 

where a trial solution is comprised of a set of strings, each associated with 

the operational schedule of a pump. A string is formed by a finite pair of 

integers representing the number of hours a pump is off and remains on 

when it is switched, respectively. If a pump switch is defined by 

switching a pump from off to on, and the status of a pump (being on or 

off) as an interval, the length of a string (number of integers) is 2 x 

maximum allowable number of pump switches, S. When an ant constructs 

a trial solution, it travels to each interval (randomly) and chooses a 

duration for the interval from a set of available options. It should be noted 

that this type of solution representation enables maximum pump switch 

constraints to be satisfied explicitly during the construction of trial 

solutions, avoiding the need for a penalty factor. Once a duration is 

chosen for all intervals, a complete trial solution is obtained. 

Definition of pheromone trails: τ ij  represents the utility of assigning a 

duration j to interval i for a particular pump. 
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Heuristic: Heuristic information was not considered in the formulation. 

Local search: Local search was not considered in the formulation. 

An AS-based algorithm was implemented to solve two pump scheduling 

case studies  – a test case study proposed by van Zyl et al. (2004) and a real 

system in the United Kingdom (Prasad et al., 2006). At each iteration, trial 

solutions are ranked and only the best-iteration trial solutions are 

rewarded. While the results obtained for the test network were shown to 

be comparable with those given by a hybrid GA approach proposed by 

van Zyl et al. (2004), the ACO algorithm was found to be inferior to the 

genetic algorithm for the real system.  

(C) Optimal Siting of New Fire Stations 

An ACO algorithm (ANT) has been coupled with a geographical 

information system (GIS) to determine the optimum locations of six new 

fire stations, aiming at increasing the effectiveness of the fire stations in 

covering the transportation routes of hazardous materials (HAZMATS) 

through Singapore (Liu et al., 2006). Using GIS, the map of Singapore is 

represented by a grid coordinate system by means of a finite number of 

discrete cells. Each cell is assigned a coordinate (i, j). 

Construction of trial solutions: Each of the six ants in ANT is used to 

search for the optimal location of a fire station.  

Definition of pheromone trails: τ ij  represents the desirability of locating a 

new fire station in a discrete cell of coordinate (i, j). 

Heuristic: Heuristic information was not considered in the ACO 

formulation. 

Local search: Each trial solution (a complete set of proposed locations 

of all six fire stations) is applied to a 2-phase local search. In phase 1, a 

neighborhood random search (NRS) strategy is used, where all ants 

randomly move from their current coordinate to other cells within a 

certain distance (eg. 3km). The current solution is replaced if a local 

solution associated with a better objective function value is found. The 

NRS search is repeated for a predefined number of iterations before the 
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second phase of local search is triggered. In phase 2, an adaptive 

enumeration neighborhood search (AENS) is activated, where in an AENS 

routine, each of the six ants moves to every cell within a certain distance 

from its current cell while keeping the other five ants fixed at their 

original cells. Similar to the phase-1 search, a current solution is replaced 

by an improved local solution. The AENS search is repeated until all local 

solutions are evaluated. 

The performance of ANT was found to be superior to those of a genetic 

algorithm (GA) and a random start 2-phase local search procedure 

(RANDOM LS). 

3.5 Motivation for Applying ACO to PPMSO 

As part of the research work presented in this thesis, a formulation based 

on the ACO metaheuristic is proposed for the power plant maintenance 

optimisation problem (PPMSO). The choice of the ACO metaheuristic for 

PPMSO is mainly motivated by the following:  

• The decision tree-based solution construction mechanism of ACO 

fits in well with PPMSO, which is naturally an optimisation 

problem with sequential decisions. By using the decision-tree 

based structure, many constraints commonly encountered in 

PPMSO problems can be explicitly addressed, eliminating the 

need to use penalty factors. In addition, the search space of an 

optimisation problem can be greatly reduced by progressively 

eliminating optional solution components that no longer satisfy 

problem constraints, given a current partial solution.  

• As a population-based metaheuristic, ACO is highly suitable for 

real-world optimisation problems that usually have a large search 

space and involve complex mathematical functions. As a global 

optimisation method, ACO performs coarse-grained search to 

quickly identify decision space regions where promising solutions 

are located. Local search strategies can then be used to search 

within local neighbourhoods of trial solutions generated 

throughout the ACO optimisation process. Secondly, existing 

simulation models corresponding to the case study in hand can be 
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easily incorporated into an ACO formulation, without the need for 

simplifying complex mathematical equations. 

• Heuristic information that reflects the experience of a user can be 

optionally incorporated into the formulation. 

• As a population-based metaheuristic, ACO searches different 

regions of a problem search space and is thus able to produce 

different solutions of similar criteria quality (objective function 

cost). Taking PPMSO as an example, a list of the best 20 

maintenance schedules produced during an ACO run might be 

recorded. The decision maker can then consider each of these 

schedules based on other non-quantifiable criteria, which were not 

included in the optimisation run. 

• Since ACO explores many feasible as well as infeasible trial 

solutions to a problem, the increased speed of modern computers 

enables real-world-sized problems to be solved in reasonable run-

times. 

• For real-world problems, it is unrealistic to aim for a globally 

optimal solution. Near-optimal, or reasonable good, solutions, 

which can normally be obtained by global optimisation 

metaheuristics such as ACO, are sufficient for practical purposes. 

• The ACO metaheuristic has been applied to both benchmark and 

real-world optimisation problems and the results obtained are 

promising when compared with other metaheuristics. 
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Chapter 4  
Proposed Approach to Maintenance 
Scheduling Optimisation 

In this chapter, the main contributions of the research work presented in this 

thesis are covered, which are: 

• The definition of power plant maintenance scheduling optimisation 

(PPMSO) is generalized. In particularly, the options of outage duration 

shortening and deferral of maintenance tasks are incorporated. 

• A new formulation based on Ant Colony Optimisation (ACO) is 

proposed for a more generalized PPMSO problem. 

• Different constraints commonly encountered in maintenance scheduling 

problems are categorized. Methods for addressing these constraints are 

also proposed. 

• A new heuristic formulation is developed for ACO to solve PPMSO 

problems more effectively. 

• Two local search operators are developed to refine the rather coarse-

grained search of ACO in a problem search space.  

• The ACO-PPMSO algorithm is coded in the Fortran 90 programming 

language.  

4.1 Definition of power plant maintenance scheduling 

optimisation (PPMSO) 

The requirements of an optimisation problem have to be defined before 

any proposed optimisation methods can be properly formulated to solve 

the problem. The power plant maintenance scheduling optimisation 

(PPMSO) problem has been defined previously as an optimisation 

problem that involves the determination of the optimum timing of the 

maintenance periods of each of the generating machines (units) used for 
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power generation, assuming maintenance durations are fixed (Dopazo et 

al., 1975; Yamayee et al., 1983; Mukerji et al., 1991; Satoh et al., 1991; Kim et 

al., 1997; Aldridge et al., 1999; Dahal et al., 1999; Dahal et al., 2000; El-Amin 

et al., 2000; Foong et al., 2005a; Foong et al., 2005b). Such a PPMSO 

definition is insufficient, as there are times when certain generating 

machines cannot be taken offline much longer than a certain period of 

time in order to meet system demand or to achieve system reliability. In 

this case, maintenance duration of these tasks can be shortened by 

employing more personpower, or maintenance tasks can be deferred. As 

part of the contribution of the research presented in this thesis, the 

PPMSO problem definition is generalized to include the options of 

‘maintenance duration shortening’ and ‘deferral of maintenance tasks’. As 

a result, not only the optimum commencement time, but also the 

optimum duration is sought for each maintenance task to be scheduled 

within a planning horizon.  

PPMSO is generally considered as a minimization problem (S, f, Ω), where 

S is the set of all maintenance schedules, f is the objective function which 

assigns an objective function value f(s) to each trial maintenance schedule 

s ∈ S, and Ω is a set of constraints. Mathematically, PPMSO can be defined 

as the determination of a set of globally optimal maintenance schedules S* 

⊂ S, such that the objective function is minimized f(s* ∈ S*) ≤ f(s ∈ S) (for a 

minimization problem) subject to a set of constraints Ω. Specifically, 

PPMSO has the following characteristics: 

• It consists of a finite set of decision points D = {d1, d2,…, dN} 

comprised of N maintenance tasks to be scheduled; 

• Each maintenance task dn ∈ D has a normal (default) duration 

NormDurn and is carried out during a planning horizon Tplan; 

Two decision variables startn and chdurn need to be defined for each task 

dn, including: 

1. The start time for the maintenance task, startn, with the associated set 

of options: Tn,chdurn
= { t  ∈ Tplan; chdurn ∈ Kn: earn ≤ t ≤ latn – chdurn + 1} where 

the terms in brackets denote the set of time periods when maintenance of 

unit dn may start; earn is the earliest time for maintenance task dn to begin; 
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latn is the latest time for maintenance task dn to end and chdurn is the 

chosen maintenance duration for task dn. 

2. The duration of the maintenance task, chdurn, with the associated finite 

set of decision paths: Kn = {0, sn, 2sn, …, NormDurn – sn, NormDurn }, where 

the terms in brackets denote the set of optional maintenance durations for 

task dn, and sn is the time step considered for maintenance duration 

shortening. 

A trial maintenance schedule, s ∈  S = 〈(start1, chdur1), (start2, chdur2), …, 

(startN, chdurN)〉 is comprised of maintenance commencement times, startn, 

and durations, chdurn, for all N maintenance tasks that are required to be 

scheduled. 

Binary variables, which can take on values 0 or 1, are used to represent 

the state of a task in a given time period in the mathematical equations of 

the PPMSO problem formulation. Xn,t is set to 1 to indicate that task dn ∈ 

D is scheduled to be carried out during period t ∈ Tplan. Otherwise, Xn,t is 

set to a value of 0, as given by: 

Xn,t =
1

0

if task dn is being maintained in period t

otherwise

 
 
 

 (4.1) 

In addition, the following sets of variables are defined: 

Sn,t = {k ∈ Tn,chdurn
, chdurn ∈ Kn: t – chdurn + 1 ≤ k ≤ t} is the set of start times 

k, such that if maintenance task dn starts at time k for a duration of chdurn, 

that task will be in progress during time t; 

Dt = {dn: t ∈ Tn } is the set of maintenance tasks that is considered for 

period t. 

Objectives and constraints  

Traditionally, cost minimization and maximization of reliability have 

been the two objectives commonly used when optimizing power plant 

maintenance schedules. Two examples of reliability objectives are evening 

out the system reserve capacity throughout the planning horizon, and 

maximizing the total reservoir storage water volumes at the end of the 
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planning horizon, in the case of a hydropower system. An additional 

objective associated with the more generalized definition of PPMSO 

presented in this thesis is the minimization of the total maintenance 

duration shortened/deferred. The rationale behind this objective is that 

shortening of maintenance duration (i.e. speeding up the completion of 

maintenance tasks) requires additional personnel and equipment, 

whereas deferral of maintenance tasks might result in unexpected 

breakdown of generating units, and in both events, additional costs are 

incurred by the power utility operator.  

Constraints specified in PPMSO problems are also power plant specific. 

The formulation of some common constraints including the allowable 

maintenance window, continuity, load, availability of resources, 

precedence of maintenance tasks, reliability and the minimum 

maintenance duration required, which are presented in Eqs. 4.2 to 4.8.  

The timeframes within which individual tasks in the system are required 

to start and finish maintenance form maintenance window constraints, 

which can be formulated as: 

 

T 

 

The continuity constraint states that once a maintenance task dn 

commences, it should not finish before completion and the time 

corresponding to the chosen outage duration chdurn has elapsed, and is 

given by: 

 

 

 

 

earn ≤ startn ≤ latn – chdurn + 1      for all dn ∈ D. (4.2)

where startn and chdurn are the start time and maintenance duration, 

respectively, chosen for task dn. 

Xn,t =
1

0

 
 
 

for t = startn , . . .,startn + chdurn −1[ ]
otherwise

 (4.3)

where startn and chdurn are the start time and maintenance duration 

chosen for task dn. 
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Load constraints (Eq. 4.4) are usually rigid/hard constraints in PPMSO 

problems, which ensure that feasible maintenance schedules that do not 

cause demand shortfalls throughout the whole planning horizon are 

obtained: 

 

 

 

Resource constraints are specified in the case where the availability of 

certain resources, such as highly skilled technicians, is limited. In general, 

resources of all types assigned to maintenance tasks should not exceed the 

associated resource capacity at any time period, as given by: 

 

 

 

 

Precedence constraints that reflect the relationships between the order of 

maintenance of generating units in a power system are usually specified 

in PPMSO problems. An example of such a constraint is a case where task 

2 should not commence before task 1 is completed, as given by: 

 

 

Depending on particular system characteristics and requirements, 

reliability constraints can be formulated in various ways, including 

provision of reserve generation capacity as a certain proportion of 

demand throughout the planning horizon. This is given by: 

Pn,t

dn ∈D

∑ − Xn,kPn

k∈Sn,t

∑
dn ∈Dt

∑ ≥ Lt   for all t ∈ Tplan 
(4.4)

where Lt is the anticipated load for period t and Pn is the loss of 

generating capacity associated with maintenance task dn. 

Xn,kResn,k
r

k∈Sn,t

∑ ≤ ResAvait
r

dn ∈Dt

∑   for all t ∈ Tplan,r ∈ R. (4.5)

where Resn,k
r  is the amount of resource of type r available that is required 

by task dn at period k; ResAvait
r  is the associated capacity of resource of 

type r available at period t and R is the set of all resource types. 

start2 >  start1 + chdur1 – 1 (4.6)

where startn is the start time chosen for task dn. 
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In the case of maintenance duration shortening, there is usually a practical 

limit to the extent that the duration can be shortened. Due to the different 

characteristics of maintenance tasks, minimum maintenance durations 

may vary with individual tasks: 

 

 

 

4.2 Proposed ACO formulation for PPMSO 

Before the PPMSO problem can be optimized using ACO, it has to be 

mapped onto a graph, which is expressed in terms of a set of decision 

points consisting of the N maintenance tasks that need to be scheduled D 

= {d1, d2, d3,…, dN}. In accordance with the formulation introduced, there 

are three variables that need to be defined V = {v1, v2, v3} for each 

maintenance task: 

• Variable 1, v1: the overall state of the maintenance task under 

consideration (i.e. if maintenance currently being carried out or 

not), 

• Variable 2, v2: the duration of the maintenance task, and  

• Variable 3, v3: the commencement time for the maintenance task. 

For maintenance task dn, a set of decision paths DPc,n is associated with 

decision variable vc,n (where subscript c = 1, 2 or 3) (shown as dashed lines 

in Figure 4.1). For decision variable v1,n, these correspond to the options of 

Pn, t

dn ∈D

∑ − Xn,kPn

k∈Sn,t

∑
dn ∈Dt

∑ ≥ Lt + fres ⋅ Lt   for all t ∈ Tplan (4.7)

where Lt is the anticipated load for period t; Pn is the loss of generating 

capacity associated with maintenance task dn and fews is the factor of load 

demand required for reserve. 

NormDurn ≥ chdurn ≥ MinDurn, for all dn ∈ D. (4.8)

where chdurn is the maintenance duration of task dn; MinDurn is the 

minimum shortened outage duration for task dn; NormDurn is the normal 

duration of maintenance task dn. 
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carrying out the maintenance tasks dn at normal duration, shortening the 

maintenance duration and deferring maintenance tasks. For decision 

variable v2,n, these correspond to the optional shortened durations 

available for the maintenance tasks. For decision variable v3,n, these 

correspond to the optional start times for maintenance tasks dn. It should 

be noted that, as the latest finishing time of maintenance tasks is usually 

fixed, there are different sets of start time decision paths, each 

corresponding to a maintenance duration decision path (Figure 4.1). This 

graph can then be utilized to construct trial solutions using the ACO-

PPMSO algorithm introduced in Section 4.3.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1: Proposed ACO-PPMSO graph 
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4.3 The ACO-PPMSO algorithm 

The new formulation proposed in this research for power plant 

maintenance scheduling using Ant Colony Optimisation is implemented 

via an ACO-PPMSO algorithm, represented by the flowchart given in 

Figure 4.2. The mechanisms involved in each procedure of the proposed 

ACO-PPMSO algorithm are detailed in Sections 4.3.1 to 4.3.6. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2: Proposed ACO-PPMSO algorithm 

 

4.3.1 Initialization 

The optimisation process starts by reading details of the power system 

under consideration (eg. generating capacity of each unit, daily system 

demands, time step for duration shortening etc.). In addition, various 

ACO parameters (eg. initial pheromone trails (τ 0), number of ants used, 

pheromone evaporation rate etc.) need to be defined. 
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4.3.6 Termination 
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4.3.2 Construction of a trial maintenance schedule  

4.3.5 Pheromone updating 
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4.3.2 Construction of a trial maintenance schedule 

A trial maintenance schedule is constructed using the ACO-PPMSO graph 

shown in Figure 4.1. In order to generate one trial maintenance schedule, 

an ant travels to one of the decision points (maintenance tasks) at a time. 

At each decision point, dn, a three-stage selection process that corresponds 

to the three decision variables, v1,n, v2,n and v3,n, is performed.  

At each stage, the probability that decision path opt is chosen for 

maintenance of task dn in iteration t is given by: 

pn,opt(t) =
τ n,opt(t)[ ]α

⋅ ηn,opt[ ]β

τ n,y(t)[ ]α
⋅ ηn,y[ ]β

y∈DPc ,n

∑
. 

(4.9)

subscripts c = 1, 2 and 3 refer to the three decision variables, v1,n, v2,n and 

v3,n; τn,opt(t) is the pheromone intensity deposited on the decision path opt 

for task dn in iteration t; ηn,opt is the heuristic value of decision path opt for 
task dn; α and β are the relative importance of pheromone intensity and 

the heuristic, respectively.  

It should be noted that the term opt in Eq. 4.9 represents the decision path 

under consideration, of all decision paths contained in set DPc,n. When 

used for stages 1, 2 and 3, respectively, the terms opt and DPc,n are 

substituted with those associated with the decision variable considered at 

the corresponding stage (Table 4.1). The pheromone level associated with 

a particular decision path (e.g. deferral of a particular maintenance task) is 

a reflection of the quality of the maintenance schedules that have been 

generated previously that contain this particular option. The heuristic 

associated with a particular decision path is related to the likely quality of 

a solution that contains this option, based on user-defined heuristic 

information. The following paragraphs detail the three-stage selection 

process for decision point (maintenance task) dn, including the 

adaptations required when using Eq. 4.9 for each stage. 
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Table 4.1: Adaptations for Eq. 4.9 in stages 1, 2 and 3 of the selection process 

 Stage 1 Stage 2 Stage 3 

c 1 2 3 

opt stat ∈ DP1,n dur ∈ DP2,n day ∈ DP3,n,chdurn
 

DPc,n 
DP1,n={normal, shorten, 

defer} 

DP2,n = {0, sn, 
2sn,…, 

NormDurn} 

DP3,n,chdurn
= {chdurn ∈ DP2,n: earn, 

earn+1,…, latn – chdurn + 1} 

τ n,opt

 
τ n,stat τ n,dur τ n,chdurn,day 

ηn,opt

 

ηn,defer<ηn,shorten<ηn,normal

 
ηn,durn

∝ dur  ηn,chdurn,day = ηn,chdurn ,day
Res( )w

⋅ηn,chdurn,day
Load

 

 

In stage 1, a decision needs to be made whether to perform the 

maintenance task under consideration at normal or shortened duration, or 

to defer it (decision variable v1,n in Figure 4.1). In this case, c = 1 and opt = 

stat ∈ DP1,n={normal, shorten, defer} is the set of decision paths associated 

with decision variable v1,n for task dn. The probability of each of these 

options being chosen is a function of the strength of the pheromone trails 

and heuristic value associated with the option (Eq. 4.9). For the PPMSO 

problem, the heuristic formulation should generally be defined such that 

normal maintenance durations are preferred over duration shortening, 

and deferral is the least favored option (Eq. 4.10). However, real costs 

associated with duration shortening and deferral options can be used if 

the extra costs incurred associated with these options are quantifiable and 

available. The adaptations required for Eq. 4.9 to be used at the stage 1 

selection process are summarized in Table 4.1. It is suggested that values 

of the heuristics should be selected such that: 

ηn,defer<ηn,shorten<ηn,normal (4.10) 

Once a decision has been made at stage 1, the selection process proceeds 

to stage 2 (decision variable v2,n in Figure 4.1), where the duration of the 

maintenance task under consideration, dn, is required to be selected from 

a set of available decision paths DP2,n = {0, sn, 2sn, . . . , NormDurn}. The 

symbols sn and NormDurn denote the time step for maintenance duration 

shortening, and the normal maintenance duration, respectively. For Eq. 

4.9 to be used at stage 2, the terms c and opt in the equation are 

substituted by the values 2 and dur ∈ DP2,n, respectively. It should be 
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noted that if the ‘normal’ or ‘defer’ options were chosen at stage 1, the 

normal duration of the maintenance task, or a duration of 0, respectively, 

are automatically chosen for the task. In the case of duration shortening, a 

constraint is normally specified where each maintenance task has a 

minimum duration at which the completion of the task cannot be further 

accelerated due to limitations such as the availability of highly specialized 

technicians. This constraint can be addressed at this stage such that only 

feasible trial maintenance schedules (with regard to this constraint) are 

constructed (see Section 4.4 for details of such constraint-handling 

techniques). The pheromone trails and heuristic values associated with 

optional durations are used to determine the probability that these 

durations are chosen. In order to favor longer maintenance durations (i.e. 

the smallest amount of shortening compared with the normal 

maintenance duration), it is suggested that the heuristic value associated 

with a decision path should be directly proportional to the maintenance 

duration (Eq. 4.11).  

ηn,dur ∝ dur (4.11)

 The substitutions for the various terms in Eq. 4.9 when used in stage 2 are 

summarized in Table 4.1. 

Once a maintenance duration has been selected, the solution construction 

process enters stage 3 (decision variable v3,n in Figure 4.1), where a start 

time for the maintenance task is selected from the set of optional start 

times available DP3,n,chdurn
= {chdurn ∈ DP2,n: earn, earn+1,…, latn – chdurn + 

1}, given a chosen duration of chdurn. In order to utilize Eq. 4.9 at stage 3, 

adjustments are made such that c = 3 and opt = day ∈ DP3,n,chdurn
. It should 

be noted that this stage is skipped if the ‘defer’ option is chosen at stage 1. 

The probability that a particular start day is chosen is a function of the 

associated pheromone trail and heuristic value. The suggested heuristic 

formulation for selection of the maintenance start day is given by Eqs. 

4.12 to 4.17. 

ηn,chdurn,day = ηn,chdurn ,day
Res( )w

⋅ηn,chdurn,day
Load  (4.12) 

ηn,chdurn,day
Res =

YResV ( k)= 0 ⋅ Rn,chdurn ,day(k)
k∈Jn,chdurn,day

∑

(YResV ( k)= 0 −1) ⋅ Rn,chdurn,day(k)
k∈Jn,chdurn ,day

∑
 (4.13) 
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ηn,chdurn,day
Load =

YLoadV( k)= 0 ⋅Cn,chdurn ,day(k)
k∈Jn,chdurn,day

∑

(YLoadV( k)= 0 −1) ⋅Cn,chdurn,day(k)
k∈Jn,chdurn ,day

∑
 (4.14) 

YResV(k)= 0 =
1

0

 
 
 

 
if no violation of resource constraints in time period k

otherwise
 (4.15) 

YLoadV(k)= 0 =
1

0
 
if no violation of load constraints in time period k

otherwise

 
 
 

 (4.16) 

w =
1

0

 
 
 

 
if resource constraints are considered

otherwise
 (4.17) 

where ηn,chdurn,day(t)  is the heuristic for start time day ∈ DP3,n,chdurn
for task 

dn, given a chosen duration chdurn,; Rn,chdurn,day(k) represents the 

prospective resources available in reserve in time period k if task dn is to 

commence at start time day and takes chdurn to complete (less than 0 in the 

case of resource deficits); Cn,chdurn,day(k) is the prospective power 

generation capacity available in reserve in time period k if task dn is to 

commence at start time day and takes chdurn to complete (less than 0 in the 

case of power generation reserve deficits); Jn,chdurn,day={day ∈ DP3,n,chdurn
: day 

≤ k ≤ day + chdurn – 1} is the set of time periods k such that if task dn starts 

at start time day, that task will be in maintenance during period k.  

 As mentioned above, the heuristic formulation in Eq. 4.12 includes a 

resource-related term, ηn,chdurn,day
Res , and a load-related term, ηn,chdurnday

Load . These 

two terms are expected to evenly distribute maintenance tasks over the 

entire planning horizon, which potentially maximizes the overall 

reliability of a power system. For PPMSO problem instances that do not 

consider resource constraints, the value of w in Eq. 4.12 can be set to 0 (Eq. 

4.17). In order to implement the heuristic, each ant is provided with a 

memory matrix on resource reserves and another matrix on generation 

capacity reserves prior to construction of a trial solution. This is updated 

every time a unit maintenance commencement time is added to the 

partially completed schedule. 

The three-stage selection process is then repeated for another 

maintenance task (decision point). A complete maintenance schedule is 

obtained once all maintenance tasks have been considered. 
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4.3.3 Evaluation of trial maintenance schedule 

Once a complete trial maintenance schedule, s∈S, has been constructed 
by choosing a maintenance commencement time and duration at each 

decision point (i.e. for each maintenance task to be scheduled), an ant-

cycle has been completed. The trial schedule’s objective function cost 

(OFC) can then be determined by an evaluation function, which is a 

function of the values of objectives and constraint violations: 

OFC(s)= f obj1(s),obj2(s),...,objZT
(s),vio1(s),vio2(s),...,vioCT

(s)( ) (4.18) 

where OFC(s) is the objective function cost associated with a trial 

maintenance schedule, s; obj1(s) is the value of the first objective; vio1(s) is 

the degree of violation of the first constraint; ZT is the total number of 

objectives; CT is the total number of  constraints that cannot be satisfied 

during the construction of trial solutions. 

It should be noted that not all constraints specified in a problem are 

accounted for using Eq. 4.18. Maintenance windows, precedence and 

minimum duration constraints, just to name a few, can be satisfied during 

the construction of a trial solution and would not appear in Eq. 4.18. In 

other words, a complete trial solution would have satisfied these 

constraints already before the evaluation process is carried out. On the 

other hand, load and reserve constraints can only be checked upon 

completion of a complete trial solution and therefore the violation of these 

constraints, if there is any, can only be reflected through penalty terms in 

the objective function (Eq. 4.18). Detailed categorizations of constraints 

commonly encountered in PPMSO problems, as well as the appropriate 

methods of handling them, are presented in Section 4.4. In general, the 

trial schedule has to be run through a simulation model in order to 

calculate some elements of the objective function and whether certain 

constraints (those accounted for through penalty terms) have been 

violated.  

After m ants have performed procedures 4.3.2 and 4.3.3, where m (the 

number of ants) is predefined in procedure 4.3.1, an iteration cycle has 

been completed. At this stage, a total of m maintenance schedules have 

been generated for this iteration. It should be noted that all ants in an 

iteration can generate their trial solutions concurrently, as they are 
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working on the same set of pheromone trail distributions in decision 

space. 

4.3.4 Local search 

Recently, local search has been utilized to improve the optimisation 

ability of ACO. While it has been found to result in significant 

improvements in some applications (Dorigo et al., 1997b; den Besten et al., 

2000), little success has been obtained in others (Merkle et al., 2002). Local 

search has also been found useful for some problems where the 

formulation of heuristics is difficult (Dorigo et al., 2004b). 

In this research, local search is coupled with ACO to solve the PPMSO 

problem. As part of the local search algorithm proposed in this thesis, a 

‘target maintenance schedule’ is selected from the trial solutions 

generated by the ACO algorithm, an example being the best maintenance 

schedule obtained in each iteration. A ‘neighbor maintenance schedule’ is 

then generated by performing local search based on the neighborhood 

definition, which must be specified beforehand, as discussed later. 

Satisfaction of constraints that can be checked during the construction of 

trial maintenance schedules (see Section 4.4), such as the allowable 

maintenance window and precedence constraints, are then checked. A 

simulation model is used to assess the quality of the ‘neighbor 

maintenance schedule’. If the neighbor results in a better objective 

function cost (OFC), the original ‘target maintenance schedule’ is 

replaced. Based on the definition of neighborhood, more ‘neighbor 

maintenance schedules’ are generated until a termination criterion, which 

must be predefined, is met. A common termination criterion is the 

maximum number of ‘neighbor maintenance schedules’ allowable per 

‘target maintenance schedule’. By the end of the local search, the best-

found ‘neighbor maintenance schedule’, or the original ‘target 

maintenance schedule’ in an event where no better local solution can be 

found, is adopted to proceed to the next step of the ACO-PPMSO 

algorithm (Figure 4.3). 
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Figure 4.3: Local search framework for ACO-PPMSO algorithm 

The definition of the neighborhood is problem-specific, and therefore 

must be carefully considered when applied to new optimisation 

problems.  In this research, two local search operators are defined for the 

ACO-PPMSO algorithm, namely the Duration Extender and the PPMSO-2-

opt, respectively. These operators search in different neighborhoods of the 

‘target maintenance schedule’.  

(1) The Duration Extender operator is developed to increase the 

robustness of the ACO metaheuristic by dealing directly with the 

optimisation objectives. In particular, the operator looks for a reduced 

number of solutions that have shortened and/or deferred durations, 

which in turn, results in better OFCs.  

As part of the Duration Extender, if the ‘target maintenance schedule’ does 

not include any shortening or deferral decisions, the local search routine 

is aborted. However, if this is not the case, local search is applied, as part 
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the selected task, chosen_dn was originally shortened, local search will be 

performed in two neighborhoods: (i) The maintenance duration of the 

chosen task, chosen_dn, is extended by sn time periods, where sn is the 

maintenance duration time step of task dn. (ii) The maintenance duration 

of the chosen shortened task, chosen_dn, is rescheduled by sn periods 

earlier and sn time periods are added to its maintenance duration. 

Otherwise, if the selected task was originally deferred, the minimum non-

deferral maintenance duration is chosen and a start time is randomly 

selected for the task. For the Duration Extender, a termination criterion can 

be specified such that local search is aborted when all shortened/deferred 

task(s) in the ‘target maintenance schedule’ is/are considered. 

(2) The PPMSO-2-opt operator is developed by modifying the 2-opt 

strategy used when solving the Travelling Salesman Problem (TSP) 

(Stützle et al., 1997), where two edges of connected cities are exchanged. In 

PPMSO-2-opt, the maintenance start times of a pair of randomly selected 

tasks of the ‘target maintenance schedule’ are exchanged. It should be 

noted that the maximum number of possible ‘neighbor maintenance 

schedules’ formed based on a ‘target maintenance schedule’ 

( NC2 = N!

2! ⋅(N − 2)!
) can be specified as the termination criterion of the local 

search. Otherwise, a smaller number of local solutions can be defined as 

the stopping criterion.  

4.3.5 Pheromone updating 

As described previously in Section 3.2.2, two mechanisms, namely 

pheromone evaporation and pheromone rewarding, are involved in the 

pheromone updating process. Pheromone evaporation reduces all 

pheromone trails by a factor. In this way, exploration of the search space 

is encouraged by preventing a rapid increase in pheromone on 

frequently-chosen paths. Pheromone rewarding is performed in a way 

that reinforces good solutions. 

 In Section 3.3, various ACO algorithms were reviewed. As pointed out in 

the same section, these algorithms are distinguished from each other in 

the way pheromone updating is performed. In the ACO-PPMSO 

formulation, pheromone updating is performed on the pheromone 

matrices used for the three-stage selection process. A general pheromone 
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updating formulation (regardless of the ACO algorithm adopted) is 

introduced for this purpose: 

τ∗(t +1) = ρ ⋅τ∗(t)+ ∆τ∗(t) (4.19)

∆τ ∗(t) = q =
Q

OFC(supdate)
0

 
 
 

  

if * ∈ supdate

otherwise
s∈Solupdate

∑  (4.20)

where t is the index of iteration; (1 - ρ) is the pheromone evaporation rate; 

lower asterisk * of τ∗ denotes the element of the pheromone matrix under 

consideration ( τ n,opt, τ n,dur and τ n,dur,day for decision variables v1, v2 and v3, 

respectively); supdate is any trial schedule contained in Solupdate(t), which is 

the set of trial schedules chosen to be rewarded in iteration t; ∆τ ∗(t)  is the 

amount of pheromone rewarded to pheromone trail τ∗  by the end of 

iteration t; OFC(supdate) is the objective function cost associated with the 

trial schedule supdate that contains element *; Q is the reward factor (a user-

defined parameter).  

In order to apply the different ACO algorithms reviewed in Section 3.3 to 

the PPMSO problem, additional specifications are made to the general 

pheromone updating rules: 

(A) Ant System (AS) 

In AS, the trial maintenance schedules obtained by all ants are rewarded 

by an amount of pheromone (Eq. 4.21), which is a function of the 

individual objective function cost (OFC).  

Solupdate(t) = Solall (t) (4.21)

where Solupdate(t) is the set of trial maintenance schedules for which 

schedule components are rewarded by pheromone; Solall(t) is the set of all 

trial maintenance schedules generated in iteration t. 

(B) Elitist-Ant System (EAS) 

In EAS, only the least-OFC schedule(s) in every iteration is/are rewarded 

(Eq. 4.22). 
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Solupdate(t) = siter−best(t)  (4.22)

where siter−best(t) is the best maintenance schedule evaluated in iteration t. 

(C) Max-Min Ant System (MMAS) 

Similarly to EAS, MMAS only rewards iteration-best trial solution(s) (Eq. 

4.22). Additionally, upper and lower bounds are imposed on the 

pheromone trails in order to prevent premature convergence and greater 

exploration of the solution surface. These bounds are given by:  

τ max(t +1) = 1

1− ρ
⋅ Q

OFCiter−best(t)
. (4.23)

τ c,min(t +1) =
τ max(t +1)(1− pbest

nc )

(avgc −1) pbest
n

 (4.24)

where nc is the number of decision points for decision variable vc; avgc is 

the average number of decision paths available at each decision point for 

decision variable vc; subscript c = 1, 2 and 3 refers to the three decision 

variables considered in procedure 4.3.2; pbest is the probability that the 

paths of the current iteration-best-solution, siter-best(t), will be selected, 

given that non-iteration best-options have a pheromone level of τmin(t) and 
all iteration-best options have a pheromone level of τmax(t).  

The lower and upper bound of pheromone are applied to all decision 

paths in the search space: 

τ c,min(t) ≤ τ n,opt(t) ≤ τ max(t) ;opt ∈ DPc,n c =1,2,3 for all t ,n. (4.25) 

4.3.6 Termination of run 

Procedures 4.3.2 to 4.3.5 are repeated until the termination criterion of an 

ACO run is met, e.g. either the maximum number of evaluations allowed 

has been reached or stagnation of the objective function cost has occurred. 

A set of maintenance schedules resulting in the minimum OFC is the final 

outcome of the optimisation run. 
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4.4 Constraint handling techniques in ACO-PPMSO 

ACO is an unconstrained optimisation metaheuristic. As constraints are 

inevitable in PPMSO problems, there is a need to find ways of 

incorporating constraints during optimisation. In this research, two 

different constraint handling techniques are adopted. In order to decide 

which of the two techniques should be used, constraints encountered in 

PPMSO problems have been characterized using the following 

classification scheme:  

Direct vs. indirect constraints: Constraints can be characterized based on 

the earliest stage at which they can be addressed during optimisation. The 

maintenance window (Eq. 4.2), continuity (Eq. 4.3), precedence (Eq. 4.6) 

and minimum maintenance duration (Eq. 4.8) constraints can be 

addressed when trial solutions are being generated during ant cycles 

(procedure described in Section 4.3.2). On the other hand, the violation of 

load (Eq. 4.4), reliability (Eq. 4.7) and resource (Eq. 4.5) constraints often 

cannot be identified from a partially built trial maintenance schedule. As 

part of the classification scheme introduced in this paper, the former 

constraints are referred to as direct constraints and the latter as indirect 

constraints.  

Rigid vs. soft constraints: Constraints can also be classified based on their 

“rigidity”. For rigid constraints, such as maintenance windows, 

continuity, minimum maintenance duration, precedence and load 

constraints, even the slightest violations are generally intolerable. On the 

other hand, constraints, such as resource and reliability constraints, may 

be able to be violated to a degree specified by decision makers and are 

therefore referred to as “soft” constraints. 

The two constraint handling techniques used in the ACO-PPMSO 

formulation and the constraint types they are able to accommodate 

include: 

Graph-based technique: This technique utilizes candidate lists during ant 

cycles when trial solutions are being constructed (Figure 4.1). Given a 

partially built trial schedule, a candidate list consists of the optional start 

times that are available for a maintenance task, such that the constraints 

under consideration are not violated. Direct and some rigid constraints, 
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such as the maintenance window, precedence and minimum duration 

constraints, can be accounted for using this technique. During the 

construction of a trial maintenance schedule, an ant incrementally adds 

start times to a partially built schedule. By dynamically updating the 

candidate lists of ‘unvisited units’, only start times that would result in 

solutions that satisfy the maintenance window and precedence 

constraints are considered.  

In order to illustrate the mechanism of the graph-based technique, the 

following example is considered. As part of a case study system, two 

maintenance tasks, namely task 1 and 2, are required to be scheduled over 

year 2006. Each task normally takes 16 days, which can be shortened by a 

time step of 4 days or deferred altogether if necessary. In addition, the 

following constraints must be satisfied: 

Constraint 1 – Each task can be shortened only up to 50% of normal 

duration. 

Constraint 2 – Both tasks can start as early as in 1 Jan 2006 and must 

finish no later than 30 June 2006. 

Constraint 3 – No maintenance task should start on a public holiday.  

Constraint 4 – Task 1 must precede task 2. 

During the construction of trial maintenance schedules, either task 1 or 

task 2 can be considered first. For demonstration purposes, let us assume 

that task 1 is being considered first (Figure 4.4). As detailed in section 

4.3.2, the selection of a maintenance duration and start time for task 1 is a 

three-stage process. At stage 1, decision has to be made whether 

maintenance task 1 is carried out as normal, is shortened in duration, or is 

deferred (Figure 4.4).  
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Figure 4.4: Stage-1 selection process 

Once a decision has been made at stage 1, the decision path set available 

at stage 2 is updated correspondingly. If the ‘normal’ option was chosen 

at stage 1, the normal maintenance duration (16 days) would 

automatically be assigned to task 1. Similarly, a duration of 0 day is 

assigned if deferral was the decision made for task 1 at stage 1. 

Alternatively, if the ‘shorten’ option was chosen, decision paths of 

shortened durations 12, 8 and 4 days are available at stage 2. However, 

due to constraint 1, only a maximum of 50% of normal maintenance 

duration can be shortened, hence the 4-day duration decision path is no 

longer a valid decision path) and is therefore crossed out (as otherwise, an 

infeasible maintenance schedule that violates constraint 1 could be 

constructed (Figure 4.5)).  

 

 

 

 

 

 

 

Figure 4.5: Handling of constraint 1 
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Once a decision has been made at stage 2, stage-3 selection is carried out. 

As the earliest start time and the latest finish time of task 1 are fixed 

(constraint 2), the start day decision paths available for task 1 are adjusted 

dynamically corresponding to the maintenance duration chosen at stage 

2. Let us assume that a 12-day maintenance duration was chosen at stage 

2. Consequently, the earliest and latest start days for task 1 are 1 Jan 2006 

and 19 Jun 2006, respectively (Figure 4.6). In contrast, if a duration of 8 

days was selected, the latest start day available at stage 3 would be 23 

June 2006 (Figure 4.6).  

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6: Handling of constraint 2 
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At stage 3, a start day is required to be chosen from the decision paths 

corresponding to start days of 1 Jan 2006 to 19 Jun 2006. However, Easter 

holidays fall on 14-17 April in 2006 and due to constraint 3, these decision 

paths are eliminated (Figure 4.7) so that only feasible trial schedules with 

regard to the public-holiday constraints are built.  

 

 

 

 

 

 

 

Figure 4.7: Handling of constraint 3 
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Figure 4.8: Handling of constraint 4 

 

In short, the graph-based constraint handling technique dynamically 

adjusts the ACO-PPMSO graph (Figure 4.1) as trial maintenance 

schedules are being constructed incrementally. 
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of personpower to perform the maintenance and load constraints. When 

dealing with soft constraints, penalty factors may be varied to reflect the 

amount of constraint violation that may be tolerated. Penalty costs also 

have to be used to account for indirect constraints, as the degree of 

constraint violation is not known until a complete trial solution has been 

constructed, as discussed earlier. In such cases, the degree of violation 

generally has to be obtained with the aid of a simulation model. 

Using the last example, if load constraints were considered, they would 

have to be addressed using the penalty-based technique. This is because 

whether or not the system load could be met is unknown until a complete 

trial maintenance schedule has been constructed and run through a 

simulation model. 

The ability to implement direct and some rigid constraints using the 

graph-based technique is one of the attractive features of using ACO for 

PPMSO. Firstly, by preventing the generation of infeasible solutions, the 

number of simulation model runs required is reduced. This is 

advantageous for real-world PPMSO problems, as the number of times 

the simulation model has to be run is a major source of computational 

overhead. Moreover, there are difficulties associated with the use of 

penalty-based techniques that remain unresolved at the time of writing, in 

spite of extensive research into this area (Coello Coello, 2002). For 

example, hand tuning is required for assigning appropriate penalty 

factors to each constraint and objective term in the objective function. 

Many researchers have proposed automated approaches for estimating 

penalty factors (Coello Coello, 2002). However, these approaches often 

introduce additional parameters for which appropriate values have to be 

provided. For the reasons outlined above, the graph-based approach is 

preferred over the penalty-based technique. However, in some instances, 

such as for indirect constraints, this approach cannot be used, as the 

degree of constraint violation can only be ascertained once a complete 

trial schedule has been generated. In such situations, the penalty-based 

technique has to be used (as discussed above). 

4.5 Software development 

A program has been coded in the Fortran 90 programming language to 

implement the ACO-PPMSO formulation. The full source code and 
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sample of input files are attached in Appendix A. The random number 

generator subroutine used in the program was written by Nishimura 

(1997). 

4.6 Summary 

In this chapter, important contributions of the research work presented in 

this thesis have been detailed. The definition of a power plant 

maintenance scheduling optimisation (PPMSO) problem has been 

generalized by incorporating the options of duration shortening and 

maintenance deferral. Shortening of the duration and deferral of 

maintenance tasks are inevitable when scheduling for maintenance in a 

real world power system, such as in the event of anticipated demand 

increase. Incorporation of these options before proposing a new 

optimisation formulation allows PPMSO problems to be solved more 

practically.  

 A new formulation has been proposed to enable Ant Colony Optimisation 

(ACO) to be applied to PPMSO. Several issues with regard to the practical 

utilization of the proposed formulation have been resolved. These include 

the constraint-handling techniques, heuristic information and local search 

algorithms (optional in the formulation). 

Constraints commonly encountered in PPMSO have been categorized 

based on whether they can be accounted for during the construction of a 

trial solution and whether they can be violated to achieve better objective 

values. Techniques for handling different constraint types have been 

proposed correspondingly. In particular, an advantage of using ACO for 

PPMSO is the possibility of incorporating some constraints during the 

construction of trial solutions, eliminating the need for complicated 

penalty functions in the formulation. 

In order to improve the performance of the ACO formulation, a new 

heuristic formulation has been proposed. The heuristic formulation 

guides the optimisation algorithm to search in promising regions of a 

problem space, which should be extremely useful in the earlier stage of an 

optimisation run when the pheromone intensity is uniformly distributed 

over the search space. The algorithms adopted by two different local 

search operators, namely the Duration Extender and the PPMSO-2-opt, 
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have been presented. Given a ‘target maintenance schedule’, the Duration 

Extender searches the neighborhood of the schedule for trial solutions 

that include less duration shortening, whereas the PPMSO-2-opt 

exchanges the maintenance start times of two randomly chosen tasks. 

These local search operators are designed to conduct a more refined 

search within the neighborhood of iteration-best maintenance schedules 

given by ACO, which were obtained using pheromone and heuristics. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 5 Testing On Benchmark Case Studies 

  Page 97 

Chapter 5  
Testing On Benchmark Case Studies 

Power plant maintenance scheduling optimisation (PPMSO) case studies can 

have completely different fitness landscapes, depending on the objectives, 

constraints, and number of variables of a particular problem. Adopting the 

representation of combinatorial optimisation problems outlined in Section 

3.2.1, the definition of fitness landscapes given by Merz (2000) is as follows: 

“The fitness landscape L = (S, f, d) of a problem instance for a given combinatorial 

optimisation problem consists of a set of trial solutions, S, an objective function f : X → 

R, which assigns a real-valued fitness to each of the trial solutions in S, and a distance 

measure d, which defines the spatial structure of the landscape.” 

In other words, the fitness landscape is a characteristic of the search space of an 

optimisation problem, which is defined by the fitness function evaluated over 

the spectrum of different solutions to the problem.  Therefore, it is important to 

test whether the new ACO-PPMSO formulation, the new heuristic formulation 

and the local search operator, developed as part of the contribution of this 

research can be effectively used for PPMSO case studies with different 

characteristics.  

To test the utility of the new ACO-PPMSO formulation, two benchmark case 

studies that have been previously published in the literature (Escudero et al., 

1980; Yamayee et al., 1983; Aldridge et al., 1999; Dahal et al., 1999; Dahal et al., 

2000; El-Amin et al., 2000), as well as modified versions of both case studies, are 

considered. These case studies involve finding optimum maintenance 

schedule(s) for a 21-unit and a 22-unit power system, respectively. Despite the 

similarity in the number of generating units, the case studies are different in 

objectives and constraint requirements. The system specification and the 

application of the proposed ACO-PPMSO formulation to the original and the 

modified versions of the 21- and 22-unit case studies are detailed in Sections 5.1 

and 5.2, respectively. Experimental procedures, results and analysis follow in 

Sections 5.3 and 5.4. A summary of the chapter is given in Section 5.5.  
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5.1 Benchmark case studies 

As mentioned above, in order to test the new ACO-PPMSO formulation 

developed as part of this research, two benchmark case studies from the 

literature, namely a 21- and 22-unit case study, are utilized. The 

motivation for choosing these case studies is the availability of results 

obtained by other optimisation methods, with which the results obtained 

using the new ACO-PPMSO formulation can be compared. The 

specifications of the two case studies are detailed in Sections 5.1.1 and 

5.1.2, respectively. 

5.1.1 21-unit system 

The first case study considered in this research is the 21-unit power plant 

maintenance problem investigated by Aldridge et al. (1999) and Dahal et 

al. (1999; 2000) using a number of metaheuristics.  This case study is a 

modified version of the 21-unit problem introduced by Yamayee et al. 

(1983), and consists of 21 generating facilities, of which 20 units are 

thermal and one is hydropower. System details are listed in Table 5.1. All 

of the machines are to be scheduled for maintenance either in the first or 

second half of a year’s planning horizon, which results in a combinatorial 

optimisation problem with approximately 5.18 x 1028 total possible 

solutions. The objective of the problem is to even out reserve generation 

capacity over the planning horizon, which can be achieved by minimizing 

the sum of squares of the reserve (SSR) generation capacity in each week. 

Constraints to be satisfied include: 

1. Maintenance window constraints: The earliest start time and latest 

finish time of maintenance tasks for each machine are detailed in Table 

5.1. 

2. Resource constraints: A limit of 20 maintenance personpower is 

available each week. 

3. Demand constraints: A single peak load of 4739 MW has to be met. 
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As mentioned previously, a number of metaheuristics have been applied 

to this problem. Aldridge et al. (1999) used generational (GN) and steady 

state (SS) genetic algorithms (GAs) and found that the GAs outperformed 

a heuristic method, which schedules maintenance outages in order of 

decreasing capacity. By coupling GAs with fuzzy logic, which utilizes 

knowledge-based experience in the problem formulation, Dahal et al. 

(1999) obtained a maintenance schedule that resulted in a better objective 

function value than the best-known solution given by Aldridge et al. 

(1999), although this required slight violations of personpower 

constraints. In another study, Dahal et al. (2000) applied Simulated 

Annealing (SA), a Simple GA and an Inoculated GA to this problem, 

further highlighting the ability of metaheuristics to outperform more 

traditional methods used for optimizing power plant maintenance 

scheduling. The best results obtained by the studies mentioned above are 

summarized in Section 5.4. 
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Table 5.1: Details of 21-unit system (Aldridge et al., 1999) 
 
 

 
NOTE:  This table is included on page 100 of the print copy of the 
thesis held in the University of Adelaide Library. 
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Problem formulation 

Mathematically, this optimisation problem can be defined as the 

determination of maintenance schedule(s) such that SSR, which is defined 

as the sum of square of reserve generation capacity within the planning 

horizon, is minimized: 

Min SSR= Pn

n=1

N

∑ − Xn,kPn

k∈Sn,t

∑ − Lt

dn ∈Dt

∑
 

 
 
 

 

 
 
 

2

t ∈Tplan

∑
 
 
 

  

 
 
 

  
 (5.1) 

where Pn is the generating capacity of unit dn; Lt is anticipated load for 

period t. 

subject to the maintenance window, load and personpower constraints, as 

given by: 

earn ≤ startn ≤ latn – NormDurn + 1      for all dn ∈ D. (5.2) 

Xn,kResn,k ≤ ResAvait
k∈Sn,t

∑
dn ∈Dt

∑     for all t ∈ Tplan  (5.3) 

Pn

n

∑ − Xn,kPn

k∈Sn,t

∑
dn ∈Dt

∑
 

 
 
 

 

 
 
 ≥ Lt   for all t ∈ Tplan (5.4) 

where earn is the earliest start time for unit dn; latn is the latest start time for 

unit dn; NormDurn is the outage duration (week) for unit dn; startn is the 

maintenance start time for unit dn and ResAvait  is the personpower 

available at period t. 

It should be noted that personpower is considered as a type of resource 

constraint. The maintenance window constraints are taken into account 

by the construction graph-based technique (Section 4.4), whereas both 

load and personpower constraints are indirect and are therefore taken 

into account by using penalty-based techniques (Section 4.4). 

When applying the ACO-PPMSO formulation to this case study, the 

heuristic developed as part of this research (Eqs. 4.12 to 4.17) was used 

together with pheromone for selection of start times when generating trial 

maintenance schedules. It should be noted that the value of w in Eq. 4.12 

was set to 1, as utilization of resource (personpower) constraints is 

involved in this case. Upon completion of a trial maintenance schedule, a 
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simulation model was used to calculate the SSR value and any violations 

of personpower or load constraints associated with schedule s. The 

quality of individual maintenance schedules in this problem is given by 

an objective function cost (OFC), which is a function of the value of SSR 

and the total violation of personpower and load constraints (Eq. 5.5).  

OFC(s)= SSR(s)⋅ ManViotot(s)+1( )⋅ LoadViotot(s)+1( ) (5.5) 

where OFC(s) is the objective function cost ($) associated with schedule s; 

SSR(s)  is the sum of squares of reserve generation capacity (MW2) 

associated with schedule s; ManViotot(s) is the total personpower shortfall 

(person) associated with schedule s; LoadViotot(s) is the total demand 

shortfall (MW) associated with schedule s. 

The calculation of constraint violations is given in Eqs. 5.6 to 5.9. For a 

trial maintenance schedule, the total personpower shortfall associated 

with schedule s, ManViotot(s), is given by summation of the personpower 

shortage in all periods within the planning horizon: 

ManViotot(s)= Xn,kResn,k − ResAvait
k∈Sn,t

∑
dn ∈Dt

∑
 

 
 
 

 

 
 
 

t ∈TMV

∑  (5.6) 

where TMV is the period where personpower constraints are violated, and 

is given by: 

TMV = t : Xn,kResn,k > ResAvait
k∈Sn,t

∑
dn ∈Dt

∑
 

 
 
 

 

 
 
  (5.7) 

The total demand shortfall associated with schedule s, LoadViotot(s), is the 

summation of demand shortfall in all periods within the planning 

horizon. The calculation of this value may be represented by the 

following equation. 

LoadViotot (s)= Pn

n

∑ − Xn,kPn

k∈Sn,t

∑
dn ∈Dt

∑
 

 
 
 

 

 
 
 

t ∈TLV

∑  (5.8) 

where TLV is the period where load constraints are violated, and is given 

by: 

TLV = (t : Pn

n

∑ − Xn,kPn

k∈Sn,t

∑
dn ∈Dt

∑ < Lt )  (5.9) 
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The OFC can be viewed as the virtual cost associated with a maintenance 

schedule.  

5.1.2 22-unit system 

The 22-unit power plant maintenance scheduling optimisation problem 

was first solved by Escudero et al. (1980) using an implicit enumeration 

algorithm and later by El-Amin et al. (2000) using tabu search. In this 

problem, each generating unit is required to be scheduled for 

maintenance once within a planning horizon of 52 weeks. Details of the 

system are shown in Table 5.2. The objective when scheduling for 

maintenance is to even out reserve generation capacity over the planning 

horizon subject to the following constraints: 

(1) The maintenance window constraints specify that all units can be 

maintained anytime within the planning horizon and have to finish 

maintenance by week 52, except for unit 10, which can only be taken 

offline between weeks 6 and 22. 

(2) Load constraints require peak demands (Table 5.3) to be met.  

(3) The reliability constraint requires a minimum reserve of 20% of the 

peak demand throughout the planning horizon.  

(4) The two precedence constraints specify that maintenance of units 2 

and 5 has to be carried out before that of units 3 and 6, respectively.  

(5) Units 15 and 16, as well as units 21 and 22, cannot be maintained 

simultaneously due to personpower constraints.  
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Table 5.2: Details of 22-unit system (Escudero et al., 1980) 
 
 

 
NOTE:  This table is included on page 104 of the print copy of the 
thesis held in the University of Adelaide Library. 
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Table 5.3: Weekly peak load of the 22-unit system (El-Amin et al., 2000) 

Week Demand (MW) Week Demand (MW) Week Demand (MW) 

1 1694 19 1695 37 2089 

2 1714 20 1675 38 1989 

3 1844 21 1805 39 1999 

4 1694 22 1705 40 1982 

5 1684 23 1766 41 1672 

6 1763 24 1946 42 1782 

7 1663 25 2116 43 1772 

8 1583 26 1916 44 1556 

9 1543 27 1737 45 1706 

10 1586 28 1927 46 1806 

11 1690 29 2137 47 1826 

12 1496 30 1927 48 1906 

13 1456 31 1907 49 1999 

14 1396 32 1888 50 2109 

15 1443 33 1818 51 2209 

16 1273 34 1848 52 1779 

17 1263 35 2118   

18 1655 36 1879   

 

Problem formulation 

In order to even out reserve generation capacity, the formulation used in 

both Escudero et al. (1980) and El-Amin et al. (2000) for the 22-unit 

problem was designed to minimize the summed deviation of generation 

reserve from the average reserve over the entire planning horizon, LVL. 

Mathematically, the optimisation of this case study can be described as 

the minimization of the summed deviation of generation reserve from the 

average reserve over the planning horizon (Eqs. 5.6 to 5.8): 
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Min LVL = Resavg − Rest
t ∈Tplan

∑
 
 
 

  

 
 
 

  
 (5.6) 

where the generation reserve ( Rest ) and average reserve ( Resavg) are given 

by: 

Rest = Pn

n=1

N

∑ − Xn,kPn

k∈Sn,t

∑ − Lt

n∈Dt

∑  (5.7) 

Resavg =

Rest
t ∈Tplan

∑

T
 

(5.8) 

where Lt is the anticipated load demand for period t; Pn is the generating 

capacity of unit dn; T is the total number of time indices, subject to the 

following constraints: 

earn ≤ startn ≤ latn – NormDurn + 1      for all dn ∈ D. (5.9) 

Pn

n

∑ − Xn,kPn

k∈Sn,t

∑
dn ∈Dt

∑
 

 
 
 

 

 
 
 ≥ Lt   for all t ∈ Tplan (5.10) 

Pn

n

∑ − Xn,kPn

k∈Sn,t

∑
dn ∈Dt

∑
 

 
 
 

 

 
 
 ≥1.2Lt   for all t ∈ Tplan (5.11) 

start3 > start2 + NormDur2 −1

start6 > start5 + NormDur5 −1

 
 
 

 (5.12) 

X15,k = 0 for k = start16,...,start16 + NormDur16 −1[ ]
X16,k = 0 for k = start15,...,start15 + NormDur15 −1[ ]
X21,k = 0 for k = start22,...,start22 + NormDur22 −1[ ]
X22,k = 0 for k = start21,...,start21+ NormDur21 −1[ ]

 

 
 
 

 
 
 

 (5.13) 

It is interesting to note that, given the same objective, the objective 

formulations used by Escudero et al. (1980) and El-Amin et al. (2000) are 

quite different from that of Aldridge et al. (1999). 

As there is no resource utilization throughout the planning horizon, there 

is no need for the inclusion of the resources term in the heuristic 

formulation (Eq. 4.12) for this case study (thus w may be set to 0). The 

precedence and maintenance window constraints of this system are direct 

and rigid constraints, which can be incorporated by using the graph-

based technique, whereas the load and reliability constraints were taken 

into account using penalty functions. The objective function cost (OFC) 
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used in this case study is a function of the reserve generation capacity 

LVL value and the total violation of load and reliability constraints (Eq. 

5.14).  

OFC(s)= LVL(S)⋅ LoadResViotot(s)+1( ) (5.14) 

where OFC(s) is the objective function cost ($) associated with schedule s; 

LVL(s) is the level of reserve generation capacity (MW) associated with 

schedule s; LoadResViotot(s) is the total demand and reserve shortfall (MW) 

associated with schedule s. 

It should be noted that the inclusion of a load constraint violation term in 

Eq. 5.14 is not necessary because violation of load constraints would be 

reflected as violation of reserve constraints. The calculation of constraint 

violations is given by Eqs. 5.15 and 5.16. The total load and reserve 

shortfall associated with schedule s, LoadResViotot(s), is the summation of 

load and reserve shortfall in all periods within the planning horizon:  

LoadResViotot(s)= Pn

n

∑ − Xn,kPn

k∈Sn,t

∑
dn ∈Dt

∑
 

 
 
 

 

 
 
 

t ∈TLV

∑  (5.15) 

where TLV is the period where load and reserve constraints are violated, 

and is given by: 

TLV = (t : Pn

n

∑ − Xn,kPn

k∈Sn,t

∑
dn ∈Dt

∑ <1.2Lt )  (5.16) 

5.2 Modified case studies 

The general approach to PPMSO presented in this research includes 

options for maintenance duration shortening and deferral of maintenance 

tasks (Section 4.2). However, these options were not considered in 

previous studies that investigated the two case studies presented in 

Section 5.1 (Escudero et al., 1980; Yamayee et al., 1983; Aldridge et al., 1999; 

Dahal et al., 1999; Dahal et al., 2000; El-Amin et al., 2000). Therefore, in 

order to test the utility of the new ACO-PPMSO formulation, especially 

with regard to the impact of having the options of shortening and 

deferring maintenance tasks, modifications have been made to the 21- and 

22-unit case study systems.  
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With their original system load, neither the 21-unit nor the 22-unit case 

study system require shortening or deferral of maintenance tasks. In order 

to create a need for these options, the system loads of both case studies 

have been increased and the options of shortening and deferral have been 

made available. Details of the modified case study systems, as well as the 

modifications made to the formulation for the application of ACO-

PPMSO, are given in the following sections. 

5.2.1 Modified 21-unit case study 

The 21-unit case study system described in Section 5.1.1 is modified in the 

following ways: 

(1) As shown in Figure 5.1, the original system load (4739MW) is 

increased by 5% throughout the whole planning horizon, and another 5% 

increment for weeks 15 to 25. 

(2) Some maintenance tasks can be carried out in durations shorter than 

the original outage duration or deferred altogether (shown in Table 5.4). 

Essentially, outage durations can be shortened by a time step of 2 weeks 

to a certain minimum duration for each individual task (Table 5.4). The 

personpower requirements for shortened durations are also detailed in 

Table 5.4. 
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Figure 5.1: Original and modified system load for the 21-unit case study 
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Table 5.4: Personpower  utilization for the modified 21-unit case study system 

Unit No., 

n 
Option 

Optional Outage 

Duration, (weeks) 

Personpower required for each 

week, Resn,wk(wk=1,2,…, chdurn ) 

(person) 

Normal 7 10, 10, 5, 5, 5, 5, 3 

5 10, 10, 10, 8, 5 
Shorten 

3 15, 14, 14 
1 

Defer 0 NIL 

Normal 5 10, 10, 10, 5, 5 

Shorten 3 15, 15, 10 2 

Defer 0 NIL 

Normal 2 15, 15 
3 

Defer 0 NIL 

Normal 1 20 
4 

Defer 0 NIL 

Normal 5 10, 10, 10, 10, 10 

Shorten 3 17, 17, 16 5 

Defer 0 NIL 

Normal 3 15, 15, 15 
6 

Defer 0 NIL 

Normal 3 15, 15, 15 
7 

Defer 0 NIL 

Normal 6 10, 10, 10, 5, 5, 5 

Shorten 4 13, 13, 13, 6 8 

Defer 0 NIL 

Normal 10 3, 2, 2, 2, 2, 2, 2, 2, 2, 3 

8 3, 3, 3, 2, 2, 3, 3, 3 

6 4, 4, 3, 3, 4, 4 

4 6, 5, 5, 6 
Shorten 

2 11, 11 

9 

Defer 0 NIL 

Normal 4 10, 10, 5, 5 10 

Shorten 2 15, 15 
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Problem formulation 

Despite the possibility of shortening and deferral options in this case 

study, they are unfavorable from both an economic and operations points 

of view. Therefore, the objective function used for the original version of 

this case study (Eq.  5.5) has been modified to: 

Defer 0 NIL 

Normal 1 20 
11 

Defer 0 NIL 

Normal 3 10, 15, 15 
12 

Defer 0 NIL 

Normal 2 15, 15 
13 

Defer 0 NIL 

Normal 4 10, 10, 10, 10 

Shorten 2 20, 20 14 

Defer 0 NIL 

Normal 2 15, 15 
15 

Defer 0 NIL 

Normal 2 15, 15 
16 

Defer 0 NIL 

Normal 1 20 
17 

Defer 0 NIL 

Normal 2 15, 15 
18 

Defer 0 NIL 

Normal 1 15 
19 

Defer 0 NIL 

Normal 4 10, 10, 10, 10 

Shorten 2 20, 20 20 

Defer 0 NIL 

Normal 3 10, 10, 10 
21 

Defer 0 NIL 
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OFC(s)= SSR(s)⋅ ManViotot(s)+1( )⋅ LoadViotot(s)+1( )
⋅ (DurCuttot(s)+1)

 (5.17) 

where OFC(s) is the objective function cost ($) associated with schedule s; 

SSR(s) is the sum of squares of reserve generation capacity (MW2) 

associated with schedule s; ManViotot(s) is the total personpower shortfall 

(person) associated with schedule s; LoadViotot(s) is the total demand 

shortfall (MW) associated with schedule s; DurCuttot(s) is the total 

reduction in maintenance duration (weeks) due to shortening and deferral 

associated with schedule s. 

 While the calculation of total demand shortfall associated with schedule s, 

LoadViotot(s), total personpower shortfall associated with schedule s, 

ManViotot(s), and the sum of squares of reserve generation capacity 

associated with schedule s, SSR(s), are detailed in Section 5.1.1, the value 

of DurCuttot(s) is given by: 

∑
=

−=
ntotal

n
nntot schdurNormDursDurCut

_

1

))(()(  (5.18) 

where n is the index of maintenance task dn, n = 1, 2, 3, . . . , total_n, where 

total_n is the total number of maintenance tasks to be scheduled (total_n = 

21 in this case); NormDurn is the normal duration of maintenance task dn, 

and chdurn(s) is the maintenance duration (week) of task dn associated 

with schedule s. 

It should be noted that by using Eq. 5.17 to direct the search during an 

ACO run, a trial maintenance schedule that includes shortened and/or 

deferred maintenance tasks is being assigned a higher OFC, which 

represent an unfavorable solution to ACO during pheromone update. 

As an additional constraint in this modified case study, the minimum-

duration constraints can be addressed during the stage-2 selection process 

when a trial solution is being constructed (Section 4.3.2) by allowing only 

optional durations that are greater than the minimum duration for each 

maintenance task. In this way, trial solutions constructed will not violate 

the minimum duration constraints. For example, machine unit 1 that 

normally requires 7 days to be maintained, can be shortened to 5 or 3 

days, or be deferred altogether (Table 5.4). 
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5.2.2 Modified 22-unit case study 

The 22-unit case study detailed in Section 5.1.2 has been modified as 

follows: 

1. The weekly loads for the modified 22-unit case study system are 

increased by 60% (Figure 5.2).  

2. As shown in Table 5.5, the maintenance tasks are allowed to be 

performed within either the first or second half of the planning horizon 

(except for unit 10). 

3. In the case of duration shortening, outage duration is reduced by a 

time step of two weeks until the corresponding minimum outage 

duration of a machine unit is reached (Table 5.5). 

 

Figure 5.2: Modified 22-unit case study system – Weekly system load 

 

Problem formulation 

The objective function used for the original 22-unit case study (Eq. 5.14) 

has been modified to accommodate the options of shortening and 

deferral, and is given by: 
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OFC(s)= LVL(s)⋅ LoadResViotot(s)+1( )⋅ (DurCuttot(s)+1)  (5.19) 

where OFC(s) is the objective function cost ($) associated with schedule s; 

LVL(s) is the level of reserve generation capacity (MW) associated with 

schedule s; LoadResViotot(s) is the total load constraint violation (MW) 

associated with schedule s; DurCuttot(s) is the total reduction in 

maintenance duration (weeks) due to shortening and deferral associated 

with schedule s. 

The calculation of the total load constraint violation associated with 

schedule s, LoadResViotot(s), and the level of reserve generation capacity 

associated with schedule s, LVL(s) have been detailed previously in 

Section 5.1.2, whereas the value of the total duration shortened and 

deferred associated with schedule s, DurCuttot(s), is given by Eq. 5.18, 

where  total_n = 22 in this case. 
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Table 5.5: Details of the modified 22-unit system 

Unit No., 

n 

Capacity, 

Pn  

(MW) 

Normal outage 

duration, 

NormDurn 

(weeks) 

Earliest 

start, earn 

(week) 

Latest 

finish, 

latn 

(week) 

Shortening 

allowed? [Optional 

shortened durations 

(week)] 

Deferral 

allowed? 

1 100 6 1 26 Y [4, 2] Y 

2 100 3 1 26 N Y 

3 100 3 1 26 N Y 

4 100 3 1 26 N Y 

5 90 6 1 26 Y [4, 2] Y 

6 90 4 1 26 Y [2] Y 

7 95 3 1 26 N Y 

8 100 4 1 26 Y [2] Y 

9 650 5 1 26  Y [3] Y 

10 610 12 6 22 Y [10, 8, 6, 4] Y 

11 91 4 1 26 Y [2] Y 

12 100 8 1 26 Y [6, 4] Y 

13 100 3 1 26 N Y 

14 100 6 27 52 Y [4] Y 

15 220 5 27 52 Y [3] Y 

16 220 6 27 52 Y [4] Y 

17 100 5 27 52 Y [3] Y 

18 100 5 27 52 Y [3] Y 

19 220 3 27 52 N Y 

20 220 3 27 52 N Y 

21 240 3 27 52 N Y 

22 240 5 27 52 Y [3] Y 
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5.3 Experimental Procedure 

Experiments have been conducted on both the original and modified 

versions of the 21-unit and 22-unit case studies to assess the utility of the 

proposed ACO-PPMSO formulation. Particular emphasis was given to 

assessing the usefulness of the heuristics developed, the impact of the two 

local search operators and the overall performance of the proposed ACO-

PPMSO formulation. 

A. Usefulness of heuristic formulation 

The effectiveness of the new heuristic formulations for general PPMSO 

problems (Eqs. 4.10 to 4.12) introduced in Section 4.3.2 was examined by 

conducting optimisation runs with and without the heuristics (the latter 

was achieved by setting the relative weight of the heuristic, β, in Eq. 4.9 to 
0). In addition, the sensitivity of optimisation results to increasing values 

of β was checked. It should be noted that, as a control, the value of α in 
Eq. 4.9 was fixed at 1. 

B. Impact of local search operators 

The impact of local search on the performance of the ACO-PPMSO 

algorithm was also investigated, both with and without heuristic. While 

the PPMSO-2-opt local search operator (see Section 4.3.4) can be tested 

with both original and modified versions of the 21- and 22-unit case 

studies, the Duration Extender local search operator (see Section 4.3.4) can 

only be tested with the modified version of these case studies, due to the 

availability of shortening and deferral options. The total number of trial 

solutions evaluated in the ACO runs with local search was identical to 

those without local search.  

C. Overall performance of ACO-PPMSO 

In order to check the overall performance of ACO for solving PPMSO 

problems, the results obtained for the two original case studies were 

compared with those obtained using other optimisation methods in 

previous studies. The optimised maintenance schedules obtained for the 

modified case studies were analysed and are discussed in detail. In 
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addition, the ability of ACO-PPMSO to handle soft constraints was 

investigated.  

In order to achieve the objectives outlined above, the testing procedure 

shown in Figure 5.3 was implemented separately for each of the four case 

studies. Items A, B and C mentioned above were investigated at Stages A, 

B and C in the testing procedure, respectively. To minimize the impact the 

ACO algorithm and parameters used have on the evaluation of the 

effectiveness of the heuristic, local search and overall performance of the 

ACO-PPMSO algorithm, two ACO algorithms, namely Elitist-Ant System  

parameters (shown in the dashed box in Figure 5.3) were used to solve the 

problem instance under consideration. In addition, each run was repeated 

50 times with different random number seeds in order to minimize the 

influence of random starting values in the solution space on the results 

obtained and to enable Student’s t-tests to be conducted to determine 

whether any differences in the results obtained were significant. In total, 

3,024 different combinations of parameters, each with 50 different starting 

random number seeds, were evaluated as part of this study. In order to 

facilitate fair comparisons, the same number of evaluations per 

optimisation run were used as in previous studies that investigated the 

21-unit case problem (30,000 evaluations). In this research, ‘one ACO run’ 

is defined as the use of an ACO algorithm with or without using heuristic 

information, with or without local search and with a defined set of 

parameters to solve a PPMSO instance. An example of an ACO run is the 

use of EAS to solve the modified 21-unit case study with heuristic 

information and Duration Extender local search and a defined parameter 

set of m = 200; ρ = 0.9; τ0 = 0.1; Q = 500,000; α = 1, β = 11, repeated for 50 
random number seeds. The overall performance of a parameter set is then 

assessed based on the objective function cost (OFC) averaged over the 50 

simulations using different random number seeds. An analysis of the 

results obtained with the testing procedure outlined in Figure 5.3 is given 

in Section 5.4.  

5.4 Results and analysis 

The experimental results obtained for the original 21- and 22-unit case 

studies are summarized in Tables 5.6 to 5.9, while those for the modified 

case studies are presented in Tables 5.10 to 5.13. The detailed results can 

be found in Appendices B and C. 
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Figure 5.3: Testing procedure 

EAS 

Without 
heuristic 

With 
heuristic 

Add local 
search† 

50 
random 
number 
seeds 

Add local 
search† 

m:{10,20,50,100,200,300,500, 1000} 

ρ: (0.1~1.0, ∆ = 0.1) 
τ0:{0.01, 0.1, 1, 10, 100, 1000} 
α:{1} 
β:{0, 1, 3, 5, 7, 9, 11} 
pbest:{0.05~0.95, ∆ = 0.15} 
Q:{100,000} 

MMAS 

Without 
heuristic 

With 
heuristic 

Add local 
search† 

50 
random 
number 
seeds 

Add local 
search† 

Overall results of 
ACO-PPMSO 

Published results of 
other methods 

†: PPMSO-2-opt or Duration Extender. 
 
Notation 
EAS: Elitist-Ant System 
MMAS: Max-Min Ant System 
m: number of ants 

(1-ρ): pheromone evaporation rate 

τ0: initial pheromone trail 

α, β: relative weight of pheromone and 
heuristic in Eq. 4.9 
pbest: see Eq. 4.24 
Q: reward factor 

Stage A 

Stage B 

Stage C 

21-unit system 22-unit system 

Modified 
22-unit system 

Modified 
21-unit system 
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Table 5.6: Results for the 21-unit unit problem instance given by Elitist-Ant 
System (EAS)                                                                                                         

[deviation from best-known OFC of  $13.66M] 

Heur

-istic 

Local 

search 

Best 

OFC 

($M) 

Average 

OFC ($M) 

Worst 

OFC ($M) 

Std dev. 

($M) 

Average 

evaluationsa 

Best 

parameter 

settings 

{m; ρρρρ; 
 ττττ0; ββββ}b 

  

14.84  

[8.64%] 

140.49 

[928.48%] 

365.13 

[2572.99%] 
86.00 28,841 

{300; 0.9; 

0.01; 0} 

  

13.68 

[0.15%] 

13.71 

[0.37%] 

13.85 

[1.39%] 
0.03 20,692 

{200; 0.9; 

0.01; 9} 

 

PPMSO

-2-opt 

13.74 

[0.59%] 

51.62 

[277.89%] 

138.80 

[916.11%] 
33.72 25,494 

{300; 0.8; 

0.1; 0} 

 

PPMSO

-2-opt 

13.66 

[0%] 

13.70 

[0.29%] 

13.82 

[1.17%] 
0.03 22,434 

{200; 0.9; 

0.01; 9} 

a Number of evaluations to reach the best solution in one run averaged over 50 runs with different 

random starting positions. 

bm: number of ants; (1-ρ): pheromone evaporation rate; τ0: initial pheromone trail; β: relative weight 

of heuristic in Eq. 4.9. 
 

Table 5.7: Results for the 21-unit unit problem instance given by Max-Min Ant 
System (MMAS)                                                                                                  

[deviation from best-known OFC of  $13.66M] 

Heur

-istic 

Local 

search 

Best 

OFC 

($M) 

Average 

OFC ($M) 

Worst 

OFC ($M) 

Std dev. 

($M) 

Average 

evaluationsc 

Best 

parameter 

settings 

{m; ρρρρ;  
pbest; ββββ}d 

  

13.86 

[1.46%] 

16.11 

[17.94%] 

43.35 

[217.35%] 
5.95 16,480 

{10; 0.3; 

0.2; 0} 

  

13.66 

[0%] 

13.68 

[0.15%] 

13.72 

[0.44%] 
0.01 13,593 

{20; 0.4; 

0.35; 5} 

 

PPMSO

-2-opt 

13.80 

[1.02%] 

17.90 

[31.04%] 

69.04 

[405.42%] 
10.51 18,089 

{50; 0.2; 

0.05; 0} 

 

PPMSO

-2-opt 

13.66 

[0%] 

13.69 

[0.22%] 

13.78 

[0.88%] 
0.02 15,867 

{50; 0.5; 

0.5; 11} 

c Number of evaluations to reach the best solution in one run averaged over 50 runs with different 

random starting positions. 

dm: number of ants; (1-ρ): pheromone evaporation rate; pbest: refer to Eq. 4.24; β: relative weight of 

heuristic in Eq. 4.9. 
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 Table 5.8: Results for the 22-unit unit problem instance given by Elitist-Ant 
System (EAS)                                                                                                                             

[deviation from best-known OFC of $52.06] 

Heur

-istic 

Local 

search 

Best 

OFC 

($M) 

Average 

OFC ($M) 

Worst 

OFC ($M) 

Std dev. 

($M) 

Average 

evaluationsa 

Best 

parameter 

settings 

{m; ρρρρ; ; ; ;     

ττττ0; ; ; ; ββββ}b 

  

63.41 

[21.80%] 

72.27 

[38.82%] 

81.15 

[55.88%] 
4.17 29,294 

{200; 0.9; 

100; 0} 

  

58.41 

[12.20%] 

64.31 

[23.53%] 

73.25 

[40.70%] 
3.21 28,384 

{300; 0.9;  

1; 11} 

 

PPMSO

-2-opt 

58.91 

[13.16%] 

67.03 

[28.76%] 

79.99 

[53.65%] 
4.70 25,858 

{300; 0.8;  

1; 0} 

 

PPMSO

-2-opt 

55.67 

[6.93%] 

60.55 

[16.31%] 

67.97 

[30.56%] 
2.90 26,931 

{300; 0.8; 

10; 11} 

a Number of evaluations to reach the best solution in one run averaged over 50 runs with different 

random starting positions. 

bm: number of ants; (1-ρ): pheromone evaporation rate; τ0: initial pheromone trail; β: relative weight of 

heuristic in Eq. 4.9. 
 

Table 5.9: Results for the 22-unit unit problem instance given by Max-Min Ant 
System (MMAS)                                                                                                        

[deviation from best-known OFC of $52.06M] 

Heur

-istic 

Local 

search 

Best 

OFC 

($M) 

Average 

OFC ($M) 

Worst 

OFC ($M) 

Std dev. 

($M) 

Average 

evaluationsc 

Best 

parameter 

settings 

{m; ρρρρ; 
 pbest; ββββ}d 

  

59.91 

[15.08%] 

66.90 

[28.51%] 

76.17 

[46.31%] 
3.67 24,597 

{100; 0.9; 

0.5; 0} 

  

55.72 

[7.03%] 

62.22 

[19.52%] 

68.65 

[31.87%] 
2.97 28,433 

{200; 0.9; 

0.2; 11} 

 

PPMSO

-2-opt 

57.64 

[10.72%] 

64.81 

[24.49%] 

76.65 

[47.23%] 
4.27 27,455 

{200; 0.8; 

0.5; 0} 

 

PPMSO

-2-opt 

54.56 

[4.80%] 

59.42 

[14.14%] 

66.56 

[27.85%] 
2.87 24,537 

{200; 0.8; 

0.35; 11} 

c Number of evaluations to reach the best solution in one run averaged over 50 runs with different 

random starting positions. 

dm: number of ants; (1-ρ): pheromone evaporation rate; pbest: refer to Eq. 4.24; β: relative weight of 

heuristic in Eq. 4.9. 
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Table 5.10: Results for the Modified 21-unit unit problem instance given by Elitist-
Ant System (EAS) [deviation from best-known OFC of $15.71M] 

Heu-

ristic 

Local 

search 

Best 

OFC 

($M) 

Average 

OFC 

($M) 

Worst OFC 

($M) 

Std dev. 

($M) 

Average 

DurCuttot 

(weeks) 

Average 

evaluationsa 

Best parameter 

settings 

{m; ρρρρ; ττττ0; ββββ}b 

  

65.61 

[317.63%] 

120.39 

[666.33%] 

209.05 

[1230.68%] 
39.16 17.6 27,538 {300; 0.9; 0.01; 0} 

  

16.15 

[2.80%] 

24.42 

[55.44%] 

31.06 

[97.71%] 
5.16 6.4 29,029 {500; 0.9; 0.01; 1} 

 

Duration 

Extender 

51.17 

[225.72%] 

105.02 

[568.49%] 

216.85 

[1280.33%] 
37.63 16.6 20,226 {200; 0.9; 0.01; 0} 

 

Duration 

Extender 

15.94 

[1.46%] 

25.73 

[63.78%] 

47.65 

[203.31%] 
7.22 6.6 28,929 {500; 0.9; 0.01; 1} 

 

PPMSO-

2-opt 

68.42 

[335.52%] 

135.13 

[760.15%] 

219.07 

[1294.46%] 
36.67 19.3 28,784 {300; 0.9; 0.01; 0} 

 

PPMSO-

2-opt 

16.12 

[2.61%] 

26.87 

[71.04%] 

41.24 

[162.51%] 
5.17 6.9 28,213 {500; 0.9; 0.01; 1} 

a Number of evaluations to reach the best solution in one run averaged over 50 runs with different random starting 

positions. 

bm: number of ants; (1-ρ): pheromone evaporation rate; τ0: initial pheromone trail; β: relative weight of heuristic in Eq. 

4.9. 

 

Table 5.11: Results for the Modified 21-unit problem instance given by Max-Min 
Ant System (MMAS) [deviation from best-known OFC of $15.71M] 

Heu-

ristic 

Local 

search 

Best 

OFC 

($M) 

Average 

OFC 

($M) 

Worst OFC 

($M) 

Std dev. 

($M) 

Average 

DurCuttot 

(weeks) 

Average 

evaluationsc 

Best parameter 

settings 

{m; ρρρρ; pbest; ββββ}d 

  

28.69 

[82.62%] 

61.32 

[290.32%] 

119.15 

[658.43%] 
19.54 11.8 16,934 {20; 0.2; 0.2; 0} 

  

15.97 

[1.65%] 

19.69 

[25.33%] 

29.03 

[84.79%] 
4.02 5.6 18,551 {50; 0.2; 0.05; 1} 

 

Duration 

Extender 

27.25 

[73.46%] 

59.48 

[278.61%] 

106.45 

[577.59%] 
17.46 11.3 27,207 {300; 0.9; 0.2; 0} 

 

Duration 

Extender 

15.74 

[0.19%] 

20.13 

[28.13%] 

29.72 

[89.18%] 
4.32 5.7 18,871 {50; 0.1; 0.05; 1} 

 

PPMSO-

2-opt 

33.64 

[114.13%] 

71.67 

[356.21%] 

132.10 

[740.87%] 
24.64 12.6 24,898 {500; 0.1; 0.05; 0} 

 

PPMSO-

2-opt 

15.71 

[0%] 

22.04 

[40.29%] 

29.66 

[88.80%] 
4.86 6.1 23,713 {500; 0.7; 0.05; 1} 

c Number of evaluations to reach the best solution in one run averaged over 50 runs with different random starting 

positions. 

dm: number of ants; (1-ρ): pheromone evaporation rate; pbest: refer to Eq. 4.24; β: relative weight of heuristic in Eq. 4.9. 
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Table 5.12: Results for the Modified 22-unit unit problem instance given by Elitist-
Ant System (EAS) [deviation from best-known OFC of $916.12] 

Heu-

ristic 

Local 

search 

Best 

OFC 

($) 

Average 

OFC ($) 

Worst 

OFC ($) 

Std dev. 

($) 

Average 

DurCuttot 

(weeks) 

Average 

evaluationsa 

Best parameter 

settings 

{m; ρρρρ; ττττ0; ββββ}b 

  

2186.22 

[138.64%] 

2797.85 

[205.40%] 

4267.31 

[365.80%] 
410.33 21.9 27,896 {300; 0.9; 0.01; 0} 

  

1365.60 

[49.06%] 

1756.34 

[91.72%] 

2153.97 

[135.12%] 
175.55 13.8 28,648 {500; 0.9; 0.01; 11} 

 

Duration 

Extender 

1953.99 

[113.29%] 

2529.19 

[176.08%] 

4140.45 

[351.96%] 
454.71 19.3 26,844 {300; 0.9; 0.01; 0} 

 

Duration 

Extender 

1194.27 

[30.36%] 

1652.63 

[80.39%] 

2135.76 

[133.13%] 
167.85 12.7 27,448 {500; 0.9; 0.01; 11} 

 

PPMSO-2-

opt 

2331.92 

[154.54%] 

2876.16 

[213.95%] 

4357.14 

[375.61%] 
501.14 23.2 26,187 {300; 0.9; 0.01; 0} 

 

PPMSO-2-

opt 

1174.10 

[28.16%] 

1724.37 

[88.23%] 

2238.34 

[144.33%] 
172.63 13.7 21,718 {300; 0.9; 0.01; 11} 

a Number of evaluations to reach the best solution in one run averaged over 50 runs with different random starting 

positions. 

bm: number of ants; (1-ρ): pheromone evaporation rate; τ0: initial pheromone trail; β: relative weight of heuristic in Eq. 4.9. 

 

Table 5.13: Results for the Modified 22-unit unit problem instance given by Max-Min 
Ant System (MMAS)   [deviation from best-known OFC of $916.12] 

Heu-

ristic 

Local 

search 

Best 

OFC 

($) 

Average 

OFC ($) 

Worst 

OFC ($) 

Std dev. 

($) 

Average 

DurCuttot 

(weeks) 

Average 

evaluations 

Best parameter 

settings 

{m; ρρρρ; pbest; ββββ}d 

  

1439.33 

[57.11%] 

2076.43 

[126.65%] 

3998.67 

[336.78%] 
440.16 15.6 26,219 {300; 0.6; 0.2; 0} 

  

1008.13 

[10.04%] 

1489.54 

[62.59%] 

2017.44 

[120.22%] 
280.45 12.1 23,329 {20; 0.3; 0.35; 11} 

 

Duration 

Extender 

1632.25 

[78.17%] 

2099.93 

[129.22%] 

4085.77 

[345.99%] 
467.37 15.2 21,676 {20; 0.3; 0.2; 0} 

 

Duration 

Extender 

1009.47 

[10.19%] 

1492.6 

[62.93%] 

2049.26 

[123.69%] 
267.38 12.3 22,254 {50; 0.3; 0.2; 11} 

 

PPMSO-2-

opt 

1614.39 

[76.22%] 

2068.8 

[125.82%] 

3936.71 

[329.72%] 
425.87 15.0 20,767 {20; 0.3; 0.2; 0} 

 

PPMSO-2-

opt 

1001.12 

[9.28%] 

1513.86 

[65.25%] 

2084.59 

[127.55%] 
306.26 12.4 21,347 {50; 0.1; 0.35; 11} 

a Number of evaluations to reach the best solution in one run averaged over 50 runs with different random starting 

positions. 

bm: number of ants; (1-ρ): pheromone evaporation rate; pbest: refer to Eq. 4.24; β: relative weight of heuristic in Eq. 4.9. 
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Stage A: Impact of heuristic 

The effectiveness of the new heuristic formulations (as detailed in Section 

4.3.2) was checked using a Student’s t-test at a 95% significance level 

(calculations are shown in Appendices B2 and C2). Overall, the new 

heuristic formulation for applying ACO to PPMSO problems significantly 

improved the results obtained for all four case studies, with and without 

the use of a local search operator and for both ACO algorithms (Table 

5.14). It can be seen that when the heuristic was used, not only were the 

average OFCs improved, but the standard deviations of the OFCs were 

also significantly smaller for all case studies (Tables 5.6 to 5.13), indicating 

that use of the new heuristic formulation enables good solutions to be 

found consistently.  

Table 5.14: Impact of the new heuristic formulation with and without using 
local search 

 21-unit system 22-unit system 
Modified  

21-unit system 
Modified  

22-unit system 

 EAS MMAS EAS MMAS EAS MMAS EAS MMAS 

Without local 
search 

+ + + + + + + + 

Duration 

Extender (see 
Section 4.3.4) 

NT NT NT NT + + + + 

PPMSO-2-opt  

(see Section 
4.3.4) 

+ + + + + + + + 

Notation: 
+: Significant positive impact; −: Significant negative impact; NIL: Insignificant impact; NT: 
Not tested. 

  

In order to gain a better understanding of the searching behavior of the 

ACO algorithms in solving each of the four case studies with and without 

heuristic, the optimisation process of ACO runs was examined. The 

investigation is firstly facilitated by comparing the iteration-best objective 

function value (SSR and LVL) curves (referred to as IB-SSR and IB-LVL 

curves hereafter) of ACO runs with and without heuristic. Secondly, in 

order to investigate constraint satisfaction during ACO runs with and 

without heuristic, the ability of ACO in accessing the feasible and 

infeasible regions of the case studies’ solution space was assessed with the 

aid of a measure proposed in this research called the “infeasibility ratio”, 

ψ. ψ is defined as the ratio of the number of infeasible solutions to the 
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total number of solutions evaluated in a particular iteration t and is given 

by: 

ψ(t) = number of infeasible trial solutions(t)

total number of trial solutions evaluated(t)
 (5.20) 

For the four case studies investigated, the following curves generated by 

selected EAS and MMAS runs when heuristics were and were not used 

are shown in Figures 5.4 to 5.11: 

• Objective function values (SSR, LVL and DurCuttot) associated 

with iteration-best schedules (referred to as IB-SSR, IB-LVL and 

IB-DurCuttot hereafter) 

• Violation of various constraints (demand and personpower 

shortfall) associated with iteration-best schedules (referred to as 

IB-LoadViotot, IB-ManViotot and IB-LoadResViotot hereafter)   

• Infeasibility ratio, ψ 

It should be noted that the curves plotted in Figures 5.4 to 5.11 are given 

by the ACO runs using the best parameter settings (shown in last rows of 

Tables 5.6 to 5.13) obtained during the test. The random number seeds 

used in those runs are also shown (Figures 5.4 to 5.11).   

 Overall, the ACO-PPMSO algorithm is shown to search the problem 

search space effectively by minimizing the objective function values (SSR, 

LVL and DurCuttot) for the four case studies investigated. This is 

illustrated by the decreasing trends of IB-SSR, IB-LVL and IB-DurCuttot 

over iterations during ACO runs as shown in (a) and (b) of Figures 5.4 to 

5.11. In addition, the process of evolution of feasible trial solutions (i.e. 

solutions that do not violate constraints) using ACO-PPMSO is clearly 

shown in (c) and (d) of Figures 5.4 to 5.11.  

It can also be observed that convergence occurs at latter stages of runs 

where relatively larger ant populations (m > 50) are used. Interestingly, 

when smaller ant populations are used (m ≤ 50), the ACO search seems to 

restart several times during a run, as depicted by the multiple spikes 

followed by decreasing IB-SSR and IB-LVL curves shown in Figure 5.5, 5.9 

and 5.11b.  
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By interpreting Figures 5.4 to 5.11 in detail, it can also be deduced that the 

four case studies investigated have quite different fitness landscapes. The 

original 21-unit case study is more highly constrained, as indicated by the 

large number of demand and personpower shortfalls associated with trial 

solutions constructed during the early stages of the optimisation runs 

(Figures 5.4c and 5.5c). On the other hand, the load constraints of the 

original 22-unit case study are easily satisfied, as the infeasibility ratio is 

approaching or equal to zero throughout the ACO run (Figures 5.6c and 

5.7c). As for the modified versions of case studies, it can be observed that 

the optimisation process of the modified 21-unit case study is dominated 

by personpower constraints (Figures 5.8c and 5.9c), whereas the load 

constraints of the modified 22-unit case study are tighter compared to its 

original counterpart (Figures 5.10c and 5.11). It is interesting to find that 

for MMAS, smaller populations of ants are found to be more effective for 

more highly constrained problems, such as the original 21-unit problem 

(Table 5.7), the modified 21-unit problem (Table 5.11) and the modified 

22-unit problem (Table 5.13). The ability of smaller ant populations to 

solve more highly constrained problems might be attributed to the 

occasional selection of non-best solutions after convergence, as explained 

previously. In addition, smaller ant populations results in a larger number 

of iterations, which is equivalent to a larger number of pheromone 

updates during an ACO run. Given more information from past searching 

experience (via pheromone updates), feasible regions of a search space 

may be better identified. 

An interesting observation made from Figure 5.11d is that the average of 

the infeasibility ratio during iterations 200 to 600 is higher than that of 

previous iterations. This is corresponding well with the iteration-best total 

duration shortened/deferred (IB-DurCuttot) of those stages during the 

ACO run (Figure 5.11b). The decrease in the total duration 

shortened/deferred means more maintenance tasks are performed, 

resulting in tighter constraints and thus a larger portion of trial solutions 

constructed is infeasible. 

For all case studies, it can be seen that when the heuristic is used, the IB-

SSR and IB-LVL obtained during the early stages of the optimisation runs 

were substantially lower (compare (a) and (b) of Figures 5.4 to 5.11). In 

addition, it can be observed that at the early stages of the ACO runs, 

fewer trial solutions that violated constraints were constructed when the 
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heuristic was utilized (compare (c) and (d) of Figures 5.4 to 5.11). It was 

also found that the improvement in OFCs obtained when the heuristic is 

used for the modified 21- and 22-unit case studies is partly attributed to a 

significant reduction in duration shortened. This is clearly shown in the 

comparison between (a) and (b) of Figures 5.8 to 5.11 by the fact that the 

IB-DurCuttot curve is consistently lower throughout an ACO run when the 

heuristic formulation is used.  

In view of the experimental results, the heuristic formulation is useful for 

ACO-PPMSO in three ways. Firstly, as the distribution of pheromone 

intensity within the search space of a problem is uniform at the beginning 

of an ACO run (assuming a single initial pheromone value is used), the 

optimisation process initially resembles a random search. During this 

period, the heuristic formulation can guide the algorithm to search in 

regions where feasible solutions are located with a higher probability. In 

this way, the number of infeasible solutions being constructed and 

rewarded with pheromone can be reduced. Secondly, even if a heuristic is 

not essential for constructing feasible/near feasible trial solutions (as is 

the case when the PPMSO problem is not highly constrained), the 

heuristic can assist with constructing trial solutions that consist of fewer 

overlapping tasks. In this way, the generation capacities throughout the 

planning horizon associated with trial maintenance schedules being 

constructed are more evenly distributed, which is one of the common 

objectives of PPMSO problems. Thirdly, when shortening and deferral 

options are allowed, use of the heuristic increases the probabilities that 

longer outage durations are chosen throughout an entire ACO run. This is 

particularly useful when shortening and deferral options are frequently 

chosen at random during the early stage of an ACO run.    
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(a) Without heuristic† 
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(c) Without heuristic† 

 

†  Parameter settings used shown in the first row, last column of Table 5.6 (random 
number seed = 888888) 

†† Parameter settings used shown in the second row, last column of Table 5.6 (random 
number seed = 888888) 

IB-SSR: Sum of squares of reserve associated with iteration-best schedules; IB-LoadViotot: 

Demand shortfalls associated with iteration-best schedules; IB-ManViotot: Personpower 

shortfalls associated with iteration-best schedules 
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(b) With heuristic†† 
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(d) With heuristic†† 

 

Figures 5.4(a) & (b): Performance of Elitist-Ant System (EAS) in solving the 
original 21-unit case study with and without heuristic (Comparison of the SSR-
values associated with iteration-best schedules during optimisation run; Best-

known SSR = 13.36 x 106 MW2) 

Figures 5.4(c) & (d): Performance of Elitist-Ant System (EAS) in solving the 
original 21-unit case study with and without heuristic (Comparison of the 

violation of constraints associated with iteration-best schedules and 
infeasibility ratio during optimisation run) 
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(a) Without heuristic† 
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(c) Without heuristic† 

 

†  Parameter settings used shown in the first row, last column of Table 5.7 (random 
number seed = 356060) 

†† Parameter settings used shown in the second row, last column of Table 5.7 (random 
number seed = 888888) 

IB-SSR: Sum of squares of reserve associated with iteration-best schedules; IB-LoadViotot: 

Demand shortfalls associated with iteration-best schedules; IB-ManViotot: Personpower 

shortfalls associated with iteration-best schedules 
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(b) With heuristic†† 
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(d) With heuristic†† 

 

Figures 5.5(a) & (b): Performance of Max-Min Ant System (MMAS) in solving 
the original 21-unit case study with and without heuristic (Comparison of the 
SSR-values associated with iteration-best schedules during optimisation run; 

Best-known SSR = 13.36 x 106 MW2). 

Figures 5.5(c) & (d): Performance of Max-Min Ant System (MMAS) in solving 
the original 21-unit case study with and without heuristic (Comparison of the 

violation of constraints associated with iteration-best schedules and 
infeasibility ratio during optimisation run). 
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(a) Without heuristic† 
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(c) Without heuristic† 

 

†  Parameter settings used shown in the first row, last column of Table 5.8 (random 
number seed = 888888) 

†† Parameter settings used shown in the second row, last column of Table 5.8 (random 
number seed = 888888) 

IB-LVL: The levels of reserve generation associated with iteration-best schedules; IB-

LoadResViotot: Demand and reliability shortfalls associated with iteration-best schedules 
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(b) With heuristic†† 
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(d) With heuristic†† 

 

Figures 5.6(a) & (b): Performance of Elitist-Ant System (EAS) in solving the 
original 22-unit case study with and without heuristic (Comparison of the LVL-
values associated with iteration-best schedules during optimisation run; Best-

known LVL = 52.06 MW).  

Figures 5.6(c) & (d): Performance of Elitist-Ant System (EAS) in solving the 
original 22-unit case study with and without heuristic (Comparison of the 

violation of constraints associated with iteration-best schedules and 
infeasibility ratio during optimisation run).  
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(a) Without heuristic† 
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(c) Without heuristic† 

 

†  Parameter settings used shown in the first row, last column of Table 5.9 (random 
number seed = 955632) 

†† Parameter settings used shown in the second row, last column of Table 5.9 (random 
number seed = 955632) 

IB-LVL: The levels of reserve generation associated with iteration-best schedules; IB-

LoadResViotot: Demand and reliability shortfalls associated with iteration-best schedules 
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(b) With heuristic†† 
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(d) With heuristic†† 

 

Figures 5.7(a) & (b): Performance of Max-Min Ant System (MMAS) in solving 
the original 22-unit case study with and without heuristic (Comparison of the 
LVL-values associated with iteration-best schedules during optimisation run; 

Best-known LVL = 52.06 MW). 

Figures 5.7(c) & (d): Performance of Max-Min Ant System (MMAS) in solving 
the original 22-unit case study with and without heuristic (Comparison of the 

violation of constraints associated with iteration-best schedules and 
infeasibility ratio during optimisation run). 
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(a) Without heuristic† 

0

5

10

15

20

25

30

1 21 41 61 81

Iteration

S
ho

rt
fa

ll 
(M

W
 o

r 
pe

rs
on

)

0

0.2

0.4

0.6

0.8

1

In
fe

as
ib

ili
ty

 r
at

io

Iteration-best demand shortfall

Iteration-best personpower shortfall

Infeasibility ratio

IB-LoadViotot

IB-ManViotot

 

(c) Without heuristic† 

 

†  Parameter settings used shown in the first row, last column of Table 5.10 (random number seed = 
888888) 

†† Parameter settings used shown in the second row, last column of Table 5.10 (random number 
seed = 888888) 

IB-SSR: Sum of squares of reserve associated with iteration-best schedules; IB-DurCuttot: Total 

reduction in outage duration due to shortening and deferral associated with iteration-best 

schedules; IB-LoadViotot: Demand shortfalls associated with iteration-best schedules; IB-ManViotot: 

Personpower shortfalls associated with iteration-best schedules 
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(b) With heuristic†† 
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(d) With heuristic†† 

 

Figures 5.8(a) & (b): Performance of Elitist-Ant System (EAS) in solving the 
modified 21-unit case study with and without heuristic (Comparison of the 
SSR- and total duration shortened values associated with iteration-best 

schedules during optimisation run; Best-known SSR = 2.62 x 106 MW2 with 5-
week deferral). 

Figures 5.8(c) & (d): Performance of Elitist-Ant System (EAS) in solving the 
modified 21-unit case study with and without heuristic (Comparison of the 

violation of constraints associated with iteration-best schedules and 
infeasibility ratio during optimisation run). 
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(a) Without heuristic† 
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(c) Without heuristic† 

 

†  Parameter settings used shown in the first row, last column of Table 5.11 (random number seed = 655) 
†† Parameter settings used shown in the second row, last column of Table 5.11 (random number seed = 

655) 
IB-SSR: Sum of squares of reserve associated with iteration-best schedules; IB-DurCuttot: Total reduction 

in outage duration due to shortening and deferral associated with iteration-best schedules; IB-LoadViotot: 

Demand shortfalls associated with iteration-best schedules; IB-ManViotot: Personpower shortfalls 

associated with iteration-best schedules 
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(b) With heuristic†† 
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(d) With heuristic†† 

 

Figures 5.9(a) & (b): Performance of Max-Min Ant System (MMAS) in solving 
the modified 21-unit case study with and without heuristic (Comparison of the 

SSR- and total duration shortened values associated with iteration-best 
schedules during optimisation run; Best-known SSR = 2.62 x 106 MW2 with 5-

week deferral). 

Figures 5.9(c) & (d): Performance of Max-Min Ant System (MMAS) in solving 
the modified 21-unit case study with and without heuristic (Comparison of the 

violation of constraints associated with iteration-best schedules and 
infeasibility ratio during optimisation run). 
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(a) Without heuristic† 
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(c) Without heuristic† 

 

†  Parameter settings used shown in the first row, last column of Table 5.12 (random number seed = 
888888) 

†† Parameter settings used shown in the second row, last column of Table 5.12 (random number 
seed = 888888) 

IB-LVL: The levels of reserve generation associated with iteration-best schedules; IB-DurCuttot: Total 

reduction in outage duration due to shortening and deferral associated with iteration-best 

schedules; IB-LoadResViotot: Demand and reliability shortfalls associated with iteration-best 

schedules 
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(b) With heuristic†† 
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(d) With heuristic†† 

 

Figures 5.10(a) & (b): Performance of Elitist-Ant System (EAS) in solving the 
modified 22-unit case study with and without heuristic (Comparison of the 
LVL- and total duration shortened values associated with iteration-best 

schedules during optimisation run; Best-known LVL = 101.791 MW with 8-
week shortening). 

Figures 5.10(c) & (d): Performance of Elitist-Ant System (EAS) in solving the 
modified 22-unit case study with and without heuristic (Comparison of the 

violation of constraints associated with iteration-best schedules and 
infeasibility ratio during optimisation run). 
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(a) Without heuristic† 
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(c) Without heuristic† 

 

†  Parameter settings used shown in the first row, last column of Table 5.13 (random number seed = 
36565) 

†† Parameter settings used shown in the second row, last column of Table 5.13 (random number seed = 
33552454) 

IB-LVL: The levels of reserve generation associated with iteration-best schedules; IB-DurCuttot: Total 

reduction in outage duration due to shortening and deferral associated with iteration-best schedules; IB-

LoadResViotot: Demand and reliability shortfalls associated with iteration-best schedules 
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(b) With heuristic†† 
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(d) With heuristic†† 

 

Figures 5.11(a) & (b): Performance of Max-Min Ant System (MMAS) in solving 
the modified 22-unit case study with and without heuristic (Comparison of the 

LVL- and total duration shortened values associated with iteration-best 
schedules during optimisation run; Best-known LVL = 101.791 MW with 8-

week shortening). 

Figures 5.11(c) & (d): Performance of Max-Min Ant System (MMAS) in solving 
the modified 22-unit case study with and without heuristic (Comparison of the 

violation of constraints associated with iteration-best schedules and 
infeasibility ratio during optimisation run). 
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In relation to the two ACO algorithms investigated (EAS and MMAS), the 

results obtained indicate that the heuristic has a significant positive 

impact on both EAS and MMAS. This is probably due to the ability of 

heuristic information to identify regions of the search space where high-

quality initial solutions lie, reducing the number of low-quality trial 

solutions being reinforced at the beginning of an optimisation run. In 

addition, the results indicate that the ACO-PPMSO heuristic has a bigger 

positive impact on EAS compared to MMAS. EAS tends to stagnate after a 

number of iterations, which increases the impact of the quality of the 

initial solutions. The importance of the regions where the ants initially 

search using EAS is also highlighted by the relatively larger number of 

ants found for the best parameter settings than those for MMAS (Tables 

5.6, 5.8, 5.10 and 5.12), implying that a search with more ants in each 

iteration (resulting a smaller number of iterations during an optimisation 

run, as the total number of function evaluations is fixed) works better 

than one with fewer ants (resulting a larger number of iterations during 

an optimisation run, as the total number of function evaluations is fixed). 

On the other hand, relatively smaller ant populations are found to 

perform best for MMAS (Tables 5.7, 5.8, 5.11 and 5.13), which might be 

attributed to the continuous exploration during an MMAS run (Figures 

5.5, 5.7, 5.9 and 5.11) as a result of the lower and upper bound for 

pheromone values. It is interesting to observe that despite the expected 

overall downward trends throughout an optimisation run, the IB-SSR and 

IB-LVL curves spike occasionally throughout a run when a small 

population of ants is used (Figures 5.5, 5.9 and 5.11b). This phenomenon 

is found to be caused by the choice of non-best solutions after a short 

convergence (stagnation in OFC), which altered the distribution of 

pheromone over the problem search space. It should be noted that the 

possibility of having an iteration-best solution that is not the best-so-far 

solution is higher when a smaller population of ants is used. 

B. Impact of local search 

The optimisation results obtained by coupling two different local search 

operators, namely the PPMSO-2-opt (Section 4.3.4) and Duration Extender 

(Section 4.3.4), with the ACO algorithms investigated (Stage B of the 

testing procedure in Figure 5.3) are tabulated in Tables 5.5 to 5.13. The 

unpaired Student’s t-test (calculations are shown in Appendices B2 and 

C2) was used to check the significance of the impact of the two local 
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search operators in solving the four case studies with and without 

heuristic (Tables 5.15 and 5.16). It should be noted that while PPMSO-2-

opt was applied to all case studies, Duration Extender was only tested with 

the modified case studies for reasons given previously.  

Table 5.15: Impact of PPMSO-2-opt local search operator with and without 
heuristic 

 21-unit system 22-unit system 
Modified 21-unit 

system 

Modified 22-unit 

system 

Heuristic EAS MMAS EAS MMAS EAS MMAS EAS MMAS 

 + NIL + + − − NIL NIL 

 
NIL NIL + + − − NIL NIL 

Notation: 
+: Significant positive impact; −: Significant negative impact; NIL: Insignificant impact. 

 

Table 5.16: Impact of Duration Extender local search operator with and 
without heuristic 

 Modified 21-unit system Modified 22-unit system 

Heuristic EAS MMAS EAS MMAS 

 + NIL + NIL 

 
NIL NIL + NIL 

Notation: 
+: Significant positive impact; −: Significant negative impact; NIL: Insignificant impact. 

 

PPMSO-2-opt 

Overall, the impact of the local search PPMSO-2-opt operator ranges from 

being insignificant, to significantly improving or degrading the 

performance of the ACO algorithm investigated. While having a positive 

impact on solving the original 22-unit case study regardless of which of 

the two ACO algorithms was used, the PPMSO-2-opt local search operator 

was found to improve only the performance of EAS when the heuristic 

was not used for solving the original 21-unit case study. As for the 

modified case studies, the performance of ACO in solving the modified 

21-unit case study was reduced significantly when the PPMSO-2-opt local 
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search operator was adopted, while the impact of the local search was not 

significant when applied to the modified 22-unit case study. 

From the results of the Stage B testing, it is interesting to observe that 

despite the similarity in the number of generating units for the 21- and 22-

unit case study systems, the impact of the PPMSO-2-opt local search 

algorithm on the optimisation results of these case studies was quite 

different, which is likely to be caused by the difference in the problem 

characteristics of the two systems.  

In order to better understand the results obtained, a series of tests was 

carried out to investigate the mechanism of PPMSO-2-opt in detail. The 

satisfaction of constraints associated with iteration-best solutions (target 

solutions) used for the local search operation and the % of infeasible local 

solutions generated when using EAS and MMAS were examined and are 

plotted in Figures 5.12 to 5.19. It should be noted that the results were 

obtained using the proposed heuristic formulation.  It can be seen that for 

the original 21-unit case study (Figures 5.12 and 5.13) and the modified 

version of both the 21- and 22-unit case studies (Figures 5.16 to 5.19), a 

large number of infeasible local solutions were generated by PPMSO-2-opt 

in every iteration, even with feasible iteration-best solutions (target 

maintenance schedules). As discussed previously, these three case studies 

are highly constrained. A local solution generated by simply exchanging 

the maintenance start time of two randomly chosen generating units 

without any guidelines is likely to result in infeasible solutions in such a 

highly constrained search space. As a result, PPMSO-2-opt seems to have 

an insignificant or even detrimental impact when coupled with ACO for 

solving the aforementioned case studies. This is particularly evident for 

the modified 21-unit case study, where as many as 50% to 80% of the local 

solutions generated by PPMSO-2-opt in every iteration are infeasible with 

regard to both load and personpower constraints, which is responsible for 

the significant decrease in ACO performance. These results suggest that 

the PPMSO-2-opt local search operator is not well suited to problems with 

highly constrained search spaces.  

On the other hand, it can be seen that the local solutions generated by 

PPMSO-2-opt in solving the original 22-unit case study are all feasible, as 

the iteration-best solutions are also feasible (Figures 5.14 and 5.15).  In 

fact, this is the only case study for which PPMSO-2-opt has been found to 
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be effective in improving the optimisation ability of ACO. As discussed 

previously, the constraints of the original 22-unit case study are easily 

satisfied. Therefore, the results obtained indicate that PPMSO-2-opt can be 

useful for solving problems that are not highly constrained. 
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Figure 5.12: Infeasible local solutions obtained using PPMSO-2-opt (original 21-
unit case study using EAS) 
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Figure 5.13: Infeasible local solutions obtained using PPMSO-2-opt (original 21-
unit case study using MMAS) 
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Figure 5.14: Infeasible local solutions using PPMSO-2-opt (original 22-unit case 
study using EAS) 
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Figure 5.15:  Infeasible local solutions using PPMSO-2-opt (original 22-unit case 
study using MMAS) 
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Figure 5.16: Infeasible local solutions using PPMSO-2-opt (modified 21-unit case 
study using EAS) 
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Figure 5.17: Infeasible local solutions using PPMSO-2-opt (modified 21-unit case 
study using MMAS) 
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Figure 5.18: Infeasible local solutions using PPMSO-2-opt (modified 22-unit case 
study using EAS) 
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Figure 5.19: Infeasible local solutions using PPMSO-2-opt (modified 22-unit case 
study using MMAS) 
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Duration Extender 

The Duration Extender local search operator, which is only applicable to 

PPMSO problems for which duration shortening or deferral options are 

available, was found to improve the performance of EAS in solving the 

modified 21-unit case study when the heuristic is not used, and also to 

produce significantly better results with and without heuristic when 

applied to the modified 22-unit case study (Table 5.16). On the other 

hand, the local search operator has an insignificant impact when the 

MMAS algorithm is used to solve both modified case studies (Table 5.16). 

The difference in the impacts the Duration Extender local search operator 

has on the performance of EAS and MMAS may be attributed to the 

different searching mechanisms involved in the algorithms. As MMAS is 

equipped with a robust explorative mechanism, it exhibits relatively 

stronger optimisation ability than EAS, thus the improvement of results 

using local search is less or insignificant. 

Without the presence of the heuristic, it was observed that the average 

duration shortened or deferred decreased when the Duration Extender 

local search operator was used for both case studies and both ACO 

algorithms (comparing rows 1 and 3 of Tables 5.10 to 5.13), indicating the 

usefulness of the local search algorithm in improving the performance of 

ACO-PPMSO when heuristic information is not readily available. 

Duration Extender is mainly used to locally optimize ACO solutions with 

regard to shortening/deferral decisions. Compared to real PPMSO case 

studies, the modified 21- and 22-unit case studies have only a small 

number of shortening and deferral options available, which may make a 

rigorous examination of the performance of the Duration Extender 

algorithm difficult. Therefore, the usefulness of the Duration Extender 

algorithm was further investigated with real PPMSO case studies 

(Chapter 6). 
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C. Overall performance of ACO-PPMSO 

Original 21-unit and 22-unit case studies 

By using the ACO-PPMSO algorithm, a new best-known objective value 

has been found for both the original 21-unit case study (SSR = 13.66 x 106 

MW2) and the original 22-unit case study (LVL = 52.06 MW).  

A comparison of the results obtained by ACO-PPMSO with those 

obtained by various metaheuristics in other studies for the 21-unit case 

study is shown in Figure 5.20. As mentioned previously, the number of 

evaluations (trial solutions) allowed in the ACO runs and those of the 

other metaheuristics was identical. In particular, the best and average 

results of the metaheuristics were compared. While the best and average 

results given by the simple GA, SSGA, GNGA, inoculated GA and SA 

were obtained by 10 runs with different starting positions (Aldridge et al., 

1999; Dahal et al., 1999; Dahal et al., 2000), those of EAS and MMAS were 

obtained using 50 runs.  

It can be seen that the EAS and MMAS algorithms have outperformed the 

algorithms that have been applied to this case study previously. It should 

be noted that a new best-found solution (SSR = 13.66 x 106 MW2) for the 

21-unit case study has been found by EAS and MMAS using the new 

ACO-PPMSO formulation. In addition, it can be seen that the differences 

between the average and best results of the ACO algorithms are much 

smaller than those for other metaheuristics (Figure 5.20), which indicates 

a consistent performance of the ACO-PPMSO formulation.  

Among the metaheuristics previously used for solving the 21-unit case 

study, the inoculated GA, where the initial population is generated using 

a heuristic that ranks the generating units in order of decreasing capacity, 

was found to perform best in terms of the average results obtained. This 

indicates the potential of the benefit of a heuristic in solving PPMSO 

problems. 
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Notation 

ACO: Ant Colony Optimisation 

EAS: Elitist-Ant System 

MMAS: Max-Min Ant System 

Simple GA: Simple Genetic Algorithm 

GNGA: Generational Genetic Algorithm 

SSGA: Steady State Genetic Algorithm 

Inoculated GA: Inoculated Genetic Algorithm 

SA: Simulated Annealing 

Figure 5.20: Comparison between results obtained using other optimisation 
methods (Aldridge et al., 1999; Dahal et al., 1999; Dahal et al., 2000) and the ACO 

algorithms used in this thesis 

As mentioned previously, a new best-found solution (SSR = 13.66 x 106 

MW2) has been found by the ACO-PPMSO formulation proposed in this 

thesis. In fact, different maintenance schedules were found that are 

associated with the new best-found SSR solution. Two maintenance 

schedules associated with the best-found SSR of 13.66 x 106 MW2, along 

with the corresponding generation reserve levels and personpower 

utilization over the planning horizon, are presented in Figures 5.21 and 
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5.22. It can be seen that there is no demand or personpower shortfall 

associated with the two schedules. Despite the identical SSR-values, the 

two schedules are different, indicating there is more than one optimal 

solution in the problem search space. The two schedules that result in 

different personpower allocation profiles provides great flexibility during 

a negotiation with the asset manager. Maintenancs schedules associated 

with sub-optimal SSR values were also investigated, as such schedules 

may sometimes be preferred when some non-quantifiable criteria are 

taken into account. The maintenance schedule associated with a near-best-

known SSR solution (SSR = 13.68 x 106 MW2) is shown in Appendix B3. 
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Figure 5.21: The (a) maintenance schedule of the 21-unit case study best-
found-SSR solution A, the associated (b) personpower allocation and (c) 

reserve capacity levels 
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Figure 5.22: The (a) maintenance schedule of the 21-unit case study best-
found-SSR solution B, the associated (b) personpower allocation and (c) 

reserve capacity levels 
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In Figure 5.23, the reserve level across the planning horizon associated 

with the best-known schedule found by ACO-PPMSO for the original 22-

unit case study is compared with those obtained by implicit enumeration 

(Escudero et al., 1980) and tabu search (El-Amin et al., 2000). It can be seen 

that the reserve level given by the ACO schedule is more evenly spread 

out (summed deviation of generation reserve from the average reserve, 

LVL = 52.06 MW) than those obtained with implicit enumeration (LVL = 

118.81 MW) and tabu search (LVL = 256.93 MW). It should be noted that 

due to insufficient information about the optimum solution in El-Amin et 

al. (2000), the LVL value of tabu search shown in Figure 5.23 was 

calculated using the best available published information (including a 

maintenance schedule shown in Appendix C3).  

The best maintenance schedule found by ACO-PPMSO for this case study 

is shown in Figure 5.24, which is associated with the ACO reserve level 

presented in Figure 5.23. Another maintenance schedule associated with a 

near-best-known objective function value is presented in Figure 5.25. It 

can be seen that the two schedules are different but the objective function 

values associated with these schedules differ only by less than 1% (52.06 

MW and 53.02 MW). In general, more than two different schedules can be 

produced by an ACO run according to the requirements specified by the 

user. For example, the best ten schedules obtained throughout an ACO 

run are examined. The availability of a wide range of different schedules 
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Figure 5.23: Comparison of reserve levels obtained using ACO, implicit 
enumeration (Escudero et al., 1980) and tabu search (El-Amin et al., 2000) 
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that share similar objective function values provide a great flexibility to a 

scheduler when dealing with non-quantitative criteria (eg. operation and 

trading protocols, availability of resources etc.). 
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Figure 5.24: Best-known (a) schedule and (b) the associated generation reserve 
levels for the 22-unit case study 
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Modified 21-unit and 22-unit case studies 

As the modified versions of the 21- and 22-unit case studies have been 

introduced in this research to test the developed ACO-PPMSO 

formulation, there are no previous results available for comparison 

purposes. As can be seen in Tables 5.10 to 5.13, the optimized 

maintenance schedules of both the modified 21- and 22-unit case studies 

include the shortening and/or deferral of maintenance tasks (average 
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Figure 5.25: A near best-known (a) schedule and (b) the associated generation 
reserve levels for the 22-unit case study 
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duration shortened/deferred > 0). Two maintenance schedules associated 

with the best-found objective function cost for the modified 21-unit case 

study are shown in Figures 5.26 and 5.27 (OFC = $15.71M) and for the 

modified 22-unit case study in Figures 5.28 and 5.29 (OFC = $916.12). In 

both schedules for the modified 21-unit case study, the maintenance tasks 

for generating units 11 and 21 are deferred, while all other tasks are 

carried out as normal. For the modified 22-unit case study, maintenance 

tasks for generating units 10, 16 and 17 are shortened by 2, 4 and 2 weeks, 

respectively. It should be noted that all constraints are satisfied by the 

schedules presented in Figures 5.26 to 5.29.  

The results for the modified versions of the 21-unit and 22-unit case 

studies indicate that the ACO-PPMSO formulation introduced in this 

thesis is able to provide maintenance schedules that satisfy hard system 

constraints (eg. system demands) by shortening and deferring 

maintenance tasks. More importantly, the shortening and deferral options 

were not used if not necessary, as only a few, but not all, maintenance 

tasks were shortened/deferred (Figures 5.26 to 5.29). 
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(c) 

Figure 5.26: The (a) maintenance schedule of the modified 21-unit case study 
best-found-SSR solution A, the associated (b) personpower allocation and (c) 

reserve capacity levels 
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(c) 

Figure 5.27: The (a) maintenance schedule of the modified 21-unit case study 
best-found-SSR solution B, the associated (b) personpower allocation and (c) 

reserve capacity levels 
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(b) 

Figure 5.28: (a) Maintenance schedule A associated with the best-found OFC for 
the modified 22-unit case study and (b) the associated generation reserve levels 
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(b) 

Figure 5.29: (a) Maintenance schedule B associated with the best-found OFC for 
the modified 22-unit case study and (b) the associated generation reserve levels 
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5.5 Summary and conclusions 

In this chapter, the new ACO-PPMSO formulation introduced in Chapter 

4 was tested on four case studies (original and modified versions of two 

benchmark case studies from the literature). In particularly, the 

performance of the heuristic formulation developed, the two local search 

algorithms introduced and the overall utility of the ACO-PPMSO 

formulation were investigated.  

A testing procedure consisting of three stages was used to assess the 

utility of the proposed ACO-PPMSO formulation. In order to examine the 

impact that the ACO algorithms and parameters have on the performance 

of the ACO-PPMSO formulation, two ACO algorithms, namely Elitist-Ant 

System (EAS), Max-Min Ant System (MMAS) and a wide range of ACO 

parameters were utilized as part of the testing procedure. In addition, 

each ACO run was repeated with 50 random number seeds to minimize 

the impact of different initial positions in the search space. The 

significance of the experimental results obtained were checked using the 

Student’s t-test.  

Results of the testing have shown that the heuristic formulation improves 

the performance of the ACO-PPMSO algorithm significantly when 

applied to the four case studies investigated. It was found that while the 

PPMSO-2-opt local search operator seems to work well for unconstrained 

problems, it is not suitable for highly-constrained PPMSO problems. On 

the other hand, the performance of the Duration Extender local search 

operator has resulted in significant improvements in cases where duration 

shortening is applicable. Lastly, the results obtained by ACO-PPMSO for 

the two original case studies were better than those obtained by other 

optimisation methods, such as various genetic algorithm (GAs) 

formulations and simulated annealing (SA). For the 21-unit and 22-unit 

case studies, a new optimal solution has been found by the ACO-PPMSO 

formulation. In addition, the results given by ACO-PPMSO were more 

consistent compared with those obtained using other metaheuristics 

previously applied to the two benchmark case studies. The maintenance 

schedules found for the modified case studies have also been examined 

and it was found that the ACO-PPMSO formulation is able to meet hard 

system constraints by shortening and deferring maintenance. 
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 The results of experiments carried out using the original and modified 

versions of the 21-unit and 22-unit case studies indicated that the ACO-

PPMSO formulation developed as part of the research work presented in 

this thesis has potential for solving real-world PPMSO problems.  
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Chapter 6  
Hydroelectric Power Case Studies 

In this chapter, a five-station case study derived from the Hydro Tasmania 

hydropower system is used to test the utility of the ACO-PPMSO formulation 

for real-world maintenance scheduling problems. As part of the testing 

procedure, the impacts of shortening and deferral options on practical 

maintenance scheduling are investigated. In addition, the usefulness of a local 

search operator (Duration Extender) introduced in Chapter 4 is examined. The 

ACO-PPMSO formulation is subsequently utilized to schedule the 2006 

maintenance tasks for the full Hydro Tasmania system, which consists of 55 

generating units and a total of 118 maintenance tasks. In addition, four 

different scenarios are investigated, which represent various circumstances that 

a decision maker might encounter during maintenance scheduling, including 

routine maintenance scheduling, an increase in system demand, the 

unavailability of a major generating unit and the late return of a major 

generating unit from maintenance.   

 

6.1 Background 

Tasmania is the smallest and the only island state of Australia, lying south 

of the south-east corner of the Australian mainland (Figure 6.1). Tasmania 

has a total area of 68,332 km2 (Wikipedia, 2006b) and a total population of 

487,185 (Jackson, 2005). With its high rainfall and mountainous terrain, 

Tasmania has abundant water resources for renewable energy 

production. Having harnessed Tasmania’s water for energy production 

for over 80 years, Hydro Tasmania is Australia’s largest renewable energy 

generator with 29 small- to medium-sized hydroelectric power stations 

and one thermal power station. The thermal stations are used in 

emergency situations where there is a demand shortfall and their use is 

avoided if possible as a result of the high costs incurred. With an installed 

generating capacity of 2,260 MW, the Hydro Tasmania system produces 

over 10,000 GWh of renewable energy on an annual basis, which is 

approximately 60% of Australia’s total renewable energy production` 

(Beswick et al., 2003).  
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Figure 6.1: Geographical location of Tasmania 

6.2 Five-Station Hydropower System 

In order to further test the utility of the proposed formulation, a subset of 

the Hydro Tasmania power system was investigated in this study, which 

includes two catchment areas (Pieman-Anthony and Gordon-Pedder) and 

five power stations. The five power stations considered include eight 

generating units with an installed generating capacity of 893 MW (Figure 

6.2).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.2: Schematic diagram of the five-station hydropower system 

Of the five storages where water is drawn for power generation, three are 

run-of-the-river storages (Lakes Anthony, Rosebery and Pieman), while 

the other two are major storages (Lakes Mackintosh and Gordon). Run-of-

river storages have limited storage capacity and in order to avoid spilling, 

they are given priority to operate, especially during high-inflow periods. 

On the other hand, major storages can store large volumes of water, and 
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Bastyan Power Station 

Lake Pieman 
Reece Power Station 

Lake Gordon (major) 
Gordon Power Station 

  
Tasmania 
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are normally relied upon for power generation during low inflow periods. 

Details of the five storages and the associated power stations are given in 

Table 6.1.  

 

6.2.1 Problem specification 

This case system requires a total of 14 maintenance tasks to be scheduled 

once over a planning horizon of 365 days from Jan 1, 2006 (Table 6.2). The 

task IDs denoted by “Inv” are investigative tasks in which the condition 

of generators is examined prior to the actual maintenance (task IDs 

denoted by “Act”). Among all maintenance tasks, the biggest loss of 

generation capacity occurs during the upgrade of the Gordon power 

station, when all three generating units of the station are inoperable. The 

starting levels of Lake Gordon and other storages are assumed to be 60% 

and 75% full, respectively, in this problem (Stolp, S., personal 

communication, 2004). 

 

 

Table 6.1: Power station and headwater data 

Power station Tribute Mackintosh Bastyan Reece Gordon 

Number of generators 1 1 1 2 3 

Generating capacity 
of each generator 
(MW) 

83 80 80 115 140 

Maximum discharge 
(cumec) 

34 145 145 144 86 

Average efficiency 
factor (MW/cumec) 

2.42 0.55 0.55 0.8 1.62 

Headwater storage 
Lake 

Anthony 
Lake 

Mackintosh 
Lake 

Rosebery 
Lake 

Pieman 
Lake 

Gordon 

Storage capacity (106 
m3) 

22 336 51 100 10,990 
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Table 6.2: Details of maintenance tasks 

Power 
Station 

Machine 
number 

Maintenance 
type 

Task ID 

Normal 
mainte-
nance 

duration 
(days) 

Loss of 
generating 
capacity 
(MW) 

1 Investigative Tri_Inv 5 83 
Tribute 

1 Actual Tri_Act 12 83 

1 Investigative Mac_Inv 5 80 Mackin-
tosh 1 Actual Mac_Act 19 80 

1 Investigative Bst_Inv 5 80 
Bastyan 

1 Actual Bst_Act 12 80 

1 Investigative Rce#1_Inv 5 115 

1 Actual Rce#1_Act 19 115 

2 Investigative Rce#2_Inv 5 115 
Reece 

2 Actual Rce#2_Act 19 115 

1 Actual Gor#1_Act 19 140 

2 Actual Gor#2_Act 19 140 

3 Actual Gor#3_Act 19 140 Gordon 

Station 
upgrade 

Actual Gor_stn 42 420 

 

The aim of this optimisation problem is to determine a commencement 

time and duration for each maintenance task in the hydropower case 

system, such that the system reliability is maximized (Eq. 6.1) and the 

total duration shortened/deferred is minimized (Eq. 6.2), subject to a 

number of constraints. In this case study, the maximization of system 

reliability is achieved by maximizing the expected total final energy in 

storage of the two major storages at the end of the planning horizon: 

Objective 1:Max { ETFEIS(s)= EFEISMackintosh(s)+ EFEISGordon(s)}  (6.1)

where ETFEIS(s) is the expected total final energy in storage (GWh) of 

Lakes Mackintosh and Gordon associated with maintenance schedule s, at 

the end of the planning horizon; EFEISMackintosh(s) and EFEISGordon(s) are the 

expected energy in storage (GWh) of Lakes Mackintosh and Gordon, 

respectively, associated with maintenance schedule s at the end of the 

planning horizon. 

Objective 2:Min DurCuttot(s){ } (6.2)
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where the value of the total duration shortened and deferred associated 

with schedule s, DurCuttot(s), is given by Eq. 5.18, where  total_n = 14 in 

this case. 

The constraints to be satisfied are (Stolp, S., personal communication, 

2004): 

1. The earliest time a maintenance task can start is January 1 and all 

tasks should be finished by December 31.  

2. An investigative task has to finish between 4 to 6 weeks prior to the 

commencement of the actual maintenance task. 

3. There is no maintenance during the Easter, Christmas and New Year 

public holidays. 

4. The maintenance duration of all tasks can be shortened by a time 

step of 2 days. 

5. The system power demands (Figure 6.3) have to be met throughout 

the planning horizon. The total expected unserved energy (EUE) 

over the planning horizon should not be greater than 0.002% of the 

total annual energy demand. 

 

Figure 6.3: Forecasted system demand for 2006 
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6.2.2 Problem formulation 

In the ACO-PPMSO formulation, constraints are incorporated at the 

earliest possible stage during the optimisation process, using either the 

graph-based or penalty-based techniques introduced in Section 4.4. In the 

five-station case study system, constraints 1, 2, 3 and 4 are related to the 

timeframe during which maintenance tasks are allowed to commence. 

Therefore, it is more computationally effective to take these constraints 

into account during the construction of trial solutions, so that the trial 

solutions generated are feasible with regard to these constraints 

(construction graph-based technique in Section 4.4). For example, in order 

to incorporate constraints 1 and 2, the decision paths associated with 

investigative and actual tasks are dynamically updated during 

construction of each trial maintenance schedule. In the construction of a 

trial maintenance schedule, if May 18 was chosen as the commencement 

date for the actual maintenance task of the unit at Tribute power station, 

the corresponding investigative task will be dynamically assigned 

optional start days from April 1 to April 15 (Figure 6.4). It should be noted 

that if the investigative task was assigned a start time first, the optional 

start days for the corresponding actual task would be updated 

dynamically in the same way. Similarly, constraint 3 is handled by 

eliminating the optional start days associated with public holidays during 

the construction of trial solutions. Constraint 4 is addressed by allowing 

only durations that are greater than the minimum maintenance durations 

during the construction of trial maintenance schedules. 

 
 
 
 
 
 
 
 

Figure 6.4: Handling of constraints 1 and 2 

Unlike constraints 1 to 4, whether or not constraint 5 (system demand) is 

satisfied by a trial maintenance schedule is not known until the complete 

schedule has been constructed and a simulation model has been run, 

necessitating the use of penalty-based techniques in order to meet this 

constraint (see Section 4.4).  
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Adapting Eq. 4.18, the objective function used for this problem is 

comprised of the actual objective terms i.e. the expected total final energy 

in storage (ETFEIS) and the total duration cut down (DurCuttot), as well as 

an additional term to address the violation of load constraints (EUE), and 

is given by: 

OFC(s)= (cEUE ⋅ EUE(s)+ cETFEIS

ETFEIS(s)
) ⋅ DurCuttot(s)2 (6.3) 

where OFC(s) is the objective function cost ($) associated with a trial 

maintenance schedule, s; EUE(s) is the total annual expected unserved 

energy (GWh) associated with a trial maintenance schedule, s; ETFEIS(s) 

is the expected total final energy in storage (GWh) associated with a trial 

maintenance schedule, s; cEUE is the penalty cost per unit EUE ($/GWh); 

cETFEIS is the cost per unit of the inverse of ETFEIS ($GWh); DurCuttot (s) 

is the total reduction in maintenance duration (day) associated with a 

trial maintenance schedule, s due to shortening and deferral.  

The OFC can be viewed as the virtual cost associated with a trial 

maintenance schedule. It should be noted that the values of cEUE and 

cETFEIS in the objective function (Eq. 6.3) can be varied to reflect the relative 

importance of the objectives and constraints, as perceived by the decision 

maker. Hard constraints (demand constraints in this case) are usually 

assigned relatively higher costs, such that trial solutions that violate these 

constraints are more heavily penalized. It can also be seen that the greater 

the reduction in maintenance duration in a trial maintenance schedule, 

the higher the associated OFC. The values of cEUE and cETFEIS used in the 

optimisation runs for this problem were chosen to be 1000 and 10000, 

respectively. As a hard constraint, the penalty cost associated with 

violation of demand constraints (cEUE ⋅ EUE(s) in Eq. 6.3) should be much 

higher than that associated with an objective term, which is the total final 

energy in storage term (
cETFEIS

ETFEIS(s)
 in Eq. 6.3) in this case.  

The value of DurCuttot (Eq. 6.3) associated with a trial schedule can be 

easily calculated once the complete schedule has been obtained, or even 

during the construction of the schedule using Eq. 5.18. However, the 

values of expected unserved energy (EUE) and expected total final energy 

in storage (ETFEIS) associated with a trial maintenance schedule are 

calculated using a simplified version of the SYSOP (SYStems-OPeration) 
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simulation model currently used by Hydro Tasmania for the assessment 

of proposed maintenance schedules for its full system. In SYSOP, 

dispatching rules that specify the order in which storages are used for 

power generation when meeting demands are employed. For example, 

run-of-river storages that have exceeded certain storage levels are given 

higher priority during dispatch to avoid spilling. During the ACO-

PPMSO optimisation process, the trial maintenance schedule generated 

by individual ants, along with the system demand, storage inflows, and 

the initial level of storages at the start of the planning horizon are input 

into the simplified SYSOP model. The outputs of the simplified SYSOP 

model, including the expected total final energy in storage of the major 

storages and the expected unserved energy over the planning horizon, are 

used to calculate the objective function cost, OFC, associated with a trial 

maintenance schedule using Eq. 6.3. 

6.2.3 Analysis conducted 

An experiment has been conducted to assess the utility of the proposed 

ACO-PPMSO formulation for real PPMSO problems. Particular emphasis 

was given to assessing the utility of the shortening and deferral options, 

the impact of the Duration Extender local search operator and the overall 

performance of the proposed ACO-PPMSO formulation.  

 The optimisation runs in the experiment described above are performed 

on a Linux Symmetric Multi Processor Kernel (Memory: 1GB; CPU: AMD 

Athlon(tm) MP 2600+) utilizing the ACO-PPMSO program described in 

Section 4.5. The simulation model routine used in the program is a 

simplified version of the SYSOP model that caters only for the five power 

stations investigated in this case study. In order to facilitate its use within 

the ACO-PPMSO program, the simplified SYSOP model originally 

written in the PASCAL language has been translated to the Fortran 90 

language as part of this research. 

 

A. Utility of shortening and deferral options  

The impact of shortening and deferral options in the ACO-PPMSO 

formulation for real-world PPMSO problems was investigated by 

considering the following scenarios: 
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Scenario 1: All maintenance tasks must be completed at normal outage 

duration within the specified planning horizon. In other words, neither 

shortening nor deferral are allowed. 

Scenario 2: The options of shortening outage duration and deferral of 

maintenance tasks are considered. 

For both scenarios, the optimum maintenance schedules obtained as a 

result of different storage inflows were examined. The three storage 

inflow conditions tested were extracted from 80 years of historical inflow 

data at the 13th percentile (dry year), 64th percentile (intermediate year) 

and 92nd percentile (wet year) (Stolp, S., personal communication, 2004). 

The monthly average inflows of individual storages for dry, intermediate 

and wet years are shown in Figures 6.5 to 6.7.  

B. Performance of the Duration Extender local search operator 

The performance of the Duration Extender local search strategy (see 

Section 4.3.4) was examined by carrying out separate ACO runs with and 

without using the local search. The effectiveness of the Duration Extender 

was then checked using a Student’s t-test at a 5% significance level. It 

should be noted that Duration Extender is only applicable to cases where 

shortening and deferral options are considered. 

C. Overall performance of ACO-PPMSO for real-world PPMSO 

problems 

The results obtained by ACO-PPMSO were compared with those found 

by a random evaluation method and a maintenance schedule proposed by 

Hydro Tasmania practitioners based on conventional techniques and 

engineering judgment. In a random evaluation run, the number of 

maintenance schedules generated was identical to the number of 

schedules generated in an equivalent ACO run. 
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Figure 6.5: Dry year storage inflows 
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Figure 6.6: Intermediate year storage inflows 
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Figure 6.7: Wet year storage inflows 
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In order to achieve the objectives outlined above, the testing procedure 

shown in Figure 6.8 was implemented. Items A, B and C aforementioned 

were investigated at stages A, B and C in the testing procedure, 

respectively. The Max-Min Ant System (see Section 3.3.1), which was 

found to be superior to the Elitist-Ant System (see Section 3.3.1) for the 21-

unit and 22-unit case problems, was adopted for this problem.  

To minimize the impact the parameters used have on the evaluation of 

the effectiveness of the shortening and deferral options, local search and 

overall performance of the ACO-PPMSO algorithm, a wide range of ACO 

parameters (shown in the dashed box in Figure 6.8) was used to solve the 

problem. It should be noted that investigations into the effect of the 

reward factor Q (Eq. 4.23) and initial pheromone τ0 (Section 4.3.1) are not 
considered in this study, as they were found to have no impact on 

algorithm performance. The values of both α and β were set to 1.0. In 

addition, each run was repeated 30 times with different random number 

seeds in order to minimize the influence of random starting values in the 

solution space on the results obtained and to enable statistical significance 

testing of the results to be conducted. In each ACO run, a maximum of 

100,000 trial solutions were generated, where ‘an ACO run’ is defined as 

the use of a particular set of parameters (for example, m = 800; ρ = 0.9; pbest 
= 0.01) to solve the hydropower case study system maintenance 

scheduling problem, given a storage inflow condition (for example, wet 

year inflow), using a specified random number seed (for example, 8998). 

The performance of a parameter setting is then gauged by the best OFC 

obtained in each run, averaged over 30 ACO runs with different random 

number seeds.  
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Figure 6.8: Experimental procedure for the five-station hydropower plant 
maintenance scheduling optimisation case study 
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6.2.4 Results and discussion 

The results of stages A and B of the testing procedure shown in Figure 6.8 

are summarized in Table 6.3 (detailed results are shown in Appendix D). 

For each inflow condition depicted in Table 6.3, the first and second rows 

are the results for scenarios 1 and 2 of stage-A testing, respectively, while 

the third rows contain the results for stage-B testing. The results for the 

parameter sets that resulted in the best overall performance (averaged 

over 30 simulations with different random number seeds) are also shown 

in Table 6.3. The various statistics presented were calculated using the 

OFC values obtained in the 30 trials with 30 different random starting 

positions in decision variable space. It should be noted that in this 

problem, maintenance schedules that violate load constraints (i.e. 

expected unserved energy (EUE) > 0) are considered to be infeasible). 

Table 6.3: Results given by ACO-PPMSO for different inflow conditions 
investigated 

In-
flow 

Local 
search 

Avg. 
EUE 
(GWh) 

Avg. 
ETFEIS 
(GWh) 

Avg. 
DurCuttot 
(day) 

Avg. 
OFC ($) 

Avg. 
evalua
-tion 

Std 
dev. of 
OFC 

Best 
parameter 
setting {m; 

ρρρρ; pbest}* 

 131.06+ 631.80 0 131,078 76,700 2,270 
{800; 0.7; 

0.3} 

 0 542.35 34.1 22,679 84,987 546 
{1000; 0.7; 

0.01} 
Dry 

 
0 543.50 33.7 22,204 77,918 843 

{50; 0.99; 
0.3} 

 32.45+ 2523.76 0 32,455 90,241 785 
{500; 0.95; 

0.3} 

 0 2527.77 29.9 3,525 83,614 336 
{1000; 0.9; 

0.05} 
Int 

 
0 2531.65 27.1 3,115 51,784 213 

{50; 0.7; 
0.05} 

 0.00 4710.11 0 2.12 68,731 0.00 
{500; 0.3; 

0.3} 

 0 4699.33 0 2.12 51,223 0.003 
{100; 0.3; 

0.5} 
Wet 

 
0 4713.45 0 2.12 65,935 0.001 

{100; 0.3; 
0.5} 

+ Expected unserved energy (EUE) > 0 i.e. load constraints violated 
Notation: EUE: Expected unserved energy, ETFEIS: Expected total final energy in storage, DurCuttot: 

Total reduction in maintenance duration due to duration shortening and deferral of 
maintenance tasks; OFC: Objective function cost. 

* m: number of ants; (1-ρ): pheromone evaporation rate; pbest: see Eq. 4.24. 
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Scenario 1: No shortening and deferral options 

Stage-A results 

It is shown in Table 6.3 that infeasible solutions (expected unserved 

energy > 0.002% of total annual energy demand) were obtained for the 

dry and intermediate inflow conditions. Further investigations have 

shown that, given the storage inflows in dry and intermediate years, it is 

not possible to meet demand constraints if all maintenance tasks are 

performed within the given planning horizon. 

The best-found schedules obtained by ACO-PPMSO for the three inflow 

conditions investigated, as well as the associated unserved energy and 

spillage conditions, are shown in Figures 6.9 to 6.11. In order to better 

understand the optimisation process of the ACO-PPMSO algorithm, the 

objective function costs (IB-OFC), expected unserved energy (IB-EUE) and 

expected total final energy in storage (IB-ETFEIS) associated with the 

iteration-best schedules recorded throughout the runs that produced the 

schedules in Figures 6.9 to 6.11 are shown in Figures 6.12 to 6.14. 
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Figure 6.9: (a) The best-OFC schedule for wet inflow conditions and (b) the 
associated unserved energy and spillage conditions 
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Figure 6.10: (a) The best-OFC schedule for intermediate inflow conditions and 
(b) the associated unserved energy and spillage conditions 
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Figure 6.11: (a) The best-OFC schedule for dry inflow conditions and (b) the 
associated unserved energy and spillage conditions 
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Figure 6.12: (a) IB-OFC and (b) IB-ETFEIS associated with iteration-best 
schedules recorded throughout the ACO run that produced the schedule in 

Figure 6.9 (wet inflow condition) 
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Figure 6.13: (a) IB-OFC, (b) IB-EUE and (c) IB-ETFEIS associated with iteration-
best schedules recorded throughout the ACO run that produced the schedule in 

Figure 6.10  (intermediate inflow condition) 
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Figure 6.14: (a) IB-OFC, (b) IB-EUE and (c) IB-ETFEIS associated with iteration-
best schedules recorded throughout the ACO run that produced the schedule in 

Figure 6.11  (dry inflow condition) 

 

The optimized schedules for each inflow condition (Figures 6.9 to 6.11) 

were examined in relation to the rationale of the optimisation outcome. It 

was found that, given wet inflow conditions, meeting energy demand is 

not difficult and the driving force behind the optimisation process is the 

maximization of total energy in storage of the system. This is clearly 

shown in the decreasing IB-OFC values (Figure 6.12a) as a result of 

increasing IB-ETFEIS (Figure 6.12b), while the IB-EUE curve is not 

presented, as IB-EUE = 0 throughout the ACO-PPMSO run.  

It can be seen that during wet inflow conditions, maintenance tasks are 

scheduled for the early periods of the year, when the storage inflows are 

relatively lower and all storages are not full yet. The Gordon power 

station upgrade and the maintenance of its generators are performed 

during the low-demand, low-inflow periods (Jan to May) so that small 

storages can be emptied to cater for the inflows later in the year. In this 

way, the total final energy in storage of the system can be maximized.  

On the other hand, as there were no feasible schedules for both dry and 

intermediate inflow conditions, the degree of load constraint violation 
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was minimized in the optimisation runs for these scenarios. The down-

sloping IB-OFC curves for both intermediate and dry inflow conditions 

(Figures 6.13a and 6.14a) correspond closely to the decreasing IB-EUE 

values shown in Figures 6.13b and 6.14b, indicating the minimization of 

expected unserved energy as the dominant objective in these optimisation 

runs. On the other hand, maximization of the ETFEIS objective for 

intermediate and dry inflow conditions is not apparent, as indicated by 

the fluctuating, and later rather stagnant, IB-ETFEIS values recorded 

during the corresponding runs.   

It can be seen that in a dry inflow year, the run-of-river and Lake 

Mackintosh storages are available for power generation from January 

until June and are taken offline for maintenance from July to September 

(Figure 6.11a). The rationale behind this is that these smaller storages 

need to be emptied in summer (January to June) to be able to 

accommodate the much higher inflows in winter (July to September) 

without spilling when they are being maintained. In this way, these 

storages are full and able to operate at their maximum capacity when 

Gordon power station and its generators are being maintained in late 

September, which minimizes the total unserved energy over the planning 

horizon. For an intermediate inflow condition, the optimized maintenance 

schedule resembles that of the dry inflow condition, except that 

maintenance of the Gordon generators is performed before July, as the 

smaller storages are receiving sufficient inflows to meet the relatively low 

energy demand in that period.  

Stage-C results 

A schedule obtained by conventional techniques using engineering 

judgment (Stolp, S., personal communication, 2005) is shown in Figure 

6.15. It can be seen that using traditional techniques, maintenance tasks 

for the units at Gordon power station and the upgrade of the station are 

scheduled during winter, assuming that run-of-river storages are 

receiving sufficient inflows to meet energy demands within that period. 

The values of objective function cost (OFC), expected total final energy in 

storage (ETFEIS) and expected unserved energy (EUE) associated with the 

schedule obtained by engineering judgment (Figure 6.15) and random 

evaluation are compared with those obtained by ACO-PPMSO (Figures 

6.9 to 6.11) in Table 6.4. It should be noted that the ACO-PPMSO results 
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presented correspond to the best results obtained from the 30 runs with 

different random number seeds, and are therefore slightly better than the 

results presented in Table 6.3. The detailed results obtained by random 

evaluation are shown in Appendix D2. 
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Figure 6.15: Schedule obtained by engineering judgment 

 

Table 6.4: Comparison of results obtained by different methods 

 Wet Intermediate Dry 

 
EUE 

(GWh) 

ETFEIS 

(GWh) 

OFC 

($) 

EUE 

(GWh) 

ETFEIS 

(GWh) 

OFC     

($) 

EUE 

(GWh) 

ETFEIS 

(GWh) 

OFC     

($) 

R
an
d
o
m
 

ev
al
u
at
io
n

 

0.00 4,668.9 2.14 34.80 2,498.30 34,774.29 141.20 626.00 141,209 

E
n
g
in
ee
ri
n
g
 

ju
d
g
m
en
t 

0.00 4,584.28 2.18 59.44 2,571.69 59,444.00 282.64 745.90 282,653 

A
C
O
-

P
P
M
S
O
 

0.00 4,719.22 2.12 32.13 2,533.87 32,134.00 126.96 631.85 126,976 

Notations: EUE: Expected unserved energy, ETFEIS: Expected total final energy in storage, OFC: Objective 

function cost. 
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It can be seen that the OFC associated with the best schedule obtained by 

ACO-PPMSO for each of the dry, intermediate and wet inflow conditions 

is lower than those obtained with engineering judgment and random 

evaluation (Table 6.4). However, it should be noted that the schedule 

obtained by conventional techniques was proposed based on the 

maintenance scheduler’s experience on the full hydropower system, 

which might be different when applied to the simplified system 

considered in this study. In addition, the schedules obtained by ACO-

PPMSO were the outcome of optimisation assuming perfect knowledge of 

inflow conditions. Nevertheless, the results obtained highlight the 

potential of using ACO for PPMSO in light of the context of this research. 

It can be seen that the schedules obtained by random evaluation are 

inferior to those obtained using ACO-PPMSO for all three inflow 

conditions. Based on the same inflow data and number of trial solutions 

evaluated, the results thus indicate that the ACO-PPMSO algorithm is 

useful in obtaining good solutions for maintenance scheduling problems.     

Scenario 2: Options of shortening and deferral considered 

Stage-A results 

For dry and intermediate inflow conditions, it can be seen that the best-

OFC maintenance schedules obtained are feasible (Average EUE = 0) 

when the durations of some maintenance tasks are shortened (Average 

DurCuttot > 0) (last two rows of each inflow results in Table 6.3).   

The best-OFC schedules for wet, intermediate and dry inflow conditions 

are presented in Figures 6.16 to 6.18. The rationale behind these schedules 

was analysed, by taking into account storage inflows and system demand, 

as well as the rules implemented in the simulation model (SYSOP) with 

regard to the priorities of power stations being called for generation.  
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Figure 6.16: The best-OFC schedule for the wet year                                                
(EUE = 0 GWh; ETFEIS = 4718 GWh) 
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Figure 6.17: The best-OFC schedule for the intermediate year                                

(EUE = 0 GWh; ETFEIS = 2539 GWh) 
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Figure 6.18: The best-OFC schedule for the dry year                                            

(EUE = 0 GWh; ETFEIS = 544 GWh) 

 

For the wet inflow condition (Figure 6.16), neither duration shortening 

nor deferral of maintenance tasks is required, as demand constraints are 

easily satisfied. In addition, it can be seen that all maintenance tasks are 

scheduled in the first quarter of the planning horizon. All storages are 

75% full at the start of the planning horizon, and are still able to 

accommodate inflows during maintenance. By winter, when storage 

inflows are even higher, run-of-river storages are almost full, if not 

spilling, and are able to provide the relatively high demand in this period 

without having to draw down major storages (Lakes Mackintosh & 

Gordon). In this way, generation from major storages is minimized and 

the expected total energy-in-storage is maximized. It can be seen that the 

iteration-best objective function cost (IB-OFC) decreases (Figure 6.19a) as 

a result of the increasing expected total final energy in storage (IB-ETFEIS) 

(Figure 6.15b) throughout the ACO run. It should be noted that none of 

the iteration-best schedules violate the demand constraints (ie. IB-EUE = 0 

for all iterations). 
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Figure 6.19: (a) IB-OFC and (b) IB-ETFEIS associated with iteration-best 
schedules recorded throughout the ACO run that produced the maintenance 

schedule shown in Figure 6.16 (wet inflow condition) 
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For the intermediate inflow condition (Figure 6.17), the Gordon station 

upgrade task, which normally takes 42 days to complete, had to be 

shortened by 61.9% in order to satisfy demand constraints. In addition, 

most of the maintenance tasks are not scheduled in the period from April 

to August. This is because although the highest storage inflows take place 

in August, run-of-river storages are still incapable of meeting winter 

demands (May to August, Figure 6.3), therefore requiring the major 

storages for generation. Only when the demand is relatively lower in 

September and the storage inflows are still quite high, Gordon station is 

taken offline for maintenance. However, as the run-of-river storage levels 

decrease rapidly as a result of the loss of Gordon, Gordon station had to 

be brought back on-line to avoid demand shortfalls. The schedules 

obtained also indicated that the maintenance tasks for Mackintosh, 

Gordon#2 and Gordon#3 machines are scheduled in a way such that Lake 

Mackintosh is emptied before its maintenance to reduce spilling.  

The ACO optimisation process that produced the Figure 6.17 maintenance 

schedule is shown in Figure 6.20. It can be seen that the IB-OFC curve 

(Figure 6.20a) decreases in stages, mainly corresponding to the reduction 

in total outage duration shortened/deferred (Figure 6.20c). Figure 6.20c 

also illustrates that when a new minimum IB-DurCuttot is found (eg. 

Iteration 2, 43 and 52), IB-ETFEIS undergoes maximization (Figure 6.20b). 

As IB-EUE = 0 throughout the run, it can be deduced that the 

optimisation process for the intermediate inflow condition was driven 

primarily by the total duration shortened/deferred and secondarily by 

the total final energy in storage.    
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Figure 6.20: (a) IB-OFC, (b) IB-ETFEIS and (c) IB-DurCuttot associated with 
iteration-best schedules recorded throughout the ACO run that produced the 
maintenance schedule shown in Figure 6.17 (intermediate inflow condition) 

Compared to the intermediate inflow condition, the duration of the 

Gordon station upgrade task is shortened even more (by 76%) for the dry 

inflow condition (Figure 6.18). This is as expected, as the expected 

unserved energy during dry conditions is higher than that during 

intermediate inflows. Similar to the intermediate inflow condition, all 

maintenance tasks are not scheduled in winter (May-September, Figure 

6.3) when demand is the highest in a low-inflow year. Specifically, as 

inflows are exceptionally low in the Jan-Mar period (Figure 6.3), all 

storages are used to meet demand. Only in April, when storage inflows 

start to increase, are run-of-river storages fully relied on for meeting 

demand while the shortened upgrade task of Gordon station is carried 

out. In addition, the last quarter of the planning horizon is deemed to be 

the best period for maintaining the run-of-river stations, as these storages 

are already running quite low at that time. 

 The optimisation process for the dry inflow condition (Figure 6.21) is 

similar to that for the intermediate inflow condition, except that IB-EUE > 

0 for the first 11 iterations of the run that caused the high IB-OFCs at the 

beginning of the run (Figures 6.21a and b). 
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Figure 6.21: (a) IB-OFC, (b) IB-EUE, (c) IB-ETFEIS and (d) IB-DurCuttot 
associated with iteration-best schedules recorded throughout the ACO run that 

produced the maintenance schedule shown in Figure 6.18 (dry inflow 
condition) 
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Stage-B results 

The usefulness of the Duration Extender local search operator is shown to 

be statistically significant (p-value < 0.01) for both dry and intermediate 

inflow conditions when checked with an unpaired, 2-sided Student’s t-

test (calculations are shown in Appendix D5). The improvement in 

Average OFC when local search is used is mainly attributed to the 

reduction of total duration shortened and deferred (last row of each 

inflow result in Table 6.3). However, it should be noted that the local 

search strategy is only performed for iteration-best trial schedules that 

contain one or more decisions of shortening. Therefore, the local search 

was of little use, if any, during the optimisation for wet inflow conditions, 

as demand constraints are well satisfied in that scenario without the need 

for shortening and deferral of maintenance tasks. 

Stage-C results 

The best maintenance schedules obtained by ACO-PPMSO for the three 

inflow conditions are compared with those found by the random 

evaluation method. The detailed results obtained by random evaluation 

are shown in Appendix D4. Table 6.5 depicts that the results of ACO-

PPMSO are superior as indicated by the much lower objective function 

costs for all inflow conditions. In addition, as a result of having the 

shortening and deferral options available, there were no demand 

shortfalls during the intermediate and dry inflow conditions. It should be 

noted that comparison with a practitioner’s schedule is not made as 

maintenance tasks are not deferred or shortened as part of current Hydro 

Tasmania practice.  
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Table 6.5: Results obtained by different methods 

Inflow Method 
EUE 
(GWh) 

ETFEIS 
(GWh) 

DurCuttot 
(day) 

OFC ($) 

Random 0.00 520.30 44 38921.37 

Dry ACO-
PPMSO 

0.00 544.20 32 20011.77 

Random 0.00 2489.30 42 7427.71 

Intermediate ACO-
PPMSO 

0.00 2539.30 26 2870.85 

Random 0.00 4562.60 2 19.73 

Wet 
ACO-
PPMSO 

0.00 4718.37 0 2.12 

Notation: EUE: Expected unserved energy, ETFEIS: Expected total final energy in storage; 
DurCuttot: Total reduction in maintenance duration due to shortening and deferral; OFC: 
Objective function cost. 

6.2.5 Summary 

A testing procedure was carried out on a five-station hydropower 

maintenance scheduling case study. It was shown that the shortening and 

deferral options of maintenance tasks allow PPMSO problem to be solved 

practically, especially when not all maintenance tasks can be performed 

under unfavourable system conditions. In addition, the Duration Extender 

local search operator was shown to be statistically significant in 

improving the performance of ACO-PPMSO when shortening and 

deferral options are considered. Comparison with maintenance schedules 

obtained by other methods, including a random evaluation method and 

that based on conventional techniques and engineering judgments of 

maintenance schedulers, indicated that ACO-PPMSO is a competitive 

optimisation method for real-world PPMSO problems.  

It should be noted that the five-station hydro PPMSO case study provided 

a platform for the development and refinement of the ACO-PPMSO 

formulation in this research. In particular, the availability of shortening 

and deferral options as part of the ACO-PPMSO formulation is an 

outcome of extensive analysis carried out on different scenarios and 

numerous discussions with Hydro Tasmania maintenance schedulers. In 

addition, the constraints handling methods used in ACO-PPMSO were 

tested extensively and undergone repeated modifications throughout the 

investigation of this case study. 
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6.3 Full Hydro Tasmania Maintenance Scheduling Case 

Study 

6.3.1 Problem specification 

The full Hydro Tasmania case system considers an integrated system of 

38 storages (including run-of-river and major storages), 28 hydropower 

stations, 55 generating units and a total of 118 maintenance tasks to be 

performed over a planning horizon of 365 days from Jan 1, 2006. The 

maintenance scheduling problem aims to find a start date for each of the 

109 maintenance tasks shown in Table 6.7, while the commencement date 

of nine other maintenance tasks have been fixed (Table 6.6) (Stolp, S., 

personal communication, 2006). A maintenance schedule is sought such 

that expected total final energy in storage (ETFEIS) of the hydropower 

system is maximized, thermal generation (THERM) is minimized and 

total reduction in maintenance duration due to shortening and deferral 

(DurCuttot) is minimized, subject to the following constraints (Stolp, S., 

personal communication, 2006): 

1. Demand constraints: Forecasted system demand must be met (i.e. 

Expected unserved energy = 0) under specified inflow conditions. 

2. Reliability constraints: Reserve capacity = 30% of system demand at all 

times. However, violation of the constraints by a maximum of 2 days 

can be tolerated. 

3. Timeframe window constraints: Timeframe window constraints of 

individual maintenance tasks are presented under the ‘Earliest start 

date’ and ‘Latest finish date’ headings in Table 6.7. 

4. Precedence constraints: Precedence constraints are presented under 

the ‘Other constraints’ heading in Table 6.7. 

5. Completion constraints: All maintenance tasks must be completed 

within the planning horizon. 

As part of constraint 1, the forecasted system demand, as well as inflow 

conditions, are given beforehand. Based on a forecasted average demand 

of 1193.3 MW, hourly system demand is calculated by SYSOP using a 
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series of load shape functions (not shown due to confidentiality 

requirements). Due to space limitations, the daily average demand is 

presented in this thesis (Figure 6.22). A total of 77 historical system 

inflows (1924~2000) are stored in SYSOP to assess the performance of a 

given maintenance schedule.  Although daily inflows are used in SYSOP, 

the monthly average inflows from 2001 to 2005 are shown in Figure 6.23 

for illustration. The total storage inflows are the highest from June to 

October during winter in Tasmania (Figure 6.23). The water levels of 

storages in the system at the start of the planning horizon (1 Jan 2006) are 

given in Table 6.8. 

Table 6.6: Fixed-date maintenance tasks 

Station 
Task 
id 

Number of 
machines 
involved 

Machine # 
Fixed maintenance 
commencement date 

Outage 
duration 
(days) 

Cluny 33613 1 1 13-Feb-06 1 

Gordon 30630 1 2 1-Jan-06 67 

Gordon 33485 3 1 2 3 14-Jan-06 1 

Margaret 33543 7 1 2 3 4 5 6 7 9-Jan-06 2 

Meadowbank 33528 1 1 1-Jan-06 5 

Paloona 33611 1 1 30-Jan-06 1 

Reece 33530 1 2 1-Jan-06 6 

Rowallan 33539 1 1 19-Jan-06 1 

 

Table 6.7: Maintenance tasks that need to be scheduled 

Station 

Number 
of tasks 
in the 
group 

Task id 
Machine 

# 
Earliest start 

date 
Latest finish 

date 
Other 

constraints 
Optional outage 
duration (days) 

Bastyan 1 30555 1 18-Mar-06 18-Jun-06  3,0 

Bastyan 1 30556 1 21-Apr-06 24-Jul-06  5,3,0 

ButlersG 1 32095 1 1-Jan-06 31-Dec-06  16,14,12,10,8,0 

ButlersG 1 32941 1 21-Apr-06 22-May-06  12,10,8,6,0 

ButlersG 1 32111 1 23-Jun-06 31-Dec-06  5,3,0 

Catagunya 1 30139 2 1-Jan-06 10-Jul-06  5,3,0 

Catagunya 1 33628 1 1-Jan-06 31-Dec-06  2,0 

Catagunya 1 33498 1 15-Jan-06 4-Feb-06  1,0 

Catagunya 1 33578 2 5-Feb-06 26-Feb-06  2,0 

Cethana 1 33462 1 1-Jan-06 31-Dec-06  3,0 

Cethana 1 33468 1 1-Jan-06 27-Jan-06  1,0 
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Table 6.7: Maintenance tasks that need to be scheduled (cont) 

Station 

Number 
of tasks 
in the 
group 

Task id 
Machine 

# 
Earliest start 

date 
Latest finish 

date 
Other 

constraints 
Optional outage 
duration (days) 

Cluny 1 33499 1 13-Jan-06 2-Feb-06  1,0 

Devils_Gate 1 33463 1 1-Jan-06 31-Dec-06  3,0 

Devils_Gate 1 33465 1 1-Jan-06 27-Jan-06  1,0 

Echo 1 32970 1 1-Jan-06 31-Dec-06  19,17,15,13,11,0 

Echo 1 33223 1 1-Jan-06 31-Dec-06  1,0 

Echo 1 33548 1 1-Jan-06 31-Dec-06  1,0 

Fisher 1 32460 1 1-Jan-06 10-Jul-06  11,9,7,0 

Fisher 1 33459 1 1-Jan-06 31-Dec-06  3,0 

Fisher 1 33470 1 1-Jan-06 22-Jan-06  2,0 

Fisher 1 33605 1 1-Jan-06 31-Dec-06  1,0 

Gordon 1 30072 1 1-Jan-06 31-Dec-06  
213,200,190,180,170
,160,150,140,130,12

0,110,0 

Gordon 1 30773 1, 2, 3 1-Jan-06 31-Dec-06  22,20,18,16,14,12,0 

33601 1, 2, 3 1-Jan-06 31-Dec-06 

At least two 
months apart 

from 
30998,30999&

31002 

3,0 

31002 2, 3 1-Jan-06 31-Dec-06 

At least two 
months apart 

from 
30998,30999&

33601 

3,0 

30998 2, 3 1-Jan-06 31-Dec-06 

At least two 
months apart 

from 
30999,31002&

33601 

3,0 

Gordon 4 

30999 1, 2, 3 1-Jan-06 31-Dec-06 

At least two 
months apart 

from 
30998,31002&

33601 

3,0 

Gordon 2 33456 1 1-Jan-06 29-Jan-06 
Following 
33456 

2,0 

  33457 3 1-Jan-06 29-Jan-06  1,0 

JButters 1 33511 1 26-Jan-06 9-Feb-06  1,0 

Lemonthyme 1 30553 1 1-Jan-06 19-Jul-06  14,12,10,8,0 

Lemonthyme 1 33461 1 1-Jan-06 31-Dec-06  4,2,0 

Lemonthyme 1 33467 1 1-Jan-06 27-Jan-06  1,0 

32279 1 20-Jan-06 24-Apr-06 
Precedes 
33592 

5,3,0 

Liapootah 2 

33592 1 25-Apr-06 25-Jul-06  
26,24,22,20,18,16,14

,0 
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Table 6.7: Maintenance tasks that need to be scheduled (cont) 

Station 

Number 
of tasks 
in the 
group 

Task id 
Machine 

# 
Earliest start 

date 
Latest finish 

date 
Other 

constraints 
Optional outage 
duration (days) 

33625 1 1-Jan-06 31-Dec-06  1,0 

33626 2 1-Jan-06 31-Dec-06 
Following 
33625 

1,0 Liapootah 3 

33627 3 1-Jan-06 31-Dec-06 
Following 
33626 

1,0 

33480 3 1-Jan-06 27-Jan-06  1,0 

Liapootah 2 
33481 1 1-Jan-06 27-Jan-06 

Following 
33480 

1,0 

Liapootah 1 33551 1 1-Jan-06 27-Jan-06  1,0 

Liapootah 1 33579 2 7-Feb-06 27-Feb-06  1,0 

Mackintosh 1 33474 1 1-Jan-06 28-Jan-06  1,0 

Meadowbank 1 30134 1 1-Jan-06 11-Jul-06  12,10,8,6,0 

Meadowbank 1 33505 1 1-Jan-06 27-Jan-06  1,0 

Meadowbank 1 33600 1 13-Jan-06 27-Jan-06  1,0 

Paloona 1 30560 1 1-Jan-06 31-Dec-06  
26,24,22,20,18,16,14

,0 

Paloona 1 30558 1 1-Jan-06 31-Dec-06  5,3,0 

Paloona 1 30557 1 1-Jan-06 31-Dec-06  3,0 

Paloona 1 33464 1 1-Jan-06 31-Dec-06  3,0 

Paloona 1 33466 1 1-Jan-06 27-Jan-06  1,0 

Poatina 1 32512 2 7-Feb-06 28-Sep-06  
54,50,46,42,38,34,30

,0 

Poatina 1 30185 6 20-May-06 10-Dec-06  
26,24,22,20,18,16,14

,0 

Poatina 1 31446 3 1-Jan-06 31-Dec-06  
54,50,46,42,38,34,30

,0 

Poatina 1 33473 2 1-Jan-06 31-Dec-06  16,14,12,10,8,0 

Poatina 1 33559 1 20-Jan-06 12-Feb-06  4,2,0 

Poatina 1 33285 4 1-Jan-06 29-Jan-06  3,0 

Poatina 1 33286 5 1-Jan-06 28-Jan-06  2,0 

Poatina 1 33612 3 5-Feb-06 26-Feb-06  2,0 

Reece 1 33555 1 1-Jan-06 31-Jan-06  1,0 

Repulse 1 32967 1 1-Jan-06 20-May-06  21,19,17,15,13,11,0 

Repulse 1 33614 1 1-Jan-06 14-Jan-06  1,0 

Repulse 1 33563 1 2-Feb-06 16-Feb-06  1,0 

Rowallan 1 33469 1 1-Jan-06 27-Jan-06  1,0 

Rowallan 1 33460 1 1-Jan-06 31-Dec-06  3,0 
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Table 6.7: Maintenance tasks that need to be scheduled (cont) 

Station 

Number 
of tasks 
in the 
group 

Task id 
Machine 

# 
Earliest start 

date 
Latest finish 

date 
Other 

constraints 
Optional outage 
duration (days) 

30792 1, 2, 3, 4 1-Jan-06 31-Dec-06 
at least 10 

months apart 
from 30793 

5,3,0 

Tarraleah 2 

30793 1, 2, 3, 4 1-Jan-06 31-Dec-06 
at least 10 

months apart 
from 30792 

6,4,0 

Tarraleah 1 30076 5 6-Mar-06 11-Dec-06  
102,100,90,80,70,60,

50,0 

33444 1, 2 1-Jan-06 31-Jan-06  1,0 

33446 3 1-Jan-06 31-Jan-06 
following 
33444 

1,0 

33450 6 1-Jan-06 28-Jan-06  2,0 

33447 2 1-Jan-06 28-Jan-06 
following 
33450 

1,0 

Tarraleah 5 

33448 3 1-Jan-06 28-Jan-06 
following 
33447 

1,0 

33449 5 1-Jan-06 27-Jan-06  1,0 

Tarraleah 2 
32981 1 1-Jan-06 27-Jan-06 

Following 
33449 

1,0 

Tarraleah 1 32939 2 1-Jan-06 31-Dec-06  4,2,0 

Tarraleah 1 32940 1 1-Jan-06 31-Dec-06  5,3,0 

Tarraleah 1 33550 6 1-Jan-06 21-Jan-06  1,0 

Tarraleah 1 33598 6 22-Jan-06 11-Feb-06  1,0 

Tarraleah 1 33599 4 23-Jan-06 12-Feb-06  1,0 

Trevallyn 1 33204 4 1-Jan-06 31-Dec-06  
30,28,26,24,22,20,18

,16,0 

Trevallyn 1 30179 1 1-Jan-06 31-Dec-06  
29,27,25,23,21,19,17

,15,0 

Trevallyn 1 32799 1 1-Jan-06 31-Dec-06  19,17,15,13,11,0 

Trevallyn 1 33609 4 1-Jan-06 31-Dec-06  2,0 

Trevallyn 1 33617 3 1-Jan-06 1-Mar-06  2,0 

Trevallyn 1 33624 4 1-Jan-06 31-Dec-06  1,0 

Tribute 1 30552 1 1-Jan-06 31-Dec-06  
27,25,23,21,19,17,15

,0 

Tribute 1 33526 1 1-Jan-06 31-Jan-06  1,0 

Tungatinah 1 30523 
1, 2, 3, 4, 

5 
1-Jan-06 31-Dec-06  

44,42,40,38,36,34,32
,30,28,26,24,22 

Tungatinah 1 30518 1 1-Jan-06 31-Dec-06  28,24,20,16,14,0 

Tungatinah 1 30528 1 1-Jan-06 31-Dec-06  91,80,70,60,50,40,0 

Tungatinah 1 30527 2 1-Jan-06 31-Dec-06  90,80,70,60,50,40,0 

Tungatinah 1 30961 3 1-Jan-06 31-Dec-06  
126,120,110,100,90,

80,70,60,0 

Tungatinah 1 30519 2 1-Jan-06 31-Dec-06  92,80,70,60,50,40,0 
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Table 6.7: Maintenance tasks that need to be scheduled (cont) 

Station 

Number 
of tasks 
in the 
group 

Task id 
Machine 

# 
Earliest start 

date 
Latest finish 

date 
Other 

constraints 
Optional outage 
duration (days) 

Tungatinah 1 30962 4 1-Jan-06 31-Dec-06  61,50,40,30,0 

Tungatinah 1 33081 5 9-May-06 9-Nov-06  5,3,0 

Tungatinah 1 33079 2 23-Jun-06 31-Dec-06  5,3,0 

Tungatinah 1 33452 3 1-Jan-06 27-Jan-06  1,0 

Tungatinah 1 33451 5 10-Jan-06 24-Jan-06  1,0 

Tungatinah 1 33573 1 27-Jan-06 10-Feb-06  1,0 

Tungatinah 1 33597 4 20-Feb-06 6-Mar-06  1,0 

Wayatinah 1 30297 2 1-Jan-06 10-Jul-06  5,3,0 

Wayatinah 1 30298 3 10-Jan-06 13-Jul-06  5,3,0 

Wayatinah 1 33482 2 1-Jan-06 27-Jan-06  1,0 

Wayatinah 1 33522 2 1-Jan-06 31-Dec-06  1,0 

Wayatinah 1 33564 1 29-Jan-06 18-Feb-06  1,0 

Wayatinah 1 33581 3 13-Feb-06 5-Mar-06  1,0 

Wilmot 1 30133 1 1-Jan-06 31-Dec-06  
76,72,68,64,60,56,52

,48,44,40,0 

Wilmot 1 33569 1 1-Jan-06 31-Dec-06  1,0 
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Figure 6.22: Forecasted 2006 daily average demand for Hydro Tasmania case study 
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Figure 6.23: Historical total system inflows for 2001 ~ 2005 (monthly average) 
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 Table 6.8: Storage levels on 1 Jan 2006 

Storage cumec.days 

L_STCLAIR 301.5 

L_KWILLIAM 6022.5 

DERWENT_PUMPS_STORE 0 

MOSSY_MARSH 0 

L_ECHO 2919.8 

DEE_LAG 4.2 

BRONTE_LAG 137.9 

BRADYS_L 246.8 

L_BINNEY 157 

TUNGATINAH_LAG 44.9 

L_LIAPOOTAH 6.8 

WAYATINAH_LAG 51.3 

L_CATAGUNYA 31.6 

L_REPULSE 46.9 

CLUNY_LAG 31.4 

MEADOWBANK_L 318.3 

ARTHURS_L 3881.4 

TODS_FOREBAY 0 

GREAT_LAKE 11506.9 

L_TREVALLYN 77 

L_MACKENZIE 135.1 

FISHER_FOREBAY 0 

L_ROWALLAN 1350.4 

L_PARANGANA 14.2 

L_GAIRDNER 37 

L_CETHANA 199.1 

L_BARRINGTON 353.9 

L_PALOONA 25.6 

L_PEDDER 2140.1 

L_GORDON 53509.1 

L_NEWTON 18.2 

L_PLIMSOLL 201.8 

L_MURCHISON 629.5 

L_MACKINTOSH 3149.5 

L_ROSEBERY 563.9 

L_PIEMAN 1089.7 

L_MARGARET 136.1 

L_BURBURY 4866.9 
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6.3.2 Problem formulation 

The constraints of this case study are addressed using either the graph-

based technique or the penalty-based technique introduced in Section 4.4. 

The timeframe window constraints and precedence constraints are 

addressed using the graph-based technique during construction of trial 

solutions, while demand constraints, reliability constraints and 

completion constraints are handled by the penalty-based technique after 

the violation of these constraints have been calculated by the SYSOP 

simulation model. Adapting Eq. 4.18, the objective function used by ACO-

PPMSO includes all objective terms and the penalty associated with 

violation of constraints addressed by the penalty-based technique. The 

objective function used for this case study is therefore given by: 

The values of DurCuttot(s) and dev(s/s0) associated with a trial schedule, s, 

can be calculated easily given a partially-completed or a complete 

schedule, given by Eqs 5.18 and 6.5, respectively: 

where startn(.) and chdurn(.) are the start date and chosen duration (day) of 

maintenance task dn associated with the schedule denoted in the bracket. 

On the other hand, the values of ETFEIS and ResVio (Eq. 6.4) can only be 

calculated by the SYSOP simulation model once a complete maintenance 

OFC(s)= cETFEIS

ETFEIS(s)
+ cshort ∗ DurCuttot(s)+ cres∗ Re sVio(s)+

cdev∗ dev(s / s0)

 (6.4) 

where OFC(s) is the objective function cost ($) associated with a trial 

maintenance schedule, s; ETFEIS(s) is the expected total final energy in 

storage (GWh) associated with a trial maintenance schedule, s; 

DurCuttot(s) is the total reduction in maintenance duration due to 

shortening and deferral (day) associated with a trial maintenance 

schedule, s; ResVio(s) is the violation of reserve constraints (day) 

associated with a trial maintenance schedule, s; dev(s/s0) is the total 

deviation (day) of a maintenance schedule, s, from an original schedule, 

s0; cETFEIS, cshort, cres and cdev are the weights given to ETFEIS ($MWh), 

DurCuttot ($/day), ResVio ($/day) and dev ($/day). 

dev(s / s0 ) = startn (s)+ chdurn(s)( )− startn (s0 )+ chdurn (s0 )( )
n=1

total _ n

∑  (6.5) 
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schedule has been obtained. ETFEIS is the sum of final energy in storage 

of all major storages in the system. It should be noted that thermal 

generation throughout the planning horizon is dictated by the overall 

position of storages in the system, rather than the scheduling of 

maintenance tasks, thus eliminating the need for thermal generation to be 

included in the objective function (Eq. 6.4). 

 

 

 

 

 

 

 

 

 

 

Figure 6.24: Optimisation runs for Hydro Tasmania system 

6.3.3 Analysis conducted 

In order to further evaluate the utility of the proposed ACO-PPMSO 

approach and to test the impact of changed conditions on the 

maintenance schedules obtained, four scenarios commonly encountered 

during maintenance scheduling are considered (see Figure 6.24). 

6.3.3.1 Scenario A: Routine maintenance 

In scenario A, the decision maker aims to find an optimum schedule for 

the maintenance tasks shown in Tables 6.6 and 6.7, given the forecasted 

Scenario A 

• Routine 
maintenance 
scheduling 

• 5 different search 
starting positions 

Scenario B 

• Forecasted demand 
increased by 5% 

• Runs with and 
without shortening 
and deferral options  

• Local search using 
the 
Duration_Extender 
operator is utilized 

Scenario C 

• Unavailability of 
Gordon M1 machine 
throughout the 
planning horizon 

Scenario D 

• Given an optimized schedule from scenario-A 
run 

• Late return of Tungatinah station outage by 8 
weeks 

• Review of schedule required 

• Run 1: Find a schedule that deviates least from 
the original schedule 

• Run 2: Find a new schedule according to 
updated condition (without considering 
deviation)   

Hydro Tasmania Case Study 

Best-OFC schedule 
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demand (Figure 6.22). Each trial maintenance schedule is assessed using 

the 77 historical system inflows specified in Section 6.3.1. In order to check 

the sensitivity of the optimisation outcome to different starting positions 

within the problem search space, optimisation runs are carried out using 

different random number seeds. However, due to the long run-time 

(approximately three minutes) taken for each trial solution to be 

evaluated by the simulation model, only five runs were considered. It 

should be noted that in this scenario, options of shortening and deferral of 

maintenance tasks are not considered.  

6.3.3.2 Scenario B: Increased system demand 

In scenario B, the average system demand used in scenario A is increased 

by 5% due to population growth.  As the demand constraints are now 

higher, the optimized schedule found by the ACO-PPMSO algorithm may 

not be feasible. Therefore, two optimisation runs are performed, one with 

and one without considering shortening and deferral options. For the run 

in which shortening and deferral options are considered, optional 

durations available for maintenance tasks to be scheduled are given in 

Figure 6.7. 

6.3.3.3 Scenario C: Loss of a Gordon machine 

Scenario C models the loss of the Gordon M1 generator throughout the 

planning horizon. As Gordon is one of the major stations of the Hydro 

Tasmania system, the unavailability of a Gordon machine essentially 

represents the loss of a portion of the power system generating capacity. 

As the forecasted system demand remains unchanged, the loss of 

generating capacity may affect the ability of the system to meet all of the 

hard constraints listed in Section 6.3.1. In this case, the decision maker of 

Hydro Tasmania may be interested in finding a good maintenance 

schedule that satisfies the tighter-than-usual hard constraints. An 

optimisation run using ACO-PPMSO is performed to find the best 

schedule available, given such adverse system conditions.  

6.3.3.4 Scenario D: Late return of Tungatinah station 

As part of this scenario, it is assumed that the best schedule obtained as a 

result of the scenario-A run is adopted by the decision maker. It is also 

assumed that two weeks into the Tungatinah station upgrade (Task id: 
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30523), the decision maker is informed that an extra eight weeks is 

required to complete the task. In this scenario, the utility of the original 

schedule (the one provided by the scenario-A run) is examined, taking 

into account the late return of Tungatinah station by eight weeks.  

Late return of generating machines from maintenance is a common 

scenario in maintenance scheduling. As the consequence of such a 

scenario is a loss of the system generating capacity, the original (existing) 

maintenance schedule may need to be changed to ensure hard constraints 

are satisfied. However, disruptions to an existing schedule are not 

favorable, as high costs may incur as a result of changes to arrangements 

(such as personpower and machines) that have been made for some 

maintenance tasks. In view of this, a further scenario was conducted to 

determine if system reliability could be improved with minimal 

disruption to the original schedule. As a basis of comparison, another 

optimisation run was conducted to determine the schedule that results in 

the best system reliability without considering the original schedule. In 

order to achieve this, the following runs were carried out using the ACO-

PPMSO algorithm:  

Review run: A review optimisation run was performed using the ACO-

PPMSO algorithm was performed. In addition to meeting the objectives 

and constraints specified previously, an optimum schedule that deviates 

the least from the original schedule was obtained.  

New run: A new optimisation run was performed to find an optimum 

schedule using updated maintenance task details, in which the extended 

outage duration of the Tungatinah station maintenance was specified. It 

should be noted that the deviation from the start times contained in the 

original schedule was not taken into account in this run. The date the 

decision maker was informed about the late return was used as the start 

date of the planning horizon for this run. The water levels of storages in 

the system were assumed to be identical to those on 1 Jan 2006 problem 

(Stolp, S., personal communication, 2006).   

 The parameter settings used for the runs in this case study (Table 6.9) 

were derived from the author’s experience based on the outcomes of the 

sensitivity analysis performed for previous case studies.   
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Table 6.9: Parameters for optimisation runs 

 

6.3.4 Results and discussion 

The results obtained by ACO-PPMSO for scenarios A, B, C and D are 

summarized in Table 6.10. In the table, the objective values and 

satisfaction of various constraints associated with the best schedules are 

given. 

6.3.4.1 Scenario A 

The best schedule obtained by the five ACO-PPMSO runs for scenario A 

(referred to as the ‘ACO schedule-A’ hereafter) is tabulated in Table 6.11 

and plotted in Figure 6.25. The schedule is compared to an actual 

schedule used by Hydro Tasmania (referred to as the ‘Hydro schedule’ 

hereafter), which was derived based on many years experience of the 

system (Table 6.11 and Figure 6.26). The total final energy in storage, total 

duration shortened/deferred, thermal generation and the satisfaction of 

various constraints associated with the two schedules are compared in 

Table 6.10.  

 

 

 

Parameter Value 

Number of ants, m 100 

1-pheromone evaporate rate, 1-r 0.8 

pbest 0.05 

Initial pheromone level, t0 1000 units 

Reward factor, Q 100 units/$ 

Weight given to the violation of reliability constraint, cresvio $200/day 

Weight given to expected total final energy in storage, cETFEIS $1000 per 1/MWy 

Weight given to the total shortened/deferred duration, cshort $1/day 

Weight given to the total deviation from an original schedule, cdev $0.5/day 
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New run: 
Deviation from 
original schedule 
NOT considered 

779.97 

N/A 

2712 

0 

1 

Scenario D 
Late return of Tungatinah station 

Review run: 
Deviation from 
original schedule 

considered 

778.97 

N/A 

35 

0 

2 

Scenario C 
Unavailability 
of Gordon M1 
machine 

- 

745.45 

N/A 

N/A 

0 

1 

Shortening and 
deferral 
options 

considered 

700.56 

99 

N/A 

0 

0 

Scenario B 
Demand increase 

Without 
shortening 
and deferral 
options 

701.53 

N/A 

N/A 

0.046 

5 

ACO 
schedule-A 

745.17 

N/A 

N/A 

0 

0 

Scenario A 
Routine maintenance 

Hydro 
schedule 

742.39 

N/A 

N/A 

0 

1 

 
 

Expected total 
final energy in 
storage (MWy) 

Total duration 
shortened/de-
ferred (day) 

Total 
deviation from 

original 
schedule (day) 

Expected 
unserved 

energy (MWy) 

Violation of 
reserve 

constraints 
(days) 

Table 6.10: Summary of results for the Full Hydro Tasmania case 

 
 

Objectives 

Constraints 
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Table 6.11: The schedules proposed by ACO (^) and Hydro Tasmania (^^) 

 
^   TFEIS = 745.174 MWY; Violation of reserve constraints  = 0 days; Thermal generation = 130.69 (77 inflows) 

^^ TFEIS =  742.39 MWy; Violation of reserve constraints  = 1 day; Thermal generation = 130.44 MW (77 inflows) 
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Table 6.11: The schedules proposed by ACO (^) and Hydro Tasmania (^^) (cont) 
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The schedules proposed by ACO (^) and Hydro Tasmania (^^) (cont) 
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The schedules proposed by ACO (^) and Hydro Tasmania (^^) (cont) 
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The schedules proposed by ACO (^) and Hydro Tasmania (^^) (cont) 
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The schedules proposed by ACO (^) and Hydro Tasmania (^^) (cont) 
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The schedules proposed by ACO (^) and Hydro Tasmania (^^) (cont) 
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The schedules proposed by ACO (^) and Hydro Tasmania (^^) (cont) 
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The schedules proposed by ACO (^) and Hydro Tasmania (^^) (cont) 
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The schedules proposed by ACO (^) and Hydro Tasmania (^^) (cont) 

 
      



C
h
a
p
te
r 6

 H
yd
ro
e
le
ctric P

o
w
e
r C

a
se
 S
tu
d
ie
s 

 
 

P
a
g
e
 2
2
5
 

 

The schedules proposed by ACO (^) and Hydro Tasmania (^^) (cont) 

 
     



C
h
a
p
te
r 6

 H
y
d
ro
e
le
ctric P

o
w
e
r C

a
se
 S
tu
d
ie
s 

P
a
g
e
 2
2
6
 

 

The schedules proposed by ACO (^) and Hydro Tasmania (^^) (cont) 
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Figure 6.25: The ACO schedule-A (plotted) 
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Figure 6.25 The ACO schedule-A (plotted) (cont) 
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Figure 6.25 The ACO schedule-A (plotted) (cont) 
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Figure 6.26: The Hydro schedule (plotted) 
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Figure 6.26 The Hydro schedule (plotted) (cont) 
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Figure 6.26 The Hydro schedule (plotted) (cont) 
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An assessment function (Eq. 6.6) normally utilized by Hydro Tasmania 

for routine maintenance scheduling is adopted to compare the Hydro and 

ACO schedules. The assessment function calculates a real-dollar cost 

based on the thermal generation profile over the planning horizon, as well 

as the expected total final energy in storage associated with a maintenance 

schedule, and is given by: 

 where Cost(s) is a real-dollar cost ($) associated with maintenance 

schedule s; THERMmth(s) is the average thermal generation (MW) per 

month mth associated with maintenance schedule s, and ETFEIS(s) is the 

expected total final energy in storage (MWy) of the power system 

associated with maintenance schedule s. In this case study, the cost of 

thermal generation is estimated to be $50 per MWh, while the value of 

energy in storage is $25 per MWh problem (Stolp, S., personal 

communication, 2006). 730 and 8760 are constants for the conversion of 

the energy term from Megawatt-month (MWm) to Megawatt-hour (MWh) 

and Megawatt-year (MWy) to MWh, respectively.  

The objective function values and satisfaction of constraints associated 

with the ACO and Hydro schedules presented in Table 6.10 are repeated 

in Table 6.12. In addition, the costs associated with the schedules 

calculated using Eq. 6.6, as well as the monthly average thermal 

generation used for the cost calculations, are presented (Table 6.12). A 

negative cost given by Eq. 6.6 can be seen as a profit associated with a 

maintenance schedule. A comparison between the costs given by the two 

schedules reveals that a saving of over $500,000 could be achieved by 

using the ACO schedule over the Hydro schedule, based on the given 

information about the case study system. The encouraging results 

obtained by the ACO-PPMSO algorithm indicate its potential for being a 

useful maintenance scheduling tool.   

 

 

 

Cost(s)= THERMmth(s)
mth= Jan

Dec

∑ ∗ 730∗ $50− ETFEIS(s)∗ 8760∗ $25 (6.6) 
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Table 6.12: Objective values and constraint satisfaction associated with the ACO 
and the Hydro schedules 

 

Table 6.12 reveals that the $500,000 savings achieved when ACO 

schedule-A is used instead of the Hydro schedule can mainly be 

attributed to the higher total final energy in storage associated with the 

schedule obtained by ACO-PPMSO. In order to further investigate this, 

the levels of various major storages at the end of planning horizon 

associated with the ACO and Hydro schedules are shown in Table 6.13, in 

which storages are given in decreasing order of full supply levels. Full 

Supply Level (FSL) is the volume that can be stored between the crest 

Criteria 
Hydro 
schedule 

ACO 
schedule-A 

Expected total final energy in 
storage (MWy) 

742.39 745.17 

Total duration shortened/deferred 
(day) 

0 0 

Jan 189.8 193.1 

Feb 197.4 197.0 

Mar 194.5 194.1 

Apr 176.1 176.5 

May 143.0 145.3 

Jun 116.4 115.3 

Jul 99.2 99.5 

Aug 77.8 78.4 

Sep 75.0 76.0 

Oct 81.9 81.9 

Nov 106.1 105.1 

Objectives 

Monthly average 
thermal generation 
(MW) 

Dec 112.9 110.9 

Expected unserved energy (MWy) 0 0 

Constraints 
Violation of reserve constraints 
(day) 

1 0 

 Cost ($) using Eq. 6.6 -1.053 x 108 -1.058 x 108 
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level of the spillway and the highest level of the invert of the lowest outlet 

used for power generation purposes (Hydro Tasmania). In other words, 

storages with higher FSLs can store larger amounts of water for the 

purpose of power generation. It can be seen from Table 6.13 that the final 

levels of the two largest storages of the system associated with the ACO 

schedule are higher (bolded) than those of the Hydro schedule. In 

particular, the difference of levels in Gordon storage between the two 

schedules is the most apparent (0.87% of 127186.0 cumec.days).  

† Full Supply Level (FSL) is the volume that can be stored between the crest level of the spillway 

and the highest level of the invert of the lowest outlet used for power generation purposes (Hydro 

Tasmania).   

 The three major Gordon outages take 67, 213 and 22 days, respectively. 

The two former outages involve machine M1 and M2, respectively, while 

the whole Gordon station is taken offline for the latter outage. The M1-

machine outage is fixed to commence from Jan 1 to Mar 8, thus the outage 

periods of the other two maintenance tasks are critical in determining the 

final energy in storage of Lake Gordon. In the Hydro schedule, the M1-

outage (213 days) takes place from June to December and mid-October to 

early November, which conincides with the timing of the station-outage, 

which occurs from mid-October to early November. While the timing of 

the station-outage period for Gordon associated with the ACO schedule is 

similar to that of the Hydro schedule, the M1-outage takes place from 

January to early August. The impact of the placement of the two tasks 

within the planning horizon on the total final energy in storage is 

investigated, taking into account the profiles of system demand (Figure 

Table 6.13: Levels of major storages at the end of planning horizon 
associated with the ACO and Hydro schedules 

Major Storages 
FSL† 

(cumec.days) 
ACO schedule-A 

(% FSL†) 
Hydro schedule 

(% FSL†) 

Lakes Gordon & Pedder 127186.0 62.03 61.10 

Great Lake 35455.0 34.71 34.63 

Lake King William 6179.6 80.37 80.60 

Lake Echo 5912.9 72.85 74.35 

Lake Burbury 4696.0 62.84 64.99 

Lake Mackintosh 3163.9 70.68 74.44 

Lake Rowallan 1396.3 59.84 59.46 

Lake Murchison 724.6 37.36 38.85 
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6.22) and storage inflow (Figure 6.23), as well as the rules implemented in 

the SYSOP simulation model. 

The difference between the Lake Gordon energy in storage associated 

with the ACO schedule and that of the Hydro schedules at the end of 

month mth are given by: 

where EEIS_Gordmth(ACO) is the expected energy of storage (%FSL) of 

Lake Gordon at the end of month mth associated with the ACO schedule; 

EEIS_Gordmth(HYDRO) is the expected energy of storage (%FSL) of Lake 

Gordon at the end of month mth associated with Hydro schedule. 

The values of ∆EEIS_Gordmth for mth = Jan, Feb, …, Dec are shown in 

Figure 6.27. It can be seen that the two largest increments of 

∆EEIS_Gordmth values occur in February and November, corresponding to 

the M2-machine and station outages that commence from January and 

August, respectively. It should be noted that the level of a storage 

increases when one or more generating machines undergo maintenance 

and are not being used for power generation. An investigation into the 

spillage conditions reveals that due to the Gordon M2-machine outage 

that takes place from January to August, run-of-river storages were drawn 

down for power generation, allowing more capacity for higher winter 

inflows. In this way, spillage occurs at the run-of-river storages, thus 

minimizing the total spills. Consequently, smaller portions of system 

demands are met by major storages, such as Lakes Gordon, Lake Pedder 

and Great Lake when the ACO schedule is used. In other words, the 

schedule obtained by ACO-PPMSO is optimized in a way such that the 

run-of-river generation is maximized in order to minimize the need for 

drawing down major storages, thus maximizing total final energy in 

storage. 

 

 

 

 

 ∆EEIS_Gordmth = EEIS_Gordmth(ACO) - EEIS_Gordmth(HYDRO) (6.7) 
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 It was also found that the higher final energy in storage of Lake Gordon 

associated with the ACO schedule is due to its station maintenance in 

November. In the Hydro schedule, the station maintenance is scheduled 

to coincide with the M2-machine outage (Jun 2 to Dec 31). Consequently, 

the total outage duration of Gordon power station, including machine and 

station maintenance, associated with the ACO schedule is longer than that 

of the Hydro schedule. As storage level increases during maintenance, the 

ACO schedule is found to be more effective in maximizing energy in 

storage than the Hydro schedule. 

The behaviour of ACO-PPMSO in solving the Hydro Tasmania case study 

system can be understood from Figure 6.28a, which plots the iteration-

best objective function cost (IB-OFC) recorded throughout the five ACO-

PPMSO runs (using different random number seeds). Due to different 

starting positions in the problem search space, the IB-OFC curves given 

by the five optimisation runs are not identical. However, the overall 

trends of the curves are very similar, indicating a consistent performance 

of ACO-PPMSO, regardless of starting positions in the problem search 

space.  

In order to gain a better understanding of the optimisation process, an IB-

OFCavg curve is obtained by averaging the best objective function cost 
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Figure 6.27: Difference between Lake Gordon end-of-month energy in storage 

(%FSL) associated with ACO and Hydro schedules 
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given by the five optimisation runs in each iteration. The expected 

unserved energy (EUE), reserve constraints violation (ResVio), expected 

total final energy in storage (ETFEIS) and total reduction in maintenance 

duration due to shortening and deferral (DurCuttot) associated with 

iteration-best schedules are plotted in Figures 6.29 to 6.32. The values 

presented in the plots are the average given by the five random number 

seed runs. They are referred to as the IB-EUEavg (Figure 6.29), IB-ResVioavg 

(Figure 6.30), IB-DurCutavg  (Figure 6.31) and IB-ETFEISavg  (Figure 6.32) 

curves, respectively.  

Figure 6.28a indicates that the IB-OFCavg value of the first 20 iterations of 

the runs oscillate at significantly higher costs (greater than $1000) than 

those of later iterations. The oscillations of the IB-OFC values are 

attributed to the random search of the ACO algorithm at the earlier stages 

of the run before the promising solution components are marked with 

pheromone. The relatively high IB-OFC values during this stage are due 

to the high penalty costs associated with infeasible trial schedules. It can 

be seen that no feasible trial schedule with respect to all hard constraints 

(one that satisfies demand constraints, reliability constraints and are free 

from shortening and deferral decisions) is found until around iteration 35 

(Figures 6.29 to 6.31). For the same reason, the IB-ETFEISavg values of the 

first 20 iterations oscillate with a relatively large amplitude, and the 

maximization of ETFEIS becomes apparent from iteration 35 onwards, 

when feasible solutions have been found. It should also be noted that 

violation of completion constraints  (trial schedules that contain 

shortening and deferral decisions) still exist, even though shortening and 

deferral options are not available in this case. Depending on the order in 

which maintenance tasks are considered, implementation of hard 

constraints using the construction-graph method (Section 4.4) can impede 

the scheduling of some maintenance tasks within the planning horizon.  

Beyond iteration 35, the optimisation runs entered a stage where all 

iteration-best schedules found are feasible and the OFCs associated with 

these schedules are effectively the virtual costs derived from the ETFEIS 

associated with these schedules. Driven solely by the maximization of 

ETFEIS (Figure 6.32), the IB-OFC values during this stage improve at a 

much slower rate than those of earlier iterations (Figure 6.28b). However, 

it should be noted that not all trial schedules constructed at this stage are 
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feasible. This is illustrated in Figure 6.33 where infeasibility ratios (see Eq. 

5.20 for definition) are greater than zero throughout the runs. 

On average, the computation time required for each run (10,000 

evaluations) is approximately 48 hours on a Linux Symmetric Multi 

Processor Kernel (Memory: 1GB; CPU: AMD Athlon(tm) MP 2600+).  
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Figure 6.28: Objective function cost associated with iteration-best schedules (a) 
Iterations 1 to 100 and (b) Iterations 41 to 100 
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Figure 6.29: Averaged expected unserved energy (IB-EUEavg) associated with 

iteration-best schedules 
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Figure 6.30: Averaged violation of reliability constraints (IB-ResVioavg) associated 

with iteration-best schedules 
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Figure 6.31: Averaged total reduction in maintenance duration due to shortening 

and deferral (IB-DurCutavg) associated with iteration-best schedules 

730

732

734

736

738

740

742

744

746

748

1 11 21 31 41 51 61 71 81 91

Iteration

E
ne

rg
y 

(M
W

y)

 
Figure 6.32: Averaged expected total final energy in storage (IB-ETFEISavg) 

associated with iteration-best schedules 
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6.3.4.2 Scenario B 

As a result of the increased demand, the best schedule found by ACO-

PPMSO is infeasible (EUE > 0, ResVio = 5 days, Table 6.10) if all 

maintenance tasks must be completed within the planning horizon. On 

the other hand, if the options of shortening and deferral of maintenance 

tasks are considered, a feasible solution is obtained under the condition 

that a total of 99 days of outage is shortened/deferred (Table 6.10). It is 

clearly seen that the schedule obtained when shortening and deferral 

options are considered is more realistic, as demand shortfalls should be 

avoided in power systems, while maintenance tasks can be shortened by 

employing more staff or deferring the task to the next planning horizon. 

In the case of a 5% increase of demand, which is likely to occur as 

population grows, it is more practical to incorporate shortening and 

deferral options when scheduling for maintenance.  

In addition, it can be seen that as demand increases, the expected total 

final energy in storage associated with the schedule obtained is lower, as a 

result of increased water usage for meeting the higher demand. 

The behaviour of ACO-PPMSO in the scenario-B run when shortening 

and deferral were not considered is also examined. The IB-OFC, which 

improves in steps from around iterations 40 to 140 (Figure 6.34), acquires 
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Figure 6.33: Infeasibility ratio for scenario-A runs 
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the form of the IB-ResVio curve (Figure 6.35), as the main driver of the 

optimisation run during that stage is the minimization of reserve 

constraint violation.  
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Figure 6.34: IB-OFC curve for scenario-B run 
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Figure 6.35: IB-ResVio and IB-ETFEIS for scenario-B run 
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When the optimisation run is performed again by considering the options 

of duration shortening and deferral (Figures 6.36 to 6.38), feasible 

solutions are found within the first 22 iterations (Figure 6.37). The 

algorithm then seems to minimize the IB-DurCut values at a constant rate 

for the next 40 iterations, followed by a 30-iteration stagnation before an 

abrupt improvement is made just before the 100th iteration (Figure 6.37). 

The abrupt improvement in the total reduction of maintenance shortening 

and deferral is found to take place due to a change from a deferral to a 

shortening decision (93 days) for a maintenance task, which normally 

takes 213 days to perform.  Figure 6.38 depicts the maximization of IB-

ETFEIS values from around iteration 60, when iteration-best schedules 

found are feasible and IB-DurCut values are hardly improving.  

For the best schedule obtained in this run, a maintenance task that 

normally requires 213 days is shortened by 93 days and two maintenance 

tasks are deferred (Table 6.14). The objective values and satisfaction of 

various constraints associated with the best schedule are given in Table 

6.10. 
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Figure 6.36: IB-OFC for scenario-B run (considering shortening and deferral) 
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Figure 6.37: IB-ResVio and IB-DurCut for scenario-B run (considering shortening 

and deferral) 
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Figure 6.38: IB-ETFEIS for scenario-B run (considering shortening and deferral) 
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Table 6.14: Affected maintenance tasks as a result of increased system demand 

 

6.3.4.3 Scenario C 

The schedule obtained by ACO-PPMSO for this scenario (referred to as 

ACO schedule–C hereafter) results in an average violation of reserve 

constraints for one day (Table 6.10), which is acceptable in terms of 

maintenance according to Hydro Tasmania’s current practice. The utility 

of ACO schedule-A for maintenance despite the unavailability of the 

Gordon M1 machine (without re-optimisation using ACO-PPMSO) was 

checked. It was found that an average violation of reserve constraints for 

one day is associated with ACO schedule-A when used for scenario C. It 

can be seen from Table 6.15 that despite the similarity in the resulting 

reserve constraint violations, the total final energy in storage associated 

with ACO schedule-A used for scenario C is much lower than that of the 

schedule optimized for this scenario (ACO schedule-C). A higher final 

energy in storage is highly desirable as it increases the future reliability of 

the power system, which also provided additional security of the power 

system under the uncertainties of system demands and storage inflows in 

the next planning horizon. Therefore, re-optimisation should be done 

with ACO-PPMSO when there is a change in the condition of a power 

system to find the maintenance schedule that best suits the current 

scenario.   

 

Station 
Task 
ID 

Machine 
Normal outage 
duration (days) 

Decision 
New outage 

duration (days) 

Gordon 30072 M1 213 Shortened 120 

Gordon 33601 
M1, M2  
& M3 

3 Deferred 0 

Gordon 31002 M2 & M3 3 Deferred 0 

Table 6.15: Summary of the utility of two different schedules obtained by 
ACO-PPMSO for scenario C 

 ACO schedule-A 
ACO schedule-C 
(as in Table 6.10) 

Expected total final energy in storage (MWy) 744.93 745.45 

Expected unseved energy (MWy) 0.000 0.000 

Violation of reserve constraints (days) 1 1 
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The results of the optimisation run carried out for this scenario indicate 

that feasible schedules exist despite the absence of the Gordon M1 

machine (Table 6.10). The iteration-best schedules that satisfy reliability 

constraints evolved after about 30 iterations, when the maximization of 

ETFEIS takes place (Figure 6.39).   

6.3.4.4 Scenario D 

The results of ACO-PPMSO obtained for scenario D with and without 

considering the minimum disruption to ACO schedule-A are summarized 

in Table 6.10. As a result of the review-optimisation run, in which 

minimum deviation from the original schedule is considered, the revised 

schedule obtained deviates from the original schedule by a total of 35 

days (Table 6.10). In particular, the original schedule (ACO schedule-A, 

Table 6.11) is revised by changing the start time of three maintenance 

tasks, as given in Table 6.16. As a result of the change of start dates, the 

violation of reserve constraints is reduced to two days (compared to five 

days associated with the original schedule considering the late return of 

Tungatinah station).  
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Figure 6.39: IB-ResVio and IB-ETFEIS for scenario-C run 
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Table 6.16: Revised start dates as a result of the late return of the Tungatinah 
station 

 

The optimisation outcome using ACO-PPMSO reveals that when the 

deviation from the original schedule is not considered, the best schedule 

obtained is feasible despite violation of reserve constraints by one day 

(Table 6.10). However, the new schedule obtained differs by a total of 

2712 days from the original schedule. Although the schedule obtained 

from the new run is slightly better in terms of meeting reserve constraints 

and energy in storage, it is unfavourable from a practical point of view 

due to the high degree of disruption to the original schedule. The 

comparison clearly demonstrates the benefits of considering minimum 

deviation from the original schedule in circumstances where changes to 

an optimized schedule are inevitable due to an unexpected event.  

The behaviour of ACO-PPMSO in finding a revised schedule considering 

minimum deviation from the original schedule is illustrated in Figures 

6.40 to 6.42. It can be observed that the iteration-best OFC improves 

abruptly within the first 26 iterations (Figure 6.40) corresponding to 

reduced reliability constraint violations (Figure 6.41). The IB-dev curve 

oscillates despite the overall decreasing trend in the first 26 iterations and 

improves more consistently at a much lower rate in the following 50 

iterations before stagnation occurs (Figure 6.42).  

An interesting observation made from the optimisation run for this 

scenario is that in contrast to that for scenario A, the IB-ETFEIS plot did 

not increase (Figure 6.41) throughout this run. This could be due to one or 

both of the following reasons: (1) The original schedule used for this 

scenario is already maximized with respect to ETFEIS; (2) The 

minimization of deviation from the original schedule is weighted 

Station Task ID Original start date Revised start date 
Deviation 
(day) 

Poatina 32512 14 Apr 2006 15 Mar 2006 30 

Paloona 30558 20 Apr 2006 22 Apr 2006 2 

Poatina 31446 26 Jul 2006 27 Jul 2006 1 

Tarraleah 32940 7 Aug 2006 8 Aug 2006 1 

Devils Gate 33463 12 Mar 2006 11 Mar 2006 1 



Chapter 6 Hydroelectric Power Case Studies 

  Page 249 

relatively higher than the maximization of ETFEIS in the objective 

function (Eq. 6.6). Therefore, the optimisation process is mainly driven by 

the minimization of total deviation from the original schedule. 
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Figure 6.40: IB-OFC for scenario-D run 
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Figure 6.41: IB-ResVio and IB-ETFEIS for scenario-D run 
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6.4 Summary and conclusions 

In this chapter, the new ACO-PPMSO formulation developed as part of 

this research has been implemented in solving two real-world 

maintenance scheduling case studies of different sizes and complexities. 

Firstly, a five-station hydropower case study system derived from the 

Hydro Tasmania system has been utilized to test the utility of ACO-

PPMSO in solving real-world PPMSO problems. In particular, a test 

procedure was set up to check the utility of the shortening and deferral 

options, the impacts of the Duration Extender local search operators and 

the overall performance of ACO-PPMSO in solving a real-world 

maintenance scheduling problem. The test results indicated that the 

ability of ACO-PPMSO to incorporate shortening and deferral options is 

useful for producing practical maintenance schedules. In addition, the 

Duration Extender local search operator developed in this research was 

also shown to significantly improve the results obtained by ACO-PPMSO. 

The overall performance of ACO-PPMSO was shown to be promising 

when the results obtained were compared to those found by a 

maintenance scheduler and a random evaluation method. 

The ACO-PPMSO was also applied to schedule maintenance for the full 

Hydro Tasmania system in 2006, involving the scheduling of 118 

maintenance tasks within a planning horizon of 365 days. Four different 
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Figure 6.42: IB-dev for scenario-D run 
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scenarios that resemble those commonly encountered by a maintenance 

scheduler have been used in the case study, in which ACO-PPMSO was 

used to assist in making decisions. For a routine maintenance scenario, the 

schedule obtained by ACO-PPMSO was compared to a schedule used by 

Hydro Tasmania. It was found that the ACO schedule is superior in terms 

of both satisfaction of reserve constraints and total final energy in storage. 

A scenario, in which system demand is increased by 5%, was considered. 

The results obtained by ACO-PPMSO reveal that feasible schedules were 

found only if shortening and deferral options were considered. 

Shortening and deferral of maintenance tasks are common practice in the 

management of a power system during adverse conditions such as low 

storage inflows and higher-than-expected demand, for example. The 

incorporation of these options in the ACO-PPMSO formulation allows 

practical maintenance schedules to be obtained.  In the third scenario, the 

unavailability of the Gordon M1 machine was assumed. Despite the loss 

of a major generating machine, a feasible maintenance schedule was 

obtained. In addition, the new ACO schedule obtained by re-running 

ACO-PPMSO considering the loss of the Gordon machine results in a 

better future system reliability (higher total final energy in storage). The 

results obtained for this scenario demonstrate the robustness of ACO-

PPMSO in obtaining the best schedule under a changed system condition. 

In the fourth scenario, Tungatinah station was assumed to return late 

from maintenance. ACO-PPMSO was used to provide a maintenance 

schedule for the scenario with and without considering minimum 

disruption to an existing schedule, for which arrangements have already 

been made in relation to personpower and machinery. Despite a slight 

trade-off in reserve capacity, the schedule obtained deviates only by 35 

days when minimization of disruption to the existing schedule was 

considered in the ACO-PPMSO run, which is much less than the total 

deviation of over 2000 days associated with the schedule obtained when 

minimum disruption was not used as an optimisation criterion. Scenario-

D results clearly demonstrate the flexibility of the ACO-PPMSO 

formulation in catering for different optimisation objectives. The 

behaviour of ACO-PPMSO during the optimisation runs performed for 

the four scenarios have also been examined. It was found that in the early 

stages of the optimisation runs, the ACO-PPMSO searches randomly 

before the pheromone profile of the search space was built up, after which 

many infeasible solutions were found. After a number of iterations, when 

feasible solutions evolved, the algorithm searches more in the feasible 
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regions of the search space for trial solutions that result in better objective 

function costs.  The experimental results obtained for the four scenarios 

investigated show the robustness of the ACO-PPMSO formulation in 

handling different real-world circumstances, thus indicating the potential 

of the approach as an operational tool. 
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Chapter 7  
Summary, Conclusions and 
Recommendations 

In this chapter, a summary of the research and conclusions corresponding 

to the objectives specified in Section 1.2 are given, followed by 

recommendations for further work. A list of papers published and 

accepted as a result of this research is also presented. 

7.1 Summary & Conclusions 

The formulation of the power plant maintenance scheduling optimisation 

(PPMSO) problem has been generalized through interactions with 

maintenance scheduling practitioners. In addition to the conventional 

formulation of a PPMSO problem, where only the commencement times 

of maintenance tasks are determined, the duration of maintenance tasks 

are also considered in the generalized formulation.  The availability of 

maintenance shortening and deferral allows maintenance scheduling to be 

solved in a more practical way. 

A formulation that enables Ant Colony Optimisation (ACO) to be applied 

to the generalized power plant maintenance scheduling optimisation 

(PPMSO) problem has been developed. Several issues with regard to the 

practical utilization of the proposed formulation have been resolved. 

These include inclusion of heuristic information, a local search strategy 

and constraint-handling techniques. 

Heuristic: As part of the new formulation, ACO-PPMSO, a new heuristic 

has been utilized to improve the performance of ACO by incorporating 

user’s knowledge about the system. As an optional feature in the ACO-

PPMSO algorithm, the heuristic formulation is used to construct, by 

higher probability, good-quality trial solutions at the early stage of an 

ACO run. In this way, optimum or near-optimal solutions can be 

determined in reduced computational time.  
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Local search: A new local search strategy, namely the Duration Extender 

has also been proposed for PPMSO problems, which allows shortening 

and deferral of maintenance activities. The local search strategy is 

designed to conduct a more refined search within the neighborhood of 

iteration-best maintenance schedules given by ACO, which are obtained 

using pheromone and heuristics. 

Constraint handling: Constraints commonly encountered in PPMSO have 

been categorized based on whether they can be accounted for during the 

construction of a trial solution and whether they can be violated to 

achieve better objective values. Techniques for handling different 

constraint types have been proposed correspondingly. In particular, an 

advantage of using ACO for PPMSO is the possibility of incorporating 

some constraints during the construction of trial solutions, eliminating the 

need for complicated penalty functions in the formulation. 

Written in the Fortran 90 language, the ACO-PPMSO formulation has 

been tested on four benchmark case studies (the 21- and 22-unit case 

studies, as well as the modified version of the two case studies). A three-

stage testing procedure was implemented for this purpose. For all four 

case studies, the results obtained using ACO with the new heuristic 

formulation were found to be significantly better than those without 

heuristic. On the other hand, the impact of the Duration Extender local 

search strategy was found to be insignificant in some test runs, but 

significantly improved ACO performance in other runs. Overall, the 

results obtained by ACO-PPMSO were better than those obtained by 

other metaheuristics previously applied to the original 21- and 22-unit 

case studies.  

The new ACO-PPMSO formulation has been applied to real-world 

maintenance scheduling problems, including a five-station hydropower 

system and the full Hydro Tasmania system. Various practical issues with 

respect to the application of ACO-PPMSO to real system, such as the 

implementation of constraints, have been addressed. When tested with 

the five-station hydropower system, the Duration Extender local search 

strategy was shown to significantly improve the results obtained by ACO. 

Test results with both case systems indicated that the ability of ACO-

PPMSO to incorporate shortening and deferral options is useful for 

producing practical maintenance schedules. For both case systems, the 
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overall performance of ACO-PPMSO was shown to be promising when 

the results obtained were compared with those found by a maintenance 

scheduler and a random evaluation method.  

To summarize, an ACO formulation for power plant maintenance 

scheduling problems has been developed, tested and applied to real 

systems. Based on the results obtained, it can be concluded that the 

developed formulation: 

- Determines good, if not the optimum, maintenance schedule of a case 

system within reasonable computational runtime. 

- Provides a valuable tool for assisting maintenance schedulers, especially 

when complicated objective functions (e.g. profit margin) are involved 

in the scheduling process. 

- Requires no prior experience in maintenance scheduling. 

- Produces alternative maintenance schedules of similar quality (in terms 

of given criteria) for negotiation purposes. 

- Handles changes in a power system (e.g. expansion) relatively easily. 

 

7.2 Recommendations for future work 

 

Despite the strengths of the new ACO-PPMSO formulation, there are 

possibilities that the formulation can be further improved by additional 

work, such as: 

1. Real costs in objective function 

The objective function used in the proposed ACO-PPMSO formulation 

is a function of objective and selected constraint terms (as detailed in 

Section 4.3.3). The objective function cost (OFC) associated with a 

maintenance schedule should ideally be the real cost incurred if the 

scheduled is implemented. Optimisation criteria such as maintenance 

costs and penalty costs due to demand shortfalls are usually known 



Chapter 7 Summary, Concusions and Recommendations 

Page 256 

and hence are the real costs. On the other hand, total final energy in 

storage is a reflection of the storage status of a system, such that, a 

maintenance schedule is better if the total energy in storage at the end 

of planning horizon is higher. In other words, there is potential 

revenue derived, but not a cost incurred, due to the storage position at 

the end of a scheduling planning horizon. In the current ACO-PPMSO 

formulation, the ‘cost’ (in the objective function) associated with such 

criteria is represented by the reciprocal of the potential revenue 

derived from the total final energy in storage associated with the 

schedule. As a result, the real value of the total final energy in storage 

cannot be truly reflected in the optimisation process, although the real 

dollars derived from per unit storage maybe known. The current 

version of the ACO-PPMSO formulation can be further improved with 

regard to this shortcoming. 

2. Multi-objective optimisation 

In the current ACO-PPMSO formulation, different weights are used in 

the objective function when multiple optimisation criteria are 

considered. This method works without difficulties only if the decision 

maker knows exactly the importance of (ideally the real cost associated 

with) each criterion.  Otherwise, if such information is not available 

and the decision maker is interested in finding the Pareto-optimal 

solution set to the problem, the current formulation is deemed 

insufficient. ACO is a population-based metaheuritsic that generates 

multiple trial solutions (if desired) at each timestep (iteration) taken 

during the optimisation process. The metaheuristic is therefore capable 

of finding a set of Pareto-optimal solutions to a given multi-objective 

problem in a single run, without having to do multiple runs using 

different combinations of weights given to each objective. Related 

studies that have researched multi-objective optimisation using ACO 

include Mariano et al. (1999), Iredi et al. (2001) and Guntsh et al. 

(2003). The methods developed by these studies, or other studies in the 

future, maybe incorporated into the current version of the ACO-

PPMSO formulation. 
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3. Uncertainty analysis 

The developed ACO-PPSMSO model utilizes histotrical system 

demands and inflow data for the optimisation process, eliminating the 

need for uncertainty anaylysis of the optimisation outcome. However, 

uncertainties associated with the optimized schedules produced as a 

result of the optimisation model should be investigated when 

forecasted data is used instead. 

7.3 Published and accepted papers 

The following publications have been produced as a result of this 

research: 

Book chapter 

Foong W., Maier H.R. and Simpson A.R. (To appear) Ant colony 

optimisation for power plant maintenance scheduling. Swarm Intelligence: 

Focus on Ant and Particle Swarm Optimisation. 

Journal papers  

Foong W., Simpson A.R. and Maier H.R. (To appear) Ant colony 

optimisation for power plant maintenance scheduling – A five-station 

hydropower system. Annals of Operations Research. 

Foong W., Maier H.R. and Simpson A.R. (To appear) Ant colony 

optimisation for power plant maintenance scheduling – An improved 

formulation. Engineering Optimisation. 

Conference papers (Refereed) 

Foong W., Maier H.R. and Simpson A.R. (2005) Ant colony optimisation 

for power plant maintenance scheduling optimisation. Proceedings of the 

Genetic and Evolutionary Computation Conference (GECCO 2005). 

Washington D.C., USA. June 25 - 29, Vol. 1, pp.249-256. 

Foong W., Maier H.R. and Simpson A.R. (2005) Ant colony optimisation 

for power plant maintenance scheduling optimisation. Proceedings of the 
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Graduate Student Workshop at the 2005 Genetic and Evolutionary Computation 

Conference (GECCO-2005). Washington D.C., USA. June 25 - 29. 

Conference papers (Refereed by abstract) 

Foong W., Maier H.R. and Simpson A.R. (2005) Ant colony optimisation 

for power plant maintenance scheduling optimisation: Simplified Hydro 

Tasmania system. 2nd Multidisciplinary International Conference on 

Scheduling: Theory & Application (MISTA-2005). New York, USA. July 18 - 

21. 
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