The ecology of key arthropods for the management of *Epiphyas postvittana* (Walker) (Lepidoptera: Tortricidae) in Coonawarra vineyards, South Australia

## Cate Paull

B.NRM – Hons, The University of Adelaide

A thesis submitted for the Degree of Doctor of Philosophy

Australian Centre for Evolutionary Biology and Biodiversity School of Earth and Environmental Sciences The University of Adelaide Australia

December 2007



### **Table of Contents**

| List of Figures                                          | 6  |
|----------------------------------------------------------|----|
| List of Tables                                           | 9  |
| Abstract                                                 | 10 |
| Declaration                                              | 11 |
| Acknowledgements                                         | 12 |
| CHAPTER 1                                                | 14 |
| General Introduction and Aims                            | 14 |
| 1.1 INTRODUCTION                                         | 14 |
| 1.2 NATURAL ENEMIES OF Epiphyas postvittana              | 16 |
| 1.3 NATURAL ENEMIES: RESPONSE TO HOST DENSITY            | 16 |
| 1.4 MULTI-SPECIES INTERACTIONS                           | 17 |
| 1.5 FACTORS INFLUENCING THE ABUNDANCE OF NATURAL ENEMIES | 18 |
| 1.6 AIMS OF PROJECT                                      | 20 |
| CHAPTER 2                                                | 21 |

| Identifying Natural Enemies from Coonawarra Vineyards for the |    |
|---------------------------------------------------------------|----|
| Management of Epiphyas postvittana                            | 21 |
| 2.1 INTRODUCTION                                              | 21 |
| 2.2 MATERIALS AND METHODS                                     | 22 |
| 2.2.1 Sites                                                   | 24 |
| 2.2.2 Arthropod Trapping Methods                              | 24 |
| 2.2.3 Identifying Parasitoids of Epiphyas postvittana         | 26 |
| 2.3 RESULTS                                                   | 26 |
| 2.3.1 Abundance by Order                                      | 26 |
| 2.3.2 Trapping Methods                                        | 27 |
| 2.3.3 Diversity and Abundance of Predatory Groups             | 29 |
| 2.3.3.1 Hymenoptera                                           | 29 |
| 2.3.3.2 Coleoptera                                            | 30 |
| 2.3.3.3 Other Predators                                       | 33 |
| 2.3.3.4 Parasitoids of Epiphyas postvittana                   | 34 |
| 2.4 DISCUSSION                                                | 34 |
| 2.4.1 Trapping Methods                                        | 34 |
| 2.4.2 Predators and Parasitoids                               | 35 |
| 2.4.3 Interactions Between Species of Natural Enemies         | 36 |
|                                                               | 2  |

#### **CHAPTER 3**

| 37 |
|----|
| 38 |
| 38 |
| 38 |
| 38 |
| 39 |
| 39 |
| 40 |
| 40 |
| 43 |
| 48 |
| 48 |
| 48 |
| 48 |
| 49 |
| 50 |
| 51 |
| 52 |
| 52 |
| 52 |
| 53 |
| 53 |
| 54 |
| 55 |
|    |

#### **CHAPTER 4**

# Response to Host Density by the Parasitoid *Dolichogenidea tasmanica* (Hymenoptera: Braconidae)

| 4.1 INTRODUCTION                                                          | 56 |
|---------------------------------------------------------------------------|----|
| 4.2 MATERIALS AND METHODS                                                 | 57 |
| 4.2.1 Experiment I. Inoculating Vines with Epiphyas postvittana Larvae    | 57 |
| 4.2.1.1 Sites                                                             | 57 |
| 4.2.1.2 Experimental Design and Data Collection                           | 57 |
| 4.2.2 Experiment II. Naturally Occurring Epiphyas postvittana Populations | 59 |
| 4.2.2.1 Sites                                                             | 59 |
| 4.2.2.2 Experimental Design and Data Collection                           | 59 |
| 4.3 DATA ANALYSIS                                                         | 60 |
| 4.3.1 Experiment I and Experiment II                                      | 60 |
|                                                                           | 3  |

37

37

56

56

| 4.3.1.1 Experiment I - Inoculated Population | 61 |
|----------------------------------------------|----|
| 4.3.1.2 Experiment II – Natural Population   | 61 |
| 4.4 RESULTS                                  | 62 |
| 4.4.1.Experiment I - Inoculated Population   | 62 |
| 4.4.2.Experiment II – Natural Population     | 63 |
| 4.5 DISCUSSION                               | 67 |
| 4.5.1 Reproduction and Survival              | 68 |
| 4.5.2 Source Populations                     | 69 |
| 4.5.3 Searching Behaviour                    | 69 |
| 4.5.4 Host Suitability                       | 70 |
| 4.5.5 Handling Time                          | 70 |
| 4.5.6 Egg Limitation                         | 71 |
| 4.6 CONCLUSION                               | 71 |

#### **CHAPTER 5**

73

#### Multi-Species Interactions: Wasp Parasitism Facilitates Predation of Tortricid Larvae by Predatory Mites 73

| 5.1 INTRODUCTION                                                           | 73 |
|----------------------------------------------------------------------------|----|
| 5.2 MATERIALS AND METHODS                                                  | 76 |
| 5.2.1 Rearing                                                              | 76 |
| 5.2.2 Loop Analysis                                                        | 76 |
| 5.2.3 Experiment I Predation, and Experiment II Parasitism                 | 77 |
| 5.2.3.1 Experiment I Predation: Penetration of Leaf Shelter by A. baccarum | 77 |
| 5.2.3.2 Experiment II Parasitism: Vulnerability of Larvae in Leaf Shelter  | 78 |
| 5.3 DATA ANALYSIS                                                          | 78 |
| 5.4 RESULTS                                                                | 78 |
| 5.4.1 Experiment I Predation                                               | 78 |
| 5.4.2 Experiment II Parasitism                                             | 79 |
| 5.5 DISCUSSION                                                             | 80 |
| 5.6 CONCLUSION                                                             | 81 |
|                                                                            |    |

#### **CHAPTER 6**

82

| Association between the Parasitoid | Dolichogenidea tasmanica and |
|------------------------------------|------------------------------|
| Native Vegetation                  | 82                           |
| 6.1 INTRODUCTION                   | 82                           |

| 6.2 MATERIALS AND METHODS             | 83 |
|---------------------------------------|----|
| 6.2.1 Sites                           | 83 |
| 6.2.2 Host Plants for Sentinel Larvae | 85 |
| 6.3 DATA ANALYSIS                     | 88 |
| 6.4 RESULTS                           | 88 |
|                                       |    |

| 6.5 DISCUSSION                                                                                                                             | 91  |
|--------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 6.5.1 Disturbance                                                                                                                          | 92  |
| 6.5.2 Cyclic Seasonal Disturbance                                                                                                          | 92  |
| 6.5.3 Fragmentation                                                                                                                        | 93  |
| 6.5.4 Source and Sinks                                                                                                                     | 94  |
| 6.5.5 Vegetative Diversity                                                                                                                 | 94  |
| 6.6 CONCLUSION                                                                                                                             | 96  |
| CHAPTER 7                                                                                                                                  | 97  |
| General Discussion                                                                                                                         | 97  |
| APPENDIX 1                                                                                                                                 | 102 |
| Arthropod Survey                                                                                                                           | 102 |
| APPENDIX 2                                                                                                                                 | 114 |
| The Hymenopteran Parasitoids of Light Brown Apple Moth,<br><i>Epiphyas postvittana</i> (Walker)(Lepidoptera: Tortricidae) in<br>Australia. | 114 |
|                                                                                                                                            |     |
| REFERENCES                                                                                                                                 | 116 |

## List of Figures

| Figure 2-1 Map of Australia with inset of South Australia highlighting the Coonawarra grape                               |
|---------------------------------------------------------------------------------------------------------------------------|
| growing region (Australia Geoscience 2007)                                                                                |
| Figure 2-2 Aerial view over the northern section of the Coonawarra region23                                               |
| Figure 2-3 Average minimum and maximum temperature and rainfall for the Coonwarra                                         |
| region (Australian Bureau of Meterology 2007)                                                                             |
| Figure 2-4 Percentage of the total number of individual arthropods for each order. The                                    |
| number in brackets is the number of morphospecies recorded for each order27                                               |
| Figure 2-5 Percentages of morphospecies for each order collected from (a) yellow pantraps,                                |
| ( <b>b</b> ) pitfall traps, ( <b>c</b> ) funnel samples and ( <b>d</b> ) visual searching. The number under each order is |
| the number of morphospecies recorded                                                                                      |
| Figure 2-6 Percentage of individuals recorded for each hymenopteran superfamily for all                                   |
| traps combined. The number in brackets is the number of morphospecies recorded for each                                   |
| superfamily. *Formicidae have been separated from other Vespoidea to highlight their                                      |
| abundance relative to other groups                                                                                        |
| Figure 2-7 Abundance of individuals belonging to the four most common subfamilies of                                      |
| Formicidae pooled across all traps. The number in brackets is the total number of                                         |
| morphospecies recorded for each family                                                                                    |
| Figure 2-8 Temporal abundance of the five most common formicid morphospecies pooled                                       |
| across all traps for six months (Sept 02-March 03) 31                                                                     |
| Figure 2.9 Temporal abundance of the most common (a) Carabidae, (b) Coccinellidae and (c)                                 |
| Staphylinidae morphospecies pooled across all traps for six months (Sept 02-Mar 03)32                                     |
| Figure 2-10 Mean number of A. baccarum (Acarina) captured for each funnel sample at each                                  |
| site for six months (Sept 02-Feb 03)33                                                                                    |
| Figure 3-1 Total number of <i>E. postvittana</i> larvae collected from Chardonnay vines during                            |
| 2002-2003 after searching each month for 30 min at each site (Sept 02-Aug 03)40                                           |

Figure 3-4 Percentage of *E. postvittana* larvae parasitised by *D. tasmanica* in Chardonnay for each sample at each site for 2002-03......45

 Figure 3-5 Percentage of *E. postvittana* larvae parasitised by *D. tasmanica* and other

 parasitoids (combined) collected from Chardonnay vines in 2003–04 at Kidman and

 Messenger sites.

 45

 **Figure 4-4** Relationship between host density per panel and percentage parasitism by *D*. *tasmanica* for each site by variety (**a**) Chardonnay: Kidman, y = -0.6162x + 0.8303,  $R^2 = 0.5993$ ; Messenger, y = -0.4914x + 0.8618;  $R^2 = 0.8153$ ; and Provis, y = -0.6944x + 0.9856;  $R^2 = 0.6684$  and (**b**) Cabernet Sauvignon: Kidman, y = -0.5162x + 0.9183;  $R^2 = 0.3681$ ; Messenger, y = -0.7078x + 0.9686,  $R^2 = 0.7635$ ; and Provis, y = -0.4059x + 0.9634,  $R^2 = 0.2043$ . Data from all dates were combined and only the panels where parasitism by *D*. *tasmanica* was greater than zero were included. Kidman =  $\Diamond$ , Messenger =  $\Box$  and Provis =  $\Delta$ .

**Figure 5-2** Percentage mortality of *E. postvittana* larvae for each of four treatments. L = E. *postvittana* larvae, M = predatory mite *A. baccarum*, leaf = leaf disc, 24 h = larvae exposed to leaf disc for 24 h period prior to predatory mite or predatory mite plus a parasitoid being introduced into the arena, and P = parasitoid. Treatments with different letters are significantly different from each other (Kruskal Wallis *P* < 0.05). T = treatment no. (see text).

Figure 6-1 Schematic map showing location of sentinel plant sites. Shaded area denotes the extent of Coonawarra vineyards. Circles denote approx site and placement of sentinel plants.

#### List of Tables

| Table 2-1 Summary of Araneae collected for all traps showing habitat, mode of predation and              |
|----------------------------------------------------------------------------------------------------------|
| sample method. Hunter = active hunter, Web = web builder, Ambush = ambush predator.                      |
| Undetermined morphospecies comprised juvenile instars that could not be indentified to                   |
| family                                                                                                   |
| Table 3-1 Percentage parasitism of E. postvittana larvae by parasitoid species for each season           |
| pooled across sites. $K = Kidman$ , $M = Messenger and P = Provis sites$ . The number in                 |
| brackets is the total number of individuals reared from larvae44                                         |
| Table 4-1 Inoculated population analysis results    62                                                   |
| Table 4-2 Natural population analysis results    65                                                      |
| <b>Table 4-3</b> Analysis of parameter estimates $^{\dagger}$ - natural population                       |
| Table 6-1 Sites used for the sentinel plant experiment and associated degree of disturbance              |
| from agricultural chemicals, physical disturbance, and degree of exposure. The higher the                |
| total points the more a site is disturbed. Refer to text for information on the ranking scale            |
| (section 6.2.1)                                                                                          |
| <b>Table 6-2</b> The mean ( $\pm$ SD) number of sentinel <i>E. postvittana</i> larvae recollected, and   |
| parasitism by <i>Bassus</i> sp. and <i>D. tasmanica</i> for each site                                    |
| Table 6-3 Multiple comparisons for proportion of parasitism of <i>E.postvittana</i> larvae by <i>D</i> . |
| tasmanica                                                                                                |
| Table 6-4 Multiple comparisons for proportion of parasitism of E. postvittana larvae by                  |
| Bassus sp90                                                                                              |
| Table 6-5 Chemicals sprayed in vineyards at Provis and Messenger for 2004-05 season91                    |

There is currently little knowledge about the dynamics of invertebrates in Australian viticultural ecosystems. This study was conducted in Coonawarra vineyards over three seasons (years) and has focused on identifying natural enemies, their seasonal phenology, multiple species interactions, and potential for the suppression of the pest lepidopteran *Epiphyas postvittana* (Tortricidae). The work presented in this thesis shows that endemic natural enemies have far greater potential to control *E. postvittana* than has been realised.

An initial survey identified a diverse and abundant range of potential natural enemies. Of these, the species most likely to attack *E. postvittana* include a predatory mite *Anystis baccarum* and a number of hymenopteran parasitoids. The most abundant parasitoid in the vineyards was a braconid, *Dolichogenidea tasmanica*.

Understanding the characteristic behaviour of parasitoids in response to host density can help to gauge their potential for pest suppression. The results of large-scale field experiments showed that the response of *D. tasmanica* to the density of *E. postvittana* was inversely density-dependent, and that parasitism was consistently higher in Cabernet Sauvignon compared with Chardonnay varieties.

Despite the fact that interactions among multiple species of natural enemies can increase or decrease pest suppression, particularly when they share a common prey/host, few multi-species interactions have been investigated. Laboratory studies identified a novel interaction between the predatory mite *A. baccarum* an abundant predator in the vine canopy, the parasitoid *D. tasmanica* and host *E. postvittana* larvae. Although *A. baccarum* readily ate *E. postvittana* eggs and free roaming larvae, they could not access larva in their silk leaf rolls. However, the addition of *D. tasmanica* significantly increased predation of *E. postvittana* larvae, by altering the behaviour of host larvae and increasing their vulnerability to the mite.

Experiments conducted at a landscape level in the Coonawarra showed that *D. tasmanica* was also present in habitat other than vineyards including native vegetation. However, it was not present in highly disturbed habitats. Although the exact mechanism for this remains unknown, results indicate that viticultural practices and resources in the surrounding landscape can influence the presence of parasitoids. Together, the findings presented in this thesis make a significant contribution towards developing sustainable pest management in Australian viticulture.

This work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent to this copy of my thesis when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

Cate Paull

14 December 2007

This research was made possible with generous funding from the Australian Research Council and support from the Coonawarra Grape Growers Association.

A special thanks to the following growers and industry people for their advice, support, access to resources and to their vineyards: Grant Oscher, Lee Haselgrove, Brendan Provis and family, Stuart Sharman, Pete Balnaves, John Kidman and family, Allan Jenkins and Liz Redden.

I would have never made it without the seemingly never-ending supply of Callebaut chocolate from my dear friend Ann Oliver. Yes Ann, good science like good food takes time, not to mention maintaining exacting standards, quality ingredients, organisation, and an inquisitive nature. You helped me to see the importance of these elements a long time before I embarked on science for a career.

I was fortunate to be surrounded by a fabulous team of supervisors, colleagues, mentors, family and friends.

Grateful thanks to my supervisors, Andy Austin and Nancy Schellhorn, for getting the balance right, your time, advice, patience, guidance and for supporting my research. I have learned so much from you both. The legacy of this is that I will never be able look at an individual insect, let alone the landscape, in quite the same way again.

To all my family for all your love and support; especially to Jan for her unerring support and encouragement.

To Mike Keller and Angela Lush, especially for your kindness and support during my fathers illness and in the immediate time following his death.

To Judy Bellati, Kylie Pethybridge, Darryl Barbour, Paul Hastings, Katey–Jane Orr for all the laughs, friendship and your hard work in the field. Nick Stevens for making *Bassus* a video star; Nancy Cunningham for giving up the SARDI secrets on rearing light brown apple moth; Jo Kent for your skill in illustrating, and Elise Head for patiently scaling individual illustrations. To all in the Austin lab especially Sylvia Clark, Travis Gotch, Claire Stevens, Kate Muirhead and Tim Moulds; Gitta Siekmann and Mark Doyle for managing to say the right thing at the right time, and to Tim, Charlotte, Sam and Susannah Paull for all your help in the field.

To John Jennings, Gary Taylor, Gail Edwards and Trish Catford somehow you could always find what I needed when I needed it.

To Cal Welbourne and Carl Childers for sharing your enthusiasm and your knowledge of mites with me and to Simon Friedman for your help in debugging syntax.

Yes I admit at times I was tempted to take a sharp knife to the Gordian Knot and although it's not completely untangled, I have learned so much, so thank you all for helping me begin teasing it apart strand by strand.

For My Dad Torrance Paull 28.3.1925 – 13.11.2004