Characterisation of markers associated with systemic inflammation in children with Chronic Kidney Disease

Judith Nairn BSc (Hons) BMedSc (Pathology)

Renal Unit Women's and Children's Hospital Children Youth and Women's Health Service North Adelaide South Australia

And

Discipline of Paediatrics School of Paediatrics and Reproductive Health Faculty of Health Sciences The University of Adelaide

A thesis submitted to The University of Adelaide in partial fulfilment of the requirements for the degree of Doctor of Philosophy

December 2007

Table of Contents

Title Page	i
Table of contents	ii
Declaration	viii
Acknowledgements	ix
Publications and presentations resulting from this study	х
Other publications during candidature	xi
Grants, awards and external appointments	xii
Abstract	xiii
Abbreviations	xvi

Chapter One Introduction, Hypothesis and Aims

1.1	Synopsis	2
1.2	Expected Outcomes	4
1.3	Definition of CKD	5
1.4	Causes of CKD in children and adults	6
1.5	Current treatments	7
1.6	Systemic inflammation	9
1.7	CKD as a systemic inflammatory state	10
1.8	Oxidative Stress in CKD	12
1.9	Inflammatory markers in CKD	13
1.10	Systemic inflammation in children with CKD	17
1.11	Pro-inflammatory cytokines in children with CKD	18
1.12	Leucocyte subsets in CKD	19
1.13	Leucocyte Activation in CKD	21
1.14	Identification of potential therapies	22
1.15	Summary	23
1.16	Hypotheses	24
1.7	Aims	24

Chap	ter Tw	o Research Plan, study subjects, general m	ethods
2.1	Overv	view of Research Plan	26
2.2	Research Plan		27
	2.2.1	Subjects	27
	2.2.2	Blood Collection and analysis	30
2.3	Flow	Cytometry	31
	2.3.1	Overview	31
	2.3.2	Definition of terms used in flow cytometry	33
	2.3.3	Set up of flow cytometer for optimal performance	38
	2.3.4	Controls	40
2.4	Statis	tics and Analysis of data	41
2.5	Sumn	nary	41
Chapter 3 As		Assessment of oxidative stress and circulating pro-	
		inflammatory cytokines	
3.1	Introd	uction	43
	3.1.1	Overview	43
	3.1.2	Hypothesis	43
	3.1.3	Specific Aims	43
	3.1.4	Evaluation of Oxidative Stress – Background	44
	3.1.5	Choice of AOPP to evaluate oxidative stress	44
	3.1.6	Evaluation of pro-inflammatory cytokines in CKD	46
	3.1.7	Choice of the cytometric bead array for	
	meas	urement of cytokines	47
3.2	Mater	ial and Methods	49
	3.2.1	Subjects	49
	3.2.2	Samples	48
	3.2.3	Measurement of AOPP	49
	3.2.4	Measurement of pro-inflammatory cytokines	50
3.3	Resul	ts	51
	3.3.1	AOPP	51
	3.3.2	Cytokines	52

3.4	Discussion		54
Chap	oter 4	Cellular cytokine production	
4.1	Introd	uction	59
	4.1.1	Overview	59
	4.1.2	Hypothesis	60
	4.1.3	Specific Aims	60
	4.1.4	Cytokines of interest	60
4.2	Metho	ods	62
	4.2.1	Subjects	62
	4.2.2	Samples	62
	4.2.3	Cell cultures for intracellular cytokine	
	Meas	urements	62
	4.2.4	Cell cultures for measurement of released	
	cytoki	nes (CBA)	63
	4.2.5	Intracellular Cytokine measurement	63
	4.2.6	Measurement of cytokine levels in culture	
	super	natant	68
4.3	Resul	ts	68
	4.3.1	Monocyte Intracellular cytokines	68
	4.3.2	T cell Intracellular cytokines	71
	4.3.3	Supernatant cytokines	75
4.4	Discu	ssion	76
Chap	oter 5	Determination of leucocyte subsets	
5.1	Introd	uction	84
	5.1.1	Overview	84
	5.1.2	Hypothesis	86
	5.1.3	Specific Aims	86

_	Λ
	<u>д</u>
_	т.

5.2	5.2 Materials and methods		86
	5.2.1	Subjects	86
	5.2.2	Blood Collection and sample preparation	86
	5.2.3	Flow cytometry surface marker determination	87
5.3	Resul	ts	90
	5.3.1	Complete Blood Picture (CBP)	90
	5.3.2	Lymphocyte Subsets	91
	5.3.3	T, B and NK cells	91
	5.3.4	T cell subsets	91
	5.3.5	T Helper and Cytotoxic T cells	97
	5.3.6	γδ and $\alpha\beta$ T cell subsets	97
	5.3.7	Memory Cells	99
	5.3.8	Memory cell subsets	99
5.4	Discu	ssion	102
	5.4.1	Lymphocyte subsets	102
	5.4.2	T Helper and Cytotoxic T cells	103
	5.4.3	αβ and γδ T cell subsets	104
	5.4.4	Reduction in memory T cells	105
	5.4.5	Th1/Th2 memory cell subtypes	105
	5.4.6	Summary	107
~			

Chapter six Leucocyte activation markers

6.1	Introduction		109
	6.1.2	Hypothesis	112
	6.1.3	Specific Aims	113
6.2	Materials and methods		113
	6.2.1	Subjects	113
	6.2.2	Blood Collection and sample preparation	113
	6.2.3	Flow cytometry leucocyte surface marker	
	Deter	mination	114
	6.2.4	Measurement of sE-selectin	114
6.3	Results		115
	6.3.1	Lymphocyte activation and adhesion markers	115

	6.3.2	T cell activation and adhesion markers	115
	6.3.3	Monocyte activation and adhesion markers	118
	6.3.4	Neutrophil activation and adhesion markers	121
	6.3.5	Soluble E-selectin	124
6.4	Discu	ssion	124

Chapter seven	Apoptosis of lymphocyte subsets
---------------	---------------------------------

7.1	Introduction		
7.2	Hypothesis		
7.3	Aims	131	
7.4	Materials and Methods	131	
	7.4.1 Sample collection	131	
	7.4.2 CKD vs Control Annexin-V staining	132	
	7.3.3 Subsequent staining to test RBC lysis techniques	133	
7.4	Results		
	7.4.1 Annexin-V staining following RBC lysis		
	with FACSlyse	134	
	7.4.2 Annexin-V staining following RBC lysis		
	with ammonium chloride	135	
	7.4.3 Annexin-V staining following RBC lysis		
	with deionised H ₂ O	139	
7.5	Discussion	139	

Chapter 8 Discussion and Future Directions

8.1	Introduction	142
8.2	CKD, Inflammation and CVD	143
8.3	Circulating Cytokines and AOPP	144
8.4	Cellular Cytokine Production	146
8.5	Lymphocyte subsets	148
8.6	Lymphocyte phenotype	149
8.7	T Helper and Cytotoxic T cells	151
8.8	Reduction in memory T cells	152
8.9	Th1/Th2 memory cell subtypes	152

8.10	Leucocyte activation	153
8.11	Summary	154
Арре	endices	
Appe	ndix 1	158
Appe	ndix 2	162
Appe	ndix 3	164
Appe	ndix 4	166
Appe	170	
Refer	rences	172

Declaration

This thesis contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published by another person, except where due reference is made in the text.

I consent to this thesis being made available for photocopying and loan if accepted for the award of the degree.

Judith Nairn

Signature _____

Date _____

Acknowledgements

I have been fortunate to have been guided by a group of expert supervisors, all of whom had different insights and skills. I would to thank Dr Greg Hodge and Dr Sandy Hodge for their contributions, insights and sharing of knowledge as well as their patience and unwavering support throughout this project. I would also like to thank Greg especially for his invaluable help with flow cytometry methodology.

I would like express my appreciation to Dr Ross Butler who showed faith in my ability and supported my candidature and to Dr Paul Henning for allowing me to perform this research in the Renal Unit.

Thanks also to Dr Sam Crafter who returned to our department just in time to critically read this thesis. I am grateful for his encouragement and the valuable discussions we continue to have.

My gratitude also goes to the staff of the Pathology Collection Service and the Day Surgery Unit at the Women's and Children's Hospital for collecting the blood samples and their assistance in recruitment of patients.

A final thankyou to Graham, who is always there for me, keeps my life in balance and my world in perspective.

Publications resulting directly from this study

Nairn J, Hodge G, Henning P. Intracellular cytokines in peripheral blood leucocytes in children with Chronic Renal Failure. Pediatr Nephrol. 2006 Feb;21(2):251-6

Nairn J, Hodge G, Henning P. Changes in leukocyte subsets: clinical implications for children with chronic renal failure. Pediatr Nephrol. 2005 Feb;20(2):190-6

Nairn J, Hodge G, Henning P. Leucocyte activation and increased IL-12: Clinical implications for children with chronic renal failure Pediatr Nephrol. 2004;19: C155

Presentations during candidature

Nairn J, Hodge G, Henning P. Characterisation of systemic inflammation in children with chronic renal failure. Renal Scientific Forum 2005. Invited Speaker

Nairn J, Hodge G, Henning P. Evidence for increased systemic inflammation in Children with Chronic Renal failure Australasian Flow Cytometry Group 2004. Oral Presentation

Nairn J, Hodge G. Variability of Annexin V staining using a whole blood lysis method. Australasian Flow Cytometry Group 2004. Poster Presentation

Nairn J, Hodge G, Henning P. Leucocyte activation and increased IL-12: Clinical implications for children with chronic renal failure. International Paediatric Nephology Association Conference 2004. Poster Presentation

Other publications during candidature

Hodge G, Nairn J, Holmes M, Reynolds PN, Hodge S. Increased intracellular T helper 1 proinflammatory cytokine production in peripheral blood, bronchoalveolar lavage and intraepithelial T cells of COPD subjects. Clin Exp Immunol. 2007 Oct;150(1):22-9.

Hodge S, Hodge G, **Nairn J**, Holmes M, Reynolds PN. Increased airway granzyme b and perforin in current and ex-smoking COPD subjects. COPD. 2006 Dec;3(4):179-87.

Hodge G, Osborn M, Hodge S, **Nairn J**, Tapp H, Kirby M, Sepulveda H, Morgan E, Revesz T, Zola H. Rapid simultaneous measurement of multiple cytokines in childhood oncology patients with febrile neutropenia: increased interleukin (IL)-8 or IL-5 correlates with culture-positive infection. Br J Haematol. 2006 Jan;132(2):247-8.

Hodge G, Markus C, **Nairn J**, Hodge S. Effect of blood storage conditions on leucocyte intracellular cytokine production. Cytokine. 2005 Sep 19; [Epub ahead of print]

Swart B, Salganik MP, Wand MP, Tinckam K, Milford EL, Drbal K, Angelisova P, Horejsi V, Macardle P, Bailey S, Hollemweguer E, Hodge G, **Nairn J**, Millard D, Dagdeviren A, Dandie GW, Zola H. The HLDA8 blind panel: Findings and conclusions. J Immunol Methods. 2005 Aug 25;

Hodge GL, Hodge SJ, **Nairn J**, Tippett E, Holmes M, Reynolds PN. Poststorage Leuko-Depleted Plasma Inhibits T-Cell Proliferation and Th1 Response In Vitro: Characterization of TGFbeta-1 as an Important Immunomodulatory Component in Stored Blood. Transplantation. 2005 Jul 15;80(1):95-101

Grants, awards and external appointments

Grants

Granting Body:	The Channel 7 Children's Research Foundation.
Year	2004
Project:	Clinical implications of systemic inflammation in children with chronic kidney disease
Amount:	\$10,000
Granting Body:	The Channel 7 Children's Research Foundation.
Year	2005
Project:	Clinical implications of increased inflammatory cytokines in children with chronic kidney disease
Amount:	

Awards / External Appointments

2004	Australasian Flow Cytometry Group: Secretary
2004	Best Student Oral Presentation
	Australasian Flow Cytometry Group Conference

Abstract

Chronic Kidney Disease (CKD) is a progressive condition that in the majority of cases leads to End Stage Renal Failure (ESRD) and the need for dialysis, with the only cure being renal transplant. CKD affects both adults and children; however the underlying causes of the disease are different. CKD in adults is most commonly secondary to diabetes and/or hypertension while CKD in children is usually caused by congenital structural abnormalities that result directly in renal dysfunction.

There have been numerous reports of inflammatory and immunological disturbances in adult CKD that involve both the cellular and humoral immune systems. Consequences of these include an increased rate of cardiovascular disease (CVD), decreased response to vaccinations, as well as increased rates of infection, anaemia and malnutrition. Children with CKD display many of the clinical complications seen in adult kidney disease that are associated with inflammatory and immunological changes.

In adults however, many of the primary conditions associated with CKD are inherently pro-inflammatory; therefore it is not clear whether the inflammatory changes observed in adults with CKD are due to pre-existing inflammatory conditions, renal disease *per se* or a combination of both.

The majority of CKD in children is caused by conditions that are not inflammatory in nature. This presents a unique opportunity to study the inflammatory consequences of CKD alone, without the added complication of underlying inflammatory disorders.

Despite this, there has been little investigation of the inflammatory and immunological status of children with CKD. Some very recent studies have shown that children with CKD have an increased systemic inflammatory state[1-3], however the nature of these immunological and inflammatory changes remains poorly defined. Identification of the specific inflammatory processes that occur in CKD may provide new treatment targets and the opportunity to develop urgently needed new therapies.

The purpose of this thesis is to investigate the presence of immunological changes associated with inflammation in children with CKD. This is the first study to include children with very mild disease, and the significant changes that are present in the early stages of the disease are of particular note. I have shown that CKD in children is an intrinsically inflammatory condition, with increased accumulation of markers of oxidative stress and production of pro-inflammatory cytokines. The inflammatory markers identified in this study may be applied as a foundation for more sensitive diagnostic markers of disease progression as well as provide a basis for novel treatment strategies in this group of patients.

Early identification of increased inflammation is a prerequisite for the application of preventive strategies. In addition, a better understanding of the level and mechanisms of systemic inflammation in children with CKD may enable a more accurate assessment of their risk of other inflammatory conditions such as CVD, anaemia, muscle wasting, and malnutrition. Future research that specifically focuses on the reasons and mechanisms for different rates of disease progression may emerge as a result of this study. Importantly, the findings of this study may have implications in the long term treatment of disease and may allow identification of new treatment strategies to achieve better patient outcomes.

The outcomes of the study are:

- Better definition of inflammatory profiles in paediatric CKD and correlation with disease severity and progression, which should contribute to improved management strategies.
- Identification of new treatment targets to reduce the damage caused by chronic systemic inflammation.
- Mechanistic understanding of the relationship of the inflammatory profile in regard to source leucocytes or other contributing cell types.

Abbreviations

hð	microgram
μL	microlitre
µmol/L	micromoles per litre
ADPCKD	Autosomal Dominat Polycystic Kidney Disease
AGE	Advanced Glycation End Products
AOPP	Advanced Oxidation Protein Products
BA	Brefeldin A
СВА	Cytometric bead array
CBP	Complete Blood Picture
CCR	Chemokine Receptor
CD	Cluster Differentiation
CKD	Chronic Kidney Disease
CRP	C-reactive protein
CVD	Cardiovascular Disease
DN	Double Negative
ELISA	Enzyme Linked Immuno-Sorbent Assay
ESR	Erythrocyte Sedimetation Rate
ESRF	End Stage Renal Failure
FACS	Fluorescence Activated Cell Sorter
FACSperm	FACS permeabilising solution
FITC	Fluorescein isothiocyanate
FL	Fluorescence Channel
FSC	Forward Scatter
g	gravitational force

GFR	Glomerular Filtration Rate
HLDA	Human Leucocyte Differentiation Antigen
HMG-CoA	Hydroxymethylglutaryl-coenzyme A
hr	hours
HUS	Haemolytic Uremic Syndrome
I	Ionomycin
ICAM	Intercellular Adhesion Molecule
IFN	Interferon
IL	Interleukin
IL-12R	IL-12 receptor
LPS	E. coli Lipopolysaccharide
Mab	Monoclonal Antibody
MCP	monocyte chemotactic protein
MFI	Mean Fluorescence Intensity
МНС	Major Histocompatibilty Complex
MIA	malnutrition, inflammation and atherosclerosis
min	Minutes
mL	millilitre
mRNA	messenger RNA
ng	nanogram
NIH	National Institute of Health
NK	Natural Killer
o/n	overnight
PBMC	Peripheral Blood Mononuclear Cells

PC-5 PE-CY5

- PE Phycoerythrin
- PHA phytohemagglutinin
- PKD Polycytic kidney disease
- PMA phorbol 12-myristate 13-acetate
- PMT Photomultiplier tube
- PTH Parathyroid hormone
- PTS phosphatidylserine
- PUJ Pelviureteric junction
- RBC Red Blood Cells
- ROS Reactive Oxygen Species
- RT Room temperature
- sE-selectin Soluble E-selectin
- SLE systemic lupus erythematosis
- SSC Side Scattter
- Tc Cytotoxic T cells
- Th T Helper cells
- TNF Tumour Necrosis Factor
- uL microlitre
- VCAM vascular cell adhesion molecule
- WBC White Blood cells