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ABSTRACT 
 
From animal experimentation, and studies using in vitro models, there was evidence 

in the literature to suggest that dietary fibre may influence contractility and motility of 

the gastrointestinal tract and long chain (LC) n-3 polyunsaturated fatty acids (PUFAs) 

from marine sources may influence contractility of smooth muscle cells in blood 

vessels. The hypothesis of this thesis was that dietary fish oil and/or fibre influence 

the contractility of isolated intact sections of gut smooth muscle tissue from small 

animal models. Methodology was established to measure in vitro contractility of 

intact pieces of guinea pig ileum with the serosal side isolated from the lumen. It was 

demonstrated that four amino acid peptides from κ-casein (casoxins) applied to the 

lumen overcame morphine-induced inhibition of contraction. Using this established 

technology, the guinea pig was used to investigate the effects of dietary fibre and fish 

oil supplementation on gut in vitro contractility. In separate experiments, changes in 

sensitivity to electrically-driven and 8-iso-prostanglandin (PG)E2-induced 

contractility were demonstrated for dietary fibre and fish oil. A modified, isolated gut 

super-perfusion system was then established for the rat to validate these findings. It 

was subsequently shown that LC n-3 PUFA from dietary fish oil significantly 

increased maximal contraction in response to the G-protein coupled receptor 

modulators, acetylcholine and the eicosanoids PGE2, PGF2α, 8-iso-PGE2 and U-46619 

in ileum but not colon, without changes in sensitivity (EC50), when n-3 PUFA as 

eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) had been incorporated 

to a similar degree into the gut total phospholipid membrane pool. It was further 

established that the spontaneously hypertensive rat (SHR) had a depressed prostanoid 

(PGE2 and PGF2α) response in the gut that could be restored by dietary fish oil 

supplementation (5% w/w of total diet) in the ileum but not the colon. Importantly, 
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the muscarinic response in the colon of the SHR was increased by fish oil 

supplementation with DHA likely to be the active agent. Dietary fish oil dose 

experiments deduced differential increases in response occurred at fish oil 

concentrations of 1% for muscarinic and 2.5% (w/w) for prostanoid stimulators of the 

ileum with no difference in receptor-independent KCl-induced depolarization-driven 

contractility. Studies combining high amylose resistant starch (HAMS, 10% w/w) and 

fish oil (10% w/w) fed to young rats demonstrated a low prostanoid response that was 

enhanced by dietary fish oil but not resistant starch. There was however, an interactive 

effect of the HAMS and fish oil noted for the muscarinic-mimetic, carbachol. 

Generally, resistant starch increased the large bowel short chain fatty acid pool with a 

subsequent lower pH. Binding studies determined that while the total muscarinic 

receptor binding properties of an isolated ileal membrane fraction were not affected in 

mature rats by dietary fish oil, young rats had a different order of muscarinic receptor 

subtype response with a rank order potency of M3 > M1 > M2 compared to mature 

animals of M3 > M2 > M1 with fish oil altering the sensitivity of the M1 receptor 

subtype in isolated carbachol-precontracted ileal tissue. In conclusion, experiments 

using the guinea pig and rat gut models demonstrated that dietary fish oil 

supplementation, and to a lesser degree fibre, increased receptor-driven contractility 

in normal and compromised SHR ileum and colon. Further, changes in responsiveness 

were demonstrated in the developing rat gut prostanoid and muscarinic receptor 

populations that could be altered by dietary fish oil. Preliminary evidence suggested 

that fish oil as DHA may alter receptor-driven gut contractility by mechanisms 

involving smooth muscle calcium modulation. Defining the role that dietary fibre and 

fish oil, and other nutrients, play in normal and diseased states of bowel health such as 
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inflammatory bowel disease (IBD), where contractility is compromised, are among 

the ongoing challenges. 
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Effects of dietary fish oil and fibre on contractility of gut smooth muscle 
 

Literature Review 

1.1. Introduction 

There is an increasing body of evidence that dietary fibre is good for laxation and  

bowel health and that long chain (LC) n-3 polyunsaturated fatty acids (PUFAs) found 

in high amounts in oily fish are good for the cardiovascular system and beneficial for 

inflammatory conditions including those affecting gut function. Dietary fibre refers to 

the indigestible carbohydrates found in fruit, vegetables, grain and nuts. Fermentation 

of fibre in the large bowel microflora produces short chain fatty acids (SCFAs) that 

play a key role in bowel health (Topping and Clifton, 2001). The LC n-3 PUFAs are 

produced by marine microalgae and phytoplankton and eaten by krill and other small 

animals and so on up the food chain to man.  Both SCFAs and LC n-3 PUFAs may 

have beneficial effects on human well being and as such represent an active area of 

research (Freeman, et al., 2006; McDonald, 2006; Wong et al., 2006; Leaf 2007).  

 

One of the first researchers to postulate a beneficial link between a diet rich in fish fat 

and cardiovascular health was Hugh Sinclair in the mid twentieth century, although 

his hypotheses were not widely accepted at the time (Sinclair, 1956). Proof-of-concept 

awaited the epidemiologically-based observations on Greenland Eskimos in the 1970s 

by Dyerberg and Bang (Bang et al., 1971) and the concomitant flow of information 

relating to the beneficial effects of LC PUFAs on atherosclerosis and cardiovascular 

disease (Schmidt et al., 2006). In addition to the abovementioned conditions was also 

the recognition of the therapeutic effects of fish oil on inflammatory conditions and 

subsequent possible protection from the development of cancers, particularly of the 
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Figure 1. Proposed beneficial effects of dietary fish oil. The long chain (LC) 
polyunsaturated fatty acids (PUFA) found in high concentrations in certain oily fish 
have been postulated to be efficacious to various degrees in the prevention and 
treatment of a wide range of pathologies that generally involve underlying tissue 
inflammation.  
 

bowel (De Caterina et al., 1994; Roynette et al., 2004; Calder, 2006; Chapkin et al., 

2007a,b; Mund et al., 2007). The role of dietary fibre as a component of whole grain 

has also been postulated to correlate with lower incidence and protection from colon 

cancer and to possibly assist with inflammatory diseases of the gastrointestinal tract 

(Galvez et al., 2005; Jacobs et al., 2007). As yet, the case for LC n-3 PUFA in the 

protection and treatment for IBD is still inconclusive due to the paucity of detailed 

animal studies backed by large, well controlled human clinical trials (Nakazawa and 

Hibi, 2000; Ruxton et al., 2007; Turner et al., 2007a,b). 

 

More recently, associative evidence is emerging for the health benefits of fish oil on 

the brain and nervous system (Conklin et al., 2007) including vision (Cheatham et al., 

Potential beneficial 
effects of fish oil n-3 

LC PUFA

Cardiovascular  
      disease 

Cancer 
Gut health 

Diabetes?
Asthma?Arthritis

Neurological  
Conditions? 
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2006; Eilander et al., 2007) mood and neuropsychiatric disorders (Young et al., 2005; 

Hallahan et al., 2007). The role of fish oil and other micronutrients for treatment of 

both inflammatory bowel disease (IBD) (MacLean et al., 2005; Camuesco et al., 

2006; Turner et al., 2007a,b), where a proportion of patients may have essential fatty 

acid deficiency (Siguel and Lerman, 1996; Figler et al., 2007), and for the treatment 

of vascular complications that occur in diabetes, is also gaining some momentum 

(Nettleton and Katz, 2005; Freeman et al., 2006; Lombardo and Chicco, 2006). 

Finally, there is conflicting evidence for n-3 PUFA on atopic and pulmonary 

inflammatory conditions such as asthma (Reisman et al., 2006; Almqvist et al., 2007; 

Hwang et al., 2007). In general, populations that show lower cardiovascular disease 

(CVD), inflammatory diseases and neuroses have a relatively high n-3/n-6 ratio that is 

expressed in plasma and tissue (Simopoulos, 2002a,b). See Figure 1 for a summary of 

LC n-3 PUFA effects on various inflammation-linked conditions. 

 

1.2 Background to experimentation relating to this thesis 

The focus of the experimental work of this thesis is to explore the effects of dietary 

fibre and fish oil on small animal gut contractility. The biological mechanisms 

involved with n-3 FA metabolism and effects on physiology and pathophysiology are 

complicated but are generally related to immunoregulatory white blood cells 

(leucocytes and macrophages) (Lin et al., 2007) and the dietary n-3/n-6 ratio which 

modulates amongst other things; cell membrane properties (McMurchie and Raison, 

1979; Patten et al, 1989; Leifert et al., 2000a,b; McLennan and Abeywardena, 2005), 

calcium handling and homeostasis (Nair et al., 1997; Leaf, 2001), eicosanoid 

synthesis (Abeywardena et al., 1987, 1991a,b; James et al., 2000), proinflammatory 

cytokine production (interleukin-1 and leukotriene B4) (Calder, 2003, 2006), and 
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regulation of nuclear receptors including the liver X receptor, hepatocyte nuclear 

factor-4α, farnesol X receptor, and the peroxisome proliferator-activated receptors 

(PPARs) and effects on gene expression via, for example, sterol receptor element 

binding protein-1c (SREBP-1c) (Sampath and Ntambi, 2004; Nakatani et al., 2005; 

Davidson, 2006; Gao et al, 2007; Nieto, 2007).  

 

To date, there is a small amount of information about the effects of dietary fibre and 

some emerging evidence about the effects of fatty acids on gut physiology as it relates 

to contractility and motility (Jonkers et al., 2003; Patten et al, 2004b). To help 

understand the physiology involved in muscle contractility, part one of this literature 

review will focus on the effects of fish oil, and/or fibre, on contractility in cardiac, and 

smooth muscle cells of the blood vessels that are well documented and pertains in part 

to mechanisms which may be playing a role in gut physiology and pathophysiology. 

In part two, there will be an overview of the experiments published, in respect to this 

thesis, on the use of small animal models to investigate the effects of dietary fish oil 

and fibre on gut contractility. The final section of Part 2 will outline some preliminary 

results and speculate on potential future studies. It is not in the scope of this literature 

review to discuss in depth the role of fibre and LC n-3 PUFA in CVD, cancer, or IBD. 

 

1.3.  Hypothesis 

From the literature, there is some evidence that dietary fish oil can influence the 

contractility of cardiac muscle and smooth muscle of blood vessels and dietary fibre 

can influence the contractility of gut tissue to varying degrees. The hypothesis of this 

thesis is that dietary fish oil and/or fibre influence the contractility of isolated intact 

sections of gut smooth muscle tissue from small animal models. 
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1.4.  Experimental aims 

i)  Develop in vitro contractility models for isolated intact gut sections of 

ileum and colon from the guinea pig and the rat. 

ii)  Investigate the effects of dietary fibre and fish oil supplementation on 

gut lipid profiles and contractility outcomes in the guinea pig and rat. 

iii) Determine the contractility profile of isolated gut tissue from the 

spontaneously hypertensive rat (SHR) fed diets supplemented with 

saturated fat, canola oil or fish oil.  

iv) Characterize the dose effects of dietary fish oil on contractility of 

isolated gut tissue from WKY rats. 

v) Determine any interactive effects of dietary fish oil and fibre on 

contractility of isolated gut from normotensive rats. 

vi) Examine aspects of the muscarinic receptor signalling system to 

investigate possible biochemical mechanisms of dietary fish oil LC n-3 

PUFA involved in the modification of gut contractility. 

 

1.5.  Definition of fatty acids 

Fatty acids (FAs) typically have an even number of carbon atoms, in the range of 2-

26.  FAs with only single bonds between adjacent carbon atoms are referred to as 

‘saturated’, whereas those with at least one C=C double bond are called ‘unsaturated’ 

(Laposata, 1995) (see Table 1 for a list of common fatty acids). The PUFAs have two 

or more double bonds which are usually methylene- interrupted (non-conjugated) and 

are named according to the position of these bonds and the total chain length. For 

example DHA (22:6) is an omega-3 (n-3) FA with 22 carbon atoms and six double 
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Eicosapentaenoic acid, EPA, 20:5n-3 
 
 

Docosahexaenoic acid, DHA, 22:6n-3 
 
Figure 2. Linear schematics of the two major long chain polyunsaturated fatty 
acids found in marine oils: EPA and DHA. 
 

bonds, usually in an all cis configuration (see Figure 2 and Figure 3 for diagrammatic 

representations of EPA and DHA). The term ‘n-3’ indicates that, counting from the 

methyl end of the molecule, the first double bond is located between the third and 

fourth carbons. As the degree of unsaturation in FAs increases, the melting point 

decreases which confer the attribute of fluidity of n-3 PUFAs in cell membranes that 

influence many aspects of cell function (McMurchie and Raison, 1979; Valentine and 

Valentine, 2004; Ruxton et al., 2007).  

 

Figure 3.  3-D model of docosahexaenoic acid (DHA). 

 

 

 

In nature, DHA and eicosapentaenoic acid (EPA, 20:5n-3) are produced by unicellular 

phytoplankton and microalgae that are ingested by smaller marine creatures such as 

krill and are thus found in high concentrations (up to 3% of total fish weight) in cold 

water species of oily fish such as herrings, sardine, salmon and mackerel (Romero et 

al., 1996, Oh et al., 2006). EPA and DHA are synthesized from the n-3 precursor α-

linolenic acid (ALA, 18:3n-3) whereas the long chain n-6 PUFA such as arachidonic 

COOH 

COOH 
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acid (AA, 20:4n-6) are synthesized from the predominantly plant-derived precursor 

linoleic acid (18:2, n-6) (Jump, 2002). Plants also produce α-linolenic acid (ALA, 

18:3n-3) found at around 10% (w/w) of the total fat content of canola oil and even 

higher in flaxseed oil. In general, however, humans do not have the enzymatic 

machinery to elongate and desaturate ALA to EPA by any more than 5-7% (Burdge 

and Calder, 2005; Goyens et al., 2005; Harper et al., 2005) due to linoleic acid (LA, 

18:2n-6) competing with ALA at the level of the Δ6-desaturase (see Figure 4). 

 

 

Table 1.  Common fatty acids arranged in difference classes 
 

Common name Scientific name Molecular 
name 

Abbrevi
ation 

 

Saturated fatty acids 
Lauric acid Dodecanoic acid 12:0  
Myristic acid Tetradecanoic acid 14:0  
Palmitic acid Hexadecanoic acid 16:0  
Stearic acid Octadecanoic acid 18:0  
Arachidic acid Eicosanoic acid 20:0  
Behenic acid Docosanoic acid 22:0  
Lignoceric acid Tetracosanoic acid 24:0  

 

Monounsaturated fatty acids 
Vaccenic acid 11-octadecenoic acid 18:1 n-7  
Oleic acid 9-octadenoic acid 18:1 n-9  

 

Omega 3 polyunsaturated fatty acids 
α-linolenic acid 9,12,15-octadecatrienoic acid 18:1 n-3 ALA 
Eicosapentaenoic acid 5,8,11,14,17-eicosapentaenoic acid 20:5 n-3 EPA 
Docosapentaenoic acid 7,10,13,16,19-docosapentaenoic acid 22:5 n-3 DPA 
Docosahexaenoic acid 4,7,10,13,16,19-docosahexaenoic acid 22:6 n-3 DHA 

 

Omega 6 polyunsaturated fatty acids 
Linoleic acid 9,12-octadecadienoic acid 18:2 n-6 LA 
γ-linolenic acid 6,9,12-octadecatrienoic acid 18:3 n-6 GLA 
Arachidonic acid 5,8,11,14-eicosatetraenoic acid 20:4 n-6 AA 
n/a 
 

4,7,10,13,16-docosapentaenoic acid 22:5 n-6  

 
(Footnote: all unsaturated FAs shown in this table are of the cis configuration.) 
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              n-6 FA series                              n-3 FA series 
  
                  Linoleic acid (LA)                                   α-Linolenic acid (ALA) 
                       18:2n-6                                                              18:3n-3 
                                                   Delta-6 desaturase 
            γ-Linolenic acid (GLA)                                              18:4n-3  
                                                          Elongase 
                       20:3n-6                                                              20:4n-3 
                                                   Delta-5 desaturase 
 
              Arachidonic acid (AA)                          Eicosapentaenoic acid (EPA) 
                       20:4n-6                                                              20:5n-3    
                                                          Elongase 
                       22:4n-6                                           Docosapentaenoic acid (DPA) 
                                                                                                  22:5n-3 
                                                          Elongase      
                       24:4n-6                                                              24:5n-3 
                                                   Delta-6 desaturase  
                       24:5n-6                                                              24:6n-3 
                                                        β-oxidation 
                       22:5n-6                                           Docosahexaenoic acid (DHA)  
                                                                                                  22:6n-3                  
 
Figure 4. Diagrammatic representation of the n-6 and n-3 FA series metabolic 
pathway. The enzymes for each step are included in italics. AA and EPA are 
released from the membrane phospholipids by phospholipase A2 and metabolized to 
the eicosanoids (see Figure 5). 
 

1.6. Eicosanoid synthesis from membrane phospholipid pool.  

Studies have shown that n-3 FAs (EPA and DHA) appear to be incorporated rapidly and 

preferentially into mammalian cell membrane phospholipid pools (Owen et al., 2004; Patten et 

al; 2005a) compared with n-6 FAs. The resultant fatty acids released by the enzymic action of 

phospholipase A2 from the membrane phospholipids, mainly from macrophages in the 

inflammatory response, are converted to the various eicosanoid classes by cyclooxygenases 

and lipoxygenases (see Figure 5). Generally, the 2-series prostaglandins and thromboxanes 

and 4-series leukotrienes such as PGE2 and LTB4 from n-6 FAs are considered 

proinflammatory while the 3-series prostaglandins and thromboxanes and 5-series leukotrienes 

such as PGE3 and LTB5 from n-3 FAs are regarded as less inflammatory. In industrialized  



 23

                                                     

 
                                              
                                               
                                              
                                             PHOSPHOLIPID 
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Figure 5. Diagram of eicosanoid synthesis from arachidonic acid and EPA. The main 
source of eicosanoids are macrophages and as a general indication, eicosanoids from the 2- 
and 4-series are regarded as proinflammatory, whereas eicosanoids from the 3- and 5-series 
are regarded as less proinflammatory. Cyclooxygenase produces prostaglandins whereas 
lipoxygenase produces leukotrienes. Abbreviations for major classes: AA, arachidonic acid; 
DHA, docosahexaenoic acid; EPA, eicosapentaenoic acid; 5-HEPE, 5-hydroxy-
icosapentaenoic acid; 5-HETE, 5-hydroxyeicosatetraenoic acid; 5-HPETE, 5-
hydroperoxyeicosatetraenoic acid; LT, leukotriene; LTA4, leukotriene A4, 5-PEPE, 5-
peroxyeicosapentaenoic acid; PG, prostaglandin; PGI2, prostaglandin I2; TXA2, thromboxane 
A2. Adapted from Emprey et al., 1990 and Mills et al., 2005. 
 
 
society the ratio of n-6:n-3 FAs is high due to increased consumption of n-6 rich vegetable oils 

and decreased consumption of n-3 rich foods such as oily fish. Epidemiological studies 
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suggest that the human intake of n-6 FAs has increased the n-6:n-3 ratio from 1 to around 15 

(Mills et al., 2005). The full impact of this large shift in the n-6:n-3 ratio in our diet and 

subsequent FA makeup of our bodily tissues is the subject of much debate and clinical 

research. However, there are also concerns about the oxidative stress that can result from 

increases in dietary n-3 FAs if they are not accompanied by adequate amounts of vitamin E or 

other antioxidants present in higher levels in more primitive diets (Camuesco et al., 2006). 

 

1.7.  Effects of n-3 PUFA on contractility of normal and ischaemic cardiac 

muscle 

It is generally believed that dietary LC n-3 PUFA benefit cardiovascular disease 

outcomes. However, the results from large clinical trials (eg GISSI and DART [1 and 

2] trials) (Marchioli et al., 2002; Burr, 2007) and subsequent reviews (Hooper et al., 

2007) and meta-analysis (Wang et al., 2006) have produced both positive and neutral 

outcomes for fish oil n-3 PUFAs. Studies with animals and isolated neonatal and adult 

cardiomyocytes using diets or media enriched with n-3 PUFA have investigated the 

biochemical mechanisms involved with this proposed cardioprotection (McLennan et 

al., 1988, 1992a,b; Kang and Leaf 1995; Billman et al., 1999; Jahangiri et al., 2000; 

Leifert et al., 2000a,b, 2001; Kukoba et al., 2003).  

 

The basis of this work commenced in the early seventies from the observations of 

Bang and Dyerberg concerning Greenland west coast Eskimos (Bang et al., 1971) 

who, although consuming a high fat diet, were believed to have low rates of 

cardiovascular disease which was linked to their high intake of marine blubber and fat 

containing high amounts of LC n-3 PUFAs. The subsequent studies by Gudbjarnason, 

established that feeding fish oil lead to an incorporation of the LC PUFAs, EPA and 
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DHA into rat heart membrane phospholipid fractions at the expense of n-6 PUFA, LA 

and AA (Gudbjarnason and Hallgrimsson, 1976; Gudbjarnason and Oskarsdottir, 

1977) and provided an explanation as to how such dietary changes related to human 

cardiovascular disease based on the differences in the n-6:n-3 FA ratios 

(Gudbjarnason et al., 1989). However, McLennan et al., (1988) were the first group to 

show that feeding tuna fish oil supplemented diets rich in n-3 FA to rats for several 

months prevented ischaemia-induced fatal ventricular arrhythmias which they 

subsequently confirmed in the marmoset monkey (McLennan et al., 1992a,b). Others 

soon repeated these findings in the rat (Hock et al., 1990). It appeared that for animal 

models in general, saturated animal fat was pro-arrhythmic while replacement with 

FAs of the n-6 class and, more particularly n-3 PUFA, but not monounsaturated fatty 

acids, could reduce the likelihood of an ischaemic event leading to sudden cardiac 

death (McLennan, 1993). The challenge was to establish the mechanisms involved in 

fish oil protection from normoxic and ischaemic-induced cardiac arrhythmias. 

 

The possible mechanisms of n-3 PUFA action on heart rhythm may represent 

pleiotropic effects of such fats on several aspects of structure, metabolism, the 

autonomic nervous system and electrophysiology.  Fish oil or pure n-3 fatty acid 

preparations have been efficacious in short and long term feeding trials in various 

animal models and upon acute addition to asynchronously beating isolated 

cardiomyocytes (see above). Fish oil LC n-3 PUFAs are incorporated into heart 

muscle tissue membranes at relatively higher concentrations over a period of several 

weeks (Owen et al., 2004). A consequence of this increased n-3 PUFA incorporation 

may be effects on membrane fluidity (Leifert et al., 2000a), mechanisms of cell 

signally including G-protein coupled receptors (Patten et al., 1989), altered eicosanoid 
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production such as reduced thromboxane A2 levels (Abeywardena et al., 1991a,b; 

Bryan et al., 2006; Moller and Lauridsen, 2006), and even effects on cardiac nuclear 

receptors and altered gene expression including protein kinase C regulation 

(Hlavackova et al., 2007). Initial studies evaluating the global gene expression profile 

using array technologies in cultured neonatal rat cardiomyocytes supplemented with 

n-3 PUFAs detected upregulation of genes related to lipid transport. Many of the 

downregulated genes appeared to be related to inflammation, cell growth, 

extracellular and cardiac matrix remodelling, calcium movements and the generation 

of reactive oxygen species (ROS) (Bordoni et al., 2007). 

 

Studies using isolated cardiomyocytes have indicated direct modulation of Na+ 

currents and L-type Ca2+ channels (Leaf et al., 1999; Leifert et al., 1999; Leaf, 2001). 

Specifically, Leifert et al. (2001) demonstrated that in rats fed diets supplemented 

with fish oil, which in isolated heart cells in the presence of the sarcoplasmic 

reticulum Ca2+ pump inhibitor, DBHQ, the time constant of decay of Ca2+ transients 

(τ) induced by single electronic pulses was higher compared to a saturated fat control 

group. As mentioned, dietary fish oil feeding also leads to enhanced gene expression 

of several antioxidant enzymes involved in scavenging of ROS which could prevent 

reperfusion induced arrhythmias due to rises of  [Ca2+]i (Jahangiri et al., 2006). Since 

calcium is integral to muscle contractility, n-3 PUFA mechanisms which control or 

limit [Ca2+]i may ultimately play the key role in the prevention of fatal normoxic or 

ischaemic-induced ventricular fibrillation. 

 

A critical factor in patients who have suffered a myocardial infarction is compromised 

left ventricular systolic dysfunction (Macchia et al., 2005). What has been 
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demonstrated using appropriate animal models is that dietary n-3 PUFA positively 

affect the contraction of isolated rat papillary muscle in response to α-1 and β-

adrenergic stimulation (Skuladottir and Johannsson, 1997), decrease the load 

dependence of relaxation (Chemla et al., 1995), and increase the left ventricular 

ejection fraction in marmoset monkeys due to enhanced filling (McLennan et al., 

1992a,b). In the isolated working rat heart perfused with porcine blood at a 

haematocrit of 40%, a dietary fish oil group had reduced oxygen consumption at any 

given work output and increased post-ischaemic recovery compared to saturated fat or 

n-6 PUFA dietary supplemented animals (Pepe and McLennan, 2002).  

 

In summary, dietary fish oil n-3 PUFAs act at the physiochemical and metabolic level 

and on gene expression increasing the antioxidant capacity of the heart, reducing 

endothelial cell damage, altering membrane fluidity affecting enzyme activities and 

stabilizing ion channels regulating [Ca2+]i while reducing oxygen demand. Overall, 

these effects of n-3 PUFA improve the potential ability of the heart to function more 

efficiently, especially under conditions of stress.   

 

1.8. Effects of n-3 PUFA on contractility of vascular smooth muscle cells and 

blood flow 

Part of the cardiovascular benefits of n-3 PUFA noted in human and animal studies 

are likely to be mediated at the levels of the vascular endothelium (Mano et al., 1995; 

Mori, 2006). This thin monolayer of cells plays a central role in cardiovascular 

homeostasis and function via the production of a range of potent autocrine and 

paracrine biochemical mediators (Abeywardena and Head, 2001) controlling the tone 

of vascular smooth muscle cells (VSMC) (Gibbons, 1997). Vasorelaxants include 
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nitric oxide (NO), and endothelial derived hyperpolarizing factor (EDHF). 

Vasoconstrictors include angiotensin II, the potent endothelins, thromboxane 

A2/prostaglandin H2 (PGH2), prostaglandin F2α (depending on the smooth muscle), 

superoxide anion and isoprostane (see Figure 6). The endothelium is also the site of 

many receptors, binding proteins, transporter and signalling processes involved in cell 

growth, apoptosis and cell migration. In certain disease states the endothelium may 

also produce increased levels of eicosanoids and free radicals and promote abnormal 

contraction of blood vessels. There is, therefore, a delicate interplay between the cells 

lining the vasculature and the VSMC whose tone regulates blood flow and blood 

pressure.  

 

It has been postulated that LC n-3 PUFAs positively influence NO production and 

eicosanoid biosynthesis and hence vascular reactivity (Harris et al, 1997). 

Abeywardena et al. (1987) demonstrated that long term dietary supplementation of 

rats with different fats altered aortic PGI2 and TXB2 formation with tuna fish oil 

suppressing their production. A saturated fat group showed the highest PGI2/TXB2 

ratio compared to a sunflower seed supplemented diet with tuna fish oil showing the 

lowest PGI2/TXB2 ratio. This may be partly explained by an increase in synthesis of 

PGI3 and TXA3. PGI3 is equipotent to PGI2 with regards to vasodilatory action whilst 

TXA3 has little vasoconstricting activity (Abeywardena and Head, 2001). However, 

depending on the model and conditions, this hypothesis needs further testing 

(Hornstra et al., 1981; Oudot et al., 1998). Using adult human saphenous vein 

endothelial cells, Urquhart et al., (2001), demonstrated that incubation for 72 hours 

with 50 µM EPA or DHA inhibited basal production of the vasoconstrictor PGF2α by  
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Figure 6. The endothelium produces a range of vasoactive compounds 
involved with vascular smooth muscle homeostasis. Abbreviations: NO, nitric 
oxide; PGI2, prostaglandin I2; EDHF, endothelial derived hyperpolarizing factor; AII, 
angiotensin II; ET, endothelin; PGF2α, prostaglandin F2α; TXA2/PGH2; thromboxane 

A2/prostaglandin H2; O2
-.

, superoxide anion. Modified from Abeywardena and Head, 
2000. 
 
 
50% and 80%, respectively. It has also recently been reported that cytochrome p-450 

epoxygenase metabolites of DHA can potently dilate coronary arterioles by activating 

large-conductance calcium-activated potassium channels (Ye et al., 2002). These and 

other such interactions may form the basis for the reported improvement by n-3 PUFA 

of endothelial function and arterial elasticity possibly via ion channel activation 

(Asano et al., 1997, 1998; Goodfellow et al., 2000; Nestel, 2000; Conde et al., 2007) 

that ultimately leads to reduction of blood pressure described in animal models (Head 
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et al, 1991; Mano et al, 1995). A list of proinflammatory cytokines, or cytokines 

reflecting inflammatory processes that are reduced by ingestion of EPA and DHA 

would include the following: IL-1β, IL-2, IL-6, TNFα, and platelet derived growth 

factor (PDGF)-A.  

 

The effects of fish oil on atherosclerosis act in part via inhibition of VSMC 

proliferation and migration, modification of expression of COX-2 and inflammatory 

cytokinesis (see above) and adhesion molecules (VCAM-1, ICAM-1 and E-selectin), 

reduction of oxidative stress (as indicated by 8-iso-PGF2α), and the stabilization of 

plaque formation (De Caterina et al., 1994, Shimizu et al., 2001; 2004; Chen et al., 

2005; Machida et al., 2005; von Shacky, 2007a,b) (see Figure 7 and Figure 8 for fish 

oil effects on blood vessels). In an earlier study, the endotoxemic rat model 

demonstrated reduced rates of blood flow studied using radioactive microspheres to 

the small and large intestines, stomach, skin and skeletal muscle (Pscheidl et al., 

1992). Short term intravenous feeding with n-3 PUFAs has been reported to increase 

portal and intestinal blood flow. This occurred with a concomitant improvement in 

glucose tolerance (Pscheidl et al., 1992). Enteral feeding containing fish oil also 

increased blood flow to the ileum of the rat. Concomitant with these effects was an 

altered expression of the proinflammatory cytokines, IL-4 (increased) and IL-10 

(decreased) (Matheson et al., 2003). In streptozocin-induced diabetes in the rat, n-3 

PUFA supplementation with Promega (0.5 mL/kg/d) for 4 weeks beginning 2 weeks 

after diabetes induction had negligible effects on the levels of plasma glucose, 

triglyceride (TG) or cholesterol. However, both aortic and coronary blood flow rates 

were increased in diabetic rats fed n-3 PUFA in a working heart model where 

membrane n-3 FA levels were increased (Balck et al., 1993). In vitro studies  
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Figure 7. Summary of the proposed beneficial effects of fish oil LC n-3 PUFA 
(EPA and DHA) on blood vessel function. A more comprehensive list of n-3 FA 
effects on blood vessels and other selected tissues is shown in Figure 8 and 9. 
Adapted from Abeywardena and head, 2000. 
 
employing aortic rings from rats fed 20% fat diets (w/w)  showed that under pre-

anoxic or post-anoxic conditions, rings from rats fed fish oil and corn oil enriched 

diets contracted less than rings from rats fed diets enriched with saturated beef tallow. 

The relaxation response to acetylcholine, however, was greater in aortic rings from 

rats fed diets supplemented with fish oil. As a consequence, this may result in 

increased blood flow to ischaemic and reperfused tissues in vivo (Malis et al., 1991). 

High fish oil supplementation also led to increased reperfusion blood flow after 40 

min of left coronary artery occlusion of rat heart with no effect on the extent of 

myocardial infarction area (Force et al., 1989). 

 

In a later study, healthy humans were supplemented with a high n-3 PUFA diet of 

DHA (2 g/day) and EPA (3 g/day) or a sunflower (5 g/day) control for 6 weeks. The 

n-3 PUFA supplemented group had enhanced brachial artery blood flow and 

conductance during a hand grip exercise (Wasler et al., 2006). It has also been  
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NOTE:  This figure is included on page 32 of the print copy of the 
thesis held in the University of Adelaide Library. 
 

 
 
 
 
 
 
Figure 8. Possible mechanisms of endothelium-independent effects of n-
3 PUFA on lowering [Ca2+]i dynamics. Studies in experimental animal 
models and human subjects with hypertension demonstrate modulation of 
vascular tone and a modest reduction of BP after fish oil or n-3 PUFA dietary 
supplementation possibly by endothelium-dependent and –independent 
mechanisms. Abbreviations: DHA docosahexaenoic acid; DPA, 
docosapentaenoic acid (n-3); EPA, eicosapentaenoic acid; Icat, non-selective 
cation channel; PKC, protein kinase C; SR, sarcoplasmic reticulum, VSMC, 
vascular smooth muscle cell. Modified from Hirafuji et al., 2003. 
 
 
 
 
 
 
demonstrated that n-3 PUFA enhances sympathetic nerve activity during forearm 

contractions (Monahan et al., 2004). 
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To examine these phenomena, isolated smooth muscle cells in the form of passaged 

foetal rat aortas (A7r5 cells) were incubated for up to 7 days with media 

supplemented with 30 µM n-3 PUFA and the resulting effects on ions currents and ion 

handling were examined using the whole cell voltage clamping technique and the 

Ca2+-sensitive dye fura-2 AM (Asano et al., 1997; 1998). After treating the A7r5 cells 

with EPA, the EPA and docosapentaenoic acid (DPA, 22:5n-3) content of the cellular 

phospholipid fraction increased in a time dependent manner. Alternatively, AA 

decreased and then the ratio of EPA and AA (EPA/AA) increased significantly 

(Asano et al, 1998). In the first study, the major findings were 1) n-3 PUFA (EPA and 

DHA) induced a K+ current in rat A7r5 smooth muscle cells; 2) EPA, DHA and DPA 

at concentrations of 3-100 µM inhibited the receptor-mediated non-selective cation 

current (Icat) activated by the vasoconstrictors vasopressin and endothelin-1 (ET1). 3) 

These findings indicated that n-3 FAs play an important role in the control of vascular 

tone while the site of action of the n-3 FAs did not involve the peptide hormone 

receptors for vasopressin and endothelin-1 as described above (Asano et al., 1997). In 

a following experiment, A7r5 cells were similarly incubated with media supplemented 

with EPA. The resting [Ca2+]i was significantly decreased  from 170 nM in control 

treated (oleic and stearic acid) cells down to 123 nM in cells treated with EPA 

supplementation in the media. Vasopressin and ET1 (both 100 nM) and platelet-

derived growth factor (PDGF, 5 ng/mL) evoked an initial peak of [Ca2+]i followed by 

a smaller sustained rise of [Ca2+]i in the presence of extracellular Ca2+. In EPA-treated 

A7r5 cells, both the peak and the sustained rise in [Ca2+]i induced by agonists 

decreased significantly in comparison to control cells. The resting membrane potential 

was also significantly higher in EPA-treated A7r5 cells than in control treated cells 

(Asano et al., 1998). Combined, these results from cultured VSMC from the large 



 
 

 
NOTE:  This figure is included on page 34 of the print copy of the 
thesis held in the University of Adelaide Library. 
 

 
 
 
 
 
 
Figure 9. Possible mechanisms for anti-proliferative and pro-apoptotic 
effects of n-3 PUFAs from marine oils as mediators of anti-atherogenic 
effects on VSMCs. EPA and DHA have been reported to regulate VSMC 
proliferation/migration induced by several mitogens. In particular DHA can 
cause apoptosis via multiple mechanisms involving nuclear receptors and 
gene expression. Indirect autocrine effects via the modulation of PGI2/PGI3 
and NO production may contribute to the antiatherogenic mechanism. 
Abbreviations: cdk2, cyclin-dependent kinase-2; 5-HT2, serotonin-2; ∆Ψm, 
mitochondrial transmembrane potential; PDGF, platelet derived growth factor; 
PKC, protein kinase C; PS, phosphatidyl-serine; PPAR-α, peroxisome 
proliferator-activated receptor-α; NO, nitric oxide; TGF-β; transforming growth 
factor- β; TXA2, thromboxane A2. Adapted from Hirafuji et al., 2003. 
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conductance vessel help explain the effects of n-3 PUFA on blood vessel contractility 

in terms of altered calcium homeostasis and its concomitant effects on the contractile 

cycle. 

 

EPA treatment has also been shown to inhibit platelet-derived growth factor (PDGF)- 

induced rodent and human vascular cell migration thus contributing to the anti-

atherosclerotic effects described for n-3 PUFA (Mizutani et al., 1997). Short term 

EPA treatment (24 h) also suppresses VSMC migration induced by oxidized LDL and 

lyso-PC (Kohno et al., 2000). It is clear that n-3 PUFA biochemistry in healthy and 

diseased states is complicated due to the interplay between the endothelium and 

contracting VSMC that results in altered blood flow that is critical to compromised 

ischaemic tissue, be it coronary vessels of heart, brain circulation, or blood vessels of 

gut, retina, or to peripheral tissue affected by diabetic neuropathy. It could be 

concluded that LC n-3 PUFA supplementation and subsequent membrane 

incorporation leads to healthier blood vessel endothelium via ionic modulation and 

hence improved vascular reactivity and blood flow when tissue is stressed (see Figure 

8 for beneficial effects of n-3 PUFA on blood vessels and for more specific anti-

proliferative and pro-apoptotic effects on blood vessels, see Figure 9). 

 

1.9.  Effects of n-3 PUFA on contractility of gastrointestinal tissue 

Unlike cardiac and vascular tissue, there is a paucity of information on the role of n-3 

PUFAs on gastrointestinal contractility and motility (Jonkers et al., 2000). Only 

recently have the connections between n-3 PUFA modulation of contractility and the 

potential for protection and/or amelioration from gut inflammatory conditions been 

evaluated (Belluzzi, 2004; Cao et al., 2005; Al-Jarallah et al., 2007). However, 



 36

contractility studies have not been carried out in the past with dietary n-3 fatty acid 

(and other) interventions in normal animal models or where the contractility of the 

gastrointestinal tract has been compromised. 

 

Nevertheless, it has been reported that the acute administration of LC PUFA from fish 

oil into the duodenum of healthy humans leads to significantly shorter gallbladder 

contraction duration compared to corn oil with both fats inducing a postprandial 

antroduodenal motility pattern while not influencing small bowel transit time (Jonkers 

et al., 2003). Both LC and medium chain fatty acids decrease lower oesophageal 

sphincter pressure (Ledeboer et al., 1998). The satiety factor, cholecystokinin (CCK), 

has a lower rate of secretion after fish oil infusion compared to corn oil, while other 

gastrointestinal hormones, peptide YY (PYY) and neurotensin release were not 

influenced. It appears that the effects of fatty acids on CCK release and gall bladder 

motility are dependent on fatty acid chain length. Hypertriglyceridaemia is a not only 

a risk factor for CVD, but also for gall stone formation due to saturation with 

cholesterol and subsequent gall bladder dysmotility as a result of a decreased 

sensitivity to CCK. A recent study has demonstrated that triglyceride (TG) lowering 

therapy by a bezafibrate or a high fish oil dietary supplementation (5 g/day) improved 

gall bladder dysmotility without adversely affecting biliary cholesterol saturation 

(Jonkers et al., 2003) although it is generally thought that n-3 PUFA have a more 

significant effect on triacylglycerides than cholesterol. The mechanism is possibly 

hypertriglyceridemia-induced lipid perturbation of the smooth muscle membrane 

bilayer, altering the interaction of CCK with its receptor and/or the CCK receptor-G 

protein interaction and downstream Ca2+ modulation leading to an altered 

physiological response.  
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1.10.   Definition of fibre and resistant starch 

Since 1953, when nutritionist EH Hipsley first coined the term “dietary fibre”, the 

scientific community have acknowledged its nutritional potential (Hipsley 1953; 

Cummings, 1978). According to the National Academy of Sciences (2002) the 

definition is condensed to the following: “Dietary Fibre consists of nondigestible 

carbohydrates and lignin that are intrinsic and intact in plants. Functional Fibre 

consists of isolated, nondigestible carbohydrates that have beneficial physiological 

effects in humans. Total Fibre is the sum of Dietary Fiber and Functional Fiber.” 

There are also three main categories of dietary fibre; soluble, insoluble and resistant 

starch, with each demonstrating specific health benefits. The key point is that dietary 

fibre survives passage through the small intestine and is attacked by enzymes of 

colonic microflora yielding short chain fatty acids (SCFAs), hydrogen, carbon dioxide 

and methane as fermentation products (Escudero and Gonzalez, 2006). The main 

SCFAs are acetate, propionate and butyrate accounting for 90-95% of the total colonic 

SCFA pool (Kamath and Phillips, 1988) with SCFAs reaching concentrations of 60-

130 mM in the proximal colon of humans (Cummings et al., 1987). SCFAs may 

affect blood glucose and lipid levels (Higgins, 2004), improve the colonic 

environment by maintaining a lower pH (which limits the production of carcinogens), 

regulating the immune responses (Harris and Ferguson, 1993) as well as being an 

important energy source for colonocytes and possibly the colonic bacteria themselves 

(Rose et al., 2007). However, the degree to which these fibre types generate SCFAs 

(and butyrate in particular) is still unclear. In the context of this literature review, 

discussion will also cover the influence of SCFA on aspects of gastrointestinal 

motility (Cherbut et al., 1996; Dass et al., 2007). 
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1.11  Effects of dietary fibre on contractility of the gastrointestinal tract 
 
Dietary fibre is thought to enhance colonic transit and frequency by increased faecal 

bulk and to affect smooth muscle contractility via the production of SCFAs. Low-

fermentable fibre more effectively increases faecal bulk rather than fermentable fibre 

because of its water-retaining capacity. SCFAs on the other hand, which may also be 

produced from undigested protein (MacFarlane and MacFarlane, 2003), can modulate 

neural and hormonal pathways (Mitsui et al., 2006). Physiological studies have 

implicated SCFAs as a luminal chemical stimulus which can control gastrointestinal 

contractility and motility at the level of the rumen (Kendall and McLeay, 1996) 

stomach (Cuche and Malbert, 1999a), small intestine (Cuche and Malbert, 1999b; 

McManus et al, 2002) and colonic longitudinal muscle (Cherbut et al, 1998). 

However, whether the effects of SCFAs are stimulatory or inhibitory is unclear, and 

varies according to the different experimental paradigms (Yajima, 1984; Masliah et 

al., 1992; Squires et al., 1992; Fukumoto et al., 2003).  

 

Bulking action causes firing of stretch-sensitive enteric nervous tissue probably via 

serotonin (5-HT) release whilst SCFAs may elicit contraction of gut tissue via an  

anionic hyperpolarisation effect or at the newly discovered G-protein coupled 

receptors GPR41 and GPR43 (Fukamoto et al., 2003; Nilsson et al., 2003). At 

present, these receptors can only be distinguished by their rank order potency to 

SCFAs. Compared with propionate and butyrate, acetate has lower potency at GPR41 

receptor and is equipotent at the GPR43 (Brown et al., 2003). However, SCFA-

induced contractions can occur independently of the GPR43 receptor (Dass et al., 

2007) which, in contrast are only poorly expressed in the small intestine (Le Poul et 

al., 2003) or colonic muscle tissue (Karaki et al., 2007) compared to the spleen and 
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polymorphonuclear cells. However, the GPR43 receptor is expressed at higher levels 

both in intestinal enterochromaffin cells and mucosal mast cells (Karaki et al., 2006) 

which express PYY and 5-HT, and as mentioned, in specific types of white blood 

cells (Nilsson et al., 2003). It is thus possible that SCFAs influences gut smooth 

muscle cell contractility via a paracrine route. This proposition is supported by the 

recent finding that SCFAs at physiological concentrations may accelerate colonic 

transit by increasing the release of 5-HT and calcitonin gene-related peptide from 

mucosal cells when applied to flat-sheet preparations of the rat middle to distal colon 

(Grider and Piland, 2007). 

 

A recent study has noted that feeding rats a fibre-free diet resulted in a significantly 

lower colonic weight while the thickness of muscle layer and total body weight was 

not significantly affected (Mitsui et al., 2006). When myogenic responses of circular 

muscle were measured in the presence of tetrodotoxin (TTX binds to the pores of the 

voltage-gated, fast sodium channels thus isolating the myogenic effects), activation of 

muscarinic receptors by carbachol resulted in significantly greater contractions in a 

group supplemented with dietary cellulose compared to a fibre-free group. There were 

no reported changes in sensitivity (EC50) in response to carbachol stimulation on the 

longitudinal smooth muscle. When contractions induced by substance P were 

examined in the presence of TTX and the muscarinic acetylcholine receptor 

antagonist, atropine, there were no differences in the substance P-induced contractions 

of circular muscle strips of distal colon with regard to fibre in the diet. However, in 

the longitudinal muscle strips, substance P-induced contractions of the fibre-free 

group were significantly larger compared to the fibre-fed groups (Mitsui et al., 2006). 

The fibre-free diet led to a decrease in the colon enterochromaffin cell number. It is 
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important to note that enterochromaffin cells are involved with the release of the 

neurotransmitter 5-HT when the colon is mechanically stimulated by faeces (Wade et 

al., 1996). It was concluded that functional changes of enteric neurons and muscle 

cells, as well as a decrease in the number of EC cells, could affect the colonic motility 

of rats fed fibre-free diets.  

  

1.12.  Conclusions 

The mechanisms of action of dietary fish oil and fibre in animal physiology are 

complex and are not fully understood. The n-3 PUFAs are readily incorporated into 

tissue membranes in a preferential manner at the expense of n-6 PUFAs such as 

linoleic acid (18:2 n-6) or arachidonic acid (20:4n-6). In general, studies have 

demonstrated that when n-3 FAs (EPA and DHA) are incorporated into the 

phospholipid membrane of cells at the expense of AA, the resultant eicosanoids 

released in the inflammatory cascade, including PGE3, are less proinflammatory than 

the prostaglandins classes 1 and 2, thromboxanes A2 and leukotrienes (especially 

LTB4, see Figure 4) (Fritsche et al., 1999; Calder, 2003; Mills et al., 2005). The LC 

n-3 PUFA also act as ligands of PPARα involved in fat oxidation (Price et al., 2000) 

and affect the transcription of several genes involved in the control of inflammation 

and metabolism.  

 

In addition n-3 PUFAs are incorporated into plasma membrane lipids, where they 

modify membrane physicochemical properties such as fluidity and influence enzyme 

activity, ion channels and receptor system binding. This results in a decrease in 

vascular smooth muscle tone which leads to lower BP and improved blood flow 

(Pscheidl et al., 1992; Abeywardena and Head, 2000). On the other hand, in gut 
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smooth muscle and cardiac tissue n-3 PUFAs lead to increased contractility 

(McLennan et al., 1993; Patten et al., 2002a, 2005a,b, 2006). These outcomes are 

probably due to modification of Ca2+ handling mechanisms, eicosanoid production 

and endothelial derived relaxing factors such as NO. The newly discovered class of 

mediators, resolvins, lipoxins and docosatrienes (Arita et al., 2005), may help explain 

some of the biochemical mechanisms involved in LC n-3 PUFA protection in 

inflammatory conditions. For a summary of general effects of dietary LC PUFA from 

fish oil on selected tissues including platelets, blood vessels, cardiac tissue and gut, 

refer to Figure 10. 

 

Fibre, and in particular, resistant starch, reaches the large bowel where bacterial 

fermentation produces SCFAs, the major products being acetate, propionate and 

butyrate which in combination maintain bowel pH at healthy levels. As well as 

increased faecal bulk and laxation, dietary fibre assists with the secretion of 

carcinogens in the faeces, decreases resorption of bile salts, decreases conversion of 

primary bile acids to secondary bile acids and decreases the rate of glucose absorption 

in the small intestine. Furthermore, dietary fibre is important for development of 

colonic enterochromaffin cells which are involved with the paracrine modulation of 

bowel contractility. Indeed, SCFA have been implicated in the modulation of 

contractility along the majority of the gastrointestinal tract from stomach to large 

bowel, but the mechanisms of such actions have yet to be fully elucidated. Butyrate, 

in particular, is a key substrate for the cells lining the gut wall and this four carbon 

fatty acid is implicated in the regulation of cell proliferation and apoptosis and the 

prevention of bowel cancers. Specifically, the physiological responses to butyrate are  
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Figure 10. Summary of general effects of dietary LC PUFA from fish oil on 
selected tissues including platelets, blood vessels, cardiac tissue and gut. The 
table summarizes many of the points discussed in the text or from the references 
therein. Abbreviations: Ach, acetylcholine; ATPase, adenosine triphosphatase; BP, 
blood pressure; COX 2i, cyclooxygenase 2 (inducible); DHA; docosahexaenoic acid; 
EPA, eicosapentaenoic acid; IL-1β, interleukin 1β; IP3, inositol triphosphate; LC, long 
chain; LTB, leukotriene B; M1, muscarinic subtype 1; mRNA, messenger ribose 
nucleic acid; iNOS, nitric oxidase synthetase (inducible); PDGF-A, platelet-derived 
growth factor A; PGE2, prostaglandin E2; P44/42 MAPK, P44/42 p38 mitogen-
activated protein kinase; PI-PKC, phosphatidyl inositol-protein kinase C; SR, 
sarcoplasmic reticulum; TBX2, thromboxane X2; TNFα, tumour necrosis factor-alpha; 
VEGF, vascular endothelial growth factor; VSMC, vascular smooth muscle cell. 
 
 
a decreased production of proinflammatory cytokines, inhibition of nuclear factor-κB 

activation and enhanced production of peroxisome proliferator-activated receptors, 

which all result in a decreased inflammatory response. The role of butyrate as a 

 
Effects of fish oil LC n-3 PUFA on selected tissues  

Heart 
DHA & EPA↑ 

Arrhythmia↓  
Ejection fraction↑ 
Voltage dependent    
L-type Ca2+ 
channels ↓ 

Na+ current↓ 
Sarcolemmal Ca2+       

efflux↓ 
IP3↓ 
SR (Ca2+-Mg2+)- 

ATPase ↓ 
TBX2↓ 
 
 
 

 
Blood vessels 
DHA & EPA↑ 
BP↓ 
VSMC↓ 
PDGF-induced  

VSMC migration↓ 

Tone↓ 

Blood flow↑ 
PKC↓ 
[Ca2+]i↓ 
Ca2+ channels↓ 
K+(ATP) channel↑ 

Non-selective Icat↓ 
iNOS↑  
TBX2↓ 
TNFα↓ 
IL-1β↓ 
LTB↓ 
VEGF↓ 
IL-1β COX 2i 
mRNA↓ 
PGE2↓ 
P44/42 MAPK↓ 
Ach relaxation↑ 
 

 
Gut 
DHA & EPA↑ 
Agonist-induced 
contractility↑ 
Electrically-driven  
contractility↑ 
M1 receptors↑ 
Blood flow↑ 

Inflammation↓ 
IL-1β↓ 
IL-4↑ 
IL-10↓ 
IL-12↓ 
IL-15↓ 
TBX4↓ 
LTB4↓ 
TNF-α↓ 

  
Platelets  
DHA & EPA↑ 
Fluidity (DHA)↑ 
Aggregation↓ 
TNFα↓ 

PDGF-A & -B↓ 
PI-PKC signal↓ 
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cognate ligand for the recently discovered G-protein receptor system (GPR43) is 

novel but needs to be fully defined (Karaki et al., 2007). 

 
 
What is becoming evident is that dietary fibre and in particular n-3 PUFA is positively 

indicated in a multitude of ways for good health, in a balance that provided well for 

our ancestors in the preceding thousands of years (2002a,b). The evidence for fish oil 

for CVD protection is extensive and is growing for cancer prevention, but even so, 

these concepts are still controversial (Hooper et al., 2007). The challenge is to 

substantiate the role of dietary LC n-3 PUFA and fibre on indices of gastrointestinal 

health (Turner et al., 2007a,b). 

 

 

 

Docosahexaenoic acid (DHA, 22:6n-3)
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Experimental studies related to this thesis 

2.1. Methodology 

Investigative studies of isolated gut tissue contractility was established in organ bath 

by modification of previous methods (Paton and Visi, 1969; Brantl et al., 1979) for 

the simultaneous bathing of the serosa of an intact piece of isolated guinea pig ileum 

while allowing infusion of the isolated lumen (Patten et al., 2001). Electrical 

stimulation was introduced via parallel stainless steel rods. In the rat, an open system 

of superfusion was developed for ileum and colon with opposite circular stainless 

steel leads initiating electrically-driven contraction of the colon (Patten et al., 2005b). 

Various gastrointestinal agonists of contraction (acetylcholine, histamine, serotonin, 

PGE2, PGF2α, and 8-iso-PGE2) and inhibitors of electrically-driven contraction 

(morphine and epinephrine) could be introduced into the organ bath. The comparative 

compartmental potency of dietary-derived opioid blockers affecting morphine could 

be tested using guinea pig ileum. Finally, the effects of dietary intervention of various 

fats and fibre on lower gut contractility in healthy guinea pigs and rats or hypertensive 

rats that exhibited compromised prostanoid-driven gut contractility could be 

examined. It is of note that the rat intestinal system was not responsive to histamine or 

serotonin; they are both powerful neuroeffectors with their roles in diseases of the 

bowel yet to be defined. Interestingly, as demonstrated by others, the powerful 

eicosanoid aortic vasoconstrictor, 8-iso-PGF2α, showed little activity in isolated 

guinea pig or rat gut tissue (Sametz et al., 2000). However, the thromboxane A2 

mimetic, 9,11-dideoxy-9,11-methanoepoxy prostaglandin F2α (U-46619), which is of 

relevance to inflammatory conditions of the gut was found to be a powerful stimulant 

of contraction of the rat ileum but not the colon. Of particular interest were the effects 

of the long chain (LC) n-3 polyunsaturated fatty acids found in high concentration in 
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fish oil on gut smooth muscle contractility because of their known effects on vascular 

smooth muscle and cardiac tissue contractility under normoxic conditions and 

regimens of ischaemic challenge.  

 

Initial experiments using the guinea pig indicated that custom synthesized opioid 

antagonists casoxin 4 (a tetra-peptide sequence found in milk κ-casein) and its 

analogue [D-Ala2]-casoxin 4 when infused into the guinea pig lumen, significantly 

antagonised the inhibitory effects of morphine when added to the serosal side (Patten 

et al., 2001). D-Alanine was substituted in the second position of casoxin to 

potentially minimize the action of peptidases (Read et al., 1990). These effects may 

have implications for the treatment of opioid induced constipation (Paulson et al., 

2005). 

 

2.2.  Dietary fibre feeding trial in newborn guinea pigs 

In the first dietary study using the guinea pig model, convenience rice congee (a staple 

Asian food) supplemented diets were tested against other equal content fibre sources 

for eight weeks for effects on young guinea pig gut growth, caecal SCFA levels and 

ileal contractility (Patten et al., 2004b). While total caecal SCFA content did not 

significantly vary, butyrate was higher in a pulse based supplemented diet of baked 

beans. Contractility studies revealed a small but significantly higher voltage was 

required to initiate ileal contraction in a congee fed group compared to control dietary 

fibre groups which included baked beans. This may involve some intrinsic property 

differences between the gut tissues with regard to release of acetylcholine or other 

mediators such as serotonin or ionic handling properties of the smooth muscle 

membrane involved with depolarization and contraction between the animal groups. 



 46

This is difficult to explain, but may be a result of different natural dietary fibre or 

possible subtle differences in membrane fatty acid composition as a result of the 

dietary fat treatments. It may also involve the population of enterochromaffin cells 

whose density in gut tissue has been shown to be modulated by dietary fibre. 

Enterochromaffin cells release serotonin when mechanically stimulated (Wade et al., 

1996) and may act in an autocrine manner. 

 

There were no significant changes however, in response to a wide range of GIT 

stimulators or inhibitors of contraction in the guinea pig. These included the major 

parasympathetic effectors in the myenteric plexus of smooth muscle, i.e. acetylcholine 

(Visi, 1973) and histamine, which are strong drivers of ileal contraction and are 

implicated in intestinal secretion (Sjoqvist et al., 1992), vomiting (Fozard, 1987), 

bowel inflammation and disease (Gui, 1998), and normal motility (Nagakurra et al., 

2000). Also tested were prostaglandins which play an important role in the 

maintenance of human gastric mucosal homeostasis and repair (Reilly et al., 1998), 

mucous secretion (McQueen et al., 1983), blood vessel permeability and smooth 

muscle tone of isolated jejunum in animal models (Mohajer and Ma, 2000). 

 

2.3. Fish oil feeding trial in newborn guinea pigs 

For the next dietary trial, congee based diets supplemented with 3% (w/w) safflower 

oil or 3% high DHA tuna fish oil of the diet complemented with fruit and vegetables 

(approximately 50:50 of total weight) were fed to young guinea pigs for two months 

(Patten et al., 2002b). This equated to approximately 1.5% dietary fat with fish oil 

feeding increasing levels of ALA, EPA and DHA (which as a total approximated 10% 

of the total membrane phospholipid fatty acid pool). This resulted in lower oleic acid 
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proportion in the ileal membrane total phospholipid fraction compared to safflower oil 

supplemented animals. Significantly less voltage was required to initiate contraction 

of the ileum of the fish oil supplemented group compared to the control group. 

Although the differences were small, this could also indicate some intrinsic property 

differences between the gut tissues with regard to release of acetylcholine or the ionic 

handling properties of the smooth muscle membranes leading to depolarization and 

contraction between the animals fed the two dietary fats. Addition of n-3 PUFAs has 

been found to influence ion currents and contractility of other smooth muscle types 

(Pehowich, 1998) and isolated cardiomyocytes (Leifert et al., 1999, 2001: Leaf, 

2007). However, it is most likely that the mechanisms associated with the acute 

addition of fatty acids (as free acids or methyl esters) to cell media are different from 

those evident following feeding studies where n-3 PUFAs have been incorporated into 

the membrane at the expense of mainly n-6 PUFAs.  

 

 In the study described above, there was no alteration in sensitivities of maximal 

contractile responses to acetylcholine, histamine, serotonin and the prostanoids, PGE2 

and PGF2α that are key regulators of various gastrointestinal functions (Patten et al., 

2002b). However, there was an almost five fold decrease in sensitivity to the 

isoprostane, 8-iso-PGE2 without a change in the maximal contraction.  8-iso-PGE2 is 

an isoprostane formed by free radical mediated peroxidation of arachidonic acid 

(AA).  The isoprostanes which exhibit potent biological activity (Morrow et al., 1999) 

have been monitored as an indication of oxidative stress (Reilly et al., 1998) and in 

association with some diseases including diabetes (Mori et al., 1999b). In could be 

concluded from the first two dietary intervention studies with guinea pigs described 

above, that dietary fibre, and in particular, fish oil can influence contractility, albeit 
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subtlety, of isolated gut smooth muscle tissue under conditions of electrical 

stimulation or a gastrointestinal isoprostane modulator of contractility that may be 

involved in disease states. Compared to other n-3 PUFA dietary interventions, the 

final level of fish oil supplementation in the guinea pig experiment was only about 

1.5% of the total diet mass. However, it was important to validate and extend these 

findings of n-3 PUFAs from fish oil and fibre on contractility in other animal models, 

such as the rat. 

 

2.4. Fish oil feeding trial in Sprague-Dawley rats  

Subsequently, in the first study using 9 week old Sprague-Dawley (SD) rats, the 

animals were fed 17% fat diets (w/w) of the total diet as Sunola oil (high oleic acid  

 

Stomach  

                                                       

                                                        

                                                                       Small intestine 

                          Terminal ileum 
                                   
                                     
                        Caecum                                                                 
                                                                                               Colon                                    
 

 

 
Figure 11.    Gastrointestinal tract of normal male Sprague-Dawley (SD) rat. The 
dissection shows tissue from the stomach (top) to the rectum (bottom). Contractility 
studies for guinea pig and rat used sections of small intestine called the terminal 
ileum approximately 5 cm proximal from the caecum and sections of proximal or 
distal colon as described. Scale is in centimetres. 
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content), or substituted with 10% saturated animal fat (beef and mutton dripping) or 

fish oil (high EPA) for four weeks (Patten et al., 2002a). Fish oil supplementation led                              

to increased maximal contractility of around 100% in the ileum (see Figure 11 for the 

anatomical display of the rat GI tract) in response to acetylcholine and several 

eicosanoids involved in bowel health and disease including, PGE2, PGF2α, U-46619 

and 8-iso-PGE2 with no changes in sensitivity. It should be pointed out, that unlike the 

guinea pig, the ileum of rats was unresponsive to histamine and serotonin. For the SD 

rat itself, only the ileum and not the colon was responsive to the thromboxane 

mimetic, U-46619. This emphasizes the differences in the animal model chosen for 

experimentation. Importantly however, the changes in contractility were correlated 

with an increase in n-3 FA content of gut membranes. Interestingly, the colon which 

had a similar increase in n-3 PUFA profile did not have a significantly increased 

contraction as a result of dietary fish oil. It was concluded that the non-responsiveness 

in the colon was probably due to a limited physiologic role in a healthy state (Patten et 

al., 2002a). This expanded the findings in guinea pig and demonstrated for the first 

time that n-3 PUFA derived from a fish oil supplemented diet could alter the potential 

strength of contraction of gut smooth muscle tissue. What role LC n-3 PUFAs play in 

conditions where gut contractility is compromised was yet to be fully elucidated and 

is of interest to experimenters (Bassaganya-Riera and Hontecillas, 2006) and 

clinicians alike (Bjorkkjaer et al., 2006; Wild et al., 2007). 

 

2.5.  Dietary saturated fat feeding trial in WKY rats and SHR 

Another important question was whether high levels of saturated fat (SF) known to 

influence lipoprotein metabolism (Han et al., 2002) and the development of 

atherosclerosis (Christen, 2003) could alter gut contractility of a normal rat (WKY) or  
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the spontaneously hypertensive rat (SHR) model. Vascular smooth muscle function of 

SHR is known to be compromised and is over-reactive to various biological stimuli 

(Abeywardena and Head, 2001). Dietary SF and PUFA exert their pleiotropic 

physiologic actions by altering membrane fatty acid composition; this can modify 

mediator profiles such as eicosanoids and also affect physiologic responses to 

exogenous agonists. Therefore, in the next study rats were fed diets for 12 weeks 

containing 3% fat (w/w of total diet) as sunflower oil or supplemented with a further 

7% or 27% lard to give 10% and 30% total fat, respectively (w/w of total diet) (Patten 

et al., 2004a). Lard was chosen as the source of fat because, although only 36% SF, 

the sn-2 position of the triacylglycerol contains 71% as SFA (mainly as palmitic acid, 

16:0) which has been reported to influence the total phospholipid FA profile (Mu and 

Hoy, 2004). This wide range of dietary SF had no effect on the contractility responses 

of the ileum. On the other hand, in the colon there were subtle changes in sensitivity 

to angiotensin II in the WKY rat and a change of sensitivity to PGE2 and carbachol in 

the SHR. However, when the results of the three dietary groups were combined, there 

was lower sensitivity and lower maximal contraction in ileum and lower maximal 

contraction in the colon of SHR in response to PGF2α and PGE2 compared with the 

WKY group. PGs are important for GI homeostasis, including mucous secretion and 

smooth muscle tone (Ferreira et al., 1972; McQueen et al., 1983; Eberhart and 

DuBois, 1995). In chronic inflammatory bowel diseases (IBD), e.g., Crohn’s disease 

and ulcerative colitis (UC), the overproduction of various PGs has been reported 

(Subbaramaia et al., 2004). This was the first report of a defect in PG responsiveness 

from gut tissue from hypertensive rats (Patten et al., 2004a). In may be concluded that 

although patients with IBD rarely have hypertension (Pizzi et al., 2006), this 
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prostanoid defect in SHR gut may be a useful model for investigating bowel disease, 

especially where contractility is compromised. 

 

It had been established that dietary fish oil rich in n-3 PUFA modulates gut 

contractility in the SD rat strain (Patten et al., 2002a). It was further demonstrated that 

the gut of SHR had a depressed contractility response to PGs compared to 

normotensive WKY rats (Patten et al., 2004a). The next important question to 

investigate was whether feeding diets supplemented with fish oil rich in n-3 PUFA 

could increase gut contractility in healthy rats and restore the depressed prostanoid 

response in the SHR. 

 

2.6.  Fish oil, saturated fat and canola oil dietary feeding trial in WKY rats 

and SHR 

To answer the issues raised above, relatively large groups (n=16) thirteen-week-old 

SHR were fed diets containing 5g/100g (~5%) as coconut oil, lard, or canola oil 

containing 10% (w/w) n-3 FA as α-linolenic acid (ALA; 18:3n-3), or fish oil (as 

HiDHA®, 22:6n-3) and a WKY control group fed coconut oil (Patten GS et al., 

2005b). In the first instance, this experiment indeed confirmed that the tissues of the 

coconut oil supplemented SHR group were less responsive to PGE2 and PGF2α 

compared to tissues from the WKY coconut supplemented group. Feeding diets 

supplemented with fish oil to SHR increased the maximal contraction response to 

acetylcholine in the ileum compared to all diets confirming previous findings in a 

normotensive rat model (Patten et al., 2002a). Fish oil also restored the depressed 

response to PGE2 and PGF2α in the ileum but not the colon of SHR (Patten et al., 

2005b). Fish oil dietary supplementation again led to a significant increase in gut total 
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phospholipid n-3 PUFAs mainly as DHA, with lowered proportions of n-6 PUFA as 

arachidonic acid (20:4n-6). Canola oil feeding led to a small proportional increase in 

ileal EPA and DHA and in colonic DHA without significantly affecting contractility. 

The confirmed depressed PG response in the SHR fed a diet of SF (in the form of 

coconut oil) was not observed for muscarinic, isoprostane, or autocoid peptide 

agonists (angiotensin or bradykinin) (Patten et al., 2005b). The fish oil supplemented 

diet (with high DHA) restored the depressed prostanoid response in the ileum but not 

the colonic tissue. It is still to be determined whether the differences in tissue 

reactivity following fish oil feeding is explainable by altered PG receptor properties of 

ileal and colonic tissue. Functionally, the large intestine is primarily for drying and 

storage of digestive waste material and a fermentation vat, whereas the contractile 

properties influenced by n-3 PUFA in the ileum may not be translated to the distal 

bowel. 

 

Electrically driven contraction of colon is predominantly induced by acetylcholine 

release (Stanton et al., 2004) and it was demonstrated that there was a significant 

increase in maximal contraction in the proximal colon by fish oil supplementation 

compared with a SF diet (Patten et al., 2005b). This observation was supported by a 

significantly higher acetylcholine-induced contraction of the proximal colon by the 

fish oil supplemented diet compared with SF diet. This observation was not observed 

for normotensive SD rats in a previous study (Patten et al., 2002a). Since fish oil has 

now been demonstrated to stimulate contractility in the large bowel of a rat model 

with compromised PG function (SHR), this may add weight to the hypothesis that fish 

oil feeding may be advantageous in conditions where bowel function is compromised 

such as IBD where it is known contractility is diminished (Menzies et al., 2001). This 
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is because a main form of IBD, ulcerative colitis, occurs mainly, as its name suggests, 

in the large bowel. 

 

In an attempt to determine the mechanism of the n-3 PUFA effects on gut 

contractility, muscarinic binding properties were measured in ileal membrane 

preparations to determine whether fish oil supplementation modified ileal muscarinic 

receptor characteristics. Although fish oil feeding markedly increased ileal maximal 

contraction compared with an SF supplemented diet in response to acetylcholine, 

there was no change in the muscarinic receptor population measured by the non-

selective muscarinic antagonist, [3H]-quinuclidinyl benzylate (Patten et al., 2005b). 

Any change in muscarinic receptor subtypes was yet to be determined. It may be that 

the n-3 PUFA modification of contractility is a post receptor mechanism and involves 

altered calcium handling (Triboulot et al., 2001). 

 

Supplementing SHR with 5% fish oil as HiDHA® (w/w) resulted in a significant 

increase in the proportion of membrane total phospholipid as DHA of ileum (9.7%) 

and colon (9.9%) with no detectable amounts of EPA found. The addition of 5% 

(w/w) canola oil to the diet which provided 10.2% (w/w) of the dietary FA as ALA, 

resulted in only a small conversion to DHA from baseline of 1.5% and 1.8% to 2.6% 

and 2.9% of the proportion of total fatty acids in membrane total phospholipids of 

ileum and colon, respectively (Patten et al., 2005b). This relatively small increase in 

the proportion of membrane DHA was not correlated with an increased agonist-driven 

contraction of the gut compared with that for fish oil supplemented rats. It is to be 

determined whether diets containing higher levels of EPA or ALA delivered as oils or 

as pure methyl- or ethyl-esters can be converted into sufficient membrane DHA to 
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significantly alter contractility. Until such studies can be carried out, it appeared that 

DHA was likely the active agent underlying the fish oil increase of gut contractility 

parameters. Interestingly, a more prominent role of DHA rather than EPA has been 

found with regard to modifying vascular reactivity and lowering blood pressure (Mori 

et al., 1999a, 2000, 2006). However, the critical level of membrane DHA in gut tissue 

had yet to be determined. 

 

The level of membrane DHA in gut tissue that can influence contractility is an 

important issue. Previous experiments were conducted at dietary levels around 1.5% 

fish oil (w/w) of the total diet for the guinea pig (Patten et al., 2002b) and from 5-10% 

(w/w) for the rat (Patten et al., 2002a, 2005b) for periods of between 4 and 12 weeks. 

This resulted in increased total phospholipid n-3 PUFA incorporation into gut tissue 

which was dependent on the ratio of EPA to DHA in the fish oil dietary supplement. 

If one assumes that an average adult male eats about 800 g of food per day, 5% fish 

oil (w/w) in the diet would equate to 40 g of fish oil. This would be well above the 

typical consumption of sources of n-3 PUFAs be they derived from capsule or from 

the fish meal itself. 

 

2.7.   Dietary fish oil dose effects in WKY rats 

The aim of the next study was to evaluate a dosage range for supplemented dietary 

fish oil rich in DHA fed for 4 weeks on ileal n-3 PUFA levels and effects on 

nonreceptor- and receptor-induced ileal contractility in normotensive WKY rats. A 

previous time and dose study had demonstrated that erythrocyte and cardiac 

membrane n-3 PUFA concentrations derived from dietary fish oil supplementation 
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were maximal at 4 weeks (Owen et al., 2004) with significant increases in tissue total 

phospholipid n-3 PUFA evident at 1.25% (w/w) dietary fish oil. 

 

Groups of ten to twelve 13-week old WKY were fed 0, 1, 2.5 and 5% (w/w) fish oil 

supplemented diets balanced with sunflower seed oil. For the total phospholipid 

fraction, increasing the dietary fish oil levels led to a significant increase first evident 

at 1% fish oil, with a stepwise, non-saturating, six-fold increase in n-3 PUFA present 

as EPA, DPA and DHA, but mainly as DHA replacing the n-6 PUFA linoleic acid 

(18:2n-6) in ileal phospholipids. There was no difference in KCl-induced 

depolarization-driven contractility. However, a significant increase in receptor-

dependent maximal contractility occurred at 1% (w/w) fish oil for carbachol (a 

muscarinic mimetic) and at 2.5% (w/w) fish oil for PGE2, with a concomitant increase 

in sensitivity to PGE2 at 2.5 and 5% fish oil supplementation. These results 

demonstrate that those significant increases in ileal membrane n-3 PUFAs occurred at 

relatively low doses of dietary fish oil, with differential receptor-dependent increases 

in contractility being present for muscarinic and prostanoid agonists (Patten et al., 

2005b). 

 

The time required for a certain dose of dietary fish oil to significantly increase gut 

modulator-induced contractility is presently unresolved. All studies to date have 

involved the feeding of fish oil supplemented diets for four weeks or longer Patten et 

al., 2005b). Other studies have concluded in cardiac tissue for example, that n-3 

PUFA content reached a maximum at around four weeks of feeding (Owen et al., 

2004). There are unpublished findings (Patten et al. 2005) that indicated that a 

significant increase in rat ileal contractility had not occurred after two weeks of fish 
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oil gavage, despite a significant increase of n-3 PUFA in total membrane 

phospholipids. 

 

2.8. Interactive effects of resistant starch and fish oil in young SD rats 

It had been independently established that dietary fibre (Patten et al., 2004b) and fish 

oil modulate gut contractility of in vitro intact gut tissue from normal and 

hypertensive small animal models (Patten et al., 2002a,b; 2005a,b). These findings 

complement experimental and epidemiological data that dietary fibre and resistant 

starch promotes large bowel function through faecal bulking and greater production of 

SCFA through bacterial fermentation (Topping and Clifton, 2001; Henningsson et al., 

2003). The final study in the series (Patten et al., 2006) investigated the interactive 

effects of resistant starch (RS) as high amylose maize starch (HAMS) and tuna fish oil 

on ileal contractility in young SD rats. Four-week old rats were fed diets for 4 weeks 

containing 100g/kg fat as sunflower oil or tuna fish oil (HiDHA®), with 10% fibre 

(w/w) as α-cellulose or as HAMS (Patten et al., 2006). Previous results showed no 

difference in total muscarinic receptor population of a crude ileal membrane fraction 

after fish oil feeding compared to SF (Patten et al., 2005b). In this study, dietary 

effects on ileal muscarinic receptor subtypes were examined physiologically in the 

organ bath by pre-contracting tissue with carbachol at a dose approximating the EC50 

and adding specific muscarinic inhibitors (denoted by subscripts), atropine sulphate 

(M123), pirenzepine dihydrochloride (M1), methoctramine tetrahydrochloride (M2) or 

4-diphenylacetoxy-N-methyl-piperidine methobromide (M3) to block contraction.  

 

In the first instance, fish oil feeding led to higher proportions of the ileal n-3 fatty acid 

levels (mainly as DHA) and greater agonist-induced maximal contractility with a RS 
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effect noted following carbachol stimulation (Patten et al., 2006). HAMS-containing 

diets resulted in lower colonic pH and higher SCFA levels except for butyrate 

following fish oil supplementation. Interestingly, low prostanoid responses were 

found in young rats compared to older groups (Patten et al., 2004a) and these 

responses were not evident for muscarinic or isoprostane responses. This blunted 

response was greatly enhanced by n-3 PUFAs from fish oil and following a fish oil 

plus RS dietary supplementation. A depressed prostanoid response has recently been 

reported for SHR (Patten et al., 2004a) which could be increased by dietary fish oil in 

the ileum but not the colon; even though ileum and colon incorporated similar 

proportions of n-3 PUFA, mainly as DHA, into the total phospholipid pools (Patten et 

al., 2006). 

 

Physiological recordings indicated that the order of muscarinic subtype responses in 

the young rats were different with rank order potency of inhibition being M3 > M1 > 

M2 compared to that reported in older rats of M3 > M2 > M1 (Sales et al., 1997). It has 

also been reported that there are maturational changes of the muscarinic receptor 

subtypes and their coupling to G proteins in rat colonic and ovine ileal smooth muscle 

(Zhang, 1996). Furthermore, it was reported that the sensitivity of the M1 receptor 

subtype was modified significantly by fish oil supplementation of the diet (Patten et 

al., 2006). In respect to this, fish oil feeding of specifically DHA has been reported to 

augment the muscarinic agonist-induced chloride secretion in human intestinal T84 

cells (Del Castillo et al., 2003) and to increase the expression of M1 muscarinic 

receptor subtype in the NG108-15 neuroblastoma cell line (Machova et al., 2006) 

which lead to an elevated [Ca2+]i level in response to increased intracellular cyclic 

ADP-ribose after the  addition of acetylcholine (Higashida et al., 2007). Further, n-3 
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PUFA has also been found to increase brain blood flow with a concomitant increase 

in the density and binding characteristics of hippocampal M1 muscarinic cholinergic 

receptors (Farkas et al., 2002. It is, therefore, possible that n-3 PUFAs incorporated 

into gut smooth muscle cell membranes increased ileal contractility by a post-

muscarinic receptor mechanism. This may involve the triggering of IP3 hydrolysis via 

phospholipase C and increased cGMP levels resulting in increased calcium 

mobilization and an increase in the ability of gut to contract (Ehlert et al., 1999; 

Oyachi et al., 2000; Unno et al., 2000).  

 

In general, the n-3 PUFAs from marine sources may be beneficial in the early 

development of atopic diseases (Duchen and Bjorksten, 2001) such as asthma (Oddy 

et al., 2004), for diabetes risk (Balck et al., 1993; Nelson and Hickey, 2004), for the 

inflammatory response in children with arthritis (Alpigiani et al., 1996), and 

ulcerative colitis (Belluzzi, 2004). This adds to the well documented effects of n-3 

PUFAs in CVD and prevention of sudden cardiac death (Psota et al., 2006), and for 

the proposed protection and prophylaxis of bowel cancer in older populations 

(Roynette et al., 2004; Chapkin et al., 2007a,b). However, the role for dietary fibre 

and fish oil in normal and pathophysiological GI conditions warrants further study 

(Belluzzi, 2004; Toden et al., 2007). 

 

2.9. Summary of major experimental findings relating to this thesis 

A schematic representation of the major findings relating to this thesis is shown in 

Figure 12. A comprehensive list of the findings of this thesis is given as follows: 
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 In the modified organ bath apparatus with a suspended section of intact guinea 

pig ileum, the luminally-applied opioid antagonists, casoxin 4 and [D-Ala2]-

casoxin 4, overcame morphine inhibition of electrically-driven contractions. 

 For a brown congee supplemented diet, a small but significantly higher 

voltage was required to initiate guinea pig ileal contraction compared to 

control fibre dietary groups supplemented with egg custard or baked beans. 

 Dietary tuna fish oil supplementation of ~ 1.5% (w/w) for two months 

increased guinea pig ileal total membrane phospholipid n-3 PUFA content 

(ALA, EPA and DHA) while lowering the sensitivity to electrically-driven 

contractions and the isoprostane, 8-iso-PGE2. 

 Rats fed diets supplemented with 17% (w/w) dietary fat that included 10% fish 

oil (w/w) high in EPA for four weeks had higher maximal contractions up to 

93% induced by acetylcholine, 8-iso-PGE2, PGE2, PGF2α and the 

thromboxane A2 mimetic, U-46619, compared to comparable Sunola oil (high 

in 18:1n-9) and saturated fat (SF) supplemented groups, with no changes in 

sensitivity (EC50). 

 The fish oil supplemented dietary group had increased proportions of n-3 

PUFAs EPA, DPA and DHA, incorporated into the total membrane 

phospholipid pool of rat ileum and colon, with the colon registering no 

changes in reactivity to any of the muscarinic or eicosanoid agonists. 

 In the spontaneously hypertensive rat (SHR) and WKY controls, increasing 

dietary supplementation with SF as lard from 0-27% (w/w) had no effect on 

ileal contractility, with changes in colonic sensitivity noted for angiotensin II 

in WKY and carbachol (muscarinic mimetic) in SHR. 
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 When the three SF dietary groups were combined, there was lower sensitivity 

and lower maximal contraction in ileum and lower maximal contraction in 

colon of SHR in response to PGE2 and PGF2α compared with the WKY 

control. 

 In a subsequent study, adult SHR were fed diets supplemented with 5% (w/w) 

fat as coconut oil, lard, canola oil or fish oil (rich in DHA) and WKY 5% 

coconut oil for twelve weeks. Contractility studies confirmed a lower gut 

response to the prostanoids, PGE2 and PGF2α, in SHR compared to WKY 

supplemented with coconut oil. 

 In the SHR, fish oil dietary supplementation increased the total membrane 

phospholipid n-3 PUFA pool as DHA, increased the maximal contraction 

response to acetylcholine in ileum (up to 89%) compared to all other dietary 

groups, and increased the contraction of the colon compared to lard (40%), 

without changes in total muscarinic binding in a crude membrane fraction of 

the ileum. Fish oil supplementation also restored the depressed contraction in 

response to PGE2 and PGF2α in the ileum but not colon of SHR. 

 For the proximal colon of SHR, dietary fish oil supplementation increased the 

maximal electronically-induced contraction (71%) compared to the SF group. 

 In adult WKY rats fed 0, 1, 2.5 and 5% fish oil (w/w) supplemented diets for 

four weeks, there was a significant stepwise, non-saturating, six-fold increase 

in the proportion of total ileal membrane phospholipid n-3 PUFA mainly as 

DHA replacing LA and AA, with no difference in the non-receptor, KCl-

induced depolarization-driven contraction, with a significant increase in 

maximal contraction at 1% fish oil for carbachol and 2.5% fish oil for PGE2. 
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12. Schematic diagram of major experimental findings from this thesis. 

 

 In the final study, young SD rats were fed a dietary supplementation matrix of 

10% (w/w) α-cellulose or high-amylose maize starch (HAMS) as resistant 

starch (RS) or 10% fat (w/w) fat as sunflower oil or tuna fish oil for six weeks 

to investigate potential interactive effects of fibre and oil. Fish oil 

supplementation, as expected, led to higher n-3 FA levels (mainly as DHA) in 

the ileal membrane total phospholipid pool and higher agonist-induced 

maximal contractility with an RS effect noted for carbachol. 

 HAMS-containing diets resulted in lower colonic pH and high SCFAs (but not 

butyrate) with fish oil. 

 The low prostanoid (PGE2 and PGF2α) responses described for young rats 

were enhanced by dietary fish oil. 

Dietary fish oil (4-12 weeks)

Spontaneously 
hypertensive rat (SHR) 

Normotensive rat

• Normal contractility
• Young have different 
muscarinic subtype 
sensitivity

• Depressed PGE2- & 
PGF2α- activated gut 
contraction

Increased n-3 PUFA in total phospholipid FA pool (mainly as DHA)

• Increased muscarinic- & 
eicosanoid-activated 
contraction of ileum (not colon)
• Altered M1 receptor sensitivity
• No change in non-receptor 
KCl-induced depolarization-
driven contraction

• Restored PGE2- & PGF2α-
activated contraction of 
ileum (but not colon)
• Increased muscarinic-
activated contraction in 
ileum and colon
• Increased electrically-
driven contraction of colon

Experimental model
Guinea pig

• Normal contractility

• Less voltage to 
initiate contraction 

• Lower sensitivity 
to 8-iso-PGE2



 62

 The order of muscarinic receptors subtype rank order potency responses of 

young rats M3 > M1 > M2 were different compared to older rats M3 > M2 > 

M1; with fish oil feeding altering the sensitivity of the M1 receptor subtype. 

 Evidence suggests that dietary fish oil as DHA may alter rat and guinea pig 

receptor-driven gut contractility that probably involves pre- (electrically-

driven) and post-receptor (agonist-induced) mechanisms that involve 

modulation of gut smooth muscle calcium mobilization. 

 

2.10. Future studies 

It has been established that the effective dietary concentration of fish oil to achieve a 

significant increase of in vitro rat ileal contractility is between 1-2.5% (w/w) of the 

total diet when fed for 4 weeks. In fish oil gavage studies of only two weeks duration, 

it was found that whilst ileal total phospholipid membrane n-3 PUFA content had 

increased significantly to mirror these levels in the dietary studies described above, a 

significant increase in muscarinic and prostanoid-induced contractility had not yet 

been achieved (Patten et al., unpublished observation). Rigorous dose and time course 

studies, therefore, need to be conducted. 

 

Experiments described herein have also shown that eicosanoids (PGE2, PGF2α, 8-iso-

PGE2 and U-46619) modulate ileal contractility when guinea pigs and rats are fed 

diets supplemented with fish oil (Patten et al., 2002a,b; 2005a, 2006). It has also been 

demonstrated that there is a depressed prostanoid response in gut tissue from the SHR 

model compared to the WKY control group that is restored by dietary fish oil 

supplementation (Patten et al., 2004a, 2005b). The status of the prostaglandin receptor 

expression could be explored using mRNA probes for binding PGE2 to gut tissue for 
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the four member EP family of prostanoid receptors (Cosme et al., 2000) from SHR 

and healthy groups of rats fed diets supplemented with fish oil or saturated fat (as 

control). More specifically, membrane preparations from ileum and colon could also 

be prepared from rats fed diets supplemented with fish oil for radioligand binding 

studies using [3H]-PGE2 and [3H]-17-phenyl-PGF2α using unlabelled PGE2 and PGF2α 

and appropriate prostanoid antagonists to characterize specific binding (Woodward et 

al., 1995). 

 

From mechanistic experiments where muscarinic receptor systems are modulated, it 

appears that fish oil may be affecting Ca2+ handling from extra- and/or intracellular 

pools. This may explain why membrane incorporation of n-3 PUFAs, probably with 

DHA as the active agent, increased contractility of ileum in healthy rats and ileum and 

colon of SHR where defects in prostanoid mechanisms were apparent. The role of 

Ca2+ could be investigated in the isolated organ bath system by regulating external and 

internal calcium uptake and release mechanisms by the use of specific inhibitors 

acting at specific points of Ca2+ regulation. The specific role of individual n-3 PUFAs 

could be tested in isolated intestinal smooth muscle cells from rats fed diets 

supplemented with fish oil or purified EPA, DHA or ALA to trace ionic movements 

using radioactive or fluorescent technologies analogous to experiments described for 

isolated cardiomyocytes (Leifert et al., 1999, 2000b, 2001; Xiao et al., 2005; 

Jahangiri et al., 2006). 

 

In various small animal models of IBD, interventions with interleukins, fibre or fish 

oil supplemented diets have improved histological, biochemical and contractile 

indicators (Vilaseca et al., 1990; Kanauchi et al., 1998; Nieto et al., 2002; Depoortere 



et al., 2000; Greenwood-Van Meerveld et al., 2001; Moreau et al., 2003, 2004; Araki 

et al., 2007). The first report of improvement of contraction by a cytokine, human 

recombinant IL-11 (rhIL-11), in a genetically-induced model of colitis where 

contractility was compromised was demonstrated by Greenwood-Van Meerveld et al., 

2001, and is shown in Figure 13. To date, no laboratory has reported that dietary fish 

oil intervention improves the disease activity index as well as increases impaired 

contractility in an animal model of colitis. However, an inflammatory model of colitis 

 
 
 

 
NOTE:  This figure is included on page 64 of the print copy of the 
thesis held in the University of Adelaide Library. 
 

 
 
 
 
 
 
Figure 13. Genetically-induced gut inflammatory model. Concentration 
dependent contractions induced by carbachol (CCh) in longitudinal muscles 
isolated from the jejunum (A) and colon (B) of F344 rats that received placebo 
(�) or HLA-B27 transgenic rats with chronic intestinal inflammation that 
received oral doses of either placebo (•) or oral enteric coated recombinant IL-
11 (diagonally filled square). From Greenwood-Van Meerveld et al., 2001. 
 
 
 
 
 
 
 
    

 

64 
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Figure 14. Chemically-induced (DSS) model of gut inflammation. Sprague-
Dawley rats were dosed with 2% DSS in the drinking water for 5 (black) or 7 days 
(red), or control (green). The effects on contraction using electrical stimulation (60 V, 
for 5 msec at 0.02 Hz) or 30 mM KCl-induced contraction of are shown for colon (A) 
or ileum (C) or concentration-dependent carbachol-induced contractions of colon (B) 
or ileum (D). Results are means ± SEM for n = 3-5 rats. 
 

using DSS in the rat has been established at CSIRO Human Nutrition where colitis 

severity scores have been correlated with contractility dysfunction and muscarinic 

binding properties (Patten et al., 2005b, Patten et al., unpublished observations, see 

Figure 14, Figure 15). Properly controlled dietary studies could be conducted in 

which fish oil dietary supplementation (shown at CSIRO Human Nutrition to increase 

gut contractility of ileum and colon, Patten et al., 2002a, 2005b, 2006; see Figure 16 

for example) is included before, during or after the experimental induction of colitis in 

an established rat model to test fish oil efficacy on improving disease activity index 
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and contractility outcomes. Since mucosal tissue concentrations of PGE2 are 

heightened 3-fold during mucosal inflammation, the status of the prostaglandin 

receptor expression could again be explored using receptor specific mRNA probes 

and radioligand binding studies using [3H]-PGE2 and [3H]-17-phenyl-PGF2α 

(Woodward et al., 1995; Cosme et al, 2000; Mutoh et al., 2006).  From recent 

experiments described in the literature and results reported herein, cofactors such as  

v   
Figure 15. Muscarinic receptor binding to DSS-treated rat colon membranes. 
Saturation binding isotherms for the tritiated muscarinic antagonist quinuclidynil 
benzilate ([3H]-QNB) from the pooled data from colon tissues (3000-46000 x g sub-
fractionation) from n =3-5 rats treated with water (•), or treated with 2% DSS in the 
drinking water for 5 days (•) or 7 days (•). Results are plotted at each concentration 
as mean ± SEM. 
 

antioxidants, fibre (as resistant starch) as well as probiotics/probiotics (Geier et al., 

2007; Hedin et al., 2007; Peran et al., 2007), could be factored into the experimental 

matrix to maximize the potential effects of fish oil. While the beneficial effects of the 

n-3 PUFAs on CVD and cancer have been reported to varying degrees, and are still 
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controversial (Schmidt et al., 2006; Roynette et al., 2007), much remains to be done 

in others areas in which the effects of n-3 PUFAs may be more subtle, and require 

other dietary cofactors to provide optimal beneficial outcomes. Thus the GI tract 

represents just such an area. 

 
 
 

 
NOTE:  This figure is included on page 67 of the print copy of the 
thesis held in the University of Adelaide Library. 
 

 
 
 
 
 
 
 
Figure 16. Effects of dietary fatty acid supplementation on agonist 
induced gut contractility of Sprague-Dawley rats. The effects of 17% total 
fat diet (w/w) as Sunola oil substituted with 10% fat as Sunola oil control (SO, 
▲), saturated fat (SF, ■) or fish oil (FO, o) is shown for concentration-
dependent agonist-induced contraction by acetylcholine (Ach) in colon (A) or 
ileum (B) or for the isoprostane, 8-iso-PGE2, in colon (C) or ileum (D). Results 
are means ± SEM for n = 5-8 rats per dietary group. Significance is indicated 
by * P < 0.05. From Patten et al., 2002b. 
 
 
 
 
 
    
“An expert is a man who has made all the mistakes, which can be made, 

in a very narrow field.” Niels Bohr. 
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