Environmental Fate of Imidazolinone Herbicides and Their

Enantiomers in Soil and Water

Mohammadkazem Ramezani

B.Sc. Agronomy, M.Sc. Weed Science

This thesis is presented for the degree of

Doctorate of Philosophy

of the

University of Adelaide

School of Agriculture, Food & Wine The University of Adelaide Waite Campus, South Australia 2007

Declaration

This work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent to this copy of my thesis, when deposited in the University Library, being made available for loan and photocopying.

Mohammadkazem Ramezani

Abstract

Imidazolinones represent a new class of herbicides with low mammalian toxicity that can be used at low application rates, either pre- or post-emergence for the control of a wide range of weeds in broadleaf and cereal crops, and non-crop situations. All imidazolinone herbicides are chiral, containing two enantiomers that derive from the chiral centre of the imidazolinone ring. The inhibitory activity of the R(+) enantiomer is nearly eight times greater than that of the S(-) enantiomer. The use of imidazolinone herbicides has increased in recent years in Australia owing to increased popularity of pulses and the introduction of imidazolinone-tolerant canola and wheat. Concerns have been raised about the potential carry over damage to the subsequent crops grown in rotation with legumes and herbicide tolerant crops. Furthermore, the presence of alkaline soils in some regions of Australia may lead to the repellence of imidazolinone herbicides, which are chiefly present in anionic form at high pH values. Thus leaching and potential contamination of ground water may occurr when these herbicides are applied on alkaline soils in certain agroclimatic zones. There is some information in the literature on the degradation, sorption and leaching behaviour of these herbicides in the environment. However, there is little information about the behaviour of these herbicides in alkaline soils found in some areas of Australia. Until now there has been no investigation of enantioselectivity in the degradation of imidazolinone herbicides in soils. Therefore, this study was undertaken to determine the behaviour of three imidazolinone herbicides in solution and Australian soils including enantioselectivity in the degradation of these herbicides in Australian soils.

Analytical method for these herbicides needed to be developed/improved to cater for specific experimental conditions for this study, namely the matrices containing higher

levels of organic carbon and to analyse the two enantiomers of these herbicides. The extraction of imazapyr, imazethapyr and imazaquin was investigated using solid-phase extraction (SPE) procedure. The evaluation of different aqueous solutions (0.1 KCl, 0.5 M NaOH, 0.01M NaOH and 0.5M MeOH:NaOH, (80:20)) showed that the recovery of all three herbicides was greater than 70%. However, the highest level of herbicide recovery was obtained with 0.5M NaOH as the extraction solution. Evaluation of different solid phase extraction cartridges showed that PPL cartridge is most appropriate for the isolation and subsequent quantification of these herbicides in water and humic-amended solutions when used at pH 2. When used with soil extracts, SPE cartridges C_{18} + SCX allowed removal of co-extracting substances, resulting in high levels of herbicide recovery and accurate quantification with HPLC. These improved protocols were used in subsequent studies.

The abiotic degradation of the imidazolinone herbicides imazapyr, imazethapyr and imazaquin was investigated under controlled laboratory conditions. Hydrolysis, where it occurred, and photodegradation both followed first order kinetics for all herbicides. There was no hydrolysis of any of the herbicides in buffer solutions at pH 3 or pH 7; however, slow hydrolysis occurred at pH 9. Degradation of the herbicides in the light was considerably more rapid than in the dark with half lives for the three herbicides of 1.8, 9.8 and 9.1 days for imazaquin, imazethapyr and imazapyr, respectively. The presence of humic acids in the solution reduced the rate of photodegradation for all three herbicides, with higher concentrations of humic acids generally having greater effect. The enantioselectivity of photodegradation was investigated using imazaquin, with photodegradation occurring at the same rate for both enantiomers. Abiotic degradation of imidazolinone herbicides on the soil surface only occurred in the presence of light. The

rate of degradation for all three herbicides on the soil surface was slower than in solution, with half-lives of 15.3, 24.6 and 30.9 days for imazaquin, imazethapyr and imazapyr, respectively.

Sterilizing the soil significantly (p < 0.05) decreased the degradation rate of both enantiomers of imidazolinone herbicides, with 81.5 to 89.5% of each enantiomer of the two herbicides remaining unchanged. However, in non-sterilized soils, the degradation of imazapyr and imazethapyr showed enantioselectivity with faster degradation of R(+) enantiomer compared with S(-) enantiomer. There were also some differences in enantioselectivity between different soils, which could be related to variation in microbial populations and enzymes present in different soils. Soil pH had a significant effect on enantioselectivity, which could be due to the effect of this soil property on herbicide sorption and ease of its availability for microbial degradation. This aspect however needs further investigations.

Results from studies on soils receiving organic amendment (lupin residue) showed that degradation of the S(-) and R(+) enantiomers of imazethapyr and imazaquin followed first-order reaction with half-life values of 45.9 to 105 days in non-sterilized soils for S(-) and R(+) enantiomers, respectively. Irrespective of the organic amendment, the degradation rate of the S(-) and R(+) enantiomers of the two herbicides was greater in the Roseworthy (pH 8.2) soil compared with the Clare soil (pH 5.2). Addition of lupin residue as organic amendment (2% w/w) increased degradation rates of both the S(-) and R(+) enantiomers of imazethapyr and imazaquin and significantly (p < 0.05) decreased their half-lives in the Clare soil. However, this amendment produced no significant change in degradation of

enantiomers of either of the two herbicides in Roseworthy soil. The enantiomer fraction (EF) values of both herbicides increased over time, which suggested selective degradation of one enantiomer in preference to the other depending on the type of soil and amendment treatment. In the Clare soil, organic amendment increased the EF value at the end of incubation period from 0.61 to 0.76 for imazethapyr and from 0.56 to 0.66 for imazaquin, indicating enantioselective degradation of these herbicides. There was no significant increase in EF values for both herbicides in Roseworthy soil as the result of organic amendment.

In conclusion, photodegradation of imidazolinone herbicides was found to have a major impact on the behaviour of these herbicides in aqueous and soil matrices. The degradation of imidazolinone herbicides in the soil was enantioselective, however, the enantioselectivity tended to be compound-specific and was related to soil types. The findings of this study are expected to be useful for the manufacturers to decrease the amount of chemical load in the environment.

Acknowledgments

I would like to extend my sincere thanks and gratitude to my supervisors, Dr. Gurjeet Gill and Dr. Christopher Preston of the University of Adelaide, and Dr. Rai S. Kookana and Ms. Danielle Oliver of CSIRO Land and Water, Adelaide for their guidance and support throughout the course of my study. I am also thankful to other members of CSIRO staff, Dr Jeff Baldock, Dr Kris Broos, Mr. Michael Karkkainen, Mr. Lester Smith and Mrs. Tasha Waller.

I would like to thank Dr. Nigel Simpson of Varian Inc. for the various suggestions he made for developing the extraction method. Special thanks to Prof. Sabino A. Bufo of Department of Agriculture, University of Basilicata, Italy, for his help in the early stage of abiotic degradation experiments. I would also like to sincerely thank Dr. Wenjian Lao of University of California for his valuable suggestions and comments on the enantioselectivity experiments.

I thank the Agricultural Research and Education Organisation, Ministry of Agriculture of Islamic Republic of Iran for their subsidies and financial support that enabled this research.

Finally, and most importantly, I would like to express my gratitude to my wife **Samaneh** and my sons **Farbod** & **Fardad**, for their love, support and patience during three and half years of research and writing. Without you, it would have been difficult, if not impossible, to carry out this work. I dedicate this thesis to these three very dear people in my life.

Table of Contents

Title	i
Declaration	ii
Abstract	iii
Table of Contents	viii
List of Figures	xii
List of Tables	xiv
Chapter 1. General introduction	1
1.1 Introduction	1
1.2 The objectives of this research	6
1.3 Structure of thesis	6
Chapter 2. Review of Literature	8
2.1 Introduction	8
2.2 Processes influencing the fate of herbicides in the environment	
2.2.1 Abiotic degradation of pesticides	
2.2.1.1 Hydrolysis	12
2.2.1.2 Photodegradation	13
2.2.1.2.1 Photodegradation in aqueous solution	14
2.2.1.2.2 Photodegradation on the soil surface	16
2.2.2 Sorption	19
2.2.3 Volatilization	
2.2.4 Run-off	23
2.2.5 Leaching	24
2.2.6 Biotic (microbial) degradation of herbicides	
2.2.7 Influence of organic anendment on the incrootal degradation of heroicid	22
2.3 Chirality of herbicides	
2.3.1 The importance of chirality in pesticides	
2.3.2 Enantioselective degradation of chiral pesticides	
2.3.5 Kinetic analysis of pesticide enautimers	
2.4 Determination of pesticides using solid phase extraction (SPE)	39
2.5 Extraction of imidazolinone herbicides from soil and water	42
2.6 Conclusion	43

Chapter 3. Evaluation of imidazolinone extraction from soil solutions using dissolid -phase extraction cartridges	fferent 44
3.1 Introduction	44
3.2 Material and Methods	
3.2.1 Chemical, reagents and apparatus	
3.2.2 Preparation of standard stock solutions	
3.2.3 Fortification of humic acid solution and soil samples	
3.2.3.1 Fortification of humic acid solutions	
3.2.3.2 Fortification of soil samples	50
3.2.4 Evaluation of the efficacy of various extraction solutions	51
3.2.5. Solid-phase extraction clean up	51
3.2.5.1. Optimizing solution pH for herbicide extraction from water and hu	mic acid
solutions using PPL cartridges	51
3.2.5.2 Clean-up of soil extracts with PPL cartridge	
3.2.5.3 Clean-up of soil extracts using X-AW cartridge	55
3.2.5.4 Clean-up of soil extracts using NH_2 and PPL	
3.2.5.5 Clean-up of soil extracts using C_{18} + SCX cartridges	
3.2.6 HPLC analysis of imidazolinone herbicides	
3.2.6.1 Reverse-phase HPLC	
3.2.6.2 Normal-phase HPLC	
3.3 Statistical analysis	58
3.4 Results and Discussion	58
3.4.1 Calibration curves	
3.4.2 Evaluation of the efficacy of extraction solutions to recover imidazolino	ne
herbicides from soil	59
3.4.3 Optimization of solution pH for the extraction of imidazolinone herbicid	les from
water and humic acids solution using PPL cartridges	
3.4.4 Optimization of PPL cartridge for extraction of imidazolinone herbicides soil.	s from 64
3.4.5 Extraction of imidazolinone herbicides from NaOH soil extracts using X cartridges at alkaline pH	K-AW 66
3.4.6 Extraction of imidazolinone herbicides from NaOH soil extracts using N PPL cartridges in series.	H_2 and 68
3.4.7 Extraction of imidazolinone herbicides from NaOH soil extracts using C	18 and
SCX cartridges in series	
3.5 Conclusion	70
Chapter 4. Abiotic degradation (photodegradation and hydrolysis) of imazapy	r.
imazethapyr and imazaquin herbicides	
4.1 Introduction	72
4.2 Materials and Methods	76
4.2.1 Aqueous buffer solutions	
4.2.2 Incubation of imazapyr, imazethapyr, and imazaquin in aqueous buffers	77
4.2.3 Photodegradation experiments	77
4.2.3.1 Photodegradation of imidazolinone herbicides and the effect of hum	ic acids
	77
4.2.3.2 Photodegradation of imazaquin enantiomers	78

4.2.3.3 Photodegradation of imidazolinone herbicides on the soil surface	79
4.2.4 Extraction of imazaquin by solid phase extraction (SPE) cartridge	79
4.2.5 HPLC analysis of imidazolinone herbicides	80
4.2.6 Quality control	
4.2.7 Statistical analyses	81
4.3 Results and Discussion	82
4.3.1 Hydrolysis of imidazolinone herbicides	82
4.3.2 Photodegradation of imidazolinone herbicides in water and in the presence	of
humic acids	83
4.3.3 Photodegradation of the herbicides on the soil surface	87
4.3.4 Photodegradation of imazaquin enantiomers	89
4.4 Conclusions	90
Chapter 5. Enantioselective degradation of imazapyr, imazethapyr and imazaqui	i n in
soil	92
5.1 Introduction	92
5.2 Materials and Methods	95
5.2.1 Soil samples	95
5.2.2 Soil incubation experiments	97
5.2.3 Enantioselective degradation of imidazolinone herbicides	100
5.2.3.1 Experiment 1: Enantioselective degradation of imidazolinone herbicide	es in
different soils	100
5.2.3.2 Experiment 2: Enantioselective degradation in sterilized and non-steri	lized
solls	100
5.2.5.5 Experiment 5. Effect of organic amenament on enantioselective degrad	100
5.2.4 Evaluation of soil microhial activity (respiration)	101
5.2.5 Extraction of herbicides from soils	102
5.2.6 Separation of the herbicide enantiomers by HPLC using a chiral column	102
5.2.7 Quality control	103
5.2.8 Statistical analyses	105
5.3 Results and Discussion	106
5.3.1 Experiment 1: Enantioselective degradation of imazapyr, imazethapyr and	100
imazaguin herbicides in different soils	106
5.3.1.1 Microbial activity (respiration rate)	106
5.3.1.2 Kinetics of degradation of enantiomers of imazapyr, imazethapyr and	
imazaquin	107
5.3.1.3 Enantioselective degradation of imazapyr	114
5.3.1.4 Enantioselectivity in imazethapyr	116
5.3.1.5 Enantioselectivity in imazaquin	118
5.3.2 Experiment 2: Degradation of imazethapyr and imazaquin enantiomers in	
sterilized versus non-sterilized soils	123
5.3.5 Experiment 3. Selective degradation of enantiomers of imazethapyr and	120
5.2.2.1 Microbial activity of soils	120
5.3.2.2. Effect of organic amondment on degradation rate of imagethemy and	120
j.j.j.z Ejjeci of organic amenameni on degradation rate of imazeinapyr and imazaquin enantiomers	128
5 3 3 3 Effect of organic amendment on soil properties	132

5.3.3.4 Enantioselective degradation of imazethapyr and imazaquin 5.3.3.5 The effect of organic amendment on enantioselectivity of imaze	134 ethapvr and
imazaquin	
5.4 Conclusion	141
Chapter 6. General Discussion	143
6.1. SPE extraction of imidazolinone herbicides	143
6.2 Degradation of imidazolinone herbicides	145
6.3 Future research	149
References	151

List of Figures

Figure 1.1. Chemical structures of five imidazolinone herbicides
Figure 2.1. The main processes influencing the behaviour of pesticides in the environment.
Cg Cw and Cs represent the pesticide concentrations in the gas aqueous and solid
nhases respectively (Wolters et al. 2004)
Figure 2.2 Different types of microbial degradation of nesticides
Figure 2.3. Schematic diagram of probable processes during the incubation of a pesticide
in degradation studios (Wanner et al. 2005)
Eigune 2.4. True executioners (minutes (wallel et al., 2003).
Figure 2.4. Two enanciomers (mirror image isomers) of dichlorprop (Garrison et al., 1996).
Figure 3.1. Flow chart of methodology for the extraction of imidazolinone herbicides from
soil using different SPE cartridges
Figure 3.2. Calibration curves for imazapyr, imazethapyr and imazaquin at the
concentration level of 0.5 to 10 μ g mL ⁻¹
Figure 3.3. Effect of sample pH on retention of imazapyr by PPL cartridge (n=3)
Figure 3.4. Chromatogram of imazapyr, imazethapyr and imazaquin after SPE clean-up
with the PPL cartridge of 30 μ g mL ⁻¹ of humic acids solution
Figure 3.5. Chromatogram of imazapyr, imazethapyr and imazaquin in a standard solution
(10µg mL ⁻¹) (blue line) and in a 0.5M NaOH soil extract passed through a PPL
cartridge (red line)
Figure 3.6 Chromatogram of spiked soil sample (1 μg^{-1}) after passing the soil extract
through a C ₁₀ and then a SCX cartridge
Figure 4.1 Separation of imaganyr (A) imagethanyr (B) and imaganyin (C) in mixed
standards of 1 ug mI ⁻¹ water by HPI C on a reverse phase C ₁₀ column
Figure 4.2 First-order rate plots for photodegradation of (A) imaganyr. (B) imagethanyr
and (C) imazaguin in different ratios with humic acids and in Milli O water. The
ration of 1:1 1:2 and 1:2 corresponds to different ratios of herbigide: humic acids
ratios of 1.1, 1.2 and 1.5 corresponds to unreferit ratios of herbicide.numic actus
Concentration and MW is Mini-Q water. 84
Figure 4.3. First-order rate plots for photodegradation of imidazofinone heroicides on the
soll surface. 88
Figure 5.1. Set up used for incubation of soil. 99
Figure 5.2. Image of infra-red gas analyser with the standard jars used in this study to
measure CO_2 . 102
Figure 5.3 Representative HPLC chromatograms of imidazolinone enantiomers separated
by the chiral column, (A) imazapyr, (B) imazethapyr, and (C) imazaquin 104
Figure 5.4. Cumulative respiration ($\mu g \operatorname{CO}_2 g^{-1}$ soil h ⁻¹) in different soils over 60 days. AK-
Alo-Kingaroy; CO-Collie, JA–Jacka; OT-tterbourne; RC-Roseworthy, CL-Clare. 107
Figure 5.5. Degradation kinitics for (\blacklozenge) S(-) and (\Diamond) R(+)enantiomers of imazapyr in 6
different soils. C: unknown concentration of the enantiomers at sampling times(t); C ₀ :
the initial concentration at time zero (T ₀), AK-Alo-Kingaroy, CO-Collie, JA–Jacka,
OT-Otterbourne, RC-Roseworthy, CL-Clare
Figure 5.6. Degradation kinitics for (\blacklozenge) S(-) and (\diamondsuit) R(+)enantiomers of imazethapyr in 6
different soils. C: concentration of the enantiomers at sampling times (t) and C ₀ : the
initial concentration at time zero (T ₀), AK-Alo-Kingaroy; CO-Collie, JA-Jacka; OT-
Otterbourne; RC-Roseworthy, CL-Clare. 110

Figure 5.7. Degradation kinitics for () S(-) and () R(+)enantiomers of imazaquin in 6
different soils. C: unknown concentration of the enantiomers at sampling times(t) and
C ₀ : the initial concentration at time zero (T ₀), AK-Alo-Kingaroy, CO-Collie, JA-
Jacka, OT-Otterbourne, RC-Roseworthy, CL-Clare
Figure 5.8. Relationship of <i>ln</i> of EF values for imazapyr versus incubation time. Vertical
bars are standard errors of means (n=18)116
Figure 5.9. Relationship of <i>ln</i> of EF values for imazethapyr versus incubation time.
Vertical bars are standard errors of means (n=18) 118
Figure 5.10. Relationship of <i>ln</i> of EF values for imazaquin versus incubation time. Vertical bars are standard errors of means (n=18)119
Figure 5.11. The effect of soil pH on half-lives of (\blacklozenge) S(-) and (\diamondsuit) R(+)enantiomers of
imazapyr (A), imazethapyr (B) and imazaquin (C) in 6 soils
Figure 5.12. The average EF values of imazapyr, imazethapyr and imazaquin over the
whole incubation period in 6 soils of different pH values. Vertical bars show the
standard errors of means (n=24) 123
Figure 5.13. Percent of imazethapyr and imazaquin enantiomers remaining in Clare and
Roseworthy soil under sterilized and non-sterilized conditions
Figure 5.14. Cumulative respiration ($\mu g \text{ CO}_2 g^{-1} \text{ soil } h^{-1}$) over 90 days incubation from
Clare (CL) and Roseworthy (RC) soils with and without organic amendment 127
Figure 5.15. The EF values for imazethapyr in Clare and Roseworthy soils over time.
Vertical bars are standard errors of means (n=6) 136
Figure 5.16. The EF values for imazaquin in Clare and Roseworthy soils over time.
Vertical bars are standard errors of means (n=6) 136
Figure 5.17. Enantiomer fraction (EF) of imazethapyr in different soils with and without
amendment over 90 days of incubation; values represent means ± standard deviation
of 3 replicates. 138
Figure 5.18. Enantiomer fraction (EF) of imazaquin in different soils with and without
amendment over 90 days of incubation; values represent means ± standard deviation
of 3 replicates. 138

List of Tables

Table 1.1. Chemical structure, uses, and selected properties of the imidazolinones
herbicides studied (Kah and Brown, 2006)
Table 2.1. Commercially important chiral pesticides (Williams, 1996)
Table 3.1.Methods for the extraction of imidazolinone herbicides from water and soil using
SPE cartridges ^a . 47
Table 3.2. Structure and some properties of the sorbents of the SPE cartridges assessed for
efficacy of extraction of imidazolinone herbicides from soil solutions
Table 3.3. Preliminary evaluation of different extractants for extraction of imidazolinone
herbicides from soil. ^a
Table 3.4. Mean recoveries of imidazolinone herbicides in the extracts of soils spiked at
$1 \mu g g^{-1}$ (<i>n</i> =3) after passing through different SPE cartridges
Table 4.1. Buffer solutions used for the aqueous hydrolysis experiments. 76
Table 4.2. Photodegradation kinetics of imazapyr, imazethapyr and imazaquin in water and
in the presence of humic acids $(n = 3)$. 85
Table 4.3. Photodegradation kinetics of imazapyr, imazethapyr and imazaquin on the soil
surface. (n=3)
Table 5.1. Linearity of the UV detector response and regression coefficients (R^2) for the
enantiomers of the three imidazolinone herbicides at 254 nm
Table 5.2. First-order rate constants (k), half-lives $(t_{1/2})$ and correlation coefficient (R^2)
values as derived from the regression models for the degradation of imazapyr
enantiomers in different soils. 112
Table 5.3. First-order rate constants (k), half-lives $(t_{1/2})$ and correlation coefficient (R^2)
values as derived from the regression lines for the degradation of imazethapyr
enantiomers in different soils. 113
Table 5.4. First-order rate constants (k), half-lives $(t_{1/2})$ and correlation coefficient (R^2)
values as derived from the regression lines for the degradation of imazaquin
enantiomers in different soils. 114
Table 5.5. Enantiomer fraction values of imazapyr, imazethapyr and imazaquin in different
soils
Table 5.6. Cumulative respiration (μ g CO ₂ g ⁻¹ soil h ⁻¹) of Clare and Roseworthy soils with
or without addition of lupin residue after 90 days incubation
Table 5.7. First-order rate constants (k), half-lives $(t_{1/2})$ and correlation coefficient (R^2)
values derived from linear regression for the degradation of imazethapyr enantiomers
in amended and non-amended soils. 130
Table 5.8. First-order rate constants (k), half-lives $(t_{1/2})$ and correlation coefficient (R^2)
values as derived from the linear regression for the degradation of imazaquin
enantiomers in amended and non-amended soils.
Table 5.9. Imazethapyr and imazaquin enantiomers remaining (%) in Clare and
Roseworthy soils with and without organic amendment after 90 days of incubation.
Table 5.10. The effect of organic amendment on soil pH over the incubation times 133
Table 5.11. EF values of imazethapyr and imazaquin in Clare and Roseworthy soils over
the whole incubation period. 135
Table 5.12. EF values of imazethapyr and imazaquin in Clare and Roseworthy soils with
and without organic amendment at 90 days of incubation time