
14

ATLANTIS:

A TOOL FOR LANGUAGE DEFINITION

AND INTERPRETER SYNTHESIS

Michael John Oudshoorn, B.Sc.(Hons.)

A THESIS SUBMITTED FOR THE DEGREE OF

Docton on Putt osoPHY

IN THE DEPARTMENT OF COMPUTER SCIENCE

UNIVERSITY OF ADELAIDE

. q. q2-

I

August 1992

Abstract

Programming language semantics are usually defined informally in some form of tech-

nical natural language, or in a very mathematical manner with techniques such as

the Vienna Definition Method (VDM) or denotational semantics. One difficulty which

arises from serious attempts to define language semantics is that the resulting definition

is generally suitable for a single limited kind of reader. For example, the more formal

kind of definition may suit a compiler writer or a language designer, but will be less

convenient for other potential classes of reader, such as programmers. The latter

frequently make use of some completely separate description (e.g., an introductory

text book on the language); not surprisingly, inconsistencies between these separate

descriptions and the language definition are commonplace.

This thesis develops a technique for the definition of programming language se-

mantics which is suitable for a wide range of potential readers. This technique

employs an operational semantic model which is based on the algebraic specification

of abstract data types; the semantic model manipulates multi-layer descriptions of

language semantics and supports multiple passes in these descriptions.

The semantic technique described in this thesis lends itself to the semi-automatic

generation of an interpreter from the language definition, a fact which acts as an

ll

incentive to language designers to produce a formal definition of any neÌY program-

ming language, since the prototype implementation allows experimentation with new

language features and their semantics. The system which generates an interpretive

implementation from a language definition is called ATIANTIS, A Tool for LANguage

defrniTion and Interpreter Synthesis, and is also described in this thesis.

Acknowledgments

I wish to acknowledge all the help and encouragement that I have received throughout

my candidature as a Ph.D. student. In particular, I am indebted to my supervisor,

Prof. Chris Marlin, for his advice, thoughts, guidance and encouragement; and to

Dr. David Bover who acted as my supervisor whilst Prof. Marlin was on study leave

during the second half of 1988 and early 1989. I also wish to express my thanks to

Prof. Peter King and Dr. Brian Molinari for their comments on this thesis. I am also

indebted to my wife, Jo, and my son, Daniel, for having to tolerate many late nights,

and often having to come second behind my study. Many thanks to my parents, Bep

and Nick, who supported and encouraged -y study.

I also wish to thank the other members of the staff, the postgraduate students

and visiting speakers, who have all contributed to this thesis in many small ways.

Of particular note in this regard are Michael McCarthy and Ali Mili. I also wish

to acknowledge the contribution of Keith Ransom, who developed the Ada code in

Section 5.5 and carried out the experiments referred to in Section 5.7.

I would also like to thank all those companies that allowed me time on their

machines and gave me access to their Pascal compilers to obtain the results discussed

in Chapter 1; I have been asked by many of these companies not to publish their

names.

v

Contents

Abstract

Declaration

Acknowledgments

1 Introduction

1.1 Descriptions of Syntax

1.2 Descriptions of Semantics

ll

lv

1.2.L The Informal Approach. . .

7.2.1J Historical Changes to the Pascal Definition

1.2.1.2 Problems within the Current Pascal Definition

v

1

2

3

3

6

8

I4

18

22

23

24

31

39

1.2.2 Formal Definitions

1.3 The Model Presented in this Thesis

2 Algebraic Specification of Abstract Data Types

2.I An Example of an Abstract Data Type

2.2 Axiomatizations

2.3 Error Conditions

2.4 Verifying the Specification

vl

2.4.1 Consistency

2.4.2 Sufficient-Completeness .

2.4.3 An Alternative Approach

2.5 The use of Algebraic specification Techniques in this Thesis

3 Describing Sequential Languages

3.1 Introduction

3.2 The Structure of the Multi Layered Model

3.3 A Model of Data Control

3.3.1

3.3.2

3.3.3

Embedding Semantics Within a Syntactic Description .

Abstract Data Type Definitions - the Formal Foundation

The Information Structures and Their Operations

3.3.4 High Level Operations

3.3.5 The Semantic DescriPtions .

Lexical Analysis

The Syntactic Component

The Semantic Component

Abstract Data Type Definitions

Local Declarations

Scope Rules

Parameters

3.3.5.1

3.3.5.2

3.3.5.3

4

3.4 Observations .

A Tool for Language Definition and Interpreter synthesis

4.1 Introduction

4.2 General

4.3

4.4

4.5

4.6

vll

4.7 Environment Variables

4.8 High Level Operations

4.9 Predefined Abstract Data TYPes

4.10 Implementation of ATLANTIS

4.11 Observations .

4.12 Difficulties

5 Describing Parallel Languages

5.1 Introduction

5.2 Mallgren's Approach to Shared Data Abstractions

5.3 The Ada Rendezvous

5.4 A Shared Data Abstraction Model for the Ada Rendezvous

5.4.1 Modelling Interface Objects and Communication Lists

5.4.2 Primitives

5.4.3 Communication Events

5.4.3.1 The DeterministicSendEvent

5.4.3.2 The Conditional-Send Event

5.4.3.3 The Deterministic-Receive Event

5.4.3.4 The Nondeterministic-Receive Event

5.4.4 Final Comments on Mallgren's Approach

5.5 An Alternative Approach to Shared Data Abstractions

5.5.1 Using Shared Data Abstractions

5.5.2 Critical Regions

5.5.3 The Waituntil Clause

5.5.4 The Do Clause

vlll

5.5.5 The Lock Clause

5.5.6 General Comments

5.6 An Alternative Model for the Ada Rendezvous

5.6.1 Abstract Data Types for Modelling the Rendezvous Mechanism

of Ada

5.6.2 Deterministic Send

5.6.3

5.6.4

b.b.Ð

Conditional Send

Deterministic Receive .

Conditional Receive.

5.7 Summary

6 Summary and Conclusions

6.1 Summary

6.2 Conclusions

6.3 Future Work . . .

A Predefined ADT's within ATLANTIS

4.1 The Boolean Data Type

A.2 The Integer Data Typ" . .

4.3 The Floating Point Data TYPe '

4.4 The Character Data Type

4.5 The String Data Type

4.6 The Location Data Typ" .

B ADT implementation

8.1 The Table Package

lx

C ADT's for the NePtune Definition

C.l The Stack Data TYPe

C.2 The Table Data TYPe .

c.3

c.4

c.5

c.6

c.7

c.8

The Symbol-Table Data TYPe

The Blocklnfo Data Typ" .

The Declaration Data TYPe

The Initial-Value Data TyPe

The Kind Data Type

The Operation Data Typ"

C.9 The Basic-Types Data TYPe

C.10 The Attributes Data TYPe

D HLO's from the NePtune Definition

D.l Procedure Initialize

D.2 Procedure Reset-Environment

D.3 Procedure Check-Block .

D.4 Procedure Create-Block

D.5 Procedure Enter-Block

D.6 Procedure Exit-Block .

D.7 Procedure Leave-Block

D.8 Procedure Note-Identifier

D.9 Function Recall-Identifier

D. 10 Procedure Note-Previous-Arguments

D.11 Procedure RecallÌrevious-Argumenl,s

D.12 Procedure Record-Type

X

D.13 Procedure Record-Op

D. 14 Procedure Record-Integer

D.15 Procedure Record-Real

D. 16 Procedure Record-Boolean

D.17 Procedure Record-Strittg . . .

D.18 Procedure ReverseldentStack .

D.19 Procedure Add-To-Symbol-Table

D.20 Procedure Add-Procedure-To-Symbol-Table

D. 2 1 Procedure Add-Function-To-Symbol-Table

D.22 Procedure Ensure-WithinJunction

D.23 Procedure Ensure-Within-Procedure

D.24 Procedure Ensure-WithinJoop

D.25 Procedure Start-Loop .

D.26 Procedure Finish-Loop

D.27 Procedure Inherit-Via-Scope-Rules

D.28 Procedure Record-Start-Of-Block

258

258

259

259

259

259

259

260

260

260

260

260

26r

261

26t

26r

26L

262

262

262

262

262

262

263

263

D.29

D.30

D.31

D.32

Procedure Return-To-Caller

Function Reverse-Type-St ack

Procedure Transfer-To-Argument Jist

Procedure Check-Call-To-Procedure .

D.33 Procedure Check-Call-To-Functton

D.34 Procedure Check-Call-To-Variable

D.35 Procedure Checklloolean-Typ"

D.36 Procedure CheckJ'{umeric-Type

D.37 Procedure Negate-Expression

xi

D.38 Procedure Not-Expression

D.39 Procedure Determine-Exit-Statement

D.40 Procedure Determine-Branch

D.41 Function Compatible-TYPes

D.42 Procedure Equality-Test

D.43 Procedure InequalityJest

D.44 Procedure And-Operation

D.45 Procedure Or-Operation

D.46 Procedure Less-Than-Operation

D.47 Procedure Greater-Than-Operation

D.48 Procedure Less-Or-Equal-Operation .

D.49 Procedure Greater-Or-Equal-Operation

D.50 Procedure Plus-Operation

D.51 Procedure Minus-Operation

D.52 Procedure Mult-Operation

D.53 Procedure Divide-Operation

D.54 Procedure Evaluate-Expression

D.55 Procedure Perform-OutPut .

D.56 Procedure PerformJnPut '

D.57 Procedure PerformÁssignment

D.58 Procedure Invokeilock

D.59 Procedure Invoke-Block-Or-Variable

263

263

263

263

264

264

264

264

264

265

265

265

265

265

265

266

266

266

266

266

266

267

xu

List of Tables

4.1 The syntactic categories for the definition of special lexical elements.

4.2 EBNF symbols used in ATLANTIS.

5.1 Call and return events for the infinite queue shared data abstraction.

5.2 The operations applicable to a synchronous communication port. .

5.3 The operations applicable to an asynchronous communication port.

5.4 The operations applicable to an "In-Table-ADT' object.

5.5 The operations applicable to an "Out-Table-ADT" object'

99

99

r42

155

156

158

159

xlll

List of Figures

1.1 Two of the test programs developed.

2.I Algebraic specification of the abstract data type "Table"

2.2 Collapsing the abstract data type "Table".

2.3 The type "boolean".

2.4 Revised abstract data type specification for "Table".

3.1 Layering an operational semantic model.

3.2 Repetition (while-loop) defined in terms of selection.

3.3 Repetition (repeat-until) defined in terms of selection.

3.4 The form and definition of the for-loop. .

3.5 Enhancing syntax with semantics.

3.6 A Pascal example.

3.7 Two-pass semantic description

3.8 An abstract data type describing a FIFO list.

3.9 The abstract data type Link-Typ".

3.10 A Pascal program and its static environment.

3.11 The dynamic environment for a Pascal program.

3.12 The high-level operation member-of-symbol-table.

3.13 The high-level operation add-new-info.

10

27

32

36

40

53

56

,5b

Ðt

60

61

61

64

bÐ

68

70

7I

72

xlv

4.4 The syntactic definition of a Pascal block.

4.5 ATLANTIS definition of a Pascal block with semantic definitions.

3.14 Local declarations.

3.15 Scope rules for Pascal - the first pass.

3.16 Scope rules for Pascal - the second pass.

3.17 Variable parameters.

3.18 Value parameters.

3.19 Procedural and functional parameters.

4.1

4.2

4.3

The keyword section of an ATLANTIS definition.

The operator specification within the definition of Neptune.

The special token definitions within an ATLANTIS definition.

4.6

4.7

4.8

4.9

An identifier definition for ATLANTIS.

Flow chart illustrating syntax and semantics. .

The definition of a table for input to ATLANTIS.

Assignment of ATLANTIS environment variables.

4.10 A procedure high level operation.

4.11 A function high level operation.

4.12 The if action within ATLANTIS.

4.13 Semantics of the exit action from within a loop.

4.14 Structure of the while loop.

4.15 Structure of the for loop. .

4.16 Display the contents of an identifier stack.

4.17 Overall structure of ATLANTIS.

4.18 A simple language definition.

4.19 The parse tree for the input UACC'

75

77

79

81

83

85

96

98

100

t02

104

105

107

109

TT7

119

I20

Lzl

t22

r22

t23

L23

r27

t29

130

xv

4.20

5.1

5.2

5.3

5.4

Ð.Ð

5.6

,f.t

5.8

5.9

5.10

5.11

5.r2

5.13

5.14

5.15

5.16

5.r7

5.18

5.19

5.20

5.2r

5.22

5.23

The rules and the corresponding tree.

The shared data abstraction specification of an infinite queue.

A sample Ada program

Communication paths of Ada tasks.

Types used in the description of Ada tasks.

Types used in the description of Ada tasks.

The "DeterministicSend" event for Ada.

The "Conditional-Send" event for Ada.

The "Deterministic-Receive" event for Ada.

The "Nondeterministic-Receive" event for Ada.

Sequential and parallel access to an abstract data type object.

An example of the application of the object access rules.

An abstract data type representing a queue.

The specification of the queue data type.

The SDA envelope specification for the queue data type

The package body for the shared data abstraction envelope for the queue

abstract data type.

The specification of the "sda-monitor" package.

Example of the use of a shared data abstraction. .

The textual form of a critical region.

Definition of a critical region in terms of semaphores.

A diagrammatic representation of a critical region.

The textual form of a waituntil clause.

Definition of the waituntil clause using semaphores.

A diagram representing the waituntil clause.

131

t4l

153

153

158

162

165

167

169

170

t73

L75

176

t77

180

182

186

190

193

193

r93

194

r94

195

xvl

5.24

5.25

5.26

5.27

5.28

5.29

5.30

5.31

5.32

5.33

5.34

5.35

The textual form of a do clause.

Definition of the do clause using semaphores.

A diagrammatic view of the do clause.

Syntactic and diagrammatic representation of locked regions.

A record describing each Ada task.

Information associated with each entry point within a task.

An Ada program fragment.

The definition of a communication port

The deterministic send event

The conditional send event.

The deterministic receive event.

The conditional receive event.

196

197

198

200

202

202

203

205

206

209

2TT

2t3

xvll

Chapter 1

Introductron

With a myriad of computer programming languages in use on a great many computers,

it has become particularly important to be able to specify the syntax and semantics

of each language in some fashion. These specifications, called language d,efinítions,

must be precise in order to allow a programmer to use the same language on different

machines with confidence and consistent results. Hence, a language specification helps

to make software written in the specified language portable to another computer, even

though the machine architecture and operating system may be different, without the

need for in any laborious work to convert the program into a form suitable for the

target machine. Programmers are clear beneficiaries of such language definitions.

Compiler writers and language designers also use these language definitions. To the

compiler writer, the language definition represents the specifrcation of the end-product

to be attained - the language implementation. To the language designer, the language

definition is the vehicle by which the language concepts and details are conveyed to

those interested; the process of designing a new language may also involve examining

a number of existing language definitions, in order to make comparisons.

1

1.1. Desctiptions of SYntax

It is clear that the language definition is of interest to many classes of user, and

is thus destined to serve a multitude of users with different expectations, desires and

needs. Generally, there is only one definitive document which constitutes the "language

definition" and this document must serve the diverse needs of these various users.

It is possible to identify two aspects of a language definitions: a description of the

syntactic elements of the language, and a discussion of its semantic aspects. Each of

these aspects can be described either informally or formally, as discussed in the next

two sections.

1-.L Descriptions of SYntax

The syntactic description of a language can be described informally through the use of

examples. This approach is not common in a language definition, nor is it acceptable.

It leaves open the possibility of not covering all syntactic aspects adequately, and of

leaving the reader confused and unsure.

A common method of describing the syntax of a language, which is relatively

precise, is that of syntax charts or railroad diagrams. This technique tends to be

very easy to read and understand, but consumes relatively large amounts of space in

a document. The graphical nature of the charts makes them useful to programmers'

but makes them awkward for compiler writers and language designers. Care must be

taken when producing a syntax chart to ensure that only valid language constructs

are defined. It is all too easy to merge together seemingly identical parts of the syntax

chart to inadvertently produce a syntax chart that admits illegal syntax.

Arrother common approach for the description of syntax is to use Backus-Naur

Form (BNF) [100], or Extended Backus-Naur Form (EBNF) [158]. These are relatively

2

1.2. Descriptions of Semantics

formal and precise techniques which are well understood, as well as being easy to

produce and read. These techniques cover the syntactic structure of the language and

are more useful to a reader than the informal approach as a reference for answering

questions about the syntax of a language, since the answer can be obtained directly

from the BNF or EBNF definition rather than deduced or guessed from a set of

examples.

L.2 Descriptions of Semantics

L.2.L The Informal APProach

Semantic descriptions for languages are also available in two forms: informal and

formal. One informal approach is to describe the language semantics by examples

accompanied with a brief natural language narrative. This approach appears to have

been adopted, for example, in the definition of PS-algol [97]. Such an approach is ideal

for learning a new language, but it is of little use to implementors and more advanced

users of the language asking technical questions regarding the semantics of various

constructs.

The most common, and widely accepted, method for describing the semantics

of a programming language is a natural language approach. Several examples of

the application of this method exist. Some employ a relatively informal natural

language narrative in order to describe the semantics of all the various aspects of

the programming language; such a description is reasonably easy to read. Examples

include Pascal's early definitions [65, 155], the definition of Modula-2 [159] and that for

Oberon [160]. This style of definition is acceptable to programmers wishing to learn a

3

1.2. Desctiptions of Semantics

new language, and to more experienced programmers with language queries. However,

it is not so useful to compiler writers, as evidenced by the fact the many early Pascal

compilers were inconsistent with regard to the semantics of a number of language

constructs [85, 152]. The difficulty with these natural language descriptions is that they

allow multiple correct interpretations, hence leading to the observed inconsistencies

between various compilers.

In order to satisfy the need for an internally consistent document and a consistent

interpretation of this document, the current trend in the natural language definition of

the programming language semantics employs many technical terms. As inconsisten-

cies between the language definition and implementation were uncovered with the early

definitions, further technical terms were introduced and the style of writing became

more technical and precise, to the point that the language definitions written in natural

language are more akin to legal documents than useful, easy to read and understand

descriptions. This change in emphasis was necessary in order to reduce the possibility

of misunderstanding and ambiguity. The result is that the language definitions are

more useful to compiler writers and language designers, but less useful to programmers.

Examples of such descriptions include the current definitions of Pascal [17], Extended

Pascal [162], ANSI C [161], Mesa [95] and Ada [1a1]. Due to the very nature of

a natural language description, there are always misunderstandings and ambiguities,

simply because different people may interpret the same wording slightly differently and

hence derive a slightty different meaning from a sentence. These misunderstandings

manifest themselves in the form of incorrect compilers which do not strictly adhere

to the specifications intended by the language designer and are, perhaps, inconsistent

with other compilers.

4

1.2. Descriptions of Semantics

Semantic definitions in terms of natural language are not only difficult to write

and understand, but they are often difficult to use as a source from which to learn

the language. As a result, books on specific programming languages are written

in less technical terms, once again introducing further scope for misunderstanding

and ambiguity. These books, although easier to read, usually do not contain all the

information found in the language definition; typical examples include text books

for the programming language Ada (such as [9, 14, 39, 149]) which do not aim to

discuss the entire language, but rather help programmers read the language and use

it. These books generally serve to spread the author's interpretation of the contents

of the language definition rather than the language designer's intentions. Text books

also have a very different goal to that of the language definition. Text books aim to

introduce a ne\M language to the readers and are concerned with teaching the basics

so that the new language can be used, whilst a language definition is not concerned

with teaching, but is rather focussed on precise definition.

Programmers often realize that text books do not form a suitable source from

which to answer language questions. Rather than turning to a text book which merely

provides someone else's interpretation of the language standard, programmers often

write a few test programs to examine their behaviour with respect to one or more

implementations of the language. This latter approach amounts to making use of a

language implementation as a language definition, and it should be remembered that

each implementation only represents a particular interpretation of the actual language

definition, namely that of the particular implementation team. The implementation

is perhaps as likely to suffer difficulties as the text book.

Precise natural language definitions of programming language semantics are diffi-

cult to produce and minor variations in the description of an aspect of the language

ð

1.2. Descriptions oî Semantics

may have far-reaching consequences. This is examined in Section I.2.1.1, where

some historical changes to the Pascal language definition are considered. However,

not only is it difficult to maintain consistency between the various revisions of a

language definition, but it is also difficult to ensure that all aspects of the language are

adequately covered. Section L.2.1.2 examines the potential difficulties encountered as a

result of a simple query about an aspect of a programming language and demonstrates

that compiler writers may also have difficulty with the language definition.

l.z,L.l Historical Changes to the Pascal Definition

Natural language definitions of programming languages are extremely difficult to write

in a precise fashion. For example, consider the attempts to express the fact that the

loop control variable in a "for" statement in Pascal may not be explicitly modified.

Over the history of Pascal thus far, there have been several attempts to describe this

intention, and these are summatizedby Cooper in [2a]. In the original description of

Pascal [155], Wirth states:

"The repeated statement ,S must alter neither the value of the control

variable nor the final value."

This definition did not preclude the statement S from invoking a procedure which

modified the value of the control variable. As a result, this rule was later altered

somewhat in Jensen and Wirth [65] to specify that the expressions representing the

initial and final values of the control variable be evaluated only once:

"The control variable, the initial value, and the final value must be of the

same scalar type (or subrange thereof), and must not be altered by the

repeated statement."

6

1.2. Descúptions of Semantics

The first British Standards Institution (BSI) dra,ft of the Pascal standard [16] broad-

ened the restriction on the control variable even further:

*An error is caused if the control variable is assigned to by the repeated

statement or altered by any procedure or function activated by the repeated

statement.t'

The word "error" has roughly the same meaning in [16] as it does in the current

definition of Pascal [17], where it is defined as "a violation by a program of the

requirements of this standard that a processor is permitted to leave undetected".

The first International Organization for Standardization (ISO) draft of the Pascal

standard [6a] tightened up the limitations on the control variable by saying:

"Assigning references to the control variable shall not occur with the re-

peated statement."

The definition of "assigning reference" was such that any change in the control variable

was virtually precluded (but data flow analysis would be required to detect all such

changes). The second draft of the ISO standard [63] had a slightly reworded definition

of the same restriction.

As can be seen from the above example, the standard has undergone several changes

in the words used in attempts to describe the same idea. With each change of words

came a slightly different semantics for the language Pascal. Due to the difficulties

of implementing a compiler that detects all such changes to control variables whilst

still running at reasonable speeds, the restrictions have been relaxed again in the

current standard [17], where only certain cases are mentioned and discussed as being

"threatening" (having the potential to alter the value of the control variable).

7

1.2. Descriptions of Semantics

The above brief examination of the history of the question of modifications to a

loop control variable over the lifetime of the programming language Pascal is sufficient

to illustrate the increasing complexity and increasing amounts of technical jargon that

have found their way into the definition of this language. A major difficulty with

these technical terms is that each language definition tends to use terms peculiar

to the language being described, sometimes using the same term found in another

language definition but with a different meaning. Although the definitions of these

terms are to be found somewhere in the relevant language definition, they are often

scattered throughout the language definition and are hence extremely difficult to look

up. This is made even more difficult when the technical terms do not appear in the

index to the definition.

1.2.1.2 Problems within the Current Pascal Definition

The effectiveness of any language definition technique may be gauged by how easily

a member of the intended target audience can use the definition to anstryer a question

regarding the language semantics. The intended users of a natural language definition

of a programming language such as Pascal includes programmers and compiler writers.

One could easily imagine a scenario where several programmers were discussing

a bug in some code. During the discussion, several comments and suggestions may

be made regarding the action required to discover and correct the bug. Some of

suggestions may involve the alteration of code already written, others may include the

addition or removal of code, and there may be questions regarding the semantics of

aspects of the language. Imagine that the language in question is Pascal; in this case,

one such question on language semantics may be related to the scope of identifiers in

a parameter list. An initial hypothesis may be that the formal parameter identifiers

8

1.2. Descriptions of Semantics

belong to the scope of the procedure or function to which this is a parameter list, and

that the type identifiers are interpreted in the scope of the surrounding block:

procedure xyz (paraml typel param2 : type2) ;

In order to decide whether or not this is the case, two approaches may be followed. A

typical programmer's approach may well be to develop a small suite of test programs

to test the hypothesis, and the typical compiler writer's approach is to examine the

language standard. Both approaches will now be examined in turn.

Two test programs that a programmer may write are given in Figure 1.1. The

programmer would then compile the programs and draw conclusions regarding the

language semantics based on the outcome of these compilations. This approach suffers

a major drawback in that the compiler is being used as the language definition,

rather than the compiler being regarded as the compiler writer's attempt to model

the language semantics. This approach can be pursued further by compiling these

small test programs on a variety of machines under a variety of operating systems, in

an effort to discard incorrect interpretations. This was done and showed that, of the

twelve Pascal systems used, eleven detected an error at the identifier tta" marked by

"{*}" in the program "testl" in Figure 1.1(a). The error related to the fact that "a"

was no longer a type identifier at this point. One compiler detected no errors at all.

For program "test2" in Figure 1.1(b), eleven compilers detected no errors at all, but

one compiler indicated that the identifier "4" at "{*}" was redefined after use "in this

scope". Only one compiler detected an error in both programs, and one detected no

errors in either.

I

1.2. Desctiptions of Semantics 10

program testl;
type

a: char;
b : boolean;

procedure xl(a:b; c:a{*});
begin {xl}
end; {x1}

begin {testl}
end. {testl}

program test2;
type

a: char;
b : boolean;

procedur e x2(c:a{fi} ; a{*} :b);
begin {x2}
end; {x2}

begin {test2}
end. {test2}

(b)(u)

Figure 1.1. Two of the test programs developed'

These results would indicate that the initial hypothesis was incorrect, for if it were

correct then the use of the identifier "a" as both a parameter and a type would have

been accepted. The problem now is to find what is the correct interpretation of the

results. Of the twelve compilers used, ten had identical results, one complained of

no errors, one of an error in each. It is possible that these latter two compilers are

incorrect and their results should be discarded.

Of the ten remaining compilers, it would appear that the order of the declarations

inside the parameter list was important. However, thii is contrary to intuition,

since the order of declaration of variables is immaterial at any other point in the

program. At this point, several questions may be asked about the semantics of

Pascal's parameter lists, such as t'Is the order of declaration important?", nWhat

is the scope of each identifier in the parameter list?" and "Is a parameter list like

,(a:a)'valid?". The simple test programs used have not satisfactorily confirmed the

original hypothesis, but instead have served to confuse the issue even further and

generate many more questions. In fact, the tests have served to give the programmer

an incorrect understanding of the language definition. The only option left now is to

1.2. Descriptions of Semantics 11

consult the standard and see what can be learned from it, forcing the programmer to

follow the same route as the compiler writer. However, it is interesting to note that

few programmers are likely to test their code as thoroughly as this. Most will simply

write a single test program, compile it on a single machine under a single operating

system, and trust the results obtained. Clearly, this is a dangerous assumption.

The alternative approach to writing test programs is to consult the language defi-

nition on the matter concerned. On this occasion, the hypothesis concerns the scope

of identifiers within a parameter list. The initial starting point would be to check the

section of the language standard dealing with parameters; this is Section 6.6.3 of [17].

The section itself is divided into several subsections which are entitled: "General",

*Value parameterstt, ttVariable parameterstt, ttProcedural parameterst', ttFunctional

parameterstt, ttParameter list congruitytt, ttConformant array parameterst' and ttCon-

formability". From this list, a guess must be made as to which subsection to read first.

The sections on value and variable parameters prove to be no use because the discussion

there is limited to the relationship between the actual and formal parameters. This

only leaves the section labelled "General" (Section 6.6.3.1) as being potentially helpful.

Part of this section reads:

6.6.3.1 General ...

The occurrence of an identifier in the identifier-list of a value-parameter-

specification shall constitute its defining-point as a parameter-identifier for

the region that is the formal-parameter-list closest-containing it and its

defining-point as the associated variable-identifier for the region that is

the block, if an¡ of which it is a formal parameter.

1.2. Descúptions of Semantics

NOTE 2. If the formal-parameter-list is contained in a procedural-para-

meter-specification or a functional-parameter-specification, there is no cor-

responding procedure-block or function-block.

Here, the reader is presented with much technical natural language jargon. Unless

already familiar with the standard, the reader must now look up the meanings of

several words such as defining-point and value-parameter-specification, and find out

precisely what is meant by these. Once this has been done, the reader realizes that

this section of the standard does little to answer the question because the scope of the

type identifi.ers is not discussed.

At this point, types or scope may be looked up in the language definition' Looking

up information regarding types proves to be fruitless. Section 6.2.2 of. [17] relates to

scope and it contains the following subsections:

6.2.2.7 When an identifier or label has a defining-point for a region, another

identifier or label with the same spelling shall not have a defining-point for

that region.

6.2.2.8 Within the scope of a defining-point of an identifier or label, each

occurrence of an identifier or label having the same spelling as the identifier

or label of the defining-point shall be designated an applied occurrence of

the identifier or label of the defining-point, except for an occurrence that

constituted the defining-point of that identifier or label; such an occurrence

shall be designated a defining occurrence. No occurrence outside that scope

shall be an applied occurrence.

NOTE. Within the scope of a defining-point of an identifier or label, there

L2

1.2. Descriptions of Semantics

are no occurrences of an identifier or label that cannot be distinguished

from it and have a defining-point for a region enclosing that scope.

6.2.2.9 The defining-point of an identifier or label shall precede all applied

occurrences of that identifier or label contained by the program-block with

one exception, namely that an identifier may have an applied occurrence in

the type-identifier of the domain-type of any new-pointer-types contained

by the type-definition-part that contains the defining-point of the type-

identifier.

These three subsections finally give the answer to the question. Both programs are

in error because the defining-point of each parameter extends over the entire formal-

parameter-list and all other uses of that identifier are an applied occurrence of that

identifier.

Program "testl" of Figure 1.1(a) is in error at the point labelled "{*}" because the

identifier "a," at this point is an applied occurrence of the formal parameter "a" defined

previously within the formal-parameter-list and is illegal because a type-identifier is

expected. All except one of the twelve compilers detected this error correctly. Program

"test2" in Figure 1.1(b) is also in error, but at the point labelled -{#}'. The identifier

declared at "{*}" is a defining-point for the identifier "4" for the entire region that is

the formal-parameter-list, and so the identifier "4" at {#} is an applied occurrence.

By 6.2.2.8 of [17], this is an error and should be flagged accordingly. Only one compiler

of the twelve found anything wrong with program "test2" and it flagged the error at

{*} for the wrong (albeit related) reason. The result is that eleven of the twelve Pascal

compilers used did not conform to the standard. This clearly illustrates how dangerous

13

1.2. Descriptions of Semantics

it is to use a compiler as a convenient form of the language definition when testing

some hypothesis about the semantics of the language.

A small test suite of twenty Pascal programs similar to those in Figure 1.1 was

run under each of the twelve Pascal implementations. The result was astounding.

Not one implementation correctly handled all of the test programs. The most likely

conclusion to be drawn from these results is that many of the compiler writers were

having difficulty understanding the standard or \¡vere misunderstanding the technical

terms in the natural language description which constitutes the language definition.

L.2.2 Formal Definitions

Programming language definitions written in natural language are moderately useful

to the programming community, but are far from the perfect solution to the problem of

describing the semantics of a programming language to that community. Many people

have recognized the deficiency of the natural language approach and, as a direct result,

formal specifications of some languages have been developed (such as for Pascal [68,

1481 and Ada [62, 140]). Most formal descriptions of programming languages to date

are not themselves the language definition, but are based on the informal natural

language language definition, hence admitting the possibility of ambiguity.

One popular formal method of describing the semantics of a programming lan-

guage is the attribute grammar technique. This is more mathematical and precise

than natural language and is more useful to compiler writers and language designers

than it is to programmers wishing to answer a simple query on the semantics of the

language. Attribute grammar descriptions are more difficult to produce and difficult

to read than a natural language description for any realistic programming language,

such as Pascal [68] and Ada [140]. However, attribute grammars avoid many of

T4

1.2. Descriptions of Semantics 15

the problems that are inherent in natural language definitions, due to their formal

approach. They are well suited to describing the static context-dependent properties

of a programming language, but they are not quite so useful in describing the dynamic

semantics [119]. For example, the attribute grammar description of Pascal presented in

Kastens et al.168l does not fully describe the semantics of a Pascal ufor' statement,

since the final value of the loop control variable is not mentioned (although it is

discussed in the relevant language standard).

Not only is an attribute grammar description of a language difficult to produce,

but the descriptions tend to be rather lengthy. Despite this, however, benefit may

be obtained from taking the natural language definition of a language and producing

an attribute grammar description. Watt [148], for example, produced an attribute

grammar description of the Jensen and Wirth definition of Pascal [65]. Even though

this description was incomplete and really only formalized the concept of type com-

patibility in Pascal, several problems with the informal Jensen and Wirth definition

were uncovered.

Attribute grammars have proved useful in the automatic generation of components

of compilers. The GAG system [63] has been used to produce front-end components

for compilers for Pascal [68] and Ada [1a0]. This capability alone gives attribute

grammars an advantage over natural language descriptions, as it demonstrates that

they provide more than mere language documentation.

Another popular formalism for the definition of programming language semantics

is the denotational approach 12,,46, I27r I34]. This approach has been successfully

used to define the semantics (or aspects of the semantics) of several programming

languages (".g., [3, 23,37,90, 101, 120, 138]). In addition, the technique has been

successfully applied to the comparison of the semantics of two languages whose syntax

1.2. Desctiptions of Semantics 16

and approach to programming differ somewhat [91]. The technique itself, however,

is very mathematical and is difficult to produce and read. Its mathematical basis

tends to suggest that it is amenable to the automatic generation of aspects of an

implementation. The major drawback to the latter is that the denotational approach

draws on such a rich mathematical domain that automatic generation of an implemen-

tation prototype from a denotational description must often place restrictions on the

mathematical concepts which may be employed [113' 114]'

The denotational approach appears to be principally aimed at the definition of

programming language semantics, and less so toward the formal generation of a com-

piler, or interpreter, based on the formal description. Typically, approaches based on

the denotational semantic approach only generate one aspect of an implementation.

In order to gain a complete implementation, the approach must be combined with

other tools which usually take different forms of input. This makes the approach less

attractive to a language designer who wishes to generate a prototype implementation

directly from s single language definition.

The language standard for Modula-2 [156, 157, 159] currently being developed by

the BSI utilizes the Vienna Development Method (VDM) [13]. This standardization

process [15, 151] will result in a document that precisely describes the semantics of

Modula-2; along with its accompanying natural language description, it will provide

a definition that is usable by the general community. Unfortunately, it is not yet

possible to automatically generate a compiler from the VDM definition (although work

is proceeding in this area), and those wishing to read a formal VDM definition will

require a higher level of mathematical training than those reading a natural language

definition. Another difficulty is that VDM has itself not been standardized, and

1.2. Descriptions of Semantics 17

was chosen in preference to an axiomatic approach because there was doubt that

an axiomatic approach could handle a description of that size.

Various researchers have employed a multitude of formalisms to formally define a

programming language with the express purpose of generating a compiler from the

specification [133, 142, t48], or generating an environment from the specification [96,

118]. These approaches may require that machine code be generated, and hence a

formal description of the target language may also be required; alternatively, some

predefined intermediate code such as abstract syntax trees or denotational semantics

(such as the intermediate representations used in [98, 99, 113, 114, 147]) may be

produced, which is then translated into machine code. These attempts at formal

language definition are oriented towards the automatic generation of a compiler, or

aspects of it, and the formal definition of the programming language is not the principal

concern. Typical examples include: yacc [66] which is aimed at parser generation;

Linguist-86 [31] and GAG [68] which are aimed at front-end generation (syntactic and

static semantic analysis); the work of Ganapathi and Fischer [35, 36], Bird [12], and

Graham et aL l40, 4T, 4Sl on code generator generators; and the work of Lee [76] on

the translation phase of a compiler. All of this work is important, but in each case

the definition of the programming language has been secondary. Further, to combine

these tools to produce an entire language implementation involves multiple language

definitions as the tools do not use a common input format.

Another formal specification technique, more typically applied to the specification

of problems such as telephone networks [59], is the specification language Z 1281. Duke

et at.129] have used the technique to describe the static semantics of a small language.

Z appears to be limited in that the dynamic semantics of a programming language

cannot be adequately described using the technique. Further difficulties in using Z

1.3. The Model Prcsented in this Thests 18

as a technique for the specification of programming language semantics arise since Z

is continually changing, as new features as developed for use with Z specifications, in

much the same way that vDM is an evolving specification technique.

Other formal techniques for the description of programming language semantics

exist, but they currently lack the popularity of attribute Srammars. Most of these

methods, such as w-grammars [143, 144, I45], relator calculus 1L24,,l25l and Hoare

axiomatics 120,57,,60], are also highly mathematical and equally difficult to use in

producing aspects of a programming language definition. As with attribute grammars'

they tend to be more useful to compiler writers and language designers than to

computer programmers.

1,.3 The Model Presented in this Thesis

The situation has arisen where two language descriptions are really required, since

the needs of compiler writers and language designers are vastly different to those of

the computer programmer. However, the use of two language descriptions is awkward

and error-prone, as there are likely to be discrepancies and minor differences between

them. These difficulties are having to be addressed by the BSI standardization effort

of Modula-2 discussed above. The ideal solution is to have one document that defines

the language clearly and formally, being useful at the same time to compiler writers,

language designers and programmers. With such a simple language definition, there

should be no ambiguities or misunderstandings. The technique should be such that the

author of the definition should be forced to examine all areas of the language, giving

due consideration to each aspect so that a complete language definition is produced.

1.3. The Model Presented in this Thesis 19

This thesis develops and uses a model of programming language semantics which

can satisfy the disparate needs of the various potential users of the definition. The

model is an information structure model [150], meaning that the programming lan-

guage semantics are defined in terms of manipulations of information structures. Such

an approach has been successfully used to describe the semantics of various coroutine

facilities in several languages [33, 83], to describe and compare interprocess communi-

cation mechanisms [84] and to develop a language definition for a new language [33, 83]'

but in each case the "primitive" operations of the model were defined informally in

natural language. A similar model is used in this thesis, but it is extended to provide

a formal basis. This basis is achieved through the slightly unconventional use of the

algebraic specification technique for the definition of abstract data types (ADT's).

Building on this formal base, the model is extended further to become a multi-layer

model. Such a model is capable of dealing with both the static and dynamic semantics

of programming languages.

By developing a model that consists of several layers, it is possible to have a single

description that caters for the vastly different needs of various groups. Language

designers and compiler writers can find the precise definitions that they require, whilst

programmers and language enthusiasts can simply read to the level most convenient

to them.

This model then forms the basis of a system called ATLANTIS, A Tool for LAN-

guage definiTion and Interpreter Synthesis, which provides a mechanism of the formal

definition of a programming language in terms of an operational semantic model as

well as a means for the semiautomatic generation of an interpreter. The generated

language implementation exactly mimics the building and manipulation of information

structures and subsequently provides a reference implementation which is faithful to

1.3. The Model Prcsented in ú.his Thesis 20

the language definition. This allows language designers quick access to a prototype

implementation of a nev/ language and hence they are able to experiment with and

evaluate language concepts before finalizing the language definition.

The information structures used to define a language are likely to be similar, or

identical, to those needed to describe similar languages. As a result, the information

structures, and hence the central layer of the model, are reusable between language def-

initions; this reduces the amount of work needed to define a new language. Language

comparison at a formal level is also facilitated in this way.

The reliance on an information structure model and the expression of programming

language semantics through transformations on these information structures means

that the technique described in this thesis is likely to be applicable to a wide range of

language descriptions covering many different programming paradigms. In fact, any

language whose semantics can be expressed via transformations on suitable information

structures could be defined using the technique; the difficulty in applying it to a new

language lies in the discovery of suitable information structures and ensuring that

they can be defined using the algebraic specification techniquefor abstract data types.

For the purpose of illustration, this thesis will concentrate on the definition of block

structured sequential programming languages and illustrate how the model can be

expanded to handle aspects of intertask communication in a parallel programming

language.

The remainder of this thesis is organized as follows: Chapter 2 examines the

algebraic specification technique for abstract data types; this technique is used as the

basis of the information structure model proposed for the definition of the semantics

of sequential programming languages. This model is described in detail in Chapter 3,

including the multi-layer and multi-pass aspects of the model. This is followed, in

1.3. The Model Prcsented in this ?åesis

Chapter 4, by a description of the ATLANTIS system based on the model introduced

in Chapter 3. Chapter 5 examines the special difficulties encountered when describing

parallel languages and examines alterations to the ATLANTIS system to cater for this

class of languages. The final chapter presents some conclusions and discusses possible

future directions from the work described in this thesis.

2L

Chapter 2

Algebraic specification of Abstract Data

Types

As indicated at the end of the previous chapter, a technique for language definition

will be presented in this thesis. This technique is based on an information structure

model of programming language semantics. If this model is to be used as the basis

for a language definition, care must be taken to ensure that the information structure

itself is described formally. The description of the information structure and associated

operations has been a weakness with previous information structure models, in that

these information structures have typically been defined informally (".g., the models

used in [26, 83, 93]).

The information structures underlying these models can, however, be regarded as

abstract data types (ADT's). If this is done, then the information structures and their

associated operations can be described in a precise fashion using algebraic specification

techniques for the specification of ADT's. As a prelude to the use of these techniques

in later chapters, this chapter presents a survey of relevant aspects of these algebraic

specification techniques.

22

2.1. An Example of an Abstract Data Type 23

2.L An Example of an Abstract Data Type

In order to illustrate the issues involved in specifying ADT's algebraically, this chapter

will develop an ADT specification from the original conception of the ADT to its formal

verification. The ADT which will be developed describes a table data structure. This

data structure is common, fairly simple and likely to be already well understood by the

reader. The table type will consist of an "index", that is a key, to indicate which item

within the table is required and a description related to that index; the latter is referred

to as the "information". The index must be unique and is used to identify which

information object in the table is to be selected; each information object is associated

with precisely one index. The table is similar to the kind of one-dimensional array

which can be found in many existing programming languages. The table type places

no restrictions on the index or information types, provided that the index values can

be distinguished from each other and a test for equality is available for index values.

The index and information types could be integers, enumerated types, or even other

ADT's defined by the user. The index and information types may well be different'

The operations defined on the ADT describing the table type should be sufficient

to enter, retrieve and manipulate the data within it; this ADT will be called "Table".

A user will need to be able to define a new object of type Table and check to see

if this object contains any index/information pairs. To have a useful data type, the

user will need to be able to insert items (i.e., index/information pairs) into a Table

object, remove such items from a Table object, and alter the information associated

with a particular index. It will also be essential to be able to retrieve the information

associated with an index already known inside the Table. The operations constitute

the minimum set of operations to make effective use of an ADT representing a table.

2.2. Axiomatizations

Understanding the data structure is the first stage in developing an ADT. It is

necessary to understand how the ADT is likely to be used and what operations

are required to manipulate it effectively. Every conceivable operation need not be

provided, as more complex operations can be built from a basic minimum set. Once

the function of the ADT and the operations that are to be provided are understood,

an axiomatic specification of the ADT can be built.

2.2 Axiomatizations

There are two alternative approaches to the formal definition of an ADT, namely

the i,nitial and. final algebra approaches. In both cases, the data type is treated as

an algebra, as described in [163, 164], and hence strict mathematical reasoning is

allowed. With the initial algebra approach [43], any two objects from the type of

interest are considered equal if and only if such equality follows directly from the

axioms. This allows the development of equivalence classes of ground terms (terms

without variables); for examPle,

{ 0, 1-1,2-2r...,1 X 0,2 x 0,...}

is an equivalence class for the constant tt0". Each member of the equivalence class

can be shown to be identical via the axioms defining the type integer and hence if

one such member occurs in an equation, it may be replaced by any other member of

the equivalence class without any loss of information or generality. The final algebra

approach [51, 53, 55] takes the opposite viewpoint. Any two objects of the type of

interest are considered equal as long as this view does not conflict with any of the

axioms. Throughout this thesis, we will use the initial algebra approach, but attempt

to use a specification technique similar to that presented in [51] and [55]. The reason

24

2.2. Axiomatizations 25

for choosing the initial algebra approach was not because it is easier to understand

or comprehend, but simply because a choice had to be made. Either approach would

have been satisfactory for this application.

Recent developments in algebraic specifications [21] allow the automatic generation

of templates from specifications; one example is the work on the ASSPEGIQUE sys-

tem [10, LL,2Ll. Work in this area is evolving and undergoing continuous improvement

and modification. As a result, it has been decided to not incorporate these techniques

into the ATLANTIS system, but rather leave the option of merging ATLANTIS with

a system such as ASSPEGIQUE at a later date. This merger would produce a system

capable of producing an entire implementation prototype from a formal specification

of the language.

Following the kind of development in Section 2.1, we have only an informal de-

scription of the data type and such a description is unsuitable as the basis for an

information structure model. In order to obtain a formal basis for a description of

the data structure, it is necessary to consider each operation and define its effect on

the data structure. This is done by producing a set of axioms that formally specify

the behaviour of the operations. The data type is said to be aú,omatized when such

a set of axioms has been produced. Such an axiomatic description of a data type has

well defined mathematical properties which can be used to ensure that the axiomatic

description behaves as expected.

The axioms derived need to be as concise and as specific as possible in order to avoid

any ambiguity. Confusion and ambiguity is often introduced by superfluous axioms

and thus only axioms vital to the description of the data type should be presented.

The set of axioms that finally describe the data type should be restrictive, so that no

implementations which adhere to the axioms but represent a data type that differs

2.2. Axiomatizations 26

from the one intended can be created. However, the axioms should not be overly

restrictive, so as to preclude any valid implementation of the data type. In effect, the

axiomatic description should describe the data type fully and in a manner that allows

only one correct interpretation, but does not preclude any valid implementations, nor

allow any invalid implementations.

The axioms need to satisfy two mathematical properties in order to be truly useful:

consistency and suffici,ent-completeness [41, 43r 44r 50, 51]. The first of these means

that the axioms must not produce a conflicting result under any circumstances. If two

or more axioms are applicable, then they must all lead to an identical result. If this

is not the case, then the axiom set is said to be inconsistent. The second property,

sufficient-completeness, means that the axioms must describe all valid objects that

belong to the ADT. Both properties will be discussed in more detail later.

Following the style of specification that is presented by Guttag in [51] and [55], an

axiomatization of the ADT from Section 2.1 can be written as shown in Figure 2.1. The

eleven axioms in Figure 2.1 formally describe this ADT. Each axiom says something

of importance about the abstract data type. Axiom 1 indicates that the "empty"

operation applied to a "new-table" will return the value "true", whilst Axiom 2

indicates that when the "empty" operation is applied to any object of type Table

other than the t'new-table" object, the value "false" will be returned.

Axioms 3 and 4 describe the action of the "member" operation. Axiom 3 states that

when the *member" operation is applied to the ttnew-table", regardless of the value of

the index supplied as the second argument, the value ttfalsett is returned. In contrast

to this, Axiom 4 indicates that the "member" operation returns tttrue" if ttindex-l"

is identical to "index-2", where ttindex-lt' was used in an ttinsertt' operation which

was the last operation applied to the table, and "index 2" is the second argument to

2.2. Axiomatizations 27

ADT Table [index,
information]

sorts Table/index, information, boolean

where index has equal: index x index + boolean

comments
The operator "new-table" creates an object of type Table.

The function "empty" tests to see if a Table object is equal to "new-table".
The operator "member" indicates whether or not a particular item is an index into

the given Table object; i.e., it tests to see if there is an item in the Table object

with the given index value.

The operator "insert" will insert an item into a Table object, replacing any existing

item which has that index value.

The operator "remove" deletes the item with the specified index value if it is present.

Otherwise, an error occurs.

The operator ttsearch" returns the information associated with an index value if
that index value is present. Otherwise, an error occurs.

The operator "alter" changes the information associated with an item in the Table

if the relevant index value is present. Otherwise, an error is issued.

syntax
new-table:
empty:
*member:
insert:
remove:
search:
alter:

semantics
declare

axloms
(1)
(2)
(3)

index
index x information
index
index
index x information

-) Table

-) boolean

-) boolean

-) Table

-) Table l) {error}
-) informationU{ercor}

-) Table l) {error}

Table
Table
Table
Table
Table
Table

X

X

X

X

X

tab: Table
index-l, index2, index-3: index
info-l, info-2: information

empty(new-table) : true
empty(insert(tab, index-l, info-l)) : false

member(new-table, index-l)) : false

Figure 2.1. Algebraic specification of the abstract data type "Table".

2.2. Axiomatizations

(4) member(insert(tab, index-l, info-l), index2) :
if equal(index-l, index2)
then

true
else

member(tab, index2)
end if

28

(5)

(6)

insert(insert(tab, index-l, info-l), index2, info-2) :
if member(insert(tab, index-l, info-l), index2)
then

alter(insert(tab, index-l, info-l), index-2, info-2)
else

insert(insert(tab, index2, info-2), index-l, info-l)
end if

remove(insert(tab, index-l, info-l), index2) :
if equal(index-l, index2)
then

tab
else

insert (remove(tab, index2), index-l, info-l)
end if

remove(new-table, index-l) : error
search(insert(tab, index-l, info-l), index-2) :

if equal(index-l, index2)
then

info-1
else

search(tab, index-2)
end if

search(new-table, index-l) -- error
alter(tab, index-l, info-l) :

insert (remove(tab, index-l), index-l, info-l)
alter(new-table, index-l, info-l) : error

Figure 2.1. Continued.

(7)
(8)

(e)
(10)

(11)

2.2. Axiomatizations 29

,,member". If the indices differ, then the "membern operation is applied recursively to

the Table with the last index/information pair removed (i.e., it is applied to the Table

without the last "insert" being applied). If this removal results in the "new-table"

object, then Axiom 3 becomes applicable and "false" is returned.

The description of the "insert" operation is presented by Axiom 5. It states that

if an item that is already in a Table object is to be inserted then, rather than allowing

two items with the same index value, the previously inserted item is altered to hold the

information that is now being inserted. If the index value for the item whose insertion

is now being attempted is not already present in the Table object, then the order in

which the objects are inserted is not relevant. The data type described in Figure 2.1

will be known as an "llnordered-Table" because of this characteristic.

A formal description of the "remove" operation is given by Axioms 6 and 7.

Axiom 6 states that a t'remove" operation applied immediately after an ttinserttt

operation results in the original Table object value if the indices in the "remove"

and the "insert" operations are identical; that is, insertion and immediate removal

of an item with a particular index will have no overall effect on the Table object. If

the indices in the two operation applications differ, then the "remove" operation is

applied to the Table object value which existed prior to the insertion taking place,

and the "insert" operation is then applied to the resulting object. Axiom 7 indicates

that the application of the t'remove" operation to a ttnew-table" will result in an

"errof'value being returned. This is because the t'remove" operation has no defined

or sensible meaning when applied to a "new-table". To express this inapplicability, the

error value is appended to the range of values which could result from the ttremovett

operation. This error value is treated as though it were a member of the range of

certain ADT operations, whereas it is really a special value [55].

2.2. Axiomatizations

The "search" operation is described by Axioms 8 and 9. Axiom 8 states that if

the ,,search" operation is applied to a Table object, then the last information value

inserted is returned if the given index value is equal to the index value supplied in that

last insertion. If the indices differ, then the "searchn operation is applied recursively to

the Table with the last item removed. If no item with index value "index-2" is present

in the Table, an attempt will eventually be made to apply the "search" operation

to the "new-table". This situation is covered by Axiom 9, which indicates that this

results in an error value.

The operation "alter" is described as the equivalent of applying a "removett opera-

tion followed by an "insert" operation, these operations being applied to items which

both have the indicated index value. This is stated formally by Axiom 10. The result

of applying the "alter" operation to a "new-table" is described by Axiom 11, which

ensures an error value is returned in this case.

The axioms themselves do not constitute the entire ADT description. From Fig-

ure 2.1, it can be seen that the type name of the ADT ("Table" in this instance) is

specified in the heading, along with the names of two types. The type names stand for

any arbitrary types with which the ADT may be instantiated and they amount to a

form of parameterization for the ADT (as discussed further in [6, 25, 38, 111, 115, 139],

for example); their function is similar to that of a formal parameter in the parameter

list to a procedure or function. The sorts clause indicates all the sorts (types) that

the ADT definition employs; any sorts not listed in this clause may not be used within

the ADT. The sorts listed before the " f" character are those that are defined by

this ADT definition and those following the " f" character are those used by it. The

where clause indicates any restrictions that these sorts must satisfy; in the case of

the specification in Figure 2.1, the equality operator is assumed to exist for the index

30

2.3. Error Conditions 31

type. This operator is required in the axioms explained earlier. The comments part

of the specification consist of informal comments to aid the reader of the specification.

They have no place in a formal description, other than as minor explanatory notes.

All details regarding the behaviour of the ADT must be obtainable from the axioms.

The next section of the ADT specification defines the syntax of each of the operations;

this is also known as the signature of the ADT. For example, the "member" operation

takes an object of sort Table and an object of sort index, and returns a boolean value.

Finally, the semantics of the ADT is defined in an axiomatic manner, as discussed

earlier. All variables used in the axioms are first declared of the appropriate sort; they

may then stand for any valid object of their specified sort.

The observant reader will have noticed that one operation not discussed in the

informal description of the ADT has been added. The operation "member" was

introduced into the algebraic specification, as it is necessary for the specification of

Axiom 5. This new "member" operation must also be defined in the specification in

a formal and rigorous manner. At this point, a decision must be made. The user can

be given free access to this operation, or it can be hidden from the user but still used

freely within the specification and implementation of the ADT. To indicate that the

user has no access to a particular operation, it is common to prefix it with a tt*" in

the section describing the syntax.

2.3 Error Conditions

An error value was introduced into the specification in the previous section, in order

to handle invalid terms. This error value is appended to the range of valid results

allowed by some operations and is necessary in order to indicate erroneous conditions.

2.3. Enor Conditions 32

error : remove(error, index-l)
: remove(insert(new-table, index -I, error), index-l)
: remove(insert(new-table, index-l,

search(new-table, index-l)), index-l)
: new-table

by Axi,om 9

by Auiont,6

Figure 2.2. Collapsing the abstract data type "Table"

As can be seen in Axioms 7, 9 and 11, it is possible for the user to attempt undesirable

operations, such as trying to remove an item from an empty Table. If this is attempted,

the error value is returned. In an implementation, this could result in an exception

being raised and handled, or an error being reported in some way. These details are left

to the implementor - it is enough to indicate in the specification that the error value

is to be returned. It is assumed that each operation has an implicit axiom indicating

that if an operation application includes the error value in its parameter list, then the

error value is propagated as the result of the operation application. Hence, if an error

value is returned during any part of the evaluation of an expression, the value of the

expression is the error value.

Although this approach (which follows [51]) appears to be reasonable, it contains

a hidden trap for the unwary. Following this approach, it is possible to "collapse"

the entire ADT and demonstrate clearly undesirable results. One such result is shown

in Figure 2.2, which uses the axioms of the specification in Figure 2.1 1o show that

the error value and "new-table" are equivalent. Since all objects are constructed by

ttinsert" operations applied to "new-tablet', and since "insert" operations applied to

an error value yield error values, then we really have a meaningless specification.

Thus, following the suggestion of Guttag on how to handle error conditions leads

to the conclusion that all objects of the sort have the error value. This is known as

2.3. Enor Conditions 33

lhe horror of collapsing types. The main cause for this is the manner in which error

values are propagated. It is clearly not beneficial to presume the existence of implicit

axioms that cause an operation to return the error value if any of the parameters to

the operation is the error value.

A method to rectify this problem is suggested by Goguen et al. in [a2]. This

method adds the error value as a constant to each sort; for example, t'Et' may be

used to represent the error value associated with the sort "boolean". Along with the

introduction of such constants, it is also necessary to add some additional operations.

As an introduction to the method suggested by Goguen et al., the specification for the

sort boolean will be presented.

In the specification for the sort boolean, it is not only necessary to add the constant

"E" to denote the error value, but also to supply the unary operator UOK'. This

operator, when applied to a constant within the boolean sort, returns tttruet' if the

value is either tttrue" or ttfalse", and "false" if the value is ttE". To avoid the horror

of collapsing types, it is necessary to ensure that each variable in an axiom is not

equivalent to the error value unless specifically stated.

The operator "OK" is defined on the constants belonging to the sort boolean as

follows:

OK(true) : true
OK(false) : true
OK(E) : false

It is now necessary to define the behaviour of the predicate "OK" with respect to

terms in boolean logic. This behaviour can be specified as follows:

OK(-Bt¡ : OK(Br)
OK(81 ¡ Bz) : OK(Br) A OK(B,)
oK(81 v Bz) - OK(Br) v OK(82)

2.3. Elror Conditions

where "B1" and t'B2" are values from the sort boolean. It is also necessary to give

axioms stating the behaviour of operators when one of the values involved is the error

value. Since it is required that error values propagate when they are detected, all

operations involving the error value should return the error value as its result. Thus,

where ttB" is any value from the sort boolean, including the value "E". An extended

conditional is now also needed. This conditional, *IFE", behaves in the same manner

as a conventional if-then-else construct in the case of a valid condition. If the condition

evaluates to the error value, then the error value is returned. Its behaviour is defined

byt

IFE(true, B1, 82) - 81
IFE(false,81, 82) - B2

IFE(E, 81, 82) : þ

where ttBlt' and "82" ate again values of the sort boolean. It is these operators,

uOK' and "IFE", in conjunction with the error value, "E", which provide the basis

for the improved handling of error values in the ADT specification. Since, in general,

equations are likely to have some positive number, say ,?, of arguments, it is convenient

to make use of a derived operator defined by:

OK'(81,. .., 8,,) : Ai=rOK(B¡)

where the t'B¿t' represent values from the sort boolean. To make this approach

workable, a derived conditional is also introduced:

IFOK'(BI ,. . . , 8,", B) : IFE(OK'(B1," ' , B'), B, E)

34

-E: E
EAB:E
BAE:E
EVB:E
BVE:E

2.3. Etror Conditions 35

where the "B¡" and ttB" are values from the sort boolean. The value of the above

expression is the value of "8" if OK(B¡) has the value "true", for all i such that

I < i (rz, and has the value "E" otherwise.

Now an axiomatic description of the type boolean can be presented, as shown in

Figure 2.3, without fear of the specification collapsing into something meaningless.

It is now possible to go on and give a revised axiomatic specification of the ADT

Table, so that it no longer suffers from the horror of collapsing types. First, the

operations UOK' and "IFE" must be expanded to handle sorts in general. This is

done by subscripting the error value, ttE", and the necessary operations, with the sort

to which they belong. For example, the error value in the sort boolean will be denoted

by Ebool"on It now becomes necessary to provide, for each sort ttst', an error value ttE"tt

and a predicate "OK,". This is so that each specification may assume the existence of

error values for each type upon which it depends, without the danger that an undefined

predicate or constant will be used.

Now assuming that OK" and E" have been added to the specification for each sort

s, then the operator "IFE"" can be defined as:

IFE"(true, 51, 52) : 5t
IFE"(false, 51, 52) : 52

IFE"(E6ro¡"or,, 51, Sr) : E"

where "S1" and ttS2" are expressions of sort s. It is also necessary to assume the

existence of derived operators which can be defined by:

OK-(yt,. .., Yn) : AT=t OK",(Y¿)

and

IFOK.,,
"(yr,.

.. ¡ Yn, x) : IFE"(OK-(yt,..', Y'), x, E")

for u : .sr. . .snr where y; is a variable of sort s; and x is a variable of sort s.

2.3. Error Conditrcns 36

ADT boolean

sorts boolean/boolean

comments
The values *true" and ttfalse" are boolean constants.

The operator "not" provides the logical negative.

The operator "and" finds the logical conjunction.
The operator "or" finds the logical disjunction.
The operator "equal" returns a boolean value indicating the equality of the two

boolean values.

The operators "IFE", "OK" and "IFOK" behave as discussed in the text.

syntax
OK-ops

true: __+ boolean

false: -) boolean

not: boolean -) boolean

and: boolean x boolean -) boolean

or: boolean x boolean -) boolean

equal: boolean x boolean ---+ boolean

IFE: boolean x boolean x boolean boolean

OK: boolean + boolean

IFOK: boolean x boolean -r boolean

error-ops
E + boolean

semantics
declare b-1, b-2, b-3: boolean
axioms

OK-specs
(Ax-1)
(Ax-2)
(Ax-3)
(Ax-a)
(Ax-5)
(Ax-6)
(Ax-7)
(Ax-8)
(Ax-e)
(Ax-10)

not(true) : false
not(false) : true
IFOK1(b-1, not(not(b.l))) : IFOKr(b-1, b-l)
IFOKl(b-1, and(true, b-1)) : IFOK1(b-1, b-1)
IFOKl(b-l, and(false, b-1)) : IFOKr(b-l, false)

IFOK2(b-1 ,b-2, and(b-l, b-2)) : IFOK2(b-1 ,b-2, and(b-2, b-l))
IFOK1(b-1, or(true, b-1)) : IFOKl(b-l, true)
IFOK1(b-1, or(false, b-1)) : IFOKr(b-l, b-1)

IFOK2(b-1 ,b-2, or(b-l, b-2)) : IFOK2(b-1,b-2, or(b-2, b-1))
IFOK2(b-1,b-2, equal(b-l, b-2)) :

IFOK2(b-1 ,b-2, equal(b-2, b-l))

Figure 2.3. The type "boolean"

2.3. Error Conditions

(Ax-11)
(Ax-12)
(Ax-13)
(Ax-1a)
(Ax-15)
(Ax-16)
(Ax-17)

emor-sPecs

37

(Error-1)
((Error-2)
((Error-3)
((Error-4)
((Error-5)
((Error-6)
((Error-7)

equal(true, true) : true
equal(true, false) : false

equal(false, true) : false

equal(false, false) : true
IFOK2(b-1 ,b-2,IFE(true, b-1, b-2)) - IFOK2(b-1, b-2, b-1)

IFOK2(b-1 ,b-2,IFE(false, b-l, b-2)) : IFOKz(b-l, b-2, b-2)

IFOK2(b-1 ,b-2,IFE(E, b-1, b-2)) : IFOKz(b-l' b-2' E)

not(E) : þ
and(E, b-1) : E
and(b-l, E) : E
or(E, b-1) : B
or(b-l, E) : E
equal(E, b-1) : E
equal(b-l, E) : E

OK-definition
(OK-l) OK1(true) : true
(
(
(

(

(

(
(

oK-2)
oK-3)
oK-4)
oK-5)
oK-6)
oK-7)
oK-8)

(oK-e) oKl(oKl(b-1)) : oKl(b-1)

Figure 2.3. Continued.

OK1(false) : true
OKI(E) : false

OK1(not(b-l)) : OKl(b-1)
OK1(and(b-l, b-2)) : and(OKr(b-r), OK'(b-2))
OK1(or(b-l, b-2)) : and(OKt(b-1), OKl(b-2))
OK1(equal(b-l, b-2)) : and(OK1(b-1)' OKr(b-2))
oKl(IFE(b-l, b-2, b-3)) :

and(and(OKl(b-1), OKl(b-2))' OKr(b-3))

2.3. Error Conditions 38

If "e" is an equation involving distinct variables Yrr.. ., y,r, and if y¡ is of sort s¿,

then the ari,ty oI e is

As an application of the above approach, consider an axiom such as

IFoKro¡1" initeo ín! ormøtion, booteøn(tab, index-l, info-l,
empty(insert(tab, index-l, info-l)))

- IFOK¿'¡ te indeo informøtion, uooteøn(tab, index-l, info-l, false) (*)

which indicates that the variable utab' is of sort table, "index-l" is of sort index and

"info-l" is of sort information, and the expression:

empty(insert(tab, index-l, info-l))

returns a result of sort boolean. If the predicates OK¿"6¡"(tab), OK¿n¿.,(index-1) and

OKinÍo,^orø,(info-1) all return true, then the above axiom (*) is equivalent to:

empty(insert(tab, index-l, info-l)) : false

where:

tab I El',il"
index-l * E¿n¿",

info-l # Ei,,Ío,^otion

If any of oK¿o6¡"(tab), oK¿,,a",(index-1) or oKinÍo,^ot;",(info-1) does not hold, then

the axiom (*) reduces to the trivial statement:

Ebool.on : Ebooleøn

Since every sort that is defined will need to use the IFE", OK" and IFOK" operators,

and they will have exactly the same form in each case, their definition will be assumed

to be that defined above and they will be dropped from the signature of each sort.

s?ru,: Sl

2.4. Veúfying the Specifrcation 39

Hence, the description of Table can be given as shown in Figure 2.4. Similar

definitions must also exist for boolean, index and information, because the specification

in Figure 2.4 relies on their existence. The description in Figure 2.4 is identical to the

specification given for Table earlier, except that the problem of collapsing types no

longer exists.

Now that a set of axioms describing the operations on the ADT has been defined, it

remains to be shown that the axioms satisfy the properties of consistency and sufficient-

completeness (discussed informally at the beginning of this section). Although it is

possible to show that these properties are satisfied by the axioms above, it may be

impractical to prove that they are satisfied in the specification of a more complex

ADT.

2.4 Verifying the SPecification

2.4.L Consistency

Having produced a set of axioms describing an ADT, the task of properly specifying

the ADT is far from complete. In fact, the most difficult part is yet to come: proving

consistency of the axioms, as introduced in Section 2.2. It must be shown that the

axioms presented describe the ADT in a fashion that will result in only one correct

interpretation for each expression of type Table. It can be shown that constructing

such a proof is an undecidable problem for an arbitrary set of equations l5l,1221.

To demonstrate inconsistency, it is sufficient to derive one contradictory statement.

For example, if the axioms could be applied to a statement in a particular order until no

further reduction is possible, to provid" "u", say, by applying the axioms in one order,

2.4. Verifying the Specifrcation 40

ADT table [index,
information]

sorts table/ boolean, index, information

where index has equal: index x index --+ boolean

comments
The operator "new-table" creates an object of type Table.

The function "empty" tests to see if a Table object is equal to "new-table".
The operator ttmember" indicates whether or not a particular item is an index into

the given Table object; i.e., it tests to see if there is an item in the Table object

with the given index value.

The operator "insert" will insert an item into a Table object, replacing any existing

item which has that index value.

The operator "remove" deletes the item with the specified index value if it is present.

Otherwise, an error occurs'
The operator "search" returns the information associated with an index value if

that index value is present. Otherwise, an error occurs.

The operator "alter" changes the information associated with an item in the Table

if the relevant index value is present. Otherwise' an error is issued.

syntax
OK-ops

new-table:
empty:
member:
insert:
remove:
alter:
search:

error-ops
Erobt.:

semantics
declare

axloms

x index
x index x information
x index
x index x information
x index

-f table

+ boolean
+ table

-) table

-) table
--+ information

table
table
table
table
table
table

-) table

tab: table
index-l, index-2: index
info-l, info-2: information

OK-specs
(Ax-1)
(Ax-2)

empty(new-table) : true
IFOKT,¡¿" index in!ormøtion, boolean(tab, index-l, info-l,

empty(insert(tab, index-l, info-l)))

- IFOKTT¡ Ie in¿et in!ormation, boot.on(tab, index-l, info-l, false)

Figure 2.4. Revised abstract data type specification for "Table".

2.4. Veúfying the Specifrcation

(Ax-3)

(Ax-a)

(Ax-5)

(Ax-6)

(Ax-7)

4I

IFOK¡rr¿"', öoorecn (index-l, member(new-table, index-l))
: IFOK;', deo, booleøn(index-l, false)

IFoK¿oa¡" indeo indeo infonnation, booteon(tab,, index-l, index-2, info-l,
member(insert (tab, index-l, info-l), index2))

- IFOK¿"¡te indeo ,"^.,
ili;:otion,

booteøn(tab, index-l, index-2,

if equal(index-1, indexJ)
then

true
else

member(tab, index2)
end if)

IFOK¿¿¡¡" indes inileo injormøtion, r¿ü¡e(tabr index-l,
index-2, info-l,

remove(insert (tab, index-l, info-l), index-2))
: IFOK¿'¡te indec ,"r"'

:yi::otion,
tøble(lab, index-l, index-2,

if equal(index-l, index-2)
then

tab
else

insert(remove(tab, indexJ), index-l, info-l)
end if)

IFOK¿oa¡" indes inder in ! or mation, in Í ormation(tab, index-l, index-2,

info-l, search(insert(tab, index-l, info-l), index-2))
: IFoK¿o¡te indet ^*" il;;î:;:î;r-ï:"*'(tab'

index-l'

if equal(index-l, index-2)
then

info-1
else

search(tab, index-2)
end if)

IFOK¿'¡¡" initet inJ ormation, table(Iab, index-l, info-l,
alter(tab, index-l, info-l))

: IFOKT'¡Ie in¿eo information, úaó¡e(tab, index-l, info-l,
insert(remove(tab, index-l), index-l, info-l))

Figure 2.4. Continued.

2.4. Verifying the Specifrcation

(Ax-8) IFOK¿,¿¡" in¿es in¿eo inlormøtion in!ormotion, ¿@b¡e(tabr index-l, indexJ,
info-l, info2,

insert (insert (tab, index-l, info-l), index2, info-2))
: IFoK¿o¡Ie initeo '""' '#;;ï:;, ilii:i;"liä: ;",u"(tab'

index-l'

if member(insert (tab, index-l, info-l), index-2)
then

alter(insert (tab, index-l, info-l), index-2, info-2)
else

insert(insert(tab, index2, info2), index-l, info-l)
end if)

42

error-specs
(Error-1)
(Error-2)
(Error-3)
(Error-4)
(Error-5)
(Error-6)
(Error-7)
(Error-8)
(Error-9)
(Error-10)
(Error-11)
(Error-12)
(Error-13)
(Error-14)
(Error-15)
(Error-16)

alter(new-table, index-l, info-l) : Etobt"

remove(new-table, index-l) : E1-bI"

search(new-table, index-l) : EinÍ o,,,,ation

empty(E¿'u¡") : Eboot"on

member(E¿o6¡", index-l) : Eboot"on

member(tab, E¿n¿.r) : Eboor"on

insert(E¿o6, index-l, info-l) : E1-bI"

insert(tab, Eind"r, info-l) : Etobt"

insert(tab, index-l, EinÍo,møtion) : Erout"

remove(E¿o6¡", index-l) : E oa¡"

remove(tab, E¿n¿",) : F,tobt"

alter(E¿o6¡", index-l, info-l) : Etobl"

alter(tab, Eind"r, info-l) : E1-il"
alter(tab, index-l, Ei,"Íormøt¿on) : E,rou"

search(E¿o6¡", index-l) : E¿"; or^otion
search(tab, E¿na.') : EinÍ ormøtion

OK-definition
(OK-1) OK¿o6¡"(empty(tab)) : OK¿ou¡"(tab)

(OK-2) OKroarct,,a"'(member(tab, index-l))
: and(OK¿¿ö¡e(tab), OK;,,¿",(index-l))

(OK-3) OKro,;," initer inJormot;or,(iirsert(tab, index-l, info-l))
: and(and(OK¿"6¡" (tab), OK¿.¿",(index-1)),

OK¿n Í o, *or;r" (info-l))
(OK-4) OKroa¡" ;ndeø(remove(tab, index-l))

: and(OK¿øb¡e(tab), OK¿,,¿",(index-l))

Figure 2.4. Continued.

2.4. Verifying the Specifrcation

(oK-5)

(oK-6)

(oK-7)
(oK-8)

OKrou6 initeo in! ormor;or, (alter(tab, index-l, info-l))
: and(and(OK¿,6¡" (tab), OK¿,,¿"'(index-1)),

OK¡, J or,,,otir" (info-l))

OKtoarc ina"o (search(tab, index-l))
: and(OK¿oä¡e(tab), OK¡,,¿"'(index-l))

OK¿o6¡"(new-table) : true
OK¿"6¡"(E¿oö¡") : false

43

Figure 2.4. Continued

and ,,b" by applying the axioms in another order, then the axioms are inconsistent if

"att is different from ttbtt.

Proving consistency, on the other hand, can be done by several methods. The most

common and widely used method is to construct a model of the ADT. If such a model

can be written and formally verified to be correct, then the axioms are consistent. The

drawback with this method is that it is possible to expend much time and effort in

trying to construct a model that may not exist because the axioms are inconsistent.

Even if such a model is produced, it must still be formally verified and shown to be

consistent with the ADT in order to demonstrate consistency. This verification process

is a laborious and error-prone task which is likely to take a substantial amount of time.

Another method for proving consistency is showing that the axioms, when treated

as left-to-right rewrite rules, satisfy the Church-Rosser property líL' 1221. Informall¡

a set of rewrite rules satisfies the Church-Rosser property if, whenever a rule is applied

to reduce a term and the resulting term is again reduced until no further reduction can

take place, the final result is independent of the order in which the rules were applied.

However, any such proof would involve considering each of the axioms in Figure 2.4

and demonstrating that the Church-Rosser property was satisfied. This method of

proof is rigorous, but very detailed and difficult to produce, and will not be used here.

2.4. Verifying the Specifrcation 44

2.4.2 Sufficient-ComPleteness

By sufücient-completeness, as introduced in Section2.2, it is meant that no expressions

consisting of constants only (i.e., no variables) which operate on an object of the type

of interest, such as Table, and which return an object of some other type, are without

value or meaning. Proving that an algebraic specification is sufüciently-complete is

also an undecidable problem [43' 51].

To define sufücient-completeness, we introduce two sets ^9 and O such that S

contains all the operations whose range is the type being specified and O contains

those operations that map this type onto other types. If we now define a ground term

to be a term that contains no variables, then we can state a definition for sufücient-

completeness. For any abstract type T, and any axiom set A, A is a sufüciently-

complete axiomatization of 7,, if. and only if for every ground term of the form

o(etr...,e,r), where o belongs to O, and each of the e¿ is a ground term argument for the

operator o, then there exists a theorem derivable from A of the form o(e1, ...ren)= u

where u contains no operations on the type T.

By considering Figure2.4 again, it can be seen that:

^9 - { alter, remove' new-table, insert }
O - { empty, member, search }

Sufücient-completeness for the axioms presented above will now be demonstrated.

In this demonstration, let the notation:

{empty(tab) | tab : new-table}

denote the set of all ground terms corresponding to the operation "empty" applied to

a table called "tab", such that "tab" is equivalent to an invocation of the "new-table"

operation. This means that "tab" is either the empty table as generated by a call to

2.4. Veúfying the Specifrcation

"new-table", or it is an object obtained by applying operations to a table such that

the result is an empty table; that is to sa¡ it is a member of the same equivalence

class as t'new-tablett. For example:

remove(insert (new-t able,index-l,info-l),index-l)

is equivalent to:

new-table

because of axiom Ax-5.

By considering all possibilities, it is possible to show sufficient-completeness for the

ADT specification as follows:

45

{ empty(tab) | tab : new-table } : { true }
{ empty(tab) ltab :Enbt" }: { Euoot.onl,

{ empty(tab) | tab / [new-table, E¿o6¡"]] : { false }

by Ax-l
by Error-4

by Ax-2

+{ empty(tab) | for all possible values of tab } : { true, false,,Ebool.o,.}

Thus, it has been shown that the ADT specification is sufficiently-complete with

respect to one of the members of the set O, namely "empty". The operation "membert'

is considered next; it is demonstrated that the property of sufficient-completeness holds

for this operation also:

2.4. Veúfying the Specifrcation

{ member(tab,index) |

{ member(tab,index) |

{ member(tab,index) |

{ member(tab,index) |

{ member(tab,index) |

+{ member(tab,index) |

tab : new-table) : { false }
tab : Etott" j: { Euoo¡"or, }
index:Eind,""): { F,boot"nn}

fab / [new-table, E¿o5¡"] and
index # E;n¿", and index is in tab)
:{true}
tab / [new-table, E¿o6¡"] and
index * E¡n¿", and index is not in
tab):{false}
for all possible values of tab and index)

- { true, false, Eboor.on }

46

by Ax-3, Ax-4

It now only remains to demonstrate the property of sufücient-completeness is also

satisfied by the operation "search" to have shown that the property of sufücient-

completeness is satisfied by the entire ADT specification. Thus, we finally consider

the operation "search":

by Ax-3
by Error-5
by Error-6

by Ax-4

by Error-3
by Error-l5
by Error-16

by Ax-6

{ search(tab,index) ltab: new-table }: { E¿njo,*otio,-}

{ search(tab,index) | tab - Euu"} : {E¡nÍo,motionl¡
{ search(tab,index) lindex:Eind.", }: { Eiúo,^otio,}
{ search(tab,index) | tab / [new-table, E¿o6¿"] and

index # E¿n¿", index is in tab)
:{[xlx€information]]

{ search(tab,index) | tab / [new-table, E¿o6¡"] and
index # E¿n¿", and index is not in
tab) : {E¡'.Íormotion}

by Ax-6, Error-3

*{ search(tab,index) | for all possible values of tab and index }
{ [" I x € information) UErnÍo,^otion]

Thus, for each operation o €. O, there exists an expression u such that:

o(eu. ..,e,.):u

and u contains no operations on type Table. Hence, the ADT specification is suff-

iciently-complete.

2.4. Verifying the Specifrcation 47

2.4.3 An Alternative Approach

As an alternative to the approaches described in Sections 2.4.1 anð,2.4.2, a slightly

more informal method may be adopted, as is presented by Freidel [33]. Basicall¡ this

approach takes the two sets ^9 and O from Section 2.4.2 and examines them closely.

Freidel defines the set .9 to be the set of. constructors (i.e., those operations which result

in an object of the type of interest), and set O to be the set of. bansfer operators (those

operations that return values other than the type of interest). Transfer functions are

also referred to as selectors.

The abstract data type semantics define equiualence classes on the abstract data

type objects, as discussed in Section 2.2. Formall¡ proofs are generally carried out by

induction over cünonical forms of the abstract data type objects; these canonical forms

represent a selection of one member from each equivalence class. To simplify the ADT

verification, the canonical terms are usually selected so that they are composed of only

a subset of the constructors; these constructors are known as the basic constructors.

The set of constructors, ^9, for the ADT specification in Figurc 2.4 was given

in Section 2.4.2. By considering each of the elements of this set in turn, the basic

constructors can be deduced. Note that axiom Ax-7 indicates that an object that

contains the operator "alter" is equivalent to an object constructed without the oper-

ator "alter". Axiom Error-l indicates that the "alter" operation can be replaced by

"Erobt"" when applied to a ttnew-tablet'. This implies that "altert' is not a member

of the set of basic constructors. By application of the axioms Ax-5 and Error-2, it is

possible to delete the operator "remove" from the set of basic constructors. It is not

possible, however, to remove the operators ttnew-table" and ttinsert" and hence they

are the only basic constructors. The canonical form for any object is composed of one

2.4. Verifying the Specifrcation 48

ttnew-table" operation and zero or more "insert" operations. It now remains to analyze

the transfer functions O with respect to the canonical expressions and demonstrate

that the ADT is consistent and sufüciently-complete.

Induction over the set of canonical terms involves two cases for each operator: the

initial case and the general case. For the operator uempty", there is only one axiom,

Ax-l, that describes the initial case, and only axiom Ax-2 describing the general

case. Note that, with respect to canonical terms, axiom Ax-l refers only to the object

"new-table" and axiom Ax-2 refers to one or more applications of the operator "insert"

applied to a "new-table". Since "empty" returns only one value for each Table object,

the axioms in Figure 2.4 arc consistent and sufficiently-complete with respect to the

operator ttemptytt.

Next, consider the operator "member". Axiom Ax-3 describes the initial case and

axiom Ax-4 the general case. Since there is only one axiom to describe the initial case

and one to describe the general case, "member" can only return one value for each

object of type Table. Hence, the axioms are consistent and sufüciently-complete with

respect to the operator "member".

Axioms Ax-6 and Error-3 show that the "search" operator is defined for all Table

objects. Since only axiom Error-3 relates "search" to the initial case and only axiom

Ax-6 relates it to the general case, "search" returns only one value for each Table

object. Thus, the axioms are consistent and sufficiently-complete with respect to the

ttsearchtt operator.

2.5. The Use of Algebraic Specifrcation Techniques in this Thesis

2.5 The LJse of Algebraic Specification Techniques

in this Thesrs

This chapter has presented two mechanisms for the definition of ADT's within an

algebraic framework. The first, illustrated in Figure 2.1, is the simpler to read but

not as formal and precise as the second one illustrated by Figure 2.4; the increased

precision in the second relates particularly to handling of error terms. Both approaches

provide the necessary degree of formalism required by the model to be presented in

Chapter 3. For the purposes of this thesis, however, a choice has to be made. The

simpler ADT specification (Figure 2.1) is selected because it is the easier to read, hence

making the model developed in Chapter 3 easier to read and understand. Furthermore,

the notation used in the ADT description of Figure 2.1 is typical of that used in the

literature 144,48,52] and is widely known and understood. In addition, the approach

forms the basis for integrated environments, such as ASSPEGIQUE [10, IL,2I], which

support the development of large algebraic specifications through the PLUSS language.

Other algebraic specification tools exist, each offering a complete range of operators

for building specifications. These approaches all typically help in the development of

an abstract data type specification, but none generates a complete implementation

based on the description. These other specification techniques include CLEAR [18],

OBJS 145,741, Larch [54, 154] and OBSCURE [77, 78].

The information structure model for programming language semantics presented

in the next chapter uses ADT's to provide a formal basis upon which to build. This

differs from many other information structure models which formally define language

semantics in terms of manipulations on data structures, but rely on an informal

specification of these data structures. ADT's, however, suffer from certain limitations

49

2.5. The use of Algefuaic specifrcation.Techniques in this Thesis

which restrict the model to the description of sequential programming languages; in

particular, languages which involve concurrency need to employ a technique such as

shared data abstractions (SDA's), which are discussed in Chapter 5.

50

Chapter 3

Describing Sequential Languages

3.1- Introduction

By employing ADT's as the basis for an information structure model, a formal under-

pinning for an operational semantic model is provided. This allows the development of

a model of programming language semantics which covers both the static and dynamic

semantic aspects of the language which is both formal and accurate. Structuring the

model into layers allows varying amounts of information to be supplied, so that a

progression from an abstract definition of the programming language semantics to a

detailed description of the manipulations of the information structures is achieved. By

supplementing each layer with a natural language description describing those aspects

which are defined in deeper layers, it is then possible to provide a model that is useful

to several classes of reader. Compiler writers and language designers have the detailed

semantic information which they require by examining each layer of the model.

On the other hand, programmers will be able to examine the most abstract,

topmost layer of the model, which describes the precise behaviour of each aspect

of the language at a level of detail appropriate to the needs of programmers. Since

51

3.1. Inttoduction

each layer is accompanied by a natural language description of aspects defined more

precisely in layers deeper in the model, a programmer is able to combine the formal

definition with the informal description in order to answer simple queries regarding

language semantics. Although the natural language narrative accompanying a layer

is informal, and does not constitute part of the language definition, its presence is

essential to service the need of one group of user (the programmer), while the formal

definition is still useful to the compiler writer and the language designer. Ambiguities,

as always, may arise in any informal natural language description, but it is hoped that

by having the narrative do little more that verbalize the action of a formal aspect of

the model, the language designer is able to avoid many potential problems.

Any reader of a language definition must then either follow each of the layers to the

core of the model and hence gain a deep understanding of the programming language

based on an operational semantic model, or the reader must depart from the formal

definition and be content with the informal description of the formal definition. Such

a transition from the formal to the informal model is a conscious decision which must

be made by each user of the language definition. This transition will be desirable at

different points for different groups of user, and even for different people within these

groups. In essence, each reader may tailor the language definition to suit their needs.

A model developed in this way avoids many of the problems prevalent in current

language definition techniques which subsequently restrict their use to only one class

of user, as discussed in Chapter 1. By avoiding these difficulties, the model is able

to provide for the needs of diverse groups of readers, with diverse interests, and

provide them alt with a single language definition; this avoids the provision of an

official language definition coexisting with supposedly equivalent descriptions targeted

at different groups.

52

3.2. The Structure of the Multi Layered Model 53

Layer 3 Definition of Language Features

Layer 2 High Level Operations

Layer 1 Algebraic Specifications of ADT's

Outermost Layer

Middle Layer

Innermost Layer

Figure 3.1. Layering an operational semantic model'

3.2 The structure of the Multi Layered Model

The model described in this chapter has three layers which describe varying levels

of detail relating to the model; these layers are illustrated in Figure 3.1. The core,

or innermost layer, of the model is the layer which describes all the ADT's used

within the model and provides a precise description of the information structures.

This layer contains all the ADT specifications and ideally should be accompanied

by proofs of consistency and sufficient-completeness for each. This layer, although

large and seemingly complex, is almost completely reusable. If a different language

description is required, it is possible to reuse many of the ADT definitions used in

earlier models of other languages. As a result, there is little wastage of effort in this

layer. The notation used for the description of the ADT's is that developed in the

previous chapter.

The second layer, which builds on top of the first layer, contains a number of

shorthand notations for common ADT manipulations; these are known as high leael

operations. The introduction of this layer eliminates the need to repeat large sections

of common ADT manipulations and hence enhances readability.

The outermost layer of the model is the user interface. This layer employs the layers

beneath it to produce a description of how the semantics of the programming language

3.2. The Structute of the Multi Layeted Model

features currently being defined affect the information structures which are built up

by the layers beneath it, and it presents the most abstract view of the static and

dynamic semantics of the programming language to the reader. It is this layer, whose

accompanying natural language description of the lower layers, provides a panoramic

view of the programming language semantics. This layer will be of most use to

programmers wishing to gain an understanding of the language and most programmers

will need to go no further.

The natural language description which accompanies each layer does not constitute

a part of the language definition, but is simply a supplement to it. The formal language

definition consists of all of the layers collectively. The natural language description is

based on each of the layers within the model and if any ambiguities occur within the

informal description, or between the informal description and the formal description,

then the ambiguity can be resolved by examining the formal description. The natural

language narrative merely provides documentation which is easier for programmers to

digest; this is necessary to make the definition useful to all potential users.

Layer 1 of the model, the ADT specifications, has a firm mathematical background

and provides the solid foundation upon which the formal semantic model can be

developed. The other layers of the model maintain the formal nature of the model

by using constructs which themselves have formal definitions. The three constructs of

prime importance in Layers 2 and 3 of the model are:

o sequencrng,

r selection, and

54

o iteration.

3.2. The Structute oî the Multi Layercd Model bð

The model uses the sequencing operator ";t' to define an ordering on the execution

of actions. The sequence:

(Sr); (Sz);

simply means to evaluate action (Sr) first and, on its completion, evaluate the

action (Sz). The ";" operator is considered to be a basic operator within the

model and its formal definition can be found in [46, 112]; it is used as an action

terminator throughout this thesis, to indicate the end of each action.

Selection is achieved through the if-then and if-then-else constructs. The seman-

tics of such constructs has been defined axiomatically in [a9] and has the conventional

meaning; hence:

if <E) then <S> end if ;

involves the evaluation of the logical expression < E > whose truth value is then used

to determine whether the action sequence < S > is to be executed. (Note that the

actions in the action sequence <S> will be separated and terminated by ";".) A

version of the construct exists which allows a choice to be made between two action

sequences. This more general form is given as:

if <E) then (Sr) else (52> end if ;

In this form, the logical expression (E) is evaluated and if found to be true, the

action sequence (Sr) is executed and the action sequence (Sz) is ignored. If

the expression (E> evaluates to false, then the reverse occurs: the action sequence

(Sr) is ignored and the action sequence (Sz) is evaluated. The if-then construct

is clearly just a special case of the if-then-else construct.

Repetitive constructs can be introduced into the model and defined in terms of the

if,then-else construct, hence retaining the formal nature of the model. Two forms

3.2. The Structure ol the Multi Layered Model

while < E>
loop

<s>
end loop;

= if <E) then
<s>
while (E) loop

<s>
end loop;

end if ;

Figure 3.2. Repetition (while-loop) defined in terms of selection.

repeat
<s>

until <E) ;

: <s>
while <E> loop (S) end looP;

Figure 3.3. Repetition (repeat-untit) defined in terms of selection.

of indefinite repetition are introduced and defined in Figures 3.2 and 3.3. Figure 3.2

introduces the while loop, such that the boolean expression < E > is evaluated and,

if found to be true, the action sequence < S > is evaluated before re-evaluating the

expression. If the expression evaluates to false, then the action sequence following

the while loop is evaluated. The repeat loop introduced in Figure 3.3 works in a

similar fashion, but the condition is only evaluated after the action sequence has been

evaluated.

A final form of repetition is presented in the form of a for loop. Such a construct

evaluates for some fixed number of iterations and its form is shown in Figure 3.4.

The definition in the figure indicates that (variable) commences with the value

determined by (lower bound) and steps through each value in the range of specified

values in a monotonically increasing manner with a step size of one until the value

56

3.2. The Structure of the Multi Layercd Model Ðt

for (variable) in (lower bound> .. <
loop

<s>
end loop ;

- 4l variable) :: (lower bound);
while (variable> < <

<s>
(variable) :: (variable) * 1;

end loop ;

Figure 3.4. The form and definition of the for-loop.

associated with (variable) exceeds (upper bound >. If (upper bound > is

initially less than (lower bound), then the entire for construct has no effect.

Throughout the model, (lower bound) and (upper bound) are integer values.

Figure 3.4 introduces the notion of. uariable, which is simply a name to stand for

some value, and the notion of. assi,gnment ("2:"). These concepts are well-known and

their semantics here is as expected in any conventional programming language. Hence,

the statement:

(variable):: (variable> + 1;

takes the value associated with (variable) and increments it by one before asso-

ciating the new value with (variable). Formal definitions of this concept are well

covered in the literature using various techniques (e.g., see [112]).

Since each of these constructs has a formal mathematical basis, their use in an op-

erational semantic model preserves the formalism achieved through the use of abstract

data types. The net result is an information structure model of the semantics of a

programming language such that the model is formal in nature.

3.3. A Model of Data Contrcl 58

3.3 A Model of Data Control

As an example of an information structure model using the layered approach, a model

of the data control aspect of the programming language Pascal is presented. Data

control, following Pratt [116], is concerned with language features which govern access

to the data objects (such as variables) of a program. Pascal has several such language

features and these will be described in this section. These are the declaration of

local variables, scope rules, value parameters, variable parameters, functional and

procedural parameters, and the return of values from functions; for example, the

problem considered in Section I.2.I.2 stems from a question relating to data control in

Pascal. The information structure model to be presented in this section will precisely

describe each of the data control aspects of Pascal.

Very few semantic models have concentrated on, or even provided adequate descrip-

tions of, data control in programming languages. Exceptions include Johnston's Con-

tour Model [67], Smith's Accessing Graph Model [131], Reiss' ACORN project [118],

Molinari and Johnson's enhancment of Reiss' work [96] and Marlin's model of data

control [82, 83], later refined in [85]. The model developed in this chapter is based on

the informal model introduced in [82, 83]; the necessary formalism is introduced into

the model by the application of the techniques employed in [85], introducing abstract

data types to formally define the information structures manipulated.

As already seen, there are difficulties in producing compilers to implement the

demands of the language definition. The model developed here will not attempt to

alter the semantics of Pascal, but instead will attempt to match the description of

the Pascal definition [17] as best it can. Such an approach serves to highlight the

3.3. A Model of Data ContrcI

difficulties introduced into Pascal as a result of using natural language to define the

programming language semantics.

This model of the data control aspect of Pascal is an information structure model

[150], in which the manipulation of information structures is used to describe the

relevant features. The information structures are built up of abstract data types and

as such have a formal basis that can be shown to be consistent and sufficiently-complete

(recall Chapter 2). The use of abstract data types is also the key to the layering of

the description depicted earlier in Figure 3.1 and discussed in Section 3.2.

3.3.1 Embedding Semantics'Within a Syntactic Description

As already discussed in Chapter 1, the syntax of a language is readily and accurately

described in some form of BNF. As this notation is widely understood, the model

described mixes semantic definitions with a syntactic definition expressed using BNF

to provide a comprehensive language definition with regard to data control.

For example, it is possible to embed a description of the effect of scope rules into

the BNF syntactic definition of Pascal presented in [17]; a fragment of such a mixed

syntactic/semantic description is shown in Figure 3.5. In this figure, the invocation of

a semantic routine is shown in bold face, delimited by "ToTo". In the model, a semantic

routine performs some manipulations on the relevant information structures. In the

case of the semantic routine involved in Figure 3.5, the intention is to inherit all the

known entities from the nearest textually enclosing block that have not been redefined

within the current block.

One difficulty with the approach used in Figure 3.5 is that it may not be possible to

specify the semantics of language features using this approach if one-pass analysis of

the source text is assumed. An illustration of this difficulty in the context of Pascal is

59

3.3. A Model of Data Control 60

(program) : (program-headit g> ";" (program-block>
(procedure-and-function-declaration-part> :

{ (<procedure-declaration) | <function-declaration>) " ;" }
<procedure-declaration) :

(procedure-heading> ";" <directive)
| <procedure-identifi cation) ";' <procedure-block>

| <procedure-heading> ,.')' (procedure-block>
(function-declaration) : (function-heading> u ;" <directive>

| <function-identifi cation) " ;" <function-block>

| <function-heading> u:" <function-block>
<program-block> : <block>
(procedure-block> : <block>
(function-block> : <block>
<block> : <label-declaration-part)

(const ant-defi nition-Part)
(type-definition-Part >
< variable-declaration-Part)
(procedure- and-function-declaration-part >
%To scoPe-rules ToTo

(statement-Part)

Figure 3.õ. Enhancing syntax with semantics.

given in Figure 3.6. The reference to "P2" at line 6 (in the statement marked ..{#}')

should be regarded as invalid because the meaning of "P2" at the level of the block

for procedure "P" is supplied by the declaration at line 8; furthermore, the reference

to procedure "P2" at line 6 is invalid because the declaration occurs after the first

use. The correct semantics of Pascal's scope rules can only be captured a two-pass

description. The modified syntactic/semantic description is given in Figure 3.7, which

shows the changes which must be made to the description of "<block>" given earlier

in Figure 3.5.

The two semantic routines mentioned in Figure 3.7 have different purposes. The

semantic routine "Scope-Rules-Pass-1" is used to inherit all the known names at that

point from the nearest textually enclosing block. It simply takes those names that were

declared local to the parent block and inherits them as nonlocal entities, providing

3.3. A Model of Data Contrcl 61

1

2

3

4
b

6

7

program EXAMPLE;

var P2: integer;

procedure P;

procedure Pl;

procedure P2;
begin {P2}
end; {P2}

begin {P}
end; {P}

begin {EXAMPLE}
end. {EXAMPLE}

{begin

P
P2

{end

P1)
,:2 {#}
1)

8

9

10

11

T2

13

l4

Figure 3.6. A Pascal example.

<block> :%To Pass 2: Scope-Rules-Pass-2 %%

<label-declaration-part >
(const ant-definition-part)
(type- defi nition-Part >
< variable-declaration-part)
(procedure- and-function- declaration-part >
ToTo Pass 1: Scope-Rules-Pass'l To%

(statement-part)

Figure 3.7. Two-pass semantic description.

3.3. A Model of Data Control

that the name has not been redefined within the current block. Hence, in the first

pass, names are only inherited from the nearest textually enclosing block. In the

example in Figure 3.6, this would mean that at line 5, the name "P2" would not be

inherited as it is not yet declared in the nearest textually enclosing block ("P") and

names are not inherited from any other block in the first pass. However, by the time

that line 11 is reached in the first pass, procedure uP2" will be known to be local

to procedure ttP". The second pass makes use of information structures built during

the first pass and propagates nonlocal declarations into inner blocks. Consequently,

it is the responsibility of the semantic routine "Scope-Rules-Pass-2" to inherit into

each block all accessible names that were not declared local to the nearest textually

enclosing block.

There are many ways in which semantic issues such as scope rules can be handled

correctly; using a multi-pass technique, such as that described above, is just one. Its

use here highlights the advantages of a multi-pass model, as it makes descriptions

easier to write and describes the semantics in a clear fashion, so that all users and

implementors of the language are aware of the complexities and the nature of that

aspect of the language semantics.

3.3.2 Abstract Data Type Definitions - the Formal Founda-

tion

The first (innermost) layer in the model consists of abstract data type (ADT) spec-

ifications. This layer provides the necessary precise foundations for the model. The

ADT's are specified using an algebraic technique similar to that adopted by Guttag

et al. l5I,55], but making use of the initial algebra approach advocated by the ADJ

62

3.3. A Model of Data Control 63

group 14I,44], as discussed in Chapter 2. An example of an ADT specification typical

of the model is given in Figure 3.8; this specification defines a list data type. This

list specification is parameterized with respect to the sort of data stored within it,

as indicated by the parameter "item". The sorts clause in the specification lists all

the types used within the axiomatic definition. This example defines the data type

"List" and makes use of the sorts "item" and ttbooleantt. The syntax of the operations

defined for the ADT are specified next: the name of the operation is given followed

by the sorts of objects on which it operates, finally specifying the result type of the

operation.

The semantics of the operations are defined in the section labelled semantics of

Figure 3.8. This section, as previously discussed in Section 2.2, begins by declaring

variables to stand for arbitrary objects of the types specified. No assignments are made

to these variables - they are simply names which represent objects of the various types.

Finally, the axioms are given; these provide the meaning associated with the operations

of the ADT. Proofs of consistency and sufficient-completeness have been constructed

for the ADT specifications used in the model of data control; these specifications can

thus be regarded as a solid foundation on which to build the remainder of the model. A

further example is given in Figure 3.9; this describes a type, used latter in the model,

which describes links to table entries.

3.3.3 The Information Structures and Their Operations

As mentioned earlier, the model presented is an information structure model. In such

models, the semantics of language features are specified in terms of transformations on

information structures representing (aspects of) the state of a program in the language.

The transformations describing the semantics of data control features occur within the

3.3. A Model of Data Control

ADT List [item]
sorts List/item, boolean

comments
The operator "new-list" creates an object of sort List.
The operator "emptylist?" tests to see if a List object is equal to "newlist".
The operator "add-tolist" will insert an item into a List object at the tail of the

List object.
The operator "head-oflist" returns the item at the head of the List object.

The operator "tail-oflist" discards the item at head of List object and returns the

resultant List object.

64

syntax
new-list:
emptyJist?:
add-to-list:
head-of-list:
tail-of-list:

semantics
declare

a)(l()ms
(1)
(2)
(3)
(4)
(5)

List
List x object
List
List

+ List
boolean

-) List
-+ object l) {error]¡

List [J {error],

list-l: List
obj-1, obj-2: object

emptyJist?(newJist) : true
emptyJist?(add-to-list(list-l, obj-1)) : false

head-of-list(newJist) : ercor
head-of-list(add-toJist(newJist' obj-1)) : obj-1
head-of-list (add-to-list (add-to-list (list -1, ob j -1), ob j -2)) :

head-of-list (add-to-list (list-1, obj -1))
tail-of-list(newJist) : error
tail-of-list (add-to-list (new-list, obj -1)) : new-list
tail-of-list (add-to-list (add-to-list (list-l, obj -1), obj -2)) -

add-to-list (t ail-of-list (add-to-list (list -1, ob j -1))' ob j -2)

Figure 3.8. An abstract data type describing a FIFO list.

6

I

8

(
(

(

)

)
)

3.3. A Model of Data Control 65

ADT Link-Type [group,
item,
linkJcindl

sorts Link-Type/group, item, linkJcind

comments
This ADT describes a link between two objects. Links can only be followed in

one direction and are not visible from the other direction.
In the case of the data control model, the link points to an item within a group

of items, and so the name of the group and the item within that group must be

specified. A link of type "linkÌind" is then established, where "linklind" indicates

the access rights along that link; these access rights include RW (Read-\Mrite), RO

(Read-Only) and WO (Write-Only). The operations are:

o "new-link" creates a new Link-Type object.
o "link" sets up a link to point to the required item in a particular group of

items.
r ,,follow_group" returns the group of items to which the link points.

r "follow-item" returns the item within this group to which the link actually

points.
r "kind-oflink" indicates what kind of link it is.

syntax
new-link:
link:

semantics
declare

axloms
(1)

follow-group:
follow-item:
kind-of-link:

-) Link-Type
Link-Type x group x item x linkÌind

+ Link-Type
Link-Type Sroup l) {error}
Link-Type -) item [J {error}
Link-Type + linkÌind l) {ercor}

2

3

4

ô

6

(

(
(
(
(
(

)

)
)
)
)

link-l: Link-Type
group-l: group
item-l: item
kind-l: linkÌind

link(link-l, group-l, itemJ, kind-l) :
link(new-link, group-l, item-l, kind-l)

follow-group(new-link) : "rro,
follow-group(link(link-1, group-l, item-l, kind-l)) - group-l
follow-item(newJink) : error
follow-item(link(link-1, group-l, item-l, kind-l)) : item-l
kind-oflink(newJink) :

"rro,kind-oflink(link(link-1, group-l, item-l, kind-l)) - kind-l

Figure 3.9. The abstract data type Link-Type.

7)

3.3. A Model of Data Contrcl

third and final layer of the model. The role of the second layer is to specify the nature

of the information structure and to provide some high-level primitives in terms of

which the transformations can be formulated; both the information structure and the

high-level primitives are defined using the ADT's specified in the first layer.

Before discussing the information structure required for the description of data

control in Pascal, there is another important data structure which must be introduced.

This data structure, known as the static enuironmenú, represents the static aspects of

a Pascal program, recording the names of identifiers and associated attributes for each

block; this data structure corresponds to what is normally called Lhe syrnbol table in a

compiler.

Even though Pascal does not allow the user to overload identifiers, the language

itself does precisely this in the case of functions. For each function defined in a

Pascal program, there is a corresponding function pseudo-variable with the same name.

As a result of this inconsistency, it is necessary to represent the symbol table as a

table, indexed by identifier name and where each element is a secondary table. This

secondary table is indexed by the kind of the object (e.g., variable, function, function

pseudo-variable, etc.) and stores the attributes associated with the object that has

that name and that kind. This complicates the discussion of Pascal considerablS

but highlights a conceptual difficulty encountered by someone learning and using the

language Pascal.

The table representing the symbol table is itself a member of a structure called

symbol-table-info; there is one such data structures for each block in the program

and, apart from the symbol table, it also records the name of the block and other

information. As explained in the previous section, it is necessary for the model

presented here to operate in a multi-pass fashion in order to be able to correctly

66

3.3. A Model of Data Control 67

capture the semantics of data control in Pascal. Thus, it is necessary to build a

symbol-tablejnfo object as each block is encountered and store the results in some

manner, so that the information is available in subsequent passes. Figure 3.10(a)

shows a Pascal program containing a number of nested procedures; Figure 3.10(b)

provides a pictorial representation of the corresponding static environment. The box

labelled uA' at the top of the diagram in Figure 3.10(b) corresponds to the program

,,4" of Figure 3.10(a). Nested within the program nAn are the procedures "8" and

,,þ,"; this is illustrated in the diagram by having boxes labelled "8" and "8" at the

next level. Procedure ttB" occurs textually before procedure "E" in the code and as a

result is callable from procedure ttE", whilst procedure t'8" is unaware of the presence

of procedure "E"; this is reflected in the diagram by having box representing procedure

"8" to the left of the box representing procedure "E". Similarly, procedures ttC" and

"D" are nested within procedure "8" and this is reflected diagrammatically by placing

boxes representing these procedures at the next level of the diagram. Since procedures

ttCtt and ttD" are local to procedure "B", they are linked to procedure ttB" in the

diagram. Procedure ttE" has no nested procedures, and as such there are no boxes

extending from the box representing procedure "E" in Figure 3.10(b). Because of the

nature of scoping in Pascal (which is oriented towards one-pass compilation), the tree

representation used emphasizes the ordering of siblings at a particular block level' It

is this tree structure which is known as the static environment, and each node is said

to be of type static-information.

T[e information structure used in the description of the semantics of data control

in Pascal represents the data control aspects of an executing Pascal program and is

called lhe dynamic enuironment. It is much simpler than the data structure used in

the static environment, as it consists simply of a list of instances called actiuation

3.3. A Model of Dah Conttol 68

program A;

procedure B;

procedure C;
begin {C}
end; {C}

procedure D;
begin {D}
end; {D}

begin {B}
end; {B}

procedure E;
begin {E}
end; {E}

begin {A}
end. {A}

(u) (b)

Figure 3.10. A Pascal program and its static environment.

instances. Each instance records the information necessary to identify the block to

which it corresponds and a symbol table object. When an instance of any block is

created as a result of the semantics of an appropriate language feature, the contents

of the symbol table object for the instance are initially an exact copy of the contents

of the corresponding symbol table information object stored in the static environment

for that block. As other language features are encountered, the contents of the symbol

table in the instance may change.

In Pascal, some of the names accessible to a block instance do not correspond to

objects introduced by that instance, but rather they stand for objects belonging to

other instances. An example of this is the way in which formal variable parameters

stand for the actual parameter variables with which they are associated; another

E

3.3. A Model oî Data Control 69

example occurs when access to an object is inherited via the scope rules. Such

names are described by non-ilefining objects in the model. On the other hand, names

standing for objects introduced by the particular instance concerned are described in

the model by defining objects. All non-defining objects are linked to some defining

object throughout the former's lifetime. Some of these links are established in the

static environment, as it is known then which objects they stand for; this is the case

for objects that are inherited into a block via scope rules. For other non-defining

objects, such as those for variable parameters, the links must be established in the

dynamic environment. Various types of links are used, depending on the kind of

access implied by the relationship between the non-defining object and the defining

object. Two access rights to objects in a Pascal program can be distinguished: read

(R) and write (W). The four subsets of these rights, namely:

RW: {R,W} RO : {R} WO : {W} NA : { }

are all useful in describing the kind of access which applies to a particular object in a

particular block, and in describing the kind of access permitted by a link. These links

correspond to the ADT Link-Type given previously in Figure 3.9.

Figure 3.11(b) shows the dynamic environment during the execution of the pro-

gram in Figure 3.11(a), at the point corresponding to the line marked "{#}" it

Figure 3.11(a). Each of the instances contains a symbol table listing all entities known

to each block (predefined names being omitted from the figure for clarity). Symbol

table entries labelled with "*" represent defining objects. Note that links emanate from

all non-defining entries and lead to a defining entry in each case. The links depicted

in Figure 3.11(b) show that, in this case, RW access is propagated for variables and

RO access is propagated for procedures.

3.3. A Model oî Data Control

program A;
A

var
i, j: integer;

procedure B;
var

i: integer;
procedure C;

var
k: integer;

begin {C}
{#}

end; {C}
begin {B}

C;
end; {B}

begin {A}
end. {A}

B

RW link
RO link

(u) (b)

Figure 3.11. The dynamic environment for a Pascal program.

3.3.4 High Level OPerations

As mentioned earlier, the second layer of the data control model includes some high-

Ieuel operations (HLO's), which are used in the specification of the transformations

in the third layer. The HLO's hide much of the detailed manipulation of the ADT's

introduced in the first layer from the view of a reader of the third layer; the result is

much shorter semantic descriptions of the data control aspect of Pascal than would

otherwise have been attained, but without any loss of precision overall. By providing

some natural language narrative with each HLO, the majority of the users of a speci-

fication will not need to examine the ADT specifications in detail. The formal model

should constitute the definition of the programming language under consideration, and

the natural language commentary should be regarded as an aid, nothing more.

70

3.3. A Model of Dah Contrcl 7I

memb er-of-symb ol-table (a: static-information ;

s: string) :
memberof-table(current-block(returnìnfo("))' t) ;

Figure 3.L2. The high-level operation member-of-symbol-table.

The routines presented in the second and third layers of the model make use of

several control constructs, such as selection and repetitive constructs. Each of these

constructs should be defined formally in order to retain the degree of formality obtained

so far. The if-then-else construct can be defined axiomatically [a9]; this then allows

a formal definition of the repeat-until, while-do and for constructs in terms of the

if-then-else construct, as shown in Section 3.2. In order to use a for loop construct

effectively over arbitrary ADT's, it is necessary to introduce an operation to return

the size of a data structure, and a mechanism whereby each element within the ADT

can be accessed by its position within the data structure. This can be clearly seen in

the examples to be presented in Section 3.3.5. The notation used for these constructs

within the model draws on the notation and semantics of the corresponding constructs

in the Ada programming language [141].

A data control model for a realistic language, such as Pascal, uses a great many

higher level operations. As a result, only a limited number can be presented here.

Section 3.3.5 uses the HLO's explained below in several places and consequently they

have been selected as illustrations.

The first of the HLO's we will consider is member-of-symbol-table, defined in

Figure 3.12. This HLO takes two parameters, the first ("a") is an object of type

staticjnformation, introduced in Section 3.3.3, and the second parameter ("s") is

a string representing the identifier about which the enquiry is being made. This

HLO returns a boolean result, reflecting whether the string corresponds to one of

3.3. A Model of Data Control

the entries in the symbol table. From Figure 3.12, it can be seen that several ADT

operations are used in the definition of the HLO. The operation "returnjnfo" is applied

to the parameter "a" to yield an object of type symbol-tablejnfo. The operation

,,current-block" is then applied to this object, giving a table object, namely the symbol

table. Application of the operation "member-of-table", which takes a table and a string

(the key in this case) and returns a boolean value, completes the HLO. Even from this

simple example, it can be seen that the introduction of HLO's into the description can

produce a more readable document than would otherwise be obtained.

add-new-info (t : static jnformation ;

s: string;
k: kind;
a: attribute-tYPe) -

if not(member-of-symbol-table(t, s))
then

defi ne jnfo(t, defi ne-current -block (returninfo(t),
insertjnto-table(current-block(returnjnfo(t)), t,
insert jnto-table(new-block, k'

")))) ;

else
defi nejnfo(t, define-current-block(returnjnfo(t),

alter-table(current-block(return-info(t)), s,

insert jnto-t able (associated-attributes (

current-block(returnjnfo(t)), s), k, u))));
end if;

Figure 3.13. The high-level operation add-new-info.

Another HLO used in the model is add-new-info, given in Figure 3.13. This HLO

is used to add new information into the symbol table. It takes four parameters: "t" of

type staticjnformatiorì., "s" of type string (representing the identifier to be inserted),

"k" representing the kind ofobject to be inserted, and "4" for the attributes associated

with an object of this name and kind. Since Pascal overloads function names in the

manner described earlier, the model is more complex than it would be for a language

72

3.3. A Model of Data ContrcI

such as Modula-2 which uses a return statement. Consequently, the HLO must first

ascertain if the identifier "s" is already present in the symbol table utu. If it is not,

then it is inserted with relative ease. However, if it is already in the symbol table,

then the secondary table associated with the identifier in the symbol table must be

altered to take the additional information; this is the case for overloaded identifiers.

3.3.5 The Semantic Descriptions

The third and final layer of the data control model describes the semantics of the

relevant features of the language concerned (Pascal, in this case). The data control

aspect of Pascal covers local declarations, scope rules, value parameters, variable

parameters, and procedure and function names passed as parameters.

3.3.5.1 Local Declarations

During the first pass of the description of Pascal, the analysis of declarations causes

identifiers to be stored in a list until sufficient information is known about them to

insert them into the symbol table associated with the current block. For example, by

the time the semicolon is reached in the declaration "var i, j, k: integer;", it is known

that the identifiers being declared are "i", "j" and "k", they are all variables (their

kind) and are of type integer. It simply remains to insert the information into the

symbol table. Inserting information into the symbol table means that we must know

all of the attributes associated with that identifier, or at least as much as is possible

at that point. In the case of forward declarations of procedures and functions, the

information is recorded in the symbol table and the attribute "forward" is set. Later,

when the declaration is completed, the attributes associated with the identifier can be

updated. This approach also allows error handling facilities to examine each symbol

73

3.3. A Model of Data Contrcl

table at the end of the declaration sections within each current block and ensure there

are no outstanding forward declarations.

As the object is declared, its name, kind and type are easily obtained. All names

introduced in a local declaration are of course *local" to the block in which they are

declared. However, depending on the kind of object, a defining or a non-defining

entry may be used. In fact, all objects except variable parameters, and functional and

procedural parameters are declared as defining entities. These forms of parameters

are exceptions because the name is not associated with a storage location or the point

of definition of the relevant object; they are simply alternative names for objects

declared elsewhere. Objects may also have difierent access rights defined for them,

and this property is again related to the kind of the object concerned. Functions,

procedures, as well as functional and procedural parameters, are defined as having RO

access; variables, value parameters and variable parameters are defined as having RW

access (as their values may be read as well as altered within the block in which they

are defined).

The semantic routine shown in Figure 3.14 handles local declarations in Pascal. It is

parameterized with respect to the name of the identifier being declared, its type, kind,

definition, access rights and a flag to indicate if the object is being declared forward

or not. The routine begins by checking if the identifier "s" is known to the symbol

table for the current block. If not, then an attribute record is defined that records all

the necessary information for an identifier: name, type, kind, access rights, whether it

was declared local or nonlocal, whether it is a defining or non-defining entry, perhaps

a link field indicating another entity to which it is linked, and a flag indicating if it is

a forward declaration. The current block, "this-block", can then be updated. If the

identifier was already present in the symbol table, then it may be a forward declaration

74

3.3. A Model of Data ContrcI

Local-Declaration(s: string;
t: type;
k: kind;
d: deûnition;
a: accessJights;
forward: boolean) -

-- Check to see if this identifier is already known in this block.

if not (member-of-symbol-table(this-block, s))

then
-- As it has not already been declared, it may be added

-- to the symbol table for this block.
attributes e define-attributes(s, t, k, a,local, d, newJink, forward);

-- update the static data structure.
add-newjnfo(this-block, s, k, attributes);

else
-- Gain access to the symbol table object.
t ab jnfo e get jnfo-viajdent -from-sym-t ab (t his -blo ck, s) ;

if member-ofìnfo-tab(t ab jnfo, k)
then

-- Handle completion of forward declarations.

if and(declared-forward(get-attributes(tab jnfo, k)),
not(forward))

then
attributes e define-attributes(s, t, k, a, local, d, newJink, forward);

-- Ensure attributes of forward declaration match current declaration.

if mat ch-attributes(attributes, get-attributes(t ab jnfo, k))
then

-- update the static data structure
alterjnfo(this-block, s, k, attributes);

else
Error("Attributes do not match.");

end if;
else

Error("Error in forward declaration.");
end if;

else
Error("Identifier previously declared to be of a different kind.");

end if;
end if;

75

Figure 3.14. Local declarations

3.3. A Model of Data Control 76

that is being completed. This is checked by retrieving the attributes associated with

the identifier. Since overloading of identifiers is not generally allowed in Pascal, then

the table of information associated with the identifier must contain only a single entry.

If this entry represents an identifier which had been declared forward earlier, then the

associated attributes are updated, otherwise an error message may be issued.

3.3.5.2 Scope Rules

Perhaps the most obvious data control aspect in a block structured language such as

Pascal is that of scope rules. As explained earlier, a two-pass model is required to

adequately describe the semantics of Pascal's particular form of implicit scope rules.

Consequently, the definition of the scope rules of Pascal is divided into the two stages

depicted in Figures 3.15 and 3.16. The first pass, depicted in Figure 3.15, inherits all

entities that were declared local to the parent block and not redefined in the current

block and the second pass, shown in Figure 3.16, inherits all the nonlocal entities that

have been inherited into the parent block, again provided that they were not redefined

in the current block.

The transformation Scope-Rules-Pass-1, given in Figure 3.15, commences by

locating the parent block in the static environment. If it has a non-empty symbol

table, then each identifier in this symbol table is considered in turn. If the identifier

currently being considered is not a member of the symbol table for the current block,

then it may be inherited into the current block's symbol table after it has been modified

to represent a nonlocal, non-defining entity as far as the current block is concerned.

The link field is also modified so that it points to the object that is being inherited

from the parent block.

3.3. A Model of Data Control

Scope-Rules-Pass-1 =

-- Find the nearest textually enclosing block; this is called the parent block.

locate-parent;
if not(empty-symbol-table?(parent))
then

-- For every object in the symbol table.
for i in 1 .. size-of-symbol-table(parent)
loop

-- Iterate through the symbol table of the parent block.

-- Get the identifier.
identifier e get jdent-from-sym-tab(parent, i) ;
if not(member-of-symbol-table(this-block, identifier))
then

-- If the identifier is unknown to this-block, then it may be inherited.

tabjnfo e getinfo-from-sym-tab(parent, i);

-- Must cycle through secondary attribute table associated with

-- each identifier of the symbol table.
for j in 1 .. size-ofinfo-table(tabjnfo)
loop

-- Set up the attributes, etc., properly.

at t ributes e get -at tributes-from jnfo-t able (t ab jnfo, j
) ;

kind +-- get Jrind-fromjnfo-table(tabjnfo, j
) ;

link e link-to(parent, identifier, kind, access-rights(attributes)) ;

-- Specify that it is a nonlocal and non-defining entity.
attributes e- alter-attributes(attributes, link, nonlocal, non-defining) ;

-- Modify this block to include the newly inherited object.

add-new jnfo(this-block, identifier, kind, attributes) ;

end loop;
else

-- The identifier is known to this-block; this is acceptable only under

-- certain conditions, such as for function pseudo-variables.

-- Gain access to both symbol tables.

tabjnfo e getjnfo-viajdent-from-sym-tab(parent, identifier) ;

t ab jnfo_2 e get jnfo-viajdent -from-sym-t ab (t his -block, identifi er) ;

-- If both tables are the same size (i.e., 1), then they do not represent

-- overloaded identifiers.

Figure 3.15. Scope rules för Pascal - the first pass.

77

3.3. A Model of Data Control 78

if and(equal(size-of-info-t able(t ab jnfo), 1),
equal(size-ofi nfo-table(t ab jnfo-2), 1))

then
-- If the identifier represents a function defined in the parent

-- block, and a function pseudo-variable defined in the current

-- block, then we may inherit the overloaded identifier.
if and (and(equal(get J<ind-from jnfo-t able(t ab jnfo, 1), function),

defining-entry?(get-attributee-fromjnfo-table(tabjnfo' t))),
and(equal(getJ<ind-fromjnfo-table(tabjnfo-2, 1),

function-pseudo-va,riable),
defining-entry? (get:,ttributeslromjnfo-table(tabjnfo-2, 1))))

then
-- Prepare the information to be inherited.
attributes e get -attributes-from jnfo-t able(t ab jnfo, 1) ;

kind - getJ<ind-fromjnfo-table(tabjnfo, 1);

-- Establish a RO link.
link e- link-to(parent, identifier, kind, RO);

-- Object inherited as a nonlocal, non-defining entity.
attributes e alter-attributes(attributes, link, nonlocal, non-defining) ;

-- Modify this-block to include the newly inherited object'
add:rew jnfo(this-block, identifi er, kind, attributes) ;

end if;
end if;

end if;
end loop;

end if;

Figure 3.15. Continued.

If the identifier under consideration is already known to the current block (referred

to as "this-block" in Figure 3.15), then it may only be inherited if the identifier rep-

resents a function pseudo-variable in the current block, whilst representing a defining

entry for a function in the parent block. This is only possible if both the tables

associated with the identifier in parent and this-block contain only a single entry. If

this is so, then the attributes are modified and the link established. Otherwise, no

action is taken; the identifier is simply not inherited.

Scope-Rules-Pass-2, shown in Figure 3.16, locates the parent block and considers

each identifier in its symbol table in turn. If the identifier is unknown to the current

3.3. A Model of Data Contrcl

Scope-Rules-Pass-2 =

-- Find the nearest textually enclosing block; this is called the parent block.

locate-parent;
if not(empty-symbol-table?(parent))
then

-- Iterate through the symbol table of the pa,rent block.

for i in 1 .. size-of-symbol-table(parent)
loop

-- Get an identifier.
identifier +- get jdent-from-sym-tab(parent, i) ;

-- Gain access to the attribute table associated with the identifier.
tabjnfo e get-info-from-sym-tab(parent, i);
if not(member-of-symbol-table(this-block, identifier))
then

-- If the identifier is unknown to this-block then it may be inherited.

-- Iterate over the attribute table.
for j in 1 .. size-ofinfo-table(tabjnfo)
loop

attribut es <- get -a,t t ributes -from jnfo-t able (t ab jnfo, j
) ;

-- It can be inherited only if it is declared nonlocal to the parent

-- block. That is to say that it was inheritied by the parent block

-- in the initial pass.

if not (locally-declared(attributes))
then

-- Modify this block to include the newly inherited object.

add-newjnfo(this-block, identifier,
get J<ind-from jnfo-t able(t ab jnfo, j), at tributes) ;

end it
end loop;

else

-- The identifier was known to this-block; this is acceptable only under

-- certain conditions, i.e., for functions and function pseudo-variables.

-- Get the attribute table associated with the identifier.
t ab jnfo-2 <- get jnfo-via jdent -from-sym-t ab (this -block, identifi er) ;

Figure 3.16. Scope rules for Pascal - the second pass.

79

3.3. A Model of Data Control 80

-- If the size of the table is 1 (i.e., not overloaded)

if equal(size-ofi nfo-table(t abinfo-2)' 1)
then

-- If it defines a nonlocal function pseudo-variable in this-block.

if and (equal(get Jtind-from jnfo-t able(t abìnfo-2, I),
function-pseudo-variable),

not (locally-declared? (
get-attributes-fromjnfo-table(tabjnfo-2, 1))))

then
-- If it defines a nonlocal function in the parent block.

if and(member-ofi nfo-t able(t ab jnfo, function),
not (locally-declared ? (

get -at t ribut es-from jnfo-t able(t ab -info, 1))))
then

-- Modify this-block to include the newly inherited object

-- without alteration.
add-new jnfo(this-block, identifi er,

get J<ind-from jnfo-t able(t ab jnfo, 1),
get-attributes-fromjnfo-table(tab jnfo' 1))

end if;
end if;

end if;
end if;

end loop;
end if;

Figure 3.16. Continued.

block and is a nonlocal entity in the parent block, then it is inherited. In this case,

the attributes do not need to be altered. If the identifier is known to this-block as a

function pseudo-variable inherited as a result of Scope-Rules-Pass-1, and the identifier

represents a nonlocal function in the parent block, then it can also be inherited.

3.3.õ.3 Parameters

Pascal supports three distinct kinds of parameter transmission. These are variable,

value, and functional and procedural parameters; the last two of these are sufficiently

similar that they can be discussed together. The reader is referred to Figures 3.17,

3.3. A Model of Data ContrcI

Variable-Parameters(inst: activation-instance;
attrib: attribute-type;
act-param: actunl.param-info) =

-- If the actual parameter is an identifier.
if represent jdentifi er? (act-param)
then

-- Get the parent activation instance.
parent-activation e get-parent(inst);

-- Gain access to the attribute table associated with the identifier.
tabjnfo <- getjnfo-tab-from-activation(parent-activation,

return-name(act -param)) ;

-- If the attribute table size is 1, i.e., no overloading.
if equat(size-ofi nfo-t ab(tab jnfo)' 1)
then

attributes e get -attributes-fromjnfo-table(t ab jnfo, 1) ;

kind <- getJrind-i(tabjnfo, 1);

-- If the kind of actual parameter is a variable, value-parameter

- - or variable-parameter.
if or(or(equat(kind, variable-parameter),

equal(kind, value-parameter)),
equal(kind, variable))

then
-- If it represents a defining entry.
if defi ning-entry? (attributes)
then

-- If it is RW accessible.

if read-write-accessible(attributes)
then

-- Establish a RW link.
link - link-dynamic(parent-activation,

return-name(act-param), kind, RW);
attrib e alter-attributes(attrib, link, local, non-defining) ;

-- Update the activation instance'
update-activation(inst, attrib) ;

else
Error("Violates principle of non-increasing privilege.") ;

end if;

81

Figure 3.L7. Variable parameters

3.3. A Model of Data Control

else

-- Make a link to the defining entry that the actual

-- parameter is linked to.

-- Ensure that the actual parameter is read-writeable.
if and(read-write-accessible(attributes),

read-write-accessible(returnJink(attributes)))
then

-- Establish link
link e returnlink(attributes);
attrib e- alter-attributes(attrib, link, local, non-defining) ;

-- Update the activation instance.

up date-activation(inst, attrib) ;

else
Error("Cannot violate principle of non-increasing privilege.") ;

end if;
end if;

else
Error("Actual parameter is of an inappropriate kind.");

end if;
else

Error(,,Variable formal parameter is incompatible with a function
or function pseudo variable.");

end if;
else

Error("Actual parameter is expected to be an identifier.");
end if;

Figure 3.17. Continued.

3.18 and 3.19 for the definitions of the relevant semantic routines; these definitions

highlight the essential differences between the transmission modes.

Each routine takes three parameters - an activation instance representing the

executing routine in which the formal parameters reside, the attributes of the formal

parameter being considered at present and the matching actual parameter. The

principal difference between the handling of parameters and the semantics of scope

rules and local declarations is that parameters deal with the dynamic (or run-time)

environment, as the formal parameter (which was handled initially by the routine for

82

3.3. A Model of Data Conttol

Value-Parameters(inst : act ivat ion-instance;
attrib: attribute-type;
act-param: actual-param-info) =

-- If the actual parameter is an identifier.
if representidentifi er? (act-param)
then

-- Gain access to the parent activation insta,nce (i.e., the caller).

parent-activation +- get-parent(inst);

-- Gain access to the relevant attribute table.
t ab jnfo + get jnfo-t ab -from-activation(parent -activation,

return-name(act-param)) ;

-- If the size of the attribute table is 1, i.e., no overloading.

if equal(size-off nfo-tab (t ab jnfo), 1)
then

-- Gain access to the attributes.
attributes e get -attributes-from jnfo-t able(tab jnfo, 1) ;

kind +- getJ<ind-i(tabjnfo, 1);

-- Actual parameter must be a variable, value-parameter or

-- variable parameter.
if or(or(equal(kind, variable-parameter),

equal(kind, value-Parameter)),
equal(kind, variable))

then
-- If it is a defining entrY.
if defi ning-entry? (attributes)
then

-- If it is read-only or read-writeable.
if or(read-write-accessible(attributes),

read-only-accessible(attributes))
then

-- Establish a RO link.
link<- link-dynamic(parent-activation, return-name(act-param),

kind, RO);
attrib <- alter-attributes(attrib, link, local, defi ning) ;

-- Update the activation instance.
update-activation(inst, attrib) ;

else
Error("Violates principle of non-increasing privilege.") ;

end if;

83

Figure 3.18. Value parameters.

3.3. A Model of Data Control

else

-- Make a link to the defining entry to which the actual parameter

-- is linked. Ensure object is RW or RO accessable.

if and (or (read-write-accessible(attributes),
read-only-accessible(attributes)),

or(read-write-accessible(returnJink (attributes)),
read-only-accessible(returnlink(attributes))))

then
Establish link. '

link e return-link(attributes) ;

attrib <- alter-attributes(attrib, link, local, defining);
update-activation(inst, attrib) ;

else
Error("Cannot violate principle of non-increasing privilege.");

end if;
end if;

else
Error("Actual parameter is of an inappropriate kind.");

end ifi
else

Error("Actual parameter may not be a function or
function pseudo-variable.") ;

end if;
else

-- Actual parameter was a value, so its value can be stored.

attrib e store(attrib, value-of(act-paru-)) ;

update-activation(inst, attrib) ;

end if;

Figure 3.18. Continued.

84

3.3. A Model of Data ContrcI

Proc-.A,nd-Func-Parameters(inst : actir¡ation-instance;
attrib: attribute-tyPe;
act-param: actual-Param-info) =

-- If the actual parameter is an identifier.
if represent jdentifi er? (act -param)
then

-- Get the activation instance of the calling block.
parent-activation e get-parent(inst);
t ab jnfo e get info-t ab-from-activation(parent -activation,

return-name(act -param)) ;

-- Check that the identifier represents a function or a procedure

-- in the calling block.
if member-ofi nfo-table(t ab jnfo, function)
then

kind <- function;
else

if member-ofi nfo-table(tab jnfo, procedure)
then

kind e procedure;

end if;
end if;
-- Get the attributes associated with the identifier.
attributes e- get-attributes-via-kind-fromjnfo-table(tabjnfo, kind);

- - Check that the actual and formal procedural or functional

-- parameters are compatible.
if match-paramjnfo(attrib, attributes)
then

-- Ensure it is a defining entrY.

if defi ning-entry? (attributes)
then

-- Ensure it is Read-Only accessible.

if read-only-accessible(attributes)
then

-- Establish the link.
link .- link-dynamic(parent-activation,

return-name(act-param), kind, RO));
attrib e alter-attributes(attrib, link, local, non- defi ning) ;

update-activation(inst, attrib) ;

else
Error("Violates principle of non-incteasing privilege.") ;

end if;

85

Figure 3.19. Procedural and functional parameters.

3.3. A Model of Data ContrcI 86

else

-- Make a link to the defining entry that the actual parameter

-- is linked to. Ensure it is RO accessable.

if and(read-only-accessible(attributes),
read-only-accessible(returnJink(attributes)))

then
-- Establish the link.
link - returnlink(attributes);
attrib e alter-attributes(attrib, link, local, non-defining) ;

update-activation(inst, attrib) ;

else
Error("Cannot violate principle of non-increasing privilege'") ;

end if;
end if;

else
Error("Actual and formal parameters are not compatible.");

end if;
else

Error("Actual parameter is expected to be an identifier.");
end if;

Figure 3.19. Continued.

local declarations) can be linked to several, possibly different, actual parameters over

the lifetime of the program.

Parameters, described in Figures 3.17, 3.18 and 3.19, are handled by first identifying

the transmission mode of the actual parameter. This determines the course of action

to be taken. If it is appropriate, the calling activation instance containing the actual

parameter is then located. Next, the actual parameter is retrieved and checked to

ensure that it is of the appropriate kind. If it represents a defining entry and the

actual parameter is a RW object in the parent activation instance, then the formal

parameter is linked to the actual parameter. If the actual parameter in the parent

activation instance is a non-defining entry, then the link leaving this is followed and

the formal parameter is linked to the resulting defining entry.

The descriptions in these figures each issue error messages indicating that the

"principle of non-increasing privilege" has been violated if an attempt is made to gain

3.4. Observations 87

access to an object through a parameter in such a way that the called procedure or

function has greater access to the object than the original calling block. This principle

was described in [72] and the term was coined in [83]. It is a principle which Pascal

adheres to, in that a block cannot have read-only access to an object and then invoke a

procedure or function and allow the newly activated routine to have read-write access

to the object.

3.4 Observations

The most common way of defining the semantics of a programming language is that

of a natural language description. As is well known, this approach suffers from

many problems - ambiguities, omitted details, poorly defined aspects of the language

concerned, and so on. In order to reduce the risk and severity of these difficulties,

natural language descriptions have become more precise (at the cost of readability),

but even this has not solved the problem completely.

The operational semantic model produced by the multi-layer technique described

above is simpler to understand and read than, say, the semantic description of Pascal

in terms of attribute grammars given by Kastens eú ø/. [68]. An operational model

is also capable of describing both the static and dynamic semantics of a language,

whilst attribute grammars tend to perform well in a description of the static semantics

only. At present, the British Standards Institute is attempting to define the semantics

of Modula-2 using VDM [13]; however, VDM is itself currently being standardized

and will suffer the problems typical of any programming language standard. Axioms

used in an axiomatic approach do not suffer any such problem, as they have a firm

mathematical foundation.

3.4. Observations 88

The use of ADT's in the description of the data structures used in the model

lead to the development of a layered model that caters for programmers, compiler

writers and language designers. Even though each group requires a different depth of

understanding of the language, it is now possible to produce one document to satisfy

all of these groups, rather than having to write several documents, each aimed at a

different group.

A novel approach to the use of algebraic techniques in the definition of a program-

ming language has been demonstrated. These algebraic techniques provide the degree

of formalism necessary to establish a suitable base from which to build a precise model.

Chapter 4

A Tool for Language Definition and

Interpreter Synthesis

4.L Introduction

The previous chapter introduced an operational semantic model for the definition of

aspects of the semantics of programming languages; this model was illustrated by

using it to describe data control in the Pascal programming language. This exercise

served to highlight those aspects of the semantics of Pascal which are awkward to

describe and that are difficult for users of the language to learn and grasp; these

aspects include function value return versus function call, scope rules, and the various

parameter transmission modes. The model clearly demonstrates the difficulties in the

semantics of these features and this suggests that such a model is a suitable vehicle

for the definition of programming languages and a useful tool to aid in their design.

These claims are not new; they are in fact applicable to most formal techniques.

However, as discussed in Section 1.2, none of the existing formalisms have overwhelm-

ing support across the entire computer science community. There are many reasons for

89

4.1. Introduction

this, but one contributing factor is the inability to generate an implementation from

the definition of a programming language using many of these techniques. Efforts

are currently underway to rectify this for formal techniques such as denotational

semantics [73, 146] and attribute grammars [31, 68, 75, 140], as well as through tools

such as that provided by the Amsterdam Compiler Kit [69, 70, 133, 136, 137, 142].

It is important that language designers be encouraged to formally define new

programming languages from the outset rather than employing the common practice

of informally specifying the language, implementing various compilers (with slightly

different behaviour with regard to semantics) and waiting for the language to gain

wide acceptance and usage before attempting a formal definition. This course of

action has been observed time and time again with the development of languages such

as Pascal [65, 155], C [71] and Modula-2 [156' 157].

The U.S. Department of Defense addressed this issue by demanding a complete

language definition for Ada [141] before any compilers were built. This ensured (with

the help of a validation suite) that the compilers which were eventually produced

behaved in a reasonably similar manner to each other (although they have still suffered

from inconsistencies). The difficulty of this approach has been that no implementation

could be generated directly from the definition, and hence there has been no reference

implementation against which to compare the results of a hand-crafted compiler. Along

with the fact that a potentially ambiguous description exists (see Chapter 5), and that

compilers are validated empirically, it is interesting to notice that the production of

the definition prior to the production of a compiler has resulted in a more uniform col-

lection of compilers than has been achieved for many earlier programming languages.

This is a clear indication that there is merit in providing a rigid definition before an

implementation is produced.

90

4.1. Introduction 91

Language designers require some incentive to produce a formal definition of a new

programming language. It is all too easy to follow the traditional path and merely

generate an informal description, allowing future implementors to guess, or assume'

intentions which are not apparent in the description. This incentive may take many

forms, one of which is the generation of an implementation directly from the formal

programming language definition. The operational model of the previous chapter is

amenable to such an approach. The advantage is that the language designer is provided

with an implementation with which to experiment and verify the specified semantics

of the programming language, and users are presented with a clear, unambiguous

definition. Compiler writers also benefit in that they obtain a reference implementation

against which to compare the results of their own work.

ATLANTIS, A Tool for LANguage definiTion and Interpreter Synthesis, is based on

the operational model of Chapter 3 and provides a mechanism for the formal definition

of a programming language and the generation of an interpreter from it. The model

has identified two aspects of the language definition, namely syntax and semantics,

and ATLANTIS introduces a third - the lexical component. Each of these components

of language definition used by ATLANTIS are discussed in the following sections.

The ATLANTIS system has been implemented and has been tested using a small

programming language derived from Pascal. This small language, called Neptune, was

derived from Pascal by omitting several features and by introducing some new features.

The features removed from Pascal include: labels, constants, type definitions, arrays,

records, the character type, variable parameters, with statements, goto statements,

repeat loops, and trigonometric operations. The following features not found in Pascal

are also present in Neptune: strings, a general loop construct, an exit statement, and

4.2. Geneml 92

a return statement. Each of the added features bears a great deal of similarity to the

corresponding construct in the Ada programming language.

The language Neptune, despite the omission of several features of Pascal, is still a

non-trivial language which embodies many of the semantic complexities of Pascal, such

as scope rules and some aspects of parameter transmission. The Neptune definition

occupies a total o14547 lines and is the source of several of the examples presented in

this chapter. Further details of the Neptune definition can be found throughout this

chapter and in Appendices C and D. Appendix C provides an outline of the ADT's

used in the Neptune definition and in Appendix D provides an outline of the HLO's

used.

4.2 General

ATLANTIS mimics the layered operational model introduced in the previous chap-

ter. As with the operational model, users may read the ATLANTIS definition of

the programming language to the depth which best suits their needs before leaving

the formal definition and referring to the informal narrative which accompanies it.

This informal narrative is provided to ATLANTIS by introducing comments into the

programming language definition. These comments do not form part of the formal

language definition, but provide a description of the various layers within the model

which together form the formal definition. Comments may be used anywhere within

an ATLANTIS definition; a comment in ATLANTIS commences with the symbol "--"

and continues until the end of the line.

ATLANTIS differs from other tools which generate portions of a compiler from a

formal description, such as GAG [68, 140] and the Amsterdam Compiler Kit [69,

4.3. Lexical Analysis

70, 133, 136, 137, 142], and which attempt to generate a complete compiler. In

contrast, ATLANTIS generates an interpreter. The reason for making no attempt to

produce machine code is that the generation of machine code is specific to a particular

architecture, and not to the language. In other words, it is not part of the language

definition to specify what machine code is to be produced by which language construct;

it is the job of the language definition to define how that construct is to behave and

nothing more. However, it may be possible to separate out the hardware-specific details

and generate a true compiler, but this is likely to rely on a particular intermediate

representation, in order to ensure that the generated compiler could be ported to

various machines. The generation of an interpreter obviates the need for any particular

intermediate representation and is, in fact, sufficient as a reference implementation.

4.3 Lexical Analysis

One of the most fundamental aspects of a programming language deûnition involves

the specification of the lexical components of the language. These lexical components

are the building blocks from which working programs in the new language are to

be built. ATLANTIS recognizes that language designers may wish to alter a lexical

element once language design is underway; for example, the designer may wish to

change a keyword from "start" to "begin". This alteration can be done simply by

varying the association between a keyword and a symbol used as a reference to this

lexical token throughout the remainder of the language definition'

A language definition in ATLANTIS commences with a statement which specifies

the name of the language and whether or not the language is case independent. A

statement such as:

93

4.3. Lexical Analysis

Language example is case dependent

introduces a language called "example" in which the case of characters plays an

important role in the distinction between identifiers; hence, for example, "BeGiN"

and "bEgln" are treated as completely different identifiers. A statement such as:

Language example2 is case independent

introduces a language, named "example2", in which the case of characters plays no

special role. In this instance, the identifiers "BeGiN" and "bEgln" are indistinguish-

able.

ATLANTIS itself is case independent and only takes note of the case used to specify

keywords in the defined language if the language is deemed to be case dependent. The

bold face words in the examples thus far represent keywords in ATLANTIS. If any of

these keywords are required as part of the definition of a new programming language,

then ATLANTIS can be convinced to treat them as ordinary strings by prefixing the

keyword by a backward slash (..\'). Hence *\CASE" represents the string UCASE'

rather than the keyword ttcaset'.

Following the introduction of the language name and the specification of its case

(in)dependence, the lexical tokens of the new language are defined. The keyword

section of an ATLANTIS definition specifies a symbol which is bound to a lexical token;

the keyword-symbol binding is terminated by a semicolon. Whitespace is unimportant

unless it is made explicit by representing each blank character by a backward slash

("\') followed by a space. The lexical token is not directly referenced outside the

keywords section, instead the associated symbol is used throughout the remainder of

the definition.

94

4.3. Lexical Analysis 95

The lexical tokens listed in the keywords section include reserved words and opera-

tors. In fact, all lexical tokens which are to be referenced in the syntactic definition of

the language are defined in the keywords section. Each token must have a unique

binding to a symbol and symbols may not be overloaded. As mentioned earlier,

ATLANTIS itself is completely case independent except if the programming language

being defined is specified as being case dependent. In this situation, the case of lexical

tokens defined in the keyword section is significant and this information is bound to

the corresponding symbol.

An example of a typical keywords section, taken from the Neptune definition, is

given in Figure 4.1. From this figure, \¡¡e see the use of the backward slash to alter

the meaning of a special character sequence to be simply a string. For example, to

refer to the semicolon character rather than terminating the association, the token

is entered u, "\;". The only other strings which might need to be prefixed by a

backward slash are the keywords t'operator", "special", "definition" and "model"

(all of which introduce other sections of the ATLANTIS definition), the comment

symbol "--" and the backward slash character itself. A backward slash preceding any

other character simply returns the character itself except within the specials section

(discussed shortly). This means that a backward slash preceding the space character

simply returns the space character.

After the specification of the language keywords and the corresponding symbol

to represent that keyword throughout the remainder to the language definition, the

operators of the language may be further defined. Operators may have their precedence

within expressions specified, as well as their associativity. ATLANTIS treats the

language operators as keywords and, as a result, the matching symbol is used when

specifying the priority and precedence of the symbol.

4.3. Lexical Analysis 96

Keyword
-- Symbol
and-sym
begin-sym
boolean-sym
call-sym
else-sym
elsif-sym
end-sym
exit-sym
false-sym
float-sym
function-sym
if-sym
input-sym
integer-sym
loop-sym
not-sym
null-sym
or_sym
output-sym
procedure-sym
program-sym
return-sym
string-sym
then-sym
true-sym
var-sym
when-sym
while-sym
becomes-sym
commaJym
semicolon-sym

Token
and ;

begin ;

boolean ;

call ;

else ;

elsif ;

end ;

exit ;

false ;

float ;

function ;

if;
input ;

integer ;

loop ;

not ;

null;
or;
output ;

procedure ;

program ;

return ;

string ;

then ;

true ;

var ;

when;
while;

¡i
\; ;

Figure 4.1. The keyword section of an ATLANTIS definition.

4.3. Lexical Anaþsis

colon-sym
left-bracket
right-bracket
period-sym
equal-sym
not-equal-sym
less-than-sym
less-or-equal-sym
greater-than-sym
greater-or-equal-sym
plus-sym
minus-sym
mult-sym
divide-sym

Figure 4.1. Continued.

The precedence of an operator is given as a positive number. The larger the

number, the greater the priority. If two operators are given the same priority and an

expression in the new language involves both operators, then the operator which is

listed first in the ATLANTIS definition is not necessarily evaluated first. ATLANTIS

does not attempt to specify the order of evaluation in this case; rather, it is left to

the language designer to cover this question as part of the details of the programming

language definition. If it is left unspecified, then the implementation is free to choose

the order of evaluation in a nondeterministic fashion.

The associativity given to an operator may be any of ttleft", ttright" or *nonas-

soc", which specify that the operator is left associative, right associative or nonas-

sociative in nature, respectively. The operator specification part of the ATLANTIS

definition for the Neptune language is given in Figure 4.2.

Finally, ATLANTIS recognizes that programming languages usually have several

lexical elements which have a specific structure and consist of a specific set of characters

in a certain order, such as "BEGIN', and these are also handled in the keyword

section of the language definition. Most languages also have lexical components which

97

)

_,
#;
<;
<-;
>;
):i
+;

t
*

I

t;

4.3. Lexical Anaþsis

operator
equal-sym 1

not-equal-sym 1

less-than-sym 1

less-or-equal-sym 1

greater-than-sym 1

greater-or-equal-sym 1

plus-sym 2

minus-sym 2

mult-sym 3

divide-sym 3

orrym 5

and-sym 6

not-sym I

nonassoc ;

nonassoc ;

nona,f¡soc ;

nonassoc ;

nonassoc ;

nonassoc ;

right ;

right ;

right ;

right ;

right ;

right ;

right ;

Figure 4.2. The operator specification within the definition of Neptune.

do not have such a rigid structure, but rather they simply have a general form to

which they comply. Examples of such lexical elements include identifiers, strings and

comments.

An identifier, for example, is an important lexical component that may appear

in certain locations within a valid program written in the defined language. It is

important for the language designer to be able to specify the nature of an identifier as

a lexical component. To do this, ATLANTIS introduces a special section to specify

these special lexical tokens. These tokens are special in that they have a structure

which may match a variety of input strings. If their structure overlaps with a language

token defined in the keyword section, then the token specifred in the keyword section

is always found in preference to the token from the special section. This prevents a

keyword such as UBEGIN" from being recognized as an identifier rather than the

language keyword that it is.

To aid in the specification of the structure of these special lexical tokens, AT-

LANTIS introduces certain symbols to match a class of characters known as a syntactic

98

4.3. Lexical Analysis 99

Symbol Meanln8

u
\u
\d
\c
\a
\b
\n
t\

lower case letter ("-r).
upper case letter (A-Z).
any digit (0-9).
any printable character except the space character, tab and newline.

any alphanumeric character (a-2, Ã-2,,0-9).
the space character.
the newline character.
the horizontal tab character.

Table 4.1. The syntactic categories for the definition of special lexical elements.

EBNF Meaning

(.)

t.

i
{
{

)
)+
\n

is used for grouping items together.
represents a choice between items.
represents zeto oÍ more instances of the items between the braces.

represents one or more instances of the items between the braces.

where n is any positive number, represents exactly ?¿ occurrences of
the items between the braces.

represents an optional item.

Table 4.2. EBNF symbols used in ATLANTIS.

category. These syntactic categories are listed in Table 4.1. The structure of the special

lexical tokens is specified via the EBNF-like notation shown in Table 4.2

Using the categories in Table 4.1 and the notation in Table 4.2rthe language de-

signer is able to define the nature of lexical components such as identifiers, strings and

comments. An example of the definition of such special tokens within an ATLANTIS

definition is given in Figure 4.3; this is taken from the definition of the Neptune

language.

Lexical elements defined in the special section, such as those shown in Figure 4.3,

may be supersets of lexical tokens previously specified in the keyword section of the

4.3. Lexical Analysis

special
ident \a{(\al\a)} ;

integer \¿{\¿} ;

float \d{\d}.\d{\¿};
string .{(\"1\b)}'

;

comment \-\- {(\"1\b)}\" ;

Figure 4.3. The special token definitions within an ATLANTIS definition.

ATLANTIS definition. In these cases, ATLANTIS always tries to match the keyword

before attempting to match a special token.

ATLANTIS uses the special symbol "comment" as the symbolic name of a lexical

element which is to be ignored by the generated interpreter. In the example provided in

Figure 4.3, aform of a comment in the programming language is specified as commenc-

ing with "--" followed by any number of characters and spaces, and finally terminated

by the end of the line. The generated interpreter based on this definition recognizes this

pattern as valid and simply ignores it. In this way, comments may appear anywhere in

the newly defined language, provided they take the form specified. The remainder of

the language definition need not concern itself further with comments. If the language

designer wishes to restrict the use of comments in the language being defined, then a

name other than t'commentt' must be chosen and each location where a comment may

validly appear in a program written in the new language must be specified as part of

the language definition.

The three sections described above - keyword, operator and special - are

sufficient to specify the lexical components of the programming language being defined

and even allows small amounts of semantic detail to be specified, such as precedence

and associativity of operators. This semantic information simply makes the language

100

4.4. The Syntactic Component

definition easier to produce, as it is no longer necessary to represent operator

dence via the syntactic definition of the language. The result is a language definition

which is easier to produce and easier to read than many other formalisms.

Salomon and Cormack [123] point out that many language definitions do not specify

the form, or position, of allowed whitespace. The reason is that a definition which

specifies the allowable locations of whitespace is cluttered and, as a consequence,

difficult to read. However, if a language designer wishes to specify the form and

permitted locations of whitespace then the designer may do so via the special symbols

representing whitespace in ATLANTIS (such as \n, \b, etc). To specify the whitespace

component of a programming language at this level of detail is to lengthen the language

definition considerably for dubious reward in many circumstances. However, the

language designer is free to follow the advice of Rose et al. [121] and specify the

formatting as part of the syntactic definition of the programming language being

defined. ATLANTIS assumes, by default, that whitespace such as blank characters,

horizontal tabs, carriage returns, etc., may occur between any pair of lexical tokens;

in other words, free formatting is the default option within the ATLANTIS system.

4.4 The Syntactic Component

Programming language syntax is traditionally specified with BNF or syntax charts

(railroad diagrams), as discussed in Section 1.1. Techniques such as BNF adequately

describe programming language syntax, and are well known and well understood.

As such, there is little need to tamper with the technique, other than employ an

enhancement in the form of extended BNF (EBNF) which simply provides a shorthand

notation to reduce the length of a deflnition. The EBNF notation used in ATLANTIS

4.4. The Syntactic Component

block: I label-declaration-part]

I constant-definition-part]

I type-definition-part]

I variable-declaration-part]

I procedure-and-function-declaration-part]

statement-part

Figure 4.4. The syntactic definition of a Pascal block.

to specify the syntax of a programming language is identical to that introduced for

the specification of the special lexical tokens (see Table 4.2).

Using this notation, Figure 4.4 provides the syntactic definition of a Pascal block.

The various components which comprise a block are specified and their ordering

is determined. As can be seen from the figure, the majority of the components

which comprise a Pascal block are optional, with only the "statement-part" being

mandatory. The semicolon which appears at the end of the syntactic definition denotes

the completion of the definition.

The definition of the syntactic components of a programming language in AT-

LANTIS is little different to a typical EBNF description of the syntactic components

of a programming language found in many natural language definitions. As such, this

aspect of ATLANTIS introduces no new concepts.

Identifiers used in the syntactic defrnition of the programming language may be

nonterminal symbols which are specified elsewhere in the definition, or terminal sym-

bols as defined in the lexical portion of the definition (keyword and special sections).

The syntactic description of the new programming language may be defined in any

order. There is no need to define a syntactic category (nonterminal symbol) before

it may be used. ATLANTIS constructs a table of all names used and defined within

the language definition, performing appropriate checking once the entire syntactic

definition is provided to ensure that all nonterminal symbols used have been properly

r02

4.5. The Semantic Component 103

defined. There is no compulsion to use all of the terminal symbols which have been

defined.

4.6 The Semantic Component

ATLANTIS is based on the operational semantic model discussed in the previous

chapter. As a result, implementation of a semantic description of a new programming

language will involve the building and manipulation of information structures, as well

as multiple passes over some representation of the source code of a program written in

the language. The model of the previous chapter is also layered and this characteristic

manifests itself within the ATLANTIS system.

The outermost layer of the model provides the most abstract definition of the

programming language semantics and, in ATLANTIS, this layer of detail is tied

directly to the syntactic definition of the programming language. This outermost

layer makes calls on various semantic routines defined in an inner layer of the model,

defining the semantic actions which are to take place when certain syntactic entities

are encountered during the various passes over the source program. This linking of

syntax and semantics means that it is particularly simple for a reader to locate a

semantic routine in order to answer most language questions. In the majority of cases,

the reader will know the syntactic form which is related to the area of difficulty and

hence can find the name of the desired semantic routine easily.

The outermost layer of the model is represented by the distribution of the calls to

semantic routines (HLO's) throughout the syntactic definition of the language. The

syntactic definition and the semantic routines are distinguished from each other by

4.5. The Semantic Component

block : ToTo Pass 2:

call Scope-RulesJass-2;
To%

Iabel-declaration-part]
[const ant -defi nition-part]

[type-defi nition-part]

[vari able-declaration-part]

[procedure-and-function-declaration-part]
ToTo Pass l:

call Scope-Rules-Pass-1 ;

To%

statement-part

Figure 4.5. ATLANTIS definition of a Pascal block with semantic definitions.

delimiting the semantic regions (regions containing calls to semantic routines) by the

symbols "ToTo".

If the language requires multiple passes to describe its semantics, then the pass on

which the semantic action is to have an effect is specified, using the notation "Pass

n: . . .". All actions within a semantic region are evaluated during the specified pass.

If no particular pass is specified, then the semantic region is assumed to be applicable

in the first pass. This approach makes it explicit as to which actions are to take place

at which time and in conjunction with the detection of which syntactic structure. For

any particular semantic region, the pass over the source file in which it is to have an

effect can only be specified once, and it must be specified before any semantic actions

are detailed within that semantic region. Hence, a Pascal block (which was described

previously in the underlying model in Figure 3.7) is described to ATLANTIS as shown

in Figure 4.5. The call constructs in Figure 4.5 indicate calls to semantic actions.

All semantic regions are linked to the preceding syntactic structure, if there is

one. If no syntactic structure is present, or suitable, then a null syntactic node is

104

4.5. The Semantic Component 105

identifier : ToTo call routine-l;
%%
letter

{ [underscore
To% call routine2;
%To

l
To% call routine-3;
%%
(disit
I letter

ToTo call routine-4;
To%

)
ToTo call routine-5;
To%

)
%% call routine-6;
To%

Figure 4.6. An identifier definition for ATLANTIS.

created. The semantic regions are only evaluated when the relevant syntactic structure

is recognized and the current pass over the source program corresponds to that specified

in the semantic region. The syntactic structure to which a semantic region may be

linked may be either a terminal or a nonterminal symbol in the language being defined.

As a result, the EBNF notation used for syntactic definition also affects the location

and evaluation of the semantic regions. This is illustrated in the exaggerated syntactic

and semantic definition of an identifier given in Figure 4.6.

Figure 4.6 indicates that the semantic routine "routine-l" must always be evaluated

before the identifier is elaborated any further. This semantic action is bound to a null

syntactic node which was specifically created since there \ryas no preceding syntactic

entity. Syntactically, a letter must next be present (and will be consumed by the

4.5. The Semantic Component

generated scanner), and this may be followed by zero or more occurrences of the

specified tokens. If any of the specified tokens are found, there are certain semantic

actions which must be evaluated depending on the token. If the optional underscore

token is detected, then the semantic action "routine-2' is invoked; it is not evaluated if

an underscore is not located by the scanner. The optional underscore token is followed

by a call to the semantic action "routine-3" which is unconditional if the next character

in the input stream is a letter or a digit. After evaluation of this semantic routine, the

next token is examined. If it is a letter, then it is accepted and the semantic action

"routine-4" is evaluated; if it is a digit then the token is accepted but no semantic

action is evaluated. After handling the choice between digit and letter, the semantic

action "routine-$" is unconditionally evaluated. If the next character is a letter, digit

or underscore then the contents of the repetitive construct is repeated, and hence calls

to some of the semantic routines may occur multiple times as dictated by the input

stream. When the identifier is completely recognized syntactically, the semantic action

"routine-6" is unconditionally evaluated.

This EBNF syntactic description with associated semantic calls shown in Figure 4.6

can be represented in the flowchart shown in Figure 4.7 which clearly demonstrates

the points at which semantic routines are to have an effect.

The semantic regions within the syntactic definition of the language have access to

the environment variables used by the language definition. Environment variables are

a mechanism which allow the author of a language definition to refer to information

structures, or components of them, by name; use of these variables can improve the

readability of the language definition. Environment variables are described in detail

in Section 4.7; however, it is worth noting here that their values may be altered within

the semantic regions via direct assignment, or through calls to high level operations or

106

letter

underscore

letter

4.5. The Semantic Component 107

->

routine-l

routine-2 routine_3

routine_5

routine-4

routine-6

Figure 4.7. Flow chart illustrating syntax and semantics.

abstract data type operations. Furthermore, the semantic actions referenced within

a semantic region can be ordered through sequencing with the tt;" operator, selection

between actions through the if-then and if-then-else constructs, and iteration using

the various loop constructs to be discussed in Section 4.8.

As already mentioned, the semantic definition of a programming language within

the ATLANTIS framework follows the model introduced in the previous chapter.

Hence, there are additional layers of the definition which must be considered; specifi-

cally, the ADT specifications and the HLO definitions have yet to be addressed. These

aspects are defined in the following sections. ATLANTIS introduces the elaboration

of the semantic details pertaining to the language definition by indicating the end

of the syntactic definition and the start of the semantic definition with the keyword

*modeltt.

4.6. Abstract Data Type Defrnitions 108

4.6 Abstract Data Type Definitions

The description of ATLANTIS has thus far covered the specification of the lexical

components of the programming language, followed by the syntactic definition an-

notated with semantic actions corresponding to the outermost layer of the semantic

model. The next part of the input to ATLANTIS defines the ADT's used in the

model; in other words, the innermost layer of the model is defined next. This allows

ATLANTIS to behave as a single pass system and permits a symbol table to be built

which allows the usage of the ADT's and HLO's to be checked at all levels. From this

point onwards in the language definition, ATLANTIS insists on the declaration of all

identifiers before they are used.

As discussed earlier in Chapter 3, the ADT's form the building blocks of the

information structures used to describe the language semantics. An example of an

ADT specified for ATLANTIS is given in Figure 4.8. From this figure, it can be seen

that an ADT definition within the underlying model is introduced by the keyword

"ADT' which is followed by an identifier which becomes the name of the data type

defined by the ADT. After the ADT name, there is an optional list of identifiers,

delimited by brackets, which denote types to be passed to the ADT later. The example

in Figure 4.8 has two type parameters, "index-type" and "element-tYP€", which will be

specified when the ADT is instantiated. Parameterized ADT's allow the specification

of generic or polymorphic ADT definitions, avoiding the need to specify a table for

each index/element pair. This allows the language designer to concentrate on the

language specification, rather than having to be overly concerned with housekeeping

details. Parameterized ADT's also serve to keep the length of a language definition to

a mlnlmum.

4.6. Abstract Data Type Defrnitions 109

ADT table [index-type, elementJyp"] ;

sorts table/index-type, element-type, boolean, integer;

where index-type has equal: index-type * index-type -> boolean;

integer has addjnteger: integer * integer -) integer;

syntax
new-table: -> table;
empty-table: table -) boolean;

member-table: table'* index-type -) boolean;

insert-table: table ,r, index-type * element-type -) table;
remove-table: table.'r. index-type -> table * {error};
alter-table: table * index-type * element-type -) table * {error};
search-table: table *,index-type -) element-type * {error};
size-of-table: table -) integer;

semantics
declare

tab: table;
index-l, index-2: index-type;
elem-l, elem-2: element-tYPe;

axlomS
(1)
(2)
(3)

empty-table(new-table) - tr¡n"'
empty-table(insert-table(tab, index-l, elemJ)) - false;

member-table(insert-table(tab, index-l, elem-l), index-2) :
if equal(index-l, index2)
then true;
else false;
fi;

member-table(new-table, index-l) : false;

remove-table(insert-table(tab, index-l, elem-l), index-2) :
if equal(index-l, index2)
then tab;
else insert-table(remove-table(tab, index-2), index-l, elem-l) ;

fi;

(4)
(5)

Figure 4.8. The definition of a table for input to ATLANTIS.

4.6. Abstract Data Type Defrnitions 110

(6) search-table(insert-table(tab, index-l, elemJ), index2) :
if equal(index-l, index2)
then elem-l;
else search-table(tab, indexJ) ;

fi;
(7) alter-table(tab, index-l, elemJ)

insert-table(remove-table(tab, index-l), index-l, elemJ) ;

(8) insert-table(insert-table(tab, index-l, elemJ), index2, elem 2) -
if member-table(insert-t able(tab, index-l, elemJ), indexJ)
then alter-table(insert-table(tab, index-l, elem-l), index-2, elem2) ;

else insert-table(insert-table(tab, index2, elem2), index-l, elem-l) ;

fi;
(9) size-of-table(new-table) : ¡'
(10) size-of-table(insert-table(tab, index-l, elem-l)) :

add-integer(1, size-of-table(tab)) ;

Figure 4.8. Continued.

The ADT defrnition, whether parameterized or not, is then followed by a sorts

clause which specifies two things. To the left of the " f" character is the name of the

ADT that is being defined by the ADT definition. This name should be the same a,s

that specified in the ADT header. After the " f" character is a complete list of all

other data types used in the ADT definition. This list includes any type parameters.

Only the types specified in this list may be referenced by the remainder of the ADT

definition. An attempt to use any data type not specified within the sorts clause will

result in ATLANTIS reporting an error. The sorts clause also provides a convenient

mechanism to indicate the reliance of the ADT on other data types, allowing readers

to quickly see the relationship.

An optional where clause follows the sorts clause. The where clause lists some

operations assumed for data types listed in the sorts clause. In each case, the name

4.6. Absttact Data Type Defrnitions 111

of the operation, the relevant arguments and the result type of the operation is given.

Figure 4.8 has a where clause which reads:

where index-type has equal: index-type * index-type -> boolean;

integer has add-integer: integer * integer -) integer;

This informs the reader, and the ATLANTIS system, that the type parameter which

eventually corresponds to ttindex-type" must have an operation called ttequaltt which

takes two objects of the type corresponding to ttindex-type" as arguments and returns

a boolean result. This property will be checked by the ATLANTIS system when the

ADT is instantiated with the appropriate actual parameters.

The ADT definition also assumes that the type integer provides an operation called

"add-integer" which takes two integer arguments and returns an integer result. The

axioms specifying the behaviour of the ADT can assume the existence of the operations

listed in the where clause and hence employ them. ATLANTIS checks the existence

of all operators listed in the where clause by examining the appropriate type at the

appropriate time. This is performed immediately, if possible, as is the case with the

type integer; otherwise, it is done at the time of instantiation (in the case of a type

parameter, for example). Operations provided by other types, but not specified in the

where clause, remain inaccessible to the ADT being defined and any attempt to refer

to such operations are flagged as errors by the ATLANTIS system.

The keyword "syntax" introduces the specifications of the operations to be defined

for the ADT. For each operation, its name, the types of each of its arguments and the

result type are listed. From Figure 4.8, we find the specification of the operation

"alter-table" given as:

alter-table: table * index-type r. element-type -) table * {error};

4.6. Abstract Data Type Defrnitions tr2

which introduces the operator "alter-table" and defines it such that every call to the

operation requires three arguments, the first of which is of type "table", the second of

type "index-type" and the third of type "element-typeo. The operation is to return a

((table" object or an error result, as indicated by the presence of "* {error}" in the

result type given after the arrolv symbol (->". The specification for each operator

is terminated by a semicolon. The use of the semicolon is simply to provide some

redundant information to the ATLANTIS system to improve error detection and

handling. The section describing the syntax of ADT operators in ATLANTIS is almost

identical to the style of ADT definitions presented in Chapter 2.

The final section of the ADT definition provides the semantics of the operations.

This section is introduced by the keyword "semantics". The semantic definition is

divided into two subsections; the first of which is introduced by the keyword "declare",

and the second of which is introduced by the keyword "axioms".

The first subsection is optional and only serves to introduce metavariables to rep-

resent arbitrary objects of specified types in the subsequent subsection which provides

the axiomatic definition of the operations. For example, the following is extracted

from Figure 4.8:

index-l, index-2: index-type;

This declaration introduces the identifiers "index-l" and "index-2" to the ADT defi-

nition. These names can then be used in the axiomatic definition of the operations to

represent any arbitrary object of type "index-type". The definition of such identifiers

is redundant and can be deduced from the axiomatic descriptions which follow, but the

language designer is forced, by ATLANTIS, to formally introduce the metavariables

through such a declaration in order to provide ATLANTIS with sufficient redundant

4.6. Abstract Data Type Defrnitions 113

information to ensure suitable and adequate error detection and recovery. It also serves

as an aid to a reader of the language definition.

The second subsection of the semantics section of the ADT definition is introduced

by the keyword "axioms". This keyword is followed by an axiomatic definition of

the operations specified by the ADT. The axioms must be consecutively numbered

commencing with one. Once again, this is a redundancy mechanism to help ensure

that no axioms are inadvertently missed. ATLANTIS checks that the use of each

operation is consistent with the syntax given earlier by checking the types, positions

and number of arguments. Operations used from other ADT's must be specified in the

where clause of the ADT definition, otherwise they are flagged as errors. This ensures

that a reader is fully a\Mare of what operations are assumed to exist from other ADT's

or must be provided by any actual type parameter at the time of the instantiation of

the parameterized ADT (to be discussed shortly).

The format of the axioms provided by an ATLANTIS specification are very similar

to the format of axioms used in the ADT definitions of Chapter 2. The axioms provided

are checked for correct usage and consistency with the specification of the operations.

ATLANTIS makes no attempt to prove consistency and sufficient-completeness of any

ADT used in the language definition. This aspect is left for the language designer

to perform manually and such proofs may be included in the language definition as

a comment if so desired. As previously stated, proofs of consistency and sufrcient-

completeness are generally undecidable problems for arbitrary types and, as a result,

it would be inappropriate for the ATLANTIS system to attempt to prove that ADT

definitions exhibit these properties.

Another reason that ATLANTIS makes no attempt to ensure that the ADT's used

are consistent and sufficiently-complete is that it may well be the language designer

4.6. Abstract Data Type Dcifrnitions

intended that they are not! Many current natural language definitions indicate that

certain aspects of a language implementation are not specified in the language defini-

tion and that implementors have complete freedom of choice over how this aspect will

be handled, provided certain guidelines are met. Such aspects are often referred to as

implementation dependent features of the programming language. ATLANTIS allows

this practice to continue by not demanding that all ADT definitions be consistent

and sufficiently-complete. It then becomes the language designer's responsibility to

clearly identify any such aspects. It is these aspects of any language definition that

result in portability problems with programs written in such a language. Forcing

the language designer to highlight such aspects helps to highlight those areas which

represent potential portability problems.

ATLANTIS provides six predefined ADT's which can be employed in a language

definition. These predefined ADT's are discussed in Section 4.9 and are elaborated

in Appendix A. A typical language definition requires a small number of additional

ADT's to be defined by the language designer. Appendix C gives details of the ADT's

which were required to define the Neptune language; this language definition required

the introduction of ten ADT's, of which four were polymorphic. A total of 503 axioms

were required to define the 93 operations provided by the ten ADT's.

Once all the necessary ADT's, both polymorphic and monomorphic, have been

defined, the polymorphic ADT's can be instantiated to define a new ADT. For example,

ADT integer-table is new table [integer, float];

generates a new ADT called "integer-table" which has all of the operations of the

polymorphic ADT "table" with the formal type parameter "index-type" replaced by

"integer", and "element1ype" replaced by "float". Recall from Figure 4.8 that there

114

4.6. Absttact Data Type Defrnitions 115

are certain assumptions regarding the operations provided by the generic formal pa-

rameters, namely that the type corresponding to "index-type" must have the operation

"equal" defined for it, such that the operation takes two "index-typ"" arguments and

returns a boolean result. The instantiation provided above is substituting "integer" for

"index-type" and as a result ATLANTIS checks to ensure that such an operation exists

for the integer types. If a suitable operation does exist, then the instantiation may

complete, otherwise ATLANTIS raises an error indicating that a suitable operation is

not defined for the actual type parameter.

The definition of ADT's and the instantiation of generic ADT's is likely to result in

the definition of operators with identical names which may or may not be applicable

to objects of differing types returning different results. ATLANTIS uses the context

of the usage of an operation to uniquely determine which ADT operation is referred

to. Sometimes, however, context will be insufficient to uniquely determine a single

candidate operation. In these cases the operation must be qualified by the name of

the ADT containing the intended operation. This qualification is performed by naming

the ADT in question and the operation from it via a dotted notation, such as:

integer-table.new-table

which specifies the "new-table" operation from the ADT "integer-table" instantiated

above. The result is an "integer-table" object, as opposed to an object of any other

instance of the table ADT.

4.7. Envfuonment Vaúables

4.7 Environment Variables

Once all of the ADT's are defined, the basic information structures for the language

definition are in place. It is sometimes convenient to be able to refer to these infor-

mation structures, or components of them, via some name. ATLANTIS allows the

definition of environment variables which permit the language designer to refer to the

information structures by name.

Environment variables are introduced by the keyword "ver", which is followed by

an identifier list in which each identifier is separated by commas. The identifier list is

followed by a colon, a type name (ADT name) and terminated by a semicolon. The

ADT name used may not be the name of a polymorphic ADT, but rather must be a

monomorphic ADT (including an instantiation of a generic ADT).

For example, the definitions below:

var int-table-l: integer-table;
var int-table-2, int-table-3: integer-table;

introduce the names "int-table-1", ttint-table-2" a¡rdttint-table-3tt to refer to inte-

ger-table objects.

Environment variables can be passed to ADT operations for manipulation and may

be assigned the result of an ADT manipulation. Note, however, that ATLANTIS uses

the pointer semantics for tt::" operation. Hence, if ttint-table-1" refers to one table

and "int-table-2" refers to another, as illustrated in Figure 4.9(a), then the assignment

statement:

int-table-2 :: int-table-l ;

changes the situation to that illustrated by Figure 4.9(b).

This indicates that any subsequent change to int-table-l will have an effect on

int-table-2 also. If this is undesirable and it is intended that int-table-2 should refer

116

4.7. Envfuonrnent Vaúables rt7

int_table_1 int-table-2

(.)

int_øble_1 int_table_2

(b)

Figure 4.9. Assignment of ATLANTIS environment variables.

to an exact copy of int-table-l instead then the copy operator should be used, for

example:

int-table-2 : : copy(int-table-1) ;

which replicates int-table-l and associates this new object with int-table-2. AT-

LANTIS assumes that the copy operation exists for all ADT's and that it behaves

in the prescribed manner. The copy operation and associated semantics need not be

elaborated in the ADT definition, but must be present in the ADT implementation.

The use of *copy" and tt::" makes it clear when the object is duplicated or whether

the object referred to by an environment is simply changed to coincide with the object

associated with some other environment variable. As a result, potential ambiguity and

unexpected results are avoided.

4.8. High Level Opemtions 118

4.8 High Level Operations

High Level Operations (the middle layer of the model) are defined last in ATLANTIS.

ATLANTIS allows two forms of HLO - namely procedures and functions. Procedures

produce no result but, rather, cause some side-effect on the environment. Procedures

are invoked using a call statement to distinguish them from function calls, which do

return a value and must appear as part of an expression (for example, the right hand

side of an assignment statement). Procedures and functions both have access to all

of the environment variables declared earlier, and also have access to any variable

defined local to the HLO. Both procedures and functions allow parameters to be

passed on invocation, but the parameters may not be modified by the HLO, as they

are transmitted with the same semantics as in parameters in Ada.

As an example of a procedure and a function HLO, the existence of the definition

of an ADT known as "ident-stack", which represents a stack of string objects, will be

assumed. Further, it will also be assumed, for the sake of this example, that this ADT

has the following operations specified within its signature:

-) ident-stack;
+ ident-stack;

-) ident-stack [J {error} ;

--) string [-l {error};
+ boolean;
--+ integer;

An environment variable, "id-stk", can then be declared as:

var id-stk: ident-stack;

It is now possible to proceed with the definition of a procedure to reverse the contents

of the stack referred to by the environment variable "id-stk" as shown in Figure 4.10.

The procedure of Figure 4.10 can be invoked within another HLO, or within a semantic

new-stack:
push-stack:
pop-stack:
top-stack:
empty-stack:
size-of-stack:

ident-stack x string
ident-stack
ident-stack
ident-stack
ident-stack

4.8. High Level Operations 119

'":ïiïåJ:îîï::ff :"",Jlii,i11"
var tempjd-stk: ident-stack;
begin - - reversejdent-stack-l

tempjd-stk :: new-stack;
while not-boolean(empty-stack(id-stk))
loop

tempjd-stk :- push-stack(tempjd-stk,
top-stack(id-stk));

id := pop-stack(id-stk);
pool;
id-stk :: tempid-stk;

;, J; "" ;,î:ï':,"::"".::: n',*n *"" op eration

region embedded in the syntactic definition of the language, by a call statement such

as:

call reversejdent-stack-l ;

which reverses the contents of the stack as a side effect.

An alternative is to make the HLO a function as shown in Figure 4.11. In this case,

it is invoked and the value returned by the function invocation must be used (i.e., it

cannot be discarded). The value returned by the function is the contents of the stack

referred to by "id-stk", but in reverse order. An example of its use is provided by the

assignment below:

id-stk :: reverseident-stack-2(id-stk) ;

The return clause following an optional parameter list in the function heading in-

dicates the result type of the function. A return statement must be executed from

within the function body, which consists of the "return" keyword followed by an

expression which must be of the same type as that specified in the function heading.

It is this value that is returned as the value of the function call. The value is returned

4.8. High Level Operations L20

function reversejdent-stack-2(stk: ident-stack) return ident-stack is

-- reverse the ident-stack object and return the result.
var ident-stack, temp: ident-stack;
begin - - reversejdent-stack-2

temp :: copy(stk)i
result :: new-stack;
while not -boolean(empty-stack (temp))
loop

result : - push-stack(result, top-stack(temp)) ;

temp :- pop-stack(temp);
pool;
return result;

end; - - reversejdent-stack-2;

Figure 4.11. A function high level operation.

at the point that the return statement is executed. Any statement occurring after

the return statement is unreachable and is ignored.

A procedure may also have a return statement. In this case, the keyword "return"

is not followed by an expression and the semantics of the statement is simply the

immediate termination of the procedure which executes the statement.

A variety of constructs are permitted within procedures and functions, as well as

within the semantic regions interspersed throughout the syntactic definition. These

constructs include sequencing via the tt;" construct, and assignment as defined by the

t'::t' construct, as well as conditional and repetitive constructs.

The semantics of the conditional construct provided by ATLANTIS is identical to

the conditional construct described in Section 3.2. Its syntactic description is given in

Figure 4.!2, which shows that the conditional action is introduced by the keyword "if'

which is then followed by a boolean expression. If the boolean expression evaluates

to true, then the action sequence following the keyword "then" is executed. If the

boolean expression evaluates to false, then the action sequence following the t'else"

is executed. If no such else clause exists, then the if action as a whole has no effect,

4.8. High Level Opemtions

if < boolean condition)
then (Sr)
Ielse(Sz>]
ff;

Figure 4.12. The if action within ATLANTIS.

except for any side effects which may have occurred as a result of the evaluation of

the boolean condition.

ATLANTIS allows three forms of repetitive construct, again modelled on the

constructs discussed in Section 3.2, and hence formal definitions of their semantics

are available. The first of these repetitive actions is the infinite loop; this has the

syntactic structure shown below:

loop (Sr) pool ;

In this construct, the actions between the keywords "loop" and "poolt' are executed

endlessly. This construct is often used in conjunction with the exit construct whose

structure is shown below:

exit Iwhen (boolean expression)] ;

The exit construct is optionally followed by the keyword "vr'hen", which is ter-

minated by a boolean expression. If the boolean expression evaluates to true, then

the loop immediately surrounding the exit construct is terminated and execution

continues from the action immediately following the keyword "pool" which denotes

the end of the appropriate loop. If the boolean expression evaluates to false, the entire

exit construct has no effect. In the case where the when clause is not present, the

loop surrounding the exit construct is unconditionally terminated. The semantics of

the exit construct only makes sense when the exit construct is located within a loop-

pool construct. Any exit construct outside such a construct will result in an error art

r2l

4.8. High Level Operations r22

loop
(Sr)
exit when (boolean condition) ;

(Sz)
pool;

= (Sr)
if not (boolean condition Þ then

(Sz)
loop

(Sr)
exit when (boolean condition) ;

(Sz)
pool;

fi;

Figure 4.13. Semantics of the exit action from within a loop.

while (boolean condition)
loop

(Sr)
pool;

Figure 4.14. Structure of the while loop.

the new programming language definition is processed. The exit construct may not

reside within a HLO invoked from within the loop-pool construct. The semantics of

an exit construct residing within a endless loop is defined in Figure 4.13. The exit

construct can be used in conjunction with the remaining forms of repetition, which

will be discussed now.

The alternative forms of the repetitive construct are the while loop and the for

loop, whose forms are shown in Figures 4.14 and 4.15 respectively. Their semantics

are exactly as that discussed in Section 3.2

Whereas the while loop of Figure 4.14 requires no further explanation, the for

loop in Figure 4.15 requires some explanatory remarks. The variable used in the for

loop is automatically declared, and its value is discarded at the termination of the

4.8. High Level Opentions r23

for (variable) in (lower bound) : (upper bound)
loop

(Sr)
pool;

Figure 4.15. Structure of the for loop.

pro cedure dumpìdent-st ack(stk: ident -st ack) is

- - Display the contents of ustkn.

var temp: ident-stack;
begin - - dumpident-stack

-- Take a copy and print the contents of this copy.

temp :: copy(stk);
while not-boolean(empty-stack(temp))
loop

call write-string(top-stack(temp));
temp :- pop-stack(temp);

pool;
-- t'stktt remains unchanged.

end; - - dumpjdent-stack;

Figure 4.16. Display the contents of an identifier stack.

loop. This prevents the language designer from referencing the value of the for loop

control variable outside the loop. Assignment to, or any other form of manipulation

of, the for loop control variable is not permitted. As discussed in Section 3.2, if the

value of < upper bound) is less than the value of < lower bound) then the for loop

has no effect. ATLANTIS places a further restriction on the for loop control variable

in that it must be an integer.

These constructs are sufficient to allow the development of useful HLO's within the

language definition. Hence, a HLO to display the contents of the "ident-stack" object

introduced earlier could be written as shown in Figure 4.16.

4.9. Predefrned Abstract Data Types r24

The example of Figure 4.16 also highlights one further aspect of ATLANTIS'

namely the predefined operations and ADT's provided to the language designer. Fig-

ure 4.16 contains calls to the operations "not-boolean' (also used previously in Fig-

ures 4.10 and 4.11) and "write-string", both of which are predefined in every AT-

LANTIS programming language definition. The operation "not-boolean" is a function

which takes a boolean argument and returns a boolean value such that the result is

the logical negative of the argument. The operation "write-string" is a procedure, and

hence invoked with a call statement; it takes a single string argument and returns

no result. The operation does have the useful side-effect of displaying the argument

on the output device (typically the terminal screen). Such primitive operations are

necessary when describing the semantics of a "write" statement in languages such as

Pascal.

ATLANTIS provides the language designer with a collection of predefined ADT's

to aid in language design. These predefined ADT's are discussed in the next section.

Appendix D provides a description of the HLO's which were required in the defini-

tion of the Neptune language. Neptune requires 59 HLO's occupying some 2961 lines

of the complete Neptune definition of 4547 lines. Clearly, the bulk of the programming

language language semantics are contained within the HLO's, shielding most readers

from the details of the underlying ADT's.

4.9 Predefined Abstract Data Types

ATLANTIS provides several basic ADT's, and operations on them, in an effort to

assist language design and reduce the amount of effort needed to define a language.

As the presence of the predefined ADT's is common to all language definitions, the

4.10. Implementation of ATLANTIS r25

amount of work required by a reader to grasp the essential concepts of a new language

is also reduced. Appendix A contains a complete description of the predefined types

and the operations made available by them. A natural language narrative is associated

with each operation, to provide a description of the operation's behaviour. Some of

these operations, such as t'returnJabel", are discussed in detail in the next section as

they relate to the run-time behaviour of the ATLANTIS system.

4.LO Implementation of ATLANTIS

As already described, the language definition provided to ATLANTIS is an operational

semantic model potentially consisting of several passes. An interpreter based on an

ATLANTIS definition need simply build the information structure and manipulate it

according to the definition. In this wa¡ the behaviour of the interpreter will precisely

mimic the behaviour specified by the underlying information structure model.

Since ATLANTIS specifies where the semantic regions are to have an effect in

relation to the syntactic structure of the source program in the newly defined language,

all that ATLANTIS need do is produce a parse tree corresponding to the source file,

with the nodes decorated with semantic calls which can be invoked at the appropriate

time as the parse tree is traversed.

An outline of the ATLANTIS system is shown in Figure 4.17; note that the

components which have double outlines are supplied and are used unaltered, whereas

those with a single outline are generated from the language definition. The lexical

and syntactic parts of an ATLANTIS language definition are carefully checked for

internal consistency and translated into input suitable for lex [79] and yacc [66],

respectively, in order to generate the appropriate annotated parse tree. In the case of

4,10. Implementation of ATLANTIS t26

the syntactic component of an ATLANTIS definition, this involves the translation of

the EBNF productions to BNF and the merging of rules which share common syntactic

derivations, whilst ensuring that the appropriate semantic action can still be located

when the interpreter driver traverses the generated parse tree. The generated scanner

produces a token stream from a program written in the specified language; these tokens

are passed to the generated parser. This parser, in turn, checks the source for syntactic

errors and flags them accordingly. If no syntax errors are detected, then a parse tree is

produced. The parse tree is annotated with calls to semantic routines produced from

the description of the semantics of the language in the input to ATLANTIS. Semantic

analysis uses the parse tree, interpreting the program by performing a post-order

traversal. Several tree traversals are performed, corresponding to the passes in the

semantic definition of the language, with the appropriate semantic actions executed as

necessary to build and manipulate the appropriate information structures. The result

of the source program is reflected in the state of the information structure when all

the necessary passes over the parse tree are complete.

The semantic routines referred to in Figurc 4.I7 are a pool of Ada routines gen-

erated from the semantic actions and HLO's of the language definition. As the

underlying model of ATLANTIS is based on ADT's, it is necessary to translate

the ADT specifications into Ada packages. This is the only aspect of the language

definition for which ATLANTIS does not automatically generate the corresponding

implementation component. These ADT's must be manually translated into Ada

packages which behave in precisely the manner dictated by the ADT specifications.

Although this manual translation is initially labour intensive, this aspect of the inter-

pretive implementation has a high degree of reusability, as the ADT's used to describe

one language are often used again in the definition of another language. Hence,

lex scanner

yæß,ATLANTIS pafser

inærpreærsemantic
routines

4.10. Implementation of ATLANTIS r27

lex
token

annotated
parse
tre,e

Figure 4.L7. Overall structure of ATLANTIS.

an investment of time in the translation of ADT specifications to Ada packages is

rewarded later when a subsequent language definition is produced. Commonality

of ADT specifications between differing language definitions not only ensures a high

degree of reusability, but also results in a firm basis on which different languages may be

compared. ATLANTIS may be modified to incorporate techniques for the automatic

generation of ADT implementations from ADT specifications using the technology

developed for the Larch [54, 154] and OBJ 174' L28l systems.

For each ADT definition in ATLANTIS, there exists an Ada package. For example,

the package associated with the table ADT of Figure 4.8 is provided in Appendix B.

Such a package must be generic in the case of a polymorphic ADT definition. AT-

LANTIS presumes that the signature of the operations provided by the package accu-

rately reflects the signature of the ADT definition, that is to say that the operations

provided by the package have the same names as those specified in the ADT definition

4.10. Implementation of ATLANTIS t28

and that the types and ordering of parameters is also preserved, and that the behaviour

of the operations corresponds to the axioms. It is also assumed that each package

provides a function called *"opy", which generates an exact replica of any instance of

that type.

Each instantiation of a polymorphic ADT automatically generates the appropriate

Ada code. As previously mentioned, ATLANTIS performs the necessary checking

to ensure that the instantiation is valid and that the actual type parameters passed

provide any necessary operations specified by the polymorphic ADT's definition.

The HLO's and semantic regions of the ATLANTIS definition are automatically

translated into Ada functions and procedures. This allows the interpreter driver to

invoke them and have them behave in exactly the manner prescribed by the language

definition. The necessary annotations to the parse tree are simply the names of the

semantic routines as given in the language definition.

The production of a complete interpreter for any newly specified language is com-

plete when the annotated parse tree and a pool of semantic routines is made available

to the interpreter driver. This driver is identical for each language and is provided as

part of the ATLANTIS system; the role of the driver is to perform as many passes

over the parse tree as specified in the language definition, executing the necessary

semantic actions where appropriate for each pass. Semantic actions may be attached

to leaf nodes representing tokens, or to non-leaf nodes representing a syntactic rule.

In each case, the semantic action is executed as a post-order traversal of the parse tree

is performed.

As an example, given the rules in Figure 4.18, and UACCU as input, then the parse

tree as illustrated in Figure 4.19 is produced. Performing a post-order traversal over

the annotated parse tree results in the execution of the semantic actions at locations

4.10. Implementation of ATLANTIS

corresponding to their place in the rules of the language definition (i.e., Figure 4.18). If

the language definition requires multiple passes to correctly specify its semantics, then

multiple passes over the parse tree will be required. Figure 4.19 shows the semantic

actions, s;, 1 (i 17, attached to nodes of the paxse tree. These nodes may represent

terminal or nonterminal symbols of the language. As the tree traversal is performed,

the semantic actions are executed as each node is left for the final time (i.e., after

the subtrees stemming from the node have been processed). Empty leaf nodes, €' are

introduced as needed to provide nodes to which semantic actions may be attached.

t29

START:

R1

%% call s1; ToTo

R1

ToTo call s2; ToTo

R2
%% call ss; ToTo

t

ToTo call sa; ToTo

l'A' To% call s5; %%l
l'B' ToTo call s6; ToTo

R2 'C' j To% call s7; ToTo

Figure 4.18. A simple language definition.

If the language definition requires multiple passes to correctly specify its semantics,

then multiple passes over the parse tree will be performed. This is the case in the more

realistic example presented in Figure 4.20. Figure 4.20(a) gives some syntactic rules

)

{
)

4.10. Implementation of ATLANTIS 130

START

RI s3

tct 'c' s7

Figure 4.19. The parse tree for the input UACC'.

combined with calls to the semantic routines spread over two passes; Figure 4.20(b)

outlines the parse tree that is associated with input such as:

procedure foo (a: integer);
var i: integer;

begin

end;

The first pass over the parse tree invokes the semantic routines specified for execution

during this pass. This builds an information structure which can be further modified

by the semantic routines specified for execution during the second pass over the parse

tree. In order to simplify the diagram in Figure a.20(b), the semantic actions are

represented as "s¿". The semantic actions are only executed during the pass in which

they are specified as having an effect. If no particular pass is specified, then they are

assumed to be effective during the first pass only.

By using the information structure model of the programming language as the

basis of the execution of a source program, it is clear that although the interpreter

may be inefficient in its execution, it is accurate in its interpretation of the language

semantics as it precisely mimics the language definition.

.O,s5

t2t sl

tro

4.10. Implementation of ATLANTIS

PROCEDURE-DECLARATION:
procedure-sym ident

YoTo Pass 1: -- semantic region s1

call add-procedure-to-symbol-t able ;

call create-block;
ToTo

ToTo Pass 2: -- semantic region s2

call enter-block;
call inherit-via-scope-rules(nonlocal) ;

Yo%

FORMAL-PARAMJIST semicolon
DECLARATION-SEQUENCE
ToTo Pass 1: -- semantic region s3

call inherit -via-scope-rules (local) ;

%%
BLOCK;

IDENTsl 2

procedure foo

131

(")

PROCEDURE_DECLARATION

SEMICOIJON

FORMAL-PARAM-LIST DECLARATION_SEQIIENCE

BLOCK

s3

(b)

Figure 4.2O. The rules and the corresponding tree.

4.10. Implementation of ATLANTIS t32

In order to describe the dynamic semantics of the language, the language designer

must be aware of the underlying mechanism of ATLANTIS; a reader of such a definition

must also understand this mechanism. In particular, ATLANTIS must have the ability

to continue execution of a program in the defined language from an arbitrary location

in the annotated parse tree. This is essential for the description, and execution, of

language features such as conditional statements, loops and subroutine calls, where

certain statements may need to be omitted or repeated. To meet this need, ATLANTIS

provides a special collection of HLO's. To understand how this works, the reader

simply needs to be aware that a label may be associated with each node (terminal or

nonterminal) or area between two adjacent semantic regions. A label, which is simply

a string, can be associated with any node by a call to the d,ef'ne-Iabel operation; this

operation takes a single argument which is a string and associates it with the current

node. The value associated with a node is returned by the function return-label; if the

current node does not have a label defined, then the previous node which does have

an associated label is returned. ATLANTIS also provides a function generate-name

which returns a unique string which can be used to specify a label name. Allocation of

labels to nodes is a dynamic process and is performed as a part of the interpretation

of a source program in the subject language. As a result, labels are not built into the

parse tree at the time of its generation.

All that remains now is the provision of a mechanism to alter the focus of attention

for the interpreter (the locus of control) to some other part of the parse tree, rather

than simply progressing to the next node in the tree traversal. Such a mechanism is

necessary for the definition of goto statements, conditionals and repetitive constructs'

This movement across the parse tree is achieved through the use of the predefined

HLO's goto-neat and goto-preu. These operations each take a string as an argument

4.11. Obsewations 133

and change the locus of control to the node whose label matches the string specified.

The difference between these two HLO's is the direction in which the search is per-

formed - goto-next searches from the current location to the "right" (toward the end

of the source program), whilst goto-prev searches in the reverse direction.

It is also necessary to note the label which may potentially be a target of a goto-next

or goto-prev HLO. The name of the target label may vary for a number of reasons. For

example, a nested if statement may have several else branches and it is necessary to

ensure that the correct one is targetted. The name of the goal label is associated with

a node by storing it in an auxiliary label associated with the same node. ATLANTIS

provides the operations d,efine-aux-label and return-aua-Iabel which are analogous to

definelabel and returnlabel, respectively. Auxiliary labels simply record the name of

a target label which may be the target of a goto-next or goto-prev instruction. These

instructions simply locate a node whose label (not auxiliary label) matches the string

specified.

4.LL Observations

ATLANTIS is a useful tool for language designers, motivating the production of a

formal definition by the generation of an interpretive implementation for the new

language. This allows language designers to test language design ideas and ensure

they perform in the desired manner. The interpreter simply builds and manipulates the

information structures as specified in the language definition; if the observed results of

the interpreter are not as expected, then this is a clear indication that there exists some

problem with the language definition. Through the use of the language interpreter, the

4.11. Obseruations 134

language designer is able to locate and modify those areas of the language definition

that are poorly or inadequately defined.

The generation of the interpretive implementation directly from the language def-

inition allows the language designer to experiment with new concepts and features,

and also allows the investigation of these features and their interaction with other

aspects of the language. This encourages the development of a more refined language

definition than might otherwise be obtained through more traditional methods.

Formal methods (such as VDM, denotational semantics and the technique pre-

sented in this thesis) share a common benefit to the language designer - if a language

feature is difficult to describe, then it is likely to be difficult to learn how to use and

is likety to be a source of difficulty in the use of the language. An example of this

was shown in Chapter 3: the complexity of describing scope rules in Pascal due to

the design decision of handling function value return through an assignment to the

function-pseudo-variable, rather than through something like a return statement.

Experiments in using ATLANTIS have included the definition of the language

Neptune outlined in Section 4.1. As stated earlier, Neptune is essentially Pascal

without the following features: labels, constants, type definitions, arrays, records,

the character type, variable parameters, with statements, repeat loops, goto state-

ments and trigonometric functions such as sine and cosine. Neptune features not in

Pascal are: strings, general loop statement, an exit statement and a return statement.

Comments in Neptune take the form of comments in Ada, rather than the style of

comments used in Pascal. Despite the aspects of Pascal not included in Neptune,

Neptune is still a non-trivial language which contains many of the features of Pascal

which are difficult to model accurately (e.g., its scope rules).

4.11. Observations 135

The complete Neptune definition requires 4547 lines of which 78 lines describe

the lexical components of the language, 169 lines describe the syntactic nature of

Neptune, 942 lines define the necessary ADT's, 2961 lines describe the HLO's, and

397 lines associate semantics with syntactic elements.

When processed by the ATLANTIS system, the Neptune definition generates a

236-line file to act as input to lex to produce a scanner; it also generates a 3526-line

file to act as input to yacc to produce a parser which will create the decorated parse

tree. Also generated arc 4672lines of Ada code, which is then combined with the 9260

lines of Ada common to all interpreters generated by the ATLANTIS system. When

compiled and integrated, this results in an interpreter for Neptune which successfully

detects and handles syntax errors and which, when presented with a semantically

correct Neptune program, produces results which are consistent with the language

definition.

The ATLANTIS system itself is relatively simple and easy to use. The generated

interpreter is reasonably efficient and it is also helpful with regard to reporting errors

in syntactically incorrect programs. The interpreter is faithful to the language defini-

tion, with regard to the semantics of the language, detecting and reporting semantic

errors only if the language definition indicates this to be the appropriate course of

action. When used by the language designer, the generated interpreter is helpful in

pinpointing problems in the language definition. These problems include insufficiently

defined semantics, and semantics which do not reflect those which were intended by

the language designer. The language designer has sufficient feedback to observe a

program's execution and deduce, with a great deal of accuracy, where the difficulty

within the language definition is to be found. Users who are unfamiliar with the

intricacies of the language definition technique find that the generated interpreter

4.11. Observations 136

behaves in a manner similar to that of other interpreters which which they may have

some experience. If a problem exists in the language definition (and hence in the

generated interpreter), then a user who is unfamiliar with the language definition

is likely to conclude that their Neptune program is in error. Increased support for

the language designer in evaluating the language being defined, and refining the the

semantics until they match those that the language designer intends, would be useful

extensions to the ATLANTIS system and will be discussed briefly in Chapter 6.

The Neptune definition itself is fairly lengthy, yet well structured since it is divided

into sections concerned with various aspects of the language definition. However, the

definition is still considerably shorter than an accurate natural language description

of the equivalent portions of Pascal. The multipass nature of the definition was

useful in the definition of various aspects of Neptune and made this task easier, but

possibly resulted in a language description which is more difficult to read than may

otherwise have been obtained. This is because a reader of the language definition has

to understand the state defined by various information structures at the start and end

of each pass. This difficulty is overcome to some extent by providing such details as

part of the natural language narrative which accompanies the formal description.

The multiple layers of the definition are useful to readers allowing them to moderate

the degree of formalism to which they expose themselves, but it is a slight disadvantage

from the point of view of the incremental design of a programming language. The

ATLANTIS system cannot generate an interpreter for a language until sufficient

amounts of each layer are presented. This means that the incremental design of a

programming language involves the incremental design and development of each layer

of the model simultaneously. There is no mechanism by which all of the necessary

ADT's, for instance, can be defined and tested before the HLO's are defined. This

4.11. Observations

may result in the ATLANTIS system being slightly awkward for language designers.

ATLANTIS does offer language designers better long-term support than a natural

language definition of the programming language, in that the ramifications of minor

changes made to the semantics of an almost complete language definition are easily

identified. In summary the language designer faces a greater cost (in terms of effort)

to start an ATLANTIS definition of the programming language, in relation to a

natural language definition. However, as the language definition nears completion, the

ATLANTIS definition of the programming language is significantly easier to manage

than a corresponding natural language definition.

In general, the results of the experiment of writing the Neptune definition are

encouraging. The ATLANTIS approach results in a language definition from which an

interpreter can be generated and, furthermore, the generated interpreter is useful and

reasonably efficient. The multi-pass nature of the definition simplifies the language

designer's task and, if combined with adequate natural language narrative explaining

the interface between the various passes, is relatively simple for readers to comprehend.

The multi-layer nature of the model may be awkward for the language designer

in the initial stages of the programming language definition, but the ATLANTIS

system soon proves extremely useful in assessing proposed semantic changes. From a

reader's perspective, the multi-layer approach, when combined with a natural language

narrative, is a useful technique which allows each reader to view the language definition

with the degree of formalism appropriate to their needs. This makes a programming

language defined using the ATLANTIS system useful to compiler writers, language

designers and programmers alike.

137

4.12. Difficulties

4.L2 Difficulties

ATLANTIS is based on ADT's, which are inherently sequential in nature; as such,

they are of little use in describing parallel language features. The difficulty is that

the integrity of the data objects specified by the ADT cannot be guaranteed in an

environment where multiple processes may attempt to access the data object at any

one time. Another technique, known as shared data abstractions (SDA's), rectifies

this problem and is explored in the next chapter. Through the use of this technique, it

is then possible to formally describe the semantics of parallel programming languages

with a layered semantic model of the kind already described in this thesis. Such a

model is also illustrated in the next chapter'

138

Chapter 5

Describing Parallel Languages

5.1, Introduction

The model presented in the previous two chapters is founded on regarding the infor-

mation structure involved in an operational semantic model as an ADT; this ADT and

its associated primitive operations are then specified algebraically, thus significantly

increasing the precision of the operational semantic model.

Algebraic specification of ADT's traditionally assumes a sequential environment

for the application of the operations of the ADT. However, the information structures

required for the description of a parallel programming language must have the ability

to be accessed by multiple concurrent processes. As a result, ADT's no longer provide

a wholly suitable medium for the basis of a model for the description of parallel

programming languages.

There is an abundance of methods for describing the semantics of parallel program-

ming languages (for example, automata [102], modal logic [1], temporal logic [56, 117],

attribute grammars [140], and axiomatic semantics [5, 108, 109, 110, 126]). However,

139

5.2. Mallgren's Approach to Shared Data Absttactions

the various formal descriptions of parallel programming languages tend to be rather

difficult to read and difficult to write.

Adoption of any of the techniques described above would result in discarding the

model developed for sequential languages. Fortunatel¡ a technique has been developed

by Mallgren [80] for the specification of shared data abstractions (SDA's), which permit

the description of ADT's which operate in an environment where multiple processes

may attempt to access the data structure simultaneously.

6.2 Mallgrents Approach to Shared Data Abstrac-

tions

The extension of sequential abstract data types to a parallel programming environment

requires the addition of a mechanism to synchronize (possibly conflicting) accesses to

the shared object by several independent parallel processes. Shared data abstractions

offer a mechanism to specify this synchronization within an algebraic framework. The

use of Mallgren's technique for SDA's will now be introduced, using as an example the

abstract data type specification for an infinite queue (shown in Figure 5.1). For the

purposes of this illustration, it will be assumed that the queue data structure is being

shared by some number of parallel processes; the elements which can be stored in the

queue are of type "elem". A proof of correctness of the SDA in Figure 5.1 will also be

given.

Each SDA object consists of a protected resource, called t'state", with one or more

ADT operations (which Mallgren calls "events" and which will be called basic state

generators following Freidel [33]) which may be applied to the protected resource.

These basic state generators are applied to the state at the request of an auxiliary

140

5.2. Mallgren's Approach to Shared Data Abstractions

Infinite-Queue-SDA (elements of type "elem")

high level routines

get
put

elm
elem

basic state generators

r4l

-)
+

get$c
get$r
put$c
put$r
$init

queue-srze
fetchitem

get

put

state
state

elem x state
elem x state

+ state
+ state

state

auxiliary functions

state +
integer x state -)

integer
elem [J {error}

axloms

for all N in integer, L in state, X in elem, let

:wait(L) : (queue-size(L):0)
:value(L) : fetchjtem(queue-size(L), L)

:wait(X, L) : false

queue-size($init) : g

queue-size(get$c(L)) : eü€ü€-s ize(L)
queue-size(get$r(t)) : eu€üerize(L) - I
queue-size(put$c(X, L)) : queue-size(L) + 1

queue-size(put$r(X, L)) : queue-size(L)
fetchjtem(N, $init) : error
fetchjtem(N, put$c(X, L)) : if N : 1

lîr"""rä"n-rtem (N-l, L)
end if

fetchjtem(N, put$r(X, L)) : fetchjtem(N' L)
fetchjtem(N, get$c(X, L)) : fetchjtem(N' L)
fetchjtem(N, get$r(X, L)) : fetchjtem(N' L)

(1)
(2)
(3)
(4)
(5)
(6)
(7)

(8)
(e)
(10)

Figure 5.1. The shared data abstraction specification of an infinite queue.

5.2. Mallgren's Approach to Sharcd Data Absttactions

function being applied to the state, or due to a high leael routine (called an "operation"

by Mallgren) being executed on the shared object. These high level routines are the

means by which external processes access the shared data object.

Each high level routine implicitly applies two basic state generators to the "state"

object, as a result of the invocation of a high level routine. These particular basic state

generators willbe called euent functions (or simply euents). The first, a call event, is

applied immediately to the state when the high level routine is invoked. The second, a

return event, is applied immediately before the high level routine returns to the calling

process. A process executing a high level routine on an SDA object may be forced to

wait if the return event cannot be evaluated immediately. There are two high level

routines in the SDA in Figure 5.1, namely "get" and "put"; for each of these, there

is a call event and a return event, as summarized in Table 5.1. Thus, for example,

when an queue object with internal state uS' is accessed with the SDA routine "get",

the state becomes "get$c(S)". When the "get" SDA routine returns, assuming that

the internal state is "S"' immediatelybefore returning, the result is "get$r(S')". The

internal state of an queue object is implicitly initialized by "$init" when the object is

created.

High level routine Call event Return event
get
put

get$c
put$c

get$r
put$r

Table 5.1. Call and return events for the infinite queue shared data abstraction

In addition to the usual kinds of axioms which occur in algebraic specifications of

ADT's (represented by axioms 1 through 10 in this case), the axioms in the queue

description in Figure 5.1 also include the specification of two characteristic functions

associated with each high level routine (and thus their corresponding events). The first

r42

5.2. Mallgren's Approach to Shared Data Abstractions 143

of these characteristic functions, ttwait", describes the synchronization and sequencing

requirements for the completion and return of the called high level routine. As can be

seen in Figure 5.1, the "get" function, when called, may not return while the number

of values in the queue (defined by the function "queue-size") is zero; that is, it must

wait until there exists at least one value in the queue. On the other hand, the "put"

SDA routine need never wait before returning. The second characteristic function is

called "value" and describes the value returned by the corresponding SDA routine

when it does return from a call. In the case of the "get" SDA routine, the value at

the head of the queue is returned. The ttpnt" routine does not return a value and so

no "value" characteristic function specification is given for this routine; it simply has

the side effect of adding a value to the tail of the queue.

The evaluation of characteristic functions is considered to be atomic. They are

not interruptible by another process wishing to evaluate the same function. It is also

unnecessary to specify the result ofthe characteristic function applied to every possible

state. This is because, for the sake of brevity and readability, the SDA specification

includes implicit axioms applying the characteristic function to the previous state if

no rule is applicable for the current state.

Auxiliary functions, like the basic state generators, are invisible outside the SDA.

The purpose of the auxiliary functions is to facilitate the specification of the character-

istic functions. For example, the auxiliary function "queue-size", defined by axioms 1

to 5 of Figure 5.1, exits so that it can be used in the specification of the "wait" and

"value" characteristic functions for the "get" routine. Similarly, axioms 6 to 10 define

a "fetchjtem" function which is needed in the specification of the "value" function for

"g"t". In fact, the sole purpose of the axioms 1 to 10 is the definition of the semantics

of these auxiliary functions.

5.2. Mallgren's Approach to Shared Data Abstractions L44

Thus, the internal state of the queue may be denoted by the sequence of SDA

routines called and returned, sequenced in accordance with the synchronization con-

straints implied by the "wait" characteristic functions for each SDA routine. Auxiliary

function applications are not recorded in this representation of the internal state.

Some comments on the domains and ranges of these various functions are in order

at this point. The notation used for the basic state generators and auxiliary functions

is that normally used in specifying the operations of ADT's; notice, in particular, that

the type "state" occurs frequently in the specification of these functions in Figure 5.1.

A little more unusual is the notation employed for the specification of the high-level

routines; following the convention used in [80], the "state" type is omitted from these

operations, in order to simplify later specifications.

For an abstract data type to be shown correct, there are two issues which must be

dealt with: sufficient-completeness and consistency. The same properties are required

of a shared data abstraction. For the queue SDA, the canonical form of "state" objects

contains one tt$init" operator and zero or more applications of event functions (i.e.,

zeÍo ot more applications of ttget$c", "get$rt', *put$c" and "put$rt').

Consider the properties of sufficient-completeness and consistency for the transfer

operators ttqueue-size" and ttfetchjtem". For *queue-size", axioms 1 through 5 are

relevant. Axiom 1 defines the initial case and axioms 2 through 5 define the general

cases in the induction process (one for each of the operations listed above). Thus, the

application of t'queue-size" to any object of type ttstate" results in at least one value.

Note also that the application of "queue-size" to any object of type "state" results

in at most one value, because there is only one applicable axiom in each case. The

axioms are thus sufficiently-complete and consistent with respect to "queue-size". A,

similar argument, using axiom 6 and axioms 7 through 10, verifies the specification of

5.3. The Ada Rendezvous

"fetchjtem". Since the basic constructors are not related to each other by any axioms,

u/e can now state that this specification of an infinite queue is sufficiently-complete

and consistent.

It is important to point out that Mallgren's notation focuses primarily on the

high-level routines. This makes it amenable to use in the description and design of

programming languages, as demonstrated in [105, 107], where the desired view of

the shared object is that from the perspective of the processes which use the object,

without the detail of the sequence of ADT operations and synchronization events which

the high level routines may entail.

As seen in the previous chapter, ATLANTIS uses ADT's to define data types and

the operations on them. These ADT definitions are then used to define variables

which can be manipulated by the language definition to describe the semantics of

the programming language; these variables are simply named values which may be

passed to an operation and altered in some way before a new value is assigned or

associated with the variable name. SDA's differ from this behaviour in that the

approach advocated by Mallgren does not export a type name which can be used to

declare variables; rather, each SDA definition describes a single object of the defined

type and its "state" is managed by the SDA. fn essence, the SDA is specifying an

object and protecting it by hiding the state of the object.

5.3 The Ada Rendezvous

This chapter will present a description of a detailed, formal model of the intertask

communication in Ada as an example of the use and power of SDA's in the description

of parallel programming languages. First, however, an examination of the various

145

5.3. The Ada Rendezvous 146

forms of communication in Ada is warranted. The various forms, also discussed

in [33, 86, 87], are based on the various language constructs involved with Ada's

rendezvous mechanism. This mechanism is achieved through entry calls and accept

statements, with certain kinds of nondeterminism being introduced through the use

of Ada's select statement.

Ada provides three kinds of entry call: deterministic entry calls, conditional entry

calls and timed entry calls. Deterministic entry calls are, as the name suggests,

deterministic in nature and will eventually occur provided that program execution

lasts sufficiently long. Conditional and timed entry calls are similar in behaviour and

both occur within select statements. In each case, the entry call may or may not

eventually take place. In essence, there are then two distinct forms of entry call which

are termed, following [33, 86, 871, iletermínistic senil and conilitional send; these cover

entry calls made outside and within a select statements, respectively.

There are two forms of accept statement which occur in Ada: deterministic ac-

cept statements, which do not reside within select statements, and nondeterministic

accept statements, which do reside within select statements. This latter possibil-

ity arises through the "selective wait" form of the select statement and provides a

"nondeterministic" selection from several alternatives which are otherwise ready to

proceed. These two types of accept statement are termed deterministi,c receiae and,

n on d et erministic receiu e, respectively.

In order to minimize the complexity of the present description, the model presented

here only concerns itself with in and out parameters of the rendezvous. The model

can be extended to cater for in out parameters. Further, the model does not consider

exceptional circumstances which may occur, such as a task becoming abnormal. The

focus here is on the rendezvous, rather than on the description of various other aspects

5.3. The Ada Rendezvous

of the different forms of the select statement. Thus, the above classification scheme

represents a suitable level of abstraction.

Combination of the various forms of entry call with the various forms of accept

statement provides four types of rendezvous. The current definition of Ada provided

by the Ada language reference manual (ALRM) [141] indicates that synchronization

of the tasks must occur before any form ol cornmunicati,on can take place. Any formal

model of the Ada rendezvous mechanism must address synchronization, in addition to

describing the communication which occurs between the tasks involved.

In the ensuing discussion, reference will be made to various paragraphs of the

ALRM1 which support the description of Ada presented here. The ALRM provides

the following statements when defining the rendezvous:

ALRM g.5(6): The parameter modes defined for parameters of the formal

part of an entry declaration are the same as for a subprogram declaration

and have the same meaning (see 6.2). The syntax of an entry call statement

is similar to that of a procedure call statement, and the rules for parameter

associations are the same as for parameter calls (see 6.4.1 and 6.4.2).

ALRM 9.5(10): Execution of an accept statement starts with the evalua-

tion of the entry index (in the case of an entry of a family). Execution of

an entry call statement starts with the evaluation of the entry name; this

is followed by any evaluations required for actual parameters in the same

manner as for a subprogram call (see 6.4). Further execution of an accept

statement and of a corresponding entry call statement are synchronized.

lParagraphs of the AIRM will be referred to using the notation "ALRM ,.y(z)" where a is the

chapter number, y the section number and z the paragraph number; a section of the ALRM will be

referred to using the notation "ALRM e.y''.

147

5.3. The Ada Rendezvous 148

ALRM 9.5(1a): When an entry has been called and a corresponding accept

statement has been reached, the sequence of statements, if any, of the

accept statement is executed by the called task (while the calling task

remains suspended). This interaction is called a rendezaous. Thereafter,

the calling task and the task owning the entry continue their execution in

parallel.

ALRM 9.5(15): If several tasks call the same entry before a corresponding

accept statement is reached, the calls are queued; there is one queue

associated with each entry. Each execution of an accept statement removes

one call from the queue. The calls are processed in the order of arrival.

An examination of the above paragraphs indicates that there is a queue associated

with each entry, such that each entry may only communicate with one task at a time.

We know from elsewhere in the language definition that the calling task knows the

name of the task it calls, as well as the name of the entry, but that the called task

knows nothing about its caller. That is to say, the rendezvous mechanism of Ada is

asymmetric.

Paragraph 9.5(10) of the ALRM suggests that the calling task must evaluate

the actual parameters before the rendezvous commences. This suggests that the

transmission (communication) of the in parameters forms part of the rendezvous and

hence occurs synchronously. Paragraph 9.5(6) informs us that the rules for parameter

association are the same as that for subprogram calls and refers us to ALRM 6.4.1 and

ALRM 6.4.2. As the section of the ALRM on tasking provides no special information

on the semantics of parameter transmission in the context of a rendezvous (such as

5.3. The Ada Rendezvous

when out mode parameters are transmitted), the reader is forced to check the sections

referred to. There, the ALRM states:

ALRM 6.a.1(7): ¡ After (normal) completion of the subprogram body: for

a parameter of mode in out or out, it is checked that the value of the

formal parameter belongs to the subtype of the actual variable. In the

case of a type conversion, the value of the formal parameter is converted

back and the check applies to the result of the conversion.

ALRM 6.a.1(10): The exception CONSTRAINT-ERROR is raised at the

place of the subprogram call if either of these checks fails.

which suggests, for example, that the value of the out parameters are transferred

after normal completion of the subprogram block. To place this into perspective with

respect to a parallel environment demands an explanation of t'normal completiontt

with respect to tasks. An explanation of the latter concept is to be found in:

ALRM 9.4(5): A task is said to have completeil its execution when it has

finished the execution of the sequence of statements that appears after the

reserved word begin in the corresponding body. Similarly a block or a

subprogram is said to have completed its execution when it has finished

the execution of the corresponding sequence of statements. For a block

statement, the execution is also said to be completed when it reaches

an exit, return, or goto statement transferring control out of the block.

For a procedure, the execution is also said to have completed when a

corresponding return statement is reached. For a function, the execution

is also said to have completed after the evaluation of the result expression

of a return statement. Finall¡ the execution of a task, block statement, or

149

5.3. The Ada Rendezvous 150

subprogram is completed if an exception is raised by the execution of its

sequence of statements and there is no corresponding handler, or, if there

is one, when it has finished the execution of the corresponding handler.

Unfortunatel¡ this does not help to place the phrase unormal completion of the

subprogram body" in ALRM 6.4.1(7) into context with respect to a rendezvous.

Hence, our only choice is to infer that the equivalent statement with respect to the

rendezvous mechanism would be "normal completion of the rendezvous". Reference

to ALRM 9.5(14) suggests that the rendezvous is complete when the accept statement

has been executed, at which point the called and calling tasks continue their execution

in parallel. This suggests that, as far as the called task is concerned, the transmission

of out parameters occurs asynchronously. This is further supported by the fact that

ALRM 9.4(5) states that an exception raised within a task results in the completion of

that task or block. Since ALRM 6.4.1(10) tells us that failure of any of the constraint

checks on the out parameters results in a CONSTRAINT-ERROR being raised at the

point of the subprogram call (substitute entry call), we again find indirect evidence to

suggest that the transmission of out parameters may occur asynchronously outside of

the rendezvous, but before another rendezvous with that entry may commence.

If our interpretation of "normal completion of the subprogram body" of ALRM

6.4.1(7) is "normal completion of the statements inside the accept statement, but

before the rendezvous is considered to be finished", then the transmission of out

parameters is clearly synchronous. This is substantiated by considering ALRM 6.4.1(7)

and 6.4.1(10), which dictate that an exception is to be raised at the point of the

subprogram call (entry call).

5.4. A Sharcd Data Abstraction Model for the Ada Rendezvotts 151

Consideration of ALRM 9.4(5) and 6.4.1(10), which both describe behaviour with

respect to exceptions, results in a contradiction. If an exception is raised during

the rendezvous, it must affect the called task according to ALRM 9.4(5), whilst

ALRM 6.4.1(10) indicates that a constraint check failure during transmission of out

parameters only results in a CONSTRAINT-ERROR within the calling task. The

only conclusion we can draw is that transmission of out parameters may be syn-

chronous (part of the rendezvous) as far as the calling task is concerned, but may be

asynchronous (outside the rendezvous) with respect to the called task. This seeming

contradiction arises as a direct result of attempting to define a parallel language

feature by analogy to a sequential language feature, in conjunction with an imprecise

definition as to the exact moment that a rendezvous commences and finishes. This

leaves a reader to "fill in the gaps", resulting in many compiler writers drawing on their

sequential language experiences on monoprocessor architectures and implementing out

parameters as though they form part of the rendezvous, thus ignoring the contradiction

between ALRM 9.4(5) and 6.4.1(10). The mere fact that many compiler writers have

chosen this option does not mean that it is correct, nor that it is the only possible

interpretation. The complexity of intertask communication is a result of not viewing

the communication aspect as a critical element and modelling it in a suitable fashion

before the description of tasking in the ALRM was attempted.

5.4 A Shared Data Abstraction Model for the Ada

Rendezvous

A formal model of the Ada rendezvous must address the issues raised in the previ-

ous section, as well as describing the synchronization occurring during a rendezvous

5.4. A Shared Data Abstraction Model fot the Ada Rendezvous r52

attempt. The model presented in [33], which forms the basis of the discussion here,

represents a potential rendezvous between two tasks by an interface object, consisting

of:

o a synchronous communication port called uinfojn" (to cater for in parameters),

and

o an asynchronous communication port called *info-outtt (for out parameters).

The model is illustrated in Figures 5.2 and 5.3. Figure 5.2 provides an outline of

the definition for three Ada tasks: the task "T1" merely accepts a call on its entry

t'el", task "T2" accepts a call on its entry "e2" and. calls the entry tteltt belonging to

ttTl", and ttT3" calls entry "elt' of "T1" and entry "e2" of uTz". The interactions

between these tasks are represented by the two interface objects on the lefthand side of

Figure 5.3. The info-in port handles two essential aspects of the interaction between

tasks: the queuing of requests to entry points and the synchronization of message

transfer. In spite of the fact that a rendezvous only involves two tasks, it is necessary

to model the queuing of tasks on an entry call because Ada allows several calling tasks

to simultaneously attempt to rendezvous with a given entry.

Freidel [33] models the tasks themselves as conlnlunication /isús. There is one of

these for each task instance and a communication list is divided into two tables:

o the in-Iist table, which describes the entries belonging to the task and indicates

the corresponding interface object (of which there will be precisely one for each

entry), and

o the out-list table, which describes the entries of other tasks potentially called by

this task - the elements of this table indicate the appropriate interface objects.

5.4. A Shared Data Abstraction Model for the Ada Rendezvotts

accept el;

Task T2;

T1.e1;

Task T3;

153

TTask 1

e2;accept

't
T1.el;

Figure 5.2. A sample Ada program.

T1 T1.e1

in_list

in_list

outjist

ouilist

T2.e2;

T2

info inel

info_out

e2

T1.el

Tl.el

T2.e2

info_in

info_out

Figure 5.3. Communication paths of Ada tasks

5.4. A Sharcd Data Abstraction Model for the Ada Rendezvous r54

The communication lists for the tasks in Figure 5.2 arc shown on the lefthand side of

Figure 5.3. The part of the list above the longer horizontal line is the in-list table,

whereas that below the longer line is the outlist table. Either of these tables may, of

course, be empty for a particular task, as illustrated by the fact that the outlist for

"T1" and the in-list for "T3" are both empty.

Figures 5.2 and 5.3 are sufficient to indicate that several tasks may attempt to

access the queue associated with a particular entry at any given time. For example,

instances "T2" and "T3tt may attempt to access the queues associated with the entry

ttel" of ttTlt' at the same time. Such queues must be protected to ensure data integrity

and suitable behaviour. In this context, ordinary abstract data types are insufficient.

The model described here, first described by Freidel in [33] and later refined in [86],

uses the notion of SDA's discussed in Section 5.2 to represent such objects.

Operations on info-in ports are modelled by the SDA "Synchronous-SDA", which

is outlined in Table 5.2; operations for the info-out ports are modelled by "Asyn-

chronous-SDA", outlined in Table 5.3. The "PID" referred to in Tables 5.2 and 5.3

denotes a process identifier type; these process identifiers are used to uniquely identify

a task instance in the queue within the SDA. The reader is referred to [34] for a

complete specification of these SDA's using Mallgren's approach, and for a proof of

their consistency and sufficient-completeness. The proof of consistency and sufficient-

completeness is similar to that discussed for ADT's in Chapter 2.

To the user of the SDA, it is the high level routines that are of prime importance.

These are basically divided into two groups: those associated with writing to the

interface, and those associated with reading information from it. Within each group,

it is necessary to consider two cases: the deterministic case and the conditional case.

5.4. A Shared Data Abstraction Model for the Ada Rendezvous

Operation Description
write-try PID Place the process name

PID into the queue. This operation
informs the shared data abstraction
that the indicated process wishes to
write to the communication

can-write-complete? (PID) Checks the queue and immediately
returns a boolean value indicating if
the indicated process could complete a

write operation without any waiting.
write-wait(PID) Checks the queue and waits until the

indicated process can validly write
to the communication port without
waiting.

write(PlD, A) Allows the process named PID to
write the information .4 to the com-
munication port. The operation is
forced to wait if another process is
currently writing to the port.

read-try Informs the communication port that
there is a process wishing to read
information from it. No attempt is
made to get the information.

can-¡ead-complete? Checks the communication port and

returns a boolean value indicating if
there is anything on the queue to be
read.

read-wait Forces the calling process to wait until
there is information to be read from
the communication port. No attempt
is made to read it.

read Reads the current information from
the communication port.

Table 5.2. The operations applicable to a synchronous communication port.

155

5.4. A Shated Data Abstraction Model for the Ada Rendezvotts 156

Operation Description
read If there is a value to read in the commu-

nication port, it is read and the value
returned; otherwise, the calling process

is forced to wait until there is a value to
read.

write(A) Write the value .4 to the communication
port. The writer must wait if the port
is actively involved in another reading
or writing operation.

can-read? Immediately returns a boolean value
indicating if the caller could success-

fully complete a read operation without
waiting.

Table 5.3. The operations applicable to an asynchronous communication port.

For processes wishing to place information into the interface, it is necessary to

first request permission to write into the interface using the ttwrite-try" operation.

This queues the requesting process in the interface. The process then has two choices.

In the deterministic case, the operation "write-wait" is called. This returns to the

task when the operation "write" can be performed successfully - the task must then

call ttwrite". For the conditional case, the task can call "can-write-complete?". This

operation performs queue management, as well as inquires about the state of the

interface. If the "write" operation can complete, the operation returns tttrue"; if not,

it returns "false" and removes the task from the queue. The operations for message

reception are similar.

5.4.L Modelting Interface Objects and Communication Lists

As mentioned above, an interface object represents a potential rendezvous between

two tasks. It uses its infojn field to record the path along which information is

5.4. A Sharcd Data Abstraction Model for the Ada Rendezvous L57

passed into the called task and its info-out field to record the path along which the

out parameters are passed. Interface objects are regarded as being variables of the

type uinterface" defined in Figure 5.4. As shown in this figure, the infojn field is

occupied by an instance of the SDA called "synchronous-SDA" (whose operations

were outlined in Table 5.2), and the info-out field is occupied by an instance of the

SDA "Asynchronous-SDA" (whose operations were given in Table 5.3).

Figure 5.4 also defines a type describing a communication list. This shows that

such a list is composed of an "inlist" table and an "out-list" table. The elements of the

inlist table represent the entries of the task and their corresponding interface objects.

This table is an object of type "In-Table-ADT", whose operations are summarized in

Table 5.4. As shown in Figure 5.4, inJist is a table indexed by a string (representing the

entry name) and whose elements are pointers to interface objects. Associated with each

entry is a parameter list which is represented by an object of type "Param-Info". Since

parameter transmission is not the focus of attention in the description of the inter-task

communication of Ada, details of the type "Param-Info" will not be discussed further.

The SDA in the "info-in" field of the corresponding interface is used to receive the

parameters passed by the call being accepted.

The elements of the out-list table represent entry calls on other tasks. As a call

to an entry in another task involves specifying the task involved as well as the entr¡

the table is indexed by both the task name and the entry name. The related "infojn"

field of the corresponding interface is used to send information at the time of the call,

while the "info-out" field is used to send the reply information. The out-list table is

of type "Out-Table-ADT", whose operations are summarized in Table 5.5.

In order to complete the information structure model of the semantics of intertask

communication in Ada, it is now necessary to provide adequate descriptions of the

5.4. A Sharcd Data Abstraction Model for the Ada Rendezvous

type
interface:

record
infojn: Synchronous-SDA(ParamJnfo) ;

info-out : Asynchronous-SDA(Param-Info) ;

end;

communicationlist :
record

inlist: In-Table-ADT(string, f interface) ;

out-list: Out-Table-ADT(string, string, finterface);
end;

Figure 5.4. Types used in the description of Ada tasks.

Operat ton D

create Make a new "In-Table-ADT' object
insert(T, E, I) Insert into table T, an entry with index

E', and associated information L If such
an index already exists in the table,
then alter the information associated
with it.

delete(T, E) Delete from the table Trthe information
associated with the index E If E does

not exist in table ?, then this operation
has no effect.

retrieve(T, E) Return the information associated with
the index E in table T. If E does not
exist in table ?, then raise an error.

is-defined(T, E) Return "true" if the index E is defined
for table ?; otherwise, return "false".

is-empty(T) Return "true" if the table ? is empty;

"falset' otherwise.

158

Table 5.4. The operations applicable to an "In-Table-ADT' object.

5.4. A Shared Data Absttaction Model fot the Ada Rendezvous 159

Operation Description
create a new uOut-Table-ADT" object.
insert(T, P, E, I) Insert into table ?, an entry with indices

P and E, and associated information
L If such an index already exists in
the table, then alter the information
associated with it.

delete(T, P, E) Delete from the table ?, the information
associated with the indices P and E.

If the indices P and E do not exist
together in table ?, then this operation
has no effect.

retrieve(T, P, E) Return the information associated with
the indices P and ,E'in table T. If P and
E do not exist together in table ?, then
raise an error.

is-defined(T, P, E) Return "true" if the indices P ar'd E
are defined together for table l; return
ttfalse" otherwise.

is-empty(T) Return "true" if the table T is empty;
return "false" otherwise.

Table 5.5. The operations applicable to an "Out-Table-ADT" object.

transformations of the information structures caused by the various relevant language

features. This is done by giving an algorithmic description of an euent corresponding

to each such language feature. These events describe the semantics of communication

between Ada tasks by setting up interfaces and communication lists, linking them,

rearranging their interconnections, and transferring values to and from the interfaces.

Each of these algorithms is regarded as a set of actions executed in place of the

language feature it describes. Note that extracting a value from an interface may

cause the task instance executing the language feature being described to wait if the

shared data abstraction in the interface object dictates. In such a case, the evaluation

of the corresponding event is suspended at the point of attempting to extract the

value. When a value becomes available, the evaluation of the event may continue.

5.4. A Shared Data Abstraction Model for the Ada Rendezvous 160

The notation used in the algorithmic descriptions derives largely from that used

in [83]. The identifier "current" will always be a pointer to the communication list

corresponding to the task instance executing the event for language feature being

described. In this paper, it will represent either the calling task or the called task,

depending on whether a send or a receive event is being described. Other aspects of

the notation used are as follows:

r Each description will be delimited by the keywords "begin" and "end".

o Sequential actions will be separated by semicolons ";".

o Variables which are local to the events being described are always in single

uppercase letters, such as ttAtt.

o The symbol "::tt will be used to denote assignment.

¡ "Dot notation" is used for selecting fields within this model. Thus, for example,

if "B' is an interface object, then "B.infojn" refers to the "info-in?' field of the

interface object "8". This notation is also used to uniquely reference an operation

whose definition may be overloaded due to its provision by several ADT's.

o The notation "f" means that the reference is followed to the object it refers to.

Thus, if "Au refers to an interface object "8", then "Af" is the interface object.

o There is a predefined value used in the model. The value "null" indicates that

the field is not used; although the value "null" indicates emptiness, it may be

dereferenced (also giving the value "null") or have field selection performed on it

(again giving the value "null"). There is also a predefined tyoe: the type "string"

(already seen in Figure 5.4) indicates a field composed of a character string of

arbitrary length.

5.4. A Shated Data Abstraction Model for the Ada Rendezvous 161

¡ The conditional and repetitive constructs used have closing keywords, such as

uif . . . fi" . (Keywords will always be in lower case letters and in bold face).

¡ The notation "--" will be used to introduce comments, which continue until the

end of the line.

5.4.2 Primitrves

The algorithmic event descriptions introduced above make use of various primitives

in the manipulation of the information structures. These primitives frequently take

one or more arguments which can be regarded as being transmitted according to the

familiar value transmission mechanism. These primitives could be defined formally

using an approach similar to that of [85, 103, 104, 106].

In order to return information from event descriptions, we introduce the primitive:

return(B, X)

The first parameter , "8" , is a boolean value that indicates if the rendezvous completed

successfully, and the second parameter, "X", is any information that needs to be

returned to the task instance invoking the event. Execution of the "return" primitive

results in the immediate termination of the event and the values "8" and t'X" are

made available to the calling event.

The model also employs the primitive object:

STATEMENT

which may be used in any event to retrieve the statement associated with the event.

These "statement objects" are composed of four fields. The "task" field indicates

(if possible) the task named in the statement. The "entry" field indicates the entry

5.4. A Sharcd Data Abstraction Model fot the Ada Rendezvous t62

type
processjdentification :

record
name: string;
comm-list: f communicationJist;

end;

Figure 5.5. Types used in the description of Ada tasks.

name used in the statement. The "in-params" field indicates the in parameters for

entries called, while ttout-params" indicates the out parameters. Because we are not

concerned with the number or types of parameters in this model, we will use these

single fields to denote zero ot more parameters.

The variable:

FORMAL-PARAMETERS

allows the events associated with accept statements to access the information trans-

ferred on entry call.

The variable:

current

is used to represent the current process which is executing the event in which the

variable current is referenced. Each process, for the purposes of this model, will be

represented as an object of type "process-identification", shown in Figure 5.5. This

figure shows that each process has a name associated with it, as well as an object of

type communicationlist for the transfer of information to and from the process. It is

assumed that a unique name is generated for every task in the executing Ada program.

5.4. A Sharcd Data Abstraction Model for the Ada Rendezvous 163

5.4.3 Communication Events

As discussed in Section 5.3, Ada can be regarded a^s having two groups of communrca-

tion events, each group containing two events. First, there is a group concerned with

message sending, which can be carried out either deterministically or conditionally.

The other group is concerned with message reception, which can be deterministic or

nondeterministic. Thus, we provide descriptions for the following events:

(1) DeterministicSend,

(2) Conditional-Send,

(3) Deterministic-Receive, and

(4) Nondeterministic-R eceive.

In terms of language features, events (1) and (2) relate to entry calls, whereas events

(3) and (4) arise because of accept statements. Consistent with the approach adopted

in Section 5.3, each of the communication events focuses on the communication which

takes place during the corresponding kind of rendezvous. No attempt is made to

describe other aspects of the semantics of, say, the select statement.

For tasks wishing to place information into an interface object (recall Figure 5.4,

and Tables 5.2 and 5.3), it is necessary to request permission to write into the interface

using the "write-try" operation. This queues the task in the interface. The task

then has two possible paths. In the deterministic case, the operation "write-wait"

is called. This returns to the task when the operation "write" can be performed

successfully; the task must then call "write". For the conditional case, the task can

call "can-read-complete?". This operation performs queue management as well as

inquiry into the state of the interface. If the "write" operation can complete, the

5.4. A Shared Data Absttaction Model for the Ada Rendezvous t64

operation returns t'truet'; if not, it returns "false" as well as removing the task from the

queue. The above sequence of calls ensures that the parameter information is passed

to the called task after the rendezvous commences and not before. The operations for

message reception are similar, but without the queuing of tasks.

There are four different events for communication. "DeterministicSend" and

ttConditional-Send" relate to entry calls; "Deterministic-Receive" and t'Nondetermin-

istic-Receive" correspond to accept statements. Furthermore, the "Conditional-Send"

and "Nondeterministic-Receive" events are tied to the select statement. The fact

that the "rendezvous" concept allows a two-way transfer of information creates a

transaction and is modelled by the use of two SDA objects, one such object for each

direction of transfer.

There are essentially two reasons why inter-task communication via the Ada ren-

dezvous is complex. The first is nondeterminism. The other is that, conceptually,

information does not "flow" between the tasks - the rendezvous directly transfers

information between tasks.

5.4.3.1 The Deterministic-Send Event

Consider the statement:

T1.El(4, B);

where "T1" indicates some task instance and "81" indicates an entry within that

instance. Note that this entry call is deterministic, in that the calling task will suspend

execution until the call is accepted by "T1".

Figure 5.6 shows the algorithmic description of the DeterministicSend event, which

is the event corresponding to this language feature. First, the name of the entry

5.4. A Sharcd Data Abstraction Model Îor the Ada Rendezvous 165

DeterministicSend :
begin

E :: STATEMENT.entTy;
T :: STATEMENT.task;
B : : Out-Table-ADT.retrieve(current.commlistf .out-list, T, E) ;

B f . infoin.write-try (current. name) ;

B f . info jn.write-wait (current.name) ;

B f .infojn. write(current. name, STATEMENT.in-params) ;

return(true, Bf .info-out.read) ;

end;

Figure 5.6. The "DeterministicSend" event for Ada.

being called and the name of the task owning the entry are determined from the

entry call statement. These are stored in local variables "E" and ttTt', respectively.

The appropriate interface object is then identified by searching the out-list table of

the communication list for the task instance containing this entry. Next, the process

identification name of the caller is placed on the queue of the interface by the operation

ttwrite-try"; the process name in this case is represented by "current.name". Then

"write-wait" is called and returns when the task gets to the head of the queue and

is available to be used. The sending task then sends its parameters to the shared

data object using "write". The "write" operation returns when the called task has

accepted the call. After the initial parameters have been passed, the event shifts focus

to the *return" operation. The boolean field is set to true, to indicate successful

completion of the rendezvous, and the out parameters are returned by invoking the

"read" operation of the SDA in the info-out field of the interface object.

5.4. A Shated Data Abstraction Model for the Ada Rendezvous r66

6.4.3.2 The Conditional-Send Event

A select statement may indicate that the entry call is conditional, as in the following

example:

select
T1.El(PI, PO);

else

end select;

If the rendezvous for the entry call "Tl.El(PI, PO)" cannot execute immediately,

then the else clause is executed. (Here, ttPltt represents the parameters being passed

to the called task, while "PO" represents the parameters being passed out after the

rendezvous has completed.)

A timed entry call is similar; for example, consider:

select
T2.El(Pr, PO);

else
delay 30.0;

end select;

In this case, the call "T2.El(PI, PO)" has 30 seconds in which to execute a rendezvous.

If it is unable to do so, the call is not completed and the select statement executes the

remainder of the else clause.

The semantics of both of the above kinds of conditional entry call is covered by

the event described in Figure 5.7. The event commences by obtaining the name of

the entry and the task from the statement, before once again calling the operation

5.4. A Sharcd Data Abstraction Model for the Ada Rendezvous 167

Conditional-Send :
begin

E :: STATEMENT.entTy;
T :: STATEMENT.task;
B : - Out-Table-ADT.retrieve(current. comm-list f .out Jist, T, E) ;

B f .info-in. write-try(current.name) ;

-- Potential delay occurs here in the case of a timed entry call.
S : : B f .infoin. can-write-complete? (current.name) ;

if S then
B f . info jn. write(current.name, STATEMENT. in-params) ;

return(true, B f .info-out.read) ;

else
return(false, null);

fi;
end;

Figure 5.7. The "Conditional-Send" event for Ada.

"write-try" to notify the shared data object that the task instance is available for

communication and placing its process name on the queue. Then, at some point

determined by the task (it may be influenced by delay and terminate statements,

among others), "can-write-complete?" is sent to the interface object. This can result

in one of two outcomes. If the interface indicates that the called task can receive (i.e.,

meaning that the other task has executed a "read-try" to the interface object), the

task can then execute the "write" on the shared data object, which then synchronously

transfers the parameters. If the interface object does not have any task which wishes to

receive, then the "can-write-complete?" returns t'false" and at the same time removes

the indication of intention to send (i.e., the "write-try") from the queue. The boolean

variable "S" indicates whether the call was made. If the call was made, then the in

mode parameters are passed to the called task by writing to its infojn port, before

the "return" operation is executed. This operation indicates that the rendezvous

successfully completed and reads the out mode parameters from the info-out port

5.4. A Sharcd Data Abstraction Model for the Ada Rendezvous 168

of the called task. If the call was not made (i.e., the boolean variable "S" has the

value false), then the event indicates that the rendezvous did not take place and the

information returned is ttnull".

Notice that the "write-try" operation places the process name of the calling task

onto the queue, and that the call on "can-ïvrite-complete?" returns immediately (but

also performs queue management). An important distinction between the determin-

istic and conditional send statements is the fact that determinism does not represent

a "busy wait", because that could cause the task to lose its place in the queue; the

waiting occurs within the SDA object.

5.4.3.3 The Deterministic-Receive Event

The simplest type of message reception statement occurs when the accept statement

is used deterministically (i.e., not in a select statement). An example of an accept

statement is the following:

accept El(A: in a-type; B: out b-type) do ... end;

In the corresponding event, described in Figure 5.8, the name of the entry point

is extracted from the statement and stored in the local variable "E". The task then

notifies the appropriate SDA that it is able to receive values by calling the operation

ttread-try". Then the operation ttread-wait" is called, returning when there is a

sending task available. Finally, "read" is called and returns when the in parameters

are transferred. The out parameters are transferred from the called task to the

calling task via the SDA instance in the info-out field. This ensures asynchronous

communication, as our interpretation of the ALRM (discussed in Section 5.3) suggests

that the rendezvous has completed by the time the called task reaches this point. The

"return" operation at the end of the event reflects this by returning the boolean value

5.4. A Shared Data Abstraction Model for the Ada Rendezvous 169

Deterministic-R ecetve :
begin

E :: STATEMENT.entTy;
B : - In-Table-ADT.retrieve (current. commlist f .in-list, E) ;

Bf .info-in.read-try;
B f .info-in. read-wait ;

FORMAL-PARAMETERS : : Bl.infoin.read;
-- The body of the accept statement.

Bf .info-out.write(STATEMENT.out-params) ;

return(true, null);
end;

Figure 5.8. The "Deterministic-Receive" event for Ada.

true, indicating that the rendezvous completed successfully. There is no need to wait

until the out mode parameters have been received by the calling task.

ó.4.3.4 The Nondeterministic-Receive Event

The Nondeterministic-Receive event is described in Figure 5.9 and corresponds in some

ways to the Conditional-Send event: the nondeterministic selection occurs in the select

statement. Consider the following case of nondeterministic message reception:

select
accept El(A: in a-type; B: out b-type) do ... end;

or

end select;

In this case, the presence of a select statement indicates nondeterminism. Also, the

accept statement has a "do ... end" body which is executed if and when the accept

statement is executed.

5.4. A Shared Data Abstraction Model for the Ada Rendezvous 170

Nondeterministic-R eceive :
begin

E :: STATEMENT.entTy;
B : : In-Table-ADT.retrieve(current.commlistf in-list, E) ;

Bf .infoìn.read-try;
R :: Bl.infoin.can-read-complete?;
if R then

FORMAL-PARAMETERS :: Bl.infoìn.read;
-- The body of the accept statement.
B f .info-out.write(STATEMENT.out-params) ;

fi;
return(R, null);

end;

Figure 5.9. The "Nondeterministic-Receive" event for Ada.

There are two types of select statements which can contain accept statements.

First, there are closed, select statements, which have no else clause. They wait until

one of the accept statements may execute, at which point it is executed. If no

accept statements are ready to execute at the beginning of the execution of the select

statement, the statement waits until one is eligible to be executed. On the other

hand, and an open select statement contains an else clause. In this case, if no accept

statements are able to complete, the else clause is executed. If some accept statements

are eligible to execute, one is chosen nondeterministically.

In the event shown in Figure 5.9, which describes the effect of nondeterministic

message reception in Ada, the boolean variable "R" indicates whether the call was

made. The "E" and "Bt? variables are local and are used to retrieve a reference to

the correct interface object. After the reference has been retrieved, the info-in shared

data object has the "read-try" operation performed on it. This needs no process name

because the task executing the "read-try" is the only task reading from the interface.

This notifies the data object that the task is willing to read. The data object is then

5.4. A Shared Data Abstraction Model fot the Ada Rendezvous t7r

queried (by the use of the operation "can-tead-complete?") as to whether a task is

willing to write to the object. If there is a task willing to rendezvous, the variable

*R" is set to tttruett and the actual parameters are retrieved from the interface by the

"read" operation. The body of statements associated with the group is then executed

and then the out parameters are returned asynchronously via the data object in the

info-out field, using the "write" operation. The ureturn" operation at the end of the

event returns the boolean value *R" which indicates whether or not the rendezvous

took place. There is no need to wait until the out mode parameters have been received

by the calling task.

5.4.4 Final Comments on Mallgren's Approach

Mallgren's approach to the definition of shared data abstractions binds together the

definition of the data type and its associated operations with a definition of the

synchronization aspects important in a concurrent environment. As mentioned earlier,

this approach associates a "state" with each SDA object. This state is managed by the

SDA definition itself, which does not export a type name; hence, it prevents multiple

objects of this kind from being defined.

The style of the SDA definition is somewhat different to that of ADT's and

hence the incorporation of the approach described in this section into ATLANTIS

would necessitate the reader of a language definition knowing and understanding two,

albeit related, but somewhat different, specification techniques for data types. Which

approach is used in a particular situation would depend on the manner in which the

data object concerned is to be used.

To further complicate matters, an implementation which remains faithful to the

foregoing approach is impractical to implement. This stems from the fact that the

5.5. An Alternative Approach to Shared Data Abstractions t72

technique relies on the existence of a potentially infinite history of all the state transi-

tions. Although it is possible to significantly reduce this reliance in the implementation

of specific cases, it is not possible to remove this reliance in general.

The characteristic functions employed also present a minor concern. No restric-

tions are placed on their complexity and as such they may introduce unnecessary

serialization.

These concerns are sufrcient to suggest that Mallgren's approach to SDA's may not

be the most appropriate choice for extension of the technique of Chapters 3 and 4 to

cover parallel programming languages, despite the fact that the technique has demon-

strâted its usefulness in the descriptions of Ada's intertask communication facility

above, and in [33]. An alternative approach which fits better with the ATLANTIS

approach is discussed in the next section.

5.5 An Alternative Approach to Shared Data Ab-

stractions

Incorporating Mallgren's approach to SDA's into the technique described in Chapters 3

and 4 would force the designer to use ADT's for a sequential environment and SDA's

for a parallel environment. This results in unnecessary work on the part of a language

designer if some form of concurrency is suddenly introduced into the subject language.

A purely sequential program with only a single process does not have the problems

and difficulties that manifest themselves in a parallel program with many processes.

There is no need to consider what happens if two processes attempt to access the

same data object, there is no notion of synchronization, and often there is no notion

of nondeterminism. It is the presence of multiple processes which results in the need

ADT

5.5. An Alternative Approach to Sharcd Data Abstractions t73

Process

Process Process

Process

(a) (b)

Figure 5.10. Sequential and parallel access to an abstract data type object.

to protect the ADT and ensure data integrity; thus, it can be argued that it is not

the responsibility of the ADT definition to cater for the possibility of the existence of

multiple processes. By protecting the ADT with an SDA enuelope,, data integrity can

be ensured without any need to alter the definition of the data type [107].

The SDA envelope behaves as a protective device for an ADT by mandating that

all access to the ADT be handled by the SDA envelope, as illustrated in Figure 5.10(b),

and contrasts with the ADT access shown in Figure 5.10(a). Thus, the ADT definition

remains unchanged and only concerns itself with the description of the data type and

its operations whilst the SDA envelope is concerned with the synchronization issues

which arise as multiple simultaneous access becomes a possibility. The SDA envelope

then determines which process gains access to the data object.

The attractiveness of the SDA envelope over Mallgren's approach to SDA's is that

the ADT definition remains unaltered and objects shared between multiple processes

can still be declared. Furthermore, the SDA envelope can be automatically generated

from the ADT definition and remain transparent to the user of ATLANTIS. As a result,

ATLANTIS need not undergo any changes in order to accommodate the description of

parallel languages. The ability to automatically generate the SDA envelope stems from

the observation that the operations for each ADT fall into one of the two following

categories:

ADT

5.5. An Alternative Approach to Shared Data Abstractions L74

¡ Selectors: This category comprises those operations which select relevant pieces

of information from an ADT object and return them, but do not modify the

value of an ADT object.

o Constructors: This category comprises those operations which construct new

ADT objects, whose value may be derived from existing ADT objects.

The following rules are sufficient for an implementation of a shared data abstraction

to maintain the integrity of data objects at the level of a single ADT operation:

o At any given time, there may be at most one process performing a constructor

operation on an object. This process is given exclusive access to the object for

the duration of the operation.

o There may be many selector operations (transfer functions) simultaneously per-

formed on an object, provided that no constructor operations are currently being

performed.

These rules ensure that each constructor is treated as though it is an atomic

operation. This restriction is unnecessary for selector operations since they do not

interfere with each other's behaviour in any way. Constructor operations must be

treated as atomic actions since they update the object's associated value. This ensures

that no selector operation will accidentally yield an incorrect result.

Figure 5.11(a) illustrates the first of the above rules: Process .4 is performing a

constructor operation on an object and is given exclusive access to the object; at the

same time, Process B and Process C are blocked attempting to perform selector and

constructor operations on the object, respectively. The second of the above rules is

illustrated in Figure 5.11(b): Process l, and Process B are simultaneously performing

object

5.5. An Altetnative Approach to Sha'red Data Absttactions

ProcessA ---

L75

Process A

ProcessB ------ Process B

Process C Process C

Figure 5.11. An example of the application of the object access rules.

selector operations without mutual interference, whilst Process C is blocked waiting

for exclusive access to perform a constructor operation.

The rules listed above give no preference to selector or constructor operations,

although the SDA envelope may be tailored to favour one over the other; for example,

constructors may always be given preference over selectors, or may be given preference

only for some percentage of the time (such as giving constructors preference 70% of.

the time).

Consider the ADT definition of an infinite queue given in Figure 5.12. It can

be seen from the definition that the operations "create-queue",
ttplace-on-queuett,

ttremovelead" and t'remove-entry" are all constructors, whilst the selector operations

are "head-of-queuet', ttpresentìn-queuett, ttqueue-empty?t' and "length-of-queue".

As discussed in Chapter 4, ADT's defined in an axiomatic manner can readily

be translated into an implementation using a language facility such as Ada packages.

The generic Ada package corresponding to Figure 5.12 is provided in Figure 5.13. By

comparing these two figures, it can be seen that each operation specified in Figure 5.12

has a corresponding function, set of arguments and result type in Figure 5.13. The

exception ttqueue-error" is introduced into the Ada package to implement the "error"

term used in the formal ADT specification. Since the ADT specified in Figure 5.12 is

o)(¡)

object

5.5. An Altetnative Approach to Sharcd Data Abstractions

ADT queue [elem]
sorts queue/elem, boolean, natural
where elem has equal: elem x elem + boolean

176

syntax
create-queue:
place-on-queue:
removelead:
head-of-queue:
presentjn-queue:
remove-entry:
queue-empty?:
length-of-queue:

queue x elem
queue
queue
queue x elem
queue x elem
queue
queue

queue
+ queue

-) queue l) {error}
-+ elem lJ {emor]¡

boolean
+ queue l) {error]
+ boolean

natural

semantics
declare q: queue

el, e2: elem

axloms
removelead(create-queue) : ercor
removelead(place-on-queue(q, e1)) : q

head-of-queue(create-queue) : error
head-of-queue(place-on-queue(q, e1)) : s1

presentin-queue(create-queue, el) : ¡u1t"
presentin-queue(place-on-queue(q, el), e2) :

if equal(el, e2)

then
true

else
present jn-queue(q, e2)

end if
removefntry(create-queue, el) : error

Figure 5.12. An abstract data type representing a queue.

(1)
(2)
(3)
(4)
(5)
(6)

(7)

5.5. An Altemative Approach to Shared Data Abstractions

(8) removerntry(place-on-queue(q, e1), e2) :
if equal(el, e2)

then
q

else
place-on-queue(remove-entry(q, e2), el)

end if
(9) queue-empty?(create-queue) : true
(10) queue-empty?(place-on-queue(q,

"1))
: false

(11) length-of-queue(create-queue) : I
(12) length-of-queue(place-on-queue(q, el)) :

length-of-queue(q) + 1

Figure 5.12. Continued.

generrc
type elem is private;
with function equal(el, e2: in elem) return boolean;

with function copy(el: in elem) return elem;

package queue-adt is
type queue is private;

function create-queue return queue;

-- Create a new queue obiect and rcturn it.

function place-on-queue(q1: in queue;

el: in elem) return queue;

-- Place the specifred element at the end oî the queue.

function remove-head(q1: in queue) return queue;

-- Remove the element at the head of the queue and return the

-- rcsultant queue.

177

Figure 5.13. The specification of the queue data type

5.5. An Alternative Approach to Shared Data Abstractions

function head-of-queue(q1: in queue) return clem;

-- Retutn the element at the head of the queue, leaving the queue

-- unchanged.

function present-in-queue(q1: in queue;

el: in elem) return boolean;

-- Is the specifred element on the queue?

function remove-entry(q1: in queue; e1: in elem) return queue;

-- Remove the specifred element from the queue and retutn the

-- rcsultant queue.

function queue-empty(q1: in queue) return boolean;

-- Is the queue empty?

function length-of-queue(q1: in queue) return natural;

-- Return the number of elements cuttently in the queue

function copy(ql: in queue) return queue;

-- Duplicate the queue and return the copy,

q ueue-error: exception;
-- For the handling of ertors.

private
type queue is .. .;

-- Queue can be defrned in any suitable way by the implementor

-- of the package.

end queue_adt;

Figure 5.13. Continued.

178

5.5. An Altetnative Approach to Shared Data Abstractions t79

parameterized, the corresponding package implementation is generic with the actual

type (and function) parameters provided at the time that the package is instantiated.

One additional operation is assumed in the package specification, despite the fact that

it is not specified by the ADT definition. This is the existence of a ""opy" operation

for each data type as discussed in Section 4.7. The signature of the ADT specification

and the Ada package specification describe the same data type and the operations

available on it, while the package body represents an implementation which adheres

to the behaviour described by the axioms of the ADT.

The SDA envelope generated for the ADT provided by Figure 5.13 is given in

Figures 5.14 and 5.15. As can be seen, the SDA envelope is essentially another package

which provides the same operations as the ADT, with the SDA envelope body invoking

the ADT operations. Protection of the ADT object is achieved by a monitor [61] which

enforces the rules for SDA integrity discussed earlier.

It can be seen from Figures 5.14 and 5.15 that all constructor operations have been

converted to procedures whose first parameter is the object to be returned. This may

at first suggest that the user of ATLANTIS must be aware of this difference and define

a programming language accordingly. In reality, however, the user is unaware of the

change. In fact, the user of ATLANTIS can remain ignorant of the existence of the

SDA envelope. This is because ATLANTIS itself can generate the SDA envelope to

protect ADT's when defining a parallel language, and ATLANTIS can translate all

calls to ADT constructor functions to calls to the SDA constructor procedures of the

SDA envelope.

5.5. An Altemative Approach to Shared Data Absttactions

with queue-package, sda-monitor; use sda-monitor;
pragma elaborate(sda-monitor);

generic
type elem is private;
with function equal(el, e2: in elem) return boolean;

with function copy(elem: in data) return elem is ();

package sda-queue is

type queue is private;
type queue-access is private;

procedure create-queue(result: in out queue-access);

-- Create a queue.

procedure place-on-queue(result: in out queue-access;

ql: in queue-access;

e1: in elem);

-- Push some data e7 onto the end of the queue q7.

procedure remove-head(result: in out queue-access;

ql: in queue-access);

-- Remove the element at the head of the queue q7.

function head-of-queue(q1: in queue-access) return elem;

-- Return the value at the head of the queue q7.

function present-in-queue(q1: in queue-access;

el: in elem) return boolean;

-- Indicate iî the element e7 is a member of the queue q7.

procedure remove-entry(result: in out queue-access;

q1: in queue-access;

el: in elem);

-- Remove the entry el from the queue q7.

function queue-empty(q1: in queue-access) return boolean;

-- Test to see if the queue q7 is empty.

180

Figure 5.14. The SDA envelope specification for the queue data type.

5.5. An Altetnative Approach to Sha'ted Data Abstractions

function length-of-queue(q1: in queue-access) return natural;

-- Return the length of the queue q7.

function new-shared-object return queue;

-- Initialize the SDA queue object.

procedure lock(queue: in queue-access);

-- Locks an object for use by a single ptocess.

procedure unlock(queue: in queue-access);

-- Ilnlocks an object pteviously locked.

function access-SDA(queue: in queue) return queue-access;

-- Establish the SDA object.

package queue-inst is new queue-Package(elem, equal, coPy);

-- Instantiate the queue ADT.

q ueu e-error: exception renames q ueue-i nst.q ueue-exception ;

-- Etror taised if anything goes wtong.

private

type queue-record-type is
record

object: q ueue-inst.q ueue-tYPe;

Monitor: monitor¡yp€ :: new-monitor;

-- "monitot-type" and "new. monitor" arc defrned within the

- - package "sda-monitor".
end record;

type queue-type is access queue-record-type;

Figure 5.14. Continued.

181

5.5. An Alternative Approach to Sharcd Data Abstractions 182

type q ueue-access-record-type is
record

sda: queue;

mode: access-rights-type :: default-access;

-- "access-rights-typeu and "default accesst' are defrned within
-- the package "sda-monitot".

end record;

type q ueue-access is access q ueue-access-record-tyPe;

end sda-queue;

Figure 6.14. Continued.

package body sda-queue is

function new-shared-object return queue-type is

-- Initialize the SDA queue object.
begin - - new-sharcd-obiect

return new queue-record-type;
end new-shared-object;

functi access-SDA(ql: in queue-type) return queue-access is

-- Es blish the SDA object.
begin - access SDA

retu n new queue-access record-type'(q1, default access);

end access SDl;

procedure lock(ql: in queue-access) is

-- Locks an object for by a single ptocess.

begin -- lock
lock(ql.sda.monitor, ql.mode);

end lock;

Figure 5.15. The package body for the shared data abstraction envelope for the
queue abstract data type.

5.5. An Alternative Approach to Shared Data Abstractions

procedure unlock(ql: in queue-access) is

-- Ilnlocks an object previously locked
begin -- unlock

unlock(q1.sda.monitor, ql.mode);
end unlock;

procedure create-queue(result: in out queue-access) is

-- Crcate a queue.

begin -- cteate-queue
sta rt-const ructor(resu lt.sda. mon itor, resu lt. mode) ;

result.sda.object :: queue-inst.make-queue;

stop-const ructor (resu lt.sda . mon itor, resu lt. mod e) ;

end create-queue;

procedure place-on-queue(result: in out queue-access;

ql: in queue-access;

e1: in elem) is

-- Pus.h some data onto the end of the queue q7.

begin - - place-on-queue
sta rt-constructor (resu lt.sda. mon itor, resu lt. mode) ;

start selector(q1.sda.monitor, queue.mode);

resu lt.sda.object : : q ueue-inst. place-on-q ueue(q 1.sda.object, elem) ;

stop-selector(q 1.sda. mon itor);
stop-constructor(resu lt.sda. mon itor, resu lt. mod e) ;

end place-on-queue;

procedure remove-head(result: in out queue-access;

ql: in queue-access) is

-- Remove the element at the head of the queue q7.

begin -- temove-head
sta rt-const ru ctor (resu lt.sda. mon itor, resu lt. mode) ;

start selector(q1.sda.monitor, ql.mode);
result.sda.object :: queue-inst.remove-head(ql.sda.object);
stop-selector(q 1.sda. monitor) ;

stop-const ructor (resu lt.sda . mon itor, resu lt. mode) ;

end remove-head;

Figure 5.15. Continued.

183

5.5. An Alternative Approach to Sharcd Data Abstractions

function head-of-queue(q1: in queue-access) return elem is

-- Return the value at the head of the queue q7.

result: elem;

begin -- head-of-queue
start-selector(q 1.sda. Monitor, q1. mode) ;

result 3: rluêu€-inst.head-of-queue(ql.sda.object);
stop selector(q l.sda.monitor);
return result;

end head-of-queue;

function present-in-queue(q1: in queue-access;

el: in elem) return boolean is

-- Indicate if the element el is a membet of the queue q7.

result: boolean;

begin - present-in-queue
start selector(q1.sda.monitor, ql.mode);
result ¡: QU€u€-inst.present in-queue(q1.sda.object, el);
stop-selector(q 1.sda. monitor) ;

return result;
end present in-queue;

procedure remove-entry(result: in out queue-access;

ql: in queue-access;

el: in elem) is

-- Remove the entry e7 from the queue q7.

begin -- rcmove-entry
start-const ru ctor (resu lt.sd a . mon itor, resu lt. mode) ;

start selector(q1.sda.monitor, ql.mode);
result.sda.object : : q ueue-inst. remove-entry(q 1.sda.object, el) ;

stop selector(ql.sda.monitor);
stop-constructor(resu lt.sd a. mon itor, resu lt. mode) ;

end remove-entry;

Figure 5.15. Continued.

184

5.5. An Altemative Approach to Shared Data Abstractions 185

function queue-empty(q1: in queue-access) return boolean is

-- Test to see if the queue q7 is empty.
result: boolean;

begin -- queue-empty
start selector(q1.sda.Monitor, ql.mode);
result :- queue-inst.empty-queue(ql.sda.object);
stop-selector(q ueue.sda. mon itor) ;

return result;
end queue-empty;

function length-of-queue(q1: in queue-access) return natural is

-- Return the length of the queue q7.

result: natural;
begin -- Iength-of-queue

start selector(q1.sda.monitor, ql.mode);
result :- queue-inst.length-of-queue(ql.sda.object);
stop selector(ql.sda.monitor);
return result;

end length-of-queue;

end sda_queue;

Figure 5.15. Continued.

As noted above, procedures are used within the SDA envelope in order to properly

protect the SDA object. Had a functional notation and the notion of copying used for

ADT's been retained, then a statement such as:

a :: constructor-op(a);

would result in a copy being made of the object "a", the constructor operation applied

to the copy and the result assigned to "at'. Under these circumstances, there is no

need to protect the object "at' and concurrent access is of no concern, simply because

there is no way to guarantee the desired behaviour and results.

Examination of Figure 5.14 shows that the SDA envelope makes use of a package

called "sda-monitor". This package is employed by all generated SDA envelopes and

its specification is given in Figure 5.16.

5.5. An Alternative Approach to Sharcd Data Abstractions

package sda-monitor is
type monitor¡ype is private;
type access-rights-type is private;
d efa u lt-a ccess: const ant a ccess-rights-ty p e ;

procedure start-constructor(monitor: in monitorjyPe;
access rights: in out access-rights-type);

-- Allows the process which successfully executes this opention to

-- apply a constructot operation to the SDA obiect associated with

-- the monitor.

procedure start selector(monitor: in monitor¡ype;
access-rights: in out access-rights-type);

-- Allows the process which successfully executes this opemtion to
-- apply a selectot operation to the SDA obiect associated with

-- the monitor.

procedure stop-constructor(monitor: in monitor¡yPe;
access_rights: in out access-rights-type);

-- Informs the monitor that the constructor operation which was to

-- be applied to the SDA object a,ssociated with the monitor has

-- been completed.

procedure stop selector(monitor: in monitor¡ype);

-- Informs the monitor that the se]ector opention which was to be

-- applied to the SDA object associated with the monitot has been

-- completed.

procedure lock(monitor: in monitor¡ype;
access-rights: in out access-rights-type);

-- Applies a [ock to the SDA object associated with this monitot so

-- that the process holding the lock is the only process permitted

-- to apply any constructor opetation to the object.

procedure unlock(monitor: in monitor¡ype;
access_rights: in out access-rights-type);

-- Releases the lock on the SDA object associated with the monitor.

function new monitor return monitor¡ype;
-- Crcates a new monitot.

Figure 5.16. The specification of the "sda-monitor" package.

186

5.5. An Alternative Approach to Sha,red Data Abstractions 187

private
type key-type is (GOOD-KEY,NO-KEY);
type access-rights-type is

record
construct-select-access: key-type ::
lock-access : key-type ::

end record;

task type monitor¡ask is
entry constructor-sta rt (key-type) ;

entry selector-sta rt(key-type) ;

entry constructor_stop;
entry selector-stop;
entry lock;
entry unlock;

end monitorJask;

type monitor¡ype is access monitor¡ask;
default access: constant access-rights-type

:: eccess-rights-type'(no-key, no-key);
end sda-monitor;

Figure 5.16. Continued.

The "sda-monitort' package ensures that no two constructor operations simultane-

ously manipulate the SDA object and that no constructor operation is permitted to

commence whilst the execution of a selector operation on the object is in progress. It

also allows multiple selector operations to simultaneously access an SDA object, but

prevents a selector operation from commencing if a constructor operation is in progress.

These restrictions are enforced by the application of the operations "start-constructor"

and ttstop-constructort', respectively, before and after the application of a construc-

tor operation. Similarly, the selector operations are protected by the operations

"start-selector" and "stop-selector" being applied before and after the application

of a selector operation, respectively. The operations "lock" and *unlock" are provided

to allow a process to place a lock on an SDA object in a manner that only permits that

no-key;
no_key;

5.5. An Altemative Approach to Sharcd Data Abstractions 188

process to execute constructor operations on the SDA object until the lock is released.

All other processes wishing to apply a constructor operation to the SDA object while

a lock is in place are forced to wait until the lock is released. Selector operations can,

however, continue to be applied to a locked object without any adverse affect. This

locking concept is discussed further in Section 5.5.5.

Figure 5.16 makes use of a type named "access-rights-type". This type governs

which process has the right to apply a constructor operation, or a selector operation,

and which process, if an¡ holds the lock on the object. Each process presents its

access rights to the monitor associated with with the SDA object whenever the process

wishes to perform an operation on the SDA object. The access rights are checked to

ensure that the rules governing access to SDA objects are not violated. If the "lock"

operation has been invoked, then the calling process will have its "lock-access" field

changed to t'good-key" and all subsequent constructor operations must have access

rights such that the "lock-access" field has this value. Similarly, when an operation

executes a ttstart-constructor" operation, its "construct-select-access" field is set to

"good-key'. All subsequent selector operations, which must call "start-selector" before

proceeding, are blocked unless they have this value in this field, indicating that this is

the same process wishing to apply a selector operation to the SDA object as part of the

normal work involved in evaluating a constructor operation which is in progress. The

appropriate fields assume the default value when the lock is released via the "unlock"

operation, or if the constructor operation completes (signalled by the execution of a

"stop-constructor" operation). Since the SDA envelope is generated automatically,

one can be sure that each call to "start-selectortt or ttstart-constructort' is balanced by

a call to ttstop-selector" or "stop-constructor" respectively, ensuring that the objects'

access rights are maintained in a consistent state.

5.5. An Alternative Approach to Sharcd Data Abstractions 189

5.5.1 Using Shared Data Abstractions

As an example of the use of an SDA generated in the manner described above, consider

employing the queue SDA used as an example above. In particular, consider a producer

process placing integers onto such a queue and a consumer process removing integers

from the queue. First, the "sda-queuett package is instantiated, using ttinteger" as the

type corresponding to the generic parameter "elem'; an uequaltt operation for objects

of type integer and a ".opy" routine to duplicate integer values are also passed as

generic parameters. The appropriate declarations are:

package queue-sda is new sda-queue(integer, equal, coPy);

use queue-sda;

A queue object can then be obtained by declaring a variable of the type "queue"

belonging to the SDA type "queue-sda", as follows:

the_queue_sda: queue;

The task specifications and bodies for the producer and consumer processes are

shown in Figure 5.17. In the case of a single producer and a single consumer, the

queue behaves correctly and all information is placed onto the queue by the producer

and eventually received by the consumer. In the case of multiple producers and a

single consumer, the queue still handles the traffic correctly and all integer values are

eventually passed to the consumer for processing; although multiple producers may

attempt to simultaneously push a value onto the queue, the monitor implemented by

the SDA envelope arbitrates correctly. The "place-on-queue" operator is a constructor

operator and only one constructor operator may manipulate the SDA object at any

one time, provided that no selector operator is active at the same time. This ensures

5.5. An Altetnative Approach to Shared Data Abstractions 190

task type producer;
task type consumer;

th e-q ueue: q ueue-access : : access-sda (t h e-q ueu e-sda) ;

task body producer is
begin

loop
place-on-q ueue(the-q ueue, the-queue, i) ;

delay duration'small;
end loop;

end producer;

task body consumer is
begin

loop
if not queue-empty(the-queue)
then

i :: head-of-queue(the-queue);
remove-head (the-q ueue, the-q ueue) ;

consume(i);
end if;

end loop;
end consumer;

Figure 6.17. Example of the use of a shared data abstraction.

that the producers attempting simultaneous t'place-on-queue" operations have some

ordering imposed on them.

However, a difficulty is encountered in the case of multiple coexisting consumers.

Each consumer task copies the head of the queue into a local variable before deleting

that element from the queue. It is then possible that two consumers simultaneously

copy the object at the head of the queue into two different variables. This is permitted

because the operation "head-of-queue" is a selector and since it does not alter the SDA

object in any way; hence, it is valid for multiple processes to execute it simultaneously.

This is permitted even if the queue contains only a single element. These consumers

5.5. An Altemative Approach to Shned Data Abstractions 191

then both attempt to remove the value at the head of the queue. Since this is a

constructor operation, an ordering is imposed on the attempts to execute the operation.

The first invocation of the operation removes the head of the queue, whilst subsequent

invocations attempt to remove as yet unread values from the queue, or values that

do not exist. Clearly, this is an undesirable result. The difficulty is, however, in the

algorithm used to implement a consumer, rather than in the behaviour of the SDA.

The SDA has accommodated the maximum amount of concurrency, but the algorithm

has made no attempt to acknowledge that multiple accesses may take place, leaving

all the details to the SDA to handle.

These difficulties may be overcome through traditional methods, such as the use of

semaphores [27] to provide some protection to the combination of operations "head-of--

queuett and *remove-head", so that their invocation becomes a single indivisible action;

alternatively, a locking mechanism such as that provided by the package "sda-monitor"

may be employed. If the data structure in question is no longer a queue, but rather

a stack, then the problems are somewhat worse. With a stack, it is even possible to

have problems with a single producer and a single consumer. The producer may add

a value to the stack. The consumer may then note that the stack is no longer empty

and copy the top of the stack into a local variable in preparation for the removal of the

value from the stack. If the producer now inserts another element to the stack before

the consumer removes the element it has just made a copy of, then when the consumer

deletes the top element of the stack, it does so believing that it is the element that

it just copied. The result is the removal of a value which has never been seen by a

consumer and the retention of a value which will be processed twice. Again, this is an

undesirable state of affairs, and again the problem is an ill-defined algorithm for the

behaviour of the consumer.

5.5. An Alternative Approach to Shned Data Abstractions t92

To aid language designers overcome these difficulties with their language definitions

within ATLANTIS, a number of language constructs are proposed in the following

sections. These constructs allow the clear, precise and unambiguous description of

the algorithms needed to manipulate SDA objects, by solving the difficulties described

above.

5.5.2 Critical Regions

One way to specify the concurrency control referred to above is to use the notion of a

critical region 1271. A critical region amounts to a section of a program specification

in which only one process may be active at any one time. Such constructs have

traditionally been used in programming languages, but are equally useful in the

present context. Our notation to define a critical region is shown in Figure 5.18

and can be defined in terms of semaphores, as shown in Figure 5.19. A diagrammatic

representation of a critical region is shown in Figure 5.20; the shaded area represents

the region in which only one process may be active at any one time. The effect of

a critical region is to ensure mutual exclusion for a region of the specification; each

area of mutual exclusion will have its own semaphore. Atty processes attempting

to gain access to an area of mutual exclusion is forced to wait until the appropriate

semaphore variable has been released by the currently executing process. On release of

the semaphore, a nondeterministic choice is made between each of the waiting processes

and the chosen process is permitted to continue. Alternative definitions are possible,

for example in terms of denotational semantics; however, the semaphore concept is

sufficient for our purposes and is well established and well understood.

5.5. An Altemative Approach to Shared Data Abstractions 193

critical
Sri ...i S"i

end critical;

Figure 5.18. The textual form of a critical region.

wait(v);
Sri ...i S"i
signal(v);

Figure 5.19. Definition of a critical region in terms of semaphores

Figure 6.20. A diagrammatic representation of a critical region

5.5.3 The Waituntil Clause

When programming with multiple processes, there is a need to synchronize events at

certain times during the lifetime of a program; this is particularly true in languages

such as Ada [1a1] and Modula-2 [159]. To modelthis situation, the wai,tuntil clauseis

introduced; its syntax is given in Figure 5.21.

5.5. An Alternative Approach to Shared Data Abstractions 194

waituntil cond +
Sri ...i S"i

end waituntil;

Figure 5.21. The textual form of a waituntil clause.

loop
wait(v);
if cond then

Sri . ..i S"i
signal(v);
exit;

else
signal(v);

end if;
end loop;

Figure 5.22. Definition of the waituntil clause using semaphores.

The semantics of this clause is defined in terms of semaphores in Figure 5.22 and.

its diagrammatic form is shown in Figure 5.23. The effect of a waituntil clause is

to evaluate the condition "cond" under mutual exclusion with regard to any other

processes, using the semaphore variable "v" to achieve this mutual exclusion. If the

condition evaluates to true, the statement sequence is executed while maintaining

mutual exclusion; if the condition evaluates to false, the semaphore variable is released

and then the mutual exclusion is reimposed and the condition is re-evaluated once

again, possibly by a different process, thus implementing a busy wait. The release of

the semaphore ensures that a nondeterministic choice is made between all available

processes waiting on the semaphore.

Thus, the boolean condition must be satisfied before the evaluation may proceed.

If the condition is satisfied, then the statement list which follows is treated as a critical

region until the end waituntil is reached; if the condition is not satisfied, then the

5.5. An Alternative Approach to Shared Data Abstractions 195

Figure 5.23. A diagram representing the waituntil clause'

process executing this construct is blocked until the condition becomes true. If more

than one process is waiting at the condition, then a nondeterministic choice is made

to determine which process is allowed to enter the critical region.

5.5.4 The Do Clause

Often a process may reach a point where several options are open to it. The process

is not concerned with which path it takes; all it must do is simply choose one of the

available paths. The do clause is introduced to handle nondeterminism between a

variety of choices, each specified by a when clause. An outline of the syntax of this

clause is given in Figure 5.24. This clause is equivalent to the pseudo-Ada code shown

in Figure 5.25; in this deflnition of the do clause, the function "choice" yields, in a

nondeterministic fashion, an integer between 1 and the value of the argument ("m" in

the case of Figure 5.25).

5,5. An Altemative Approach to Shared Data Abstractions 196

do
when condl + Srri ...i Srr,; end wheni Sr"; ... Sr';

when cond- -r S-ri ...i S-rri end wheni S-"i ... S-"i
end do;

Figure ó.24. The textual form of a do clause.

The do clause is shown diagrammatically in Figure 5.26 and includes the repli-

cation of a structure which is somewhat like the depiction of the waituntil clause in

Figure 5.23. Once a particular alternative in a do clause is chosen, the appropriate

condition is evaluated under the control of a semaphore. If the condition evaluates

to true, the first action sequence (ttS¡r" to "S¡rr") is evaluated as a critical region, the

semaphore is then released and the second action sequence (t'Sr"" to "S¡"t') is evaluated.

If the condition evaluates to false, the semaphore is released and a nondeterministic

choice of the alternatives is made again.

Thus, more than one process may be active in a do clause at any one time; the

only restriction is that there can only be one process active within a given when clause

inside a do clause. The do clause does not terminate until at least one of the conditions

becomes true and the relevant action sequence has been executed.

5.5.5 The Lock Clause

On occasions it is desirable that a particular task be allowed exclusive write access to

a particular object. Tasks that do not modify the object should be allowed to access

the value of the object as often as necessary, since such access does not endanger data

integrity. To illustrate the need for object locking, consider a task that executes the

following code:

5.5. An Altemative Approach to Shared Data Absttactions

loop
case choice(m) is

when 1 :)
wait(v1);
if condl then

Srri ...i Sr,,;

signal(v1);
Sroi ...i Sr";
exit;

elee
signal(v1);

end if;
when 2:)

when m:)
wait(v-);
if cond- then'

Srnli ...i S-,ri
signal(v-);
S-"i .. .i S-"i
exit;

else
signal(v-);

end if;
when others -)

null;
end case;

end loop;

Figure 5.25. Definition of the do clause using semaphores

t97

5.5. An Alternative Approach to Shared Data Abstractions

Figure 5.26. A diagrammatic view of the do clause

198

FF
condcmd

5.5. An Alternative Approach to Shared Data Abstractions 199

element ;: Top(S); -- get the top value of the stack.
Pop(S); -- pop the element off the stack.

Now suppose that some other task pushes a value onto the stack after the execution

of the first statement and before the execution of the second statement. Such an

occurrence would result in the above code removing the newly pushed element from

the stack, whilst the element that should have been removed is left at the top of the

stack.

From the above example, it can be seen that a simple object locking mechanism

would provide a safe and effective mechanism for describing indivisible operations,

without the tiresome alternative of using critical regions. In essence, a critical region

admits exclusive access to a region of code, whilst a lock allows a process to have

exclusive access to an object with respect to constructor operators.

Figure 5.27(a) shows the syntax for such locked regions. Here the object is locked

by the executing process whilst the statements S1,..,Sn are executed. This has the

effect that any other process attempting to modify the object while it remains locked,

will be blocked until such time as the object becomes unlocked. The usual restrictions

apply to those processes attempting only to access (not to modify) the object, in that

they must wait until the process owning the lock is not performing any constructor

operations, and vice-versa. Naturally, it is advisable that the number of statements

inside a locked region be kept to a minimum, in order to reduce blocking. It is desirable

that all code involved in a locked region be as localized as possible. In particular, the

invocation of HLO's from within locked regions should also be kept to a minimum,

as it detracts from the readability of the specification and increases the possibility of

unnecessary delays for other processes.

5.5. An Alternative Approach to Sharcd Data Abstractions 200

Process A

ProcessB -------

lock (object)
Sri ...i S"i

end lock;

(.)
(b)

Figure 6.27. Syntactic and diagrammatic representation of locked regions.

The nature of the locking mechanism is further illustrated in Figure 5.27(b). In the

example shown, there are three processes uA', *B' and t'C" that each wish to access

an object concurrently. Process uC' has placed a lock on the object and is currently

performinga selectoroperation on the object. Process "8" also wishes to perform a

selector operation on the object, and thus is also given access to the object. Process

"4" wishes to perform a constructor operation on the object, and is blocked. Even

when the selector operations being performed by processes "8" and ttC" have finished,

Process "4" will remain blocked until Process "C" relinquishes the lock that it holds

on the object and all selector operations being performed on the object also finish.

5.5.6 General Comments

As a result of critical regions, the waituntil clause and the do clause, there is a

clear distinction between the definition of the data type and its behaviour and the

manner in which it is accessed. Another advantage of this approach is that the three

constructs can be related to the relevant features of Ada and other parallel languages,

and as a result are likely to be reasonably familiar to programmers. This is particularly

useful when the technique is used to produce an operational model of the semantics

of a programming language in order to derive a formal definition. The subsequent

Process C

object

5.6. An Alternative Model for the Ada Rendezvous 20r

definition can be used to automatically generate a compiler or interpreter, with all the

attendant benefits discussed earlier in this thesis.

5.6 An Alternative Model for the Ada Rendezvous

A model of inter-task communication in Ada using Mallgren's approach to SDA's

wa,r¡ presented in Section 5.4. To illustrate the usefulness of the approach described in

Section 5.5 and to provide examples of the usage of the constructs given in that section,

an alternative model of the inter-task communication in Ada will now be presented.

Each task instance in an Ada program is modelled by a process; the main program

instance is also modelled by a process. A unique name is assigned to each of these

processes, enabling one process to inform another that it is no longer suspended; for

example, this mechanism can be used by a called task to inform its calling task that

their rendezvorls is complete. A task table is used to manage the various processes in

existence at any particular time; each entry in this table is of the type "task-object"

defined in Figure 5.28. The first field in this record type is used to record the

communications porú assigned to each process. Such a port may be in one of two

states, namely ttready-port" or ttbusy-port". Only a given process and the process

with which it is communicating should change the state of the communication port;

this port signals information such as the fact that the transfer of information during a

rendezvous has completed. The second field in the record type in Figure 5.28 represents

the collection of entry points which may be involved in a rendezvous between this

task and other tasks; the type of this field is an array indexed by the primitive

type "entry-name-type", representing the set of all allowed names of entries within

tasks. The task also has an associated list of attributes (such as "terminated"), which

5.6. An Altemative Model fot the Ada Rendezvous 202

records information pertinent to the task; these attributes will not be described in the

simplified model given here.

type task-object is
record

port: communication-port;
entry: table [entry:rame-type, entry-object] ;

-- Attributes can also be described here.

end record;

Figure 5.2E. A record describing each Ada task

type entry-object is
record

port: communication-port;
params: parameterjnfo;
process-queue: queue[task-name-typ"] ;

-- Attributes cøn also be ilescribeil here.

end record;

Figure 5.29. Information associated with each entry point within a task.

Each entry point within a task is described by the type "entry-object" defined in

Figure 5.29. Each entry point has a communication port, represented by the field

"port", through which it can be signalled when parameter values are available. These

parameter values are passed by the calling process placing the necessary details into a

table "params" associated with each entry point. This table is custom-built for each

entry point and its form relates to the types of the parameters and their transmission

modes; it is represented by an object of the primitive type "parameterjnfo". The

relevant information is held in a table indexed by both the position and the name of

the parameter (since Ada allows both the positional and named notation for parameter

5.6. An Alternative Model for the Ada Rendezvous 203

transmission); this information includes: transmission mode, type, initial value and

value transmitted.

The third field of the record type in Figure 5.29 represents a queue of task names

with which this task entry might rendezvous. This queue is indexed by the set of

acceptable task names represented as an object of the primitive type "task-name-type".

(The priority of a process is ignored in the present model.) Each entry point also has

an associated list of attributes; an example of such an attribute is "count", which

records how many tasks are queued waiting to communicate with this task via this

entry point. These attributes are not described in the model presented here in order

to keep the complexity to a minimum and to allow fair comparison with the model of

the rendezvous mechanism employing Mallgren's approach to SDA's presented earlier.

task T1 is
entry el;
entry e2;

end T1;

task T2;
entry e3;

end T2;

Figure 5.30. An Ada program fragment

The information structures employed by this model can be illustrated by consider-

ing the Ada program fragment in Figure 5.30. This fragment involves two tasks "T1"

and "T2"; the first of these has two entries ("e1" and "e2") and the second has one

entry (""3"). Each task instance will be represented by an object of type task-object,

which will associate a communication port and an array of objects of type entry-object

with each task. For task "T1", the array of objects of type entry-object will consist

of two such objects (one for each entry point) and task "T2" will have an array of

5.6. An Altetnative Model fot the Ada Rendezvous 204

only one object. Each entry point will be represented by a record containing its own

communication port and some storage for the parameter information. Any attributes

relevant to entry points may also be associated with this object of type entry-object.

In order to describe Ada's tasking facility, some primitives are introduced. These

primitives are outlined below:

r The identifier "current" will be used to refer to the task name of the current

process. It is an object of type "task-name-type".

¡ The primitive t'task-table", already mentioned, is an array of objects indexed by

tttask-name-type"; each component in the array is of type tttask-object".

r The function "timeout-expired" returns a boolean value indicating whether the

timeout period for the rendezvous has yet expired.

¡ The function ttactual-params" returns the actual parameter values associated

with a call on an entry point.

o The primitive t'execute-statementstt executes the statements specified by its

argument. The valid values for this argument include:

- ttrendezvous" which refers to the statements, if any, which comprise the

rendezvous being considered, and

- "alternative" which refers to the statements, if any, which form the alter-

native part of a select statement.

Since we are concentrating here on certain aspects of Adats intertask communica-

tion, other aspects of Ada semantics (such as the actual transmission of the parameter

5.6. An Alternative Model for the Ada Rendezvous 205

information) are merely modelled by the invocation of a HLO and a brief informal

description.

5.6.1 Abstract Data Tlpes for Modelling the Rendezvous

Mechanism of Ada

The basic ADTs required by the model are the queue ADT given earlier in Figure 5.12

and the communication port ADT specified in Figure 5.31. A third basic ADT

employed by the model is a table type, already used in Figure 5.28; its specification is

similar to that of the queue presented in Figure 5.12. The table ADT is parameterized

with respect to its index type and the type of the elements of the table. The operations

"add-to-table" and "retrieve-from-table" are provided to add and retrieve information

from a table object.

ADT communication-port
sort s communication-port /boolean

syntax
ready-port:
busy-port:
ready?:

semantics
axloms

(1)
(2)

communication-port
communication-port

communication-port boolean

ready?(ready-port) : true
ready?(busy-port) : false

Figure 5.31. The definition of a communication port.

5.6. An Alternative Model for the Ada Rendezvous 206

5.6.2 Deterministic Send

The DeterministicSend event, discussed in Section 5.4.3.1, may be described using

the alternative SDA approach as shown in Figure 5.32.

DeterministicSend(called-task: task-name-type; called-entry: entry-name-type) :
usrnS

called-task-object, calling-task-obj ect : task-object ;

called-entry-object : entry-object;

Q: queue[task-name-type] ;

begin
called-t ask-obj ect : : task-table (called-task) ;

called-entry-object :: retrieve-from-table(called-task-object.entry,
called-entry);

Q :: called-entry-object.process-queue;
calling-task-object : : task-table(current) ;

-- Place the current taslc on the queue for entry "called,-entry"

-- "f task "called,-taslc".

Q :: place-on-queue(Q, current);

-- Wa,it for signal frorn called taslc to indicate that it can proceed,.

wait unt il ready? (calling-task-obj ect. port) +
calling-task-object.port :: busy-port;

end waituntil;
-- Pass parameters.
called-entry-obj ect.params : : actual-params;

-- Signal called, taslc tho,t parameter transmission is complete.

called-entry-object.port :: ready-port;

-- Wait for rendezuous to complete.
wait until ready? (calling-task-obj ect. port) +

calling-task-object.port :: busy-port;
end waituntil;

end;

Figure 6,32. The deterministic send event.

Figure 5.32 indicates that the description of the DeterministicSend event depends

on two parameters: the name of the task "called-task" which is called and the name

of the entry "called-entry" required within that task. Declarations of local identifiers

5.6. An Alternative Model for the Ada Rendezvous 207

follows in the section introduced by the keyword *using"; their purpose is to sim-

plify the description by having these identifiers stand for longer and more complex

expressions. In particular, these local identifiers usually stand for components of the

information structures used in the model of the Ada rendezvotls. Events such as the

DeterministicSend event of Figure 5.32 are instantiated when the relevant language

feature is encountered; in the case of the following entry call on the entry "81" of the

task ttTlt':

T1.El;

the arguments *Tl" and ttEl" are passed to the DeterministicSend event on instan-

tiation.

The definition of the semantics of the DeterministicSend event is delimited by the

keywords begin and end. This event commences by indexing the task-table with the

name of the invoked task and associates the resulting task-object object with the local

variable "called-task-object". The array of entry points for this task is then indexed

by the name of the desired entry point "called-entry" and the resultant entry-object

object is associated with the local variable "called-entry-object". The queue of tasks

attempting to rendezvous with this entry point of this task is then associated with

the identifier "Q". Finally, the name of the task attempting the rendezvous (available

through the primitive "current") is used as an index into the task-table to locate

the task-object object associated with it which is then referred to through the local

variable ttcalling-task-object". The use of local names to refer to various components

of the information structure model occurs in all the communication event definitions

and hence will not be discussed again in explaining later event definitions.

The Deterministic-Send event begins by placing the name of the calling task

("current") on the process queue for the desired entry of the specified task. The

5.6. An Alternative Model fot the Ada Rendezvous 208

calling task, which is executing the DeterministicSend event, is then delayed until the

called task is in a position to rendezvous with it. As a result, the calling task must wait

until the communication port for the calling task is set to the state "ready-port" by the

called task. The calling task resumes execution of the DeterministicSend event and

immediately sets the communication port to the state "busy-portn. Since both tasks

are no\¡¡ synchronized, the parameters involved in the rendezvous may be passed. Once

the calling task has transferred the actual parameters to the called task, the calling

task is informed that parameter transmission has taken place. This is done by setting

the communication port of the entry within the called task to the state "ready-port".

The calling task has little to do now except wait until the statements which make up

the body of the rendezvous have been executed by the called task. This is achieved

by the calling task waiting until the communication port for the task is set to the

"ready-port" state. All that remains is for the calling task to reset the communication

port to the ttbusy-port" state.

5.6.3 Conditional Send

The Conditional-Send event, previously discussed in Section 5.4.3.2, can be described

using the alternative SDA approach as shown in Figure 5.33. Recall that a select

statement with an else clause is semantically equivalent to a select statement with

a timed delay of negative or zero duration. For this reason, the description of the

semantics given in Figure 5.33 handles both the else clause and the timed alternative,

as the timeout period for the else clause is set to zero.

Figure 5.33 employs the same parameters and local variables as the Determinis-

tic-Send event. As for the DeterministicSend event, the Conditional-Send event must

be instantiated with the appropriate actual parameters representing the actual task

5.6. An Alternative Model for the Ada Rendezvous 209

Conditional-Send(called-task: task-name-type; called-entry: entry-name-type) =
using

called-task-object, calling-task-object : task-object ;

called-entry-object : entry-object ;

Q: queue[task-name-type] ;

begin
called-task-object :: task-table(called-task);
called-entry-object :: retrievelrom-table(called-task-object.entry,

called-entry);

Q :: called-entry-object.process-queue;
calling-task-object : : task-table(current) ;

-- Place the current tasle on the queue for entry "called,-entry"

- - "Í tasle "called,-task" .

Q :: place-on-queue(Q, current);
do
-- Wait until the calleil taslc can rend,ezuous, or until timeout expires.

when ready?(calling-task-object.port) -r
calling-task-object.port :: busy-port;

-- Pass parømeters.
called-entry-obj ect.params : : actual-params ;

-- Si,gnal calleil taslc that parameter transmission is complete.

called-entry-object.port :: ready-port;

-- Wait for the rend,ezuous to cornplete.

wait unt il ready? (calling-task-obj ect.port) -r
calling-task-object.port : : busy-port ;

end waituntil;
end when;
when timeout-expired +
-- Rernoue cument from the entry queue.

Q :: removeæntry(Q, current);

-- Execute statements in the ølternatiae part of the select statement.
execute-st atements (alternative) ;

end when;
end do;

end;

Figure 5.33. The conditional send event

5.6. An Altemative Model for the Ada Rendezvous 2r0

and entry point involved. The description of Conditional-Send places the name of the

calling task on the process queue of the desired entry within the called task. At this

point, one of two conditions may eventually hold: the called task may reach a state

where the rendezvous may proceed, or the called task may decide to abandon the

rendezvous (represented by the primitive "timeout-expired"); a do clause is used to

handle this choice. If the called task is able to proceed with the rendezvous, then

the first when clause within the do clause evaluates to true and the statements

within it are executed. This is identical to the DeterministicSend event. If the

"timeout-expired" function evaluates to true, then the rendezvous is aborted. This is

handled by the second when clause within the do clause. In this case, the calling task

must be removed from the process queue of the called entry point and the statements

which comprise the alternative part of the select statement are executed.

5.6.4 Deterministic Receive

The DeterministicReceive event, described earlier in Section 5.4.3.3, is described in

Figure 5.34 in terms of the alternative SDA approach. The event in Figure 5.34 needs

only one parameter, the name of the entry-point with which it must deal, as it is

invoked by the current task (recall that the current task can be referenced through

the primitive "current").

In the case of the Deterministic-Receive event, the called task must wait at the

accept statement until some task wishes to rendezvous with that entry point. This

is achieved by waiting until the process queue associated with the entry is no longer

empty. The rendezvous may now proceed. The called task begins by noting the

identity of the calling task in a local variable and then removing it from the process

queue. The called task then informs the calling task that the rendezvous may proceed

5.6. An Alternative Model for the Ada Rendezvous 2tr

Deterministic-R eceive(called-entry: entry-name-type) :
using

called-task-object, calling-task-object : task-obj ect ;

called-entry-object :: entry-object;

Q: queue[task-name-type] ;

begin
called-task-object :: task-table(current) ;

called-entry-object :: retrieve-from-table(called-task-object.entry,
called-entry);

Q :: called-entry-object.process-queue;

-- Wai,t until a rend,ezaous can talce place.

waituntil not queue-empty?(Q) -+
-- Note the calling task.
calling-t ask-ob j ect : - task-table(head-of-queue(Q)) ;

Q :: removelead(Q);
end waituntil;
-- Inform the calling taslc that parameter transmission rno,y occur.

calling-task-object.port :: ready-port;

-- Wait until parameter transmission is complete.

wait unt il ready? (called-entry-ob j ect.port) +
called-entry-object.port :: busy-port;

end waituntil;
-- Eaecute the statements in the rendezuous.

execute-st atements (rendezvous) ;

-- Inform the calling taslc that the rendezaous i,s complete.

calling-task-object.port :: ready-port;
end;

Figure 6.34. The deterministic receive event.

and the parameters are passed. The called task then waits until the calling task

informs it that the parameters have been transferred. This is achieved by waiting

until the communication port for the entry is set to the "ready-port" state. The

called task then returns the communication port to the "busy-port" state and executes

the statements which comprise the rendezvous; these statements are denoted by the

primitive "rendezvous". On completion of the execution of these statements, the

called task informs the calling task that the rendezvous is complete by setting the

communication port of the called task to the "ready-port" state.

5.7. Summary 2t2

5.6.5 Conditional Receive

The semantics of the Conditional-Receive event, discussed earlier in Section 5.4.3.4,

is defined in Figure 5.35. Figure 5.35 shows that the Conditional3eceive event takes

many parameters; every entry point that lies within the select statement which results

in the Conditional-Receive event is a parameter to the event, as they each have the

ability to result in a rendezvous with another task. The Conditional3eceive event

starts by making a nondeterministic choice between all of the available options. These

options are any of the open entry points (i.e., those entry points whose process queue

is nonempty) and the timeout condition, which is represented by an empty process

queue for all entry points and a true result from the timeout-expired primitive. If one

or more of the entry points has a nonempty process queue, then a nondeterministic

choice is made between them and a rendezvous takes place in the same \May as that

described for Deterministic-Receive. If the timeout condition holds, then the called

task need simply execute the statements which make up the alternative part of the

select statement and proceed.

5.7 Summary

This chapter has considered the description of language features for parallel pro-

gramming languages. In keeping with the framework of ATLANTIS described in

Chapters 3 and 4, an algebraic framework for the description of data types in a parallel

environment has been considered. Mallgren's approach to SDA's allows these parallel

features to be described, but fails to integrate well into the ATLANTIS system as

language designers would be forced to describe data structures referenced by a single

5.7. Summary

Conditional-Receive(called-entry-1, .. ., called-entry-n: entry-name-type) -
using

called-task-object, calling-task-object : task-object ;

called-entry-obj ect-l, . . ., called-entry-object-n: entry-object ;

Q: queue[task-name-type] ;

begin
called-task¡ame :: task-table(current) ;

-- Select one of possibly seaeral open alternatiaes.
called-entry-object-1 :: retrievelrom-table(called-task-object.entry,

called-entry-l);

called-entry-object-n :: retrieve-from-table(called-task-object.entry,
called-entry-n);

do
when not queue-empty? (called-entry-obj ect-l .process-queue) -r

Q :: called-entry-object-l.process-quene;

-- Note the calling task.
calling-task-ob j ect : : t ask-t able(head-of-queue(Q)) ;

Q :: removeìead(Q);
-- Inforrn the calling task that param,eter transmission nxo,y cornrnence

calling-task-object.port :: ready-port;

-- Wait until parameter transmi,ssion is cornplete.

wait until ready? (called-entry-ob j ect -1 .port) +
called-entry-object.port := busy-port;

end waituntil;
-- Execute the staternents in the rendezuous.

execute-st atements (rendezvous) ;

-- Inform the calling taslc that the rendezaous is complete.

calling-task-object-1.port :: ready-port;
end when;
when not queue-empty? (called-entry-object-n.process-queue) +

end when;
-- ï timeout peri,oil erpires and no open alternatiaes.
when queue-empty? (called-entry-object-l.process-queue)
and . . . and queue-empty? (called-entry-obj ect-n).process-queue)
and timeout-expired +
-- Erecute statements in the alternatiae part of the select statement.
execute-st atement s (alternative) ;

end when;
end do;

end;

2r3

Figure 5.35. The conditional receive event.

5.7. Summaty

process in one manner, and data structures referenced by more than a single process

in another.

An alternative approach to the specification of SDA's has been proposed; this

approach separates the definition of the data type from the synchronization concerns

which govern access to the data a type. This alternative approach lends itself to the au-

tomatic generation of an SDA envelope directly from an ADT definition. This permits

the ADT description used by ATLANTIS to remain unaltered and hence ATLANTIS

can be extended to handle parallel languages without the language designer needing to

redesign any of the information structure descriptions. The only modifications visible

to the language designer would be the introduction of additional constructs to allow

the description of aspects such as the synchronization of processes.

As part of the work on the ATLANTIS system, a number of experiments have

been conducted which involve the implementation in Ada of SDA's defined using

the alternative technique. The experiments have shown that the technique is free

of the majority of difficulties discussed earlier for Mallgren's approach. The principal

practical advantage offered by the alternative approach is the fact that an infinite

history of previous state transitions is not required.

One difficutty in the above description of the Ada rendezvous occurs if two processes

send messages to each other (e.g., in the conditional send) and the messages pass

each other enroute. This case is neither handled nor acknowledged by the language

definition and no attempt to provide semantics for it is made in the model; to do so

would be to present a model which did not accurately reflect the semantics of Ada.

It is, however, significant that such an omission comes to light when attempting to

formalize the language definition using the alternative approach to SDA's.

2t4

Chapter 6

Summary and Conclusions

6.1 Summary

As indicated in Chapter 1, many approaches to the definition of programming lan-

guages have been tried, with varying degrees of precision. The syntax of a language is

often given in EBNF, or some variant thereof, and this technique is widely accepted and

understood. No one technique for the definition of programming language semantics

enjoys the same degree of acceptance. The result is that there are many alternative

techniques available and no reader of language definitions is familiar with all of them.

The most common method of defining the semantics of a programming language is

to employ a natural language description. As is well known, this approach suffers from

many problems - ambiguities, omitted details, poorly defined areas and the like. In

order to reduce the risk and severity of these difficulties, natural language descriptions

have become more precise (at the cost of readability), but even this has not solved the

problem completely. It took many person-years of effort to produce relatively precise

natural language descriptions for the programming languages Ada and Pascal - but

neither is a formal definition. The result is potentially inconsistent interpretations

2t5

6.1. Summary

of the definition, and compilers for the same language which may exhibit different

behaviours.

In Chapter 2, the algebraic specification technique for the definition of ADT's was

discussed. This technique allows the precise, formal definition of a data type and the

operations available on it. Such a formalism allows the development of an operational

information structure model of the semantics of programming languages, which was

introduced in Chapter 3.

The operational semantic model produced by the multi-Iayer technique described in

Chapter 3 is sipler to understand and read than, say, the semantic description of Pascal

in terms of attribute grammars given by Kastens eú ø1. [68]. An operational model

is also capable of describing both the static and dynamic semantics of a language,

whilst attribute grammars tend not to perform so well in a description of the dynamic

semantics. At present, BSI are attempting to define the semantics of Modula-2 with

VDM [13]; however, VDM is itself currently being standardized and will suffer the

problems typical of any programming language standard. The axioms used in an

axiomatic approach do not suffer any such problem, as they have a firm mathematical

foundation.

Some aspects of programming language definition are well explained and under-

stood (such as syntax), whilst others are poorly explained, even amongst formal models

of the programming language semantics. For example, very few semantic models have

provided adequate descriptions of data control in programming languages. Exceptions

include Johnston's Contour Model [67], Smith's Accessing Graph Model [13U, Reiss'

ACORN project [118], Molinari and Johnson's extension of Reiss' work [96] and the

earlier, less formal, versions of the model presented in this thesis [82, 83, 85]. Chapter 3

216

6,1. Summary 2t7

provides a precise description of the data control aspect of Pascal as an illustration of

the operational semantic model developed in that chapter.

The application of the algebraic specification of ADT's to the description of the

information structures used in the operational semantic model has led to the develop-

ment of a layered model that caters for programmers, compiler writers and language

designers. Even though each group requires a different depth of understanding of the

language, it is now possible to produce one document to satisfy all of these groups,

rather than having to write several documents, each aimed at a different group. The

algebraic techniques employed gave the degree of formalism necessary to establish a

precise base from which to build a formal model.

The approach described in this thesis encourages formality in language design by

gathering together activities which have traditionally been distinct: language design,

definition and implementation. Generating an implementation from the language def-

inition allows the designer to experiment with and fully explore language design issues

with the confidence that the generated implementation precisely matches the formal

definition. Language designers are encouraged to produce formal definitions of new

languages through the generation of low-cost implementations based directly on their

definitions. Such implementations provide language designers with the opportunity to

check language definitions to enure that they accurately reflect the intended semantics.

Chapter 4 provides a description of the ATLANTIS system. ATLANTIS is based on

the operational model developed in Chapter 3 and provides programming language

designers and users with an interpretive implementation which faithfully adheres to

the language definition.

Since the formal definition is layered, users examining various layers in an AT-

LANTIS description will all have access to an implementation consistent with the

6.1. Summary 218

layers concerned. Programmers, normally preferring an informal natural language

exposition because such descriptions are easier to read, will be able to answer ques-

tions about a language by reading to a depth most appropriate to them. Compiler

writers, requiring a more precise definition, are provided with a precise and complete

specification based on algebraically-specified abstract data types. Finally, the language

designer benefits from using ATLANTIS since an implementation is obtained with little

additional effort as a result of designing and defining the language.

Chapter 5 examined the operational model and the ATLANTIS system with respect

to the definition of parallel programming languages. This chapter observed that ADT's

are inadequate in an environment where multiple concurrent access to an informa-

tion structure is possible; these difficulties were rectified through the use of SDA's.

Chapter 5 also examined Mallgren's approach to SDA's and discovered that such an

approach is not compatible with the ATLANTIS system. An alternative approach to

SDA's was then discussed; this approach allows the model employing ADT's to remain

essentially unchanged except for the introduction of some necessary synchronization

mechanisms. The alternative approach provides automatic protection to the ADT's,

allowing the language designer to concentrate on the design and definition of a ne\M

programming language without being excessively concerned with the protection of data

structures in the presence of multiple concurrent processes. The two SDA techniques

were illustrated through the definition of aspects of the Ada rendezvous mechanism

for inter-task communication.

6.2. Conclusions 2r9

6.2 Conclusions

The development of the model in Chapter 3 has shown that it is possible to produce

a language definition which is formal in nature while simultaneously catering for

the disparate needs of various groups of users. This is achieved by layering the

underlying operational model so that users requiring a relatively superficial or less

detailed understanding can read the outermost layer of the model before resorting to

the accompanying natural language narrative, while users such as compiler writers and

language designers, who require a detailed and complete understanding, can read each

of the layers of the model.

The ATLANTIS system, introduced in Chapter 4, illustrates that a formal language

definition can benefit all users, including the language designer, by permitting the

generation of a language implementation directly from the definition. The underlying

model of ATLANTIS is operational in nature, and the generated interpreter mimics its

behaviour precisely. This allows the language designer to experiment with the language

definition through experience with the language implementation. If the behaviour of

the implementation is determined to be unsatisfactory, or not an accurate reflection

of the semantics intended by the language designer, then the language designer may

modify the language definition and quickly generate a new implementation. Such

feedback to the language designer, which is lacking with some other formalisms, is a

major advantage offered by ATLANTIS.

The extension of ATLANTIS from a tool suitable for the definition of a sequential

programming language, to a tool suitable for the definition of parallel programming

languages has been shown to be relatively straightforward. The changes involved cause

minimal disruption to the ATLANTIS system from a user's perspective. This almost

6.3. Future Work

transparent extension is possible because the protective SDA envelopes can be gener-

ated automatically from the ADT definitions already employed by ATLANTIS. The

only disruption to the ATLANTIS system from a user's viewpoint is the introduction

of synchronization mechanisms to allow the description of the appropriate features in

the programming language concerned.

Another advantage of expanding the operational model through the introduction

of SDA's is that it does not introduce any distinctly new style of specification. This

is an obvious advantage for those wishing to convert sequential algorithms based on

ADT's to a parallel environment. It is not necessary to redefine any ADT specification

simply because it will be used within a parallel environment. It is also not necessary

to modify the implementation which corresponds to the ADT definition.

6.3 Future Work

Currentl¡ the scanner and the parser are automatically generated from a language

definition; the translation of the semantic routines and HLO's to Ada routines is also

performed automatically. However, it remains unclear which generation technique

is most appropriate for the automatic translation of ADT specifications. In the

meantime, ATLANTIS will continue with the hand translation of ADT specifications

into Ada.

Although the principal aim of ATLANTIS is not the generation of a production

quality compiler generating native code, future development could proceed in this

area by employing a code generator generator [35, 36, 47,,48] to produce a compiler.

Definition of the necessary instructions for a specific machine architecture could be

kept separate from the language definition.

220

6.3. Fuúure Work 22r

The present ATLANTIS implementation only handles sequential languages. In

order to provide the same benefits to the developers of parallel languages, the under-

lying information structure model needs to be enhanced. Work could proceed in this

area through the introduction of a new layer, directly above the ADT layer, to handle

several processes trying to simultaneously access the information structures; this layer

could then employ the approach to shared data abstractions (SDA's) described in

Section 5.5. The introduction of SDA's into ATLANTIS would then provide a language

definition technique able to describe both sequential and parallel languages, whilst

providing a formal and readable language definition from which an interpreter or

compiler prototype can be produced automatically.

The relative ease with which the ATLANTIS system can be extended from se-

quential languages to parallel languages such as Ada leads to consideration of the

classes of languages to which the ATLANTIS approach is amenable. As demonstrated

throughout this thesis, but in Chapter 4 in particular, the ATLANTIS system works

by devising suitable information structures and expressing the programming language

semantics through transformations on these information structures. Furthermore, it

is the outermost layer of the model which indicates when these transformations are to

take place, by attaching a semantic action to a syntactic element. It clearly follows that

any class of language whose semantics can be described in this way can be handled by

the ATLANTIS system. A brief consideration of a variety of programming paradigms

and programming language features with respect to the approach to language definition

adopted by the ATLANTIS system follows.

Sequential block structured languages such as Pascal [17], and the closely related

Neptune language used to test the ATLANTIS system, can clearly be described by

the technique in this thesis. A parse tree is constructed which represents a program

6.3. Future Work 222

in the programming language defined. The information structures then model activa-

tion records and symbol tables, which the generated interpreter manipulates as each

semantic action is encountered during a tree walk over the decorated parse tree.

As illustrated in Chapter 5, the approach taken in the ATLANTIS system can

be extended to provide support for parallel programming languages. Languages with

explicit parallelism (e.g., Ada [141]) can be defined in this way. Other programming

languages such as Sisal [32, 89] provide constructs such as parallel for-loops which

can be modelled in a similar u/ay to Ada's tasks. Each of these languages provide a

concurrency mechanism which is made explicit via some syntactic structure and, hence,

provide a convenient syntactic location with which to associate a semantic action to

define the necessary semantics through appropriate manipulation of the information

structure concerned.

Languages which support implicit parallelism which is detected by the compiler and

used to generate efficient code for a particular architecture, such as a supercomputer,

typically have no additional semantics associated with parallel constructs. That is

to say, the semantics and behaviour of the program written in such a language is

unchanged if the construct is parallelized ot left sequential. The exploitation of

parallelism in these cases is not a language definition issue, but rather a compilation

issue. For example, attempts to exploit implicit parallelism in Sisal are handled by the

generation of an intermediateform called IFl [129, 130], and by performing appropriate

graph analysis on the generated IFl code to detect the potential parallelism. Once

again, the use of a suitable information structure and its manipulation can be observed;

however, in the case of implicit parallelism, the use of the information structure and

its manipulation is essentially a compilation technique rather than an aspect of the

language definition. The ATLANTIS approach could model such implicit parallelism

6.3. Future Wotk 223

(possibly with the need for additional primitives to be introduced), but care must

be taken by the language designer to separate language issues from compilation and

architectural issues. A discussion of these issues is beyond the scope of this thesis.

The object-oriented approach to programming, supported by languages such as

Eiffel [92] and C++ [30, 135], typically involves the notions of objects, methods,

inheritance and polymorphism. The behaviour of programs in a language such as Eiffel

can be modelled by information structures not dissimilar to those used to describe the

behaviour of Pascal programs. Clearly, the information structures for Eiffel and Pascal

will differ, but there is no reason to believe that object-oriented languages should

present a difficult to this approach to language definition. The description of parallel

object-oriented languages, such as Eitrel// [19] (a parallel version of Eiffel), will simply

employ a mixture of the techniques introduced in Chapters 4 and 5.

Functional languages, such as ML [94], can also be modelled using the approach

described in this thesis. Function definitions can be modelled in a similar manner to

that used for block structured languages; function applications would be modelled via

a variant of the activation record model. A sequential version of Sisal could also be

modelled in this way.

Languages which make efficient use of a non von Neumann architecture can also be

modelled using the ATLANTIS method. For example, a data-flow language such as

Lucid [7, 8] can be modelled in a manner similar to that shown in Wendelborn [153];

\Mendelborn provides an operational semantic model of Lucid, making explicit all the

implicit parallelism found in this data flow language.

Languages such as Lisp [88, 132], which make no distinction between program and

data, cannot easily be modelled by tn" nflnNTIS system as it currently stands,

because there is no mechanism to take some data produced by an executing program,

6.3. Fuúure Wotk 224

treat it as program text, create an annotated parse tree within the interpreter and

then execute it. There is, however, no reason to believe that the ATLANTIS system

could not be extended to adequately deal with such languages.

Logic languages, such as Prolog I22, 8ll have a relatively simple syntax, yet rich

semantics. The difrculty with defining such languages with the approach used by the

ATLANTIS system is that the semantics of the inference engine must be encapsulated

within the language definition. It is the author's belief that this is possible and that the

programming language definition could be written in such a \¡¡ay that the description

of the inference engine are separated; this would allow the language designer to easily

experiment with different inference semantics for example.

Programming languages which support separate compilation and libraries of rou-

tines (e.g., Ada and C [58, 71]) currently present a difficulty to the ATLANTIS system,

which assumes that all the necessary context with which to interpret a source program

in the language being defined is to be found in either the language definition or

the source program. There are no technical difficulties in extending the ATLANTIS

approach to cater for separate compilation; library management strategies would need

to be explored with such an extension.

Another hurdle not yet addressed by the ATLANTIS system is the description

of exception handling mechanisms, such as those found in the languages Ada and

PLII l4l. The principal difficulty with these mechanisms is that it becomes necessary

to describe what constitutes an exceptional condition (e.g., divide by zero and memory

overflow) and how it is to be detected. Such exceptions are difficult, in most cases,

to describe in an architecture-independent manner since they typically relate to limits

in the underlying architecture. It is the author's belief that the approach undertaken

by the ATLANTIS system could, with substantial modification, be used to describe

6.3. Future Work 225

such exceptional circumstances, but it is likely that some assumptions regarding the

underlying architecture will probably need to be made.

One class of language which presents some difficulties for the ATLANTIS approach

is where a number of alternative semantic actions are possible and the language

designer does not care which choice is made by a compiler writer. For example, a

programmer using Ada may not assume that the pa,rameters to a routine are evaluated

from left-to-right, right-to-left or even in parallel. All are valid possibilities and each

should lead to the same result. If the programmer relies on the fact that the compiler

in use employs left-to-right evaluation, for instance, and writes code which exploits

this fact, then the programmer has written an erroneous program. This error may,

or may not, be detected by the compiler, but may affect the portability of the code

written. Ada is defined in this way so as to provide the maximum degree of freedom to

the compiler writing team to exploit the architecture being targetted. The ATLANTIS

system currently provides no mechanism to express such semantics and, instead, forces

the language designer to make a choice, such as the parallel evaluation of parameters,

and describe the programming language semantics in terms of this choice. A natural

language narrative accompanying the formal description may indicate that alternative

implementation strategies are valid. However, the generated interpreter produced by

the ATLANTIS system will, of course, follow the implementation scheme described

in the underlying operational semantic model. A possible remedy is to permit the

language designer to specify a number of alternative strategies and have the interpreter

randomly follow one strategy. Furthermore, the ATLANTIS system currently does not

demand that all ADT's be consistent and sufficiently complete; this partially serves

to address the need to be able to describe ttdon't care" semantics.

6.3. F\.tture Work 226

A final deficiency with the current implementation of the ATLANTIS system is

the inability to capture the annotated parse tree and use it to generate native code

for a particular architecture. This was initially perceived as being beyond the scope

of a language definition which should not be bound to any particular architecture;

however, the ability to capture the intermediate representation and generate native

code would provide a practical and efficient way to, at least partiall¡ produce aspects

of a compiler automatically from a language definition. The marriage of a definition

of the semantics of a programming language and the definition of the semantics of the

native code for a particular architecture, together with an efficient mapping between

the two, is an area for continuing research.

To further aid language designers in designing and "debugging" their language

design, a graphical interface could be added. The designer would then draw the syntax

charts and indicate the locations of the semantic actions on those charts. As a source

program in the newly defined language is being interpreted, some indication on the

syntax charts could be given to indicate which token is currently under consideration

and where in the source program that token was located. The language designer is then

in a position to "see" the execution of a sample program and the evaluation of the

semantic actions used to define the language. Such tools are not as yet available

to language designers; their availability would no doubt improve the quality and

accuracy of language definitions and greatly improve the feedback provided to language

designers (as discussed in Section 4.11) and further enhance their productivity and the

accuracy of the programming language definition.

Appundix A

Predefined ADT's within ATLANTIS

ATLANTIS provides a collection of predefined ADT's. These ADT's are described in

this appendix.

4.1 The Boolean Data Type

ADT boolean;
sorts boolean;

syntax
true:
false:
and-boolean:
or-boolean:
xor-boolean:
not-boolean:
equal-boolean:
write-boolean:
read-boolean:

boolean x boolean
boolean x boolean
boolean x boolean
boolean
boolean x boolean
boolean

+ boolean;

-+ boolean;
+ boolean;

-) boolean;
+ boolean;

-) boolean;
boolean;

+;
+ boolean;

semantics
-- The operation t'truett returns the boolean constant TRUE.

-- The operation "false" returns the boolean constant FALSE.

-- The operation "and-booleantt takes two arguments and applies the
boolean operator uand' to them, returning the result.

227

A.2. The Integer Data Type

-- The operation "or-boolean' takes two a,rguments and applies the
boolean operator ttortt to them, returning the result.

-- The operation "xor-boolean' takes two arguments and applies the
boolean operator uxort' to them, returning the result.

-- The operation "not-booleant' takes a single boolean argument and returns
the result after applying the boolean operator "not" to it.

-- The operation ttequal-booleant' takes two arguments and returns a

boolean value indicating if the arguments were equal.

-- The operation "write-boolean" takes a single boolean value but
does not return a result. It produces a side-effect by displaying
the boolean value on the screen.

-- The operation ttread-boolean" takes no arguments and returns a boolean

value read in at the keyboard.

A.2 The Integer Data Type

ADT integer;
sorts integer/boolean;

228

syntax
add-integer:
subtract-integer:
multiplyinteger:
dividejnteger:
negate-integer:
equal-integer:
less-than-integer:
greater-than-integer :

writejnteger:
read-integer:

integer
integer
integer
integer
integer
integer
integer
integer
integer

integer
integer
integer
integer

integer
integer
integer

X

X

X

X

-) integer;

-) integer;
+ integer;

-) integer [J {error};
+ integer;

-) boolean;
--+ boolean;
+ boolean;
+;
-) integer;

X

X

X

semantics
-- The operation "add-integer" adds together two integers and returns the

result.

-- The operation ttsubtract-integer" takes the second argument away from
the first and returns the result.

-- The operation "multiplyjnteger" multiplies together two integers and

returns the result.

-- The operation "dividejnteger" divides the first argument by the second

giving the result. An error is raised if an attempt to divide

A.3. The Floating Point Data Type 229

by zero is made.

-- The operation "negatejnteger' returns the argument after multiplication
bv -1.

-- The operation "equaUnteger" returns a boolean value indicating if the
two arguments are equal.

-- The operation "less-thanjnteger" returns a boolean value indicating if
the first argument is less than the second.

-- The operation "greater-tha,njnteger" returns a boolean value indicating if
the first argument is greater than the second.

-- The operation ttwritejnteger" takes one a,rgument and produces no result.
It has the side-effect of displaying the integer in the screen.

-- The operation "read-integer" reads an integer value from the keyboard
and returns the result.

4.3 The Floating Point Data Type

ADT float;
sorts float/boolean, integer;

syntax
add-float:
subtract-float:
multiplyfoat:
divide-float:
negate-float:
equalfoat:
less-than-float:
greater-than-float:
write-float:
read-float:
integer-to-float:
float-tojnteger:

+ float;
+ float;

-) float;
+ float [J {error};

+ boolean;
boolean;

-) boolean;

;

-+ float;
float;

+ integer;

float
float
float
float
float
float
float
float
float

x float
x float
x float
x float

x float
x float
x float

integer
float

semantics
-- The operation "add-float" adds two real numbers together and returns

the result.

-- The operation ttsubtract-float" takes the second argument away from
the first and returns the result.

-- The operation "multiplyfoat" multiplies two real numbers together
and returns the result.

A.4. The Chancter Data Typ" 230

-- The operation "divide-result" divides the first argument by the second

and returns the result. An error is raised if an attempt to divide
by zero is made.

-- The operation "negatefoat" multiplies its a,rgument by -1 and returns
the result.

-- The operation "equalfoat" is the test for equality on floating point
numbers.

-- The operation "less-than-float" returns a boolean value indicating
if the first argument is less than the second.

-- The operation "greater-than-float" returns a boolean value indicating
if the second argument is greater than the first.

-- The operation "write-float" takes a real number argument but returns
no result. It has the side-effect of displaying the number on the screen.

-- The operation ttread-float" reads a real number and returns it.
-- The operation ttinteger-to-float" takes an integer argument and

returns the equivalent floating point number.

-- The operation "float-to-integer" takes a floating point number and
rounds it to the nearest integer before returning the result.

A.4 The Character Data Type

ADT character;
sorts character/boolean, integer;

syntax
equal-char:
less-than-char:
greater-than-char:
write-char:
read-char:
char-tojnteger:
integer-to-char:

character x character
character x character
character x character
character

character
integer

+
+
-)
-)

-)

boolean;
boolean;
boolean;

character;
integer;
character;

semantics
-- The operation t'equal-char" compares two arguments and returns a

boolean result indicating if they are equal.

-- The operation "less-than-char" returns a boolean value indicating
if the first argument is less than the second.

-- The operation "greater-than-char" returns a boolean value indicating
if the second argument is greater than the second.

A.5. The Stting Data Type

-- The operation ttwrite-chartt takes a cha¡acter argument and returns no
result. It has the side-effect of displaying the character on the screen.

-- The operation "read-char" returns a character read from the keyboard.

-- The operation ttchar-tojnteger" converts a character to the
corresponding integer.

-- The operation "integer-to-charn takes an integer and returns
the corresponding character.

A'.5 The String Data Type

ADT string-type;
sorts string-type/boolean, character, integer, float ;

231

syntax
is-empty-string:
concatenate-char:
concatenate-string:
length-string:
equal-string:
less-than-string:
greater-than-string:
write-string:
read-string:
generate-name:
integer-to-string:
string-to-integer:
float-to-string:
string-to-float:
read-line:
writeline:
matching-string:
rnake-string:
error:

definelabel:
define-aux-label:
returnlabel:
return-auxlabel

string-type
string-type x character
string-type x string-type
string-type
string-type x string-type
string-type x string-type
string-type x string-type
string-type

integer
string-type
float
string-type

string-type
string-type

string-type
string-type

-)
+
--+

+

-)
+

-)

+
+
--+

-)
-)
+

-)
--+

+
--+

+
-)
+

boolean;
string-type;
string-type;
integer;
boolean;
boolean;
boolean;

t

string-type;
string-type;
string-type;
integer;
string-type;
float;

string-type;
string-type;

string-type;
string-type;

A.5. The Stñng Data Type 232

goto-next:
goto-prev:

string-type
string-type

semantics
-- The operation "is-empty-string" returns a boolean value indicating

if the string argument is empty.

-- The operation t'concatenate-char" concatenates a character to the end

of a string and returns the result.

-- The operation ttconcatenate-string" concatenates the second argument
to the end of the first and returns the result.

-- The operation "length-string" returns an integer value indicating the
length of the string.

-- The operation "equal-string" returns a boolean value indicating
if the two strings are equivalent.

-- The operation t'less-than-string" returns a boolean value indicating
if the first argument is lexically less than the second.

-- The operation t'greater-than-string" returns a boolean value indicating
if the first argument is greater than the second.

-- The operation t'write-stringt' takes a string as an argument and returns
no result. It has the side-effect of displaying the string on the screen.

-- The operation "read-string" reads a string from the keyboard (terminated
by end of line) and returns the result.

-- The operation "generate-name" returns a unique string-type object.

-- The operation "integer-to-string" takes an integer argument and returns
the string representation of that number, e.g., I23 + uI23".

-- The operation "string-to-integer" takes a string as an argument and
returns the integer which it corresponds to, e.g.r "123" + L23.

-- The operation t'float-to-string" takes a real number and converts it
to a string, €.8., 12.34 + "12.34".

-- The operation "string-to-float" takes a string and returns the
corresponding floating point number, e.g.r "12.34" + 12.34.

-- The operation "read-line" takes no arguments and returns no results.
It has the side-effect of discarding any remaining input on the
current input line.

-- The operation ttwriteline" takes no arguments and returns no result.
It has the side-effect of terminating output to the current
output line.

-- The operation t'matching-stringt' takes no arguments and returns a

(possibly empty) string which corresponds to the string matched
by the last token. It operates on the syntax of the language and not
the semantics; hence, it is possible to deduce which token will be

returned based on the static textual representation of the program text

-- The operation tterrort' displays the string as an error message, referring
to the line number, and the position on the line, where possible.

+
-)

A.6. The Location Data Type

-- The next six routines do not really belong in this ADT, but they
each have one argument of type string-type.

-- The operation "definelabel" specifies the name to be associated with
a node in the parse tree.

-- The operation "define-auxlabel" specifies the auxiliary label to
be associated with the node in the parse tree.

-- The operation "returnlabel' returns the label associated with the
parse node.

-- The operation "return-auxlabel" returns the auxiliary label
associated with the parse node.

-- The operation ttgoto-nextt' changes the active node in the parse tree
to the one indicated by the argument. The parse tree is searched

forward, but not to a greater depth than what the current level.

-- The operation ttgoto-prev" performs the same task as ttgoto-nexttt, but
in the opposite direction.

4.6 The Location Data Type

ADT location;
sorts location;

233

syntax
currentlocation:
nextlocation:
set-location: Iocation

-) location;
--+ location;

-);

semantics
-- The operation "currentlocation" returns a pointer to the current location

in the tree. This is useful when describing the semantics of
procedure call and return.

-- The operation ttnext-location" returns a pointer to the location in
the tree which represents the instruction to be executed
after the present instruction.

-- The operation "setlocationt' changes the current point is interest
to the specified location in the tree. Again, this is necessary for
the semantics of a procedure call and return.

-- Together, these operations allow the implementation of procedure and

-- function call and return by permitting the locations of procedures

A.6. The Location Data Type

-- and functions to be kept in the symbol tablee and permitting stacks

-- of locations, etc. Such a facility is sufficiently general to handle

-- all sequential languages and most pa^rallel language features designed

-- to be executed in a sequential environment, e.9., coroutines.

234

App.ndix B

ADT implementation

8.1 The Table Package

For each ADT definition in ATLANTIS, there exists an Ada package. This appendix

provides an example of the package associated with the ADT of Figure 4.8. The

package must be generic in the case of a polymorphic ADT definition. ATLANTIS

presumes that the signatures of the operations provided by the package accurately

reflect the signatures within the ADT definition; specifically, it is assumed that the

operations provided by the package have the same names as those specified in the

ADT definition and that the types and ordering of parameters are also preserved, and

that the behaviour of the operations corresponds to the axioms. It is also assumed

that each package provides a function called ""opy" which generates an exact replica,

but a distinct object, of any instance of that type.

235

8.1. The Tabúe Package

generic
type index-type is private;
type element-type is private;

package table-package is

type table is private;

function new-table return table;

-- Crcate a new table object.

function empty-table (tab: in table) return boolean;

-- Retum "ttuet' if the table "tab" is emptyl "false" othetwise.

function memberJable (tab: in table;
ind: in index-type) return boolean;

-- Return "ttue" if the table "tab" contains an element specifred

-- by the index "ind"; returns ufalse" otherwise.

function insert_table (tab: in table;
ind: in index -type;
elem: in element-type) return table;

-- Inseft the specifred index and element into the table and rcturn
-- the newly formed table.

function remove_table (tab: in table;
ind: in index-type) return table;

-- Remove the index and associated element type ftom the table.

-- Raise an exception il the index is not known to the table.

function alter¡able (tab: in table;
ind: in index_type;
elem: in element-type) return table;

-- Alter the element value associated with the specifred index. An
-- exception is raised if the index is not abeady known to the table.

236

8.1. The Table Pacl<age

function search_table (tab: in table;
ind: in index type) return element-type;

-- Return the element-type object associated with the index in the

-- table. Raise an exception if no such index exists within the table.

function size-of-table (tab: in table) return integer;

-- Return the size of the tabhe.

table_error: exception;

private
type table-type;
type table is access table-type;
type table-type is

record
ind: index-type;
elem: element-type;
next: table;

end record;

end table_package;

with text_io;
use text-io;

package body table-package is

function new table return table is

-- Crcate a new table obiect.

begin -- new-table
return null;

exception
when others :>

put-line("Unspecified error occurred in new-table");
raise;

end new-table;

237

8,1. The Table Package

function empty-table (tab: in table) return boolean is

-- Returns "true" if the table "tab" is empty; reúurns ufalseu otherwise.

begin -- empty-table
return (tab : null);

exception
when others :>

put-line("Unspecified error occurred in empty-table");
raise;

end empty-table;

function memberJable (tab: in table;
ind: in index-type) return boolean is

-- Return "true" if the table "tab" contains an element specifred by

-- the index "ind"; return "false" otherwise.

temp-tab: table :: tab;
found: boolean :: false;

begin -- member-table
while (not found) and (not empty-table(temp-tab))
loop

found 3- (temp-tab.ind : ¡nd);
temp-tab :: temp-tab.next;

end loop;
return found;

exception
when others :>

put-line("Unspecified error occurred in memberJable");
raise;

end memberJable;

238

8.1. The Table Package

function insert-table (tab: in table;
ind: in index-type;
elem: in element-type) return table is

-- Inseú the specifred index and element into the table and rcturn the

-- rcsulting table.

begin -- insert-table
return new table-type'(ind, elem, tab);

exception
when others :>

put-line("Unspecified error occurred in insert-table");
raise;

end insert_table;

function remove-table (tab: in table;
ind: in index-type) return table is

-- Remove the index and associated element type ftom the table.

-- Raise an exception if the index is not known to the table.

found: boolean :: false;

temp_tab, prev-tab: table;

begin -- rcmove-table
prev_tab :: new-table;
temp-tab :: tab;
while (not found) and (not empty-table(temp-tab))
loop

found :: temp-tab.ind - ind;

if not found
then

prev_tab :: temp-tab;
temp_tab :: temp_tab.next;

end if;
end loop;

239

8.1. The Table Package

if found
then

if not empty-table(prev-tab)
then

prev-tab.next :: temp-tab.next;
return tab;

else
return temp-tab.next;

end if;
else

raise table_error;
end if;

exception
when table error :>

put-line("Attempt to remove an undefined index from the table");
raise;

when others :>
put-line("Unspecified error occurred in remove-table");
raise;

end remove-table;

function alter¡able (tab: in table;
ind: in index-type; '
elem: in element-type) return table is

-- Alter the element value associated with the specifred index.

-- An exception is mised iî the index is not already present

-- in the table.

found: boolean :: false;

temp-tab: table :- tab;

240

8.1. The Table Package

begin -- alteLtable
while þot found) and (not empty-table(temp-tab))
loop

found :- (temp-tab.ind : ind);
if not found
then

temp-tab :: temp-tab.next;
end if;

end loop;

if found
then

temp-tab.elem :: elem;

return tab;
else

raise table_error;
end if;

exception
when table-error :)

put-line("Attempt to alter entry not already present

raise;
when others :>

put-line("Unspecified error occurred in alter¡able");
raise;

end alter¡able;

function size_of_table (tab: in table) return integer is

-- Retutn the size of the table.

temp: table :: tab;
result: integer :: 0;

24t

in the table");

8.1. The Table Package

begin -- size-of-table
while temp /: ¡ull
loop

result :: result + 1;

temp :: temp.next;
end loop;
return result;

end size_of_table;

function search_table (tab: in table;
ind: in index-type) return element-type is

-- Return the element-type object associated with the index in
-- the table. Raise an exception if no such index exisús within
-- the table.

found: boolean :: false;

temp-tab: table :: tab;

begin -- search-table
while (not found) and (not empty-table(temp-tab))
loop

found :: (temp_tab.ind : ¡nd);
if not found
then

temp-tab :: temp-tab.next;
end if;

end loop;

if found
then

return temp_tab.elem;
else

raise table_error;
end if;

242

8.1. The Table Pacl<age

exception
when table error ->

put_line("Attempt to search table for nonexistent index");
raise;

when others :>
put-line("Unspecified error occurred in search-table");
raise;

end search_table;

end table_package;

243

App.ndix C

ADT's for the Neptune Definition

In order to define the Neptune language, the ADT's described in this appendix were

introduced.

C.L The Stack Data Type

ADT stack [element-type] ;

sorts stack/element-type, boolean, integet;

where integer has add-integer: integer x integer -r integer;

syntax
new-stack:
empty-stack:
push-stack:
top-stack:
pop-stack:
size-of-stack:

stack
stack x element-typ"
stack
stack
stack

--) stack;
boolean;

-+ stack;
+ element-type [J {error};
--) stack lJ {error};
-) integer;

semantics
-- The operation "new-stack" creates and returns a new and empty stack

object.
-- The operation "empty-stack" returns a boolean value which indicates

whether the argument is an empty stack object.

-- The operation "push-stack" pushes the second argument onto the stack

244

C.2. The Table Data Type

which is the first argument and returns the result.

-- The operation "top-stack" returns the elementlype object which is at the
top of the stack which is the first argument. An error is raised if an

attempt is made to find the top element of an empty stack.

-- The operation "pop-stack" returns a stack object which is identical to the
stack argument with the top element removed.

-- The operation "size-of-stack" returns an integer value which indicates the
number of elements stored in the stack argument.

C.2 The Table Data Type

ADT table [index-type, element-type] ;

sorts table/index-type, element-type, boolean, integer;

where index-type has equal: index-type x index-type -) boolean;
integer has addjnteger: integer x integer -r integer;

245

syntax
new-table:
empty-table:
member-table:
insert-table:

remove-table:
alter-table:

search-table:
size-of-table:

-) table;
table -) boolean;
table x index-type --+ boolean;
table x index-type x element-type

--+ table;
table x index-type
table x index-type x element-type

table lJ {error};
table x index-type + element-type [J {error};
table + integer;

semantics
-- The operation "new-table" creates and returns a new and empty table

object.
-- The operation "empty-table" returns a boolean value which indicates

whether the table argument represents an empty table.

-- The operation "member-table" returns a boolean value which indicates if
the second index-type argument is a member of the first table argument

-- The operation "insert-table" returns a table which is a copy of the first
table argument with the index-type/element-type pair inserted. If the
index-type object is already in the table, then the previous value

C.3. The Symbol-Table Data Type

is replaced.
The operation "remove-table" returns a table object which is identical to

the first table argument with the index-type/element-type pair
indexed by the second argument. If the index-type object is not an

existing index into table object, then an error is raised.
The operation "alter-table" returns a table object which is a copy of the

first table argument with the element-type object associated with
the second index-type argument replaced by the third argument. An
error is raised if the second argument is not an existing index
into the first argument.

The operation "search-table" returns the element-type object associated

with the second index-type argument in the first table argument. An
error is raised if the second argument is not an existing index into
the first argument.

C.3 The Symbol-Table Data Type

ADT symbol-table [table];
sorts symbol-table/table, boolean, string-type;

246

syntax
new-symbol-table:
define-father: symbol-table

-)
symbol-table

-)
symbol-table

---+

symbol-table

-)
string-type

symbol-table;

symbol-table;

symbol-table;

symbol-table;

symbol-table;

-) symbol-table;

-| symbol-table;
symbol-table;
symbol-table;

-+ symbol-table;
+ table [J {error};

string-type l-l {error};
boolean;

define-son:

define-older-brother:

defi ne-younger-brot her :

define-name

father:
son:
older-brother:
younger-brother:
define-current-block:
current-block:
block-name:
empty-symbol-table:

symbol-table

symbol-table

symbol-table

symbol-table

symbol-table

X

X

X

X

X

symbol-table
symbol-table
symbol-table
symbol-table
symbol-table x table
symbol-table
symbol-table
symbol-table

C.3. The Symbol-Table Data Type 247

info-defined: symbol-table + boolean;

semantics
-- The operation "new-symbol-table" creates a new and empty symbol-table

object.

-- The operation "define-father" specifies that the second argument is the
father symbol-table of the first argument and returns the result.

-- The operation "define-son' specifies that the second argument is the son

symbol-table of the first argument and returns the result.

-- The operation "define-older-brother" specifies that the second argument
is the older-bother symbol-table of the first argument and returns
the result.

-- The operation "define-younger-brother" specifies that the second argument
is the younger-brother symbol-table of the first argument and returns
the result.

-- The operation ttdefine-¡ame" attaches the second string argument to the
first symbol-table argument and returns the result.

-- The operation "father" returns the symbol-table object which is the father
of the argument.

-- The operation "son" returns the symbol-table object which is the son of
the argument.

-- The operation "younger-brother" returns the symbol-table object which is
the younger-brother of the argument.

-- The operation "older-brother" returns the symbol-table object which is

the older-brother of the argument.

-- The operation "define-current-block" associates the second argument with
the first and returns the result.

-- The operation "current-block" returns the table object associated with the
symbol-table argument. An error is raised if no table has been

associated with the symbol-table.

-- The operation "block-name" returns the string associated with the
symbol-table argument. An error is raised if no string is associated

with the symbol-table.

-- The operation "empty,symbol-table" returns a boolean value indicating
if any information (of type table) has been associated with the
symbol-table, or any of father, son, older-brother or younger-brother
are defined.

-- The operation "info-defined" returns a boolean value indicating if an

object of type table is associated with the symbol-table.

C.4. The BlockJnfo Data Type

C.4 The Blocklnfo Data Type

ADT blockjnfo [attributes];
sorts blockjnfo/string-type, attributes, integer, boolean;

where string-type has equal-string: string-type x string-type -t boolean;

integer has equal-integer: integer x integer -r boolean;

integer has add-integer: integer x integer -r integer;

248

syntax
new-block:
empty-block:
add-to-block:

blockinfo
blockinfo x

insertinto-block: blockinfo x

+ blockjnfo;

string-type x attributes
+ blockjnfo;

string-type x attributes

-) block-info;
string-type blockjnfo [J {error};
string-type -) boolean;
string-type ---+ attributes;
integer -+ string-type [J {error};
integer

-) integer;
string-type x attributes

-) blockjnfo [-l {error};
integer x attributes

delete-from-block:
member-of-block:
associated-attributes :

get-objecti:
get-attributesj:
size-of-block:
alter-block:

blockinfo
blockinfo
blockinfo
blockinfo
blockinfo
blockinfo
blockinfo

X

X

X

X

X

X

alter-rnemberi: blockinfo x

semantics
-- The operation "new-block" creates a new and empty blockjnfo object

and returns it.
-- The operation "empty-block" returns a boolean value indicating whether

the blockjnfo argument represents an empty blockjnfo object.

-- The operation "add-to-block" associates the third attributes argument
with the second string-type argument in the first argument and returns
the resulting blockinfo object.

-- The operation "insertjnto-block" has the same effect as add-to-block
if the second argument is not already part of the blockjnfo object;
otherwise, the attributes associated with the string-type argument
are updated.

-- The operation "delete-from-blocktt removes the second argument, and its
associated attributes, from the first blockìnfo argument and returns
the result. An error is raised if the second argument is not in the

C.5. The Declaration Data Typ"

blockjnfo object.
The operation "member-of-block" returns a boolean value indicating if

the second string-type argument is found within the first blockjnfo
argument.

The operation "associated-attributest' returns the attributes associated

with the second string-type argument in the first blockinfo argument.
An error is raised if the second argument is not in the blockjnfo
object.

The operation "get-objectj" returns the string-type object associated

with the i¿h element of the first blockjnfo argument. An error
is raised if the iúä element does not exist.

The operation "get-attributesj' returns the attributes object associated

with the iúh element of the first blockjnfo argument. An error
is raised if the iÚä element does not exist.

The operation "size-of-block" returns an integer value indicating the
number of elements in the blockjnfo object.

The operation "alter-block" associates the third attributes argument
replacing any existing attributes) with the second string-type
argument in the first blockìnfo argument and returns the result.
An error is raised if the second string-type argument is not
found in the blockjnfo object.

The operation "alter-rnemberj" alters the attributes associated with the
iúr element of the blockjnfo object returning the resultant blockjnfo
object. An error is raised if the iÚä element does not exist.

C.5 The Declaration Data Type

ADT declaration;
sorts declaration/boolean;

249

syntax
local:
nonlocal:
equal-declaration:

+ declaration;

-) declaration;
declaration x declaration --+ boolean;

semantics
-- The operation "local" returns a declaration object with the value local.

-- The operation "nonlocal" returns a declaration object with the value
nonlocal.

C.6. The Initial-Value Data Type

-- The operation "equal-declaration" compares two declaration objects, and

returns a boolean result whose value is true if they are the same and

false otherwise.

C.6 The Initial-Value Data Type

ADT initial-value;
sorts initial-value/boolean ;

250

semantics
-- The operation "initialized" returns an initial-value object with the

value initialized.
-- The operation notjnitialized returns an initial-value object with the value

not-initialized.
-- The operation "equal-initial' compares two initial-value objects, and

returns a boolean value whose value is true if they are the same

and false otherwise.

C.7 The Kind Data Type

ADT kind;
sorts kind/boolean;

syntax
initialized:
not-initialized
equal-initial:

syntax
voidÌind:
variableÌind:
procedure-kind:
functionÌind:
parameterlind:
equal:

initial-value;
--+ initial-value;

initial-value x initial-value + boolean;

+ kind;
--+ kind;

-) kind;

-+ kind;
+ boolean;kind x kind

C.8. The Operution Data Typ.

semantics
-- The operation "void-kind" returns a kind object with the value

voidÌind.
-- The operation "variableÌind" returns a kind object with the value

variableÌind.
-- The operation "procedurelind" returns a kind object with the value

procedureÌind.
-- The operation "functionÌind" returns a kind object with the value

functionÌind.
-- The operation "parameterÌind" returns a kind object with the value

parameterÌind.
-- The operation ttequalt' compares two kind objects, and returns true if

they are the same and false otherwise.

C.8 The Operation Data Type

ADT operation;
sorts operation/boolean;

251

syntax
equal-op:
and-op:
or_op:

not-equal-op:
less-than-op:
greater-than-op:
less-or-equal-op:
greater-or-equal-op:
plus-op:
minus-op:
mult-op:
divide-op:
equal: operation x operation

-) operation;
+ operation;
--+ operation;

operation;
+ operation;

-) operation;
--+ operation;

-) operation;
--+ operation;

-) operation;
operation;
operation;
boolean;

semantics
-- The operation t'equal-op" returns an operation object whose value is

equal-op.

-- The operation t'and-optt returns an operation object whose value is

C.9. The Ba^sic-Types Data Type

and-op.
The operation ttor-optt returns an operation object whose value is or-op.
The operation t'not-equal-opn returns an operation object whose value is

not-equal-op.
The operation t'less-than-op" returns an operation object whose value is

less-than-op.
The operation t'greater-than-op" returns an operation object whose

value is greater-than-op.
The operation ttless-or-equal-op" returns an operation object whose

value is less-or-equal-op.
The operation ttgreater-or-equal-op" returns an operation object

whose value is greater-or-equal-op.
The operation "plus-op" returns an operation object whose value is

plus-op.
The operation ttminus-optt returns an operation object whose value

is minus-op.
The operation "mult-op" returns an operation object whose value is

mult-op.
The operation "divide-op" returns an operation object whose value

is divide-op.
The operation "equal" returns a boolean value indicting whether the

two operation arguments are the same.

C.9 The Basic-Types Data Type

ADT basic-types;
sorts basic-types/boolean;

252

syntax
void-ty:
integer-ty:
float-ty:
boolean-ty
string-ty:
equal: basic-types x basic-types

basic-types;
basic-types;
basic-types;
basic-types;
basic-types;
boolean;

semantics
-- The operation "void-ty" returns a basic-types object with the value

void-ty.

C.10. The Attributes Data Typ"

-- The operation "integer-ty" returns a basic-types object with the value
integer-ty.

-- The operation "float-ty" returns a basic-types object with the value
float-ty.

-- The operation "boolean-ty" returns a basic-types object with the value
boolean-ty.

-- The operation "string-ty" returns a basic-types object with the value
string-ty.

-- The operation "equal" returns a boolean value indicating if two
basic-types objects are the same.

C.1O The Attributes Data Type

ADT attributes;
sorts attributes/string-type, kind, basic-types, declaration,

initial-value, integer, float, boolean, location;

253

syntax
new-attributes:
insert-name:
insertl<ind:
insert-type:
insert-declaration:
insertinitial:
insertjnteger-value:
insert-float-value:
insert-string-value:
insert -boolean-value :

insert -start-location :

return-name:
returnÌind:
return-type:
return-declaration:
returninitial:
returnjnteger-value:
return-float-value:
return-string-value:
return-boolean-value :

return-st art-location :

attributes
attributes
attributes
attributes
attributes
attributes
attributes
attributes
attributes
attributes
attributes
attributes
attributes
attributes
attributes
attributes
attributes
attributes
attributes
attributes

string-type
kind
basic-types
declaration
initial-value
integer
float
string-type
boolean
location

--+ attributes;
+ attributes;
--+ attributes;

X

X

X

X

X

X

X

X

X

X

--+

--+

-)
-f

-)

-)
--+

-)
+

--+

;

-+

-)
-)
-'

C.10. The Attúbutes Data Typ"

semantics
-- The operation "new-attributesn creates and returns a new and empty

attributes object.

-- The operation "insert-namet' inserts the second string-type argument
into the first attributes argument and returns the resulting attributes
object.

-- The operation "insertÌind' inserts the second kind argument into the
first attributes argument and returns the resulting attributes object.

-- The operation "insert-type" inserts the second basic-types argument into
the first attributes argument and returns the resulting attributes
object.

-- The operation ttinsert-declarationt' inserts the second declaration argument
into the first attributes argument and returns the resulting attributes
object.

-- The operation "insertjnitial" inserts the second initial-value argument
into the first attributes argument and returns the resulting attributes
object.

-- The operation "insertjnteger-value" inserts the second integer argument
into the first attributes argument and returns the resulting attributes
object.

-- The operation "insert-float-value" inserts the second floating point
argument into the first attributes argument and returns the resulting
attributes object.

-- The operation "insert-string-value" inserts the second string-type argument
into the first attributes argument and returns the resulting attributes
object.

-- The operation ttinsert-boolean-value" inserts the second boolean argument
into the first attributes argument and returns the resulting attributes
object.

-- The operation "insert-start-location" inserts the second location argument
into the first attributes argument and returns the resulting attributes
object.

-- The operation "return-namet' returns the string-type value associated
with the attributes object through the define-name operation. An
error is raised if no string-type object is associated with the attributes
object.

-- The operation "returnÌind" returns the kind value associated with the
attributes object. An error is raised if no kind object is associated

r- with the attributes object.

-- The operation "return-type" returns the basic-types value associated with
the attributes object. An error is raised if no basic-types object
is associated with the attributes object.

-- The operation ttreturn-declarationtt returns the declaration value associated

254

C.10. The Attributes Data Type 255

with the attributes object. An error is raised if no declaration object
is associated with the attributes object.

The operation "returnjnitial" returns the initial-value value associated

with the attributes object. An error is raised if no initial-value
object is associated with the attributes object.

The operation "returnjnteger-valuett returns the integer value associated
with the attributes object. An error is raised if no integer object
is associated with the attributes object.

The operation "return-float-value" returns the floating point value
associated with the attributes object. An error is raised if no floating
point object is associated with the attributes object.

The operation ttreturn-string-valuett returns the string-type value
associated with the attributes object through the insert-string-value
operation. An error is raised if no string-type object is associated

with the attributes object.
The operation ttreturn-boolean-value" returns the boolean value associated

with the attributes object. An error is raised if no boolean object
is associated with the attributes object.

The operation "return-startlocation" returns the location value associated
with the attributes object. An error is raised if no location object
is associated with the attributes object.

Appendix D

HLO's from the Neptune Definition

This appendix outlines the HLO's used in the Neptune definition.

D.l Procedure Initialize

procedure initialize is ...
-- This HLO initializes the environment. It creates the necessary

-- information structures and provides them with an initial value.

D.2 Procedure Reset-Environment

procedure reset-environment is .. .

-- Reset the environment ready for a new pass.

D.3 Procedure Checkilock

procedure check-block-name (str: string-typ") is ...
-- Check that the name used at the end of the block is the same as that
-- used when the block was declared.

256

D.4. Procedute Create-Block

D.4 Procedure Create-Block

procedure create-block (str: string-type; inJunction: boolean) is ...
-- Establish data structures necessary for a new block. Also note

-- if the block entered is a procedure or a function, as this affects

-- whether or not a return statement is valid.

D.5 Procedure Enter-Block

procedure enter-block (str: string-type) it .. .

-- Locate the block with the specified name. It must be a sibling of

-- the current symbol table.

D.6 Procedure Exit-Block

procedure exit-block is ...
-- Leave a block. Reset any relevant data structures; for example, set

-- the current symbol table back to that for the parent block.

D.7 Procedure Leaveilock

procedure leave-block is ...
-- Return to parent block

D.8 Procedure Note-Identifier

procedure note-identifier (str: string-typ") is ...
-- Record the identifier by pushing it onto the identifier stack

257

D.9. Function RecaJlJdentifrer

D.9 Function RecallJdentifier

function recalhdentifier return string-type is . ..
-- Recall the identifier at the top of the identifier stack.

D.1-0 Procedure Note-Previous-Arguments

procedure note-previous-arguments is .. .

-- Note the current arguments in the argument stack, so that the latter
-- can be restored later.

D.1-L Procedure RecallJrevious-Arguments

procedure recall-previous-a¡guments ts . ..
-- Restore the arguments to the state they were in prior to the routine call.

D.L2 Procedure Record-Type

procedure record-type (ty: basic-types) is ...
-- Record the type on the type stack so that it can be used later.

D.L3 Procedure Record-Op

procedure record-op (op: operation) is .. .

-- Record an operation in the operation stack.

D.L4 Procedure Record-Integer

procedure recordjnteger(int: integer) is ...
-- Push an integer onto the integer stack.

258

D.15. Procedure Record-Real

D.L5 Procedure Record-Real

procedure record-real(real: float) is .. .

-- Push a real number onto the real stack.

D.16 Procedure Record-Boolean

procedure record-boolean (bool: boolean) is ...
-- Push a boolean value onto the boolean stack.

D.1,7 Procedure Record-String

procedure record-string(str: string-type) it . . .

-- Push a string onto the top of the string stack.

D.L8 Procedure Reverseldent-Stack

procedure reversejdent-stack is . . .

-- Reverse the contents of the identifier stack. This is necessary in

-- order to insert identifiers into the symbol table in the order in

-- which they were declared.

D.19 Procedure Add-To-Symbol-Table

procedure add-to-symbol-table (kind-of-object: kind) is . . .

-- Add all the objects in identifier stack to the symbol table represented

-- by the current block. The identifiers should be inserted in the order

-- in which they were declared; this will necessitate inverting the stack.

-- The type associated with the objects is found on the type stack.

259

D.20. Prccedure Add-Prccedure-To-Symbol-Table

D.2O Procedure Add-Procedure-To-Symbol-Table

procedure add-procedure-to-symbol-table (str: string-type) it .. .

-- Add a string to the current symbol table as the name of a procedure.

D.21 Procedure Add-Function-To-Symbol-Table

procedure add-function-to-symbol-table (str: string-typ") is .. .

-- Add a function to the appropriate symbol table - the latter will be

-- the parent of the current symbol table.

D.22 Procedure Ensure-Within-Function

procedure ensure-within-function is . . .

-- Ensure that the current context is within a function. Write out an

-- error message if this is not so.

D.23 Procedure Ensure-Within-Procedure

procedure ensure-within-procedure is . ..
-- Ensure that the current context is within a procedure. Write out an

-- error message if this is not so.

D.24 Procedure Ensure-Within-Loop

procedure ensure-withinJoop is . . .

-- Ensure that the current context is within a loop. Write out an

-- error message if this is not so.

260

D.25. Ptocedute Staú-Loop

D.26 Procedure Start-Loop

procedure startloop is ...
-- Note that a loop has begun and, as a result, exit statements are valid.

D.26 Procedure FinishJ,oop

procedure finishloop is ...
-- Loop processing has finished. Note that exit statements may no

-- loirger be valid.

D.27 Procedure Inherit-Via-Scope-Rules

procedure inherit-via-scope-rules (decl: declaration) it . . .

-- Inherit from the parent block any identifiers which are not already

-- present in the current block, provided that they are defined as being

-- local or nonlocal as specified by the parameter "decl".

D.28 Procedure Record-Start-Of-Block

procedure record-start-of-block (str: string-type) is .. .

-- Record the starting location of the block whose name is "str".

D.29 Procedure Return-To-Caller

procedure return-to-caller is ...
-- Return to the calling block and continue execution there. This is

-- achieved by resetting several environment variables and resetting the

-- current location within the generated parse tree.

26r

D.30. Function Reverce-Type-Stack

D.3O F\rnction Reverse-Type-Stack

function reverse-type-stack(stk: type-stack) return type-stack is ..
-- Reverse the contents of the argument stack.

D.31 Procedure Tlansfer-To-ArgumentJist

procedure transfer-to-argumentlist is . ..
-- Take the value (typ") from the top of the type stack and put it on

-- the argument stack.

D.32 Procedure Check-Call-To-Procedure

procedure check-call-to-procedure (str: string-type) is .. .

-- Check that a string represents a procedure to the current block.

D.33 Procedure Check-Call-To-F\rnction

procedure check-call-to-function (str: string-type) it . . .

-- Check that a string represents a function to the current block.

D.34 Procedure Check-Call-To-Variable

procedure check-call-to-variable (str: string-type) it .. .

-- Check that a string represents a variable or parameterless function

-- to the current block.

D.35 Procedure CheckSoolean-Type

procedure check-boolean-type is . . .

-- Check that the top of the type stack represents a boolean value

262

D.36. Ptocedute Cåeck-Numeúc-Type

D.36 Procedure CheckJr[umeric-Type

procedure check:rumeric-type is . . .

-- Check that the top of the type stack represents a number

D.37 Procedure Negate-Expression

procedure negate-expression is . . .

-- Check that the top of the stack is an integer or a real number, and then

-- negate it. Otherwise, issue an error message.

D.38 Procedure Not-Expression

procedure not-expression is ...
-- Check that the top of the stack represents a boolean value and then

-- negate it. Otherwise, issue an error mess e.

D.39 Procedure Determine-Exit-Statement

procedure determineexit-statement (str: string-type) is .. .

-- Determine if the exit statement indicates that the current loop should

-- be left.

D.40 Procedure Determineiranch

procedure determine-branch (str: string-typ") is ...
-- Determine which branch to take in a conditional statement

D. L Function Compatible-Types

function compatible-types(ty -I, ty2: basic-types) return boolean is . . .

-- Return a boolean value indicating whether the two types are compatible.

263

D.42. Procedute Equality-Test

D.42 Procedure Equality-Test

procedure equality-test is . ..
-- Perform a test for equality and leave the boolean result on the

-- appropriate stack.

D.43 Procedure Inequality-Test

procedure inequality-test is .. .

-- Perform a test for inequality and leave the boolean result on

-- the appropriate stack.

D.44 Procedure And-Operation

procedure and-operation is ...
-- Perform an "and" operation and leave the boolean result on the

-- appropriate stack.

D.45 Procedure Or-Operation

procedure or-operation is ...
-- Perform an "or" operation and leave the boolean result on the

-- appropriate stack.

D.46 Procedure Less-Than-Operation

procedure less-than-operation is .. .

-- Perform a u<u comparison and leave the boolean result on the

-- appropriate stack.

264

D.47. Procedute Greater-Than-Operation 265

D.47 Procedure Greater-Than-Operation

procedure greater-than-operation is . . .

-- Perform a 4>" comparison and leave the boolean result on the

-- appropriate stack.

D.48 Procedure Less-OrJqual-Operation

procedure less-or-equal-operation is .. .

-- Perform a ((t comparison and leave the boolean result on the

-- appropriate stack.

D.49 Procedure Greater-Or-Equal-Operation

procedure greater-or-equal-operation is .. .

-- Perform a u)' comparison and leave the boolean result on the

-- appropriate stack.

D.50 Procedure Plus-Operation

procedure plus-operation is .. .

-- Perform an addition operation and leave the result on the appropriate stack

D.SL Procedure Minus-Operation

procedure minus-operation is ...
-- Perform a subtraction operation and leave the result on the appropriate stack.

D.62 Procedure Mult-Operation

procedure mult-operation is ...
-- Perform a multiplication operation and leave the result on the appropriate stack

D.53. Procedure Divide-Operation 266

D.53 Procedure Divide-Operation

procedure divide-operation is ...
-- Perform a division operation and return the result on the appropriate stack.

D.64 Procedure Evaluate-Expression

procedure evaluate-expression is . . .

-- Evaluate the expression and leave the result on the appropriate stack.

D.55 Procedure Perform-Output

procedure perform-output is ...
-- Write a value to standard output, which is normally the screen

D.56 Procedure Perform-Input

procedure perform-input(str: string-type) it . . .

-- Read a value from the keyboard and store it in the appropriate location.

D.57 Procedure Perform-Assignment

procedure perform-assignment (str: string-type) it . ..
-- Perform assignment to the variable whose name is given by the specified

-- string. The value is stored on the stack. Typ" checking also takes place.

D.58 Procedure Invoke-Block

procedure invoke-block (str: string-type) is .

-- Invoke the block specified by "str".

D.59. Procedure Invoke3lock-Or-Variable

D.59 Procedure Invoke-Block-Or-Variable

procedure invoke-block-or-variable (str: string-type) it . . .

-- If nstr' is the name of a procedure or function, then invoke

-- it; otherwise, place the value of the variable, and its type, on the

-- appropriate stacks.

267

Bibliography

[1] K. Abrahamson. Modal logic of concurrent nondeterministic programs. In

Proceeilings of the International Sympos'i,um on Semantics of Concurrent Com-

putøtion, pages 21-33, Berlin, 1979. Springer-Verlag. Volume 70 o1 Lecture Notes

in Computer Science.

12) L.Allison. A Prøctí,cal Introduction to Denotational Semantics. Cambridge

University Press, Cambridge, 1986.

[3] P. America, J.W. de Bakker, J.N. Kok and J.J.M.M. Rutten. A denotational

semantics of a parallel object-oriented language. Technical Report CS-R8626,

Centrum voor Wiskunde en Informatica, Computer Science/Department of

Software Technology, Amsterdam, Holland, August 1986.

[4] ANSI. Arnerican Natí,onal Stanilaril Programming Languo,ge PLI (ANS X3.53-

1976). American National Standards Institute, New York, 1976.

[5] K.R. Apt, N. Francez and W.P. De Roever. A proof system for communicating

sequential processes. ACM Trønsactions on Programming Languages anil

Systems, Volume 2, Number 3, pages 359-385, July 1980.

268

BIBLIOGRAPHY 269

[6] M.A. Arbib and E.G. Manes. Parameterized data types do not need highly

constrained parameters. Information anil Control, Volume 52, Number 2, pages

139-158, February 1982.

[7] E.A. Ashcroft and W.W. Wadge. Lucid, a non-procedural language with

iteration. Cornmunications of the ACM, Volume 20, Number 7, pages 519-526,

July 1977.

[8] E.A. Ashcroft and W.W. Wadge. Structured Lucid. Technical Report CS-79-

21, Department of Computer Science, The University of Waterloo, Waterloo,

Canada, June 1979.

[9] J.G.P. Barnes. Programming in Aila. Addison-Wesley, Wokingham, England,

third edition, 1989.

[10] M. Bidoit and C. Choppy. ASSPEGIQUE: An integrated environment for

algebraic specification. In H. Ehrig, C. Floyd, M. Nivat and J. Thatcher

(editors), Formo,l Method,s anil Software Deaelopment, pages 246-260, Berlin,

1984. Springer-Verlag. Volume 186 of Lecture Notes in Computer Science.

[11] M. Bidoit, C. Choppy and F. Voisin. The ASSPEGIQUE specification

environment - motivations and design. In H.-J. Kreowski (editor), Recent

Trend,s in Data Type Specification. Thi,rd Workshop on Theory anil Appli,cations

of Abstract Data Types - Selecteil Papers, pages 54-74. Springer-Verlag, 1985.

Volume 116 of Informatile-Fachberichte.

[12] P. Bird. An implementation of a code generator specification language for table

driven code generators. ACM SIGPLAN Noti,ces, Volume 17, Number 6, pages

BIBLIOGRAPHY 270

44-55, June 1982. Proceedings of the SIGPLAN'82 Symposium on Compiler

Construction, Boston, Massachusetts, 23-25 June, 1982.

[13] D. Bjørner and C.B. Jones (Editors). The Vienna Deaelopment Methoil: The

Meta-Language, Yolume 61 of Lecture Notes in Computer Science. Springer-

Verlag, Berlin, 1978.

[14] D.C.C. Bover, K.J. Maciunas and M.J. Oudshoorn. Ada. A First Course i,n

Prograrnming and Software Engineering. Addison-Wesley, Sydney, 1991.

[15] BSL Minutes of the first meeting of ISO/TC97|SC22|WGIï. Held at the

University of Nottingham on lct-3rd April, 1987.

[16] BSI. Working draft of standard Pascal by the BSI DPS/lïlI4 working group.

Pascal News, Volume 14, January 1979.

[17] BSI. Specification For Computer Programming Language Pascal. British

Standards Institution, London, 1982. Publication BS 6192:1982.

[18] R.M. Burstall and J.A. Goguen. The semantics of Clear, a specification language.

Technical Report CSR-65-80, Department of Computer Science, University of

Edinburgh, February 1980.

[19] D. Caromel. Programmation Parallèle Asynchrone et Impératiue: Etudes et

Propositio¿s. Ph.D. thesis, L'Universite de Nancy I, Nancy, France, 1991.

[20] J.C. Cherniavsky and S.N. Kamin. A complete and consistent Hoare axiomatics

for a simple programming language. Journal of the ACM, Volume 26, Number 1,

pages 119-128, January 1979.

BIBLIOGRAPHY 27L

[21] C. Choppy. ASSPEGIQUE user's manual. Rapport de Recherche 452, L.R.I.,

October 1988.

[22] W.F. Clocksin and C.S. Mellish. Programming in Prolog. Springer-Verlag,

Berlin, 1981.

[23] W. Cook and J. Palsberg. A denotational semantics of inheritance and its

correctness. ACM SIGPLAN Notices, Volume 24, Number 10, pages 433-444,

October 1989. Proceedings of the OOPSLA'89 Conference. Object-Oriented

Programming: Systems, Languages and Applications, New Orleans, Louisiana,

1-6 October, 1989.

Í241 D. Cooper. Standard Pascal User Reference Manu¿l. W.W. Norton & Compan¡

New York, 1983.

[25] A.J. Demers and J.E. Donahue. Data types, parameters and type checking.

In Conference Record of the Seaenth Annual ACM Symposium on Principles of

Programming Langua.ges, pages L2-23, Las Vagas, Nevada, January 1980.

[26] C.A.P. Denbaum. A Demand Driaen, Coroutine-Based lrnplementation of a

Nonproceilural Language. Ph.D. thesis, Department of Computer Science, The

University of Iowa, Iowa City, Iowa, May 1983. Available as Technical Report

83-01.

[27] E.W. Dijkstra. Cooperating sequential processes. In F. Genuys (editor),

Programming Languages, pages 43-112. Academic Press, New York, 1968.

[28] A. Diller. Z. An Introd,uction to Forntal Methoils. John Wiley and Sons,

Chichester, England, 1990.

BIBLIOGRAPHY 272

[29] R. Duke, D. Johnston and G.A. Rose. Specifying the static semantics of block

structured langauges. Austrølian Computer Journal, Volume 19, Number 2,

pages 99-104, May 1987.

[30] M.A. Ellis and B. Stroustrup. The Annotateil C++ Reference Manual. Addison-

Wesle¡ Reading, Massachusetts, 1990.

[31] R. Farrow. LINGUIST-86. Yet another translator writing system based on

attribute grammars. ACM SIGPLAN Notices, Volume 17, Number 6, pages

160-171, June 1982. Proceedings of the SIGPLAN'82 Symposium on Compiler

Construction, Boston, Massachusetts, 23-25 June, 1982.

[32] J.T. Feo, D.C. Cann and R.R. Oldehoeft. A report on the Sisal language project.

Jounral of ParølIeI and, Di,stributeil Computing, Volume 10, Number 12, pages

349-366, December 1990.

[33] D.H. Freidel. Mod,elling Communication and, Synchronization in Parallel

Programming Languages. Ph.D. thesis, Department of Computer Science, The

University of Iowa, Iowa City, Iowa, May 1984. Available as Technical Report

84-01.

[34] D.H. Freidel, C.D. Marlin and M.J. Oudshoorn. Modelling communication

in Ada with shared data abstractions. Technical Report 88-06, Department

of Computer Science, The University of Adelaide, Adelaide, South Australia,

December 1988. (Revised September 1989).

[35] M. Ganapathi and C.N. Fischer. Description-driven code generation using

attribute grammars. In Conference Record, of the Ninth Annual ACM Symposium

BIBLIOGRAPHY 273

on Principles of Programrning Languageq pages 108-119, Albuquerque, New

Mexico, January 1982.

[36] M. Ganapathi and C.N. Fischer. Affix grammar driven code generation. ACM

Transaction an Programming Languages and, Systems, Volume 7, Number 4,

pages 560-599, October 1985.

[37] H. Ganzinger. Denotational semanticsfor languages with modules. In D. Bjørner

(editor), Formal Description of Programming Concepts, pages 3-23. North-

Holland, Amsterdam, 1982.

[38] H. Ganzinger. Parameterized specifications: Parameter passing and imple-

mentation with respect to observability. ACM Transactions on Programrning

Languages anil Systems, Volume 5, Number 3, pages 318-345, July 1983.

[39] N. Gehani. Aila. An Ailaanced, Introilucti,on. Prentice-Hall, Englewood Cliffs,

New Jerse¡ 1983.

[40] R.S. Glanville and S. Graham. A new method for compiler code generation. In

Record, of the Fifth ACM Symposium on Principles of Programming Languages,

pages 23I-239, Tucson, Arizona, January 1978.

[41] J.A. Goguen. Correctness and equivalence of data types. In Mathernatical

Systems Theory, Proceeilings of the Initial Symposium, pages 352-358. Springer-

Verlag, Berlin, 1975. Volume 131 of. Lecture Notes in Economics and, Mathemat-

ical Systems.

BIBLIOGRAPHY 274

[42] J.A. Goguen. Abstract errors for abstract data types. In E.J. Neuhold (editor),

Formal Descriptions of Programming Concepús, pages 491-526. North-Holland,

Amsterdam, 1978.

[43] J.A. Goguen, J.W. Thatcher and E.G. Wagner. An initial algebra approach to

the specification, correctness and implementation of abstract data types. In R.T.

Yeh (editor), Current Trenils in Programming Methoilology, Volume 4, Chapter 5,

pages 80-149. Prentice-Hall, Englewood Cliffs, New Jerse¡ 1978.

[44] J.A. Goguen, J.\M. Thatcher, E.G. Wagner and J.B. Wright. Initial algebra

semantics and continuous algebras. Journo,l of the ACM, Volume 24, Number 1,

pages 68-95, 1977.

[45] J.A. Goguen and T. Winkler. Introducing OBJ3. Technical Report SRI-CSL-

88-9, SRI International, 1988.

[46] M.J.C. Gordon. The Denotational Descri,ption of Programming Languages. An

Introduction. Springer-Verlag, New York, New York, 1979.

[47] S.L. Graham. Table-driven code generation. IEEE Computer, Volume 13,

Number 8, pages 25-34, August 1980.

[48] S.L. Graham, R.R. Henry and R.A. Schulman. An experiment in table driven

code generators. In Proceedings of the SIGPLAN'9? Symposium on Compiler

Constructior¿, pages 32-43, Boston, Massachusetts, June 1982. (Also in ACM

SIGPLAN Notices, Volume 17, Number 6, June 1982).

BIBLIOGRAPHY

[49] I. Guessarian and J. Meseguer. Axiomatisation of "IF... THEN.. . ELSE'

revisited. Technical Report 84-18, Laboratoire Informatique Theorique et

Programmation, Université P. et M. Curie, Paris, April 1984.

[50] J.V. Guttag. The specification and application to programming of abstract data

types. Technical Report CSRG-59, Department of Electrical Engineering and the

Department of Computer Science, The University of Toronto, Toronto, Ontario,

September 1975.

[51] J.V. Guttag. Notes on type abstraction (Version 2). IEEE Transactions on

Software Engi,neering, Volume SE-6, pages 13-23, January 1980.

[52] J.V. Guttag and J.J. Horning. The algebraic specification of abstract data types.

Acta Informatica, Volume 10, Number 1, pages 27-52,1978.

[53] J.V. Guttag, J.J. Horning and J.M. Wing. Some notes on putting formal spec-

ifications to productive use. Technical Report CSL-82-3, Xerox Corporation,

Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, California, June

1982.

[54] J.V. Guttag, J.J. Horning and J.M. Wing. The Larch family of specification

languages. IEEE Software, Volume 2, Number 5, pages 24-36, September 1985.

[55] J.V. Guttag, E. Horowitz and D.R. Musser. The design of data type specifi-

cations. In R.T. Yeh (editor), Current Trenils in Programming Methoilology,

Volume 4, Chapter 4, pages 60-79. Prentice-Hall, Englewood Cliffs, New Jersey

1978.

275

BIBLIOGRAPHY

[56] B. Hailpern and S. Owicki. Modular verification of concurrent programs. In

Recoril of the Ninth ACM Symposi,um on Prínciples of Programrning Languages,,

pages 322-336,, Albuquerque, New Maxico, January 1982.

[57] J.Y. Halpern. A good Hoare axiom system for an Algol-like language. In

Conference Record, of the Eleaenth Annua,l ACM Symposium on Principles of

Programming Languages, pages 262-27I, Salt Lake Cit¡ Utah, January 1984.

[58] S.P. Harbison and G.L. Steele Jr. C: A Reference Manual. Prentice-Hall,

Englewood Cliffs, New Jersey, second edition, 1987.

[59] I. Hayes (editor). Specif,cation Case Stud,ies. International Series in Computer

Science. Prentice-Hall, Engelwood Cliffs, New Jersey, 1987.

[60] C.A.R. Hoare. An axiomatic definition of the programming language Pascal.

Acta Informati,ca, Volume 2, Number 4, pages 335-355, 1973.

[61] C.A.R. Hoare. Monitors: An operating system structuring concept. Communi-

cations of the ACM, Volume 17, Number 10, pages 549-557, October 1974.

[62] Honeywell, Inc. Formal Defi,ní,tíon of Ad,a. Interim Draft, Systems and Research

Center, Honeywell Inc., Minneapolis, Minnesota, October 1979.

[63] ISO. Second DP 7185 - Specification for the Computer Programming Language

Pascal. International Organization for Standardization (ISO), December 1980.

[64] ISO. First DP 7185 - Specification for the Computer Programmíng Lønguage

Pascal. International Organization for Standardization (ISO), May 1980.

[65] K. Jensen and N. Wirth. Pascal User Manual anil Report. Springer-Verlag, New

York, second edition, 1978.

276

BIBLIOGRAPHY 277

[66] S.C. Johnson. Yacc - yet another compiler-compiler. Technical Report No. 23,

Bell Laboratories, Murray Hill, New Jerse¡ July 1975.

[67] J.B. Johnston. The Contour Model of block structured processes. In J.T. Tou

and P. Wegner (editors), Proceeilings of the Symposium on Datø Structures in

Programm,ing Lønguages, pages 55-82, 1971. ACM SIGPLAN Notices, Volume 6,

Number 2, February 1971.

[68] U. Kastens, B. Hutte and E. Zimmermann. GAG: A Practí'cal Compiler

Generator, Volume 141 of Lecture Notes in Computer Science. Springer-Verlag,

Berlin, 1982.

[69] E. Keiser. Ack-c reference manual. Technical report, Wiskundig Seminarium,

Vrije Universiteit, Amsterdam, 12¿r September 1983.

[70] E. Keiser. Ack description file reference manual. Technical report, Wiskundig

Seminarium, Vrije Universiteit, Amsterdam, 1983.

[71] B.W. Kernighan and D.M. Ritchie. The C Programming Language. Prentice-

Hall, Englewood Cliffs, New Jersey, 1978.

[72] R.B. Kieburtz. Steps toward verifiable programs. Technical report, Department

of Computer Science, State University of New York, Stony Brook, New York,

November 1972.

[73] V. Kini, D.F. Martin and A. Stoughton. Tools for testing denotational

semantic definitions of programming languages. Technical Report ISI/RR-83-

112, Information Sciences Institute, Marina del Ray, California, U.S.A., May

1983.

BIBLIOGRAPHY

l74l C. Kirchner, H. Kirchner and J. Meseguer. Operational semantics of OBJ-3. In

T. Lepistö and A. Salomaa (editors), Automata, Languages anil Programming,

pages 287-301. Springer-Verlag, Berlin, 1988. Volume 317 of Lecture Notes in

Computer Science.

[75] K. Koskimies, K.-J. Råihä and M. Sarjakoski. Compiler construction using

attribute grammars. ACM SIGPLAN Notíces,, Volume 17, Number 6, pages

153-159, June 1982. Proceedings of the SIGPLAN'82 Symposium on Compiler

Construction, Boston, Massachusetts, 23-25 June, 1982.

[76] P. Lee. Reo,listic Compiler Generaúion. Foundations of Computing Series. The

MIT Press, Cambridge, Massachusetts, 1989.

l77l T. Lehmann and J. Loeckx. The specification language OBSCURE. In

D. Sannella and A. Tarlecki (editors), Recent Trends in Data Type Specif,cations:

úh Worlcshop on Specification of Abstract Data Types, pages 131-153. Springer-

Verlag, Berlin, 1988. Volume 332 o1 Lecture Notes in Computer Science.

[78] C.-W. Lerman and J. Loeckx. OBSCURE a new specification language. In H.-J.

Kreowski (editor), Recent Trends in Data Type Specifications: fd Worlcshop on

Theory anil Applications of Abstract Data Types, pages 28-30. Springer-Verlag,

Berlin, 1985. Volume 116 of. Informatik-Fachberichte.

[79] M.E. Lesk. Lex - a lexical analyser generator. Technical Report Computer

Science No. 59, Bell Laboratories, Murray Hill, New Jersey, October 1975.

[80] W.R. Mallgren. Formal Specification of Interactiue Graphics Progrømrning

Languages. MIT Press, Cambridge, Massachusetts, 1983.

278

BIBLIOGRAPHY 279

[81] J. Malpas. Prolog: A Relati,onal Language and, its Applications. Prentice-Hall,

Englewood Cliffs, New Jersey, 1987.

[82] C.D. Marlin. A model for data control in the programming language Pascal.

In Proceeìlings of the Australian Colleges of Aihtønced, Education Cornputing

Conference, pages 293-306, Adelaide, August 1977.

[83] C.D. Marlin. Coroutines: A Progrømming Methoilology, a Language Design and

an Implementation, Volume 95 oI Lecture Notes í,n Computer Science. Springer-

Verlag, Berlin, 1980.

[84] C.D. Marlin and D.H. Freidel. A model for communication in programming

languages with buffered message passing. Technical Report 83-09, Department

of Computer Science, The University of Iowa, Iowa City, Iowa, November 1983.

[85] C.D. Marlin and M.J. Oudshoorn. Using abstract data types in a model of the

data control aspect of programming languages. Australian Computer Science

Cornmunícations, Volume 7, Number 1, pages 19-1 - 19-10, February 1985.

[86] C.D. Marlin, M.J. Oudshoorn and D.H. Freidel. A model of communication in

Ada using shared data abstractions. In S.G. Akl, F. Fiala and \{.W. Koczkodaj

(editors), Ad,uances in Computing anil Information - ICCI'90, pages 443-452.

Springer-Verlag, Berlin, 1990. Volume 468 of Lecture Notes in Computer Science.

[87] C.D. Marlin, M.J. Oudshoorn and D.H. Freidel. A model of intertask

communication in Ada. In Proceeilings of the 1990 International Conference

on Computing and Informatio?¿, pages 434-440, May 1990.

BIBLIOGRAPHY 280

[88] J. McCarthy, P.W. Abrahams, D.J. Edwards, T.P. Hart and M.I. Levin. LISP

1.5 Prograrnrners Manual. MIT Press, Cambridge, Massachusetts, second

edition, 1965.

[89] J.R. McGraw, S.K. Skedzielewski, S.J. Allan, R.R. Oldehoeft, J. Glauert,

C. Kirkham, W. Noyce and R. Thomas. SISAL: Streams and iteration in a

single assignment language; Language Reference Manual Version 1.2. Manual

M-146, Rev. 1, Lawrence Livermore National Laboratory, Livermore, California,

March 1985.

[90] I. Mearns. A denotational semantics for concurrent Ada programs. Technical

Report UMCS-83-10-1, Department of Computer Science, University of Manch-

ester, Manchester, England, October 1983.

[91] E. Meiling. A comparative study of CHILL and Ada on the basis of denotational

descriptions. ACM Aila Letters, Volume III, Number 4, pages 78-90, January -

February 1984.

[92] B. Meyer. Eíffel: The Language. Ptentice-Hall, Englewood Cliffs, New Jersey,

t992.

[93] K.W. Miller. Programming in Vision Research Using Pixelspaces, A Data

Abstraction. Ph.D. thesis, Department of Computer Science, The University

of lowa, Iowa City, fowa, July 1983. Available as Technical Report 83-04.

[94] R. Milner, M. Tofte and R. Harper. The Defi,nition of Standard, ML. MIT Press,

Cambridge, Massachusetts, 1990.

BIBLIOGRAPHY 28r

[95] J.C. Mitchell, W. Maybur¡ R. Sweet and J.R. Hertz Jr. Mesa language

manual. Technical report, Office Systems Division, Xerox Corporation, Palo

Alto, California, June 1984. Version 11.0.

[96] B.P. Molinari and C.W. Johnson. Generation of symbol processing modules.

Technical Report TR-CS-87-02, Department of Computer Science, The Aus-

tralian National University, Canberra, Australian Capital Territory, June 1987.

[97] R. Morrison. PS-algol reference manual. Technical Report 12, Department

of Computational Science, University of St. Andrews, St. Andrews, Scotland,

February 1988. Fourth Edition.

[98] P.D. Mosses. Mathematical semantics anil compiler generation Ph.D. thesis,

Oxford University, London, England, 1975.

[99] P.D. Mosses. SIS - semantics implementation system. Technical Report

DAIMI PB-2I7, Computer Science Department, Aarhus University, Aarhus,

Denmark, 1979.

[100] P. Naur. Report on the algorithmic language ALGOL 60. Communications of

the ACM, Volume 3, pages 299-314, 1960.

[101] T. Nicholson and N. Foo. A denotational semantics for Prolog. ACM

Transacti,ons on Prograrnming Languages ønd, Systems, Volume 11, Number 4,

pages 650-665, October 1989.

[102] R.D. Nicola, A. Martelli and U. Montanari. Communication through message

passing or shared memory: A formal comparison. In Proceeilings of the Second

BIBLIOGRAPHY 282

International Conference on Distri,buted, Computíng Systenxs, pages 513-522,

Washington D.C., 1981. IEEE Computer Society Press.

M.J. Oudshoorn and C.D. Marlin. Describing data control in programming

languages. ln IEEE Internati,onøl Conference on Computer Languages?8, pages

100-109, Miami Beach, Florida, October 9-13 1988.

M.J. Oudshoorn and C.D. Marlin. Language definition and implementation.

Australian Computer Science Communications, Volume 11, Number 1, pages

26-36, February 1989.

M.J. Oudshoorn and C.D. Marlin. Describing the semantics of parallel

programming languages using shared data abstractions. Technical Report 91-03,

Department of Computer Science, The University of Adelaide, Adelaide, South

Australia, May 1991.

M.J. Oudshoorn and C.D. Marlin. A layered, operational model of data control

in programming languages. Computer Languages, Volume 16, Number 2, pages

147-165, 1991.

M.J. Oudshoorn, K.J. Ransom and C.D. Marlin. Abstract data types:

Converting from sequential to parallel. In P.A. Bailes (editor), Engineering

Safe Softwl,re, pages 285-298. Australian Computer Society, Sydney, New South

Wales, July 1991. Proceedings of lhe 1991 Australian Software Engineeri,ng

Conference.

S. Owicki. Verifying concurrent programs with shared data classes. In

Formal Descriptions of Programmi,ng Concepús, pages 279-299. North-Holland

Publishing Company, Amsterdam, 1978.

[103]

[104]

[105]

[106]

[107]

[108]

BIBLIOGRAPHY 283

S. Owicki and D. Gries. An axiomatic proof technique for parallel programs I.

Acta Informatica, Volume 6, pages 319-340, 1976.

S. Owicki and D. Gries. Verifying properties of parallel programs: An axiomatic

approach. Communications of the ACM, Volume 19, Number 5, pages 279-285,

May 1976.

P. Padawitz. Parameter preserving data type specifications. In H. Ehrig,

C. Floyd, M. Nivat and J. Thatcher (editors), Mathematical Founilations of

Software Deuelopmenú, pages 323-34L. Springer-Verlag, Berlin, 1985. Volume

185 of Lecture Notes in Computer Science.

F.G. Pagan. Formal Specification of Programming Languages: A Panoramic

Primer. Prentice-Hall, Englewood Cliffs, New Jersey, 1981.

L. Paulson. A Compiler Generator for Sernantic Grarnmars. Ph.D. thesis,

Stanford University, Stanford, California, 1981.

L. Paulson. A semantics-directed compiler generator. In Conference Recoril of

the Ninth Annual ACM Symposium on Principles of Programming Languages,

pages 224-232, Albuquerque, New Mexico, January 1982.

A. Poigné. Error handling for parameterized data types. In H.-J. Kreowski

(editor), Recent Trenils in Data Type Specifi,cation. Third Workshop on Theory

ønd, Applications of Abstract Data Types - Selected, Papers, pages 224-239.

Springer-Verlag, Berlin, 1985. Volume 116 of Inforrnatilc-Fachberichte.

T.W. Pratt. Programming Languages: Design anil Implementation. Prentice-

Hall Inc., Englewood Cliffs, New Jerse¡ second edition, 1984.

[1oe]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

BIBLIOGRAPHY 284

[117] K. Ramamritham and R.M. Keller. Specifying and proving properties of

sequential processes. ln Proceedings of the Fifth Internationøl Conlerence on

Softwøre Engíneering, pages 374-382, 1981.

[118] S.P. Reiss. Generation of compiler symbol processing mechanisms from specifi-

cations. ACM Transactions of Programming Languages and, Systems, Volume 5,

Number 2, pages 127-L63, April 1983.

[119] J. Röhrich. Private communication, August 1985.

[120] A.W. Roscoe. Denotational semantics for Occam. In S.D. Brookes, A.W. Roscoe

and G. Wiskel (editors), Seminar on Concurcency, pages 306-329, Berlin, 1984.

Springer-Verlag. Volume 197 of. Lecture Notes in Cornputer Sc'i.ence.

[121] G.A. Rose and J. Welsh. Formatted programming languages. Software -

Practice and Experi,ence, Volume 11, Number 7, pages 651-669, July 1981.

[122] B.K. Rosen. Tree-manipulating systems and Church-Rosser theorems. Journal

of the ACM, Volume 20, Number 1, pages 160-187, January 1973.

[123] D.J. Salomon and C.V. Cormack. Scannerless NSLR(I) parsing of programming

languages. In Proceedings of the SIGPLAN'99 Conference on Programming

Language Design anil Implementation, pages 170-178, Portland, Oregon, June

2l-23 1989. ACM SIGPLAN Notices, Volume 24, Number 7, July 1989.

[124] J.G. Sanderson. A Relational Theory of Computing, Volume 82 of. Lecture Notes

in Computer Science. Springer-Verlag, Berlin, 1980.

BIBLIOGRAPHY 285

[125] J.G. Sanderson. Relator calculus. Journal tor the Integrateil Study of Artif,ci,al

Intelligence, Cognitiae Science anil Applieil EpistemologyrYolume 10, Number 1,

pages 63-100, 1990.

[126] R.D. Schlichting and F.B. Schneider. Using message passing for distributed

programming: Proof rules and discipline. Technical Report 82-5, Department of

Computer Science, University of Arizona, Tucson, Arizona, June 1982.

[127] D.A. Schmidt. Denotational Semantics: A Methoilology lor Language Deaelop-

ment. Allyn and Bacon Inc., Newton, Massachusetts, 1986.

[128] S. Sidhar. An implementation of OBJ2: An object-oriented language for

abstract program specification. In K.V. Nori (editor), Founilations of Software

Technology anil Theoretical Computer Science, pages 81-95. Springer-Verlag,

Berlin, 1986. Volurne 24I oL Lecture Notes in Computer Science.

[129] S.K. Skedzielewski and J. Glauert. IFl - an intermediate form for applicative

languages. Manual M-170, Lawrence Livermore National Laboratory, Livermore,

California, July 1985.

[130] S.K. Skedzielewski and M.L. Welcome. Data flow graph optimization in IFl.

In J.P. Jouannaud (editor), Functional Programming Languages and, Computer

Architecture, pages 17-34. Springer-Verlag, September 1985. Volume 201 of

Lecture Notes in Computer Science.

[131] C.L. Smith. A Forma,I Analysis of Name Accessing in Programming Languo,ges.

Ph.D. thesis, Iowa State University Ames, Iowa, 1975.

[132]

[133]

[134]

[135]

[136]

[137]

[138]

[13e]

BIBLIOGRAPHY 286

G.L. Steele Jr. Common LISP: The Language. Digital Press, Burlingham,

Massachusetts, 1984.

J.W. Stevenson. Amsterdam compiler kit - Pascal reference manual. Technical

report, Wiskundig Seminarium, Vrije Universiteit, Amsterdam, 4Úä January

1983.

J.E. Stoy. Denotational Semantics. MIT Press, Cambridge, Massachusetts,

t977.

B. Stroustrup. The C++ Programming Language. Addison-Wesley, Reading,

Massachusetts, 1987.

A.S. Tanenbaum, J.W. Stevenson, E.G. Keizer and H. van Staveren. A practical

tool kit for making portable compilers. Technical Report 74, Vrije Universiteit,

Amsterdam, 1983.

A.S. Tanenbaum, H. van Staveren, E.G. Keizer and J.W. Stevenson. Description

of a machine architecture for the use with block structured languages. Technical

Report IR-81, Vrije Universiteit, Amsterdam, August 1983.

R.D. Tennent. A denotational definition of the programming language Pascal.

Technical report, Programming Resea.rch Group, Oxford University, Oxford,

England, April 1978.

J.W. Thatcher, E.G. Wagner and J.B. Wright. Data type specification:

Parameterization and the power of specification techniqres. ACM Transactions

on Programming Languages and Systems, Volume 4, Number 4, pages 7lI-732,

October 1982.

BIBLIOGRAPHY 287

[140] J. Uhl, S. Drossopoulou, G. Persch, G. Goos, M. Dausmann, G. Winterstein

and W. Kirchgássner. An Attribute Grammar for the Semanti,c Analysis of Aila,

Volume 139 of Lecture Notes in Computer Science. Springer-Verlag, Berlin,

1982.

[141] U.S. Department of Defense. The Progrømming Lønguage Aila Reference

Manual, ANSI/MIL-STD-1815A-1989. United States Department of Defense,

Washington, D.C., 1983.

[142] H. van Staveren. The table driven code generator from the Amsterdam compiler

kit. Technical report, Wiskundig Seminarium, Vrije Universiteit, Amsterdam,

1983.

[143] A. van Wijngaarden. Recursive definition of syntax and semantics. In T.B. Steel

(editor), Formal Lo,nguage Description Languages for Computer Programming,

pages 13-24. North-Holland Publishing Company, Amsterdam, 1966.

[144] A. van Wijngaarden, B.J. Mailloux, J.E.L. Peck and C.H.A. Koster. Report

on the algorithmic language ALGOL 68. Numerische Mathematiå, Volume 14,

Number 2, pages 79-218, February 1969.

[145] A. van Wijngaarden, B.J. Mailloux, J.E.L. Peck, C.H.A. Koster, M. Sintzoff,

C.H. Lindsey, L.G.L.T. Meerens and R.G. Fisher (editors). Reaised Report on

the Algori,thrnic Language Algol 68. Springer-Verlag, Berlin, 1976.

[146] T.N. Vickers. Quokka: A translator generator using denotational semantics.

The Australian Computer JournøI, Volume 18, Number 1, pages 9-I7, February

1986.

BIBLIOGRAPHY 288

[147] M. Wand. A semantic prototyping system. ACM SIGPLAN Notices, Volume 19,

Number 6, pages 2L3-221, June 1984. Proceedings of the SIGPLAN'84

Symposium on Compiler Construction, Montreal, Canada, L7-22 June, 1984.

[14S] D.A. Watt. An extended attribute grammar for Pascal. ACM SIGPLAN

Notices, Volume 14, Number 2, pages 60-74, February 1979.

[149] D.A. Watt, B.A. Wichmann and W. Findlay. Ad,ø. Language and, Methoilology.

Prentice-Hall, Engelwood Clifs, New Jersey, 1987.

[150] P. Wegner. Data structure models for programming languages. In J.T. Tou

and P. Wegner (editors), Proceeilings of the Symposium on Datø Structures i,n

Programming Langua.ges, pages I-54,1971. ACM SIGPLAN Noti,ces, Volume6,

Number 2, February 1971.

[151] J. Welsh and P. Bailes. Modula-2 standardisation: The go-betweens' tale. The

MODUS Quarterly, Volume 7, pages 3-6, February 1987.

[152] J. Welsh, W.J. Sneeringer and C.A.R. Hoare. Ambiguities and insecurities in

Pascal. Software - Practice and Eaperience, Volume 7, pages 685-696, 1977.

[153] A.L. 'Wendelborn. Data Flow Implementations of a Lucid-lilce Programming

Language. Ph.D. thesis, Department of Computer Science, University of

Adelaide, Adelaide, South Australia, 1985. Available as Technical Report 85-02.

[154] J.M. Wing. Writing Larch interface language specifications. ACM Transactions

on Programming Languages anil Systems, Volume 9, Number 1, pages 1-24,

January 1987.

BIBLIOGRAPHY 289

[155] N. Wirth. The programming language Pascal. Actø Informaticø, Volume 1,

Number 1, pages 35-63, January 1971.

[156] N. Wirth. Design and implementation of Modula. Software - Practice a,nil

Etperiencq Volume 7, Number 1, pages 67-84, January-February 1977.

[157] N. Wirth. Modula: A language for modular multiprogramming. Software -

Practice ønil Erperience,, Volume 7, Number 1, pages 3-35, January-February

1977.

[158] N. Wirth. What can \Me do about the unnecessary diversity of notation for

syntactic definitions. Cornmunications of the ACM, Volume 20, Number 11,

pages 822-823, November 1977.

[159] N. Wirth. Programming in Moilula-Z. Springer-Verlag, Berlin, third, corrected

edition, 1985.

[160] N. Wirth. From Modula to Oberon anil The programming language Oberon.

Technical Report 82, Institut für Informatik, ETH-Zentrum, Zurich, Switzer-

land, September 1987.

[161] X3 Secretariat. Draft programming language C. Technical report, ISO,

Washington D.C., February 14 1986. Document Number X3J11/86-017.

[162] X3 Secretariat. Working draft extended Pascal standard. Technical report, ISO,

Washington D.C., 1986. Document Number X3J9/86-004.

BIBLIOGRAPHY

[16g] S.N. Zilles. An introduction to data algebras. In D. Bjørner (editor), Abstract

Software Speci,fi,cøti,ons. 1979 Copenhagen Winter School Proceeilings, pages 248-

292, Berlin r 22d January - znd February 1979. Springer-Verlag. Volume 86 of

Lecture Notes in Computer Science.

[164] S.N. Zilles. Types, algebras and modeling. ACM SIGPLAN Notices, Volume 16,

Number 1, pages 207-209, January 1981. Proceedings of the Workshop on Data

Abstraction, Databases and Conceptual Modelling, Pingree Park, Colorado,

Jrne23-26, 1980.

290

