

Communication Performance Measurement and

Analysis on Commodity Clusters

A DISSERTATION

SUBMITTED TO THE DEPARTMENT OF COMPUTER SCIENCE

OF THE UNIVERSITY OF ADELAIDE

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

By

Nor Asilah Wati Abdul Hamid

March 13, 2008

 i

Table of Content

ABSTRACT.. xiv

DECLARATION.. xvi

LIST OF PUBLICATIONS ... xvii

ACKNOWLEDGEMENT... xviii

CHAPTER 1 .. 1

Introduction

1.1 Parallel computing architectures... 2

1.2 MPI communications performance... 4

1.3 Research Rationale.. 6

1.4 Research Aims and Overview... 8

1.4.1 Comparison of Different Benchmark Software ... 9

1.4.2 Improvements to MPIBench .. 10

1.4.3 Performance Analysis and Investigation of Communication Performance on

Different Communication Networks... 10

1.4.4 Analysis of Algorithm Selection for Optimizing Collective Communication

with MPICH for Ethernet and Myrinet Networks .. 11

1.4.5 Performance Evaluation on ccNUMA Shared Memory Machine SGI Altix

3000... 12

1.5 Thesis Outline ... 13

CHAPTER 2 .. 14

Parallel Computing

2.1 Parallel Computers.. 14

2.1.1 Shared Memory MIMD Systems ... 16

2.1.2 Distributed Memory MIMD Systems .. 19

2.1.3 Distributed Memory System with SMP Nodes.. 22

2.2 Cluster Computer Interconnect ... 24

2.3 Parallel Programming ... 27

 ii

2.4 MPI Benchmark Software... 29

2.5 Performance Analysis with MPIBench... 30

2.6 Variation of Communication Performance... 32

2.7 Improving the Communication Performance of Cluster Computers 33

Chapter 3 ... 37

Comparison of MPI Benchmark Programs on Shared Memory and Distributed

Memory Machines

3.1 Introduction... 37

3.2 Related Work .. 38

3.3 MPI Benchmark Measurement Technique ... 38

3.3.1 Mpptest .. 40

3.3.2 Pallas MPI Benchmark .. 41

3.3.3 MPBench.. 42

3.3.4 SKaMPI.. 43

3.3.5 MPIBench .. 45

3.4 MPI Benchmark Functionality and Ease of Use... 47

3.4.3 Presentation of output .. 49

3.5 Machines Used.. 50

3.5.1 ccNUMA Shared Memory Machine.. 50

3.5.2. Distributed Memory Machine... 53

3.6 Point-to-Point Communication ... 54

3.6.1 MPI_Send/MPI_Recv.. 55

3.6.2 Bandwidth for MPI_Send/MPI_Recv.. 60

3.7 MPI_Sendrecv... 64

3.8 Barrier ... 67

3.9 Broadcast... 69

3.10 Scatter and Gather... 76

3.11 Alltoall .. 79

3.12 Other Collective Communication ... 80

3.13 Discussion ... 80

 iii

CHAPTER 4 .. 82

Improvements for MPIBench

4.1 Introduction... 82

4.2 Cache Effects .. 83

4.3 Testing the MPIBench Globally Synchronized Clock.. 84

4.4 Improved Measurement for Collective Communication .. 88

4.5 User-specified Communication Pattern for Point-to-Point Communications 89

4.6 Ring Pattern for Point-to-Point Communication .. 90

4.7 Programming Errors Fixed ... 95

4.8 Analysis of results over arbitrary set of processes.. 95

4.9 Added Options to Ease of Use .. 96

4.10 Future Work in MPIBench.. 96

CHAPTER 5 .. 98

Averages, Distributions and Scalability of MPI Communication Times for Ethernet

and Myrinet Networks

5.1 Introduction.. 98

5.2 Related Work .. 100

5.3 Methodology... 101

5.4 Point-to-Point Communication ... 102

5.4.1 Send/Receive.. 102

5.4.2 Combined Send and Receive ... 112

5.5 Barrier .. 114

5.6 Broadcast... 116

5.7 Scatter and Gather... 125

5.7.1 Scatter .. 125

5.7.2 Gather... 131

5.8 Alltoall .. 136

5.9 Summary... 146

 iv

CHAPTER 6 .. 148

Analysis of Algorithm Selection for Optimizing Collective Communication with

MPICH for Ethernet and Myrinet Networks

6.1 Introduction... 148

6.2 Related Work .. 151

6.3 Methodology... 153

6.4 Broadcast... 155

6.5 Alltoall .. 167

6.6 Reduce Scatter .. 172

6.7 Allgather ... 179

6.8 Other Collective Communication ... 183

6.8.2 Reduce.. 184

6.9 Summary... 185

CHAPTER 7 .. 189

Performance Evaluation on ccNUMA Shared Memory Machine SGI Altix 3000

7.1 Introduction... 189

7.2 MPI Benchmark Experiments on the Altix... 190

7.3 Selection of Processors for Benchmarking ... 191

7.4 MPI_Send with Default Settings and Single Copy... 193

7.5 Point-to-Point Communications.. 195

7.5.1 MPI_Sendrecv.. 200

7.6 Broadcast... 200

7.7 Barrier ... 203

7.8 Scatter and Gather... 204

7.9 Alltoall .. 208

7.10 Discussion ... 209

CHAPTER 8 .. 210

Conclusion and Further Work

REFERENCES.. 217

 v

List of Figures

CHAPTER 2

Figure 2.1 : Examples of interconnection structures used in shared-memory MIMD

systems.. 19

Figure 2.2 : Examples of common networks for Distributed Memory machine 22

Figure 2.3 : Block diagram of a system with a “hybrid" network: clusters of four CPUs

are connected by a crossbar. ... 24

CHAPTER 3

Figure 3.1: MPI benchmark measurement technique pseudocode 39

Figure 3.2 : Mpptest pseudocode .. 40

Figure 3.3 : SKaMPI pseudocode ... 44

Figure 3.4: MPIBench Pseudocode... 45

Figure 3.5 : An Altix C-brick with 2 nodes, 2 NUMAlink-3 and 2 XIO channels [124]. 52

Figure 3.6 : SGI Altix 3000 communications architecture for 128 processors [124]....... 53

Figure 3.7 : PMB and Mpptest Point-to-Point pattern.. 55

Figure 3.8 : SKaMPI and MPBench Point-to-Point pattern ... 55

Figure 3.9 : MPIBench Point-to-Point pattern.. 55

Figure 3.10 : Comparison of results from different MPI benchmarks for Point-to-Point

(send/receive) communications using 8 processors between default settings and

Single Copy (indicate by SC) on SGI Altix.. 57

Figure 3.11 : Comparison of results from different MPI benchmarks for Point-to-Point

(send/receive) communications using the same process placement, with a single

process on each of 2 different C-Bricks connected by a router, on the SGI Altix.... 57

Figure 3.12 : Ratio of Send/Recv time using buffered compared (default) to non-buffered

communication for PMB from 2 to 32 Processors ... 58

Figure 3.13 : Comparison of results from different MPI benchmarks for Point-to-Point

(send/receive) communications using 8 processors on IBM Linux Cluster. 59

 vi

Figure 3.14 : Comparison of results from different MPI benchmarks for Point-to-Point

(send/receive) communications using the same process placement, with a single

process on each of 2 different nodes on IBM Linux Cluster. 59

Figure 3.15 : PMB Bandwidth Results for 2 until 32 Processors for Default Settings on

SGI Altix... 62

Figure 3.16 : MPIBench Bandwidth Results for 2 until 32 Processors for Default Settings

on SGI Altix.. 63

Figure 3.17 : PMB Bandwidth Results for 2 until 32 Processors for Default Settings on

IBM Linux Cluster.. 63

Figure 3.18 : MPIBench Bandwidth Results for 2 until 32 Processors on IBM Linux

Cluster. .. 64

Figure 3.19 : Comparison between MPI benchmarks for MPI_Sendrecv with MPIBench

ring pattern on 8 processors on SGI Altix. ... 66

Figure 3.20 : Comparison between MPI benchmarks for MPI_Sendrecv with MPIBench

ring pattern on 8 processors on IBM Linux cluster. ... 67

Figure 3.21 : Comparison between MPI benchmarks for MPI_Barrier for 2 to 128

processors on the SGI Altix. ... 68

Figure 3.22 : Comparison between MPI benchmarks for MPI_Barrier for 2 to 128

processors on the IBM Linux cluster. ... 68

Figure 3.23 : Comparison between MPI benchmarks for MPI_Bcast on 8 processors

before tuning the code on SGI Altix. .. 70

Figure 3.24 : Comparison between MPI benchmarks for MPI_Bcast on 8 processors after

tuning the code on SGI Altix. ... 71

Figure 3.25 : Comparison between MPI benchmarks for MPI_Bcast on 8 processors on

IBM Linux Cluster.. 71

Figure 3.26 : Node time produce by SKaMPI for MPI_Bcast at 4MBytes for 8 cpus on

SGI Altix... 73

Figure 3.27 : Distribution result produce by MPIBench for MPI_Bcast at 4MBytes for 8

cpus on SGI Altix.. 74

Figure 3.28 : Node time produce by SKaMPI for MPI_Bcast at 4MBytes for 8 cpus on

IBM Linux Cluster.. 74

 vii

Figure 3.29 : Distribution result produce by MPIBench for MPI_Bcast at 4MBytes for

cpus on IBM Linux Cluster... 75

Figure 3.30 : Minimum, Average and Maximum time from MPIBench for MPI_Bcast at

4MBytes for 8 cpus on IBM Linux Cluster. ... 75

Figure 3.31 : Comparison between MPI benchmarks for MPI_Scatter for 32 processors

on SGI Altix.. 76

Figure 3.32 : Comparison between MPI benchmarks for MPI_Scatter for 32 processors

on IBM Linux Cluster... 77

Figure 3.33 : Comparison between MPI benchmarks for MPI_Gather for 32 processors

on SGI Altix.. 78

Figure 3.34 : Comparison between MPI benchmarks for MPI_Gather for 32 processors

on IBM Linux Cluster... 78

Figure 3.35 : Comparison between MPI benchmarks for MPI_Alltoall on 32 processors

on SGI Altix.. 79

Figure 3.36 : Comparison between MPI benchmarks for MPI_Alltoall on 32 processors

on IBM Linux Cluster... 80

CHAPTER 4

Figure 4.1: Point-to-Point with 2 processors using MPI_Wtime at 128 Bytes................. 86

Figure 4.2 : Point-to-Point with 2 processors using Clock Cycle at 128 Bytes................ 86

Figure 4.3 : Point-to-Point with 2 processors using MPI_Wtime at 256 Kbytes. 87

Figure 4.4 : Point-to-Point with 2 processors using Clock Cycle at 256 KBytes. 87

Figure 4.5: MPI Bcast on Ethernet for 128 CPUs at 64KByte. .. 88

Figure 4.6 : MPI Alltoall on Ethernet for 64 CPUs at 4KByte... 89

Figure 4.7 : MPIBench User-specified Point-to-Point Communication Pattern............... 90

Figure 4.8 : Ring Pattern for 4 CPU and 2 CPU per node. ... 91

Figure 4.9 : Average times for MPI_Sendrecv with Ring pattern from 4 to 64 CPUs on

SGI Altix... 93

Figure 4.10 : Average times for MPI_Sendrecv with Ring pattern from 4 to 64 CPUs on

IBM Linux Cluster.. 93

Figure 4.11 : Distribution for 4 CPUs on SGI Altix at 256KByte.................................... 94

Figure 4.12 : Distribution for 4 CPUs for Myrinet on Hydra at 256KByte...................... 94

 viii

CHAPTER 5

Figure 5.1 : Average Time for MPI_Send/MPI_Recv on Myrinet (MY) and Ethernet

(ET). .. 103

Figure 5.2 : Distribution of MPI_Send/Recv for Myrinet at 128 CPUs for 16 KByte. .. 105

Figure 5.3: Distribution of MPI_Send/Recv times for Myrinet at 128 CPUs for 64 KByte.

... 106

Figure 5.4 : Distribution of MPI_Send/Recv times for Ethernet at 128 CPUs for 16

KByte. ... 106

Figure 5.5 : Distribution of MPI_Send/Recv for Ethernet at 128 CPUs for 64 KByte. . 107

Figure 5.6: Examples of the calculation of Min, Mean and Std. Dev. for 32 CPUs at 16

KByte for Myrinet... 109

Figure 5.7 : Average Time for MPI_Sendrecv on Myrinet (MY) and Ethernet (ET). ... 113

Figure 5.8 : Average time for MPI_Barrier Myrinet and Ethernet. 115

Figure 5.9 : Distribution of MPI_Barrier times for Ethernet at 64,128 and 200 CPUs. . 115

Figure 5.10 : Distribution of MPI_Barrier times for Myrinet at 64,128 and 200 CPUs. 116

Figure 5.11 : Average time for MPI_Bcast on Myrinet.. 117

Figure 5.12 : Average time for MPI_Bcast on Ethernet ... 118

Figure 5.13 : Myrinet at 128 CPUs for 256 KByte... 119

Figure 5.14 : Ethernet at 128 CPUs for 8 KByte. ... 120

Figure 5.15 : Ethernet at 128 CPUs for 16 KByte. ... 120

Figure 5.16 : Ethernet at 128 CPUs for 32 KByte. ... 121

Figure 5.17 : Ethernet at 128 CPUs for 64 KByte. ... 121

Figure 5.18 : Ethernet at 128 CPUs for 256 KByte. ... 122

Figure 5.19 : Ethernet at 32 CPUs for 256 KByte. ... 123

Figure 5.20 : Minimum and Average Time for each CPU on Ethernet for 32 CPUs at 256

KByte .. 124

Figure 5.21 : Myrinet at 32 CPUs for 256 KByte... 124

Figure 5.22 : Minimum and Average Time for each CPU on Myrinet for 32 CPUs at 256

KByte. ... 125

Figure 5.23 : Average time for MPI_Scatter on Myrinet.. 127

Figure 5.24 : Average time for MPI_Scatter on Ethernet. .. 128

Figure 5.25 : Myrinet at 128 CPUs for 64 KByte... 128

 ix

Figure 5.26 : Minimum, Maximum and Average Time for each CPU on Myrinet for 128

CPUs at 64 KByte... 129

Figure 5.27 : Ethernet at 128 CPUs for 64 KByte. ... 129

Figure 5.28 : Minimum, Maximum and Average Time for each CPU on Ethernet for 128

CPUs at 64 KByte... 130

Figure 5.29 : Minimum, Maximum and Average Time for each CPU on Ethernet for 16

CPUs at 64 KByte... 130

Figure 5.30 : Average time for MPI_Gather on Myrinet... 131

Figure 5.31 : Average time for MPI_Gather on Ethernet. .. 132

Figure 5.32 : Myrinet for 128 CPUs at 64 KByte... 133

Figure 5.33 : Minimum, Maximum and Average Time for each CPU on Myrinet for 128

CPUs at 64 KByte... 134

Figure 5.34 : Ethernet for 128 nodes at 64 KByte .. 134

Figure 5.35 : Minimum, Maximum and Average Time for each CPU on Ethernet for 128

CPUs at 64 KByte... 135

Figure 5.36 : Minimum and Average Time for each CPU on Ethernet for 16 CPUs at 64

KByte. ... 135

Figure 5.37 : Average time for MPI_Alltoall on Myrinet for 4 to 200 CPUs. 137

Figure 5.38 : Average time for MPI_Alltoall on Ethernet for 4 to 200 CPUs................ 138

Figure 5.39 : Myrinet at 128 CPUs for 2KByte.. 138

Figure 5.40 : Ethernet at 128 CPUs for 64Byte. ... 139

Figure 5.41 : Minimum, Maximum and Average time on Ethernet for 128 CPUs at 64

Byte ... 139

Figure 5.42 : Ethernet at 128 CPUs for 256 Byte. .. 140

Figure 5.43 : Minimum, Maximum and Average time on Ethernet for 128 CPUs at 256

Byte ... 140

Figure 5.44 : Ethernet at 128 CPUs for 1KByte. .. 141

Figure 5.45 : Ethernet at 128 CPUs for 2KByte. .. 141

Figure 5.46 : Ethernet at 64 CPUs for 2 KByte. ... 143

Figure 5.47 : Ethernet at 64 CPUs for 4 KByte. ... 143

Figure 5.48 : Ethernet at 64 CPUs for 8 KByte .. 144

Figure 5.49 : Ethernet at 64 CPUs for 16 KByte .. 144

 x

Figure 5.50: Ethernet at 64 CPUs for 32 KByte. .. 145

Figure 5.51 : Myrinet at 64 CPUs for 32 KByte... 145

CHAPTER 6

Figure 6.1: 8 CPUs broadcast on Myrinet. ... 159

Figure 6.2 : 32 CPU Broadcast on Myrinet. ... 160

Figure 6.3 : 8 CPU Broadcast on Ethernet.. 161

Figure 6.4 : 32 CPU Broadcast on Ethernet.. 162

Figure 6.5 : Broadcast for 8 CPUs with 2 ppn for 16 KByte to 1 Mbyte on Ethernet.... 163

Figure 6.6 : Broadcast for 8 CPUs with 1 ppn for 16 KByte to 1 Mbyte on Ethernet... 163

Figure 6.7 : Comparison between test results and model for 2 ppn for 32 CPUs for

medium message size on Myrinet... 165

Figure 6.8 : Comparison between test results and model for 1 ppn for 32 CPUs for

medium message size on Myrinet... 165

Figure 6.9 : Comparison between test results and model for 2ppn for 32 CPUs for large

message size on Myrinet. .. 166

Figure 6.10 : Comparison between test results and model for 1 ppn for 32 CPUs for large

message size on Myrinet. .. 166

Figure 6.11 : 8 CPU and 2 ppn for Alltoall on Myrinet.. 169

Figure 6.12 : 8 CPU and 2ppn for Alltoall on Ethernet. .. 169

Figure 6.13 : 32 CPU and 2 ppn for Alltoall on Myrinet.. 170

Figure 6.14 : 32 CPU and 2 ppn Alltoall on Ethernet.. 170

Figure 6.15: 32 CPU and 1 ppn for Alltoall on Myrinet... 171

Figure 6.16 : Comparison between test results and model for 2ppn for 32 CPUs on

Myrinet.. 171

Figure 6.17 : Comparison between test results and model for 1ppn for 32 CPUs on

Myrinet.. 172

Figure 6.18 : 8 CPU on Myrinet for Reduce Scatter... 175

Figure 6.19 : 8 CPU on Ethernet for Reduce Scatter.. 176

Figure 6.20 : 32 CPU on Myrinet for Reduce Scatter... 176

Figure 6.21 : 32 CPU and 2 ppn on Ethernet for Reduce Scatter 177

 xi

Figure 6.22 : Results for 32 CPUs and 1 ppn for Reduce Scatter on Myrinet................ 177

Figure 6.23 : Comparison between test results and model for 2ppn for 32 CPUs on

Myrinet.. 178

Figure 6.24 : Comparison between test results and model for 1ppn for 32 CPUs on

Myrinet.. 178

Figure 6.25 : 8 CPU and 2ppn on Myrinet for Allgather.. 181

Figure 6.26 : 8 CPU and 2ppn on Ethernet for Allgather ... 181

Figure 6.27 : 32 CPU and 2 ppn on Myrinet for Allgather... 182

Figure 6.28 : 32 CPU and 2 ppn on Ethernet for Allgather .. 182

Figure 6.29 : Expected performance for 32 CPU and 1ppn for Gigabit Ethernet 187

CHAPTER 7

Figure 7.1 : 8 CPUs for Point-to-Point at 256 KBytes using processor number from 0 to 7

and 16 to 23... 191

Figure 7.2 : Communication for 32 processor for different group of processor for

256KBytes... 193

Figure 7.3 : Average time for point-to-point using the default setting and single copy. 194

Figure 7.4 : Bandwidth for point-to-point using the default setting and single copy. 194

Figure 7.5 : Point-to-Point performance for small message sizes. 197

Figure 7.6 : Point-to-Point performance for large message sizes. 197

Figure 7.7 : Probability distributions for MPI point-to-point communications using 48

and 64 processors for 256 KByte message size. ... 199

Figure 7.8 : Probability distributions for MPI point-to-point communications using 48

and 64 processors for 256 KByte message size using Single Copy options........... 199

Figure 7.9 : Performance of MPI_Bcast as a function of data size on 2 to 128 CPUs. .. 201

Figure 7.10 : Distribution results for MPI_Bcast at 64 Bytes on 32 cpus. 202

Figure 7.11 : Distribution result for MPI_Bcast at 256Kbytes on 32 cpus..................... 203

Figure 7.12 : Average time for an MPI barrier operation for 2 to 128 processors. 204

Figure 7.13 : Performance for MPI_Scatter for 2 to 128 processors 205

Figure 7.14 : Distribution for MPI_Scatter for 64 processors at 256Kbytes 205

Figure 7.15 : Performance for MPI_Gather for 2 to 128 processors 207

 xii

Figure 7.16 : Distribution for MPI_Gather for 64 processors at 4Kbytes 207

Figure 7.17 : Performance for MPI_Alltoall for 2 to 128 processors 208

Figure 7.18 : Distribution for MPI_Alltoall for 32 processors at 256Kbytes................. 209

List of Tables

CHAPTER 1

Table 1.1 : Comparison of the architecture for high performance computer for year 1997

and 2007.. 3

Table 1.2 : Percentage of the most use interconnect from the statistic list at TOP500

website for November 2007 ... 4

Table 1.3 : Protocol Comparison (Ping-Pong application). .. 5

CHAPTER 2

Table 2.1 : Comparison for bandwidth, latency and cost between different interconnec. 27

CHAPTER 3

Table 3.1 : SGI Altix brick type.. 52

Table 3.2 : Bandwidth results in MBytes/sec for various numbers of processors using

default settings on SGI Altix... 61

Table 3.3 : Bandwidth results in MBytes/sec for various numbers of processors on IBM

Linux Cluster. ... 61

Table 3.4 : Comparison for average communication time (Microsec) between

MPI_Send/MPI_Recv with MPI_Sendrecv for MPIBench on SGI Altix. 66

CHAPTER 5

Table 5.1 : Percentage of times that are greater than n times and smaller than N+1 the

minimum values for Myrinet. ... 110

Table 5.2 : Percentage of times that are greater than n times the minimum values for

Ethernet. .. 111

 xiii

Table 5.3 : Myrinet, percentage for average plus standard deviation for n = 1,2,3,4. 111

Table 5.4 : Ethernet, percentage for average plus standard deviation for n = 1,2,3,4. ... 112

Table 5.5 : Comparison for MPI_Send/MPI_Recv and MPI_Sendrecv Between Myrinet

and Ethernet for 256 KByte messages. ... 114

Table 5.6 : Percentage of RTO occurrences for Broadcast for Ethernet on 128 CPUs and

estimated average time without RTOs.. 122

Table 5.7 : Percentage of RTO Occurrences for Alltoall for 32, 64 and 128 CPUs....... 146

CHAPTER 6

Table 6.1 : Summary of Algorithms used by MPICH for Broadcast.............................. 156

Table 6.2 : Results for 8 CPUs for broadcast on Myrinet... 159

Table 6.3 : Results for 32 CPUs for broadcast on Myrinet... 160

Table 6.4 : Results for 8 CPUs for broadcast on Ethernet. ... 161

Table 6.5 : Results for 32 CPUs for broadcast on Ethernet .. 162

Table 6.6 : Comparison results between 8p and 2ppn with 8p and 1ppn for Broadcast on

Ethernet. .. 164

Table 6.7 : Comparison between MPICH2 1.0.4 with MPICH 1.2.6 for Broadcast on

Ethernet. .. 164

Table 6.8 : Summary of Algorithms used for Alltoall in MPICH. 167

Table 6.9 : Summary of Algorithms used for Reduce Scatter in MPICH. 173

Table 6.10 : Summary of Algorithms used for Allgather in MPICH. 179

Table 6.11 : Summary of Algorithm uses in Allreduce. ... 184

Table 6.12 : Summary of Algorithm uses in Reduce.. 185

CHAPTER 7

Table 7.1 : Measured latency (for sending a zero byte message) and bandwidth (for a 4

MByte message) for different numbers of processes on the Altix. Results for

MPIBench are for all processes communicating concurrently, so include contention

effects. Results for MPBench (in bold font) are for only two communicating

processes (processes 0 and N-1) with no network or memory contention. 195

 xiv

ABSTRACT

 Cluster computers have become the dominant architecture in high-performance

computing. Parallel programs on these computers are mostly written using the Message

Passing Interface (MPI) standard, so the communication performance of the MPI library

for a cluster is very important. This thesis investigates several different aspects of per-

formance analysis for MPI libraries, on both distributed memory clusters and shared

memory parallel computers.

The performance evaluation was done using MPIBench, a new MPI benchmark

program that provides some useful new functionality compared to existing MPI bench-

marks. Since there has been only limited previous use of MPIBench, some initial work

was done on comparing MPIBench with other MPI benchmarks, and improving its func-

tionality, reliability, portability and ease of use. This work included a detailed compari-

son of results from the Pallas MPI Benchmark (PMB), SKaMPI, Mpptest, MPBench and

MPIBench on both distributed memory and shared memory parallel computers, which

has not previously been done. This comparison showed that the results for some MPI rou-

tines were significantly different between the different benchmarks, particularly for the

shared memory machine.

 A comparison was done between Myrinet and Ethernet network performance on

the same machine, an IBM Linux cluster with 128 dual processor nodes, using the

MPICH MPI library. The analysis focused mainly on the scalability and variability of

communication times for the different networks, making use of the capability of

MPIBench to generate distributions of MPI communication times. The analysis provided

an improved understanding of the effects of TCP retransmission timeouts on Ethernet

networks.

This analysis showed anomalous results for some MPI routines. Further investiga-

tion showed that this is because MPICH uses different algorithms for small and large

message sizes for some collective communication routines, and the message size where

this changeover occurs is fixed, based on measurements using a cluster with a single

processor per node. Experiments were done to measure the performance of the different

algorithms, which demonstrated that for some MPI routines the optimal changeover

points were very different between Myrinet and Ethernet networks and for 1 and 2 proc-

 xv

essors per node. Significant performance improvements can be made by allowing the

changeover points to be tuned rather than fixed, particularly for commodity Ethernet

networks and for clusters with more than 1 process per node.

MPIBench was also used to analyse the MPI performance and scalability of a

large ccNUMA shared memory machine, an SGI Altix 3000 with 160 processors. The

results were compared with a high-end cluster, an AlphaServer SC with Quadrics QsNet

interconnect. For most MPI routines the Altix showed significantly better performance,

particularly when non-buffered copy was used. MPIBench proved to be a very capable

tool for analyzing MPI performance in a variety of different situations.

 xvi

DECLARATION

This work contains no material which has been accepted for the award of any other de-

gree or diploma in any university or other tertiary institution and, to the best of my

knowledge and belief, contains no material previously published or written by another

person, except where due to reference has been made in the text.

I give consent to this copy of my thesis, when deposited in the University Library, being

available for loan and photocopying.

NOR ASILAH WATI ABDUL HAMID

Phd Candidate,

Department of Computer Science

University of Adelaide

13 March 2008

 xvii

LIST OF PUBLICATIONS

The following papers were written based on the work presented in this thesis.

Papers in Refereed Conference Proceedings

1. N. A. W. A Hamid and P. Coddington. “Analysis of Algorithm Selection for Opti-

mizing Collective Communication with MPICH for Ethernet and Myrinet Networks”,

Proc. of The 8th International Conference on Parallel and Distributed Computing,

Applications and Technologies (PDCAT’07), Adelaide, Australia, December 2007.

2. N. A. W. A Hamid and P. Coddington. “Averages, Distribution and Scalability of

MPI Communication Times for Ethernet and Myrinet Networks”, Proc. of Parallel

and Distributed Computing and Network (PDCN’07), 25th IASTED International

Multi-Conference, Congress Innsbruck, Austria, February 2007.

3. N. A. W. A Hamid, P. Coddington and F. Vaughan. “Comparison of MPI Benchmark

Programs on an SGI Altix ccNUMA Shared Memory Machine”, Proc. of Workshop

on Performance Modeling, Evaluation, and Optimization of Parallel and Distributed

Systems (PMEO-PDS'06), Rhodes, Greece, April 2006.

4. N. A. W. A Hamid, P. Coddington and F. Vaughan. “Performance Analysis of MPI

Communications on the SGI Altix 3700”, Proc. of APAC'05, Gold Coast, Australia,

September 2005.

 xviii

ACKNOWLEDGEMENT

The work described in this thesis was carried out at the University of Adelaide in the De-

partment of Computer Science under the supervision of Dr. Paul Coddington.

I would like to express my deepest gratitude to Dr. Paul Coddington for his excellent

guidance, enthusiastic supervision and tolerance throughout this research. His dedication

and contribution gave me tremendous help in completion of this research and the publica-

tion of the papers. I also would like to thank him for his commitment to this research and

for giving me the chance to present our papers at conferences around the world.

Many thanks are due to the University of Adelaide and in particular the Department of

Computer Science, as well as the South Australian Partnership for Advanced Computing

(SAPAC) for making supercomputer time available to me. Special thanks to Patrick Fitz-

henry and Grant Ward for their professional advice and patience throughout the experi-

mental program. I also would like to give thanks for the help from a team of program-

mers from the University of Adelaide and the South Australian Partnership of Advanced

Computing, Alex Chichowski, Tim Seely and Paul Martinaitis.

Lastly to my family, my husband Dr. Raizal Saifulnaz Muhammad Rashid and my son

Muhammad Haziq Raizal Saifulnaz and my parents for their love, encouragement and

continual support throughout the years of doing this research.

 1

CHAPTER 1

Introduction

Since the invention of computers, users have demanded more powerful and faster

computers to solve a huge variety of numerical problems, particularly the numerical

simulation of scientific and engineering problems. In order to cope with the demand,

computers have evolved from sequential to parallel computers. Sequential means that the

computer is running with a single processor, while parallel computers allow more than

one processor to be used at the same time. Parallel computing refers to the concept of

speeding-up the execution of a program by dividing the program into multiple fragments

that can execute simultaneously, each on its own processor. A program being executed

across n processors might execute n times faster than it would using a single processor. A

parallel computing system generally involves networks of multiple commodity micro-

processors, rather than a single, larger mainframe. These multiprocessor computers con-

sist of a number of autonomous processors which can each execute separate programs

concurrently, or a single program can use multiple processors. These autonomous proces-

sors are coupled by hardware and by software to attain the collective performance needed

to master applications that cannot be handled by the use of individual uniprocessor com-

puters.

Traditionally, the developments of parallel computing have been motivated by

numerical simulations of complex systems such as weather, climate, mechanical devices,

electronic circuits, manufacturing processes, and chemical reactions. However, the most

significant forces driving the development of faster computers today are emerging com-

mercial applications that require a computer to be able to process large amounts of data in

sophisticated ways. These applications include online transaction processing, data min-

ing, web servers and web search, on-demand video streaming, computer-aided diagnosis

in medicine, parallel databases used for decision support, and advanced graphics and vir-

tual reality, particularly in the entertainment industry [160, 161, 162].

 2

1.1 Parallel computing architectures

 In general, parallel computing is classified into shared memory multiprocessor

(SMP), distributed memory multicomputers with compute nodes connected by a network

(particularly those built from commodity components, which are often call cluster com-

puters), or a combination of both. Due to the increase in network hardware speed and the

availability of low-cost high-performance workstations, personal computers and servers,

cluster computing has become increasingly popular over the past ten years. Many re-

search institutes, universities and companies around the world have purchased or built

low cost clusters, such as commodity Linux or Beowulf [146] clusters, for their parallel

processing needs at a fraction of the price of mainframes or custom supercomputers. In

recent years it has become more common to find cluster computers built with SMP

nodes. Table 1.1 shows that cluster architecture has grown rapidly in the last ten years

compared to the other architectures, and this trend has increased with the advent of multi-

core CPUs, so that all new clusters now have SMP nodes. This thesis will focus mainly

on cluster computers, particularly SMP clusters.

Many different interconnection technologies have been used to build clusters, in-

cluding Ethernet [134], Myrinet [110], Giganet [6], QsNet [145], SCInet [150] as well as

proprietary networks from different vendors such as IBM [159] and Cray [158]. When

the work in this thesis was begun, the most common networks were Myrinet, Ethernet

and networks based on the IBM SP Switch [157], whereas currently the most popular net-

works are Gigabit Ethernet, Infiniband [144], SP Switch and Myrinet, based on the statis-

tics of interconnet networks used in machines in the list of the at the TOP500 websites

[91]. Ethernet is a cheap LAN technology that can deliver 100Mbit/sec bandwidth (Fast

Ethernet), 1 Gbit/sec (Gigabit Ethernet, which is currently the most commonly used) or

10 Gbit/sec, while maintaining the original Ethernet’s transmission protocol, CSMA/CD.

TCP/IP is the most popular communication protocol for Ethernet, although other proto-

cols can be used, such as VIA [33]. TCP/IP is a robust protocol set developed to connect

a number of different networks designed by different vendors into a network of networks.

However, the reliability provided by TCP/IP has a price in communication overhead. In-

finiband and Myrinet are two of the leading cluster interconnect technologies for com-

modity clusters, which use different communication protocols that allow lower latency,

 3

but these networks are more expensive than Gigabit Ethernet. Both provide low-latency,

high-bandwidth, end-to-end communication between two processes in the cluster.

In the high performance computing area, the Message Passing Interface (MPI)

[81] is the standard that is most commonly used for writing distributed memory parallel

applications. To achieve optimal performance in a cluster, it is very important to imple-

ment MPI efficiently on top of the cluster interconnect. For networks such as Myrinet

that are designed for high performance computing environments, their hardware and

software are specially optimized to achieve better MPI Performance. Low cost commod-

ity cluster computers typically use Ethernet for the network interconnect, TCP/IP as the

protocol, and MPICH [69] as the communication library for parallel computing, which is

an implementation of the MPI standard. However these Beowulf-style commodity clus-

ters typically do not have as good performance for parallel applications that require a lot

of interprocessor communication. This is because the MPICH implementation was not

designed for commodity machines which use TCP/IP and Fast Ethernet, while the prob-

lems with TCP/IP are because it was designed to use in a wide area network instead of a

parallel computer where low latency is important.

Architecture Count Share %

 November 1997 November 2007 November 1997 November 2007

Constellations 10 3 2.0 % 0.6 %

MPP 226 91 45.2 % 18.2 %

Cluster 1 406 0.2 % 81.2 %

SMP 263 0 52.6 % 0

Table 1.1 : Comparison of the architecture for high performance computers in the list of
Top 500 supercomputers for year 1997 and 2007 [91].

 4

Interconnect Nov 1999

Nov 2003

Nov 2007

Ethernet 1.8 % 22.4 % 54.0 %

Myrinet 8.6 % 38.6 % 3.6 %

Quadrics 0.2 % 5.2 % 1.8 %

Infiniband 0 % 0.6 % 24.2 %

Crossbar 23.4 % 7.4 % 1.2 %

SGI NUMAlink/flex 0 % 7.4 % 2.2 %

SP Switch 27.6 % 12.6 % 4.6 %

Cray Interconnect 11.2 % 2.0 % 2.2 %

Other 1.0 % 3.0 % 6.2 %

N/A 26.2 % 0.8 % 0 %

Table 1.2 : Percentage of the most used interconnects for supercomputers in the TOP500
list [91].

1.2 MPI communications performance

Much research work has focussed on the communications performance of cluster

computers with different network technologies. Previous research has found that the

common problems that frequently occurs in networks that use TCP/IP is network conges-

tion and packet loss. This is because TCP/IP applies Retransmit Timeouts for packets that

fail to deliver, so the unsent packets need to wait for a certain time to be redelivered.

Since TCP/IP is designed for use in wide area networks the default resend time is much

longer than is suitable for tightly coupled processors, although this can be customized.

Interestingly, there were several previous research papers that found that Ethernet can

perform as well as more expensive networks like Myrinet if additional software and/or

particular hardware (e.g. high-end network interface cards) is used, with a low-latency

custom protocol such as VIA [33, 44, 111] or Genoa Active Message Machine

(GAMMA) [38, 39]. However, it would be easier and more practical if MPI performance

 5

using Ethernet with TCP/IP and MPICH could be improved without needed any addi-

tional software or hardware.

Table 1.3 compares the performance for different protocols in different types of

networks. The purpose of this table is to show that the causes of high latency and low

bandwidth are not just because of the networks, but also due to the choice of protocol.

Based on Table 1.3, TCP/IP with Fast Ethernet has a latency of 103 microsec and

GAMMA with Fast Ethernet has a latency of 12.7 microsec. These results show that us-

ing GAMMA can significantly improve the latency performance of Ethernet so that it is

close to the latency in Myrinet networks, which is 10.0 microsec.

Platform Latency (•s) Bandwidth (Byte/sec)

GM – Myrinet 10.0 100.0

GAMMA – Gigabit Ethernet 9.6 90.0

GAMMA – Fast Ethernet 12.7 12.2

VIA – Fast Ethernet 27.0 12

TCP – Fast Ethernet 108 10.0

TCP – Gigabit Ethernet 105 62.0

TCP – Myrinet 103 42

Table 1.3 : Protocol Comparison (Ping-Pong application). Results are from [40, 115,

116, 132].

There are several different benchmark programs which can be used to measure the

performance of MPI communications on parallel computers, such as SKaMPI [21], Pallas

MPI Benchmark [65], MPBench [19] and Mpptest [17]. The latest benchmark software

suite that has been developed for measuring MPI performance is MPIBench [1,2], which

has several important improvements over the existing benchmark software and provides

 6

additional results such as distributions of communication times and communication times

for different processors, that can reveal more details of communication performance.

1.3 Research Rationale

Although most of the existing MPI benchmark software is widely used, Grove

[8,9] pointed out that all of these benchmarks have one or more of four main inadequa-

cies. Firstly, they use relatively coarse grained clocks for measuring the communication

time, so they will only give average results over a high number of repetitions for the

communication routines being measured. Secondly, the timing for the benchmarks does

not use a clock that is synchronized across all processors, which means that measure-

ments of point-to-point communication use a ping-pong test to measure the total round-

trip time for two send_recv messages, rather than a single send_recv message, and results

for collective communications cannot be given for different processes, only for the slow-

est process. Thirdly, the collective communication measurement is taken using a ping-

pong measurement between two processors, which cannot show the effects of contention

and non-uniform communication times that can occur when multiple processors are used.

Finally, previous benchmarks were not designed for clusters of SMPs, so users have to be

careful to ensure that the communication they are measuring is done between nodes, not

between processors within a node.

There has been no detailed comparison of MPIBench with existing MPI bench-

marks, and no study has previously been done comparing the techniques used and the re-

sults obtained for all of the different MPI benchmarks. Thus, the current research has

compared MPIBench to the other existing MPI benchmark software. Consequently, from

the results of the comparisons of the results and functionality of the different MPI

benchmarks, improvements and changes have been made to MPIBench.

Grove developed MPIBench [1,2] to overcome these limitations of existing MPI

benchmarks. He showed that it was a very useful tool in analyzing the performance of

different MPI implementations on different parallel computer architectures, and success-

fully used it to identify performance problems in three different MPI libraries [1]. How-

ever his research was mainly focussed on using the distributions of communication times

 7

that MPIBench provides in order to provide more accurate modeling and estimation of

parallel program performance than can be obtained using average times for MPI commu-

nication routines. One of the main motivations for the research presented in this thesis is

to extend Grove’s initial work by making improvements to MPIBench and applying it

more widely to investigate MPI performance on a variety of different parallel computer

architectures, communications networks, and MPI implementations. The aim is to gain a

better understanding of the capabilities and advantages of MPIBench for the analysis of

MPI performance as well as potentially identifying and analyzing performance issues

with different parallel computers and MPI libraries.

Grove used MPIBench to measure the performance of a few distributed memory

parallel computers [8]. He found there were several problems in performance for MPICH

on commodity Beowulf-type clusters using Fast Ethernet and TCP/IP, due to the proto-

col, network congestion and other problems related to the operating system and MPI im-

plementation [8, 9]. However, there was no further work to investigate possible solutions

to the loss of performance. Grove also measured the MPI performance of networks de-

signed for parallel computers, using MPIBench on a Sun cluster using Myrinet and a

DEC/Compaq/HP Alphaserver cluster using Quadrics QsNet, with both clusters having

quad-processor SMP nodes. One particular objective of this thesis was to do a detailed

analysis of the MPI performance of Ethernet in cluster computers and to try to find ideas

for improving its performance. In order to achieve the objective, this thesis will use

MPIBench to compare the performance between Ethernet with TCP/IP and Myrinet with

GM using the same cluster. Grove found some interesting results when comparing

Ethernet and Myrinet networks, particularly to do with TCP/IP and retransmit timeouts,

however these measurements were done on two different machines. Using the same clus-

ter would provide a much better comparison. Also, since Grove’s work was done, new

versions of MPICH have been released that provide significant improvements in the im-

plementation of most of the collective communication routines [11].

The main purpose of this comparison is to obtain insight into the problems that occur in

the Ethernet network, particularly for TCP/IP, and the MPI implementation, which in the

case of MPICH is designed for parallel computers with a high-speed communications

network and low latency communication protocol. The outcomes from the analysis may

provide ideas on how to improve the communication performance for commodity cluster

 8

computers with Ethernet networks and TCP/IP. Therefore, the proposed research will

seek an answer to what circumstances TCP/IP and MPICH cause a problem, why it hap-

pens, and how to solve the problem or to improve performance.

Previous work on improving communication performance for Beowulf clusters has

focused more on designing or using new protocols such as VIA or GAMMA to replace

TCP/IP on Ethernet networks and developing new implementations of MPI to use these

protocols. These approaches have merit but so far they have had very little uptake. This is

probably because a new protocol will require a lot of effort to develop new software to

make it compatible with the commodity cluster computer, for example new drivers for

the many different types of Ethernet cards and operating systems, and new MPI libraries.

It would be useful if some of the problems of TCP/IP and MPICH could be fixed and the

MPI performance of commodity clusters with Ethernet networks could be improved.

Another aim of this thesis is to analyze the MPI performance of a large shared mem-

ory machine and compare it to a distributed memory cluster with a fast communications

network. Large shared memory machines such as the SGI Altix offer the potential for

very good MPI performance compared to a cluster with a high-speed communication

network, although they are significantly more expensive, However, little work has been

done comparing MPI performance on large shared memory machines with distributed

memory clusters. In 2004 the Australian national computing facility migrated from a

large AlphaServer SC with Quadrics QsNet network, which was one of the fastest dis-

tributed memory communications networks at the time, to a large shared memory SGI

Altix. This offered a good opportunity to compare MPI performance on these two ma-

chines, which was of particular interest to the users of these machines and also of more

general interest in terms of comparing MPI performance between large shared memory

and distributed memory machines.

1.4 Research Aims and Overview

 Fundamentally the aims of the study were as follows:

1. To compare MPIBench with the other existing MPI benchmark software. The

comparison will test the scalability, functionality and usability of MPIBench

compared with the existing benchmark software.

 9

2. Based on the comparison results, improvements and changes can be done to

MPIBench.

3. To analyze the performance between Myrinet with GM and Ethernet with TCP/IP

on a high performance cluster computer. Results obtained from the test will be

analyzed and may provide ideas on how to upgrade the communication

performance for Ethernet network in a commodity cluster.

4. Based on the results of the comparison of different cluster interconnects,

investigate possible approaches to improving communications performance,

particularly for Ethernet networks.

5. MPI performance evaluation of a large shared memory machine. SGI Altix 3000,

and comparison with a high-end cluster with a fast communications network.

An overview of the work that was done in this thesis to fulfill these aims is given below.

1.4.1 Comparison of Different Benchmark Software

There are several benchmark programs that have been developed to measure the

performance of MPI on parallel computers. Each of the MPI benchmark programs has its

own specialty. However, there have been few comparisons done between the different

benchmarks, and no detailed, comprehensive analysis and comparison of the functional-

ity, measurement techniques and results produced by all the different benchmarks. Fur-

thermore, the MPI benchmark programs were primarily designed for, and have mostly

been used on, distributed memory machines. However it is interesting to measure MPI

performance on shared memory machines such as the SGI Altix, which has become a

popular system for high-performance computing. The hierarchical non-uniform memory

architecture (NUMA) that is typical of large shared memory machines means that analy-

sis of the performance of shared memory machines is likely to be more complex than dis-

tributed memory machines, which are typically clusters with fairly uniform communica-

tions architecture.

 10

Thus, this study provides a comparison of techniques used and functionality of

each benchmark, and also a comparison of the results on a distributed memory machine

and a shared memory machine. All of the most commonly used MPI benchmarks will be

compared in this analysis.

1.4.2 Improvements to MPIBench

One of the objectives of the comparison analysis between MPI benchmarks was to

identify any weaknesses of MPIBench compared to other MPI benchmarks and to use

this information to make improvements to MPIBench. MPIBench has been tested on the

SGI Altix (which uses a CC-NUMA architecture) and distributed memory architecture

with two different types of interconnect, Myrinet and Ethernet. Many tests were done,

which has helped to identify problems in installing and running MPIBench and to make it

more portable and robust. The new version of MPIBench is available online at [2].

The analysis from the MPI benchmark comparisons revealed several disadvan-

tages in MPIBench and also in the course of doing the work presented in this thesis some

additional useful tools have been added to MPIBench and a number of bugs and problems

have been spotted and fixed. One of the issues that has been addressed is regarding the

cache effect, whether the cache should be used or not during taking of measurements.

The procedure of compiling and running the program has also been improved by adopt-

ing the approach of most of the other MPI benchmarks, by providing a default option for

running the benchmark programs using defaults for configurable parameters such as the

range of message sizes for each communication routine. Several new settings have also

been included (with default options), including the ability to choose MPI_Wtime instead

of the globally synchronized clock provided by MPIBench,

1.4.3 Performance Analysis and Investigation of Communication Performance on

Different Communication Networks

Most modern parallel computers are clusters using Myrinet or Ethernet communi-

cation networks. Several studies have been published comparing the performance of these

two networks for parallel computing, however these focus on average performance, and

 11

do not address the distributions of communication times, which can have long tails due to

contention effects. In the case of Ethernet with TCP, retransmit timeouts (RTOs) can also

occur. Slow communication events may have significant impact, particularly for applica-

tions requiring frequent synchronization, where the performance is determined by the

slowest process. This study used MPIBench to analyse the distributions of communica-

tion times for standard MPI routines on Ethernet with TCP and Myrinet with GM com-

munications networks on the same cluster, and study the scalability of the distributions as

the number of communicating processes is increased, and the effect of RTOs for Ethernet

with TCP. One of the goals of this work was to investigate in more detail the effect of

these RTOs on Ethernet performance, and how much could be gained from reducing the

effects of RTOs.

This study provides a comparison of the performance of MPI communications for

Myrinet with GM and Fast Ethernet with TCP networks on the same cluster. Measure-

ments were done for both point-to-point and collective communications for up to 200

CPUs (100 dual CPU nodes), which allows in depth analysis on the scalability of the two

networks to large numbers of processors.

1.4.4 Analysis of Algorithm Selection for Optimizing Collective Communication

with MPICH for Ethernet and Myrinet Networks

 This study was motivated by some strange results for certain collective communi-

cation routines in the performance analysis outlined in section 1.4.3. In some cases, larger

message sizes were giving smaller communication times. So, more work was done on

analyzing MPICH in order to understand the results.

MPICH is one of the main implementations of the MPI standard. Recent versions

of MPICH combine the best algorithms known for each MPI collective communication,

and those multiple algorithms are differentiated based on message sizes. The message

sizes mainly divide into two, the short-message algorithms aim to minimize latency,

while the long-message algorithms aim to minimize the bandwidth. Currently, the mes-

sage sizes where the algorithm changes in MPICH are the experimentally determined

change-over points based on the work of Thakur et al. [11], which used an IBM SP and a

 12

Linux cluster machine connected with Myrinet, both with one processor per node. In the

paper, they acknowledged having a plan to determine automatically the algorithm

change-over points based on system parameters, since the optimum change-over point

probably will be different for parallel computers with different architectures, and particu-

larly with different networks. However, the MPICH source code shows that the message

sizes where the algorithm is changed are still defined as constants and hard coded.

The aim of this study is to investigate the feasibility of using MPI benchmarks to

provide an automated process for selecting the optimal choice of collective communica-

tion algorithms for a particular parallel computer and communication network, and to see

if this approach is worthwhile by comparing the performance of the optimized MPICH

implementation with the current MPICH implementation where the algorithm selection is

hard coded. So, this study measured performance over a range of message sizes for all of

the different algorithms for all of the most common use collective communication rou-

tines in MPICH that use multiple algorithms.

Measurements were done on a cluster of dual processor machines using two dif-

ferent networks, Myrinet with GM and Ethernet with TCP. In order to compare the dif-

ferent algorithms for all message sizes, the MPICH code was modified so that the

change-over points could be modified. For each collective communication routine, an

MPI benchmark such as MPIBench can be run to measure the performance for each pos-

sible algorithm, by varying the change-over parameters to ensure that only a single algo-

rithm is used for each benchmark run. Then the benchmark results for all the different

algorithms for a particular collective communication routine can be compared and the

optimal change-over points for that particular parallel computer can be determined.

1.4.5 Performance Evaluation on ccNUMA Shared Memory Machine SGI Altix

3000

The SGI Altix [70,27] is a cache coherent, non-uniform memory architecture

(ccNUMA) shared memory multiprocessor system that is a popular machine for high-

performance computing, with several large systems now installed, including the 10,160

processor Columbia machine at NASA. In Australia, a 1680 processor Altix (the APAC

AC) has recently replaced an ageing AlphaServer SC [72] with a Quadrics network [20]

 13

(the APAC SC) as the new peak national facility of the Australian Partnership for Ad-

vanced Computing (APAC) [84], and was number 26 in the June 2005 list of the Top 500

supercomputers [91]. There are several other Altix machines at APAC partner sites, in-

cluding two systems with 160 processors and another with 208 processors.

Most parallel programs used for scientific applications on high-performance com-

puters are written using the Message Passing Interface (MPI), so the performance of MPI

message passing routines on a parallel supercomputer is very important. Shared memory

machines such as the Altix typically have very high-speed data transfer between proces-

sors, however this will only translate into good MPI performance if the MPI library can

efficiently translate the distributed memory, message-passing model of MPI onto shared

memory hardware. It is therefore of interest to measure the performance of MPI routines

on a shared memory machines such as SGI Altix, and to compare it with a distributed

memory supercomputer with a high-end communications network. This study will pro-

vide results for MPI performance on the SGI Altix, and comparisons with similar meas-

urements on the AlphaServer SC with a Quadrics network.

1.5 Thesis Outline

This section will explain the organization of this thesis. Chapter 2 presents a basic in-

troduction to parallel architectures, parallel programming and interconnects. The idea of

this chapter is to briefly give the required information on parallel computing. Next, Chap-

ter 3 discusses the MPI benchmark comparison on both distributed memory and shared

memory ccNUMA architecture machines. Chapter 4 discusses the improvements to

MPIBench that have been made, mainly based on the comparison results from Chapter 3.

The performance comparison between Ethernet and Myrinet is described in Chapter 5.

Chapter 6 investigates how MPICH performance can be improved by analysis of the

threshold points changing between different algorithms for collective communication

routines, with results for Myrinet and Ethernet networks. Chapter 7 presents the results of

the performance evaluation for the a ccNUMA shared memory machine, the SGI Altix

3000, and comparison with a high-end distributed memory machine. Finally, Chapter 8

will conclude the thesis and discuss future work that could be done.

 14

CHAPTER 2

Parallel Computing

Fundamentally, the concept of parallel computing is to have more than one proc-

essor in the same computer. The use of multiple processors in the same computer system

introduces some additional requirements on the architecture, software and hardware of

the computer. This chapter will explain relevant issues related to parallel computers, par-

allel programming, interprocessor communication and the evaluation of communication

performance.

2.1 Parallel Computers

 The taxonomy of Flynn [109] has classified computers into four categories. The

classification is based on the way instructions are manipulated and the flow of the data

streams. Single Instruction Single Data (SISD) is a conventional system that contains one

CPU and the parallelism is incorporated at the level of the arithmetic operations in the

central processing unit, for example vector pipeline machines. Single Instruction Multiple

Data (SIMD) is where each instruction may operate on more than one data element si-

multaneously. Most SIMD machines comprise very large numbers of custom processors,

which is often called massively parallel processing (MPP). The connectivity between

processors depends on the actual machine but it is usually very tight so that there is rapid

interchange of data between neighboring processors. The array and pipelined computers

are examples of this type [109].

 Multiple Instruction Single Data (MISD) theoretically has multiple instructions

for single stream of data, however this type of machine has not yet has been constructed.

Finally, Multiple Instruction Multiple Data (MIMD) machines can execute different in-

struction streams in parallel on different data. Interconnection of these machines is much

looser than in SIMD architecture.

 15

SIMD and MIMD machines are the two main classes of parallel computers. On

SIMD machines, the same task, usually of small granularity, is executed simultaneously

on different data, while for the MIMD machines, different tasks can be executed concur-

rently on different processors. The distinctive aspect of SIMD execution consists of the

control unit broadcasting a single instruction to all processors, which execute the instruc-

tion in lockstep fashion on local data. The MIMD architecture consists of multiple proc-

essors that can execute independent instruction streams. Thus, MIMD computers support

parallel solutions that require processors to operate in a largely autonomous manner.

Modern supercomputers are virtually all MIMD architecture, so this thesis will focus on

this model of parallel computing.

MIMD parallel computers can be divided into two distinct classes: shared mem-

ory machines, including symmetric multiprocessors (SMPs), and message-passing multi-

processors or multicomputers, including clusters. Shared memory machines have a set of

processing elements and a pool of memory available to all processors. The processors

have access to a large global random access memory of which they have the same view.

Message-passing multiprocessor systems consist of a number of identical processors

where each processor has its own local memory. These systems are also known as local

memory systems, loosely coupled systems or distributed memory systems [160]. Each

processor is provided with a small private random access memory and interconnects. The

processors have no direct access to the memory of other processors, access is only via

message passing between the processors.

There are also parallel computers that combine both technologies, which is be-

coming more common. Most of the largest and fastest computers in the world today make

use of both shared and distributed memory architectures, with SMP nodes (usually with

multi-core processors) connected by a message-passing communications network.

Parallel applications in turn can be classified as a fine-grained or coarse-grained

depending on the frequency of communication between various processing nodes [160,

162, 163]. The fine-grained parallel applications involve relatively small amounts of

computational work between communication events, while the coarse-grained involve

relatively large amounts of computational work between communication events [162,

163]. More detailed discussion on parallel applications and programming is in Section

2.3, while Section 2.1 and Section 2.2 provide more detail on parallel architectures.

 16

2.1.1 Shared Memory MIMD Systems

 All modern computer systems have cache memory, high-speed memory closely

attached to each processor for holding recently referenced data and code. Such cache

memory is used because the speed at which a processor can make references to memory

locations greatly exceeds the time that main memory requires to respond. A higher-speed,

but smaller, cache memory can be matched more closely to the speed of the processor.

Systems may even have more than one level of cache memory; a small first-level cache

connecting the processor and a larger second-level cache between the first-level cache

and the main memory. Programs consist of executable instructions (code) and associated

data. It is current practice that executable instructions are not altered when the program is

executed, the CPU just reads and executes the instructions. In contrast, the data may be

read and altered by different processors [28].

This may cause significant complexities to the system design with a cache and af-

fect the performance. When a processor first references a main memory location, a copy

of its content is transferred to the cache memory associated with the processor. Suppose

the information being brought into the cache is data. When the processor subsequently

references the data, it accesses the cache for it in the first instance. If another processor

references the same main memory location, a copy of data is transferred to the cache as-

sociated with that processor, thus creating more than one copy of the data. This is not a

problem until a processor alters its cached copy, which writes a new data. Here the cache

coherence protocol is needed to ensure that subsequently processors obtain the newly al-

tered data when they reference the data. Cache coherence protocols use either an update

policy or an invalidate policy. In the update policy, copies of data in all caches are up-

dated at the same time one copy is altered. In the invalidate policy, when one copy of

data is altered, the same data in any other cache is invalidated, this is more common tech-

nique used in modern computers. These copies are only updated when the associated

processor makes reference to it [28].

Shared memory systems have multiple CPUs, all of which share the same address

space. This means that information on where data is stored is of no concern to the user as

 17

there is only one memory accessed by all CPUs on an equal basis. Shared memory ma-

chines can be divided into UMA and NUMA, which are the two main classes based on

memory access times. The Uniform Memory Access (UMA) is most commonly repre-

sented by Symmetric Multiprocessor (SMP) machines, where each processor has equal

access and access times to memory. Sometimes it is called CC-UMA (Cache Coherent

UMA).

Non-Uniform Memory Access (NUMA) is a different approach in which two or

more SMPs with their own local memory are linked by an interconnect that preserves the

shared memory access. However in NUMA, not all processors have equal access time to

all the memory, since access to the local memory within the SMP is faster than memory

access across the interconnect link between the SMPs. If cache coherency is maintained

then this is called CC-NUMA (Cache Coherent NUMA).

The advantages of shared memory computers are that global address space pro-

vides a simpler programming model, and data sharing between tasks is fast. The disad-

vantages are that cache-coherent shared memory machines are expensive compared to

distributed memory machines, and the lack of scalability between memory and CPUs

means that adding more CPUs can geometrically increase traffic on the shared memory-

CPU path, and for cache coherent systems, geometrically increase traffic associated with

cache/memory management [28].

The main problem with shared-memory systems is that of the connection of the

CPUs to each other and to the memory. As more CPUs are added, the collective band-

width to the memory ideally should increase linearly with the number of processors,

while each processor should preferably communicate directly with all others without the

much slower alternative of having to use the memory in an intermediate stage. Unfortu-

nately, full interconnection is quite costly, growing with O(n²) while increasing the num-

ber of processors with O(n). So, various alternatives have been tried. Figure 2.1 shows

some of the interconnection structures that have been used.

Referring to Figure 2.1, a crossbar uses n² connections, an Ω-network uses nlog2n

connections while, with the central bus, there is only one connection. This is reflected in

the use of each connection path for the different types of interconnections: for a crossbar

 18

each data path is direct and does not have to be shared with other elements. Crossbar or

multistage is a network in which all input ports are directly connected to all output ports

without interference from messages from other ports. In a one-stage crossbar this has the

effect that for instance all memory modules in a computer system are directly coupled to

all CPUs. This is often the case in multi-CPU vector systems. In multistage crossbar net-

works the output ports of one crossbar module are coupled with the input ports of other

crossbar modules. In this way one is able to build networks that grow with logarithmic

complexity, thus reducing the cost of a large network. In case of the Ω-network there are

log2 n switching stages and as many data items may have to compete for any path. For the

central databus all data has to share the same bus, so n data items may compete at any

time [137, 147].

The bus connection is the least expensive solution, but it has the obvious draw-

back that bus contention may occur thus slowing down the communications. Various in-

tricate strategies have been devised using caches associated with the CPUs to minimise

the bus traffic. This leads however to a more complicated bus structure which raises the

costs. In practice it has proved to be very hard to design buses that are fast enough, espe-

cially where the speed of the processors have been increasing very quickly and it imposes

an upper bound on the number of processors thus connected that in practice appears not

to exceed a number of 10-20. In 1992, a new standard (IEEE P896) for a fast bus to con-

nect either internal system components or to external systems has been defined. This bus,

called the Scalable Coherent Interface (SCI) should provide a point-to-point bandwidth of

200-1,000 Mbyte/s. It is in fact used in the HP Exemplar systems, but also within a clus-

ter of workstations as offered by SCALI. The SCI is much more than a simple bus and it

can act as the hardware network framework for distributed computing [149, 150].

A multi-stage crossbar is a network with a logarithmic complexity and it has a

structure which is situated somewhere in between a bus and a crossbar with respect to

potential capacity and costs. The Ω-network depicted in Figure 2.1 is an example. Com-

mercially available machines like the IBM eServer p575 and the SGI Altix 4000 use such

a network structure [137]. For a large number of processors the nlog2n connections

quickly become more attractive than the n² used in crossbars. Of course, the switches at

the intermediate levels should be sufficiently fast to cope with the bandwidth required.

Obviously, not only the structure but also the width of the links between the processors is

 19

important: a network using 16-bit parallel links will have a bandwidth which is 16 times

higher than a network with the same topology implemented with serial links.

In all present-day multi-processor vector processors crossbars are used. However,

when the number of processors is increased, technological problems might arise. Not

only does it become harder to build a crossbar of sufficient speed for the larger numbers

of processors, the processors increase in speed over time, compounding the problems of

making the speed of the crossbar match that of the bandwidth required by the processors

[137, 147].

Figure 2.1 : Examples of interconnection structures used in shared-memory MIMD sys-
tems [137, 147].

2.1.2 Distributed Memory MIMD Systems

Distributed memory systems vary widely but share a common characteristic, that

they require a communication network to connect the memory of different processors.

Each of the processors have their own local memory and the memory addresses in one

 20

processor do not automatically map to another processor, so there is no concept of global

address space across all processors. Since each processor has its own local memory, it

operates independently and the changes it makes to its local memory have no effect on

the memory of other processors. Hence, the concept of cache coherency does not apply.

When a processor needs access to data in another processor, it is usually the task of the

programmer to explicitly define how and when data is communicated, which is usually

done using the standard Message-Passing Interface (MPI) [28, 53, 137, 147]. Synchroni-

zation between tasks is likewise the programmer's responsibility. The interconnects used

for data transfer vary widely, though it can be as simple as Ethernet.

There are several advantages to the distributed memory architecture. It is more

easily scalable to large numbers of processors. If the number of processors is increased,

then the size of memory increases proportionately. Each processor can rapidly access its

own memory without interference and without the overhead incurred with trying to main-

tain cache coherency. It is also very cost effective since it can use commodity, off-the-

shelf processors and interconnects. However the disadvantages are that the programmer is

responsible for many of the details associated with data communication between proces-

sors. It may be difficult to map existing data structures, based on global memory, to this

memory organization.

Distributed memory computers can also be built from scratch by using mass pro-

duced PCs and workstations or servers. These commodity cluster computers are referred

to by many other names, such as Beowulf clusters, COWs (clusters of workstations), and

NOWs (networks of workstations). They are much cheaper than traditional MPP (mas-

sively parallel processing) supercomputers that used mostly custom components. Refer-

ring to Table 1.1, 81.2% of the supercomputers in the November 2007 list of the Top 500

supercomputers in the world are clusters, up from only 0.20% ten years ago [91].

Figure 2.2 shows some examples of common network topologies for distributed

memory machines, the hypercube and fat tree topology. It shows the hypercube with 2d

nodes where the number of steps to be taken by a message between any two nodes is at

most d. The dimension of the network grows logarithmically with the number of nodes. It

is also possible to simulate any other topology on a hypercube such as tree, ring, 2-D and

3-D. In practice, the exact topology for hypercubes is not as important anymore because

all systems now employ the “wormhole routing” technique. This technique will send a

 21

header message from node i to j, resulting in a direct connection between these nodes. As

soon as the connection is established, all the data are sent through this connection without

disturbing the operation of the intermediate nodes. Another cost effective way to connect

a large number of processors is using a fat tree topology. In theory, a simple tree structure

for a network is sufficient to connect all nodes in a computer system. However, in prac-

tice the congestion occurs at the tree root, since messages have traversed at the higher

levels in the tree structure before being distributed to the target nodes [137, 147]. The fat

tree compensates for this limitation by providing more bandwidth in the higher levels of

the tree.

Hypercube networks used to be common in MPPs, but are rarely used in clusters,

which mostly use switches (or routers) to connect nodes. Ethernet, Myrinet and Infini-

band all have switches that allow many nodes to be connected to the ports on each

switch. The switches need to be connected to each other in some topology, which is usu-

ally some variant of a fat tree. This thesis will focus mostly on distributed memory sys-

tems using fat tree topology.

NOTE: This figure is included on page 22 of the print copy of the

thesis held in the University of Adelaide Library.

Figure 2.2 : Examples of common networks for Distributed Memory machine [147].

2.1.3 Distributed Memory System with SMP Nodes

Small SMP servers with 2 or 4 processors have been used in clusters for several

years now. Increasing cache sizes, memory bandwidth and bus speeds have meant that

clusters with SMP nodes have become more popular over the past few years. The recent

development of commodity multi-core processors from Intel and AMD has only increased

this trend, and the largest and fastest supercomputers in the world today are mostly clusters

with SMP nodes, that employ both shared and distributed memory archi-

22

 23

tectures. The availability of quad core processors means that new clusters often have 8

and 16 CPUs per node, and the number of CPUs per node is likely to increase in future.

The common programming approach used for this type of machine is message

passing. The shared memory component is usually a cache coherent SMP machine, so

that the processors on a given SMP can address that machine's memory as global. The

distributed memory component is the networking of multiple SMPs. SMPs know only

about their own memory - not the memory on another SMP. Therefore, message passing

network communications are required to move data from one SMP to another. Current

trends indicate that this type of memory architecture will continue to prevail and increase

at the high end of computing for the foreseeable future. There are some issues with mes-

sage passing using this type of architecture, in particular that there may be communica-

tion bottlenecks since all CPUs on a node typically share a single network interface card

(NIC). Also, commonly used MPI implementations such as MPICH implement collective

communication routines in a way that does not take into account the fast internode com-

munication (via shared memory), slower intranode communication (over the network),

and NIC bottlenecks.

Even large shared memory machines such as the SGI Altix have adopted a similar

architecture, with a NUMA which is basically SMP nodes connected by a very fast net-

work, although in these machines there is additional custom hardware to enable all proc-

essors to share all memory and to ensure cache coherency. Figure 2.3 shows a cluster of

four CPUs are connected by crossbar. This thesis will study the performance of a shared

memory machine, the SGI Altix 3000, which has an SMP component (called a C-brick)

consisting of four CPUs which are connected in a hierarchical architecture, with C-bricks

grouped together with a router (called an R-Brick) and these connected in turn by a

Metarouter. A further explanation of the SGI Altix 3000 is in Section 3.5.1 and in [22,

70, 124].

NOTE: This figure is included on page 24 of the print copy of the

thesis held in the University of Adelaide Library.

Figure 2.3 : Block diagram of a system with a “hybrid" network: clusters of four CPUs are
connected by a crossbar [147].

2.2 Cluster Computer Interconnect

In the early days of clusters, Fast Ethernet was widely used as an interconnect since

it was available as an inexpensive, off-the-shelf commodity component [102, 105, 107,

146]. Gigabit Ethernet is a version of Ethernet technology that offers one Gigabit per

second (1 Gbps) raw bandwidth, which has 10 times higher bandwidth than Fast Ethernet

and now available as a commodity, although the latency is similar, particularly when using

TCP/IP. 10 Gbps Ethernet is becoming available and is likely to be an important future

technology for cluster networks and expected to become commodity within a few years. 10

gigabit Ethernet is still an emerging technology, and it remains to be seen whether it can be

used effectively with low-latency communications protocols and can scale well with lots of

nodes, and how long it will take to reduce to a commodity price similar to Gigabit Ethernet.

The invention of lower latency and higher bandwidth interconnects gave more

alternatives for cluster computers. Some networks developed by supercomputer vendors

were proprietary and used only in the particular vendor’s computers. However, several

network technologies aimed at parallel computing were developed which use a standard

24

 25

PCI interface and hence could be used for any cluster computer. These include Myrinet,

Giganet, SCI and Quadrics [6, 110, 145, 150]

Myrinet was developed by Myricom [71] based on communication and packet-

switching technology originally designed for massive parallel processors (MPPs). It was

the most popular high-end interconnect used to build clusters for several years, but has

declined in popularity over the last couple years. Apart from the high bandwidth of over

1000 Mbps, the main advantage is that it is entirely operated in user space, thus avoiding

operating system interference and the delays that come with it. It can also use the light-

weight communications protocol called GM which has been designed for parallel com-

puting, rather than the much more heavyweight TCP/IP. These two innovations mean that

Myrinet has a low message passing latency of around 10 microseconds, ten times better

than TCP/IP over Ethernet. Recently, Myricom supplies Myrinet components and soft-

ware in two series: Myrinet-2000 and Myri-10G. Myrinet-2000 (which is used for this

thesis) is a superior alternative to Gigabit Ethernet for clusters, whereas Myri-10G offers

performance and cost advantages over 10-Gigabit Ethernet, while still supporting 10G

Ethernet standards.. Myri-10G uses Myrinet Express (MX) protocols and software to

provide lower latency and higher performance than 10G Ethernet, in a similar way to GM

in Myrinet 2000. Myricom provides MPICH-MX, an MPI library for Myri-10G. The per-

formance for Myrinet 2000 with one-port NIC is 10 microseconds latency and approxi-

mately 230Mbytes/s for the bandwidth. The emergence of Myri-10G with the latency of

2.1 microseconds and 1215Mbytes/s (MX or MPI unidirectional rate) significantly im-

proves the performance of Myrinet [71, 137]. The use of Myrinet’s lightweight MX pro-

tocol over 10G Ethernet has a great potential in providing very high bandwidth and low

latency at commodity prices. Refer to [166] which shows that Myri-10G (1.2Gbytes/s)

produce a higher bandwidth compared to Quadrics (0.9Gbytes/s) and almost similar

bandwidth with Infiniband (1.3Gbytes/s), while for latency Myri-10G (2.1µs) is lower

than Quadrics (2.7µs) and Infiniband (4.0µs).

QsNet is a product of Quadrics and like Infiniband and Myrinet the network has

effectively two parts: the ELAN interface cards, comparable to Infiniband Host Bus

Adaptors or Myrinet's Lanai interface cards, and the Elite switch, comparable to an In-

finiband switch/router or a Myrinet switch [137]. Quadrics is the most expensive com-

pared to other interconnects, as shown in Table 1.1Quadrics also offers 10 Gbit Ethernet

 26

cards and switches under the name QSTenG. As yet Quadrics does not seem to consider

developing multi-protocol products like Myricom's Myri-10G and Infiniband [137]. Re-

cently, Quadrics has announced $300 per-port price tag for its 24-Port CX4 10Gbps

Ethernet Switch and also their pricing strategy for its QsTenG-TG201 Switch, the latest

member of the QsTenG family, designed for smaller networks. If compared with the

Quadrics price per port from Table 1.1 it is almost 16 times more expensive compared to

QsTenG. Probably in future Quadrics will abandon their proprietary networks and mov-

ing to 10 Gigabit Ethernet, since it is much cheaper and the performance is greater.

 Recently, Infiniband [144] has entered the high performance computing market.

Unlike Myrinet and QsNet, Infiniband is an industry standard that was developed as a

generic interconnect for inter-process communication and I/O, rather than specifically

designed for parallel computing. The Infiniband Architecture [144] defines a System

Area Network (SAN) for interconnecting servers with remote storage, networking de-

vices and other servers, as well as for use inside servers for interprocessor communica-

tions. The Infiniband standard, which is based on VIA, was designed to eventually re-

place the PCI bus, although with the popularity of the recent PCI-X standard and the de-

velopment of 10 Gbps Ethernet, Infiniband has not yet become as popular (and hence as

cheap) as was originally expected. However, its high performance, low latency and scal-

ability make it very attractive as a communication layer for high performance computing,

and this is the area where Infiniband has become most popular. Currently, Infiniband can

be considered as the main HPC interconnect, since it is fast and relatively cheap. How-

ever, the cost of Infiniband is still over the standard of commodity price, so may not be as

cheap or as fast as 10Gigabit Ethernet in future.

At the time this research work was done we did not have access to machines with

these technologies (Gigabit/10 Gigabit Ethernet, Myri-10G, QSTenG and Infiniband),

and some of them were not available. So, a detail analysis and comparison on the per-

formance of MPI between new networks and cluster with multicore architecture will be

part of our future work.

There has been lots of research comparing the communications performance of

different networks for clusters, Labosco [6] compared the performance between Fast

Ethernet, Giganet and Myrinet. Grove [9] compared the performance between two differ-

ent clusters using Fast Ethernet. Chen [25] compared between Gigabit Ethernet and

 27

Myrinet. A study conducted by groups of researchers from Ohio State University and

Ohio Supercomputer Centre [130] showed that Infiniband network can provide better

performance than Quadrics and Myrinet with the use of the PCI-X bus. Other work such

as [91, 93, 101, 114, 129, 130] either compared clusters using several different networks

or investigated network performance including some analysis with MPI or other mes-

sage-passing protocol.

Interconnect Bandwidth

(MBit/s)
Latency (µs) Cost / port

10 Gbps InfiniBand
Switch [148]

800

7 – 10

$495

QsNet (Quadrics)
[116]

360 5 $4770

Myrinet (Myricom)
[116]

245 8 $2050

Gigabit Ethernet
[116]

125 30 – 100 $477

Fast Ethernet [116] 12 100 $28

Table 2.1 : Comparison for bandwidth, latency and cost between different interconnect
[148, 116].

 2.3 Parallel Programming

Parallel programming involves decomposing an algorithm or data into parts, dis-

tributing the parts as tasks which are worked on by multiple processors simultaneously,

and coordinating the work and communications of those processors. Parallel program-

ming needs to consider the type of parallel architecture being used and the type of inter-

processor communications and synchronization used. There are many methods of pro-

gramming parallel computers, the most common being shared memory, message passing

 28

and data parallel. Shared memory programming relies upon multiple processes or threads

sharing common memory space, whereas message passing programming is a more gen-

eral paradigm in which processes have direct access to local memory and message pass-

ing is used to access the memory of other processes. These models are machine or archi-

tecture independent, any of the models can be implemented on any hardware given ap-

propriate operating system support. Distributed memory machines such as clusters to not

provide shared access to a common memory space, although shared memory program-

ming can be enabled on these machines using a software emulation of shared memory

hardware, however this approach has limited performance and scalability. An effective

implementation of a parallel program will utilize the method that closely matches with

the target hardware and provides the user ease in programming for the particular applica-

tion.

The data parallel model is a high-level parallel programming model in which

processing of all data elements can conceptually be done concurrently by multiple proc-

esses in a SIMD style. The data is distributed across physical processors and on a distrib-

uted memory machine, all message passing is done invisibly to the programmer. Pro-

gramming with data parallel model is accomplished by writing a program with data paral-

lel constructs in a data parallel language such as High Performance Fortran (HPF) [28,

37, 53] and compiling it with a data parallel compiler. The compiler converts the program

into standard code and calls to a message passing library to distribute the data to all the

processes and do all the required inter-processor communication.

Message passing [28, 53, 152, 154] is the parallel programming method that will

be studied in this thesis. The message-passing model is defined as a set of processes using

only local memory and processes communicate only by sending and receiving messages.

For data transfer this will require cooperative operations to be performed by each process

involved in the communication, for example a send operation must have a matching re-

ceive. Programming with message passing is done by linking with and making calls to

libraries which manage the data exchange between processors.

A standard portable message-passing library definition called the Message Pass-

ing Interface (MPI) [53, 69, 81] was developed in 1994 by a group of parallel computer

 29

vendors, software developers, and computer scientists. It is available to both Fortran and

C programs and also available on a wide variety of parallel machines. All parallelism is

explicit, so the programmer is responsible for parallelism of the program and all inter-

process communication, by calling the appropriate MPI library routines. A revised ver-

sion of the MPI standard known as MPI-2 has been released [136]. There are many dif-

ferent implementations of the MPI standard. Some are portable to most parallel com-

puters, for example LAM [42, 132], OpenMPI [37] and MPICH [69, 136]. Some are

specific to particular parallel computers and are often provided by the vendors of those

computers, although they may be based on the portable libraries. MPICH was developed

jointly by Argonne National Laboratory and Mississippi State University and has been

one of the most widely used MPI implementations since the MPI standard was first de-

veloped. Recently, MPICH released a new version, MPICH2, which supports MPI-2 and

uses a new more extensible software architecture to more easily handle different kinds of

networks and protocols.

2.4 MPI Benchmark Software

There are several existing MPI benchmark software packages that are widely used

to measure the MPI message-passing performance of parallel computers. The most com-

monly used are Pallas MPI Benchmarks (PMB) [65] (now known as Intel MPI Bench-

marks), MPBench [19], SKaMPI [21], Mpptest [17] and MPIBench [1,2], which is the

most recently developed MPI benchmark. All of these benchmarks have similar basic

functionality, providing average completion times for the most commonly used MPI

communication routines, however the techniques used and the routines measured vary

somewhat between the different benchmarks.

The main reason that MPIBench was developed is that previous MPI benchmarks

have a number of limitations. Firstly, the use of relatively coarse grained clocks for tim-

ing measurements, which forces the benchmarks to average results over a high number of

test repetitions. This means that the earlier benchmarks cannot generate distributions that

show the variability in completion times that occur due to network contention and other

effects, which may have a large effect on program performance. Secondly, the earlier

 30

benchmarks are not based on using an accurate, globally synchronized clock on each

processor. This means measurements of point-to-point communication have to measure

the round-trip time of a ping-pong communication rather than an individual send and re-

ceive, and measurements of collective communications can only give the average time

for the slowest process, not the times for all the individual processes, which can provide a

lot more insight into performance issues. Thirdly, point-to-point communication is only

done between two processors, which does not give any insight into the effects of the net-

work hierarchy and contention for large numbers of processors. Finally, none of the

communication patterns used in the earlier benchmarks were design to take into account

clusters of SMPs. The main issue on this matter is that if care is not taken with process

placement, it can lead to the measurement of intra-node communication performance

when usually the intention is to measure inter-node communication performance.

MPIBench used new measurement techniques to overcome these problems. It

provides a very accurate clock that uses the 64-bit cycle count registers that are available

on modern processors. Before and after each measurement phase, MPIBench does a

synchronization of the clocks on each process, including interpolation to take into

account the clock drift during the time period of the measurements. The use of an

accurate, globally synchronized clock means that MPIBench can do accurate timings of

individual messages and collective communications and provide completion times for

individual processes. It can also provide distributions (histograms) of communication

times for MPI routines, with the option of increasing the number of repetitions in order to

generate more accurate distributions. MPIBench also allows point-to-point

communications to be measured using many processors communicating simultaneously,

and ensures that the communication partners are on different nodes in the case of SMP

clusters.

2.5 Performance Analysis with MPIBench

Grove [8] used MPIBench to measure the performance of a number of large

message-passing parallel computers. The machines involved in the tests were:

 31

• Two different Beowulf clusters of Linux PCs, each with two Intel processors

per node, connected by Fast Ethernet, with different switches and network

topologies;

• A Sun Technical Compute Farm with four SPARC processors per node,

connected with Myrinet;

• A Compaq AlphaServer SC with four Alpha processors per node, connected

with Quadrics’ QsNet.

In each case, some performance problems were identified in the MPI

implementation. Grove’s work demonstrated that MPIBench is a useful tool for analyzing

MPI communication performance, particularly due to its ability to generate distributions

of communication times, which allows more detailed investigation of the causes and

effects of contention and variability in communication times.

The main problems identified in the performance analysis were in the Beowulf PC

clusters and were primarily due to TCP/IP timeouts and congestion control. There were

also problems with the MPI implementation and network congestion for the PC clusters,

and to a lesser extent for the other clusters. The measured distributions of communication

times showed some unusual results, including some distributions with long tails and

outliers with very long communication times. These can result in large delays in

message-passing parallel computing, especially when it involves a large number of

processors.

In contrast, for Myrinet and QsNet only a small numbers of outlier were observed.

This is because Myrinet and QsNet hardware and protocols are highly-tuned to provide

good message-passing performance. However there were some problems identified in the

implementation of some of the routines, and some bottlenecks due to shared access to the

NIC for all the processors on the node. Operating system interrupts were another possible

cause for the observed variation of communication times.

One of the problems identified was with MPI_Alltoall, which gave very poor

performance for large message sizes and large numbers of processors on the Beowulf

clusters. The cause of the problem was identified as an unnecessary bottleneck in the

implementation that caused particular problems when using Ethernet networks, due to

 32

packet collisions and subsequent resends. A proposed fix to the problem was

incorporated into later versions of MPICH.

2.6 Variation of Communication Performance

There has been some research investigating the variation and degradation of mes-

sage-passing communication times in clusters. Mraz [117] observed performance varia-

tion in point-to-point communication in the IBM SP1 and determined that the variation

was caused by several factors such as daemons and interruptions from other system ac-

tivities. He noted that since these operating system interrupts were not synchronized

across all the nodes in the parallel computer, their effect on a parallel program would in-

crease with the number of nodes. He proposed multiple techniques to reduce the variance

but these required control of interrupts at different levels, process execution priorities and

time synchronization during run time. Schaubschlager [118] also recorded a large number

of slow message-passing times on nCube-2 and Origin 2000 hardware. This slow mes-

sage-passing is worse when it involves heavy network load which leads to contention ef-

fects. More recent work by Petrini et al. [15] succeeded in improving the performance of

an AlphaServer system known as ASCI Q, which was the second fastest supercomputer

in the world at the time. Their research found that ASCI Q did not perform as expected

due to interference caused by several types of daemons run by the operating system and

the cluster management and queueing system. Their solution was to confine daemons to

the cluster manager, and remove the cluster manager and RMS cluster monitor from each

cluster’s compute pool. In conclusion, they found that the main cause of the discrepancy

is because of the combination of tasks for system activities and applications in a same

processor, separation of these activities is a good solution to eliminate the problems.

Based on the research cited above, there are several reasons for loss of perform-

ance in message-passing multicomputers, for example, interruptions from the operating

system, interruptions at process level, the scheduling technique and the MPI implementa-

tion. Based on Grove’s analysis [8,9], the main reasons for problems in clusters using

Ethernet is because of the use of TCP/IP, which provides a general purpose communica-

tion protocol with time outs and congestion control mechanisms that are not tuned for

 33

message-passing in parallel programs. Cozzini [119] showed that MPICH using the GM

protocol on Myrinet gives much better performance than Fast Ethernet, but using TCP/IP

over Myrinet gives a similarly high latency to Ethernet. The communication problems

that Grove found in PC clusters using Ethernet might be reduced with the use of new,

low-latency communication protocols or modifying the TCP/IP protocol, and improved

MPI implementations that are better optimized for commodity Ethernet networks.

2.7 Improving the Communication Performance of Cluster Computers

Cluster computers have revolutionized supercomputing. Connecting inexpensive,

commodity servers with fast, off-the-shelf networks is much cheaper than the custom-

built MPPs that dominated supercomputing in the 1980s and 90s. However as was seen in

the previous sections, inexpensive commodity Ethernet networks do not provide good

communications performance, while the high-performance networks that are designed for

parallel computing are relatively expensive. The challenge for cluster computing is to de-

velop an inexpensive commodity network that provides low latency and high bandwidth

communication for parallel computing. There have been several different approaches to

this problem.

Active Messages [45] was one of the earlier efforts to improve the performance

for communication in multiprocessor systems. Active Messages is an asynchronous

communication mechanism intended to expose the full hardware flexibility and perform-

ance of modern interconnection networks. Active messages were aimed at reducing the

communication overhead and allowing communication to overlap computation. The ad-

vantage of Active Messages over other communication paradigms is that it eliminates the

need of intermediate copies of messages along the communication path, thus speeding up

communications. Many researchers have applied the Active Message approach and idea

to develop a new protocol or hardware (compatible with Active Messages) that can im-

prove the performance of communication for multiprocessor, for example Fast Messages,

U-Net, VIA and GAMMA.

The U-Net architecture [43] aims to remove the operating system kernel from the

critical path of sending and receiving messages. These activities will eliminate the system

 34

call overhead, and more importantly, offers the opportunity to streamline the buffer man-

agement, which can now be performed at user-level. Eliminating the kernel from the send

and receive path required some form of a message multiplexing and demultiplexing de-

vice. However, U-net took a radical approach by removing all protocol-based communi-

cation abstractions from the Operating System Kernel, and due to this U-Net has several

weaknesses. This is supported by Chiola and Ciaccio [40], who compared the perform-

ance of U-Net to their new approach, which is GAMMA, an extension layer in the com-

munication layer for Linux. They found that the level of a virtualization is very low and

also the usability of U-Net for parallel programming is quite poor.

Chiola and Ciaccio [38,39,115] have developed Genoa Active Message Machine

(GAMMA), which is an efficient communication layer for Linux PC clusters using

Ethernet. It is based on Active Ports, a communication mechanism derived from Active

Messages [39]. GAMMA Active Ports deliver excellent communication performance at

user level, thus enabling cost-effective cluster computing on Ethernet. It was initially

developed for Fast Ethernet, but has since been upgraded to support Gigabit Ethernet, and

a new driver developed for a Gigabit Ethernet adapter [115]. Moreover, they have applied

the Abstract Device Interface (ADI) [38] of MPICH, so that all MPI calls are imple-

mented in terms of ADI functions. Therefore, porting the ADI layer to GAMMA means

running the whole of MPICH on top GAMMA. GAMMA provides excellent latency that

is comparable to Myrinet, the latency and bandwidth for GAMMA with Fast Ethernet

network is 12.7 us and 12.2 Mbytes.

VIA or Virtual Interface Architecture [33, 111] was proposed as a standard com-

munication infrastructure for System Area Networks (SANs) that provides protected,

zero-copy user-space inter-process communication. VIA defines a mechanism that by-

passes the intervention of the operating system layers and avoid excess data copying dur-

ing sending and receiving of packets, which solves the problems of many multiple mem-

ory copies and use of the operating system for receiving and transmission of packets. It

also reduces latency and lowers the impact on bandwidth. Since the introduction of VIA,

several software and hardware implementations of VIA have become available, for ex-

ample Giganet VIA and Servernet VIA. MVICH [42,44,113] is an MPICH-based imple-

mentation of MPI for VIA. However, studies of MVICH [42,44] found several weak-

 35

nesses, and it has never been widely used. In fact VIA has not become a widely-used in-

dustry standard for SANs as expected, and has been superceded by Infiniband [122,130],

which is based on VIA, and by the popularity of the PCI-X bus [76].

BIP [36] is the abbreviation for Basic Interface for Parallelism, an interface for

network communication targeted towards message-passing parallel computing. The idea

in BIP was to provide protocols with low level functionalities. The functionalities of BIP

is similar to MPI. The basic idea of BIP is to build a library interface accessible from ap-

plications that will implement a high-speed protocol with the fewest accesses to the sys-

tem kernel. However, to implement BIP for UNIX needs an IP-BIP driver. BIP also has a

problem with flow control, since it relies on the hardware flow-control [36].

Based on this literature review, previous research in this area has been more fo-

cused on designing new hardware, protocols and software to overcome the limitations of

commodity Ethernet networks and TCP/IP for parallel computing. However, these ap-

proaches require significant investment of effort, such as designing new protocols, soft-

ware to support them, new driver software for the wide variety of Ethernet hardware and

also new MPI libraries. For examples, GAMMA has released a new driver to support Gi-

gabit Ethernet, but it only works for a particular Ethernet card [115]. The use of VIA re-

quired a new MPI implementation (MVICH), and in order to optimize performance, spe-

cial hardware for VIA was designed, such as Servenet VIA and Giganet VIA. It would

perhaps be easier and more cost effective to modify TCP/IP and MPICH to improve their

performance for parallel computing on Ethernet clusters.

Some of the features of TCP/IP are unsuitable for new applications such as mo-

bile computing, storage area networks and parallel computing. There has been much re-

cent interest in modifying TCP/IP to make it more flexible, so that different algorithms

for handling congestion and packet loss can be applied in different situations, and more

dynamically responsive to changes in network conditions. For example, Pope et al. [14]

have introduced a modified stack model, the “Embedded Inverted Stack” (EIS), which is

an instantiation of the generic Compliant System Architecture [41]. Their aim is to pro-

vide flexible TCP/IP and they proposed the argument for separation of policy and

mechanism, and examined what policies are suitable for TCP/IP stacks, which depends

on the types of communication. Currently, their focus is in mobile networking and they

have identified the policies and mechanisms needed to support a high level of adaptivity

 36

for mobile network devices and applications, however they have also explored the suit-

ability of this model to parallel computing. Future work in this area may have significant

implications for cluster computing.

 37

Chapter 3

Comparison of MPI Benchmark Programs on Shared Memory and

Distributed Memory Machines

3.1 Introduction

Several benchmark programs have been developed to measure the performance of

MPI on parallel computers, such as SKaMPI [21], Pallas MPI Benchmark [65], MPBench

[19], Mpptest [17] and MPIBench [1, 2]. Each of the MPI benchmark programs has its

own speciality, since the development of new software is usually because of some limita-

tion or inadequacy of the existing software. However, there have been few comparisons

done between the different benchmarks, and no detailed, comprehensive analysis and

comparison of the functionality, measurement techniques and results produced by all the

different benchmarks.

Furthermore, the MPI benchmark programs were primarily designed for, and have

mostly been used on, distributed memory machines. However it is interesting to measure

MPI performance on shared memory machines such as the SGI Altix, which has become

a popular system for high-performance computing. The SGI Altix [70,27] is a cache co-

herent, non-uniform memory architecture (ccNUMA) shared memory multiprocessor sys-

tem that is a popular machine for high-performance computing, with several large sys-

tems now installed, including the 10,160 processor Columbia machine at NASA. In Aus-

tralia, a 1680 processor Altix (the APAC AC) has recently replaced an ageing Al-

phaServer SC with a Quadrics network (the APAC SC) as the new peak national facility

of the Australian Partnership for Advanced Computing (APAC) [84], and was number 26

in the June 2005 list of the Top 500 supercomputers [91]. The hierarchical non-uniform

memory architecture (NUMA) that is typical of large shared memory machines means

that analysis of the performance of shared memory machines is likely to be more com-

 38

plex than distributed memory machines, which are typically clusters with fairly uniform

communications architecture.

Thus, this chapter will discuss a comparison of techniques used and functionality

of each benchmark, and also a comparison of the results on a distributed memory ma-

chine and shared memory machine. All of the MPI benchmarks listed above will be com-

pared in this analysis. It is expected that the results from difference benchmarks should

be similar, however this analysis found substantial differences in the results for certain

MPI communications, particularly for shared memory machines.

3.2 Related Work

There has been surprisingly little work on comparing the results produced by dif-

ferent MPI benchmark programs. The papers describing the different MPI benchmark

programs [1,17,19,21,65] typically provide a discussion of the differences in some of the

measurement techniques used by the different benchmarks, but give little or no results

comparing measurements from the different benchmark programs on different machines.

Mierendorff et al. [23] compare the results of PMB, SKaMPI, MPBench and

Mpptest on an SGI Origin 2000, but only for point-to-point communication and only for

4 CPUs. However they provide useful insights into communication performance issues

related to cache effects on ccNUMA architectures.

Unlike the previous related work, the work presented in this chapter provides a

comparison of the functionality and the measurement techniques for all the main MPI

benchmarks, as well as a detailed, comprehensive comparison of the results produced by

the benchmarks. Results are presented for both a shared memory machine, the SGI Altix

3000 [70], and a distributed memory machine, the IBM eServer 1350 Linux cluster [35],

for more MPI operations and more processes (up to 128), and a more detailed analysis of

the differences in the results between different benchmarks is presented.

3.3 MPI Benchmark Measurement Technique

There are several different MPI benchmark programs that are in common use.

They typically measure the average times to complete a selection of MPI routines for dif-

ferent data sizes on a specified number of processors using the following basic approach:

 39

loop over different MPI routines
 loop over different message sizes

 get start time
 loop over number of repetitions
 if this is a collective communication routine, do a barrier synchronization
 call the MPI routine
 end loop over repetitions

 get finish time
 average time = (finish time - start time) / number of repetitions
 end loop over message sizes

end loop over MPI routines

 Figure 3.1: MPI benchmark measurement technique pseudocode

Most benchmarks use the standard MPI timer MPI_Wtime, and get accurate re-

sults by making lots of repetitions of the measurements. Most benchmarks have a fixed

number of message sizes (at least by default), but some also provide adaptive message

length refinement in order to focus on message sizes where the communication time is

changing rapidly. Some benchmarks also consider error control mechanisms to handle

potentially large variations in communication times that may be caused by external influ-

ences, for example operating system interrupts, or other programs that are also using the

communications network.

Most benchmark programs measure the time for collective communications on the

root process. However, since the root process finishes first for many collective opera-

tions, this can bias the results. This is usually avoided by adding a barrier synchronization

before each collective communication call. This will add some additional time to the re-

sult, but it will be negligible unless the message size is very small.

Most of the benchmarks use ping-pong to measure point-to-point communication

times, where a process will send a message to another process (the ping) and then receive

a message back from the same process (the pong). In this case, only local clock times are

needed, instead of a globally synchronized clock. The benchmark program usually di-

vides the result for the ping-pong by two and reports that as the time for a single point-to-

point communication.

An important point that can significantly affect the results is whether the message

to be sent is in cache memory. Most benchmarks provide an option for specifying

whether or not the data to be sent is in cache [2,17,19,21]. The default setting for most

benchmarks is that the data is in cache, and they do some preliminary repetitions of the

 40

MPI routine, which are not measured, in order to warm up the cache. In some cases the

benchmarks also provide an option to ensure that the message data for each iteration is

accessed from main memory instead of cache.

3.3.1 Mpptest

The fundamental design philosophy of Mpptest [17, 63] is that the results of

performance benchmarks should be reproducible. To reduce biases due to external

influences, Mpptest spreads the test for each message length over the full time of the

benchmark run, and measures the minimum average time over a number of repetitions in

order to reduce variations. The structure of the measurement process is:

loop over number of repetitions
 loop over different message sizes

 get start time
 loop over a small number of iterations
 call the MPI routine
 end loop over iterations

 get finish time
 average time = (finish time - start time) / number of iterations
 if this is the fastest average time yet, accept it
 end loop over message sizes
 end loop over number of repetitions

Figure 3.2 : Mpptest pseudocode

Mpptest uses MPI_Wtime as a timer. The output is data files which provide

message size, average communication time and bandwidth for all MPI communications.

It also provides several error control options such as adaptive message length refinement

in order to focus on message sizes where the communication time is changing rapidly.

Mpptest provides a basic selection of MPI communication routines, which are

MPI_Send, MPI_Recv, MPI_Bcast and MPI_Scatter. Although the selection is limited, it

has many options to fit a variety of circumstances. Mpptest divides the options into

several groups such as those in the following list (note that the options that are listed for

each point are only an example - for a complete list of options refer to [17,63]) :

 41

• Protocol provides synchronous and asynchronous options;

• Message Data provides option to clear the cache and vector data option;

• Message Pattern includes roundtrip and head-to-head messages;

• Message Test Type considers overlap communication and computation;

• Message Sizes provides options to produce data by logscale or dynamic selection

of message sizes;

• Detailed Control of Test provides options for maximum number of seconds for all

tests or the number of times a test is run.

• Collective Test provides options for collective communication such as broadcast,

scatter.

• Collective Test Control which provides specific range of processors to run the

collective test, for example from nodes n to m;

• Output which provides choices for output file name and several other document

settings to generate the output;

• Pattern (Neighbour) Choices which provides choices to measure distance of

processors for different topology.

For point-to-point communication, Mpptest does a ping pong and divides the re-

sults by two. To counter the problem for MPI collective communication for which the

root node finishes first, Mpptest changes the root node at each repetition. By default

Mpptest warms-up the cache but it also provides the option to not do this. However, not

warming up the cache just means that the cache is cleared for every new message size,

but it does not clear the cache for each iteration in the same message size, and this is the

only approach that would make a difference in the results.

3.3.2 Pallas MPI Benchmark

Pallas GMBH has recently been taken over by Intel, so the Pallas MPI Benchmark

(PMB) is now officially known as Intel MPI Benchmark (IMB) [65], however this thesis

will refer it as PMB. PMB is a thorough, well documented and easy to use benchmark

program that is commonly used. It provides a wide selection of common MPI routines,

 42

and even more are provided in PMB Part-2 [65]. PMB Part-1 measures MPI_Send,

MPI_Sendrecv, MPI_Bcast, MPI_Allgather, MPI_Allgatherv, MPI_Alltoall,

MPI_Reduce, MPI_Reduce_Scatter, MPI_Allreduce and MPI_Barrier. For MPI_Bcast

and MPI_Reduce, instead of using barrier synchronization to avoid biases due to

pipelining effects, PMB changes the root node for each repetition. PMB also provides a

multi version for all of the MPI routines that it measures, which will group the process

numbers that are specified by user. Based on the documentation, PMB warms up the

cache in order to hide initialization overheads of message passing systems. However, for

MPI_Bcast and MPI_Reduce the message data will not be in cache since the root node is

changed at every iteration.

PMB presents the results in data files that include average communication time

and computed bandwidth (data size / communication time) for point-to-point

communication in data sizes that are a power of two, and only average communication

time for collective communication. PMB uses MPI_Wtime as a timer. PMB

synchronizes all the processes using MPI_Barrier before collective communication

benchmarks are started and averages the results over the numbers of repetitions. PMB

does not provide any specific technique for error control, basically it uses the repetitions

to obtain more accurate results. By default only 2 processes are involved for point-to-

point measurements and the ping-pong results are divided into two and reported as the

time for a single communication.

3.3.3 MPBench

MPBench [19, 64] follows the basic MPI benchmark approach, except that it uses

the UNIX timer gettimeofday() [80] rather than MPI_Wtime. It measures the performance

of the most common MPI routines, which are point-to-point for Bandwidth, Bidirectional

Bandwidth, Roundtrip and Application latency measurement, and for collective commu-

nications are Broadcast, Reduce, Allreduce, and Alltoall. MPBench synchronizes the

processes before the benchmarking is started using MPI_Barrier and then the receiving

processes will send a signal to the root after the message is received. MPBench records

the measurement time until it receives the completion feedback from each of the proc-

esses. MPBench produces data files which provide computed bandwidth for most of the

 43

measurements except for application latency and roundtrip measurement, for which the

average communication time is provided.

MPBench does not provide any special error control besides allowing the user to

change the number of repetitions for every message size. MPBench reports the times for

for MPI_Send and MPI_Recv as half the roundtrip time. For the problem of MPI

collective communications for which the root node finishes first, MPBench uses

MPI_Barrier to synchronize the processes and does not change the root node. By default

MPBench warms-up the cache and provides the option for message data not to be in

cache, using a technique similar to Mpptest.

3.3.4 SKaMPI

SKaMPI [21, 24, 62, 103] probably provides the most functionality of all the MPI

benchmarks, with a large number of user-definable parameters and MPI routines that can

be measured. SKaMPI has divided the measurements into five categories: Point-to-Point,

Master-Worker, Barrier Measured Collective, Synchronous Measured Collective and

Simple. The Point-to-Point category includes all types of Point-to-Point communication

such as MPI_Send, MPI_Recv, MPI_Isend, MPI_Bsend and MPI_Sendrecv. The purpose

of the Master-Worker category is to test the network throughput and its handling of

simultaneous communication, using MPI routines such as MPI_Waitsome, MPI_Waitany

and MPI_Any_Source as well as asynchronous send and receive routines. The Barrier

Measured Collective category is an older version that uses the standard approach of a

barrier synchronization before each collective communication. The new version is the

Synchronous Measured Collective approach, which uses a globally synchronized clock to

specify the time that each processor should call the collective communication routine,

and uses the time taken by the slowest process as the time for each repetition. This is

expected to give more accurate results for collective communications, since it eliminates

the need for an additional barrier operation, and possible pipelining effects due to

processes completing the barrier operation at different times, however it takes about

twice as long to run and the effects are only noticeable for small message sizes [24]. Both

the new and old versions measure essentially all the MPI collective routines. Finally, the

 44

Simple category covers MPI routines that involve only one process and without any

communication, such as MPI_Wtime and MPI_Comm_rank.

SKaMPI has more sophisticated error controls than the other MPI benchmarks.

SKaMPI aims to control all the systematic and statistical errors, and has identified that

systematic errors occur due to the measurement overhead such as the calling time for

MPI_Wtime, while the statistical error is cause by the finite clock resolution, execution

time fluctuation and outliers. SKaMPI handles problems cause by external delays such as

operating system interrupts by providing the option to ignore the 25% lowest and highest

results to get the average. It also allows the user to specify a maximum statistical error

(the default is 0.03%), and the measurements are repeated until the statistical error drops

below this value, or the number of repetitions reaches a specified maximum value.

SKaMPI also allows adaptive refinement of message sizes.

This study uses the synchronous measured collective pattern for the testing

because this pattern is the default setting for SKaMPI and also based on their paper [24]

this pattern is more accurate and reliable. Below is the pseudocode describing the

Synchronous Measured Collective approach in SKaMPI.

/ server code /
clock synchronization
repeat
 start synchronous with other nodes
 start_time = MPI_Wtime()
 routine_to_measure()
 end_time = MPI_Wtime()
 finalize_server_routine()
 wait till end of time slot
 collect results from each process, maximum is the result for single measurement

 until result exact enough
 send stop signal
 /client code /

clock synchronization
repeat
 start synchronous with other nodes
 start_time = MPI_Wtime()
 client _routine() /* counterpart of routine_to_measure */
 end_time = MPI_Wtime()
 finalize_server_routine()
 wait till end of time slot
 send result to server

 until stop signal received

 Figure 3.3 : SKaMPI pseudocode

 45

For point-to-point measurement SKaMPI presents the measurement for

MPI_Send and MPI_Recv as a roundtrip time and does not divide the result by two to get

the point-to-point communication time. Unlike the other MPI benchmarks, by default

SKaMPI ensures that the messages are not in cache by using randomized numbers for the

message data in every iteration. SKaMPI provides a detailed configuration file to change

this default as well as many options, and to enable the user to choose which MPI routines

to measure.

3.3.5 MPIBench

MPIBench [1, 2, 8] is the most recently developed MPI benchmark. The main fea-

ture of MPIBench is that it uses a very accurate, globally synchronized clock that is based

on CPU cycle counters. This allows accurate measurement of individual MPI communi-

cations. MPIBench is therefore able to provide distributions (histograms) of communica-

tion times, rather than just average values, which can provide additional insight into

communications performance.

loop over different MPI routines
 run global clock synchronization process

 loop over different message sizes
 loop over number of repetitions
 if this is a collective communication routine, do a barrier synchronization
 save a timestamp for the start time (done by each process)
 call the MPI routine
 save a timestamp for the finish time (done by each process)
 end loop over repetitions

 end loop over message sizes
 run global clock synchronization process
 fix the timestamps by correcting for clock skew based on the synchronization process
 compute communication times for each repetition and each process
 compute average time by averaging over all repetitions and
 1) all processes for point-to-point communication
 2) the slowest process for each repetition for collective communications
 generate histograms of completion times

end loop over MPI routines

Figure 3.4: MPIBench Pseudocode

 46

Rather than using a simple 2 processor ping-pong for point-to-point communica-

tions, MPIBench measures results for N processors communicating concurrently, and can

therefore take into account effects of network contention. For point-to-point communica-

tions it can measure the time for a single communication, not just the average over a

measurement of multiple ping-pongs. For collective communications, it can measure the

different completion times for each process.

MPIBench measures the most common MPI communications: MPI_Send,

MPI_Isend, MPI_Recv, MPI_Irecv, MPI_Sendrecv, MPI_Bcast, MPI_Barrier,

MPI_Scatter, MPI_Gather, MPI_Allgather and MPI_Alltoall. In addition, MPIBench

defines each and total keywords to identify message sizes for collective communications,

which specify the amount of message data sent by each processor, or the total amount of

message data sent by all processes, respectively.

Originally MPIBench assumed the message data was in cache and warmed up the

cache before each measurement, however a newer version has been developed that

provides the option of using data that is not in cache, by using a very large array to store

the message data and giving a pointer to a different part of the array for each iteration.

MPIBench can optionally handle outliers by discounting measurements that are larger

than a specified factor above the average value.

Because MPIBench uses a globally synchronized clock, it is possible to apply the

process synchronization required for measuring collective communications times by us-

ing a synchronized start, where each processor starts each collective routine at a pre-

scribed time, and the time reported for each repetition is the time taken by the slowest

process to complete the communication. This is the same as the Synchronous Measured

Collective approach used by SKaMPI. However by default, MPIBench uses a barrier op-

eration to synchronize the start of all collective communications, with the option of using

a synchronized start for some routines.

There are 5 different data files that are generated by MPIBench, which have

filenames ending with .summary, .subsamples, .histograms, .outliers and .gnu, which

respectively contained the minimum and average values at each message size, a per-

process subsampling of completion times at each message size, a histogram of

completion times at each message size, outliers recorded at each message size and

gnuplot instructions.

 47

3.4 MPI Benchmark Functionality and Ease of Use

The different MPI benchmarks all provide different functionality, so in order to

standardize the comparison of functionality, only some items will be discussed, which are

the compile and run procedure, the MPI routines that are measured, the presentation of

results and documentation. Some other functions that are available only in specific

benchmarks will also be highlighted.

3.4.1 Compiling and Running the Benchmarks

The procedure and settings for compiling and running the benchmark programs

can vary for different kinds of machine, operating system and MPI implementation. The

purpose of this comparison is to compare a general task that is commonly required for the

compile and run procedure, such as auto-generate for compiling or scripts for running a

benchmark. Mostly, the benchmark software will provide an auto-generate function to

compile the program, which is usually by providing a makefile. All the benchmark

software provides this function except for SKaMPI [62]. SKaMPI only has one source

file, the user only needs one compiler call to compile the program.

There are several aspects of running the program that will be discussed, such as

the use of a configuration file, the parameters involved and user definable functions.

Among the MPI benchmark software, PMB and SKaMPI use a configuration file to make

the benchmark run more structured and easily definable. The use of a configuration file in

SKaMPI makes it the simplest to run, this is because it does not have any additional

parameter besides one compiled source file to put with the basic MPI instruction to run

the benchmark software. In SKaMPI, the configuration file includes various user

definable settings such as the interval and range for message size, number of repetitions,

and the error controls. In the configuration file all the settings are grouped by the MPI

routine and each MPI routine has its own reference number which refers to their

category, either point-to-point, master-worker, simple, barrier collective or synchronous

collective. Although the configuration file in SKaMPI makes it the simplest to run,

however under certain circumstances, such as if the user would like to run only a certain

type of MPI routine at a particular time, the user needs to make a change in the

 48

configuration file to select the required MPI routine to run the benchmark. But, if using

the default settings, the task to run the benchmark program is really easy.

PMB [65] also uses a configuration file, but MPI routine selection has to be

identified in the run command, which is more straightforward than SKaMPI approach.

The configuration file that PMB uses only contains all the details that seldom need to

change, for example number of repetitions and the range of message sizes. However, if

the configuration file is changed then PMB needs to be recompiled. In PMB, the interval

of message sizes is fixed, which is to use a log scale. In our experience PMB is the easiest

benchmark to use.

MPIBench [2], Mpptest [63] and MPBench [64] use a similar approach by

passing the parameters as arguments to the program, such as number of processors and

repetition, selection of MPI routine and the interval of message sizes. There are

advantages and disadvantages of passing the parameters as arguments to the program.

The disadvantages are the user has to write their own scripts to run the program. The

advantages are there is no re-compilation after changing the number of repetitions or

range of message size and there is no tedious task to reset the configuration file every

time to change the routine to measure.

In addition, MPIBench and Mpptest provide a simple function for specifying the

interval of message sizes by allowing the user to define the minimum, maximum and the

increment of the message sizes. The message sizes will start with the minimum value and

increase using the given increment until it reaches the maximum value. Notably, the new

version of MPIBench has made taking measurements for larger message sizes simpler by

adding the capability to use message sizes that are a power of 2, from advice based on the

analysis done in this work. Additionally, Mpptest and SKaMPI provide the capability to

adaptively choose the message sizes in order to isolate sudden changes in performance.

They also allow for measurements of cache effects and computation and communication

overlap.

3.4.2 Measured communication routines

This section analyses the selection of MPI communications routines that are

measured in each of the benchmarks. Generally, all of the benchmarks will group the

 49

tests into point-to-point and collective communications. SKaMPI has the largest selection

of MPI routines. It has divided the routines into five categories, which are point-to-point,

master-worker, barrier collective, synchronous collective and simple. Basically, the

point-to-point and master-worker categories involve all types of Point-to-Point

communication, which has been explained in section 3.3.4, while the barrier and

synchronous categories are for collective routines, which are measured using different

techniques. The benchmark with the least selection for MPI routines is MPBench, which

provides only a common MPI routine for each type of communication, such as the

Roundtrip, MPI_Send, MPI_Bcast, MPI_Alltoall and MPI_Allreduce. Mpptest also

measures the performance of only a few of the basic MPI routines, but Mpptest measures

the routines in a variety of situations. As an example, for the point-to-point (ping-pong)

test Mpptest can measure performance with many participating processes, which can

expose contention and scalability problems.

3.4.3 Presentation of output

Generally, most of the benchmark programs will generate a set of output data files

that will include a user-specified range of parameters, such as the type of MPI routine,

message size, the average communication time and calculated bandwidth. In addition,

some of the benchmarks provide additional output such as gnuplot files for plotting the

results and functions to auto-generate postscript files of results to ease the task of data

processing for users.

 MPIBench and Mpptest produce gnuplot files to enable easy plotting of results.

SKaMPI provides a script to auto-generate a postscript file, which will read the output

file and generates a postscript file that contains a graphical representation of the results.

Similarly, MPBench automatically generates a postscript file containing graphical output

for every measurement, but only if using the default selection of measurements. PMB

only provides a set of data files with the average communication time and calculated

bandwidth for the output.

MPIBench has an extra capability from the other benchmark software, which is

that it can log the results of all measurements for all processes, or a subset of the

 50

measurements (e.g. every 10th iteration). It also records the distribution of

communication times for generating a histogram and also a list of outlier events. The

advantage of the distribution data is that researchers can analyze more detail about the

behaviour of the MPI routine.

3.4.4 Documentation

This study found that the Pallas MPI Benchmarks (PMB) [65] and SKaMPI [62]

have the best user manual documentation among all of the benchmark software. They

provide a complete documentation that describes in detail the purpose for each of the

functions in their software and the procedure to compile and run the program. The other

benchmark software, which are MPIBench [2], Mpptest [63] and MPBench [64], provide

brief documentation, which basically explains the procedure to compile and run the

program and also main functions in the software.

3.5 Machines Used

3.5.1 ccNUMA Shared Memory Machine

The SGI Altix 3000 [70,124] series has a cache coherent non-uniform memory

architecture (ccNUMA). It is based upon the hierarchical composition of two basic build-

ing blocks, or bricks: computational nodes (C-bricks) and routers (R-bricks). The C-brick

units contain two computational nodes, each consisting of two Itanium-2 processors con-

nected to a custom network and memory controller ASIC (known as the SHUB (Scalable

HUB)) (refer to Figure 3.5). The two processors share a 6.4 Gbytes/s bus to a SHUB. The

two SHUBs in each C-brick are linked by a further 6.4 Gbytes/s link. Each SHUB is pro-

vided with one SGI NUMAlink channel to the outside, with a bandwidth of 3.2 Gbytes/s

(1.6 Gbytes/s each direction) for NUMAlink3. These external links provide the cache co-

herent interconnection between C-Bricks. It is possible to directly connect a pair of C-

Bricks, however for large machines a set of routers (the R-Bricks) are employed to ex-

pand the network in a scalable manner. Each R-Brick contains a router chip, which pro-

vides eight connections. Each connection is again 3.2 Gbytes/s (1.6 Gbytes/s each direc-

tion). The R-Bricks are configured so that four ports connect to C-Bricks, and the other

 51

four interconnect with other R-Bricks to form a fat tree network. Pairs of R-Bricks are

connected by two links, and in large machines the remaining two links connect to the

next higher layer of the tree, to routers (called meta-routers) that use each of their eight

links to provide connectivity to the lower levels. Figure 3.6 depicts a 128 node Altix.

The benchmark results reported in this thesis were carried out on Aquila, an SGI

Altix 3000 managed by the South Australian Partnership for Advanced Computing (SA-

PAC) [131]. SGI Altix has 160 1.3 GHz Itanium 2 processors with a total of 160 Gbytes

of memory, and a NUMAlink3 network. At the time of the benchmarks, it was running

SGI Linux ProPac3. Intel compilers were used to compile the MPI benchmark programs,

and the SGI MPI libraries were used. On shared memory machines, the operating system

can switch processes between processors to try to improve overall system utilization.

However this can adversely affect parallel programs, since after process migration, data

will no longer be available in local cache. The performance of MPI programs on the Altix

can be improved significantly by binding each process to a particular processor. So, for

this analysis the experiment has done benchmark measurements using the

MPI_DSM_CPULIST environment variable, which assigns MPI processes in order to the

specified list of CPUs. The Altix documentation suggests that applications should avoid

using processor 0, particularly for parallel jobs, since it is used to run system processes.

Therefore this analysis only used processors 32 to 159 for the measurements. It started

with processor number 32 in order to maintain the hierarchical pattern of 32 processor

groups shown in Figure 3.6.

By default, the SGI MPI implementation buffers messages, but uses single copy

(i.e. no buffering) for large message sizes in most collective communication routines and

in MPI_Sendrecv, which significantly improves performance [70, 124]. The message size

where the communication changes over to single copy is not specified in the documenta-

tion but our measurements indicate it is around 2 Kbytes. By default, single copy is not

used for MPI_Send, however it is possible to force it to use single copy by setting the en-

vironment variable MPI_BUFFER_MAX n, where n is the maximum message size where

buffering will be used, so messages larger than n will be communicated using single

copy. The choice of buffering or single copy can give a big difference in the performance

of MPI_Send for large message sizes, and hence the bandwidth reported by an MPI

benchmark program.

 52

Figure 3.5 : An Altix C-brick with 2 nodes, 2 NUMAlink-3 and 2 XIO channels [124].

Brick Type Purpose

C-Brick Computational module housing CPUs and memory.

M-Brick Memory expansion module.

R-Brick NUMAflex router interconnect module.

D-Brick Disk expansion module.

IX-Brick Base system I/O module.

PX-Brick PCI-X expansion module.

Table 3.1 : The SGI Altix brick type.

 53

Figure 3.6 : SGI Altix 3000 communications architecture for 128 processors [124].

3.5.2. Distributed Memory Machine

 The measurements reported in this thesis were done on Hydra, which is an IBM

eServer 1350 Linux cluster [35] which is managed by SAPAC [131]. The cluster has 128

compute nodes connected by a Myrinet 2000 [71,110] network as well as a 100 Mbit/s

Fast Ethernet network [134]. Each of the nodes are IBM xSeries 335 servers with dual

2.4 GHz Intel Xeon processors and 2 GBytes of RAM, so the machine has a total of 256

CPUs.

 The Myrinet configuration has 8 nodes connected to each switch, and the switches

connected together in a fat tree topology. The Ethernet configuration is that each rack of

the cluster has a Fast Ethernet switch (100 Mbit/s full duplex) connecting all the nodes in

the rack. The nodes in each rack are 1-38, 39-76, 77-114 and 115-126. Each of these

switches has a Gigabit Ethernet (full duplex) uplink to a Cisco Gigabit switch. The clus-

 54

ter nodes were running Redhat Enterprise Linux version 3.2.3-47 with kernel 2.4.21-

27.ELsmp of the Myrinet drivers, MPICH-GM version 1.2.6..14a was used with the

Myrinet and MPICH version 1.2.6-gnu for the Ethernet network. All compilations were

performed with gcc v3.2.3.

All measurements were run with dedicated access to the cluster, so there were no

other processes affecting the results. At the time the measurements were taken, not all of

the nodes were usable, so the benchmark only took measurements for up to 100 nodes

(200 CPUs). The measurement used 2 CPUs per node, with 1000 repetitions of each of

the MPI operations except for MPI_Alltoall (the slowest operation) where only 100 repe-

titions were used.

3.6 Point-to-Point Communication

All of the MPI benchmark applications provide measurement for basic point-to-

point communication using MPI_Send/MPI_Recv. The main difference between the MPI

benchmark applications is the communication pattern. Figure 3.7 to Figure 3.9 illustrate

the communication patterns of the different benchmarks for 8 processors. Figure 3.7

shows the point-to-point communications pattern for PMB and Mpptest, which involve

processors 0 and 1 only. In order to measure communications times between processors

that are not on the same node of a cluster of SMP nodes, the locations of the processors

would have to be specified when calling mpirun, otherwise the benchmark would meas-

ure the performance of the shared memory system on the node rather than the perform-

ance of the communications network connecting the nodes. Figure 3.8 is for SKaMPI and

MPBench, which use the first and last processor. In fact the approach used by SKaMPI is

more complicated, in that it does short tests on all the processors to find which processor

has the slowest communication with processor 0, and then does its timings using that

processor. However for the communication networks on both of the machines used in this

work, this would be equivalent to choosing the last processor.

MPIBench measures not just the time for a ping-pong communication between

two processors, but can also take into account the effects of contention when all proces-

sors simultaneously take part in point-to-point communication. The default communica-

 55

tion pattern used by MPIBench is shown in Figure 3.9. MPIBench sets up pairs of com-

municating processors, with processor p communicating with processor (p + n/2) mod n

when a total of n processors are used. Half of the processors send while the other half re-

ceive, and then vice versa. The send/receive pairs are chosen to ensure that for a cluster

of SMPs or a hierarchical communications network (such as on the SGI Altix) the per-

formance of the full communication hierarchy can be measured, not just local communi-

cations within an SMP node (or a brick on the SGI Altix). MPIBench also allows the user

to specify another communication pattern by specifying a list of communication partners.

.

Figure 3.7 : PMB and Mpptest Point-to-Point pattern

Figure 3.8 : SKaMPI and MPBench Point-to-Point pattern

Figure 3.9 : MPIBench Point-to-Point pattern

3.6.1 MPI_Send/MPI_Recv

The difference in communication patterns between the different benchmarks leads

to different results, as shown in Figure 3.10 for the default settings of the SGI MPI im-

plementation for the SGI Altix (i.e. buffered copy for MPI_Send). MPIBench has the

highest results due to the contention effects from all 8 processors, while MPBench and

P1 P2 P0 P7 P6 P5 P4 P3

P1 P2 P0 P7 P6 P5 P4 P3

P1 P2 P0 P7 P6 P5 P4 P3

 56

SKaMPI obtain the second highest results since they are measuring the communication

times between two C-Bricks. The lowest results are obtained by Mpptest and PMB, since

they just measure intranode communication within a C-Brick. By carefully selecting the

processors that are used (e.g. P0 and P7), it is possible to force each of the benchmarks to

measure the same thing, i.e. point-to-point communication between two processors across

any level of the communication hierarchy, and the results for different benchmarks agree

fairly closely, within a few percent, as shown in Figure 3.11. This is similar to bench-

marking clusters of SMP nodes, where care must be taken (particularly for PMB and

Mpptest) in choosing the processors to ensure measurement of internode rather than in-

tranode communication. On the SGI Altix it is possible to significantly improve the

benchmark results for MPI_Send by enabling the option of single copy (i.e. non-buffered)

sends in the SGI MPI implementation, as shown in Figure 3.10 and Figure 3.12. This is

done by setting the environment variable MPI_BUFFER_MAX to be the maximum mes-

sage size (in bytes) for which buffered copy send will be used, so single copy send is

used for any message larger than this specified size. As shown in Figure 3.12, it is best to

set this value to be very small, although there is no effect below about 128 bytes. Note

that the improvement from using single copy can be large, up to a factor of 10, however it

is much less than this for very large message sizes.

In measuring the results using single copy MPI_Send, we were surprised to find

that while most of the benchmarks gave the expected improvement in performance, the

results for SKaMPI and MPIBench were the same as for the default MPI setting that uses

buffered copy. After much experimentation and comparison of the code for the different

benchmarks, we concluded that this problem is because both SKaMPI and MPIBench use

the same array to hold send and receive message data. When we changed the MPIBench

code to declare different arrays for send and receive data, the results showed the expected

improvement, as shown in Figure 3.10. We did not change the SKaMPI program, so we

do not present SKaMPI results for the single copy option.

 57

1

10

100

1000

10000

64 256 1024 4096 16384 65536 3E+05 1E+06 4E+06

Size of Data (Byte)

T
im

e
(M

ic
ro

se
c)

MPIBench

PMB

Skampi

Mpptest

MPBench

MPIB
ench-SC
MPBench-
SC
Mpptest-
SC
PMB-SC

Figure 3.10 : Comparison of results from different MPI benchmarks for Point-to-Point
(send/receive) communications using 8 processors between default settings and Single
Copy (indicated by SC) on SGI Altix.

1

10

100

1000

10000

64 256 1024 4096 16384 65536 262144 1E+06 4E+06

Size of Data (Byte)

T
im

e
(M

ic
ro

se
c)

MPIBench

PMB

Skampi

Mpptest

MPBench

Figure 3.11 : Comparison of results from different MPI benchmarks for Point-to-Point
(send/receive) communications using the same process placement, with a single process
on each of 2 different C-Bricks connected by a router, on the SGI Altix.

 58

1

10

64 256 1024 4096 16384 65536 262144 1048576 4194360

Size of Data (Byte)

R
at

io
 (

 M
ic

ro
se

c) 2p

4p

8p

16p

32p

Figure 3.12 : Ratio of Send/Recv time using buffered compared (default) to non-buffered
communication for PMB from 2 to 32 Processors .

Figure 3.13 shows the results comparison from different MPI benchmarks for

Point-to-Point (send/receive) communications using 8 processors on the IBM Linux clus-

ter. Similarly with the results from the SGI Altix, the lowest times are obtained by PMB

and Mpptest, while the highest time is obtained by MPIBench. The results for PMB and

Mpptest are lower because they measure intranode communication (within the same

node). The gap between the results for the different benchmarks appears to be getting

closer for large message size due to the effect of the log plot. The difference in results

between MPIBench (where all processes are communicating) with SKaMPI and

MPBench (where only 2 processes are communicating) is much smaller than for the SGI

Altix. The differences start to increase after 65 KByte due to more contention occurring

for larger message sizes, which is seen in the MPIBench results but not in the other

benchmarks. However, in the SGI Altix the results start to differ from as small as 1

KByte. Although there are still differences among the MPI benchmarks, the differences

are not as big as for the SGI Altix, except for Mpptest and PMB since they measure

shared memory communication within a node. As with SGI Altix, by selecting specific

processors across different nodes (e.g. P0 and P7), it is possible to force each of the

benchmarks to measure the same thing, and then the results for different benchmarks

agree fairly closely, within a few percent, as shown in Figure 3.14.

 59

1

10

100

1000

10000

100000

64 256 1024 4096 16384 65536 262144 1E+06 4E+06

Message Size (Byte)

T
im

e
(M

ic
ro

se
c)

MPIBench

PMB

Mpptest

SKaMPI

MPBench

Figure 3.13 : Comparison of results from different MPI benchmarks for Point-to-Point
(send/receive) communications using 8 processors on IBM Linux Cluster.

1

10

100

1000

10000

100000

64 25
6

10
24

40
96

16
38

4

65
53

6

26
21

44

10
48

57
6

41
94

36
0

Size of Data (Byte)

T
im

e
(M

ic
ro

se
c) MPIBench

PMB

Skampi

Mpptest

MPBench

Figure 3.14 : Comparison of results from different MPI benchmarks for Point-to-Point
(send/receive) communications using the same process placement, with a single process
on each of 2 different nodes on IBM Linux Cluster.

 60

3.6.2 Bandwidth for MPI_Send/MPI_Recv

Bandwidth results are calculated by default for all message sizes for Mpptest and

PMB and in this section the CPUs have been chosen to make the measurement the same

as with MPBench and SKaMPI. MPBench provides bandwidth results instead of commu-

nication time for all the collective communications but not for point-to-point communica-

tion, while SKaMPI and MPIBench do not provide any bandwidth results. However,

SKaMPI does provide bandwidth results, calculated only for the smallest and the highest

message sizes, in their auto-generated postscript files of results.

 The bandwidth results in Table 3.2 and Table 3.3 are calculated based on the

measurement results for 1 MByte and 4 MByte message sizes for the SGI Altix and the

IBM Linux cluster, respectively. As shown in Table 3.2, at 1 MByte for 2 processors

MPIBench and SKaMPI obtained significantly higher bandwidth than the other bench-

marks, while the results are similar for 4 MByte messages. For two processors, all of the

benchmarks show a difference of almost a factor of 2 between the results for the two dif-

ferent message sizes, so the Altix does not conform to the usual expectation that larger

message sizes should give similar or larger bandwidth measurements. The results be-

tween both message sizes started to get closer for MPIBench at 4 processors, and for the

other benchmarks at more than 4 processors. The bandwidth decreases drastically as the

message sizes and number of processors increase. Referring to [27], the bandwidth re-

ported by SKaMPI is higher than for the largest times plotted for each node. So, there is a

possibility that the reported bandwidth in Table 3.2 may be smaller than the peak band-

width.

Table 3.3 shows the bandwidth results for the IBM Linux cluster. Mpptest obtains

the highest bandwidth for both message sizes. There is little difference between the re-

sults for both message sizes for all MPI benchmarks. The bandwidth results for 4 up to 32

CPUs is the same for all benchmarks except MPIBench, which shows the lowest per-

formance due to more contention effects from having all the processes doing point-to-

point communications concurrently. All the other benchmarks are just doing a ping-pong

between two nodes, which are at different distances in the network in each case. The fact

that the results are the same in each case indicates the low overhead of Myrinet’s hierar-

chical fat tree network.

 61

No.
of
CPU

MPIBench MPBench SKaMPI PMB Mpptest

 1MB 4MB 1MB 4MB 1MB 4MB 1MB 4MB 1MB 4MB

2 1775 851 1320 831 1756 832 1308 806 1314 843

4 606 671 987 925 1056 963 1012 945 1090 987

8 405 464 562 562 570 560 563 560 593 588

16 396 462 564 562 573 559 563 560 592 587

32 260 256 552 549 560 548 555 548 579 574

Table 3.2 : Bandwidth results in MBytes/sec for various numbers of processors using
default settings on SGI Altix.

No.
of
CPU

MPIBench MPBench SKaMPI PMB Mpptest

 1MB 4MB 1MB 4MB 1MB 4MB 1MB 4MB 1MB 4MB

2 306 294 306 293 308 295 305 294 322 309

4 112 140 218 222 218 223 218 222 228 233

8 112 144 218 222 218 222 218 222 228 232

16 113 142 218 222 217 222 218 222 228 233

32 97 100 218 222 218 223 218 222 228 233

Table 3.3 : Bandwidth results in MBytes/sec for various numbers of processors on IBM
Linux Cluster.

Figure 3.15 and Figure 3.16 show PMB and MPIBench bandwidth results for 2 up to 32

CPUs for the SGI Altix, respectively. Note that the results for PMB are taken by selecting

the CPUs to make the measurements similar with MPBench and SKaMPI (as shown in

 62

Figure 3.8). PMB bandwidth shows the results for 2 and 4 CPUs is different with 8, 16

and 32 CPUs. The differences illustrate that the bandwidth for intra C-Brick is higher

compared to inter C-Brick, while MPIBench shows the bandwidth decreases as more

CPUs are used. This shows that the architecture of SGI Altix creates contention between

the bricks.

 Figure 3.17 and Figure 3.18 show the same plots for the IBM Linux Cluster. In-

terestingly, the performance for inter-node is similar between different numbers of CPUs,

while MPIBench shows that the bandwidth between different number of CPUs for inter-

node communication has very little difference, except for 32 CPUs for message sizes

more than 1 MByte.

 It is interesting that the differences between PMB and MPIBench are bigger on

the SGI Altix than the IBM Linux cluster. It shows that the performance of the Myrinet

network in the Linux cluster scales better with more communicating processes, while the

performance of the ccNUMA SGI Altix is noticeably reduced, although the overall per-

formance of the Altix is much better than the Linux cluster.

10

100

1000

10000

64 25
6

10
24

40
96

16
38

4

65
53

6

26
21

44

10
48

57
6

41
94

36
0

83
88

60
8

Size of Data (Byte)

B
an

d
w

id
th

 (
M

B
yt

e/
se

c)

2p 4p 8p

16p 32p

Figure 3.15 : PMB Bandwidth Results for 2 until 32 Processors for Default Settings on
SGI Altix.

 63

10

100

1000

10000

64 25
6

10
24

40
96

16
38

4

65
53

6

26
21

44

10
48

57
6

41
94

30
4

83
88

60
8

Size of Data (Byte)

B
an

d
w

id
th

 (
M

B
yt

e/
se

c)

2p 4p 8p

16p 32p

Figure 3.16 : MPIBench Bandwidth Results for 2 until 32 Processors for Default Settings
on SGI Altix.

1

10

100

1000

64 25
6

10
24

40
96

16
38

4

65
53

6

26
21

44

10
48

57
6

41
94

30
4

Size of Data (Byte)

B
an

d
w

id
th

 (
M

B
yt

e/
se

c)

2 4

8 16

32

Figure 3.17 : PMB Bandwidth Results for 2 until 32 Processors for Default Settings on
IBM Linux Cluster.

 64

1

10

100

1000

64 256 1024 4096 16384 65536 262144 1E+06 4E+06

Size of Data (Byte)

B
an

d
w

id
th

 (
M

B
yt

e/
se

c)

2 4 8

16 32

Figure 3.18 : MPIBench Bandwidth Results for 2 until 32 Processors on IBM Linux
Cluster.

3.7 MPI_Sendrecv

 Only MPIBench, PMB and SKaMPI provide measurements for MPI_Sendrecv.

MPIBench uses the same communication pattern as for MPI_Send/MPI_Recv, however

each processor does a combined MPI_Sendrecv to its communication partner, rather than

alternating sends and receives. SKaMPI and PMB use a different technique, where each

process sends to the right and receives from the left neighbour in a chain of N processors.

Most communication networks are capable of providing the same bandwidth if messages

are sent simultaneously in both directions. MPI_Sendrecv provides a good way of testing

that the MPI implementation can indeed provide this bidirectional bandwidth. The

MPIBench approach means that if this is the case, then the results for MPI_Sendrecv and

MPI_Send/MPI_Recv should be similar.

The results for MPI_Sendrecv in Figure 3.19 show that this is the case for the SGI

Altix, e.g. the result for 256 Kbyte message size for 8 processors is similar to the results

for 8 processors in MPI_Send/MPI_Recv with Single Copy option (see Figure 3.10 and

 65

Table 3.4). Noticeably, in Figure 3.19 shows that SKaMPI and PMB have a similar re-

sult, however the results are higher than MPIBench. As mentioned earlier SKaMPI and

PMB are using the same ring pattern technique. The newest version of MPIBench also

has a function to measure MPI_Sendrecv using the ring pattern, the results in Figure 3.19

shows that MPIBench with the ring pattern obtains similar results with SKaMPI and

PMB. Note that, the results for MPIBench default sendrecv is lower than the results for

PMB, SKaMPI and MPIBench ring pattern, particularly after 2KByte. It is unclear why

this is the case, or why the MPIBench results for MPI_Sendrecv using the ring pattern are

so much slower than for using the default MPIBench communication pattern for

MPI_Sendrecv. More precise analysis should be done to understand the problem of the

ring pattern with Single Copy options, which will be included for the future work.

However, the bidirectional bandwidth does not seem to be working for the Myri-

net network on the IBM Linux cluster, since the results for MPI_Sendrecv are a factor of

two higher than for MPI_Send/Recv (see Figure 3.13). Figure 3.20 shows the comparison

results between the benchmarks on IBM Linux cluster. It shows that MPIBench obtains

the highest time compared to the PMB and SKaMPI, while on the SGI Altix MPIBench

obtains the lowest time. As with the SGI Altix, PMB and SKaMPI have very similar re-

sults, which due to their similar technique for MPI_Sendrecv. Figure 3.20 shows that

when using MPIBench ring pattern measurement, the results are similar to the PMB and

SKaMPI.

It can therefore be concluded that the differences in results between MPIBench

and the other benchmarks are because of the differences in the communication partners

used for MPI_Sendrecv, since using the same partners gives results that are within a few

percent of the other benchmarks (see Figure 3.19 and Figure 3.20).

 66

Message Sizes
(Byte)

MPI_Send/MPI_Recv
(Microsec)

MPI_Sendrecv
(Microsec)

0 2.88 2.19

4 2.97 2.53

16 3.17 2.49

64 3.43 3.18

256 8.61 5.63

1024 7.59 4.48

4096 6.92 4.72

16384 8.45 6.44

65536 14.61 12.56

262144 44.64 42.22

Table 3.4 : Comparison for average communication time (microsec) between
MPI_Send/MPI_Recv with MPI_Sendrecv for MPIBench on SGI Altix.

1

10

100

16 64 256 1024 4096 16384 65536 262144

Size of Data (Byte)

T
im

e
(M

ic
ro

se
c)

MPIBench

PMB

SKaMPI

MPIBench_Ring Pattern

Figure 3.19 : Comparison between MPI benchmarks for MPI_Sendrecv and MPIBench
ring pattern on 8 processors on SGI Altix.

 67

10

100

1000

10000

16 64 256 1024 4096 16384 65536 262144

Size of Data (Byte)

T
im

e
(M

ic
ro

se
c)

MPIBench

PMB

SKaMPI

MPIBench_Ring Pattern

Figure 3.20 : Comparison between MPI benchmarks for MPI_Sendrecv with MPIBench
ring pattern on 8 processors on IBM Linux cluster.

3.8 Barrier

 Figure 3.21 shows the MPI_Barrier results on the SGI Altix for SKaMPI,

MPIBench and PMB, which are the only MPI benchmarks that measure barrier. The re-

sults show that SKaMPI is a bit higher compared to MPIBench and PMB. This is proba-

bly due to the global clock synchronization that is set by default for their measurement.

The developers of SKaMPI argue that this is a more accurate result since it avoids “pipe-

lining” effects where some processes (e.g. the root) finish the barrier earlier and can start

the next barrier operation before other processes have exited the barrier [24].

Figure 3.22 shows the same plot for the IBM Linux cluster. The results are almost the

same for all benchmarks with only a slight difference between 16 to 64 processes.

 68

0

2

4

6

8

10

2 4 8 16 32 64 128

No. of CPUs

T
im

e
(M

ic
ro

se
c)

MPIbench

Skampi

PMB

Figure 3.21 : Comparison between MPI benchmarks for MPI_Barrier for 2 to 128 proc-
essors on the SGI Altix.

0

50

100

150

200

250

2 4 8 16 32 64 128

No. of CPUs

T
im

e
(M

ic
ro

se
c)

MPIBench

Skampi

PMB

Figure 3.22 : Comparison between MPI benchmarks for MPI_Barrier for 2 to 128 proc-
essors on the IBM Linux cluster.

 69

3.9 Broadcast

All of the MPI benchmark applications measure MPI_Bcast. There are some dif-

ferences in the measurement technique between the benchmark applications. The main

difference is that by default SKaMPI makes the assumption that data should not held in

cache memory, so it ensures data to be broadcast is not in cache before each measurement

repetition. MPIBench, on the other hand, always sends the same data for each repetition,

and does some preliminary “warm-up” repetitions (that are not measured) to ensure that

the data is in cache before measurements are taken. The other benchmarks allow the user

to choose whether or not data to be broadcast is in cache, although the default is that data

is in cache memory. In a real application, data to be broadcast may or may not be in the

cache, so there is really no “right” choice for whether or not an MPI benchmark should

place the data in the cache.

Another difference is how the broadcasts are synchronized. Most MPI bench-

marks measure collective communication time on the root node. However for some col-

lective operations, such as broadcast, the root node is the first to finish, and this may lead

to biased results due to pipelining effects. Most benchmarks get around this problem by

inserting a barrier operation (MPI_Barrier) after each repetition of the collective commu-

nication operation. This provides an additional overhead which will affect the average

time, although only for very small message sizes, since broadcast of a large message

takes much longer than a barrier operation. Mpptest and PMB adopt a different approach

to avoid this problem – they assign a different root processor for each repetition.

Figure 3.23 shows the average times reported by the different MPI benchmarks to

complete an MPI_Bcast operation on the SGI Altix. Clearly there are significant differ-

ences in the measured results due to the differences in measurement technique. Mpptest

and PMB give the highest results, presumably due to the overhead of changing the root

node at each iteration. Because of the cache coherency protocol on the shared memory

Altix, moving the root to a different processor has a significant overhead, which is re-

flected in the results. We are not sure why Mpptest is so much higher than PMB. The

only difference between the two approaches seems to be that PMB uses different arrays

for the broadcast data on the root node and the other processors. SKaMPI has the next

highest result, since it uses data that is not in cache, while MPIBench and MPBench ob-

 70

tained the same results with the same measurement techniques. On a distributed memory

cluster the effects of changing the root and having messages in cache has little affect on

the results, as shown in Figure 3.25.

To check that these differences in the benchmark measurement techniques were

causing the difference in broadcast times, we enabled the option to warm up the cache in

SKaMPI, and for Mpptest and PMB we commented out the code to move the root process

at each repetition, and then reran the benchmarks. The results after modifying the pro-

grams were very similar, mostly within about 10% percent, as shown in Figure 3.24.

0

50

100

150

200

250

300

16 64 256 1024 4096 16384 65536

Size of Data (Byte)

T
im

e
(M

ic
ro

se
c) MPIBench

PMB

Skampi

Mpptest

MPBench

Figure 3.23 : Comparison between MPI benchmarks for MPI_Bcast on 8 processors be-
fore tuning the code on SGI Altix.

 71

0

20

40

60

80

100

120

140

16 64 256 1024 4096 16384 65536

Size of Data (Byte)

T
im

e
(M

ic
ro

se
c) MPIBench

PMB

Skampi

Mpptest

MPBench

Figure 3.24 : Comparison between MPI benchmarks for MPI_Bcast on 8 processors after
tuning the code on SGI Altix.

0

200

400

600

800

1000

1200

1400

1600

16 64 256 1024 4096 16384 65536

Size of Data (Byte)

T
im

e
(M

ic
ro

se
c) Mpibench

PMB

Mpptest

SKaMPI

MPBench

Figure 3.25 : Comparison between MPI benchmarks for MPI_Bcast on 8 processors on
IBM Linux Cluster.

 72

Both SKaMPI and MPIBench use a barrier operation to synchronize the start of

all collective communications. However they also have the option of avoiding the over-

head of the barrier operation by using a synchronized start, where each processor starts

each broadcast at a prescribed time, and the time reported for each repetition is the time

taken by the slowest process. Clearly this requires a globally synchronized clock, which

is provided by MPIBench and SKaMPI. Since they both use a globally synchronized

clock, they are able to generate average times for each process in a collective communi-

cation, which can be significantly different for different processes.

Figure 3.26 shows a figure from the SKaMPI report for an MPI_Bcast operation

on 8 processors for SGI Altix (using cache warmup to enable a direct comparison to

MPIBench results), which shows the average completion time for each processor. The

SKaMPI report also states that the average time for the MPI_Bcast is about 9500 µs,

which is very different to the largest times for each node shown in Figure 3.26. We are

not sure why this is the case. Figure 3.27 show the distribution results for MPI_Bcast on

8 processors for the same data size on SGI Altix using MPIBench. This figure shows the

combined results for all 8 processors, although recently MPIBench has been modified to

allow distributions to be generated individually for each processor, so we are able to

check that the overall distribution shown in Figure 3.27 shows peaks that are consistent

with the binary tree broadcast algorithm, with the first peak corresponding to completion

times for processors 0 and 1, the second peak is for processors 2 and 3 and final peak is

for 4-7. As with SKaMPI, MPIBench gives an average time for broadcast of 9500 micro-

sec, but unlike SKaMPI, this agrees with the value for the slowest process in the distribu-

tion of times in Figure 3.27.

Figure 3.28 and Figure 3.29 shows the same plot for the IBM Linux Cluster.

However, the distribution for MPIBench does not show the effect of the binary tree

broadcast algorithm. This is because the IBM Linux Cluster used the latest version of

MPICH 1.2.6, which has a new algorithm for broadcast. The new algorithm uses a com-

bination of scatter and allgather for 8 or more processors and long message sizes (greater

than 512 Kbytes) [11]. For SKaMPI the average time is reported to be approximately

49000µs, but similarly with Altix, this is significantly different to the largest times for

each node. We do not know the reason for this discrepancy, but it implies that the node

times reported by SKaMPI may not be very accurate. As with the SGI Altix, MPIBench

 73

agrees with the SKaMPI average time of 49000 µs, but the slowest node time agrees with

the average broadcast time, as it should. Figure 3.30 shows the minimum, average and

maximum time for the IBM Linux Cluster on the same plot. This figure shows that the

first two small peaks in the distribution plot in Figure 3.29 correspond to the minimum

completion time for all processors. Then, the first high peak is for processors 0, 3, 4 and

7, the second high peak is for processor 1, 2, 5 and 6. The small distribution after the av-

erage completion time corresponds to the maximum time obtained by all of the proces-

sors, where a small number of repetitions are very slow.

node times for message length 4194288

8250

8300

8350

8400

8450

8500

node number (sorted)

tim
e

(m
ic

ro
se

c.
)

Figure 3.26 : Node time produced by SKaMPI for MPI_Bcast at 4MBytes for 8 CPUs on
SGI Altix.

 74

0

150

300

450

600

750

900

8.6 8.8 9 9.2 9.4 9.6 9.8

Time (milisec)

O
cc

u
rr

en
ce

s

Figure 3.27 : Distribution result produced by MPIBench for MPI_Bcast at 4MBytes for 8
CPUs on SGI Altix.

node times for message length 4194288

39000

39500

40000

40500

41000

41500

42000

42500

43000

43500

1 2 3 4 5 6 7 8

node number (sorted)

tim
e

(m
ic

ro
se

c.
)

Figure 3.28 : Node time produced by SKaMPI for MPI_Bcast at 4MBytes for 8 CPUs on
IBM Linux Cluster.

 75

0

100

200

300

400

500

600

40 45 50 55 60 65 70 75 80

Time (Milisec)

O
cc

u
rr

en
ce

s

Figure 3.29 : Distribution result produced by MPIBench for MPI_Bcast at 4MBytes for 8
CPUs on IBM Linux Cluster.

40

45

50

55

60

65

70

75

80

0 1 2 3 4 5 6 7

Rank of CPUs

Ti
m

e
(M

ili
se

c)

Min

Average

Max

Figure 3.30 : Minimum, Average and Maximum time from MPIBench for MPI_Bcast at
4MBytes for 8 cpus on IBM Linux Cluster.

 76

3.10 Scatter and Gather

Only MPIBench and SKaMPI provide measurements for MPI_Scatter and

MPI_Gather, and both benchmarks apply the same measurement technique. Scatter and

gather are typically used to distribute data at the root process (e.g. a large array) evenly

among the processors for parallel computation, and then recombine the data from each

processor back into a single large data set on the root process. Figure 3.31 shows the

comparison between MPIBench and SKaMPI for MPI_Scatter for 32 processors on Altix.

The result shows that MPIBench and SKaMPI agree with each other. The results also

show an unexpected hump at a data sizes between 128 bytes and 2 KBytes per process, so

that the time for scattering larger data sizes than this is actually lower. This is presumably

due to the use of buffering for asynchronous sends for messages of these sizes. Note that

overall, the time for an MPI_Scatter operation grows remarkably slowly with data size.

Figure 3.32 shows the same plot for the IBM Linux Cluster, and as with the SGI Altix,

MPIBench and SKaMPI agree with each other. On the cluster, the time for the scatter op-

eration grows in proportion with the data size.

10

100

1000

10 100 1000 10000 100000

Size of Data (Byte)

T
im

e
(M

ic
ro

se
c)

MPIBench

Skampi

Figure 3.31 : Comparison between MPI benchmarks for MPI_Scatter for 32 processors
on SGI Altix.

 77

10

100

1000

10000

100000

10 100 1000 10000 100000

Size of Data (Byte)

T
im

e
(M

ic
ro

se
c)

MPIBench

SKaMPI

Figure 3.32 : Comparison between MPI benchmarks for MPI_Scatter for 32 processors
on IBM Linux Cluster.

The performance of MPI_Gather is mainly determined by how much data is re-

ceived by the root process, which is the bottleneck in this operation. Hence the time taken

is expected to be roughly proportional to the total data size for a fixed number of proces-

sors, with the time being slower for larger numbers of processors due to serialization and

contention effects.

Figure 3.33 and Figure 3.34 shows comparison results between MPIBench and

SKaMPI for 32 processors on the SGI Altix and the cluster. Similarly with MPI_Scatter,

MPIBench and SKaMPI agreed with each other. The communication time grows in pro-

portion with the message size for both machines.

 78

10

100

1000

10000

10 100 1000 10000 100000

Size of Data (Byte)

Ti
m

e
(M

ic
ro

se
c)

MPIBench

Skampi

Figure 3.33 : Comparison between MPI benchmarks for MPI_Gather for 32 processors
on SGI Altix

10

100

1000

10000

100000

10 100 1000 10000 100000

Size of Data (Byte)

T
im

e
(M

ic
ro

se
c)

MPIBench

SKaMPI

Figure 3.34 : Comparison between MPI benchmarks for MPI_Gather for 32 processors

on IBM Linux Cluster.

 79

3.11 Alltoall

The final collective communication operation that was measured is MPI_Alltoall,

where each process sends its data to every other process. MPI_Alltoall is measured by

MPIBench, PMB and SKaMPI. Figure 3.35 shows that the results on SGI Altix for 32

processors are similar to scatter but with a sharper increase for larger data sizes. Figure

3.36 shows the same plot for the IBM Linux Cluster, where the times increase with data

size. Again similarly with MPI_Scatter and MPI_Gather, all of the benchmarks agree

with each other within a few percent.

100

1000

10000

10 100 1000 10000 100000

Size of Data (Byte)

T
im

e
(M

ic
ro

se
c)

MPIBench

PMB

Skampi

Figure 3.35 : Comparison between MPI benchmarks for MPI_Alltoall on 32 processors
on SGI Altix.

 80

100

1000

10000

100000

10 100 1000 10000 100000

Size of Data (Byte)

T
im

e
(M

ic
ro

se
c)

MPIBench

PMB

SKaMPI

Figure 3.36 : Comparison between MPI benchmarks for MPI_Alltoall on 32 processors
on IBM Linux Cluster.

3.12 Other Collective Communication

Another collective communication that is measured by PMB, SKaMPI and

MPBench is MPI_Reduce. MPI_Reduce does a reduction operation such as summation of

data distributed over processes and brings the results to the root process. SKaMPI and

MPBench use MPI_SUM as the parameter to MPI_Reduce, and therefore do a global

sum. PMB uses a null operation and therefore only measures the communication in-

volved in the reduction operation, and hence gives very different results to the other two

benchmarks.

3.13 Discussion

This analysis shows that different MPI benchmarks can give significantly differ-

ent results for certain MPI routines particularly on the SGI Altix. This is primarily due to

the Altix having a hierarchical ccNUMA architecture, which can enhance the variations

 81

due to different measurement techniques employed by the different benchmarks. Particu-

larly for point-to-point communications, the variations are due to the different communi-

cations patterns used by the different benchmarks, differences in how averages are com-

puted, errors are handles and how bandwidth is reported. There are also significant ef-

fects due to implementation details of SGI MPI on the Altix, which affects whether single

copy of buffered copy is used, which has a major impact on communications speed.

There are also significant differences in measurements of some collective communica-

tions routines, particularly broadcast, due to differences in use of cache and in synchro-

nizing the calls to the routines on each processor.

MPI benchmarks were designed primarily for use on distributed memory ma-

chines, and the results show that some of the different design decisions made for the dif-

ferent benchmarks can significantly affect the results for ccNUMA shared memory ma-

chines. Users of MPI benchmarks on shared memory machines should therefore be care-

ful in the interpretation of the benchmark results, and developers of MPI benchmarks

may need to make some minor modifications to their codes to provide more accurate re-

sults for ccNUMA machines.

 82

CHAPTER 4

Improvements for MPIBench

4.1 Introduction

 One of the objectives for the comparison analysis between MPI benchmarks that

has been done in Chapter 3 was to identify any weaknesses of MPIBench compared to

other MPI benchmarks and to use this information to make improvements to MPIBench.

The improvements have been implemented by a team of programmers from the Univer-

sity of Adelaide and the South Australian Partnership of Advanced Computing (SAPAC).

The team members are Nor Asilah Wati Abdul Hamid (the author of this thesis), Alex

Chichowski, Tim Seely and Paul Martinaitis. Nor Asilah Wati Abdul Hamid focused on

the specification and testing of the additional functionality and identifying problems and

bugs, and also implemented the user-specified point-to-point pattern and ring pattern.

MPIBench has been tested on the SGI Altix (which uses a CC-NUMA architecture) and

distributed memory architecture with two different types of interconnect, Myrinet and

Ethernet. Many tests were done, which has helped MPIBench to be more portable and

robust. The new version of MPIBench is available online at [2].

This chapter will discuss the improvements that have been done to MPIBench,

based on the results of the MPI benchmark comparison in Chapter 3, The analysis from

the MPI benchmark comparisons revealed several disadvantages in MPIBench and also

in the course of doing the work presented in this thesis some additional useful tools have

been added to MPIBench and a number of bugs and problems have been spotted and

fixed. One of the disadvantages that has been solved is regarding the cache effect,

whether the cache should be used or not during taking of measurements. The procedure

of compiling and running the program also has been improved by adopting the approach

of most of the other MPI benchmarks, by providing a default option for running the

benchmark programs using defaults for configurable parameters such as the range of

message sizes for each communication routine. Several new settings have also been in-

 83

cluded (with default options), including the ability to choose MPI_Wtime instead of the

globally synchronized clock provided by MPIBench,

 Besides improvements to address the weaknesses of MPIBench, several additional

tools have been added: user-specified point-to-point communication pattern; ring pattern

for point-to-point; improved measurement for collective communication; analysis of re-

sults over arbitrary sets of processes; more options to improve the ease of compiling and

running the benchmarks, plotting the message sizes, and producing the output; and more

information for the documentation. Additionally, this chapter also provides results from

testing the new ring communication pattern for point-to-point on an SGI Altix 3000 and

an IBM eServer 1350 Linux cluster, and testing of the clock synchronization mechanism

used by MPIBench by comparing it with an accurate and globally synchronized imple-

mentation of MPI_Wtime. The following sub-sections will explain the details for each

improvement that has been done in MPIBench.

4.2 Cache Effects

Cache effects are more important on modern CPUs, particularly machines with

cache coherent shared memory architecture, for example SGI Altix (refer section 3.6.1).

Typically MPI benchmark programs were developed based on older generation distrib-

uted memory machines, for which cache effects were not as important. However, in re-

cent years more high performance computers have been developed using the architecture

of cache coherent shared memory multiprocessor system. The analysis in Chapter 3

shows that if the message is accessed from the cache, the communication time will be

lower than the communication time without using the cache, where the data must be ac-

cessed from memory.

 There was discussion related to the cache effect from Mierendorff et al. [23] and

they provide useful insights into communication performance issues related to cache ef-

fects on ccNUMA architectures. Noticeably, SKaMPI [62], Mpptest [63] and the new

version of MPBench [64] addresses the cache effect issue and they all have options either

to avoid using the cache or warm-up the cache before measurements are taken. However,

only SKaMPI’s technique affected the results, this is because it clears the cache for every

 84

single repetition, while Mpptest and MPBench only clear the cache when the message

size is changing.

In a real applications, data that needs to be passed between processors may or

may not be in the cache, so there is really no “right” choice for whether or not an MPI

benchmark should place the data in the cache. It is useful to be able to measure results for

data in and out of cache. Note that earlier versions of MPIBench only measured with data

in cache. The above discussion motivated a change in MPIBench, to add the same option

as SKaMPI but with a different technique for ensuring the message data is not in the

cache. In SKaMPI the cache is avoided by generating new message data for each repeti-

tion using random numbers, while in the new version of MPIBench, the use of the cache

is avoided by placing the message data in an array that is much larger than the cache size,

to guarantee that it will be stored in memory. For each repetition, a pointer to a different

part of the array is used for the message data, to avoid the data remaining in cache. Fur-

ther discussion and examples on the cache effect for each MPI benchmark have been ex-

plained in Chapter 3.

4.3 Testing the MPIBench Globally Synchronized Clock

MPIBench provides an accurate and globally synchronized clock. This is enabled

by the existence of 64-bit CPU cycle count registers in modern processors that are incre-

mented on every clock cycle. These can provide greater local timing precision than has

previously been possible. MPIBench also implements a global clock synchronization al-

gorithm based on message passing [8]. In order to facilitate the use of MPIBench on par-

allel computers with CPUs where a 64-bit cycle count is unavailable, the use of the stan-

dard MPI timer, MPI_Wtime, is also provided. However, MPI_Wtime only can be used

on machines where MPI_Wtime is globally synchronized, which can be checked using

the standard MPI parameter MPI_WTIME_IS_GLOBAL, and where the granularity of

MPI_Wtime is acceptably fine, which can be checked using the MPI parameter

MPI_WTICK .

The implementation of MPI_Wtime in the SGI MPI library on the SGI Altix 3000

qualifies or meets the above requirements to be used for MPIBench. This enables us to

 85

do a more precise validation of the globally synchronized clock implemented within

MPIBench than has previously been possible, by checking the consistency between the

MPI benchmark results from using the default MPIBench clock and the results from us-

ing SGI MPI_Wtime.

The tests were done on Aquila, the SGI Altix 3000 described in Section 3.5.1.

MPIBench results were obtained using the globally synchronized implementation of

MPI_Wtime provided by SGI MPI (Figure 4.1) and by using the global clock synchroni-

zation techniques used by MPIBench (Figure 4.2). Note that the averages for the results

obtained using these two different methods are consistent. In each case, the distributions

have very similar overall shapes, the peaks occur at similar times, and the average values

agree very closely. Figure 4.1 and Figure 4.2 show point-to-point communication times

for 2 processors for a small message size (128 bytes), using SGI MPI_Wtime and the

MPIBench clock, respectively. Figure 4.3 and Figure 4.4 show the same pattern for a

large message size (256 Kbytes). There are four obvious peaks shown in Figure 4.1, fol-

lowed by a long tail. In Figure 4.2 there are more peaks and finer details in the distribu-

tion. Figure 4.3 and Figure 4.4 both show a single wide peak, but Figure 4.4 again shows

a finer distribution followed by the long tail.

Based on the above comparisons, the globally synchronized clock provided by

MPIBench gives results that agree with the MPI_Wtime provided by the SGI MPI li-

brary, however the MPIBench clock shows finer details in the distribution results, which

indicates that the MPIBench clock has higher precision than SGI MPI_Wtime. This con-

firms that MPIBench provides a very accurate and globally synchronized clock for its

measurements of MPI performance.

 86

0

500

1000

1500

2000

2500

0.002 0.004 0.006 0.008 0.01 0.012

Time (Milisec)

O
cc

u
rr

en
ce

s

Figure 4.1: Point-to-Point with 2 processors using MPI_Wtime at 128 Bytes.

0

200

400

600

800

1000

1200

1400

0.002 0.004 0.006 0.008 0.01 0.012

Time (Milisec)

O
cc

u
rr

en
ce

s

Figure 4.2 : Point-to-Point with 2 processors using MPIBench approach for global clock
synchronization at 128 Bytes.

 87

0

20

40

60

80

100

120

140

0.12 0.13 0.14 0.15 0.16 0.17 0.18

Time (Milisec)

O
cc

u
rr

en
ce

s

Figure 4.3 : Point-to-Point with 2 processors using MPI_Wtime at 256 Kbytes.

0

10

20

30

40

50

0.12 0.13 0.14 0.15 0.16 0.17 0.18

Time (Milisec)

O
cc

u
rr

en
ce

s

Figure 4.4 : Point-to-Point with 2 processors using MPIBench approach for global clock
synchronization at 256 KBytes.

 88

4.4 Improved Measurement for Collective Communication

Previously, MPIBench measured the average collective communication time by

taking the average time from all the distribution results for all processors. However, in

collective communication the time should be taken from the slowest processor to com-

plete. The new version of MPIBench has been changed to calculate the average time by

taking the maximum time from all processes for each repetition and averaging these re-

sults. SKaMPI also measures collective communication times on each process and uses

the same method to calculate the average time [24]. Note that measurements done using

earlier versions of MPIBench by Grove [8] required a separate analysis to get the correct

results for the average collective communication time.

 Figure 4.5 shows the distribution results for MPI_Bcast for 128 CPUs on Hydra

using Ethernet for 64 KByte message size. If the average time is taken based on the new

measurement it will be approximately 289 ms. However, if using the previous method,

the time will be approximately 100 ms. Another example is shown in Figure 4.6, for

MPI_Alltoall at 64 CPUs for 4 KByte on the same machine. The current reported average

time is 718 ms, however if the average of all the times for all processors is used, it will be

approximately 300 ms.

0

1000

2000

3000

4000

5000

6000

7000

0 100 200 300 400 500 600 700

Time (Milisec)

O
cc

u
rr

en
ce

s

Figure 4.5: MPI Bcast on Ethernet for 128 CPUs at 64KByte.

 89

0

100

200

300

400

500

0 200 400 600 800 100
0

120
0

140
0

160
0

180
0

200
0

220
0

240
0

260
0

280
0

Time (Milisec)

O
cc

u
rr

en
ce

s

Figure 4.6 : MPI Alltoall on Ethernet for 64 CPUs at 4KByte

4.5 User-specified Communication Pattern for Point-to-Point Communications

The communication pattern used to measure point-to-point communication times

in MPIBench is to set up pairs of communicating processors, with processor p communi-

cating with processor (p + n/2) mod n when a total of n processors are used, as shown in

Figure 3.9. Half of the processors send while the other half receive, and then vice versa.

Thus, MPIBench measures not just the time for a ping-pong communication between two

processors, but can also take into account the effects of contention when all processors

simultaneously take part in point-to-point communication. PMB and Mpptest only in-

volve processors 0 and 1. SKaMPI and MPBench use only the first and last processor. A

further explanation and figures on this discussion are provided in section 3.7

 In order to create more flexibility for the point-to-point communication pattern a

new capability has been added to MPIBench which allows users to test any point-to-point

communication pattern easily by listing pairs of communicating processes by their proc-

ess number in an input file. The sequence of process numbers inside the input file should

be as in the following example for 8 processes, which gives the communication pattern

shown in Figure 4.7. Each communication pair should be on a different row of the input

 90

file and the program also checks that all communication pairs are correctly specified, i.e.

each process number is listed once.

0 2

1 3

4 6

5 7

Figure 4.7 : MPIBench User-specified Point-to-Point Communication Pattern

4.6 Ring Pattern for Point-to-Point Communication

Ring communication involves each process sending to the right and receiving

from the left neighbour in the process chain. This is a commonly used communication

pattern for which MPI_Sendrecv is typically used. PMB and SKaMPI provide a meas-

urement for ring communication using MPI_Sendrecv. However, MPIBench uses a dif-

ferent pattern to benchmark MPI_Sendrecv communication, which is the same pattern as

MPI_Send/MPI_Recv. So, in order to facilitate users in measuring the performance for

ring topology and to provide more options for MPIBench, the ring pattern has been added

using MPI_Sendrecv point-to-point communication. The following analysis will discuss

the performance measurement from SGI Altix 3000 and IBM eServer 1350 Linux cluster

on the ring pattern. Note that, for sanity checking the results of both machines we have

compared these with PMB and SKaMPI and agree reasonably well. Figure 4.8 shows the

illustration of ring pattern on a cluster machine for 4 CPUs and 2 CPUs per node.

P1 P2 P0 P7 P6 P5 P4 P3

 91

Figure 4.8 : Ring Pattern for 4 CPU and 2 CPU per node.

Figure 4.9 shows the average time on SGI Altix 3000 using ring pattern for up to

64 CPUs. The results for different numbers of processors clearly illustrate the non-

uniform memory architecture of the Altix. For 4 processors the time is for internode

communication within a C-Brick, which is approximately 0.009 ms for a 1 KByte mes-

sage. The results for 8 processors and 16 processors are about the same, around 0.011 ms,

since both communicate between C-Bricks and in the same R-Brick. Communication be-

tween 32 processors is done directly between R-Bricks, and takes around 0.015 ms. Re-

sults for 64 processors involve communication between R-Bricks through a meta-router,

which is only marginally slower than direct communication between R-Bricks, however

the results for MPI_Sendrecv are significantly slower, taking approximately 0.039 ms for

a 1 KByte message. It is surprising that the results for 64 CPUs are almost constant with

message size up to 128 Kbytes. At 256 KByte the results merge together for the different

numbers of CPUs, taking around 0.08 ms, and these results are similar to sendrecv results

using SKaMPI and PMB.

Figure 4.10 shows the average time for Myrinet on Hydra using ring pattern up to

64 CPUs. The results for different numbers of CPUs are closer to each other than the SGI

Altix, probably because of the more uniform Myrinet network architecture. The results

for different numbers of CPUs start to differ after 64 Kbyte, where the difference is ap-

proximately up to 10% and the difference is growing as the message size increases, up to

20% at 4 MBytes. The difference is higher particularly between small and large number

of CPUs, for example between 4 and 64 CPUs. The increasing difference is suspected to

be due to more contention occurring in Myrinet switches for larger data transfer, and per-

haps contention on the network interface on each node.

0 1 2 3

 92

Figure 4.11 and Figure 4.12 show the distributions of communication times for 4

CPUs and 256KByte messages on SGI Altix and Myrinet on Hydra, respectively. No-

ticeably, both figures show 2 main peaks, presumably representing times for intranode

and internode communication. Note that the peaks for Myrinet on Hydra show slight

double peaks, perhaps because the full bidirectional bandwidth is not obtained for

MPI_Sendrecv for Myrinet with GM, so the send and recv are serialized. Grove [8] found

the same problem with Myrinet on a cluster of Sun E420R SMP servers. He postulated

that the reason for the limitation of Myrinet with GM layer is that the bidirectional mes-

sage-passing is serialized in the GM layer implementations.

In Figure 4.11 the average time reported for SGI Altix at 256KByte is 0.08ms.

The first peak, which is for process 1 and process 2, is at 0.05ms, while the second peak

at 0.13ms is for process 0 and process 3. The result for send/recv for 2 CPUs at the same

message size is approximately 0.14 ms, while the result using Single Copy option is 0.04

ms. So it may be that the first peak in Figure 4.11 is representing unbuffered communica-

tion for 2 CPUs, while the time for the second peak is for buffered communication. The

average time reported by MPIBench is 0.08 ms, which is the average of the time for the

two peaks. SKaMPI and PMB give approximately the same average time.

The average time for Myrinet on the Linux cluster for 4 CPUs at 256 KByte is

2.15ms. This result is similar to the results from SKaMPI and PMB. The result is midway

between the two main peaks in Figure 4.12, where the first peak is at 0.5 ms, while the

second peak is at 3.5 – 4 ms. The gap between the two peaks is larger for Myrinet on the

Linux cluster compared to the SGI Altix. This illustrates the difference in the architecture

between cluster and shared memory machines, since the cluster has a much bigger differ-

ence in internode and intranode communications than the shared memory machine. The

same pattern as in SGI Altix obtained here, which is the first double peak is for process 0

and followed by process 3, while the second double peak is represented by process 1 and

followed by process 2.

 Some of the results for MPI_Sendrecv are difficult to understand, and more time

than was available for this work would be required to be certain of the explanation for

these results. Future work beyond the scope of this thesis could include a more detailed

analysis of the MPIBench results for MPI_Sendrecv for ring communication.

 93

0.001

0.01

0.1

1

10

16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4

32
76

8

65
53

6

13
10

72

26
21

44

52
42

88

10
48

57
6

20
97

15
2

41
94

30
4

Size of Data (Byte)

Ti
m

e
(M

ili
se

c)

4P 8P 16P

32P 64P

Figure 4.9 : Average times for MPI_Sendrecv with Ring pattern from 4 to 64 CPUs on
SGI Altix.

0.01

0.1

1

10

100

16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4

32
76

8

65
53

6

13
10

72

26
21

44

52
42

88

10
48

57
6

20
97

15
2

41
94

30
4

Size of Data (Byte)

T
im

e
(M

ilis
ec

on
ds

)

4p 8p 16p

32p 64p

Figure 4.10 : Average times for MPI_Sendrecv with Ring pattern from 4 to 64 CPUs on
IBM Linux Cluster.

 94

0

50

100

150

200

250

300

0 0.05 0.1 0.15 0.2 0.25

Time (Milisec)

O
cc

u
rr

en
ce

s

Figure 4.11 : Distribution for 4 CPUs on SGI Altix at 256KByte.

0

100

200

300

400

500

600

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Time (Milisec)

O
cc

u
rr

en
ce

s

Figure 4.12 : Distribution for 4 CPUs for Myrinet on Hydra at 256KByte.

 95

4.7 Programming Errors Fixed

A few problems in the original MPIBench code were observed during the meas-

urements taken for collective communication on IBM eServer 1350 Linux cluster. Some

of these had a big effect on the results. In certain cases, the previous MPIBench code took

some shortcuts such as hardcoding certain values, for example values used to specify out-

liers, that should have been configurable or handled more flexibly. This caused errors in-

cluding NaNs (Not a Number) for some results, particularly for collective communica-

tion. Thus, the solution to these problems was to make the code more general or with less

restrictions.

Secondly, there were bus errors that would sometimes occur for MPI_Scatter.

Our analysis found that the bus error was due to a memory allocation error and this has

now been fixed. Furthermore, there was a problem found during the measurement for

MPI_Send/Recv with the SGI Altix. It is not strictly a bug, but it caused problems for

measurements using SGI MPI (refer to section 3.7.1). The problem is that while most of

the benchmarks gave the expected improvement in performance by using the Single Copy

option (non-buffered communication), the results for SKaMPI and MPIBench were the

same as for the default MPI setting that uses buffered copy. The problem was due to both

SKaMPI and MPIBench using the same array to hold send and receive message data. The

MPIBench code was changed to use different arrays, which fixed the problem.

4.8 Analysis of results over arbitrary set of processes

 The previous version of MPIBench was only capable of producing combined re-

sults from all the processes. The outputs are the summary of the average time for each

message size, the histograms (distribution data), the gnuplot script (for plotting results)

and the raw data (which is called the subsample file).

In some cases, particularly for analyzing the performance of collective communi-

cations, it would be more useful, and more in depth analysis can be done, if separate re-

sults from each of the processes could be revealed. Hence, the new version provides op-

tions whereby the users can choose which process (or processes) they would like to pro-

duce the results. With this option more detailed analyses have been done that have pro-

 96

vided us with useful information about performance issues for both point-to-point and

collective communications. Some of these findings have been reveal in the previous and

in the next chapters. Examples of these results for point-to-point are in section 5.4.1,

while results in section 5.6 are for collective communication.

4.9 Added Options to Ease of Use

 There were several additional changes to improve the ease of use of MPIBench.

Part of the changes is the auto configuration, which eases the compilation task. The auto

configuration included handling the two main platform specific settings that affect port-

ability of MPIBench, which are the mechanism for binding a process to a CPU (which is

specific to the particular operating system), and for using a clock cycle counter for the

MPIBench timer (which is specific to the particular CPU architecture). There were a few

more options that have been considered in the auto configuration which can be referred to

in [2].

 Another option is the choice of message sizes for the measurements. Previously

the message size is manually selected by choosing the minimum size, an increment value,

and the maximum size. However, this selection will often provide too long a list of mes-

sage sizes. The newer version provides more options, including the option of increasing

the message size exponentially, e.g. by factors of 2. This method is often used by other

well-known MPI benchmarks [17, 19, 21, 65]. MPIBench also sets default message sizes

in a script to run MPIBench, so that the user can run MPIBench without having to specify

the message sizes by themselves.

 Besides all the above, the newer version also provides more information (and up-

dated information) for the documentation. This is also important since it helps users to

understand how the benchmark works and be aware of all the available options.

4.10 Future Work in MPIBench

MPIBench is a new MPI benchmark software that provides a more useful tool in

helping researchers to analyse in detail the message-passing communication behavior of

an MPI implementation on a particular parallel computer. The work described in this

 97

chapter has improved the functionality, ease of use, robustness and portability of

MPIBench. Furthermore, Section 2.4 explained that MPIBench was designed to handle

clusters of SMP nodes better than other MPI benchmarks, while Chapter 3 and Chapter 7

show that it works well for SMP machines. Since multi-core processors are similar to

SMP nodes, MPIBench should be able to handle these new processor architectures with

no change needed.

Based on our use of MPIBench and analysis of other MPI benchmarks, here are a

few more suggestions for improving MPIBench that have not yet been implemented.

1. The adaptive message refinement tools that focus on message sizes where the com-

munication time is changing rapidly, as in Mpptest and SKaMPI.

2. More MPI communication routines should be added to give more choices to the user,

particularly for the collective communication.

3. Making available a variety of common communication patterns would also be useful.

4. Providing estimates of errors in the average results.

5. User-specified calculation of average time for the ring pattern, calculated based on

the average time of the overall processes or the average time of the slowest processes.

 98

CHAPTER 5

Averages, Distributions and Scalability of MPI Communication
Times for Ethernet and Myrinet Networks

5.1 Introduction

Most modern parallel computers are clusters using Myrinet or Ethernet communi-

cation networks. Several studies have been published comparing the performance of these

two networks for parallel computing, however these focus on average performance, and

do not address the distributions of communication times, which can have long tails due to

contention effects. In the case of Ethernet with TCP, retransmit timeouts (RTOs) can also

occur. Slow communication events may have significant impact, particularly for applica-

tions requiring frequent synchronization, where the performance is determined by the

slowest process. This chapter will analyse the distributions of communication times for

standard MPI routines on Ethernet with TCP and Myrinet with GM communications net-

works on the same cluster, and study the scalability of the distributions as the number of

communicating processes is increased, and the effect of RTOs for Ethernet with TCP.

In the past few years, commodity clusters have become the dominant architecture

for high-performance computing. Currently most clusters are connected by an inexpen-

sive commodity Ethernet network (usually 100 Mbit/s Fast Ethernet or 1 Gbit/s Ethernet,

although 10 Gbit/s Ethernet is on the horizon) or by a more expensive network with

higher bandwidth and lower latency (When this work began, Myrinet was the most com-

mon fast interconnect, although recently Infiniband has overtaken it). Most parallel pro-

grams that run on clusters use the Message Passing Interface (MPI) for communicating

data between nodes of the clusters. It is therefore of great interest to compare the per-

formance of MPI communication routines between different cluster communication net-

works, and in particular the two most common such networks, Ethernet and Myrinet.

It is well known that Myrinet with GM has significant advantages over Fast

Ethernet with TCP, having much higher bandwidth (1.2 Gbit/s compared to 100 Mbit/s)

 99

and much lower latency (around 10 microseconds compared to around 100 microseconds

for Fast Ethernet). Gigabit Ethernet has similar bandwidth to Myrinet, although the la-

tency is little better than Fast Ethernet, since much of the latency is due to software over-

head from the use of TCP. Some work has been done on improving Ethernet with TCP

performance by developing alternative lightweight communication protocols, or by cus-

tomizing the configuration of Ethernet drivers or default TCP settings (which are tuned

for use over wide-area networks rather than clusters), however most Ethernet clusters use

standard Ethernet and TCP. One of the problems with using TCP for communication on a

cluster is that the system must wait for a specified time, known as the Retransmit Time-

out (RTO), before deciding that a packet has been dropped, and retransmitting it. By de-

fault this time is very large relative to interprocessor communication times on a cluster,

since is tuned for communication over a wide-area network between machines on the

Internet. One of the goals of this work was to investigate in more detail the effect of these

RTOs on Ethernet performance, and how much could be gained from reducing the effects

of RTOs.

This chapter provides a comparison of the performance of MPI communications

for Myrinet with GM and Fast Ethernet with TCP networks on the same cluster. The

analysis will involve the results for both point-to-point and collective communications for

up to 200 CPUs (100 dual CPU nodes), which allows in depth analysis on the scalability

of the two networks to large numbers of processors. Unlike performance comparisons

using traditional MPI benchmarks, which are only able to measure average communica-

tion times, the benchmark software used for this analysis is MPIBench [1,2], a recently-

developed MPI benchmark that allows measurement of distributions of communication

times. The distinguishing feature of this MPI benchmark is that it uses a very accurate,

globally synchronized clock that is based on CPU cycle counters. This allows accurate

measurement of individual MPI communications. MPIBench is therefore able to provide

distributions of communication times, rather than just the average values. Also, rather

than using a simple two-processor ping-pong for point-to-point communications,

MPIBench measures results for N processors communicating concurrently, and can there-

fore measure the effects of network contention. For collective communications, it can

measure the different completion times for each process. This provides greater insight

into the effects of contention on network performance, the variation of communication

 100

times, and particularly the occurrence and impact of retransmit time-outs (RTOs) in

Ethernet networks. For applications requiring frequent synchronization, the effects of

slow communication times (i.e. the tail of the distribution, and in particular Ethernet

RTOs) could have significant effects, particularly for large numbers of processors.

New clusters have Gigabit Ethernet rather than Fast Ethernet networks. Unfortunately we

did not have dedicated access to a cluster with Myrinet and Gigabit Ethernet for this

work, however many of the main issues addressed in this chapter, such as comparison of

distributions of communication times and how RTOs affect Ethernet performance, would

apply just as well to Gigabit Ethernet networks, although the values of communication

times would be different. Gigabit Ethernet also supports Jumbo Frames [164, 165], which

are Ethernet frames with more than the standard 1,500 bytes of payload (MTU). Most of

the Gigabit Ethernet switches and interface cards support Jumbo Frames. However, all

Fast Ethernet switches and interface cards support only standard-sized frames [164, 165].

The use of Jumbo Frames in Ethernet may improve MPI performance on Ethernet and

reduce the effects of RTOs, however we were unable to test this because Fast Ethernet

does not support Jumbo Frame. In future, we plan to include this test as part of our analy-

sis of the MPI performance of Gigabit Ethernet networks.

5.2 Related Work

Many researchers have used standard MPI benchmarks to measure and compare

the performance of Ethernet and Myrinet networks for MPI communications, although

the number of published papers describing and analysing such results is fairly small. Al-

most all of these publications (e.g. [4,5,6,7]) measure only the average times for point-to-

point (ping-pong) communications between two nodes, and do not analyse contention

effects (due to multiple processes communicating concurrently) or the performance of

collective communications. Grove et al. [3] have studied the effects of TCP Retransmit

Timeouts (RTO) on MPI communications over Ethernet networks, however this paper is

mostly focused on comparing the performance of two different cluster network topolo-

gies and only presents results for MPI_Alltoall for collective communications [3]. Many

papers (e.g. [3,4,5,6]) also compare network performance using applications benchmarks

 101

such as the NAS Parallel Benchmarks, although most results are for small numbers of

processors, typically 16 CPUs or less, so scalability issues are not really addressed. Some

papers have analysed the effects of tuning Ethernet drivers or TCP configuration to im-

prove MPI performance on Ethernet networks [3,4]. The work presented in this chapter

compares the performance of point-to-point and collective MPI communications for up to

200 CPUs (100 dual processor nodes), using MPIBench to measure the distributions of

communication times, which gives more insight into network performance, particularly

contention problems and RTOs.

Grove [8] has used MPIBench to compare the MPI performance (including distri-

butions of communication times) of Ethernet and Myrinet networks, but these were not

direct comparisons since the Ethernet results were for a dual Pentium III cluster running

Linux, whereas the Myrinet results were for a cluster of 4-way Sun E420R servers with

SPARC 2 CPUs running Solaris. This analysis will compare Ethernet with TCP versus

Myrinet with GM performance on the same Linux PC cluster. The results from Grove’s

comparisons, and similar work by Grove et al. [9] comparing the performance of differ-

ent Ethernet network topologies in commodity clusters, showed that there were signifi-

cant problems with the performance of collective communications in MPICH version

1.2.0 on Fast Ethernet networks, primarily due to the effect of TCP Retransmit Timeouts

when the network becomes saturated. However, later versions of MPICH feature much

improved algorithms for collective communication routines [11], which should give

much better performance on Ethernet networks and perhaps reduce the number of RTOs.

In this chapter the results are from the latest version of MPICH.

5.3 Methodology

 The measurements reported in this chapter were done on an IBM eServer 1350

Linux cluster with 128 compute nodes connected by a Myrinet 2000 network as well as a

100 Mbit/s Fast Ethernet network. More details on this system were given in section

3.5.2. The cluster nodes were running Redhat Enterprise Linux version 3.2.3-47 with

kernel 2.4.21-27.ELsmp of the Myrinet drivers, MPICH-GM version 1.2.6..14a was used

 102

with the Myrinet and MPICH version 1.2.6 for the Ethernet network. All compilations

were performed with gcc v3.2.3.

Measurements of MPI communication times were obtained using MPIBench

[1,2,8]. All measurements were run with dedicated access to the cluster, so there were no

other processes affecting the results. At the time the measurements were taken, not all of

the nodes were usable, so the analyses only took measurements for up to 100 nodes (200

CPUs). The measurement used 2 CPUs per node, with 1000 repetitions of each of the

MPI operations except for MPI_Alltoall (the slowest operation) where 100 repetitions

were used. Note that the number of repetitions affects the total number of occurrences on

the figures showing the distributions of communication times, in particular there will be

smaller numbers for MPI_Alltoall than for other MPI communications. MPIBench was

run so that the message data was in cache memory.

5.4 Point-to-Point Communication

MPIBench measures not just the time for a ping-pong communication between

two processors, but can also take into account the effects of contention when all proces-

sors simultaneously take part in point-to-point communication. As mentioned in section

3.7, MPIBench sets up pairs of communicating processors, with processor p communicat-

ing with processor (p + n/2) mod n when a total of n processors are used. Half of the

processors send while the other half receive, and then vice versa. The send/receive pairs

are chosen to ensure that for a cluster of SMPs or a hierarchical communications net-

work, the performance of the full communication hierarchy can be measured.

5.4.1 Send/Receive

Figure 5.1 shows the average completion times for MPI_Send/MPI_Recv between

Myrinet and Ethernet. The results for Fast Ethernet are about 10 times higher than Myri-

net. For small message sizes this is due to the higher latency of Ethernet and the software

overhead of TCP compared to the GM protocol used by Myrinet. For higher message

sizes the difference is primarily due to the difference in bandwidth for each network, i.e.

 103

100 Mbits/s for Fast Ethernet and 1.2 Gbit/s for Myrinet 2000. For a Gigabit Ethernet

network, the results for larger messages would be much closer.

Note that the Myrinet performance for different numbers of CPUs is very similar,

which illustrates the scalability of the Myrinet fat tree architecture, where the switch la-

tencies are low and the available bandwidth stays constant throughout the switch hierar-

chy. However, for Ethernet there is a jump between 64 and 128 CPUs, which is due to the

communication no longer being between processors connected by a single switch. Once

this occurs, the Gbit Ethernet connection between switches becomes a bottleneck.

0.01

0.1

1

10

100

0 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4

32
76

8

65
53

6

13
10

72

Size of Data (Byte)

T
im

e
(M

ili
se

c)

4-MY 16-MY

64-MY 128-MY

200-MY 4-ET

16-ET 64-ET

128-ET 200-ET

Figure 5.1 : Average Time for MPI_Send/MPI_Recv on Myrinet (MY) and Ethernet
(ET).

Figure 5.2 shows the distribution of point-to-point times for 16 KByte messages

on 128 CPUs using Myrinet. It shows the average is around 0.15ms and the long tail goes

until approximately 1ms. Figure 5.3 shows the distribution of point-to-point communica-

tion times for 64 Kbyte messages on 128 CPUs using Myrinet. It shows that for large

message sizes and numbers of CPUs, there is a wide range of completion times, due to

 104

contention effects and possibly other effects such as operating system interrupts. The

minimum time is a little under 0.5 ms and the average is around 0.6 ms, and although

most results are between 0.4 and 0.8 ms, there is a long tail to the distribution and some

communications take several times longer than the average value. Other work [1,8,9] has

shown that the distributions of point-to-point communication times across a variety of

communications networks (including Ethernet and Myrinet) approximate a log-normal

distribution.

Figure 5.4 shows the distribution of point-to-point times for 16 KByte messages

on 128 CPUs for Fast Ethernet network. The average is approximately 8ms. Interestingly,

there is a small distribution after 200 ms, which is due to the TCP Retransmit-Timeout

(RTO). Then, there is also a single distribution after 600 ms, which due to a communica-

tion pair that is occasionally very slow. Figure 5.5 shows the distribution of point-to-

point communication times for 64 Kbyte messages on 128 CPUs for the Fast Ethernet

network. There is a main peak around the average time of 25msec, and the log-normal

tail that goes out to about 5 times the average time. Then there is a gap which repeats the

same pattern as in Figure 5.4, with a small peak at 225 ms followed by a reasonably long

tail, then more results starting around 425 ms and 625 ms. This is due to the effect of the

TCP Retransmit-Timeout (RTO), which the TCP specifications [3] say should be given

by:

RTO = SRTT + 4 * RTTVAR

RTO is the Retransmit-Timeout, SRTT is the Smoothed Round-Trip Time and

RTTVAR is the Round-Trip Time Variation. Both SRTT and RTTVAR are sampled and

measured in the TCP stack. For MPI communications on clusters RTTVAR is quite small

(unlike the variation in times for TCP packets over the Internet), however in the Linux

TCP implementation the minimum time for 4 * RTTVAR is set to 200 msec. This makes

the RTO approximately RTT + 200 msec for Linux. Therefore the peak at 225 msec in

Figure 5.4 corresponds to the RTO, being the average communication time (SRTT = 25

msec) plus the 200 msec minimum value for 4 * RTTVAR set by the Linux kernel. The

results starting around 425 msec and 625 msec are presumably caused by communica-

tions that suffer 2 or 3 RTOs before finally being completed. Therefore the default 200

 105

msec timeout value set in Linux means that some point-to-point communications take a

very long time (over 20 times the average value), although in most cases the impact on

the average communication time will be fairly small, since only a small percentage of

communications suffer a timeout. However for some synchronous applications where

progress is determined by the completion time of the slowest process, this may have a

significant effect.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 0.3 0.6 0.9 1.2

Time (Milisec)

O
cc

u
rr

en
ce

s

Figure 5.2 : Distribution of MPI_Send/Recv for Myrinet at 128 CPUs for 16 KByte.

 106

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 1 2 3 4 5

Time (Milisec)

O
cc

u
rr

en
ce

s

Figure 5.3: Distribution of MPI_Send/Recv times for Myrinet at 128 CPUs for 64
KByte.

0

1000

2000

3000

4000

5000

6000

7000

0 100 200 300 400 500 600 700

Time (Milisec)

O
cc

u
rr

en
ce

s

Figure 5.4 : Distribution of MPI_Send/Recv times for Ethernet at 128 CPUs for 16
KByte.

 107

0

1000

2000

3000

4000

5000

6000

7000

8000

0 200 400 600 800 1000 1200

Time (Milisec)

O
cc

u
rr

en
ce

s

Figure 5.5 : Distribution of MPI_Send/Recv for Ethernet at 128 CPUs for 64 KByte.

In order to analyze the effect of RTO with no communication on the central

switch, a check of the performance for less than 32 nodes (64 CPUs) is needed. The re-

sults showed that there were no occurrences of RTO for 64 CPUs and below for point-to-

point communications. This shows that the bottleneck and contention problem at the cen-

tral switch, and the 1 Gbit uplinks to the central switch, would be one of the main causes

of RTO.

For any Ethernet network, the amount of RTOs will depend a lot on the network

architecture. Grove [8, 9] did a comparison between two different cluster computers

(Perseus and Bunyip), which both used 100 Mbit/s Ethernet but had very different

switching and network topology. Perseus contained 116 dual processor nodes and was

connected with a conventional stacked switch architecture by using a proprietary high

speed link of 2.1 GB/s per switch, while Bunyip consisted of 96 dual processor nodes

connected using Hewlett Packard ProCurve 400M Fast Ethernet switches configured in a

novel tetrahedral interconnection architecture [9]. The switch used on Perseus showed a

significant decrease in performance as the amount of traffic in the network was increased.

In contrast, Bunyip’s switches performed well with only a marginal increase in comple-

tion times, even with a significant number of communicating processes. Bunyip had a

 108

better architecture with less bottlenecks and therefore had less RTOs than Perseus, and

consequently better MPI communications performance.

 The rest of this sub-section discusses the scalability issues for the distributions of

Point-to-Point communications as the number of processes is increased for Ethernet and

Myrinet. As the message size and the number of processors is increased, the distributions

of communication times broaden and the tail of the distribution gets longer, giving an in-

creased proportion of communications that take much longer than the average time. The

following analysis aims to provide a more quantitative analysis of this phenomena for the

two different networks.

Two different approaches were taken in analyzing the tails of the distributions.

The first was to measure the percentage of occurrences that were more than a factor of n

times the minimum communication time, for n=2,3,4,… This analysis will give a com-

parison of the breadth of the distribution and the length of its tail, both of which give an

indication of contention effects.

The second approach is to compute the percentage of measured communication

times that are more than n standard deviations from the average time, i.e. tmean+(n * Std.

Dev.) where n=1,2,3,4,… The rationale behind this analysis is to illustrate the skewed-

ness of the distributions, and show long tails that might indicate deviation from the ex-

pected log-normal distribution.

The analyses were done for 8, 32 and 128 CPUs and at 16 KByte, 64 KByte and

256KByte. Figure 5.6 shows an example of the point of Min, Mean and Standard Devia-

tion for 32 CPUs at 16 KByte for Myrinet.

 109

0

200

400

600

800

1000

1200

1400

1600

0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.28 0.3 0.32 0.34 0.36 0.38 0.4

Time (Msec)

O
cc

u
rr

en
ce

s

Figure 5.6: Examples of the calculation of Min, Mean and Std. Dev. for 32 CPUs at 16
KByte for Myrinet

Table 5.1 and Table 5.2 show the percentage of times that are greater than n *

Min and smaller than (n+1) * Min, for both Myrinet and Ethernet. Interestingly, for 32

CPUs for all message sizes Ethernet shows a smaller percentage of times >2 * min com-

pared to Myrinet. This is possibly due to the contention that occurs during communica-

tion between switches, note that for Myrinet there are only 8 nodes (16 CPUs) per switch

compared to 32 nodes (64 CPUs) per switch for Ethernet. However, for 128 CPUs the

results for Myrinet remain about the same, whereas for Ethernet percentage of times that

are >2 * min increases dramatically. Ethernet performs badly because of the communica-

tion between switches for 128 CPUs. As mention in the above section, the occurrences of

Mean + Std. Dev.
(Mean + 0.031 = 0.217)

Mean
(0.186)

Min
(0.136)

Mean – Std. Dev.
(Mean - 0.031 = 0.155)

 110

RTOs and more contention occur for Ethernet when there is communication between

switches.

Table 5.3 and Table 5.4 show the percentage of communication times that are be-

tween than the mean plus n times the standard deviation and the mean plus (n+1) times

the standard deviation, for n = 1,2,3,4 on Myrinet and Ethernet. The results are surpris-

ingly similar, probably because the Ethernet results have RTOs that increase the standard

deviation. Myrinet has a slightly higher percentage of values that are close to the average.

Based on the scalability analyses and discussion in this section, it can be con-

cluded that Ethernet performance is reasonably good for communication between proc-

esses on a single switch, however it experiences a significant amount of contention and

RTOs for communication between switches. Myrinet performs well and scales well even

for communication between switches, but still experiences some variation in communica-

tion times, presumably due to contention, particularly for larger number of CPUs.

 8 CPUs 32 CPUs 128 CPUs

 16 KB 64 KB 256 KB 16 KB 64 KB 256 KB 16 KB 64 KB 256 KB

Time < 2x Min

100 100 99.99 95.93 75.57 71.76 92.51 72.53 54.96

2 x Min > Time
< 3 x Min

0 0 0.01 4.07 20.09 19.59 5.56 19.68 30.13

3 x Min > Time
< 4 x Min

0 0 0 0 1.68 5.05 0.58 4.84 7.42

4 x Min > Time
< 5 x Min

0 0 0 0 2.51 0.06 0.57 1.23 3.66

5 x Min > Time
< 6 x Min

0 0 0 0 0.14 2.60 0.53 0.65 1.81

Time > 6 x Min

0 0 0 0 0.01 0.94 0.25 1.07 2.03

Table 5.1 : Percentage of times that are greater than n times and smaller than n+1 times
the minimum values for Myrinet.

 111

 8 CPUs 32 CPUs 128 CPUs

 16 KB 64 KB 256KB 16 KB 64 KB 256KB 16 KB 64 KB 256KB

Time < 2x Min

100 99.96 99.61 99.97 99.71 99.43 26.90 14.22 10.22

2 x Min > Time
< 3 x Min

0 0 0.39 0.03 0.28 0.57 30.23 28.94 13.02

3 x Min > Time
< 4 x Min

0 0 0 0 0 0 26.34 23.17 22.37

4 x Min > Time
< 5 x Min

0 0 0 0 0.01 0 9.92 16.26 23.50

5 x Min > Time
< 6 x Min

0 0.01 0 0 0 0 2.92 8.17 15.94

Time > 6 x Min

0 0.03 0 0 0 0 3.68 9.24 14.95

Table 5.2 : Percentage of times that are greater than n times and smaller than n+1 times
the minimum values for Ethernet.

 8 CPUs 32 CPUs 128 CPUs

 16 KB 64 KB 256
KB

16 KB 64 KB 256
KB

16 KB 64 KB 256
KB

Time <
mean +(1xStd)

84.60 83.65 97.49 90.91 90.91 90.72 90.66 88.92 88.81

mean +(1xStd)
< Time <
mean +(2xStd)

14.56 16.34 2.40 3.73 3.73 5.68 5.66 7.39 7.54

mean +(2xStd)
< Time <
mean +(3xStd)

0.59 0.01 0.08 2.42 2.42 0.14 1.78 2.05 2.43

mean +(3xStd)
< Time <
mean +(4xStd)

0.19 0 0.03 2.45 2.45 3.45 0.42 0.97 1.08

Time >
mean +(4xStd)

0.06 0 0 0.49 0.49 0.01 1.49 0.67 0.14

Table 5.3 : Myrinet, percentage for average plus standard deviation for n = 1,2,3,4.

 112

 8 CPUs 32 CPUs 128 CPUs

 16 KB 64 KB 256
KB

16 KB 64 KB 256
KB

16 KB 64 KB 256
KB

Time <
mean +(1xStd)

87.34 71.20 77.28 89.95 83.58 80.09 92.66 90.39 86.48

mean +(1xStd)
< Time <
mean +(2xStd)

11.40 28.77 22.59 0.97 10.63 13.13 6.11 8.53 13.52

mean +(2xStd)
< Time <
mean +(3xStd)

1.19 0 0.04 5.87 3.52 6.69 0.97 0.96 0

mean +(3xStd)
< Time <
mean +(4xStd)

0 0 0.06 3.01 2.26 0.05 0.12 0.12 0

Time >
mean +(4xStd)

0.08 0.04 0.03 0.21 0.01 0.05 0.14 0 0

Table 5.4 : Ethernet, percentage for average plus standard deviation for n = 1,2,3,4.

5.4.2 Combined Send and Receive

Most communication networks are capable of providing the same bandwidth if

messages are sent simultaneously in both directions on the same communications link.

MPI_Sendrecv provides a good way of testing that the MPI implementation can indeed

provide this bidirectional bandwidth. MPIBench uses the same communication partners

for MPI_Sendrecv and MPI_Send/MPI_Recv, so if the MPI implementation can make

full use of duplex communication links, the results for these two measurements should be

similar. However all of the results for MPI_Sendrecv, for both Ethernet and Myrinet, give

results that are approximately a factor of 2 larger than the MPI_Send/MPI_Recv results

shown in Table 5.5, indicating that the duplex capability of these networks is not being

utilized. This may be due to limitations of the nodes, perhaps caused by bottlenecks in the

network interface cards or memory accesses.

Grove [8] found the same problem with Myrinet on a cluster of Sun E420R SMP

servers and with QsNet on the AlphaServer SC. He postulated that the reason for the

limitation of Myrinet with GM layer is that the bidirectional message-passing is serialized

 113

in the GM layer implementations. For QsNet, Petrini et al. [13] suggest that PCI bottle-

necks and DMA contention between system memory and the network interface are the

cause of the unexpectedly poor performance.

The distributions for MPI_Sendrecv on Myrinet and Ethernet are very similar to

MPI_Send/MPI_Recv. For Ethernet, RTOs occur for more than 64 CPUs, where inter-

switch communication is required, and this affects the average communication time.

There are no RTOs for less than 64 CPUs. So, the comparison of Myrinet and Ethernet

for MPI_Sendrecv is basically the same as for MPI_Send/MPI_Recv. Figure 5.7 shows

the average time on Ethernet and Myrinet for MPI_Sendrecv. Note that the pattern of the

figure is the same as MPI_Send/MPI_Recv (Figure 5.1) except that the values are in-

creased by approximately a factor of two.

0.01

0.1

1

10

100

1000

0 1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4

32
76

8

65
53

6

1E
+

05

3E
+

05

Size of Data (Byte)

T
im

e
(M

ili
se

c)

4-MY 16-MY

64-MY 128-MY

200-MY 4-ET

16-ET 64-ET

128-ET 200-ET

Figure 5.7 : Average Time for MPI_Sendrecv on Myrinet (MY) and Ethernet (ET).

 114

 Ethernet Myrinet

No. of

CPU

MPI Send /

MPI_Recv

MPI_Sendrecv MPI Send /

MPI_Recv

MPI_Sendrecv

4 30.19 59.65 2.29 3.62

16 33.46 62.99 2.27 3.61

64 33.46 66.61 2.90 4.96

128 119.85 230.31 2.74 5.09

200 134.64 261.86 2.74 5.21

Table 5.5 : Comparison for MPI_Send/MPI_Recv and MPI_Sendrecv Between Myrinet
and Ethernet for 256 KByte messages.

5.5 Barrier

Figure 5.8 shows the comparison of times for MPI_Barrier. As expected, the time

grows approximately logarithmically with the number of processors, although Ethernet is

approximately 4-5 times slower than Myrinet. The reason for the big jump in the Ethernet

result for 200 CPUs is probably due to a different algorithm being used in MPICH 1.2.6

code when the number of CPUs is not a power of two [69], although this is not noticeable

for smaller number of CPUs, for example 40 or 48 CPUs. Figure 5.9 shows the distribu-

tion of the communication times for Ethernet for 64, 128 and 200 CPUs. The peak for

200 CPUs corresponds to the average value, so it shows that the jump in the average

value is not due to some anomalous large values or RTOs that are dragging up the aver-

age, which can cause results such as this, as will be seen in the next section. Figure 5.10

shows that MPI_Barrier on Myrinet performs as expected, with the completion time

gradually increasing as more processes participate.

 115

0

0.5

1

1.5

2

2.5

3

3.5

2 4 8 16 32 64 128 200

No. of CPUs

T
im

e
(M

ili
se

c)

Myrinet

Ethernet

Figure 5.8 : Average time for MPI_Barrier Myrinet and Ethernet.

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

0 0.5 1 1.5 2 2.5 3 3.5 4

Time (ms)

O
cc

ur
an

ce
s

64 CPUs
128CPUs
200 CPUs

Figure 5.9 : Distribution of MPI_Barrier times for Ethernet at 64,128 and 200 CPUs.

 116

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0.1 0.2 0.3 0.4 0.5 0.6 0.7

Time (ms)

O
cc

ur
en

ce
s

64 CPUs

128 CPUs

200 CPUs

Figure 5.10 : Distribution of MPI_Barrier times for Myrinet at 64,128 and 200 CPUs.

5.6 Broadcast

MPICH 1.2.6 uses a new broadcast algorithm [11,69]. For small message

size(<12KByte) and for less than 8 CPUs the binomial tree algorithm is used, while for

medium (12KByte < medium < 512KByte) and long message size (>512KByte) it uses

the scatter followed by allgather algorithm. Furthermore, the allgather algorithm for me-

dium message size and for power of two number of processes uses the recursive doubling

algorithm, while for medium message size and for non power of two number of processes

and also for long message size, the ring algorithm is used.

Figure 5.11 and Figure 5.12 show the average completion time for MPI_Bcast for

Myrinet and Ethernet. The average times for both networks increases gradually as the

message size and number of processes is increased. For 200 CPUs both networks show

the same pattern, with a jump at 1 KByte and again at 16 KByte. The precise reason for

the jump at 1 KByte is still unknown, but a similar jump for 48 and 80 CPUs is also ob-

served. So, it is suspected that the cause of the jump is related to the fact that the number

of CPUs is not power of two. The jump at 16 KByte is clearly due to where a different set

 117

of algorithms is used [11,69]. For Ethernet there is also a large jump for 128 CPUs at 16

KByte. The reason for the large increase for Ethernet is clear when the distributions of

communication times is analysed - it is caused by retransmit timeouts.

0.01

0.1

1

10

100

16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4

32
76

8

65
53

6

13
10

72

26
21

44

52
42

88

10
48

57
6

Size of Data (Byte)

Ti
m

e
(M

se
c)

4 8 16 32

64 128 200

Figure 5.11 : Average time for MPI_Bcast on Myrinet

 118

0.1

1

10

100

1000

16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4

32
76

8

65
53

6

13
10

72

26
21

44

52
42

88

10
48

57
6

Size of Data (Byte)

T
im

e
(M

ili
se

c)

4 8 16 32

64 128 200

Figure 5.12 : Average time for MPI_Bcast on Ethernet

Figure 5.13 shows the distribution of times for 128 CPUs at 256 KByte for Myri-

net. The main peak shows a fairly narrow log normal distribution, with a much smaller

average time than for Ethernet. However there are a small number of measurements, cor-

responding to just a few iterations that are much slower than the rest, which create a long

tail after the main peak.

Figure 5.14 shows that for 128 CPUs for Ethernet, there are no retransmit time-

outs for 8 KByte messages, although there are a few larger times in the distribution, that

were due to one of the 1000 repetitions taking significantly longer. A small number of

RTOs start to occur for 16 Kbytes, as seen in Figure 5.15, and a few iterations have two

RTOs, giving a time over 400ms. The number of RTOs increases significantly for larger

message sizes, as seen in Figure 5.16 to Figure 5.18.

Table 5.6 shows the percentage of measured communication times that have

RTOs, which grows to be a substantial fraction of the total number of measurements. The

table also shows an estimate of the time that the broadcast would have taken if there were

no RTOs, which can be up to half the actual measured time. Note that the times shown in

Figure 5.14 to Figure 5.18 are times for all repetitions and all processes. The time for a

 119

collective communication is measured as the time for the slowest process, so only one of

the processes has to suffer an RTO for it to affect the average broadcast time.

The results presented in Table 5.6 and Table 5.7 are calculated based on the fol-

lowing technique. The range of measurements with no occurrences of RTO is taken by

the minimum communication time plus 200ms (tm + 200ms). The reason 200ms is chosen

for the above estimation is because that is the minimum time sets for 4 * RTTVAR in the

Linux TCP implementation [3], as explained in Section 5.4.1. So, the percentage of times

without RTOs is calculated from all occurrences of communication times between tm and

tm + 200ms. Another 200ms will be added (tm + 200ms + 200ms = tm + 400ms) to make it

as the maximum point for the first RTO. Then the percentage of measurements with one

RTO (1xRTO) will be calculated from tm + 200ms until tm + 400ms. Next, the percentage

with two RTOs (2xRTO) will be calculated from tm + 400ms until tm + 600ms. This is

continued until all measured times were accounted for. Finally, the estimation of the av-

erage communication time without RTOs is calculated by taking the average from the

10% of maximum time data without the occurrences of RTO. This is because for collec-

tive communication the time is taken from the slowest processors to complete.

0

500

1000

1500

2000

2500

3000

3500

0 5 10 15 20 25 30 35 40

Time (Milisec)

O
cc

u
rr

en
ce

s

Figure 5.13 : Myrinet at 128 CPUs for 256 KByte.

 120

0

2000

4000

6000

8000

10000

12000

14000

16000

0 5 10 15 20 25 30

Time (Milisec)

O
cc

u
re

n
ce

s

Figure 5.14 : Ethernet at 128 CPUs for 8 KByte.

0

1000

2000

3000

4000

5000

6000

0 50 100 150 200 250 300 350 400 450 500

Time (ms)

O
cc

u
ra

n
ce

s

Figure 5.15 : Ethernet at 128 CPUs for 16 KByte.

 121

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 100 200 300 400 500 600 700

Time (Milisec)

O
cc

u
rr

en
ce

s

Figure 5.16 : Ethernet at 128 CPUs for 32 KByte.

0

1000

2000

3000

4000

5000

6000

7000

0 100 200 300 400 500 600 700

Time (Milisec)

O
cc

u
rr

en
ce

s

Figure 5.17 : Ethernet at 128 CPUs for 64 KByte.

 122

0

500

1000

1500

2000

2500

50 150 250 350 450 550 650 750 850

Time (Milisec)

O
cc

u
rr

en
ce

s

Figure 5.18 : Ethernet at 128 CPUs for 256 KByte.

 No RTO 1 x RTO 2 x RTO 3 x RTO

Average
Time
(msec)

Estimated
Average
Time With-
out RTO
(msec)

8 KByte 100 0 0 0 7.92 7.92

16 KByte 98.9 0.99 0.01 0 90.81 49.33

32 KByte 78.4 21.3 0.29 0 243.7 69.39

65 KByte 85.2 14.7 0.01 0 289.70 94.43

256KByte 73.0 26.9 0.04 0 412.38 202.99

Table 5.6 : Percentage of RTO occurrences for Broadcast for Ethernet on 128 CPUs and
estimated average time without RTOs.

In order to check whether RTOs occur with no communication on the central

switch, the performance for CPU less than 64 has been analysed. The results for 64 CPUs

showed that there were no RTOs, but surprisingly for 32 CPUs the results in Figure 5.19

showed a small number of RTOs. However, these RTOs were anomalous, since they only

 123

occurred for one of the 1000 repetitions of the broadcast, and did not occur again when

the benchmark runs were repeated two more times. These kinds of outliers occur occa-

sionally, possibly due to a problem in the switch, or an operating system interrupt or

some other problem on one of the nodes of the cluster. Similar outliers occur occasionally

even for Myrinet, as shown in Figure 5.21.

Although these outliers only occur for a single test, it is instructive to explore

them in more detail, by investigating the minimum, average and maximum times for each

process. This also illustrates the capability and usefulness of MPIBench in analyzing the

behavior of message passing communication in more detail. Figure 5.20 shows that all of

the processes were affected by the RTO that occurred on one of the iterations. However

the maximum time was obtained by CPU rank 0, 8, 16 and 24. This sequence indicates the

pattern of the binomial tree algorithm, where a delay at one of the processes would affect

the results of all others further down the tree. An analysis of the outliers measured for

Myrinet shows a similar pattern, with Figure 5.22 showing the maximum time is obtained

by processes 3, 11, 19 and 27.

0

500

1000

1500

2000

2500

3000

0 200 400 600 800 1000 1200 1400
Time (Milisec)

O
cc

u
rr

en
ce

s

Figure 5.19 : Ethernet at 32 CPUs for 256 KByte.

 124

50

250

450

650

850

1050

1250

1450

0 3 6 9 12 15 18 21 24 27 30

No. of CPU

T
im

e
(M

ili
se

c)

min

ave

max

Figure 5.20 : Minimum and Average Time for each CPU on Ethernet for 32 CPUs at
256 KByte

0

200

400

600

800

1000

1200

1400

1600

0 50 100 150 200 250

Time (Milisec)

O
cc

u
rr

en
ce

s

Figure 5.21 : Myrinet at 32 CPUs for 256 KByte.

 125

0

40

80

120

160

200

240

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

No. of CPU

T
im

e
(M

ili
se

c)

min

avg

max

Figure 5.22 : Minimum and Average Time for each CPU on Myrinet for 32 CPUs at 256
KByte.

5.7 Scatter and Gather

Scatter and gather are typically used to distribute data at the root process (e.g. a

large array) evenly among the processors for parallel computation, and then recombine

the data from each processor back into a single large data set on the root process. The

performance of MPI_Scatter is dependent on how fast the root process can send all the

data, since it is a bottleneck. However the root process can use asynchronous sends,

which means that the overall performance of the scatter operation is also dependent on

the overall communications performance of the system and the effects of contention. The

algorithm used by MPICH 1.2.6 in all data sizes for Scatter and Gather is the binomial

tree algorithm [11,12,69].

5.7.1 Scatter

Figure 5.23 and Figure 5.24 shows the average completion time for MPI_Scatter

on Myrinet and Ethernet for 4 to 200 CPUs. The average times for both networks in-

crease slowly as the message size and number of processes are increased. The larger mes-

 126

sage sizes the time increases approximately linearly with the message size. There is a

small jump at 32 Byte, 512 Byte and 2048 Byte for 200 CPUs on Myrinet and this jump

is not experienced by Ethernet. It is also noticeable that the results for Ethernet are about

10 times higher than Myrinet.

Figure 5.25 and Figure 5.27 shows the distributions at 64 Kbyte for Myrinet and

Ethernet, respectively. The completion times for Myrinet are mostly between 45 and 50

ms, with a long tail going out to 70 ms, then a big gap to a small number of results around

90 ms, which are from just a single iteration. Figure 5.26 shows that the results at 90 ms

were from half of the processes, from process 0 to 63, while the another half of the proc-

esses had maximum times between 50 to 70 ms. On Ethernet there are several peaks, for

node 0 the average completion times is at 710 ms, nodes 63 the times is 730 ms and for

nodes 127 the completions times is 752 ms as shown in Figure 5.28. Figure 5.26 and

Figure 5.28 shows the main difference between the Myrinet and Ethernet results, that the

average time for each process is almost the same for Myrinet but for Ethernet the average

time is increasing gradually. The constant performance of Myrinet is presumably due to

the scalability of the Myrinet fat tree architecture, where the switch latencies are low and

the available bandwidth stays constant throughout the switch hierarchy. It is surprising

that the Myrinet distribution has a long tail. This appears to be due to a very small num-

ber of repetitions that take much longer than the rest.

Although the average time for scatter is higher than broadcast for the same num-

ber of processes and message size, there is no occurrence of RTOs for scatter. This is be-

cause for scatter, the size of the data received by each process is the message size di-

vided by the number of processes, so the total amount of data passing through the net-

work and the central switch will be lower compared to broadcast.

Notice that in Figure 5.26, Figure 5.28 and Figure 5.29, process 0 finishes first for

Scatter on Myrinet and Ethernet. This is different from the SGI MPI results on SGI Altix

3700, given in Section 7.9, where process 0 finishes last [22]. This indicates that for SGI

MPI, process 0 will wait for the acknowledgement from all CPUs, while in MPICH 1.2.6,

it only waits for the acknowledgements from the processes that it sent the message to.

Figure 5.29 shows the minimum and average time for each of 16 processes for 64

KByte message sizes. The purpose of this figure is to show the effect of binomial tree

algorithm more clearly. In binomial tree algorithm, process 0 will send data to processes

 127

1, 2, 4 and 8, process 1 to processes 3, 5 and 9, process 2 to processes 6 and 10, process 3

to processes 7 and 11, process 4 to process 12 and from process 7 and higher, each proc-

ess will distribute to one process only. Since process 1 is placed in the same node with

process 0, it will finish after process 0. However, process 2 finishes a bit later than proc-

ess 4 and 8 since it has to distribute data to 2 other processes, while processes 4 and 8

only have to distribute to 1 process. Referring to the figure, the completion of each proc-

ess is synchronized with the sequence of the binomial tree algorithm and affected by the

position of the process, either in the same node or otherwise.

0.001

0.01

0.1

1

10

100

1000

16 64 256 1024 4096 16384

Size of Data (Byte)

T
im

e
(M

ili
se

c)

4 8 16

32 64 128

200

Figure 5.23 : Average time for MPI_Scatter on Myrinet.

 128

0.1

1

10

100

1000

16 64 256 1024 4096 16384

Size of Data (Byte)

T
im

e
(M

ili
se

c)

4 8 16

32 64 128

200

Figure 5.24 : Average time for MPI_Scatter on Ethernet.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

40 45 50 55 60 65 70 75 80 85 90 95 100

Time (Milisec)

Figure 5.25 : Myrinet at 128 CPUs for 64 KByte.

 129

30

40

50

60

70

80

90

100

0 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

No. of CPUs

T
im

e
(M

ili
se

c)

min
avg
max

Figure 5.26 : Minimum, Maximum and Average Time for each CPU on Myrinet for 128
CPUs at 64 KByte

0

500

1000

1500

2000

2500

3000

3500

700 710 720 730 740 750 760 770 780 790

Time (Milisec)

O
cc

u
rr

en
ce

s

Figure 5.27 : Ethernet at 128 CPUs for 64 KByte.

 130

700

710

720

730

740

750

760

770

780

0 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

No. of CPU

T
im

e
(M

il
is

ec
)

min ave max

Figure 5.28 : Minimum, Maximum and Average Time for each CPU on Ethernet for
128 CPUs at 64 KByte

76

77

78

79

80

81

82

83

84

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

No. of CPU

T
im

e
(M

ili
se

c)

min

ave

Figure 5.29 : Minimum and Average Time for each CPU on Ethernet for 16 CPUs at 64
KByte

 131

5.7.2 Gather

The performance of MPI_Gather is mainly determined by how much data is re-

ceived by the root process, which is the bottleneck in this operation. Hence the time taken

is expected to be roughly proportional to the total data size for a fixed number of proces-

sors, with the time being slower for larger numbers of processors due to serialization and

contention effects. Figure 5.30 and Figure 5.31 shows the average completion time for

MPI_Gather on Myrinet and Ethernet for 4 to 200 CPUs. The average times for both

networks increase proportionally as the message size and number of processes is in-

creased.

0.01

0.1

1

10

100

16 64 256 1024 4096 16384 65536

Size of Data (Byte)

T
im

e
(M

ili
se

c)

4 8 16

32 64 128

200

Figure 5.30 : Average time for MPI_Gather on Myrinet

 132

0.1

1

10

100

1000

16 64 256 1024 4096 16384 65536

Size of Data (Byte)

T
im

e
(M

ili
se

c)

4 8 16

32 64 128

200

Figure 5.31 : Average time for MPI_Gather on Ethernet.

The spread of the distributions for both networks indicate different completion

times for different processes rather than any wide variation in completion times for each

process or the effect of RTOs for Ethernet. Although MPI_Gather does the reverse proc-

ess from MPI_Scatter, Figure 5.33, Figure 5.35 and Figure 5.36 show that the pattern of

average times for each process is clearly very different to scatter. The capability of

MPIBench to show average times for each process clearly illustrates the inverse binary

tree algorithm used for gather, particularly in Figure 5.35 and Figure 5.36. Each of the

odd numbered processes sends their data to an intermediate even numbered process,

which combines this data with its own. Then this combined data will be forwarded to the

next intermediate process which has a rank that is a multiple of 4, where it is combined

again and forwarded to an intermediate process with rank a multiple of 8, and so on, until

finally all the data is gathered on process 0 [69].

The broad distribution of times for Myrinet in Figure 5.32 is mostly due to the dif-

ference in average completion times for processes at different levels of the binary tree, as

well as some variation between the average and maximum completion times of each

 133

process, as shown in Figure 5.33. There are a small number of outliers between 80ms and

100ms. Figure 5.33 shows that these are from the maximum times for the last processes

to complete, i.e. 64 and 0.

This distribution of times for Ethernet in Figure 5.34 shows a similar scenario.

While the clusters of times at 200ms, 400ms and 800ms appear as though they may be

due to RTOs, they actually represent the different completion times for processes at dif-

ferent levels of the binary tree, as seen in Figure 5.35. This analysis shows that RTOs

have no effect on the performance of scatter and gather. This is because for scatter and

gather, the size of the data being sent by each process decreases as the number of com-

municating processes in the binary tree increases, which will reduce the bottleneck prob-

lem at the central switch on the Ethernet network.

0

10000

20000

30000

40000

50000

60000

70000

0 20 40 60 80 100 120

Time (Milisec)

O
cc

u
rr

en
ce

s

Figure 5.32 : Myrinet for 128 CPUs at 64 KByte.

 134

0

10

20

30

40

50

60

70

80

90

100

110

0 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

No. of CPU

T
im

e
(M

ili
se

c)

min
avg
max

Figure 5.33 : Minimum, Maximum and Average Time for each CPU on Myrinet for 128
CPUs at 64 Kbyte.

0

10000

20000

30000

40000

50000

60000

70000

0 100 200 300 400 500 600 700 800

Time (Milisec)

O
cc

u
rr

en
ce

s

Figure 5.34 : Ethernet for 128 nodes at 64 KByte

 135

0

100

200

300

400

500

600

700

800

900

0 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

No. of CPU

T
im

e
(M

ili
se

c)

min

ave

max

Figure 5.35 : Minimum, Maximum and Average Time for each CPU on Ethernet for 128
CPUs at 64 KByte

0

10

20

30

40

50

60

70

80

90

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

No. of CPU

T
im

e
(M

il
is

ec
)

min

ave

Figure 5.36 : Minimum and Average Time for each CPU on Ethernet for 16 CPUs at 64
KByte.

 136

5.8 Alltoall

The final collective communication that has been measured is MPI_Alltoall,

where each process sends its data to every other process. This provides a good stress test

of the communications network. MPICH 1.2.6 uses four algorithms for MPI_Alltoall

[11,12,69]. For short messages (<256Bytes) and (number of processes >= 8) it uses store-

and-forward algorithm. For medium size messages (256Bytes<medium<32KBytes) and

(short messages for number of processes < 8) it uses an algorithm that posts all irecvs and

isends and then does a waitall, then scatter the order of sources and destinations among

the processes. For long messages and power-of-two number of processes, it uses a pair-

wise exchange algorithm. For a non-power-of-two number of processes, it uses an algo-

rithm in which, in step i, each process receives from (rank-i) and sends to (rank+i).

Figure 5.37 shows that average completion time for Myrinet increases gradually

with message size and number of processes (for 128 and 200 cpus the size of data is only

until 32Kbytes due to time contraints). However, in Figure 5.38 the communication times

for Ethernet increase markedly for more than 32 CPUs, which shows the effect of Re-

transmit Timeouts (for 128 and 200 cpus the size of data is only until 16Kbytes due to

time contraints). Note that there is often a hump (indicating slower times for smaller mes-

sage sizes) where the algorithm changes, particularly after 256Byte and 32KByte.

 Figure 5.39 shows the distribution for 128 CPUs for 2 KByte on Myrinet. Be-

sides the single point at around 28 ms, which is due to a slow result only for a single it-

eration, it can be seen that even for a large number of CPUs, Myrinet has a single, fairly

narrow peak at a much smaller communication time than Ethernet, and with a short tail,

so the performance of All-to-All is excellent. In contrast, Figure 5.40 shows that RTOs

occur for Ethernet at 128 CPUs even for relatively small message sizes. Figure 5.40 to

Figure 5.45 show the distribution of times for 128 CPUs on Ethernet for message sizes

from 64 Byte to 2 KByte. These figures show the increase of RTO with the increasing of

message sizes. At 2 KByte there are several peaks which are due to occurrences of multi-

ple RTOs. Above this message size the RTOs are hard to detect, since the average time is

much larger than the 200 ms RTO delay and the distribution of times becomes very

broad.

 137

 Figure 5.41 and Figure 5.43 shows the minimum, average and maximum time for

128 CPUs on Ethernet for 64 Byte and 256 Byte message sizes, respectively. For 64

Byte messages, there are only a small number of RTOs which are only experienced by 1

CPU, which is CPU rank 80, while for 256 Byte message sizes RTOs are experienced by

all CPUs.

0.01

0.1

1

10

100

1000

32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4

32
76

8

65
53

6

Size 0f Data (Bytes)

T
im

e
(M

ili
se

c)

4

8

16

32

64

128

200

Figure 5.37 : Average time for MPI_Alltoall on Myrinet for 4 to 200 CPUs.

 138

0.1

1

10

100

1000

10000

32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4

32
76

8

65
53

6

Size of Data (Byte)

T
im

e
(M

ili
se

c)

4

8

16

32

64

128

200

Figure 5.38 : Average time for MPI_Alltoall on Ethernet for 4 to 200 CPUs.

0

50

100

150

200

250

300

350

400

450

500

5 10 15 20 25 30

Time (Milisec)

O
cc

u
rr

en
ce

s

Figure 5.39 : Myrinet at 128 CPUs for 2KByte.

 139

0

50

100

150

200

250

300

0 50 100 150 200 250

Time (ms)

O
cc

u
ra

n
ce

s

Figure 5.40 : Ethernet at 128 CPUs for 64Byte.

0

50

100

150

200

250

0 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

No. of CPU

T
im

e
(m

s)

min

ave

max

Figure 5.41 : Minimum, Maximum and Average time on Ethernet for 128 CPUs at 64
Byte

 140

0

200

400

600

800

1000

1200

1400

0 50 100 150 200 250 300 350

Time (Milisec)

O
cc

u
rr

en
ce

s

Figure 5.42 : Ethernet at 128 CPUs for 256 Byte.

0

50

100

150

200

250

300

350

0 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

No. of CPU

T
im

e
(m

s)

min

ave

max

Figure 5.43 : Minimum, Maximum and Average time on Ethernet for 128 CPUs at 256
Byte

 141

0

10

20

30

40

50

60

70

80

90

100

200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400

Time (Milisec)

O
cc

u
rr

en
ce

s

Figure 5.44 : Ethernet at 128 CPUs for 1KByte.

0

10

20

30

40

50

60

500 1500 2500 3500 4500 5500

Time (Milisec)

O
cc

u
rr

en
ce

s

Figure 5.45 : Ethernet at 128 CPUs for 2KByte.

 142

Similarly with point-to-point and broadcast, on Fast Ethernet the performance for

64 CPUs was checked in order to see if there were any occurrences of RTO without the

effect of communication problems at the central switch. As seen in the previous sections,

point-to-point and broadcast communication suffered little or no RTOs for 64 CPUs and

below, where there is no inter-switch communication. However, for MPI_Alltoall, which

involves all processes communicating at the same time, it is more likely that RTOs would

occur even for communication within a switch. It was found that RTOs did indeed occur

for 64 CPUs, starting at message sizes as small as 2 KBytes. Figure 5.46 to Figure 5.50

show the distribution of times for 64 CPUs from 2 to 32KByte. The figures show that the

number of RTOs is increasing as the message size increases. For larger data sizes, Figure

5.48 shows a large number of multiple RTOs above the first significant peak at 200ms.

The small number of results below 200ms occur only for certain processors. Once the

message size gets large enough, as in Figure 5.49 and Figure 5.50, the distribution be-

comes so broad that it is impossible to identify delays due to RTOs. Myrinet still per-

forms well for large message sizes and similar number of CPUs, as shown in Figure 5.51.

Table 5.7 shows the percentage of occurrences of RTO for All-to-All for different

message sizes and numbers of CPUs. The percentage of single and multiple RTOs in-

creases rapidly as the message size increases, until the point where the average time is

large enough, and the distribution is broad enough, that it is not possible to identify the

number of RTOs (as in Figure 5.50). Table 5.7 also shows the estimated average commu-

nication time if there were no RTOs. Again, this shows that RTOs have a significant ef-

fect on the communications performance of MPI over Ethernet networks.

Grove et al. [8,9] did a similar performance measurement on MPI_Alltoall using a

Beowulf-type cluster and MPICH 1.2.0. Based from the paper, the TCP RTO badly af-

fected the results at a smaller number of processors (for example 16 CPUs) and smaller

message sizes (for example 4 KByte) and above certain message sizes the communication

failed completely. They found that one of the problems was due to the contention for

buffer access by the switches input queueing processes and that MPICH 1.2.0 had an in-

efficient implementation of the algorithm for MPI_Alltoall, which was fixed in subse-

quent versions. However the analysis presented in this section found the effects of RTOs

to be much less serious than for these previous measurements. The improvement is

 143

probably due to both improved algorithms and implementations of the collective commu-

nications routines used in MPICH, and improved Ethernet network in the machine used

in this study, which had switches with more ports and a faster backplane.

0

200

400

600

800

1000

1200

0 40 80 120 160 200 240 280 320 360 400 440 480

Time (Milisec)

O
cc

u
rr

en
ce

s

Figure 5.46 : Ethernet at 64 CPUs for 2 KByte.

0

50

100

150

200

250

300

350

400

450

500

0 400 800 1200 1600 2000 2400 2800

Time (Milisec)

O
cc

u
rr

en
ce

s

Figure 5.47 : Ethernet at 64 CPUs for 4 KByte.

 144

0

10

20

30

40

50

60

70

80

90

100 200 300 400 500 600 700 800 900

Time (Milisec)

O
cc

u
rr

en
ce

s

Figure 5.48 : Ethernet at 64 CPUs for 8 KByte

0

10

20

30

40

50

60

70

100 300 500 700 900 1100

Time (Milisec)

O
cc

u
rr

en
ce

s

Figure 5.49 : Ethernet at 64 CPUs for 16 KByte

 145

0

10

20

30

40

50

60

500 600 700 800 900 1000

Time (Milisec)

O
cc

u
rr

en
ce

s

Figure 5.50: Ethernet at 64 CPUs for 32 KByte.

0

50

100

150

200

250

300

350

40 45 50 55 60 65 70 75 80

Time (Milisec)

O
cc

u
rr

en
ce

s

Figure 5.51 : Myrinet at 64 CPUs for 32 KByte.

 146

 No RTO 1 x RTO 2 x RTO ≥ 3 x
RTO

Avg.
Time
(msec)

Est. Avg. Time
Without RTO
(msec)

32 CPU

2KB 99.9 0.06 0 0 15.6 15.6

4 KB 100 0 0 0 28.4 28.4

8 KB 97.2 2.63 0 0 117.3 84.41

16 KB 81.19 18.81 0 0 287.1 239.91

32 KB NA NA NA NA 420.5 NA

64 CPU

2KB 97.6 2.4 0 0 115.5 112.24

4 KB 55.7 33.0 6.9 4.4 718.6 205.83

8 KB 3.5 78.4 13.1 5.0 528.7 282.23

16 KB 0.2 28.6 61.5 9.6 742.8 381.14

32 KB NA NA NA NA 844.3 NA

128 CPU

256 B 89.28 10.72 0 0 217.1 75.13

512 B 96.59 3.29 0.10 0 660.7 407.12

1 KB 95.5 4.37 0.05 0.08 773.7 425.86

2 KB NA NA NA NA 2425 NA

4 KB NA NA NA NA 2572 NA

Table 5.7 : Percentage of RTO Occurrences for Alltoall for 32, 64 and 128 CPUs

5.9 Summary

This chapter has compared the performance of Fast Ethernet and Myrinet net-

works for MPI communications on a commodity Linux PC cluster. In particular, the

analyses have investigated the effects of network contention (including Ethernet retrans-

mit time-outs) by measuring and analyzing distributions of communication times for

point-to-point and collective communications, and how they scale with increasing mes-

sage sizes and numbers of processes. As expected, the Myrinet network performs signifi-

 147

cantly better than Fast Ethernet. The TCP RTO on the Ethernet network does affect

communications performance, but only for large message sizes and large numbers of

processors (especially where multiple Ethernet switches are needed for communication),

where the network becomes saturated. Importantly, in the case for lots of small messages

are sent very quickly between lots of processors, which is what happens with MPIBench

tests, RTOs do not occur. Hence they should only affect parallel applications that com-

municate very large messages. So even fine-grained applications that are dominated by

lots of communications should not be affected unless the message sizes are large. So, it

can have significant impact on the performance of collective communications, particu-

larly MPI_Bcast and MPI_Alltoall. Earlier measurements by Grove et al. [8,9] for older

versions of MPICH showed that TCP RTO can greatly reduce the performance of

MPI_Bcast and MPI_Alltoall, and even cause them to fail at large message sizes. How-

ever the analysis presented in this chapter found the effects of RTOs to be much less seri-

ous than for these previous measurements, probably due mostly to improvements in the

collective communications routines used in MPICH, although the improved Ethernet

network in the machine used in this study, which had switches with more ports and a

faster backplane, would also have helped.

This chapter also presented an analysis on the distributions of the communication

times for each MPI collective operation, particularly focused on the causes of the slowest

communication times. For Ethernet these are often due to RTOs. Even for Myrinet, there

were some infrequent occurrences of very slow communications that may be due to prob-

lems on the nodes, perhaps operating system interrupts. In other cases, such as Scatter

and Gather, RTOs had no effect on the communication times, and the slowest processes

in the distribution of communication times were just due to the communication pattern of

the algorithm used to implement the MPI operation.

This study also found that MPIBench is a very useful tool for detailed analysis of

communications performance, particularly the capability to provide distributions of

communication times to enable study of the effects of contention and the occurrence and

impact of TCP RTO. It should be useful for researchers who are working on approaches

for improving Ethernet performance, such as selecting the best approach for tuning the

TCP RTO times, or analyzing the performance of new communication protocols for

Ethernet networks.

 148

CHAPTER 6

Analysis of Algorithm Selection for Optimizing Collective

Communication with MPICH for Ethernet and Myrinet Networks

6.1 Introduction

 This work was motivated by the collective communication results in Chapter 5,

particularly for MPI_Bcast and MPI_Alltoall. The plots of average times for MPI_Bcast

and MPI_Alltoall for various numbers of CPUs shows a gap or hump at certain message

sizes, so the communication times are faster for larger message sizes just above the

hump. So, more work has been done in analyzing MPICH in order to understand these

unexpected results. MPICH is one of the main implementations of MPI. Recently

MPICH research group released a new version, MPICH2. MPICH2 is an all-new imple-

mentation of MPI, designed to support research into high-performance implementations

of MPI-1 and MPI-2 functionality. All the latest improved algorithms and new support

and also the new functionality are included in it.

In MPI, the communication is divided into point-to-point and collective commu-

nication. The point-to-point involves communication between two processes, while col-

lective communication involves communication for many processes at the same time. For

years the collective communication algorithms have been the main concern of MPI re-

searchers in improving the performance of message passing programming. There have

been many papers improving on existing collective communication algorithms, either by

suggesting a new algorithm or by identifying which algorithms are suitable for small or

large message sizes. Recently, MPICH developers have released implementations of new

collective communication algorithms and these have been reported in Thakur et al. [11].

The new algorithms have been applied in MPICH 1.2.6, the following versions, and also

in MPICH2 [136].

The new MPICH implementations combine the best algorithms known for each

MPI collective communication, and those multiple algorithms are differentiated based on

 149

message sizes. The message sizes mainly divide into two, the short-message algorithms

aim to minimize latency, while the long-message algorithms aim to minimize the band-

width [11]. For example the broadcast algorithm has changed from using the standard

binomial tree algorithm to a combination of three algorithms, which are binomial tree for

small message sizes and scatter followed by allgather for large message sizes, and for all-

gather either using recursive doubling or ring algorithm.

Currently, the message sizes where the algorithm changes in MPICH are the ex-

perimentally determined change-over points based on the work of Thakur et al. [11]

which used an IBM SP and a Linux cluster machine connected with Myrinet, both with

one process per node. In the paper, they did acknowledge having a plan to determine

automatically the algorithm change-over points based on system parameters, since the

optimum change-over point probably will be different for parallel computers with differ-

ent architecture, and particularly with different networks. However, the MPICH 1.2.6 and

MPICH2 1.0.4 source code shows that the message sizes where the algorithm is changed

are still defined as constants and hard coded.

The aim of this study is to investigate the feasibility of using MPI benchmarks to

provide an automated process for selecting the optimal choice of collective communica-

tion algorithms for a particular parallel computer and communication network, and to see

if this approach is worthwhile by comparing the performance of the optimized MPICH

implementation with the current MPICH implementation where the algorithm selection is

hard coded.

So, this study measured performance over a range of message sizes for all of the

different algorithms for all of the collective communication routines in MPICH that use

multiple algorithms, which are:

• MPI_Bcast – binomial tree, recursive doubling and ring with scatter algo-

rithms;

• MPI_Alltoall - store-and-forward and pairwise exchange algorithms;

• MPI_Allgather - a variant of the distribution algorithm for barrier, recursive

doubling and ring algorithms;

• MPI_Reducescatter - recursive halving, recursive doubling and pairwise ex-

change algorithms.

 150

• MPI_Reduce and MPI_Allreduce – binomial tree algorithm or reducescatter

(using recursive halving) followed by allgather using binomial tree or recur-

sive doubling algorithms.

Thakur et al. [11] provide a detailed description of all of these algorithms.

Measurements were done on a cluster of dual processor machines using two dif-

ferent networks, Myrinet with GM and Ethernet with TCP. In order to compare the dif-

ferent algorithms for all message sizes, the MPICH code was modified so that the

change-over points were no longer constants, but variables that were initialized to the

current static values in MPICH, which could then be overridden by reading from an en-

vironment variables or a configuration file. For each collective communication routine,

an MPI benchmark such as MPIBench can be run to measure the performance for each

possible algorithm, by varying the change-over parameters (e.g. by setting them to be the

shortest or longest message sizes possible) to ensure that only a single algorithm is used

for each benchmark run. Then the benchmark results for all the different algorithms for a

particular collective communication routine can be compared and the optimal change-

over points for that particular parallel computer can be determined. In future, this ap-

proach could be developed further to create automated software for configuring MPICH

to provide optimal change-over points for a particular parallel computer, based on

benchmark results.

There were four main outcomes from this study. Firstly to demonstrate that it is feasible

to use MPI benchmark results to vary the message sizes where the algorithms change

from the fixed values in MPICH, and that this can provide a significant improvement in

some cases. Secondly, a comparison of results between different interconnects, Myrinet

with GM and Ethernet with TCP, showing that the change-over points for different net-

works can be quite different. Thirdly, comparison of results using the new MPICH2 with

MPICH 1.2.6. Finally, comparing algorithms using two processes per node instead of one

process per node which was used by Thakur et al.[11], since the advent of multi-core

processors means that all modern clusters have multiple CPUs per node.

 151

6.2 Related Work

Thakur et al. [11] reported on improved implementations of collective communi-

cation algorithms in recent versions of MPICH and MPICH2. They compared the per-

formance of different algorithms over a range of message sizes, for a Linux cluster with a

Myrinet network and an IBM SP. In both cases the measurements were done using one

process per node. The results from these measurements were used to fix the selection of

algorithms for different message sizes in MPICH and MPICH2. Our work does similar

measurements on a machine with more recent processors, and for more than one process

per node, which is typical of modern parallel computers. Thakur et al. say that in future

work they aim to develop models to allow the selection of changeover points between al-

gorithms to be customized based on system parameters, whereas our work enables cus-

tomization to be done based on benchmark results.

Recently there have been several efforts aimed at automatically tuning the per-

formance of collective communications algorithms for the particular parallel computer

being used [4,5]. These approaches are primarily aimed at tuning the implementation of

each collective communication algorithm, for example selecting the optimum buffer size

or communication topology for a particular machine.

The most relevant of these studies to our work is by Vandhiyar et al.[139]. They

have developed automatically tuned collective communication by conducting several ex-

periments on the system to obtain the optimum algorithm and optimum buffer size for a

given collective communication using HARNESS FT-MPI [146], which is a fault tolerant

MPI implementation. Since the buffer is the closest temporary storage with the processor,

the optimized use of buffer will help in improving the communication performance. They

also developed a set of algorithms implementing some of the MPI collective communica-

tion routines, for example for broadcast their algorithms are sequential, chain, binary and

binomial. Basically, their approach followed three phases. In the first phase, the best

buffer size for a given algorithm and for a given number of processors is determined by

evaluating the performance of the algorithm for different buffer sizes. For the second

phase, the best algorithm for a given message size is chosen by repeating the first phase

with a known set of algorithms and choosing the algorithm that gives the best results. In

 152

the third phase, the first and the second phase are repeated for different number of proc-

essors. Thus, the best algorithm will be chosen for the system and in certain cases there

will be several algorithms for each collective communication which are differentiated by

different message size, either small or large message sizes. Based on their results, the use

of the tuned collective communication resulted in about 30% to 650% improvement in

performance over the native implementation on a variety of architectures including an

IBM SP2 and clusters connected by Ethernet, Giganet and Myrinet networks. The differ-

ence between the work reported in this section and Vandhiyar et al. is that our work used

MPICH rather than HARNESS FT-MPI, up to 64 processors rather than 8, and the recent

best known algorithms. Also the work of Vandhiyar et. al was primarily focused on find-

ing the optimal buffer size whereas our work is mainly on finding the choice of best algo-

rithm for different message sizes.

 Other related research is more focused on suggesting new algorithms or combina-

tion of algorithms for each collective communication. For example Van de Geijn [12,13]

suggested the best algorithm for short and long vector message sizes for most of the

common collective communication such as broadcast, scatter and gather. Rabenseifner

[140] suggest a new algorithm for reduce and allreduce, Kale et al. [141] developed a

new algorithm for alltoall, Bruck et al. [142] proposed algorithms for allgather and all-

toall that are mainly efficient for small message sizes. Those previous works either sug-

gested new algorithms or analyzed the algorithms used in old versions of MPICH.

This study will compare the results between the different algorithms for collective

communication used in the latest version 1.0.4 of MPICH2. It is valuable to investigate

ways to improve the performance of MPICH since it is widely used. Furthermore, this

study will compare the result from different interconnects which are Myrinet with GM

and also commodity Ethernet with TCP, and also will experiment using two processors

per node instead of one process per node, so the effect of shared memory will be ana-

lyzed too. It is expected that the change-over points for Myrinet will be similar to the de-

faults set in MPICH, but different for Ethernet which has higher latency and lower band-

width. This is because Thakur et al. [11] used Myrinet as interconnect for their experi-

mental works to determine the change-over points for collective communications that are

used in MPICH 1.2.6.

 153

6.3 Methodology

 The measurements for the work in this chapter were done using the same parallel

computer as for Chapter 5, which was done on an IBM eServer 1350 Linux cluster with

128 compute nodes connected by a Myrinet 2000 network as well as a 100 Mbit/s Fast

Ethernet network. So, all the setting and systems configuration were the same. This

analysis used the latest MPICH, which is MPICH2 1.0.4 for Ethernet, however

MPICHGM 1.2.7 is used for Myrinet since MPICH2 was not available yet for GM when

the test was done. However, the collective communication algorithms used are the same

in each case.

In order to allow different change-over points in collective communications algo-

rithms for MPICH some changes have been done to the MPICH code, as well as a few

lines of code for the setting of environment variables, as shown in the following code

fragments. The first code fragment shows the constant value in the existing MPICH pro-

gram for specifying the short message size in MPI_Bcast. This is followed by some of the

modified code to enable dynamic change-over points to be specified using environment

variables. The constant MPIR_BCAST_SHORT_MSG_DEFAULT is set to the fixed

value used by MPICH. Then, MPIR_BCAST_SHORT_MSG is declared as a variable

and initialized to the default value, however it can obtain the new change-over value from

the environment variable, using the setConstant function. If the environment variable is

not set, there is no change from the fixed default value. The next code fragment shows

the environment variable setting to change the fixed value from 1Kbyte to 16 Kbyte for

broadcast. Note that, these changes have been made to MPICH2 1.0.4 for Ethernet with

TCP and MPICH 1.2.7 for Myrinet with GM.

 154

Fixed values for change-over points in the existing MPICH code

(in mpiimpl.h)

#define MPIR_BCAST_SHORT_MSG 1024

…

Part of modified code to enable dynamic change-over points

(in mpiimpl.h)

#define MPIR_BCAST_SHORT_MSG_DEFAULT 1024
#define MPIR_BCAST_LONG_MSG_DEFAULT 524288
#define MPIR_BCAST_MIN_PROCS_DEFAULT 8
…

extern int MPIR_BCAST_SHORT_MSG;
extern int MPIR_BCAST_LONG_MSG;
extern int MPIR_BCAST_MIN_PROCS;
…..

(in init.c)

int MPIR_BCAST_SHORT_MSG = MPIR_BCAST_SHORT_MSG_DEFAULT;
int MPIR_BCAST_LONG_MSG = MPIR_BCAST_LONG_MSG_DEFAULT;
int MPIR_BCAST_MIN_PROCS = MPIR_BCAST_MIN_PROCS_DEFAULT;
…..

void setConstant(int *constant, char *envVar) {
 char *envStr = getenv(envVar);
 int constantValue = 0;

 if (envStr != 0) {
 constantValue = atoi(envStr);
 *constant = constantValue;
 printf("EnvironmentVar %s defined with value: %d\n", envVar, constantValue);
 }
 else {
 // do nothing
 printf("EnvironmentVar %s not defined.\n", envVar);
 }
}
void setThresholds() {
 setConstant(&MPIR_BCAST_SHORT_MSG, "MPIR_BCAST_SHORT_MSG");
 setConstant(&MPIR_BCAST_LONG_MSG, "MPIR_BCAST_LONG_MSG");
 setConstant(&MPIR_BCAST_MIN_PROCS, "MPIR_BCAST_MIN_PROCS");
….

Environment Variable Setting

export MPIR_BCAST_SHORT_MSG=16384

 155

 The MPI benchmark used for measurements was SKaMPI 4.1 [21, 62] and all

measurements were done using the default settings for SKaMPI. SKaMPI was chosen

since it has a bigger variety of collective communication routines compared to other MPI

benchmarks. It was not possible to run the measurements with dedicated access to the

cluster. In order to ensure the accuracy of the results, the measurements of different algo-

rithms were taken one after another and using the same set of CPUs. For sanity checking

there were at least three measurements taken for each test and at least one measurement

for the same test was also taken using PMB and MPIBench, where the MPI routine was

provided by both MPI benchmarks. The measurements were done up to 16 nodes (32

CPUs) with 2 CPUs per node and using 100 repetitions as a default setting for SKaMPI.

There were also some preliminary results using 64 CPUs (32 nodes) and using one proc-

essor per node, and for numbers of CPUs which are not power of two in order to check

for unusual results.

In the following subsections, the formulas for the approximate time expected for the

different algorithms are taken from Thakur et al.[11], or (in some cases where that paper

does not specify a formula) from comments in the MPICH2 1.0.4 source code [136]. The

latency and bandwidth values used in the formulas are based on internode point-to-point

communication using SKaMPI. The latency for Myrinet is 15µs, while on Ethernet it is

97µs. The bandwidth for Myrinet is 200 Byte/µs, while on Ethernet it is 11Byte/µs. The

analysis of Thakur et al. is done using one process per node, while the analysis here will

also consider the performance for shared memory nodes since there are two CPUs per

node used for the measurements.

6.4 Broadcast

MPICH2 1.0.4 [136] and MPICH-GM 1.2.7 [69] use some new broadcast algorithms.

For small message size (<12KByte) or for less than 8 CPUs the standard binomial tree

algorithm is used and the time taken for this algorithm is approximately Ttree = [lg

p](α+nβ), where p is the number of processors, α is the latency, β is the bandwidth and n

is the message size. For medium (12KByte < medium < 512KByte) and for long

(>512KByte) message sizes it uses scatter followed by allgather algorithm, and for all-

 156

gather algorithm for medium message size and for power of two (POF2) number of proc-

esses uses recursive doubling algorithm and the time taken is Trecursive= lg p α + (p-1)/p

nβ, while for medium message size and for non power of two number of processes and

also for long message size, a ring algorithm is used and the time taken is Tring=(lg p + p-

1)α + 2(p-1)/p nβ.

0 12KByte 512KByte

Table 6.1 : Summary of Algorithms used by MPICH for Broadcast

Figure 6.1 shows the performance of MPI_Bcast for different message sizes for 8

CPUs on Myrinet using the three different algorithms used by MPICH: binomial tree al-

gorithm, scatter with recursive doubling and scatter with ring algorithm. Figure 6.3 shows

the same plot for Ethernet. For 8 processes (4 nodes with 2 ppn) on both Myrinet and

Ethernet the performance of scatter and allgather becomes close to the binomial tree algo-

rithm when the message size increases to around 16 Kbytes. However for both networks,

the binary tree algorithm remains the best algorithm for all message sizes measured (up to

1 Mbyte), so on this machine the binary tree algorithm should be chosen when the num-

ber of processes is less than or equal to 8, rather than less than 8 as in standard MPICH. It

is also interesting to note that for medium message sizes (between 12 and 512 Kbytes)

where MPICH uses recursive doubling for the allgather, using the ring algorithm for all-

gather gives up to 50% better performance for Myrinet and even more for Ethernet.

The same effect can also be seen for larger numbers of processors. Figure 6.2 and

Figure 6.4 show the performance of MPI_Bcast for different message sizes for 32 CPUs

(16 nodes with 2 ppn) on Myrinet and Ethernet using different algorithms. Again, the

time for the binomial tree algorithm starts to exceed that of the other algorithms at ap-

proximately 16 Kbytes. For Ethernet, the binomial tree and the scatter with ring allgather

perform better than scatter with recursive doubling allgather for all message sizes. For

Message Size > 12 KByte or
CPU < 8
use Binomial Tree Algorithm

POF2 use Scatter with recur-
sive doubling algorithm for
Allgather.
Not POF2 use Ring Algorithm
for Allgather

Scatter with Ring Algorithm for
Allgather

 157

medium message sizes where recursive doubling is the default in MPICH, the im-

provement is approximately 40% to 50%.

For Myrinet, scatter with recursive doubling is (marginally) the best algorithm for

message sizes in the range 8 KByte to 32 Kbyte. The change-over point to using the ring

algorithm for allgather for large message is therefore much lower than the MPICH de-

fault of 512 Kbytes, and the improvement in using the ring algorithm rather than recur-

sive doubling between 32 and 512 Kbytes is approximately 30% to 40%. This result is a

bit surprising, since the fixed change-over values in MPICH were taken from measure-

ments on a Linux cluster with Myrinet. The only difference is that the experimental re-

sults of Thakur et al., and their theoretical models for estimating the communications

time, are all based on one process per node, whereas our measurements were using two

processes per node, since the cluster had dual processor nodes.

In order to check this theory, the same test was also run with 8 CPUs for one

process per node using Ethernet and 32 CPUs for one processor per node on Myrinet.

Figure 6.7 and Figure 6.8 shows the comparison between 1 and 2 processes per node

(ppn) with the model for 32 processors on Myrinet and Figure 6.9 and Figure 6.10 shows

the same for large message sizes. The model is a close fit to the measured results for 1

process per node, but a poor match to the results for 2 processes per node, particularly for

medium message sizes. The results show that recursive doubling is relatively much better

for 1ppn than 2ppn. This indicates that in order to be able to specify customized change-

over points based on system parameters, as suggested by Thakur et al. [1], a new model is

needed that will provide good time estimates for multiple processes per node.

 The results in Figure 6.5 and Figure 6.6 show a comparison of results between

one and two processors per node for medium message size (between 16 KByte until 1

MByte) for 8 CPUs on Ethernet. The results show a similar trend to those for Myrinet, in

that for 2 processors per node the recursive doubling has the worst performance com-

pared to other algorithms for all message sizes, while for 1 ppn recursive doubling shows

good performance after 16 KByte and until approximately 128 KByte. The change-over

values for small message sizes at 1 ppn agree with the MPICH defaults, however for me-

dium message sizes the change-over occurs earlier than the fixed MPICH value (refer to

Table 6.6).

 158

 It is also noticeable that for 2 ppn the ring algorithm performs very well for all

message sizes. The excellent performance of ring algorithm may be due to the new facil-

ity in MPICH2, for example the mpd [136] which pre-forms a ring to facilitate rapid

process startup for the communication. The ring algorithm will take advantage of the

nearest neighbor communication patterns, whereas for recursive doubling processes

communicate much farther apart. The performance comparison between MPICH 1.2.6

and MPICH2 1.0.4 on Ethernet for 8 CPUs is shown in Table 6.7. It shows MPICH2

1.0.4 has an improvement of around 1% to 37% compared with MPICH 1.2.6. Note that

for non-power-of-two number of processors the performance is not much different to the

default settings, since only binomial tree and ring algorithm are used.

 159

10

100

1000

10000

100000

25
6

36
0

51
2

72
0

10
24

14
48

20
48

28
96

40
96

57
92

81
92

11
58

4

16
38

4

23
16

8

32
76

8

46
33

6

65
53

6

92
68

0

1E
+

05

2E
+

05

3E
+

05

4E
+

05

5E
+

05

7E
+

05

1E
+

06

1E
+

06

Size of Data (Byte)

T
im

e
(M

ic
ro

se
c)

Default(S-12KB/L-512KB)

Binomial

Recursive

Ring

Figure 6.1: 8 CPUs broadcast on Myrinet.

Message Size
(Bytes) Default(S-12KB/L-

512KB) Binomial Recursive Ring

8192 218 190 257 254
11584 236 241 299 290
16384 435 330 432 359
23168 522 446 523 421
32768 750 503 728 606
46336 954 652 941 781
65536 1378 855 1376 951
92680 1842 1147 1852 1209

131072 2527 1593 2529 1667
185360 3312 2286 3256 2178
262144 4750 3220 4770 3703
370728 6924 4642 6669 5080
524288 6876 6637 9473 6972
741456 9403 9419 12686 9368

1048576 12949 13242 18792 13019

Table 6.2 : Results for 8 CPUs for broadcast on Myrinet.

 160

10

100

1000

10000

100000

25
6

36
0

51
2

72
0

10
24

14
48

20
48

28
96

40
96

57
92

81
92

11
58

4

16
38

4

23
16

8

32
76

8

46
33

6

65
53

6

92
68

0

13
10

72

18
53

60

26
21

44

37
07

28

52
42

88

74
14

56

Size of Data (Byte)

T
im

e
(M

ic
ro

se
c)

Default(S-12KB/L-512KB)

Binomial

Recursive

Ring

Figure 6.2 : 32 CPU Broadcast on Myrinet.

Message Size
(Bytes) Default(S-12KB/L-

512KB) Binomial Recursive Ring

8192 439 432 412 750
11584 535 551 464 800
16384 637 819 640 921
23168 756 1133 791 1006
32768 1130 1034 1135 1196
46336 1452 1362 1405 1364
65536 1935 1589 1923 1584
92680 2636 2110 2521 1963

131072 3393 2904 3380 2480
185360 4615 4102 4540 3215
262144 6270 5757 6384 4283
370728 9075 65135 8737 5583
524288 7557 89719 13031 7493
741456 10257 85287 17406 10198

1048576 17663 51897 238326 17519

Table 6.3 : Results for 32 CPUs for broadcast on Myrinet

 161

100

1000

10000

100000

1000000

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4

32
76

8

65
53

6

13
10

72

26
21

44

52
42

88

10
48

57
6

Size of Data (Byte)

T
im

e
(M

ic
ro

se
c)

Default(S-12KB/L-512KB)

Binomial

Recursive

Ring

Figure 6.3 : 8 CPU Broadcast on Ethernet.

Message Size
(Bytes) Default(S-12KB/L-

512KB) Binomial Recursive Ring

8192 2109 2109 2955 2733
11584 2693 2702 3627 3399
16384 4402 3525 4405 3910
23168 5849 4696 5819 4697
32768 7529 6358 7515 5750
46336 10618 8713 10140 7678
65536 13783 17320 13853 10316
92680 19637 22477 20031 14646

131072 38543 28214 36072 25269
185360 64552 38381 58071 37453
262144 72284 46800 72153 52977
370728 95923 65740 99160 69376
524288 86080 92542 156638 86139
741456 116839 130327 213474 116845

1048576 154694 183758 313106 154704

Table 6.4 : Results for 8 CPUs for broadcast on Ethernet.

 162

100

1000

10000

100000

1000000

25
6

36
0

51
2

72
0

10
24

14
48

20
48

28
96

40
96

57
92

81
92

11
58

4

16
38

4

23
16

8

32
76

8

46
33

6

65
53

6

92
68

0

1E
+

05

2E
+

05

3E
+

05

4E
+

05

5E
+

05

7E
+

05

1E
+

06

1E
+

06

Size of Data (Byte)

T
im

e
(M

ic
ro

se
c)

Default(S-12KB/L-512KB)

Binomial

Recursive

Ring

Figure 6.4 : 32 CPU Broadcast on Ethernet.

Message Size
(Bytes)

Default(S-12KB/L-
512KB)

Binomial Recursive Ring

8192 4608 4609 5459 16117
11584 5910 5950 6512 6644
16384 7306 7452 7659 7992
23168 9580 10030 9828 8919
32768 12041 13230 12263 11177
46336 15823 18500 17961 14497
65536 20809 56731 20605 17071
92680 28077 66079 28863 20684

131072 43687 63074 52855 31201
185360 76610 81804 87138 43309
262144 112449 93977 108673 64177
370728 157913 132165 154155 87682
524288 112351 185899 204248 111132
741456 153483 261935 293599 154442

1048576 191141 369545 391933 192628

Table 6.5 : Results for 32 CPUs for broadcast on Ethernet

 163

0

50000

100000

150000

200000

250000

300000

350000

16
38

4

23
16

8

32
76

8

46
33

6

65
53

6

92
68

0

13
10

72

18
53

60

26
21

44

37
07

28

52
42

88

74
14

56

10
48

57
6

Size of Data (Byte)

T
im

e
(M

ic
ro

se
co

n
d

s)

Binomial

Recursive

Ring

 Figure 6.5 : Broadcast for 8 CPUs with 2 ppn for 16 KByte to 1 Mbyte on Ethernet.

0

50000

100000

150000

200000

250000

16384 23168 32768 46336 65536 92680 131072 185360 262144 370728 524288 741456 1E+06

Size of Data (Byte)

T
im

e
(M

ic
ro

se
co

n
d

s)

Binomial

Recursive

Ring

Figure 6.6 : Broadcast for 8 CPUs with 1 ppn for 16 KByte to 1 Mbyte on Ethernet.

 164

Message

Sizes (Byte) 8 CPUs with 2ppn

8 CPUs with 1ppn

 Binomial Recursive Ring Binomial Recursive Ring

16384 3525 4405 3910 6278
6673

9061

23168 4696 5819 4697 8020
7738

10114

32768 6358 7515 5750 10502
9166

11525

46336 8713 10140 7678 14368
11254

13638

65536 17320 13853 10316 15924
14143

16469

92680 22477 20031 14646 21066
18248

21066

131072 28214 36072 25269 34573
33733

31883

185360 38381 58071 37453 45665
45190

44602

262144 46800 72153 52977 62215
73715

62215

370728 65740 99160 69376 80651
89404

80651

524288 92542 156638 86139 100702
100532

100702

741456 130327 213474 116845 141273
167739

134273

1048576 183758 313106 154704 196857
235789

176857

Table 6.6 : Comparison results between 8p and 2ppn with 8p and 1ppn for Broadcast on
Ethernet.

Message Sizes
(Byte)

MPICH2 1.0.4

MPICH1.2.6

Differences between
MPICH2 - MPICH1.2.6

1024 726 770
5.7 %

2048 1043 1058
1.4 %

4096 1399 1415
1.1 %

8124 2109 2140
1.4 %

12288 2693 2739
1.7 %

16384 4402 4452
1.1 %

32768 7529 7674
1.9 %

65536 13783 18035
23.6 %

131072 38543 39149
1.5 %

262144 72284 80364
10.1 %

370728 69376 110097
36.9 %

524288 86139 108738
20.8 %

741456 116845 138908
15.9 %

1048576 154704 186145
16.9 %

Table 6.7 : Comparison between MPICH2 1.0.4 with MPICH 1.2.6 for Broadcast on
Ethernet.

 165

10

100

1000

10000

256 512 1024 2048 4096 8124 12288 16384 32768

Size of Data (Byte)

T
im

e
(M

ic
ro

se
c)

Test Binomial-MY

Test Recursive Long-MY

Test Ring-MY

Model Binomial-MY

Model Recursive Long-MY

Model Ring-MY

Figure 6.7 : Comparison between test results and model for 2 ppn for 32 CPUs for me-
dium message size on Myrinet.

10

100

1000

10000

256 512 1024 2048 4096 8124 12288 16384 32768

Size of Data (Byte)

T
im

e
(M

ic
ro

se
c)

Test Binomial-MY

Test Recursive Long-MY

Test Ring-MY

Model Binomial-MY

Model Recursive Long-MY

Model Ring-MY

Figure 6.8 : Comparison between test results and model for 1 ppn for 32 CPUs for me-
dium message size on Myrinet.

 166

100

1000

10000

100000

1000000

32768 65536 131072 262144 524288 1048576 2097152 4194304

Size of Data (Byte)

T
im

e
(M

ic
ro

se
c)

Test Binomial-MY

Test Recursive Long-MY

Test Ring-MY

Model Binomial-MY

Model Recursive Long-MY

Model Ring-MY

Figure 6.9 : Comparison between test results and model for 2ppn for 32 CPUs for large
message size on Myrinet.

100

1000

10000

100000

32768 65536 131072 262144 524288 1048576 2097152 4194304

Size of Data (Byte)

T
im

e
(M

ic
ro

se
c)

Test Binomial-MY

Test Recursive Long-MY

Test Ring-MY

Model Binomial-MY

Figure 6.10 : Comparison between test results and model for 1 ppn for 32 CPUs for large
message size on Myrinet.

 167

6.5 Alltoall

MPICH2 1.0.4 uses four algorithms for MPI_Alltoall [136]. For short messages

(<256Bytes) and (number of processors >= 8) it uses store-and-forward algorithm, which

takes [lg p] steps at the expense of some extra data communication (n/2 lg p β instead of

nβ, where n is the total amount of data to be sent or received by any process) and the time

taken is Tstoreforward = lgp.α + (n/2).lgp.β. Therefore, it is a good algorithm for very short

messages where latency is an issue. For medium size messages (256Bytes =< medium

message size =< 32768Bytes) and (short messages for number of processes < 8) it uses an

algorithm that posts all irecvs and isends and then does a waitall, then scatter the order of

sources and destinations among the processes, so that all processes will not be sending

and receiving to or from the same process at the same time.

For long messages and power-of-two number of processes, it uses a pairwise ex-

change algorithm, which takes p-1 steps. In each step k, 1<= k < p, each process calcu-

lates its target process as (rank ̂ k) (exclusive-or-operation) and exchanges data directly

with that process. This algorithm, however, does not work if the number of processes is

not a power of two. So, for the non-power-of-two number of processes, it uses an algo-

rithm in which, in step k, each process receives from (rank-k) and sends data to (rank+k).

In both these algorithms, data is directly communicated from source to destination, with

no intermediate steps. The time taken by these algorithm is given by T long= (p-1).α + nβ.

For more detailed explanation on the algorithms refer to Thakur et al. [11].

0 256Bytes 32 KByte

Table 6.8 : Summary of Algorithms used for Alltoall in MPICH.

Figure 6.11 and Figure 6.13 show the average time for 8 CPUs and 32 CPUs on

Myrinet for the default settings, store and forward, isend and irecv and pairwise exchange

For CPU >=8 use store-
and-forward algorithm.
For CPU < 8 uses irecvs
and isends and then does a
waitall.

For CPU >=8 uses irecvs and
isends and then does a waitall.

For POF2 uses pairwise exchange
algorithm.

 168

algorithms for MPI_Alltoall. Figure 6.12 and Figure 6.14 shows the same plot for

Ethernet. Measurements using Myrinet and 2 ppn show that the default settings are close

to optimal, although moving the small message change-over point from 256 Bytes to 512

Bytes gives an improvement of 30% to 50% for messages in that range. The transition

from medium to larger message sizes should occur at 32 KByte, where the isend and

irecv algorithm should change to the pairwise exchange algorithm. However the results

show that the pairwise exchange algorithm performs about the same as isend and irecv

algorithms.

The improvement for Ethernet with 2 ppn is much greater. In that case, the store-

and-forward algorithm turns out to be slower than isend/irecv even for small messages, so

using isend/irecv improves performance by around a factor of 2 for messages of size 256

bytes or less. The pronounced hump in the results for 32 CPUs is probably due to RTOs

(see Section 5.8) which do not seem to have as much of an effect for the store and for-

ward algorithm.

 Figure 6.15 shows the results from running the benchmarks using 1 process per

node for 32 processors on Myrinet, and the change-over values for small message sizes

agrees with the MPICH defaults. Figure 6.16 and Figure 6.17 shows the comparison be-

tween 1 and 2 processes per node (ppn) with the model for 32 processors on Myrinet. The

results for isend/irecv and pairwise exchange are a close fit to the measured results for 1

process per node, but a poor match to the results for 2 processes per node. However, for

store/forward model, the results for 1 processor per node only have a slight improvement

compared with 2 processes per node measured results.

Based on the above results and discussions, it is suggested that for Myrinet on this

cluster only two algorithms are needed, which are the store-and-forward and isend and

irecv or pairwise exchange, and the change over points for smaller message sizes is the

same as the default settings. On Ethernet, it shows that only one algorithm is needed

which is either the isend and irecv algorithms or the pairwise exchange, since the per-

formance is almost the same. The improvement using the suggested algorithms and

change-over point for MPI_Alltoall is nearly 50% for small message sizes on Ethernet,

while for Myrinet there was little change. For large message sizes there was no im-

provement for both networks since the result between isend and irecv and pairwise ex-

change is almost the same.

 169

100

1000

10000

100000

1000000

32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4

32
76

8

65
53

6

13
10

72

26
21

44

Size of Data (Byte)

T
im

e
(M

ic
ro

se
c)

Default(S-256/L-32768)

Store&Forward

Irecv&Isend

Pairwise Exchange

Figure 6.11 : 8 CPU and 2 ppn for Alltoall on Myrinet.

100

1000

10000

100000

1000000

32 40 64 88 12
8

17
6

25
6

36
0

51
2

72
0

10
24

14
48

20
48

28
96

40
96

57
92

81
92

11
58

4

16
38

4

23
16

8

32
76

8

46
33

6

65
53

6

92
68

0

1E
+

05

2E
+

05

Size of Data (Byte)

T
im

e
(M

ic
ro

se
c)

Default(S-256/L-32768)

Store&Forward

Irecv&Isend

Pairwise Exchange

Figure 6.12 : 8 CPU and 2ppn for Alltoall on Ethernet.

 170

100

1000

10000

100000

32 40 64 88 12
8

17
6

25
6

36
0

51
2

72
0

10
24

14
48

20
48

28
96

40
96

57
92

81
92

11
58

4

16
38

4

Size of Data (Byte)

T
im

e
(M

ic
ro

se
c)

Default(S-256/L-32768)

Store&Forward

Irecv&Isend

Pairwise Exchange

Figure 6.13 : 32 CPU and 2 ppn for Alltoall on Myrinet

1000

10000

100000

1000000

24 32 40 64 88 12
8

17
6

25
6

36
0

51
2

72
0

10
24

14
48

20
48

28
96

40
96

57
92

81
92

11
58

4

16
38

4

Size of Data (Byte)

T
im

e
(M

ic
ro

se
c)

Default(S-256/L-32768)

Store&Forward

Irecv&Isend

Pairwise Exchange

Figure 6.14 : 32 CPU and 2 ppn Alltoall on Ethernet.

 171

100

1000

10000

100000

32 40 64 88 12
8

17
6

25
6

36
0

51
2

72
0

10
24

14
48

20
48

28
96

40
96

57
92

81
92

11
58

4

16
38

4

Size of Data (Byte)

T
im

e
(M

ic
ro

se
c)

Default(S-256/L-32768)

Store&Forward

Irecv&Isend

Pairwise Exchange

Figure 6.15: 32 CPU and 1 ppn for Alltoall on Myrinet

100

1000

10000

100000

1000000

32 64 128 256 512 1024 2048 4096 8124 12288 16384 23168 32768 46336 65536

Size of Data (Byte)

T
im

e(
M

ic
ro

se
c)

Model Store&Forward-MY

Test Store&Forward-MY

Model Isend&Irecv-MY

Test Isend&Irecv-MY

Model Pairwise-MY

Test-Pairwise-MY

Figure 6.16 : Comparison between test results and model for 2ppn for 32 CPUs on Myri-
net.

 172

100

1000

10000

100000

1000000

32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
24

12
28

8

16
38

4

23
16

8

32
76

8

46
33

6

65
53

6

Size of Data (Byte)

T
im

e
(M

ic
ro

se
c)

Model Store&Forward-MY

Test Store&Forward-MY

Model Isend&Irecv-MY

Test Isend&Irecv-MY

Model Pairwise-MY

Test-Pairwise-MY

Figure 6.17 : Comparison between test results and model for 1ppn for 32 CPUs on Myri-
net.

6.6 Reduce Scatter

The algorithm for reduce scatter considers two types of reduction operation, either

commutative or non-commutative. A binary operation is commutative if ab = ba for any

possible a and b. Commonly, addition and multiplication are commutative operations,

whereas multiplication of matrices is generally non-commutative. If the operation is

commutative, for short and medium-size messages, MPICH uses a recursive-halving al-

gorithm in which the first p/2 processes send the second n/2 data to their counterparts in

the other half and receive the first n/2 data from them. This procedure continues recur-

sively, halving the data communicated at each step, for a total of lgp steps. So the time

taken will be Trec_half = lgp.α + ((p-1)/p)n.β + ((p-1)/p)n.γ. The time required for a typi-

cal arithmetic operation such as multiple or add is indicated by γ. If the number of proc-

esses is not a power-of-two, it will convert to the nearest lower power-of-two by having

the first few even-numbered processes send their data to the neighboring odd-numbered

process at (rank+1). Those odd-numbered processes compute the result for their left

neighbor as well in the recursive halving algorithm, and then at the end send the result

back to the processes that do not participate. The time taken for non-power-of-two is

 173

Trec_halv = ([lgp] + 2)α + 2nβ + (1+(p-1)/p)n.γ. However, the above cost in the non power-

of-two case is approximate because there is some imbalance in the amount of work each

process does since some processes do the work of their neighbors as well [11].

For commutative operations and very long messages a pairwise exchange algo-

rithm is used, similar to the one used in MPI_Alltoall. At step i, each process sends n/p

amount of data to (rank+i) and receives n/p amount of data from (rank-i) and the time

taken is Tlong = (p-1)α + ((p-1)/p)n.β + ((p-1)/p)n.γ.

For non-commutative operations a recursive doubling algorithm is used for very short

message sizes, which takes lgp steps. At step 1, processes exchange (n-n/p) amount of

data; at step 2, (n-2n/p) amount of data; at step 3, (n-4n/p) amount of data, and so forth.

So the time taken will be Tshort = lgp.α + n(lgp-(p-1)/p)β + n(lgp-(p-1)/p)γ. The time re-

quired for the reduction operation is indicated by γ and this thesis takes 0.1 microsecond

as an estimate for γ. It is hard to estimate the value for γ. Therefore, we choose 0.1 as the

value since it gives the best match between the predicted and measured values. The algo-

rithm for medium and long messages uses the same algorithm as commutative for long

message sizes, which is pairwise exchange, and the time taken will be the same as above.

0 512B 512KB

C

Table 6.9 : Summary of Algorithms used for Reduce Scatter in MPICH.

The default setting of SKaMPI is using non-commutative operations, so the

change-over point should have an effect at smaller message sizes. SKaMPI Reduce Scat-

ter operation performs a tree-wise data reduction operation (Bitwise OR1) on all partici-

pating processes and then distributes the result partially to all participating nodes, with

every node receiving a different part of the result array.

1 A bitwise OR takes two bit patterns of equal length, and produces another one of the same length by
matching up corresponding bits (the first of each; the second of each; and so on) and performing the logical
OR operation on each pair of corresponding bits. In each pair, the result is 1 if the first bit is 1 OR the sec-
ond bit is 1 (or both), and otherwise the result is 0

- For Commutative uses re-
cursive-halving algorithm.
- For Not Commutative uses
recursive doubling algorithm.

- For Commutative uses recur-
sive-halving algorithm.
- For Not Commutative uses
pairwise exchange algorithm.

- For Commutative and Not
Commutative uses pairwise ex-
change algorithm.

 174

In order to check for commutative operations, measurements using PMB were

performed, which uses MPI_FLOAT as the data type and MPI_SUM as the MPI opera-

tion. The results for PMB show that if the change-over point is decreased to 100 KByte

from 512 KByte (the fixed setting for long message size for commutative operation), then

in that range the pairwise exchange algorithm gives approximately 5% to 10% improve-

ment compared to using the recursive-halving algorithms. So, for commutative operations

there is little benefit in using a different change-over point.

Figure 6.18 to Figure 6.21 show the average time for the default settings, recursive

doubling and pairwise exchange on Myrinet and Ethernet for 8 and 32 CPUs, for the non-

commutative operation measured by SKaMPI. The results for Myrinet for 8 CPUs show

that recursive doubling performs better than pairwise exchange up to 8 Kbytes, rather

than the MPICH default of 512 Bytes. As the number of CPUs is increased, the cross-

over between the two algorithms increases also, as shown in Figure 6.20 for 32 CPUs,

where the change-over point is 16 KByte. The improvement in performance from using

the optimum change-over point increases as the number of CPUs increases. At 32 CPUs

it is more than a factor of 4 between 512 bytes and 4 Kbytes, and more than a factor of 2

up to 8 Kbyes.

On Ethernet there is little difference in performance between the two algorithms for 8

CPUs, but as with Myrinet, as the number of CPUs is increased the improvement by us-

ing recursive doubling is increased. For 8 CPUs the change-over occurs at 2 KByte in-

stead of 512 Byte, while at 32 CPUs the change-over point is at 8 KByte. As shown in

Figure 6.21, the performance improvement from moving the change-over value is quite

significant, although not as large as for Myrinet.

Figure 6.22 shows the performance for 32 CPUs on Myrinet using one process per

node (1ppn) rather than two, which again shows results consistent with the default

change-over point in MPICH, so the difference in the optimal change-over points from

the MPICH defaults is again due to the use of 2ppn rather than 1ppn. Figure 6.23 and

Figure 6.24 shows the comparison between 1 and 2 processes per node (ppn) with the

model for 32 processors on Myrinet. The cross over based from the calculated value from

the model is approximately at 1 KByte, which is very near to the default cross over at

512Byte. The measured results for 1ppn shows a very close fit with recursive doubling

 175

algorithm until larger message sizes. However, for 2ppn the measured result shows a

poor performance particularly for recursive doubling algorithm.

Based on this analysis it is suggested that the change over point for smaller mes-

sage sizes should increase from 512 Byte to 16 KByte for both networks on this cluster.

Although for 8 CPUs and Ethernet the cross-over between the algorithms occurs at less

than 16 KByte, the performance is almost the same between both algorithms until 16

KByte, So it is still worth using recursive doubling until 16 KByte for at least 32 CPUs

for non-commutative operations.

10

100

1000

32 40 64 88 12
8

17
6

25
6

36
0

51
2

72
0

10
24

14
48

20
48

28
96

40
96

57
92

81
92

11
58

4

16
38

4

23
16

8

Size of Data (Byte)

T
im

e
(M

ic
ro

se
c)

Default(S-512)

Recursive

Pairwise

Figure 6.18 : 8 CPU on Myrinet for Reduce Scatter

 176

100

1000

10000

32 40 64 88 12
8

17
6

25
6

36
0

51
2

72
0

10
24

14
48

20
48

28
96

40
96

57
92

81
92

11
58

4

16
38

4

23
16

8

Size of Data (Byte)

T
im

e
(M

ic
ro

se
c)

Default(S-512)

Recursive

Pairwise

Figure 6.19 : 8 CPU on Ethernet for Reduce Scatter

100

1000

10000

32 40 64 88 12
8

17
6

25
6

36
0

51
2

72
0

10
24

14
48

20
48

28
96

40
96

57
92

81
92

11
58

4

16
38

4

23
16

8

32
76

8

46
33

6

65
53

6

92
68

0

1E
+0

5

Size of Data (Byte)

T
im

e
(M

ic
ro

se
c)

Default(S-512)

Recursive

Pairw ise

Figure 6.20 : 32 CPU on Myrinet for Reduce Scatter

 177

100

1000

10000

100000

32 40 64 88 12
8

17
6

25
6

36
0

51
2

72
0

10
24

14
48

20
48

28
96

40
96

57
92

81
92

11
58

4

16
38

4

23
16

8

Size of Data (Byte)

T
im

e
(M

ic
ro

se
c)

Default(512B)

Recursive

Pairwise

Figure 6.21 : 32 CPU and 2 ppn on Ethernet for Reduce Scatter

100

1000

10000

256 360 512 720 1024 1448 2048 2896 4096 5792 8192 11584 16384

Size of Data (Byte)

T
im

e
(M

ic
ro

se
c)

Default(S-512)

Recursive

Pairwise

Figure 6.22 : Results for 32 CPUs and 1 ppn for Reduce Scatter on Myrinet.

 178

10

100

1000

10000

100000

16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
24

12
28

8

16
38

4

32
76

8

Size of Data (Byte)

T
im

e
(M

ic
ro

se
c)

Model Recursive-MY

Test Recursive-MY

Model Pairwise-MY

Test Pairwise-MY

Figure 6.23 : Comparison between test results and model for 2ppn for 32 CPUs on Myri-
net.

10

100

1000

10000

100000

16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
24

12
28

8

16
38

4

32
76

8

Size of Data (Byte)

T
im

e
(M

ic
ro

se
c)

Model Recursive-MY

Test Recursive-MY

Model Pairwise-MY

Test Pairwise-MY

Figure 6.24 : Comparison between test results and model for 1ppn for 32 CPUs on Myri-
net.

 179

6.7 Allgather

In allgather, for short messages and non-power-of-two number of processes

MPICH uses the algorithm by Bruck et al. [142] which is a variant of the distribution al-

gorithm for barrier, and takes ceiling(lg p) steps and time Tdistribution= lgp.α + n.((p-1)/p).β.

For short or medium-size messages and power-of-two number of processes MPICH uses

the recursive doubling algorithm and the time taken is the same as the Bruck algorithm

which is Tdistribution= lgp.α + n.((p-1)/p).β. For long messages or medium-size messages

and non-power-of-two number of processes a ring algorithm is used. At the first step,

each process i sends its contribution to process i+1 and receives the contribution from

process i-1. From the second step onwards, each process i forwards to process i+1 the

data it received from process i-1 in the previous step. This takes a total of p-1 steps and

the time taken is Tring= (p-1).α + n.((p-1)/p).β. This algorithm is used instead of recursive

doubling for long messages because the nearest neighbor communication pattern used in

ring algorithm performs twice as fast as recursive doubling for long messages particularly

on Myrinet and IBM SP[11]. The change over point is occurring based on the equation

comm_size*type_size<MPIR_ALLGATHER_LONG_MSG in the MPICH code, where

comm_size is the number of processors used and type_size is the message size to be sent.

So if the change-over point for long message size is set at 512 KByte and number of

CPUs used is 8, the algorithm changes will occur at 64 KByte (8 x 64 KByte = 512

KByte) and for 32 CPUs the occurrence will be at 16KByte.

0 comm_size*type_size < 80KB comm_size*type_size < 512KB

Table 6.10 : Summary of Algorithms used for Allgather in MPICH.

The average time for the default settings, recursive doubling and ring algorithm is

shown in Figure 6.25 to Figure 6.28 on Myrinet and Ethernet network for 8 and 32 CPUs.

- For POF2 uses recursive dou-
bling algorithm.
- For Non POF2 uses variant of
the disemmination algorithm
for barrier. It takes ceiling(lg p)
steps.

- For POF2 uses recursive dou-
bling algorithm.
- For Non POF2 uses ring algo-
rithm.

- Ring Algorithm for POF2 and
Non POF 2.

 180

The figures show that the change over point should occur earlier since the ring algorithm

is performing well compared to recursive doubling for smaller message sizes. Both 8 and

32 CPUs show a similar change-over point approximately at 1 KByte, however due to the

above equation the change-over point should be different between 8 and 32 CPUs. Based

from the equations the long message sizes should be set at 128 Byte for 8 CPUs and 32

Byte for 32 CPUs. It is also noticeable that on Ethernet the improvement is much bigger

compared to Myrinet network, mainly for larger number of CPUs. This occurrence has a

similarity with broadcast, where the ring algorithm performs better than recursive dou-

bling. The improvement from using a different change-over point to the MPICH default

can be quite significant, up to approximately 40% to 50% for Myrinet and around 50% or

more for Ethernet, particularly for larger number of CPUs.

For non-power-of-two number of CPUs, the results show that even for small

message sizes, the ring algorithm is better than using the variant of the dissemination al-

gorithm for barrier by Bruck et al.[142]. However the improvements are fairly small,

around 10% to 20%. Note that, similarly to broadcast, for one process per node there was

not much difference between the different algorithms, and the default cross-over points

work well.

 181

10

100

1000

10000

100000

64 88 12
8

17
6

25
6

36
0

51
2

72
0

10
24

14
48

20
48

28
96

40
96

57
92

81
92

11
58

4

16
38

4

23
16

8

32
76

8

46
33

6

65
53

6

92
68

0

1E
+

05

2E
+

05

3E
+

05

4E
+

05

Size of Data (Byte)

T
im

e
(M

ic
ro

se
c)

Default(S-81920/L-524288)

Recursive

Ring

Figure 6.25 : 8 CPU and 2ppn on Myrinet for Allgather.

100

1000

10000

100000

1000000

64 88 12
8

17
6

25
6

36
0

51
2

72
0

10
24

14
48

20
48

28
96

40
96

57
92

81
92

11
58

4

16
38

4

23
16

8

32
76

8

46
33

6

65
53

6

92
68

0

1E
+

05

2E
+

05

3E
+

05

4E
+

05

Size of Data (Byte)

T
im

e
(M

ic
ro

se
c)

Default(S-81920/L-524288)

Recursive

Ring

Figure 6.26 : 8 CPU and 2ppn on Ethernet for Allgather

 182

100

1000

10000

100000

512 720 1024 1448 2048 2896 4096 5792 8192 11584 16384 23168 32768 46336 65536

Size of Data (Byte)

T
im

e
(M

ic
ro

se
c)

Default(S-81920/L-524288)

Recursive

Ring

Figure 6.27 : 32 CPU and 2 ppn on Myrinet for Allgather

1000

10000

100000

1000000

51
2

72
0

10
24

14
48

20
48

28
96

40
96

57
92

81
92

11
58

4

16
38

4

23
16

8

32
76

8

46
33

6

65
53

6

Size of Data (Byte)

T
im

e
(M

ic
ro

se
c)

Default(S-81920/L-524288)

Recursive

Ring

Figure 6.28 : 32 CPU and 2 ppn on Ethernet for Allgather

 183

6.8 Other Collective Communication

 This section describes other collective communications that have changes in the

new MPICH implementation but have very small percentage differences between the dif-

ferent algorithms. The small difference is also observed for one processor per node and

non-power-of-two number of CPU. The MPI collective communications discussed in this

section are allreduce and reduce. All of these routines only have two different algorithms

and the change between them all occurs at the same message size, which is 2 KByte. The

performances for all of these routines only have about 2% to 3% differences between dif-

ferent algorithms from modifying the change-over point.

6.8.1 Allreduce

In Allreduce the algorithm is divided into two major components, which are for

predefined (built-in) reduction operation and user-defined reduction operation. For Allre-

duce the recursive doubling algorithm is used for short and long message sizes with user-

defined reduction operation. The same algorithm is used for short message sizes for built-

in reduction operation, while for long messages sizes, Rabenseifner's algorithm [138] is

used. This algorithm implements the allreduce in two steps, firstly a reduce-scatter, fol-

lowed by an allgather. A recursive-halving algorithm (beginning with processes that are

distance 1 apart) is used for the reduce-scatter, and a recursive doubling algorithm is used

for the allgather.

The non-power-of-two case is handled by dropping to the nearest lower power-of-

two: the first few even-numbered processes send their data to their right neighbors

(rank+1), and the reduce-scatter and allgather happen among the remaining power-of-two

processes. At the end, the first few even-numbered processes get the result from their

right neighbors.

 In SKaMPI, the Allreduce is measured using a built-in operation, which is the

MPI_SUM operation. So the effect of different algorithms is between recursive doubling

and reduce-scatter followed by allgather.

 184

Table 6.11 : Summary of Algorithm uses in Allreduce.

6.8.2 Reduce

Similarly with allreduce, in reduce for long messages and for built-in operations,

Rabenseifner's algorithm [138] is used, while for short message sizes the binomial tree

algorithm is used. The Rabenseifner's algorithm implements the reduce in two steps,

firstly a reduce-scatter, followed by a gather to the root. A recursive-halving algorithm

(beginning with processes that are distance 1 apart) is used for the reduce-scatter, and a

binomial tree algorithm is used for the gather. The non-power-of-two case is handled by

dropping to the nearest lower power-of-two, the first few odd-numbered processes send

their data to their left neighbors rank-1, and the reduce-scatter happens among the re-

maining power-of-two processes. If the root is one of the excluded processes, then after

the reduce-scatter, rank 0 sends its result to the root and exits; the root now acts as rank 0

in the binomial tree algorithm for gather.

For short messages and long message sizes, the binomial tree algorithm is used

for user-defined operations. Similarly with Allreduce, the reduce test in SKaMPI uses the

built-in MPI_SUM operation. So the effect of different algorithms is between binomial

tree algorithms and reduce-scatter followed by allgather. The small difference in per-

formance in using different change-over-points is suspected to be due to the use of bino-

mial tree algorithms, which is also used for long message sizes under the allgather algo-

rithm.

2 KB
- For built-in ops uses recursive doubling
algorithm.

- For user-defined ops uses recursive dou-
bling algorithms.

- For built-in ops uses reduce-scatter followed
by an allgather. (A recursive-halving algorithm
for the reduce-scatter, and a recursive doubling
algorithm for the allgather.)

- For user-defined ops uses recursive doubling
algorithms.

0

 185

Table 6.12 : Summary of Algorithm uses in Reduce

6.9 Summary

MPICH provides a mechanism for selecting between different algorithms for a

particular collective communication routine based on whether the message size is greater

than or less than a specified change-over point. In current versions of MPICH this value

is hard-coded, based on experimental results and theoretical models that assume a single

process per node.

This study has demonstrated that it is straightforward to modify the MPICH code

to allow the change-over points between different algorithms to be customized. This en-

ables the change-over values to be set so that MPI benchmarks can be run to measure the

performance of each different algorithm over any range of message sizes, and to therefore

be able to find the optimal change-over points for any parallel computer. These custom-

ized change-over points can then be set in a configuration file and used by MPICH, in

order to optimize the performance of collective communications for a particular parallel

computer.

 This study has shown that the values of the optimal change-over points can vary sig-

nificantly for different networks and different numbers of CPUs per node, and that using

these customized change-over points can provide significant performance improvements

for collective communications routines in the range of message sizes between the default

MPICH change-over point and the optimum change-over point for the particular ma-

chine. All of the collective communications routines for which MPICH implements mul-

tiple algorithms showed improvements of over 50% for some message sizes, and in some

cases improvements of a factor of 2 or more.

2 KB
- For builtin ops uses binomial tree algo-
rithms.

- For user-defined ops uses binomial tree
algorithms.

.

- For builtin ops uses reduce-scatter followed
by gather. (A recursive-halving algorithm for
the reduce-scatter, and a binomial tree algo-
rithm for the gather.)

- For user-defined ops uses binomial tree algo-
rithms.

0

 186

 One of the main factors in determining the change-over point was the number of

processes per node. With the advent of multi-core processors, all modern clusters will

have more than one CPU per node, so it will be useful to be able customize collective

communications rather than use the default change-over points that are based on meas-

urements for a single process per node.

 Additionally, it is noticeable that in most cases the change over point on Ethernet

occurs at lower message sizes than Myrinet, this is probably due to the effect of the

higher latency and lower bandwidth. Figure 6.29 shows the expected performance for dif-

ferent algorithms on broadcast with 32 CPUs for Gigabit Ethernet which has similar la-

tency with 100 Mbit/s Ethernet (90 microsec) and similar bandwidth with Myrinet

(180Byte/microsec). The performance is calculated based on the broadcast formula, so

the results should be assumed to only hold for one processor per node. The results indi-

cate that the change over-value will occur higher than the fixed value used by MPICH,

with the cross-over value for small and medium message size increasing from 12 KByte

to 32 KByte and from 512 KByte to 4 MByte approximately. So, it shows that if the

bandwidth is increased by factor of 10, with the latency remaining constant, then the

cross-over point will be increased too in this case.

In conclusion, this study provides information on better change over points for

two processors per node on Myrinet with GM and Ethernet with TCP on IBM eServer

1350 Linux cluster. This study also provides comparison results between MPICH2 1.0.4

and MPICH 1.2.6 and it shows that MPICH2 has improvement for certain algorithms.

Besides, this study also shows that with better change over point and MPICH2, Ethernet

can improve the performance until 50% in some cases. Finally, it is possible to get sig-

nificant performance improvement by allowing tuning of the change over point between

difference collective communication algorithms based on measurements from MPI

benchmarks, rather than have then set to fixed values

 187

100

1000

10000

100000

1000000

25
6

51
2

10
24

20
48

40
96

81
24

12
28

8

16
38

4

32
76

8

65
53

6

13
10

72

26
21

44

52
42

88

10
48

57
6

20
97

15
2

41
94

30
4

Size of Data (Byte)

T
im

e
(M

ic
ro

se
c)

Model Binomial-MY

Model Recursive Long-MY

Model Ring-MY

Figure 6.29 : Expected performance for 32 CPU and 1ppn for Gigabit Ethernet

6.10 Future Work

In future a fully automated mechanism for configuring the change-over points for

each collective communication to maximize the performance will be developed. The idea

is run an MPI benchmark for each algorithm used in each collective communication rou-

tine using the smallest and largest message sizes possible. Then the results will be proc-

essed to compute the optimal change-over points, which will be written to a configuration

file for use by MPICH.

With the move to multi-core CPUs, new clusters are likely to have many cores per

node. We plan to repeat these measurements on a new cluster with dual quad-core proc-

essors (i.e. 8 CPUs) per node, to see if there is an even greater variation from the default

values in MPICH which are based on measurements with 1 CPU per node, and also to

 188

obtain results for Infiniband and Gigabit Ethernet networks. It would also be interesting

to do a detailed performance comparison between MPICH2 and MPICH1 on the same

network, e.g. for Myrinet with GM and Ethernet with TCP, particularly to analyse the

performance for ring algorithm, since it is suspected to have improvement in MPICH2 by

using the new mpd facilities. Finally, more dynamic change-over points used in the equa-

tion for Allgather algorithm need to be revised and suggested.

 189

CHAPTER 7

Performance Evaluation on ccNUMA Shared Memory Machine

SGI Altix 3000

7.1 Introduction

The SGI Altix [70,27] is a cache coherent, non-uniform memory architecture

(ccNUMA) shared memory multiprocessor system that is a popular machine for high-

performance computing, with several large systems now installed, including the 10,160

processor Columbia machine at NASA. In Australia, a 1680 processor Altix (the APAC

AC) has recently replaced an ageing AlphaServer SC with a Quadrics network (the

APAC SC) as the new peak national facility of the Australian Partnership for Advanced

Computing (APAC) [84], and was number 26 in the June 2005 list of the Top 500 super-

computers [91]. There are several other Altix machines at APAC partner sites, including

two systems with 160 processors and another with 208 processors.

Most parallel programs used for scientific applications on high-performance com-

puters are written using the Message Passing Interface (MPI), so the performance of MPI

message passing routines on a parallel supercomputer is very important. Shared memory

machines such as the Altix typically have very high-speed data transfer between proces-

sors, however this will only translate into good MPI performance if the MPI library can

efficiently translate the distributed memory, message-passing model of MPI onto shared

memory hardware. It is therefore of interest to measure the performance of MPI routines

on a shared memory machine such as the SGI Altix, and to compare it with a distributed

memory supercomputer with a high-end communications network. This section will pro-

vide results for MPI performance on the SGI Altix, and comparisons with similar meas-

urements on the AlphaServer SC [72] with a Quadrics network [20].

This work was done in early 2005, and was of particular interest to users of the

APAC National Facility, due to the change from the Alphaserver SC to the SGI Altix as

 190

the peak Australian supercomputing facility. Note that, Quadrics had the best MPI per-

formance of any network used in large clusters at that time. For example Grove [8] did a

comparison between Fast Ethernet, Myrinet and Quadrics network, which showed that

for point-to-point communication using 32 nodes and 2 processors per node for 64 KByte

messages, Quadrics obtained 0.5 ms, while Myrinet was approximately 1.5 ms.

However, at the current time Quadrics is no longer the best performance network.

This is because the recent commodity interconnect known as Infiniband now offers better

performance. Liu et al. [130] compared the performance between Infiniband, Myrinet

and Quadrics network and found that for 8 node clusters Infiniband can provide signifi-

cant performance improvements for applications compared with Myrinet and Quadrics.

A number of benchmark programs have been developed to measure the perform-

ance of MPI on parallel computers, including Pallas MPI Benchmark (PMB) [65],

SKaMPI [21,62], MPBench [19,64], Mpptest [17,63], and the most recently developed,

MPIBench [1,2,8]. The measurements reported here used MPIBench, which is the only

MPI benchmark that takes into account the effects of contention in point-to-point com-

munications, and can also generate distributions of communication times, not just aver-

ages. These are the first results of using MPIBench on a large shared memory machine.

7.2 MPI Benchmark Experiments on the Altix

The benchmark results reported in this chapter were carried out on Aquila, an SGI

Altix 3000 managed by the South Australian Partnership for Advanced Computing (SA-

PAC) [131]. Details about Aquila, the Altix architecture and benchmark methodology are

given in section 3.6.1.

 191

7.3 Selection of Processors for Benchmarking

The Altix documentation suggests that applications should avoid using processor

0, particularly for parallel jobs, since it is used to run system processes. Preliminary test

runs using processor 0 showed that communication involving this processor was indeed

slower than for other CPUs, although the effect is fairly small, just a few percent. Figure

7.1 shows two peaks for 8 processors using processor number from 0 to 7, with the peak

at the larger time corresponding to processor 0, but for processor number from 16 to 23

there is only one peak.

Therefore the benchmark runs reported here have avoided using processor 0, with

all measurements being done using processors 32 to 159. The benchmarks started with

processor number 32 in order to maintain the hierarchical pattern of 32 processor groups

shown in Figure 3.6.

Figure 7.1 : 8 CPUs for Point-to-Point at 256 KBytes using processor number from 0 to
7 and 16 to 23

Process 0 to 7

Process 16 to 23

 192

Another issue to investigate is the difference in communication time between 32

processors that have a direct link to each other or otherwise. Figure 3.6 shows that each

group of C-Bricks is linked by R-Bricks (router brick) and there is a direct link between

groups of two R-Bricks. For example, R1A is connected with a direct link to R2A, how-

ever R2A has to communicate with R3A using meta-router MR1A. So, it is interesting to

know the difference in performance between communications that go directly between

routers such as R1A and R2A or those that need to use an intermediate router such as

R2A and R3A.

Figure 7.2 shows the different results for communications within groups of 32

processors for 256KByte. The communications for 0 to 31, 32 to 63 and 64 to 95 are the

communications that have direct connection between the R-Bricks or router brick, while

16 to 47 and 48 to 79 need to use the intermediate router for communications. Noticea-

bly, for 0 to 31 there are two peaks and the peak at the shortest time is from process

4,5,6,7 and their partners 20,21,22,23 (refer to section 3.7 on MPIBench point-to-point

pattern). The direct link between R1A and R2A is probably the cause of the faster time

for those processes. Unfortunately, we do not have more precise explanation on the rea-

son for the faster time that obtain by those processors. The main peak still overlaps with

the results from the communication between processors 32 to 63 and 64 to 95, which also

have direct links between the R-Brick for a processor and the R-Brick for its communica-

tion partner. However, if we look closely at the communication between processors 16 to

47 and processors 48 to 79 there is about 25 µs difference with the other group of com-

munication. This shows that the communication is faster when using the direct link be-

tween two R-Bricks. However, the overhead of having to go through an intermediate

router is very small, around 2.5%. This means that users do not need to understand the

communication architecture of the parallel computer, or be concerned about the place-

ment of MPI processes to particular processors, in order to get good MPI performance.

 193

Figure 7.2 : Communication for 32 processor for different group of processor for
256KBytes.

7.4 MPI_Send with Default Settings and Single Copy

 The issue of buffered (default) and non-buffered (Single Copy) options in the SGI

MPI library has been discussed in section 3.6.1. This section gives a more detailed com-

parison of Point-to-Point communication results between default setting and Single Copy.

Figure 7.3 shows the average time for MPI_Send using default settings and Single Copy.

It shows that the communication time using Single Copy is decreased by more than a fac-

tor of ten for large numbers of CPUs. The performance of Single Copy does not depend

as much on the network architecture of the SGI Altix as with the default settings. How-

ever, for message size larger than 512 KByte the communication starts to show the hier-

archical pattern of 32 processors groups shown in Figure 3.6. Figure 7.4 shows the band-

width comparison for the same pattern and the bandwidth starts to show the hierarchical

pattern of 32 processors groups for message sizes larger than 512 Kbytes too.

 194

1

10

100

1000

10000

100000

64 25
6

10
24

40
96

16
38

4

65
53

6

26
21

44

10
48

57
6

41
94

30
4

Size of Data (Bytes)

T
im

e
(M

ic
ro

se
c)

2

4

8

16

32

64

2-SC

4-SC

8-SC

16-SC

32-SC

64-SC

Figure 7.3 : Average time for point-to-point using the default setting and single copy.

10

100

1000

10000

64 256 1024 4096 16384 65536 3E+05 1E+06 4E+06
Size of Data (Bytes)

M
B

yt
es

/s
ec

2

4

8

16

32

64

2-SC

4-SC

8-SC

16-SC

32-SC

64-SC

Figure 7.4 : Bandwidth for point-to-point using the default setting and single copy.

 195

7.5 Point-to-Point Communications

MPIBench uses MPI_Isend and MPI_Recv to measure point-to-point communica-

tion, so it uses non-blocking sends and blocking receives. For the comparison between

the other MPI benchmark applications, the MPI_Isend was changed to MPI_Send in or-

der to standardize the comparison methodology, however the results were essentially un-

changed. This section concentrates on analysis of the point-to-point communications per-

formance of the SGI Altix 3700 based on measurements using MPIBench. Firstly, the

performance for different numbers of processors is analysed, to determine the different

communication times due to the memory hierarchy of the Altix ccNUMA architecture.

Number of

Processors

2 4 8 16 32 64 128

Latency

(MPIBench)

1.96 us 1.76 us 2.14 us 2.21 us 2.56 us 2.61 us 2.70 us

Latency

(MPBench)

1.76 us 2.07 us 2.48 us 2.41 us 2.53 us 3.06 us 3.01 us

Bandwidth

(MPIBench)

851

MByte/s

671

MByte/s

464

MByte/s

462

MByte/s

256

MByte/s

256

MByte/s

248

MByte/s

Bandwidth

(MPBench)

831

MByte/s

925

MByte/s

562

MByte/s

562

MByte/s

549

MByte/s

532

MByte/s

531

MByte/s

Table 7.1 : Measured latency (for sending a zero byte message) and bandwidth (for a 4
MByte message) for different numbers of processes on the Altix. Results for MPIBench
are for all processes communicating concurrently, so include contention effects. Results
for MPBench (in bold font) are for only two communicating processes (processes 0 and
N-1) with no network or memory contention.

Table 7.1 shows latency and bandwidth data for the Altix, obtained by running the

MPI benchmarks on different numbers of processors, which gives an indication of the

performance of the different levels of memory hierarchy in the Altix. The results from

MPBench give the best possible results, where only two processors are communicating

with no contention. The results from MPIBench show the more realistic case where all

processors are communicating at the same time, and therefore show the effects of conten-

 196

tion in the communications network. The results within a C-Brick (2 and 4 processors)

show very good performance, although for 2 processors the bandwidth for smaller mes-

sages (around 512 KB) is about twice as large, which is surprising. The results between

C-Bricks (more than 4 processors) show remarkably little degradation in performance as

the number of processors is increased, indicating that the routers are very fast. Note that

the bandwidth measurements are for buffered MPI_Send, which is the default for SGI

MPI. Using a single copy send gives significantly higher bandwidth, as shown in section

7.4, giving results that are much closer to the theoretical NUMAlink network speed of 3.2

Gbytes/sec.

In comparison, measurements with MPIBench on the AlphaServer SC with Quad-

rics network [18] gave a latency of around 5 microseconds for internode communication

with a single process per node, however this increased to around 10 microsec when all 4

processors per node were communicating. The latency for shared memory communica-

tion within a node was also around 5 microsec. The bandwidth within a node was 740

MBytes/sec, while the bandwidth over the Quadrics network was 262 MBytes/sec. So in

all cases, the performance of MPI point-to-point message passing performance of the

Altix is significantly better than the AlphaServer SC.

 Figure 7.5 shows the performance for point-to-point communications for small

message sizes and Figure 7.6 shows the results for larger message sizes. The results for

different numbers of processors in Figure 7.5 and Figure 7.6 clearly illustrate the non-

uniform memory architecture of the SGI Altix. For 2 processors the time is for intranode

communication, which is approximately 0.14 ms for a 256 KByte message. We are not

sure what it causing the strange results for 2 processors in Figure 7.5. The result for 4

processors represents internode communication within a C-Brick, which takes approxi-

mately 0.42 ms for the same message size. The results for 8 processors and 16 processors

are about the same, around 0.82 ms, since both communicate between C-Bricks and in

the same R-Brick. Communication between 32 processors is done directly between R-

Bricks, and takes around 0.95 ms. Results for 64, 96 and 128 processors all involve

communication between R-Bricks through a meta-router, which is only marginally

slower than direct communication between R-Bricks, taking approximately 1.0 ms for a

256 Kbyte message.

 197

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0 64 12
8

19
2

25
6

32
0

38
4

44
8

51
2

57
6

64
0

70
4

76
8

83
2

89
6

96
0

10
24

Size of Data (Byte)

T
im

e
(M

il
is

ec
)

2

4

8

16

32

48

64

80

96

112

128

Figure 7.5 : Point-to-Point performance for small message sizes.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0

16
38

4

32
76

8

49
15

2

65
53

6

81
92

0

98
30

4

11
46

8

13
10

7

14
74

5

16
38

4

18
02

2

19
66

0

21
29

9

22
93

7

24
57

6

26
21

4

Size of Data (Byte)

T
im

e
(m

ili
se

co
nd

s)

2

4

8

16

32

48

64

80

96

112

128

Figure 7.6 : Point-to-Point performance for large message sizes.

 198

Figure 7.6 show that performance is essentially bandwidth limited for large mes-

sage sizes. However it also displays a curious anomaly in the results for 48, 80 and 112

processors, which are all slower than for 128 processors. For 48 nodes the bandwidth is

around 15% worse than might be expected. However this may be explained by a reduc-

tion in effective bandwidth due to the impost of additional router latency for some of the

traffic, since the point-to-point test distributes the participating pairs evenly across the

nodes. The division of 48 nodes across the Altix will place the nodes on three separate 16

processor sub-clusters, where each sub-cluster is connected by a single router. Two of the

three routers will be interconnected directly by two of their NUMAlink ports, whilst the

third router can only access the other two routers via two meta-routers, to which it only

has a single connection each. To maintain bandwidth the third router is dependant upon

the dual port connection to its peer router, and that router’s additional connections to the

meta-routers. Hence, half the traffic to the third sub-cluster must transit one additional

router hop. This accounts for one third of the traffic in the test. If we examine the band-

width difference between 16 and 32 nodes for this test we can see a similar issue. One

half of the traffic in the 32 node test transits the meta-routers, and the bandwidth impost

of the additional router step is roughly 64MB/s for the whole test, or 128MB/s for the

half of the traffic affected. The reduction in performance seen in the 48 node test is con-

sistent with this.

To explore this anomalous behaviour in more detail, Figure 7.7 shows the distri-

bution of communication times for 48 and 64 processors, which shows a significant dif-

ference in performance. For 64 processors it shows the expected result of a single peak

centred at the average communication time through the meta-router for this message size.

However for 48 CPUs there are multiple peaks and a very long tail, which is often indica-

tive of contention effects, something that is unexpected in the SGI Altix design. The

cause of the anomalous behavior is suspected to be that the grouping of the 32 processors

is not maintained, as discussed in the above section and also section 7.4, which might af-

fect the buffering settings. The buffering is suspected to be affected because in Single

Copy the anomalous behaviour is not observed as shown in Figure 7.8. In this figure both

peaks overlap within each other.

 199

0

2000

4000

6000

8000

10000

12000

14000

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

Time (Millisec)

O
cc

ur
re

nc
es

48 CPU

64 CPU

Figure 7.7 : Probability distributions for MPI point-to-point communications using 48
and 64 processors for 256 KByte message size.

0

200

400

600

800

1000

1200

1400

1600

1800

0.03 0.035 0.04 0.045 0.05 0.055 0.06 0.065 0.07 0.075 0.08

Time (Millisec)

O
cc

u
rr

en
ce

s

48 CPU

64 CPU

Figure 7.8 : Probability distributions for MPI point-to-point communications using 48
and 64 processors for 256 KByte message size using Single Copy options.

 200

7.5.1 MPI_Sendrecv

As discussed in section 3.8, results for MPI_Sendrecv using the Point-to-Point com-

munication pattern of MPIBench has proven that SGI Altix provides full bidirectional

bandwidth, since all the results of MPI_Sendrecv are similar to the results of

MPI_Send/Recv for Single Copy options. However, measurements by Grove [8] showed

that the Quadrics network on the AlphaServer SC does not provide the expected bidirec-

tional bandwidth facilities [8]. Petrini et al. [143] suggest that PCI bottlenecks and DMA

contention between system memory and the network interface are the cause of the unex-

pectedly poor performance.

 7.6 Broadcast

Figure 7.9 shows average times measured by MPIBench for MPI_Bcast for dif-

ferent data sizes for 2 up to 128 processors. Above 16 Kbytes (which is the page size on

the Altix) the results increase almost linearly with the data size.

 201

0.001

0.01

0.1

1

10

16 32 64 25
6

51
2

10
24

20
48

40
96

81
92

16
38

4

32
76

8

65
53

6

13
10

72

26
21

44

52
42

88

10
48

57
6

Size of Data (Byte)

T
im

e
(M

ili
se

c)

2

4

8

16

32

64

128

Figure 7.9 : Performance of MPI_Bcast as a function of data size on 2 to 128 CPUs.

The Quadrics network on the AlphaServer SC provides a very fast hardware

broadcast, but only if the program is running on a contiguous set of processors. Other-

wise, a standard software broadcast algorithm is used. A simple comparison of broadcast

performance on the two machines is difficult, since for smaller numbers of processors

(around 32 processor or less, but this depends somewhat on the message size) the Altix

does better due to its higher bandwidth, whereas for larger numbers of processors the Al-

phaServer starts to do better since the hardware broadcast of the Quadrics network scales

really well (much better than logarithmic) with the number of processors. For example,

hardware-enabled broadcast of a 64 KByte message on the AlphaServer SC takes around

0.40 ms for 16 CPUs and 0.45 on 128 CPUs [18], while on the Altix is takes approxi-

mately 0.22 ms on 16 CPUs, 0.34 ms on 32 CPUs, 0.45 ms on 64 CPUs, and 0.62 ms for

128 CPUs. If the processors for an MPI job on the AlphaServer SC are not contiguous,

which will often be the case on a shared machine running many jobs, the software broad-

 202

cast is a few times slower than the hardware-enabled broadcast and doesn’t scale as well,

so broadcast on the Altix will always beat it.

Figure 7.11 show the distribution results for MPI_Bcast on 32 CPUs for smaller

and larger messages sizes, respectively. Analysing this data is more difficult than for a

cluster due to the non-uniform memory hierarchy on the Altix and since there is no

documentation on what broadcast algorithms the SGI MPI libraries are using. However,

MPIBench allows distributions to be generated individually for each processor, so we are

able to check that the overall distribution shown in Figure 7.11 shows peaks that are con-

sistent with a binary tree broadcast algorithm, with the first peak corresponding to com-

pletion time for processors 0 and 1, the second peak is for 2 and 3, the third peak around

0.65 ms is for 4,5,6,7, the next group between 0.8 and 1.0 ms is for 8-15, and the final

clump is for 16-31.

0

2000

4000

6000

8000

10000

12000

14000

16000

0 0.01 0.02 0.03 0.04

Time (Milisec)

O
cc

u
rr

en
ce

s

Figure 7.10 : Distribution results for MPI_Bcast at 64 Bytes on 32 cpus.

 203

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0.4 0.6 0.8 1 1.2 1.4

Time (Milisec)

O
cc

u
rr

en
ce

s

Figure 7.11 : Distribution result for MPI_Bcast at 256Kbytes on 32 cpus.

7.7 Barrier

Results for the MPI_Barrier operation for 2 to 128 processors are shown in Figure

7.12. As expected, the times scale logarithmically with the numbers of processors. The

hardware broadcast on the Quadrics network means that a barrier operation on the Al-

phaServer SC is very fast and takes almost constant time of around 5-8 microseconds for

2 to 128 processors, which is similar to the Altix.

 204

0

1

2
3

4

5

6

7

8

9

10

11

2 4 8 16 32 64 128

No. of CPU

T
im

e
(M

ili
se

c)

Figure 7.12 : Average time for an MPI barrier operation for 2 to 128 processors.

7.8 Scatter and Gather

Scatter and gather are typically used to distribute data at the root process (e.g. a

large array) evenly among the processors for parallel computation, and then recombine

the data from each processor back into a single large data set on the root process. The

performance of MPI_Scatter is dependent on how fast the root process can send all the

data, since it is a bottleneck. However the root process can use asynchronous sends,

which means that the overall performance of the scatter operation is also dependent on

the overall communications performance of the system and the effects of contention.

Figure 7.13 shows the average communication time for an MPI_Scatter operation for dif-

ferent data size per processor on different numbers of processors. The results show an

unexpected hump at a data sizes between 128 bytes and 2 KBytes per process, so that the

time for scattering larger data sizes than this is actually lower. This is presumably due to

the use of buffering for asynchronous sends for messages of these sizes. Note that overall,

the time for an MPI_Scatter operation grows remarkably slowly with data size. In the

worst case, at 1 Kbyte per process, the Altix is around 4 to 6 times faster than the APAC

SC, while at 4 Kbytes per process it is around 10 times faster.

 205

1

10

100

1000

16 64 256 1024 4096 16384 65536

Size of Data (Byte)

T
im

e
(M

ili
se

c)
2

4

8

16

32

64

128

Figure 7.13 : Performance for MPI_Scatter for 2 to 128 processors

Figure 7.14 shows the probability distribution for 64 processors and at 256 Kbytes

per process. Each processor completes the scatter operation in the order that they receive

the data from the root processor. The root process is the last to complete (shown by the

small peak at the right of the plot) since it needs to receive an acknowledgement from all

of the processors that they received the data.

0

500

1000

1500

2000

2500

3000

0.02 0.06 0.1 0.14 0.18 0.22 0.26

Time (Milisec)

O
cc

u
rr

en
ce

s

Figure 7.14 : Distribution for MPI_Scatter for 64 processors at 256Kbytes

 206

The performance of MPI_Gather is mainly determined by how much data is re-

ceived by the root process, which is the bottleneck in this operation. Hence the time taken

is expected to be roughly proportional to the total data size for a fixed number of proces-

sors, with the time being slower for larger numbers of processors due to serialization and

contention effects. Figure 7.15 shows the results from MPIBench for average times to

complete an MPI_Gather operation. The times are roughly proportional to data size, at

least for larger sizes. The Altix gives significantly better results than the APAC SC. In

the worst case, at 1 Kbyte per process, it is around 2 to 4 times faster, while at 2 Kbytes

per process it is around 10 times faster. Above 2 Kbytes per process the implementation

on the AlphaServer SC became unstable and crashed, whereas the Altix continues to give

good performance.

Figure 7.16 shows the probability distribution for 64 processors and at 4 Kbytes

per process. Process 0 is by far the slowest process to complete, since it has to gather and

merge results from all other processors. Process 1 is the first to complete (the small peak

at the left in Figure 7.16) since it is on the same node as the root process, and therefore

has a much faster communication time.

 207

0.001

0.01

0.1

1

10

100

1000

16 32 64 25
6

51
2

10
24

20
48

40
96

81
92

16
38

4

32
76

8

65
53

6

13
10

72

26
21

44

52
42

88

10
48

57
6

Size of Data (Byte)

T
im

e
(M

ili
se

c)

2

4

8

16

32

64

128

Figure 7.15 : Performance for MPI_Gather for 2 to 128 processors

0

20000

40000

60000

80000

100000

120000

140000

160000

0 0.1 0.2 0.3 0.4 0.5 0.6

Time (Milisec)

O
cc

u
rr

en
ce

s

Figure 7.16 : Distribution for MPI_Gather for 64 processors at 4Kbytes

 208

7.9 Alltoall

The final collective communication operation that we measured is MPI_Alltoall,

where each process sends its data to every other process. This provides a good test of the

communications network. We might expect the communication times to be roughly linear

in the data size, however Figure 7.17 shows the results are more complex than that, with

the same broad hump around 1 Kbyte per processor that was seen MPI_Scatter, again

presumably due to the use of buffered communications for messages of this size. Figure

7.18 shows that for large messages, there is a wide range of completion times, due to con-

tention effects.

The times for MPI_Alltoall are significantly better on the Altix than the Al-

phaServer SC. In the worst case, for 1 Kbyte per processor, the Altix is around 2 to 4

times faster than the results measured on the APAC SC [18]. It is around 20 times faster

for 4 Kbytes per process and around 30 times faster for 8 Kbytes per process. This is

partly because the MPI implementation on the AlphaServer SC did not appear to be op-

timized for SMP nodes [18].

0.001

0.01

0.1

1

10

100

1000

16 32 64 25
6

51
2

10
24

20
48

40
96

81
92

16
38

4

32
76

8

65
53

6

13
10

72

Size of Data (Byte)

T
im

e
(M

ili
se

c)

2

4

8

16

32

64

128

Figure 7.17 : Performance for MPI_Alltoall for 2 to 128 processors

 209

0

500

1000

1500

2000

2500

3000

3500

4000

4500

10 20 30 40 50

Time (Milisec)

O
cc

u
rr

en
ce

s

Figure 7.18 : Distribution for MPI_Alltoall for 32 processors at 256Kbytes

7.10 Discussion

The SGI Altix shows very good MPI communications performance that scales well

up to 128 processors. Overall the performance was significantly better than the measured

performance of the AlphaServer SC with Quadrics network, which has been replaced by

a large SGI Altix as the Australian national supercomputer facility. The Altix provides

higher bandwidth and lower latency for point-to-point MPI communication than the

Quadrics network on the AlphaServer SC, with significantly better collective communi-

cations performance, except for broadcast and barrier operations on contiguous nodes,

where the Quadrics network provides very fast hardware-enabled broadcast.

The performance of some communications routines on the Altix can be significantly

improved by using the Single Copy option provided in the SGI MPI library rather than a

buffered copy, in the cases where it is not already used as the default.

 210

CHAPTER 8

Conclusion and Further Work

This thesis provides information on several different aspects of the performance

analysis of Message Passing Interface (MPI) implementations on both distributed mem-

ory and shared memory parallel computers. A major focus of this thesis was the use of

MPIBench, a new MPI benchmark program that provides some useful new functionality

compared to existing MPI benchmarks. The work presented in this thesis involved a de-

tailed comparison of MPIBench with other MPI benchmarks, making a number of im-

provements to MPIBench, and then using MPIBench to investigate MPI performance for

a variety of commonly used architectures for parallel computing. Measurements and

comparisons were done for a Linux PC cluster with Ethernet and Myrinet networks, and

for ccNUMA shared memory machines. Particular attention was given to the variability

of communication times and how the performance scales to large numbers of processors,

and to identifying performance problems and mechanisms for improving performance,

particularly for commodity cluster computers. MPIBench proved to be a useful tool for

investigating MPI performance, particularly the capability of providing distributions of

communication times for each processor.

The work in chapter 3 is the first detailed comparison of the functionality of dif-

ferent MPI benchmarks and the results they produce on both distributed memory and

shared memory machines. The analysis involved five widely used MPI benchmarks:

SKaMPI; PMB; Mpptest; MPBench and MPIBench. The analysis showed that different

MPI benchmarks can give significantly different results for certain MPI routines, particu-

larly on the SGI Altix. This is primarily due to the SGI Altix having a hierarchical

ccNUMA architecture, which can enhance the variations due to different measurement

techniques employed by the different benchmarks. The variations for point-to-point

communications are due to the different communications patterns used by the different

benchmarks, differences in how averages are computed and errors are handled, and how

bandwidth is reported. There are also significant differences in measurements of some

 211

collective communications routines, particularly broadcast, due to differences in the use

of cache for message data and in synchronizing the calls to the routines on each proces-

sor.

The differences in the results of the MPI benchmarks is understandable, since the

MPI benchmarks were designed primarily for use on distributed memory machines, and

the analysis shows that some of the different design decisions made for the different

benchmarks can significantly affect the results for ccNUMA shared memory machines. In

contrast, the results on distributed memory machines show not much difference between

the benchmarks either for point-to-point or collective communication. The users of MPI

benchmarks on shared memory machines should therefore be careful in the interpretation

of the benchmark results, and developers of some of the MPI benchmarks may need to

make some minor modifications to their codes to provide more accurate results for shared

memory machines.

 Chapter 4 explains the improvements and additional functionality that were pro-

vided for MPIBench, based on the comparison between MPI benchmarks from Chapter 3,

and experiences in using MPIBench on a variety of machines. Improvements were made

to the functionality, ease of use, robustness and portability of MPIBench. There are a

number of improvements in functionality, for example addition of ring communication

pattern and user-specified communication pattern for point-to-point communication, op-

tions for messages to be in cache or not, and analysis of results over an arbitrary set of

processes. For ease of use, part of the changes is the auto configuration, which eases the

compilation task and the choices of message sizes for the measurements. In terms of

portability, there were some errors that have been fixed, particularly for collective com-

munication, memory allocation error and array problems which fixed the problem with

non-buffered communication in the SGI Altix. Tests were also done to compare the re-

sults of measurements using the global clock synchronization provided by MPIBench

with results obtained using MPI_Wtime on the SGI Altix MPI library, which uses the

Altix hardware to provide an accurate synchronized clock. This comparison showed that

the approach used by MPIBench gave reliable results. Based on the current uses of

MPIBench and analysis of other MPI benchmark, Chapter 4 presents a few suggestions

for further improvements to MPIBench, for example, the adaptive refinement of message

 212

sizes in order to find results for additional message sizes where the results are changing

rapidly, which has been provided by Mpptest and SKaMPI.

One of the reasons for undertaking the detailed comparison between MPI bench-

marks, and the improvements to MPIBench, was is to ensure that it could be easily and

reliably used for analysis of MPI performance in a number of different situations. Chapter

5 compares the performance of Fast Ethernet and Myrinet networks for MPI communica-

tions on the same commodity Linux PC cluster. In particular, the analyses have investi-

gated the effects of network contention (including Ethernet packet loss and subsequent

Retransmit Time-Outs) by measuring and analyzing distributions of communication

times for point-to-point and collective communications, and how they scale with increas-

ing message sizes and numbers of processes. As expected, the Myrinet network performs

significantly better than Fast Ethernet. The TCP RTO on the Ethernet network does affect

communications performance, but only for large message sizes and large numbers of

processors, where the network becomes saturated so that packets are dropped at a fairly

high rate. In that case, it can have significant impact on the performance of collective

communications, particularly MPI_Bcast and MPI_Alltoall. Earlier measurements by

Grove et al. [8,9] for older versions of MPICH showed that TCP RTOs and congestion

control mechanisms can greatly reduce the performance of MPI_Gather and

MPI_Alltoall, and even cause them to fail at large message sizes. However the new

analysis described in Chapter 5 found the effects to be much less serious than for these

previous measurements, probably due to improvements in the collective communications

routines used in the latest versions of MPICH. The results presented in this chapter also

found some anomalous results for all-to-all and broadcast routines, where communication

was sometimes faster for larger message sizes.

 Chapter 6 analysed the anomalous results that were presented in Chapter 5 and

found that they were caused by the changeover points between different algorithms for

collective communication for the new version of MPICH. The experiments done in this

chapter found that for a number of collective routines, the best changeover points be-

tween algorithms for Myrinet and Ethernet on a Linux PC cluster with two processors per

node are quite different to the fixed settings in MPICH. The experiments demonstrated

that tuning the changeover points to a particular architecture can give a significant im-

provement in performance, particularly for Ethernet networks. The main reason for the

 213

improvements seems to be that the best changeover points can be very different depend-

ing on whether 1 or 2 CPUs per node are used, and the MPICH values are on the meas-

urements of Thakur et al. [11] on clusters with 1 CPU per node. This study provides val-

ues for better cutoff points for a Linux PC cluster with dual processor nodes connected by

Myrinet with GM and Fast Ethernet with TCP. This study also provides a comparison of

results between MPICH2 1.0.4 and MPICH-GM 1.2.7 and it shows that MPICH2 shows

improvement for certain algorithms.

 Finally, chapter 7 used MPIBench to analyse the MPI performance of a large

ccNUMA shared memory machine, the SGI Altix 3000, and compared the results with an

AlphaServer SC, a high-end cluster of SMP nodes connected by a high-speed network,

Quadrics QsNet. This is an interesting contrast of MPI performance between shared

memory and distributed memory machines. It is particularly of interest to users of the

Australian national computing facility, where an AlphaServer was replaced with an Altix.

The results show that the Altix has very good MPI communications performance that

scales well up to 128 processors. Overall the performance was significantly better than

the measured performance of the AlphaServer SC. The Altix provides higher bandwidth

and lower latency than the Quadrics network, with significantly better collective commu-

nications performance, except for broadcast and barrier operations on contiguous nodes,

where the Quadrics network provides very fast hardware-enabled broadcast. It was found

that the Single Copy (non-buffered) communication option significantly improved per-

formance over buffered copy. Single Copy is not always the default option, but should be

used wherever possible in order to get best performance.

In completing this thesis work, there were many obstacles that had to be passed. A

major problem was to get dedicated access to large parallel computers in order to test the

MPI performance of different networks for large numbers of processors. The machines

we had access to were an IBM Linux cluster and SGI Altix at SAPAC. Since these ma-

chines are a shared resource with many users, it was difficult to get dedicated access to

the whole machine for large periods of time. Tests on smaller numbers of processors

were easily done. Dedicated access was arranged during times after the machines were

taken down for upgrades or reboots. The architecture of SGI Altix took some time to un-

derstand, since at the time the research was done the SGI Altix architecture was still new

and not many references could be found, this made it difficult to understand some of the

 214

results from this machine, such as differences in results between the MPI benchmarks for

certain MPI routines, and the problem with Single Copy option with MPIBench. A prob-

lem on the IBM Linux cluster was to find on how to analyse the performance using the

same machine but different networks, Ethernet and Myrinet. This required understanding

the configurations of the switches for Ethernet and Myrinet. A different code have been

created to refer either the switches are for Ethernet or Myrinet, for example node1-m and

m is referring to Myrinet. Another issues that take longer time to understand is the

anomalous performance results that were obtained from some of the MPI routine from

both machines. In general, it was often difficult to explain the results obtained from the

MPI benchmarks in terms of the machine architecture and the details of the MPI imple-

mentation, collective communication algorithm and the MPI benchmark used. Implemen-

tation details of the different MPI benchmarks were often not available from the papers

and user documentation for the benchmarks, so an understanding of the coding from all

MPI benchmarks involved in this thesis was required, which was one of the hardest tasks

in completing this thesis work.

 In summary, the main contributions of this thesis are:

i. Obtained results from MPIBench on several different types of parallel computers, and

demonstrated that it is a very useful tool for detailed MPI performance analysis,

particularly for machines with SMP nodes

ii. Significantly improved the functionality, ease of use, robustness and portability of

MPIBench.

iii. Provided the first detailed comparison of the functionality and results of different MPI

benchmarks, and showed that results can differ significantly between the different

benchmarks in some situations, particularly for shared memory architectures.

Importantly, some of these differences could also affect results from future clusters

with many cores per node.

iv. Comparison of Myrinet and Ethernet performance using MPIBench for large numbers

of nodes, particularly analysis of variations in communication times, including the

effects of TCP retransmit timeouts on Ethernet performance. The results showed that

new versions of MPICH using improved collective communication algorithms no

 215

longer have the major problems that were found with older versions on Ethernet

clusters. They also showed that RTOs were only a problem with large message sizes or

collective operations such as Alltoall that have a large amount of aggregate

communication.

v. Demonstrated that significant performance improvements can be obtained by

converting MPICH to enable tuning of changeover points between different algorithms

for collective communications, particularly for clusters with multiprocessor SMP

nodes.

vi. The first comprehensive analysis of MPI performance on the SGI Altix shared memory

architecture, providing results for point-to-point and collective communications and for

large numbers of processors. There is also the comparison with an AlphaServer SC, a

distributed memory cluster with a high-speed communications network

The following are a few suggestions for improving MPIBench and further work that has

not been done in this thesis.

i. In improving MPIBench,

a. The adaptive message refinement tools in order to fix results for certain

message sizes which have been applied by Mpptest and SKaMPI.

b. More MPI communications routines should be added to give more choice

to user, particularly for the collective communication.

c. Making available a variety of common communication patterns would also

be useful.

d. The user-specified calculation of average time for the ring pattern for test-

ing MPI_Sendrecv, either it is calculated based on the average time of all

processes or the average time of the slowest process.

ii. Investigate current research aiming to make TCP policies more flexible and dynamic,

which could allow improved performance on Ethernet clusters.

 216

iii. In future, software could be developed to automate the process of selecting the optimal

changeover points between different algorithms for MPI collective communication rou-

tines. When a portable MPI library such as MPICH is installed on a machine, a configu-

ration script could run MPI benchmarks for a wide range of message sizes for all of the

multiple algorithms used by MPI collective routines. Then the results could be auto-

matically compared and the default changeover points can be replaced with new im-

proved changeover points.

iv. Use MPIBench for additional analysis and comparison of different communication

networks (e.g. Infiniband and Gigabit Ethernet) and MPI libraries (e.g. OpenMPI), par-

ticularly for SMP clusters with many CPUs per node.

v. Use MPIBench for measuring the effects of RTOs and MPI performance on Gigabit

Ethernet with Jumbo Frame.

 217

REFERENCES

[1] D.A. Grove and P.D. Coddington. Precise MPI Performance Measurement Using

MPIBench, in Proc. of HPC Asia, September 2001.

[2] MPIBench, http://www.dhpc.adelaide.edu.au/projects/MPIBench

[3] M. Matsuda, T. Kudoh, Y. Kodama, R. Takano, and Y. Ishikawa. TCP Adaptation for

MPI on Long-and-Fat Networks, in Proc. of IEEE Cluster, 2005.

[4] S. Majumder and S. Rixner. Comparing Ethernet and Myrinet for MPI Communica-

tion, in Proc. of 7th Workshop on languages, compilers, and run-time support for scal-

able systems, 2004, Houston Texas.

[5] P. J. Sokolowski and D. Grosu. Performance Considerations For Network Switch

Fabrics On Linux Clusters, in Proc. of 16th IASTED International Conference on

Parallel and Distributed Computing Systems, November 2004, MIT Cambridge,

USA.

[6] M. Lobosco, V. S. Costa and C. L. de Amorim. Performance Evaluation of Fast

Ethernet, Giganet and Myrinet on a Cluster, in Proc. of International Conference on

Computational Science-Part I, 2002.

[7] G. R. Luecke, J. Yuan, S. Spanoyannis and M. Kraeva. Performance and Scalability

of MPI on PC Clusters. Journal of Concurrency and Computation : Practice and Ex-

perience, 2004: vol 16, pages 79-107.

[8] Duncan A. Grove, Performance Modelling of Message-Passing Parallel Programs,

PhD Thesis, University of Adelaide, 2003. Technical report DHPC-138.

 218

[9] Francis A. Vaughan, Duncan A. Grove and Paul D. Coddington, Communication Per-

formance Issues for Two Cluster Computers, in Proc. of 26th Australasian Computer

Science Conference (ACSC 2003), Adelaide, February 2003, Conferences in Re-

search Practice and Information Technology, Vol 16, 2003.

[10] D.A. Grove and P.D. Coddington, Analytical Models of Probability Distributions for

MPI Point-to-Point Communication Times on Distributed Memory Parallel Com-

puters, in Proc. 6th Int. Conference on Algorithms and Architectures for Parallel

Processing (ICA3PP-2005), Melbourne, Oct 2005, Lecture Notes in Computer Sci-

ence, Volume 3719, pp 406-415, Springer, 2005.

[11] Rajeev Thakur, Rolf Rabenseifner, and William Gropp, Optimization of Collective

Communication Operations in MPICH, Int. Journal of High Performance Computing

Applications, (19)1:49-66, 2005.

[12] Mohak Shroff and Robert A.van de Geijn. CollMark: MPI collective communication

benchmark. Technical Report, Dept. of Computer Sciences, University of Texas at

Austin, December 1999.

[13] M. Barnett, S. Gupta, D. Payne, L. Shuler, A. van de Geijn, and J. Watts. Interproc-

essor collective communication library (Intercom). In Proceedings of Supercomput-

ing ’94, November 1994.

[14] C. Pope, H. Detmold, et al. Adapting to New Environments: Rethinking the TCP/IP

Stack. Proceedings of the International Conference on Internet Computing, Las Ve-

gas, CSREA Press. June 2003.

[15] F.Petrini, D.J.Kerbyson, et al. (2003). The Case of the Missing Supercomputer Per-

formance: Achieving Optimal Performance on the 8,192 Processors of ASCI Q. Pro-

ceedings of the 2003 ACM/IEEE conference on Supercomputing, IEEE Computer

Society.

 219

[16] Wu-chun Feng, Peerapol Tinnakornrishuphap. The Failure of TCP in High-

Performance Computational Grids. Supercomputing 2000.

[17] W. Gropp, E. Lusk. Reproducible Measurements of MPI Performance Characteris-

tics. In Proc. of the PVM/MPI Users’ Group Meeting (LNCS 1697), pages 11-18,

1999.

[18] D.A. Grove and P.D. Coddington. Performance Analysis of MPI Communications on

the AlphaServer SC. Proc. of APAC'03, Gold Coast, 2003.

[19] P.J. Mucci, K. London, and J. Thurman. The MPBench Report. Technical Report

UT-CS-98-394, University of Tenessee, Department of Computer Science, November

1988.

[20] F. Petrini, W.-C. Feng, A. Hoise, S. Coll and E. Frachtenberg. The Quadrics net-

work: High-performance clustering technology. IEEE Micro 22(1), 46-57 (2002).

[21] R. Reussner, P. Sanders, L. Prechelt, and M. Muller. SKaMPI: A Detailed, Accurate

MPI Benchmark. In Parallel Virtual Machine and Message Passing Interface, Proc.

of 5th European PVM/MPI Users’ Group Meeting, 1998.

[22] N.A.W Abdul Hamid, P.D. Coddington and F. A. Vaughan. Performance Analysis of

MPI Communications on the SGI Altix 3700, Proc. Australian Partnership for Ad-

vanced Computing Conference (APAC'05), Gold Coast, Australia, September 2005.

[23] H. Mierendorff, K. Cassirer and H. Schwamborn. Working with MPI Benchmarking

Suites on ccNUMA Architectures, Proc. of the 7th European PVM/MPI Users' Group

Meeting, 2000.

[24] T. Worsch, R. Reussner and W. Augustin. On Benchmarking Collective MPI Opera-

tions, Proc. of 9th European PVM/MPI Users' Group Meeting, 2002.

 220

[25] H. Chen and P. Wyckoff. Simulation studies of Gigabit Ethernet versus Myrinet us-

ing real application cores. In Proc. of High-Performance Computer Architecture,

Toulouse, France, January 2000.

[26] P. Patarasuk, A. Faraj and X. Yuan. Pipelined Broadcast on Ethernet Switched

Clusters. In 20th International Parallel and Distributed Processing Symposium, April

2006.

[27] N.A.W Abdul Hamid, P.D. Coddington and F. A. Vaughan. Comparison of MPI

Benchmark Programs on an SGI Altix ccNUMA Shared Memory Machine. In 20th In-

ternational Parallel and Distributed Processing Symposium, April 2006.

[28] B.Wilkinson and M.Allen (1999). Parallel Programming. Techniques and Applica-

tions Using Networked Workstations and Parallel Computers, ALAN APT.

[29] D.Jiang and J. P.Singh (1998). A methodology and an evaluation of the SGI Ori-

gin2000. Proceedings of the 1998 ACM SIGMETRICS joint international conference

on Measurement and modeling of computer systems, Madison, Wisconsin, United

States, ACM Press.

[30] Stevens, W. R. TCP slow start, congestion avoidance, fast retransmit, and fast re-

covery algorithms. USA, National Optical Astronomy Observatory. January 1997.

[31] J.Piernas, A.Flores, et al. Analyzing the Performance of MPI in a Cluster of Work-

station Based on Fast Ethernet. In Parallel Virtual Machine and Message Passing In-

terface." Lecture Notes in Computer Science 1332 (4th European PVM/MPI Users'

Group Meeting): 17-24 (1997).

[32] Jacobson, V. Congestion Avoidance and control. ACM Computer Communication

Review 18(4): 316-329 (1988).

 221

[33] M. Baker, A. Farrell, et al. VIA Communication Performance on a Gigabit Ethernet

Clusters. Proceedings of the International Euro-Par Conference, Manchester, UK.

2001.

[34] Mark Allman, V. P., and W. Richard Stevens. "TCP congestion control." The Inter-

net Society. (April 1999).

[35] IBM eServer 1350 Linux cluster.

 http://www3.ibm.com/systems/clusters/hardware/1350.html

[36] P. Loic and T. Bernard. BIP : A New Protocol Designed for High Performance

Networking on Myrinet, in 1st Workshop on Personal Computer based Networks of

Workstation, 1998.

[37] G.R.Luecke, Z.Guan, et al. Scalability and Performance of MPI, HPF, and OpenMP

on an SGI Origin 2000. (2002).

[38] G. Chiola, G. Ciaccio. Porting MPICH ADI on GAMMA with Flow Control, in Proc.

of MWPP’99, 1999 Midwest Workshop on Parallel Processing, Kent, Ohio, August

11 - 13, 1999.

[39] G. Chiola and G. Ciaccio. GAMMA: a Low-cost Network of Workstations Based on

Active Messages, in Proc. of PDP’97, 5th EUROMICRO workshop on Parallel and

Distributed Processing, London, UK, January 1997.

[40] G. Chiola and G. Ciaccio. Architectural Issues and Preliminary Benchmarking of a

Low-cost Network of Workstations based on Active Messages, in Proc. of ARCS’97,

14th ITG/GI conference on Architecture of Computer Systems, Rostock, Germany,

September 1997.

 222

[41] R. Morrison, D. Balasubramaniam, M. Greenwood, G. Kirby, K.Mayes, D. Munro

and B. Warboys. An Approach to Compliance in Software Architectures. Computing

and Control Engineering, in Journal. 11:4 (August 2000) 195-200.

[42] O. Hong, A. F. Paul. Performance Comparison of LAM/MPI, MPICH and MVICH

on a Linux Clusters connected by a Gigabit Ethernet Networks, in 4th Annual Linux

Showcase & Conference, Atlanta, Georgia. October 10-14, 2000.

[43] E. Thorsten, B. Anindya, B. Vineet, V. Werner. U-Net: A User-Level Network Inter-

face for Parallel and Distributed Computing, in Proc. of the 15th ACM Symposium

on Operating System Principles, Copper Mountain, Colorado, December 3-6 1995.

[44] H. Liu, Z. Du, Q. Ma, Y. Chen, C. Xie. Design and Test of MVICH Device Layer of

MPICH for VIA, in Proc of 2002 International Symposium on Distributed Comput-

ing and Applications to Business, Engineering and Science (DCABES2002),

pp370~373, Dec, 2002.

[45] T. von Eicken, D. E. Culler, S. C. Goldstein, and K. E. Schauser. Active Messages: A

A Mechanism for Intergrated Communication and Computation, in Proc. Of the 19th

ISCA, pages 256-266, May 1992.

[46] Jeffrey S. Vetter, Sadaf R. Alam, etal. Early Evaluation of the Cray XT3. In 20th In-

ternational Parallel and Distributed Processing Symposium, April 2006.

[47] R. Riesen. Communication Patterns. In 20th International Parallel and Distributed

Processing Symposium, April 2006.

[48] R. Fatoohi, S. Saini and R. Ciotti. Interconnect Performance Evaluation of SGI

ALTIX 3700 BX2, CRAY X1, Cray Opteron Cluster, and Dell PowerEdge. In 20th In-

ternational Parallel and Distributed Processing Symposium, April 2006.

 223

[49] S. Saini, R. Ciotti et al. Performance Evaluation of Supercomputer using HPCC and

IMB Benchmarks. In 20th International Parallel and Distributed Processing Sympo-

sium, April 2006.

[50] Z. Yingchou, M. Dan and M. Jie. Dual-Layered File Cache On cc-NUMA System. In

20th International Parallel and Distributed Processing Symposium, April 2006.

[51] P.H Carns, W.B. Lignon III, S.P. McMillan, and R.B. Ross. An evaluation of mes-

sage passing implementations on Beowulf workstation. In Proceedings of the IEEE

Aerospace Conference, March 1999.

[52] William Gropp, Ewing Lusk, Nathan Doss, and Anthony Skjellum. High Perform-

ance, portable implementation of the MPI Message Passing Interface standard. Par-

allel Computing, 22(6):789-828, 1996.

[53] William Gropp, Ewing Lusk, and Anthony Skjellum. Using MPI: Portable Parallel

Programming with the Message-Passing Interface. The MIT Press, Cambridge, Mas-

sachusettes, 1994.

[54] Lars Paul Huse. Collective communication on dedicated cluster of workstations. In

Proceedings of the 6th European PVM/MPI Users’ Group Meeting, pages 469-476,

September 1999.

[55] L. Brakmo, S. O’Malley and L. Peterson. TCP Vegas: New techniques for conges-

tion detection and avoidance. In Proceedings of the 1994 SIGCOMM Symposium,

pages 24-35 1994.

[56] K. Fall and S. Floyd. Simulation-based comparisons of Tahoe, Reno and SACK TCP.

ACM Computer Communication Review, 26(3):5-21, 1997.

[57] S. Floyd. Congestion control principles. Technical Report RFC 2914, The Internet

Society, September 2000.

 224

[58] S. Floyd, J. Mahdavi, M. Mathis and M. Podolsky. An extension to the Selective Ac-

knowledgement (SACK) option for TCP. Technical Report RFC 2883, The Internet

Society, July 2000.

[59] R. Ludwig and R. H. Katz. The Eifel algorithm: Making TCP robust against spuri-

ous retransmission. ACM Computer Communication Review, 30(1), January 2000.

[60] R. Ludwig and R. H. Katz. The Eifel retransmission timer. ACM Computer Com-

munication Review, 30(3), July 2000.

[61] J. Mo, R. J. La, V. Anantharam and J. C. Walrand. Analysis and comparison of TCP

Reno and Vegas. In Proceedings of IEEE INFOCOM, pages 1556-1563, March 1999.

[62] SKaMPI. http://liinwww.ira.uka.de/~skampi/.

[63] Mpptest. http://www-unix.mcs.anl.gov/mpi/mpptest/.

[64] MPBench. http://icl.cs.utk.edu/projects/llcbench/mpbench.html

[65] Intel MPI Benchmark (IMB) Homepage.

http://www.intel.com/cd/software/products/asmo-na/eng/cluster/219847.htm

[66] E. W. Chan, M. F. Heimlich, A. Purakayastha and R. A. van de Geijn. On optimizing

collective communication. In Proceddings of the 2004 IEEE International Confer-

ence on Cluster Computing, September 2004.

[67] E.A Brewer and B.C Kuszmaul. How to get good performance from the CM-5 data

network. In Proceedings of the 8th International Parallel Processing Symposium,

1994.

 225

[68] Gregory D. Benson, Cho-Wai Chu, Qing Huang, and Sadik G. Caglar. A comparison

of MPICH allgather algorithms on switched networks. In Jack Dongarra, Domenico

Laforenza, and Salvatore Orlando, editors, Recent Advances in Parallel Virtual Ma-

chine and Message Passing Interface, 10th European PVM/MPI Users' Group Meet-

ing, pages 335--343. Lecture Notes in Computer Science 2840, Springer, September

2003.

[69] MPICH – A portable implementation of MPI.

http://wwwunix.mcs.anl.gov/mpi/mpich.

[70] SGI Altix 3000. http://www.sgi.com/products/servers/altix/.

[71] Myricom Incorporated. http://www.myri.com.

[72] Hewlett-Packard, AlphaServer SC supercomputer,

http://h18002.www1.hp.com/alphaserver/sc/sys_sc45_features.html

[73] Cosimo Anglano. Cluster benchmarks.
http://www.di.unito.it/~mino/cluster/becnhmarks.

[74] Massimo Bernaschi, Giulio Iannello , Mario Lauria, Experimental Results about

MPI Collective Communication Operations, Proceedings of the 7th International

Conference on High-Performance Computing and Networking, p.774-783, April 12-

14, 1999

[75] Thilo Kielmann , Rutger F. H. Hofman , Henri E. Bal , Aske Plaat , Raoul A. F.

Bhoedjang, MagPIe: MPI's collective communication operations for clustered wide

area systems, Proceedings of the seventh ACM SIGPLAN symposium on Principles

and practice of parallel programming, p.131-140, May 04-06, 1999, Atlanta, Georgia,

United States

 226

[76] PCI-X Networked Bus Analyzers from VMetro. http://www.pcixanalyzer.com/.16

December 2005.

[77] N. J. Boden, D. Cohen, R. E. Felderman, A. E. Kulawik, C. L. Seitz, J. N. Seizovic

and W. Su. Myrinet : A Gigabit per second Local Area Network. IEEE Micro,

15(1):29-36, February 1995.

[78] A. Faraj, P. Patarasuk and X. Yuan. Bandwidth Efficient Alltoall Broadcast on

Switched Cluster. IEEE Cluster, 27-30, September 2005.

[79] A. Proskurowski. Minimum Broadcast Trees. IEEE TC, c-30, pp. 363-366, 1981.

[80] gettimeofday().

http://www.opengroup.org/onlinepubs/007908799/xsh/gettimeofday.html

[81] The MPIForum. The MPI-2: Extension to the Message Passing Interface, July 1997.

http://www.mpi-forum.org/docs/mpi-20-html/mpi2-report.html.

[82] S. S. Vadhiyar, G. E. Fagg and J. Dongarra. Automatically tuned collective commu-

nication, In Proceedings of SC’00: High Performance Networking and Computing

2000.

[83] N. Nupairoj and L. Ni. Performance Evaluation of Some MPI Implementation on

Workstation Clusters. In Proceedings of the Scalable Parallel Libraries, October

1994.

[84] Australian Partnership for Advanced Computing (APAC). http://nf.apac.edu.au.

[85] D. Bailey, E. Barszcz, J. Barton, D. Browning, et al. The NAS parallel benchmarks.

International Journal of Supercomputing Applications, 5(3):63-73, 1991.

 227

[86] S. Browne, J. Dongarra and K. London. Review of performance analysis tools for

MPI parallel programs. Technical report, University of Tenessee, Department of

Computer Science, December 1997.

[87] F. Cappello, O. Richard and D. Etiemble. Understanding performance of SMP clus-

ters running MPI programs. Future Generation Computer Systems, 17(6):711-720,

2001.

[88] L. A. Cowl. How to measure, present and compare parallel performance. Parallel

and Distributed Technology, 2(1):9-25, 1994.

[89] G. Cybenko, L. Kipp, L. Pointer and D. Kuck. Supercomputer performance evalua-

tion and the Perfect benchmark. Technical Report 965, University of Illinois Center

for Supercomputing R&D, March 1990.

[90] B. R. de Supinski and N. T. Karonis. Accurately measuring MPI broadcasting in a

computational grid. In Proceedings of the 8th IEEE Symposium on High Performance

Distributed Computing, pages 29-37, August 1999.

[91] J. Dongarra, H. Meuer and E. Strohmaier. Top 500 Supercomputer Sites.

http://www.top500.org.

[92] J. L. Gustafson, D. Heller, R. Todi and J. Hsieh. Cluster Performance: SMP versus

Uniprocessor nodes. In Proceedings of Supercomputing, November 1999.

[93] K.A. Hawick, D.A. Grove, P.D Coddington and M.A. Buntine. Commodity cluster

computing for computational chemistry. Internet Journal of Chemistry, 3:article 4,

2000.

[94] R. W. Hockney. Performance parameters and benchmarking of supercomputers.

Parallel Computing, 17(10), December 1991.

 228

[95] J. Hsieh. Design choices for a cost-effective, high performance Beowulf-cluster. Dell

Power Solutions, 3, 2000.

[96] N. T. Karonis, B. R. de Supinski, I. Foster, W. Gropp, E. Lusk and J. Bresnahan. Ex-

ploiting Hierarchy in parallel computer networks to optimize collective operation

performance. In Proceedings of the 14th International Parallel and Distributed Proc-

essing Symposium, pages 377-384, May 2000.

[97] D.E. Knuth. Big Omicron and Big Omega and Big Theta. ACM SIGACT News,

8(2):18-23, 1976.

[98] W. E. Leland, M.S. Taqqu, W. Willinger and D. V. Wilson. On the self-similar na-

ture of Ethernet Traffic (extended version). IEEE/ACM Transaction on Networking,

2:1-15, 1994.

[99] R. P. Martin, A. M. Vahdat, D. E. Culler and T. E. Anderson. Effects of communica-

tion latency, overhead and bandwidth in a cluster architecture. In Proceedings of the

24th International Symposium on Computer Architecture, pages 85-97, 1997.

[100] V. Paxson and M.Allman. Computing TCP’s retransmission timer. Technical Re-

port RFC 2988, The Internet Society, November 2000.

[101] X. Qin and J. Baer. A performance evaluation of cluster architectures. IEEE SIG-

METRICS Performance Evaluation Review, 25(1):237-247, June 1997.

[102] J. Radajewski. Beowulf supercomputer HOWTO draft, January 1998.

[103] R. Reussner, P. Sanders and J. Larsson Traff. SKaMPI: A comprehensive bench-

mark for public benchmarking of MPI. Scientific Computing, 10, 2001.

 229

[104] D. B. Skilicorn. A taxonomy for computer architectures. IEEE Computer,

21(11):46-57, November 1988.

[105] T. Sterling, Donald J. Becker and D. Savarese. Beowulf: A parallel workstation for

scientific computation. In Proceedings of the International Conference on Parallel

Processing, 1995.

[106] T. B. Tabe, J. Hardwick and Q. F. Stout. Statistical analysis of communication time

on the IBM SP2. Computing Science and Statistics, 27:347-351, 1995.

[107] W. B. Tan and P. Strazdins. The analysis and optimization of collective communi-

cations on a Beowulf cluster. In Proceedings of the International Conference on Par-

allel and Distributed Systems, December 2002. (analysis for allgathe, reduce scatter

and allreduce)

[108] M. S. Warren, D. J. Becker, M. Patrick Goda, J. K. Salmon and T. Sterling. Paral-

lel supercomputing with commodity components. In Proceedings of the International

Conference on Parallel and Distributed Processing Techniques and Applications,

pages 1372-1381, 1997.

[109] M. J Flynn. Some Computer Organizations and Their Effectiveness. IEEE Transac-

tion on Computers. C-211(9):948-960.

[110] Myrinet. http://www.netlib.org/utk/papers/advanced-computers/myrinet.html

[111] Compaq, Intel, and Microsoft. VIA Specification 1.0. http://www.viarch.org

[112] G. Chiola and G. Ciaccio. Implementing a Low Cost, Low Latency Parallel Plat-

form, in Proc. of DAPSYS’96, Miskolc, Hungary, October 1996.

[113] MVICH. MPI for Virtual Interface architecture. Available at http://www.nersc.gov

/research/FTG/mvich/. 4 December 2003.

 230

[114] Micro-Benchmark Level Performance Comparison of High-Speed Cluster Inter-

connects. Available at http://nowlab.cis.ohio-state.edu/projects/mpi-iba/ publication

/hoti01.pdf. 4 December 2003.

[115] G.Ciaccio. Messaging on Gigabit Ethernet: Some experiments with GAMMA and

Other Systems, in Cluster Computing 6, 2003, pages 143-151.

[116] S. Cozzini. Network Hardware/Software for Cluster Computing. Available at

http://www.cecalc.ula.ve/HPCLC/slides/day_03/network.pdf. 19 January 2004.

[117] R. Mraz. Reducing the Variance of Point-to-Point Transfer in the IBM 9076 Par-

alllel Computer, in Proc. of Supercomputer ’94, pages 620-629, Washington, D.C,

November 14-18, 1994

[118] C. SchaubschlÄager. Automatic testing of nondeterministic programs in message

passing systems. Master's thesis, Johannes Kepler University Linz, Department for

Computer Graphics and Parallel Processing, 2000.

[119] S. Pakin, V. Karamcheti, and A. Chien. Fast Messages (FM): Efficient, Portable

Communication for Workstation Clusters and Massively-Parallel Processors. IEEE

Concurrency, 5, April--June 1997, pp. 60--73.

[120] The Abstract Device Interface. Available at http://www-unix.mcs.anl.gov/mpi/

mpich/papers/mpicharticle/node22.html. 18 February 2004.

[121] Design, Implementation and Evaluation of User-Level Protocol. Available at

http://www.cis.ohio-state.edu/~surs/Slides/2c-2e.pdf. 4 December 2003.

[122] Programming the Infiniband Network Architecture. Available at http://www.mpi-

softtech.com/company/publications/files/prog_ib_2003-02-13.pdf. 16 December

2003

 231

[123] S. S. Vadhiyar, G. E. Fagg, and, J. J. Dongarra, Towards an Accurate Model For

Collective Communications, International Journal of High Performance Computing

Applications, vol. 17, no. 4, Fall 2003.

[124] M. Woodacre, D. Robb, D. Roe, and K. Feind, The SGI Altix 3000 Global Shared-

Memory Architecture, White Paper, 2005, available from

http://sc.tamu.edu/whitepapers/altix/altix_shared_memory.pdf.

[125] S. Neuner, Scaling Linux to New Heights : the SGI Altix 3000 System, Linux

Journal, Vol. 2003, Issue 106, Pg. 3, February 2003.

[126] H. J. Wassermann, O. M. Lubeck, Y. Lou, and F. Bassetti, Performance Evalua-

tion of the SGI Origin2000 : A Memory-Centric Characterization of LANL ASCI

Applications, in Proceedings of the 1997 ACM/IEEE Conference on Supercomput-

ing, pg. 1-11, San Jose, CA, 1997.

[127] J. Laudon and D. Lenoski, The SGI Origin : A ccNUMA Highly Scalable Server,

in Proceedings of the 24th Annual International Symposium on Computer Architec-

ture, pg. 241-251, Denver, Colorado, United States, 1997.

[128] T. Sterling, D. Savarese, P. MacNeice, K. Olson, C. Mobarry, B. Fryxell, and P.

Merkey, A Performance Evaluation of the Convex SPP-1000 Scalable Shared

Memory Parallel Computer, in Proceedings of the 1995 ACM/IEEE Conference on

Supercomputing, pg. 55, San Diego, California, United States, 1995.

[129] J. Hsieh, T. Leng, V. Mashayekhi, and R. Rooholamini, Architectural and Per-

formance Evaluation of Giganet and Myrinet Interconnects on Clusters of Small-

Scale SMP Servers, in Proceedings of the 2000 ACM/IEEE Conference on Super-

computing, Dallas, Texas, 2000.

 232

[130] J. Liu, B. Chandrasekaran, etal. (2003). Performance Comparison of MPI Imple-

mentations over InfiniBand, Myrinet and Quadrics. Proceedings of the 2003

ACM/IEEE conference on Supercomputing, IEEE Computer Society.

[131] South Australian Partnership for Advanced Computing (SAPAC).

http://sapac.edu.au.

[132] M. Bertozzi, M. Panella, and M. Reggiani. Design of a VIA based communication

protocol for LAM/MPI suite. In 9th Euromicro Workshop on Parallel and Distributed

Processing, Sept. 2001.

[133] S. Charles’s Glossary of Technical Terminology.

 http://www.mission-cons.k12.tx.us/CECS5030/scharles/terms_html.htm. July 2004.

[134] 100 Mbit/s Fast Ethernet network.

http://www.ethermanage.com/ethernet/100mbps.html

[135] W. Gropp, E. Lusk, and R. Thakur, Using MPI-2: Advanced Features of the Mes-

sage Passing Interface. Cambridge, MA: MIT Press, 1999.

[136] MPICH2. http://www-unix.mcs.anl.gov/mpi/mpich2/

[137] Overview of recent supercomputers, 2007. http://www.phys.uu.nl/~steen/

[138] Rabenseifner's algorithm. http://www.hlrs.de/organization/par/ sevices/models/mpi/

myreduce .html

[139] S. Vandhiyar, G. E. Fagg and J. Dongarra. Automatically tuned collective commu-

nication. In Proceedings of SC99: High Performance Networking and Computing,

November 1999.

 233

[140] R. Rabenseifner. New optimized MPI reduce algorithm.

http://www.hlrs.de/organization/par/services/models/mpi/myreduce.html

[141] L. V. Kale, S. Kumar and K. Vardarajan. A framework for collective personalized

communication. In Proceedings of the 17th International Parallel and Distributed

Processing Symposium (IPDPS’03), 2003.

[142] J. Bruck, C. T. Ho, S. Kipnis, E. Upfal and D. Weathersby. Efficient algorithms for

all-to-all communications in multiport message-passing systems. IEEE Transactions

on Parallel and Distributed Systems, 8(11):1143-1156, November 1997.

[143] F. Petrini, S. Coll, E. Frachtenberg and A. Hoisie. Performance evaluation of the

Quadrics interconnection network. Journal of Cluster Computing, 2002.

[144] Infiniband Trade Association. Infiniband Architecture Specification, Release 1.0.

October 24 2000.

[145] Quadrics. Quadrics, Ltd. http://www.quadrics.com

[146] Beowulf. http://www.beowulf.org/

[147] HPC Architeture. http://www.phys.uu.nl/%7Esteen/web06/sm-mimd.html

[148] Is 10 Gigabit Ethernet catching up with Infiniband?

http://searchdatacenter.techtarget.com/news/article/0,289142,sid80_gci1280975,00.

html

[149] D.V. James, A.T. Laundrie, S. Gjessing, and G.S. Sohi, Scalable Coherent Inter-

face, IEEE Computer, 23, 6, (1990), 74--77.

[150] Scalable Coherent Interface, http://sunrise.scu.edu/.

 234

[151] Microsoft Solution Guide for Migrating High Performance Computing (HPC) Ap-

plications from UNIX to Windows.

http://www.microsoft.com/technet/solutionaccelerators/cits/interopmigration/unix/h

pcunxwn/ch01hpc.mspx

[152] Thomas BrÄeanl. Parallel Programming - An Introduction, Chapter 3. Prentice-

Hall, Englewood Cliffs, New Jersey, 1993.

[153] R.W. Hockney and C.R. Jesshope. Parallel Computers: Architecture, Program-

ming and Algorithms. Adam Hilger, Bristol, 1988.

[154] David Skillicorn. Foundations of Parallel Programming, chapter 8, pages 123-169.

Cambridge University Press, Cambridge, 1994.

[155] David B. Skillicorn and Domenico Talia. Models and languages for parallel com-

putation. ACM Computing Surveys, 30(2), June 1998.

[156] D.B. Skillicorn. A taxonomy for computer architectures. IEEE Computer,

21(11):46-57, November 1988.

[157] http://www.redbooks.ibm.com/abstracts/sg245161.html

[158] http://www.cray.com/

[159] http://www.ibm.com/us/

[160] Geoffrey C. Fox, Roy D. Williams and Paul C. Messina. Parallel Computing

Works!. Morgan Kaufmann, 1994.

[161] http://www.cs.uiuc.edu/homes/snir/

[162] https://computing.llnl.gov/tutorials/parallel_comp/

 235

[163] Geoffrey C. Fox and etal., Solving problems on concurrent processors, Prentice

Hall, 1988.

[164] Jumbo Frame. http://en.wikipedia.org/wiki/Jumbo_Frame

[165] Gigabit Ethernet Jumbo Frame. http://sd.wareonearth.com/~phil/jumbo.html

[166] http://www.top500.org/2007_overview_recent_supercomputers/networks

[167] Quadrics QsTenG for HPC Interconnect Product Family. 13 November 2007.

http://www.quadrics.com/quadrics/QuadricsHome.nsf/

	TITLE PAGE: Communication Performance Measurement and Analysis on Commodity Clusters
	Table of Content
	List of Figures
	List of Tables
	ABSTRACT
	DECLARATION
	LIST OF PUBLICATIONS
	ACKNOWLEDGEMENT

	Chapter 1 Introduction
	Chapter 2 Parallel Computing
	Chapter 3 Comparison of MPI Benchmark Programs on Shared Memory and Distributed Memory Machines
	Chapter 4 Improvements for MPIBench
	Chapter 5 Averages, Distributions and Scalability of MPI Communication Times for Ethernet and Myrinet Networks
	Chapter 6 Analysis of Algorithm Selection for Optimizing Collective Communication with MPICH for Ethernet and Myrinet Networks
	Chapter 7 Performance Evaluation on ccNUMA Shared Memory Machine SGI Altix 3000
	Chapter 8 Conclusion and Further Work
	REFERENCES

