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ABSTRACT 

 
 Cluster computers have become the dominant architecture in high-performance 

computing. Parallel programs on these computers are mostly written using the Message 

Passing Interface (MPI) standard, so the communication performance of the MPI library 

for a cluster is very important. This thesis investigates several different aspects of per-

formance analysis for MPI libraries, on both distributed memory clusters and shared 

memory parallel computers.  

The performance evaluation was done using MPIBench, a new MPI benchmark 

program that provides some useful new functionality compared to existing MPI bench-

marks. Since there has been only limited previous use of MPIBench, some initial work 

was done on comparing MPIBench with other MPI benchmarks, and improving its func-

tionality, reliability, portability and ease of use. This work included a detailed compari-

son of results from the Pallas MPI Benchmark (PMB), SKaMPI, Mpptest, MPBench and 

MPIBench on both distributed memory and shared memory parallel computers, which 

has not previously been done. This comparison showed that the results for some MPI rou-

tines were significantly different between the different benchmarks, particularly for the 

shared memory machine.  

 A comparison was done between Myrinet and Ethernet network performance on 

the same machine, an IBM Linux cluster with 128 dual processor nodes, using the 

MPICH MPI library. The analysis focused mainly on the scalability and variability of 

communication times for the different networks, making use of the capability of 

MPIBench to generate distributions of MPI communication times. The analysis provided 

an improved understanding of the effects of TCP retransmission timeouts on Ethernet 

networks. 

This analysis showed anomalous results for some MPI routines. Further investiga-

tion showed that this is because MPICH uses different algorithms for small and large 

message sizes for some collective communication routines, and the message size where 

this changeover occurs is fixed, based on measurements using a cluster with a single 

processor per node. Experiments were done to measure the performance of the different 

algorithms, which demonstrated that for some MPI routines the optimal changeover 

points were very different between Myrinet and Ethernet networks and for 1 and 2 proc-



 xv

essors per node. Significant performance improvements can be made by allowing the 

changeover points to be tuned rather than fixed, particularly for commodity Ethernet 

networks and for clusters with more than 1 process per node. 

MPIBench was also used to analyse the MPI performance and scalability of a 

large ccNUMA shared memory machine, an SGI Altix 3000 with 160 processors. The 

results were compared with a high-end cluster, an AlphaServer SC with Quadrics QsNet 

interconnect. For most MPI routines the Altix showed significantly better performance, 

particularly when non-buffered copy was used. MPIBench proved to be a very capable 

tool for analyzing MPI performance in a variety of different situations.  
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CHAPTER 1 
 

Introduction 

 
Since the invention of computers, users have demanded more powerful and faster 

computers to solve a huge variety of numerical problems, particularly the numerical 

simulation of scientific and engineering problems. In order to cope with the demand, 

computers have evolved from sequential to parallel computers. Sequential means that the 

computer is running with a single processor, while parallel computers allow more than 

one processor to be used at the same time. Parallel computing refers to the concept of 

speeding-up the execution of a program by dividing the program into multiple fragments 

that can execute simultaneously, each on its own processor. A program being executed 

across n processors might execute n times faster than it would using a single processor. A 

parallel computing system generally involves networks of multiple commodity micro-

processors, rather than a single, larger mainframe. These multiprocessor computers con-

sist of a number of autonomous processors which can each execute separate programs 

concurrently, or a single program can use multiple processors. These autonomous proces-

sors are coupled by hardware and by software to attain the collective performance needed 

to master applications that cannot be handled by the use of individual uniprocessor com-

puters. 

Traditionally, the developments of parallel computing have been motivated by 

numerical simulations of complex systems such as weather, climate, mechanical devices, 

electronic circuits, manufacturing processes, and chemical reactions. However, the most 

significant forces driving the development of faster computers today are emerging com-

mercial applications that require a computer to be able to process large amounts of data in 

sophisticated ways. These applications include online transaction processing, data min-

ing, web servers and web search, on-demand video streaming, computer-aided diagnosis 

in medicine, parallel databases used for decision support, and advanced graphics and vir-

tual reality, particularly in the entertainment industry [160, 161, 162].  
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1.1 Parallel computing architectures 
 

 In general, parallel computing is classified into shared memory multiprocessor 

(SMP), distributed memory multicomputers with compute nodes connected by a network 

(particularly those built from commodity components, which are often call cluster com-

puters), or a combination of both. Due to the increase in network hardware speed and the 

availability of low-cost high-performance workstations, personal computers and servers, 

cluster computing has become increasingly popular over the past ten years. Many re-

search institutes, universities and companies around the world have purchased or built 

low cost clusters, such as commodity Linux or Beowulf [146] clusters, for their parallel 

processing needs at a fraction of the price of mainframes or custom supercomputers. In 

recent years it has become more common to find cluster computers built with SMP 

nodes. Table 1.1 shows that cluster architecture has grown rapidly in the last ten years 

compared to the other architectures, and this trend has increased with the advent of multi-

core CPUs, so that all new clusters now have SMP nodes. This thesis will focus mainly 

on cluster computers, particularly SMP clusters. 

Many different interconnection technologies have been used to build clusters, in-

cluding Ethernet [134], Myrinet [110], Giganet [6], QsNet [145], SCInet [150] as well as 

proprietary networks from different vendors such as IBM [159] and Cray [158]. When 

the work in this thesis was begun, the most common networks were Myrinet, Ethernet 

and networks based on the IBM SP Switch [157], whereas currently the most popular net-

works are Gigabit Ethernet, Infiniband [144], SP Switch and Myrinet, based on the statis-

tics of interconnet networks used in machines in the list of the at the TOP500 websites 

[91]. Ethernet is a cheap LAN technology that can deliver 100Mbit/sec bandwidth (Fast 

Ethernet), 1 Gbit/sec (Gigabit Ethernet, which is currently the most commonly used) or 

10 Gbit/sec, while maintaining the original Ethernet’s transmission protocol, CSMA/CD. 

TCP/IP is the most popular communication protocol for Ethernet, although other proto-

cols can be used, such as VIA [33]. TCP/IP is a robust protocol set developed to connect 

a number of different networks designed by different vendors into a network of networks. 

However, the reliability provided by TCP/IP has a price in communication overhead. In-

finiband and Myrinet are two of the leading cluster interconnect technologies for com-

modity clusters, which use different communication protocols that allow lower latency, 
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but these networks are more expensive than Gigabit Ethernet. Both provide low-latency, 

high-bandwidth, end-to-end communication between two processes in the cluster.  

In the high performance computing area, the Message Passing Interface (MPI) 

[81] is the standard that is most commonly used for writing distributed memory parallel 

applications. To achieve optimal performance in a cluster, it is very important to imple-

ment MPI efficiently on top of the cluster interconnect. For networks such as Myrinet 

that are designed for high performance computing environments, their hardware and 

software are specially optimized to achieve better MPI Performance. Low cost commod-

ity cluster computers typically use Ethernet for the network interconnect, TCP/IP as the 

protocol, and MPICH [69] as the communication library for parallel computing, which is 

an implementation of the MPI standard. However these Beowulf-style commodity clus-

ters typically do not have as good performance for parallel applications that require a lot 

of interprocessor communication. This is because the MPICH implementation was not 

designed for commodity machines which use TCP/IP and Fast Ethernet, while the prob-

lems with TCP/IP are because it was designed to use in a wide area network instead of a 

parallel computer where low latency is important.  

 

 

Architecture Count Share % 
 

 November 1997 November 2007 November 1997 November 2007 
 

Constellations 10 3 2.0 % 0.6 % 

MPP 226 91 45.2 % 18.2 % 

Cluster 1 406 0.2 % 81.2 % 

SMP 263 0 52.6 % 0 

 

Table 1.1 : Comparison of the architecture for high performance computers in the list of 
Top 500 supercomputers for year 1997 and 2007 [91]. 
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Interconnect Nov 1999 
 

Nov 2003 
 

Nov 2007 
 

    

Ethernet 1.8 % 22.4 % 54.0 % 

Myrinet 8.6 % 38.6 % 3.6 % 

Quadrics 0.2 % 5.2 % 1.8 % 

Infiniband 0 % 0.6 % 24.2 % 

Crossbar 23.4 % 7.4 % 1.2 % 

SGI NUMAlink/flex 0 % 7.4 % 2.2 % 

SP Switch 27.6 % 12.6 % 4.6 % 

Cray Interconnect 11.2 % 2.0 % 2.2 % 

Other 1.0 % 3.0 % 6.2 % 

N/A 26.2 % 0.8 % 0 % 

 

Table 1.2 : Percentage of the most used interconnects for supercomputers in the TOP500 
list  [91]. 

 

1.2 MPI communications performance 
 

Much research work has focussed on the communications performance of cluster 

computers with different network technologies.  Previous research has found that the 

common problems that frequently occurs in networks that use TCP/IP is network conges-

tion and packet loss. This is because TCP/IP applies Retransmit Timeouts for packets that 

fail to deliver, so the unsent packets need to wait for a certain time to be redelivered. 

Since TCP/IP is designed for use in wide area networks the default resend time is much 

longer than is suitable for tightly coupled processors, although this can be customized. 

Interestingly, there were several previous research papers that found that Ethernet can 

perform as well as more expensive networks like Myrinet if additional software and/or 

particular hardware (e.g. high-end network interface cards) is used, with a low-latency 

custom protocol such as VIA [33, 44, 111] or Genoa Active Message Machine 

(GAMMA) [38, 39]. However, it would be easier and more practical if MPI performance 
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using Ethernet with TCP/IP and MPICH could be improved without needed any addi-

tional software or hardware. 

Table 1.3 compares the performance for different protocols in different types of 

networks. The purpose of this table is to show that the causes of high latency and low 

bandwidth are not just because of the networks, but also due to the choice of protocol. 

Based on Table 1.3, TCP/IP with Fast Ethernet has a latency of 103 microsec and 

GAMMA with Fast Ethernet has a latency of 12.7 microsec. These results show that us-

ing GAMMA can significantly improve the latency performance of Ethernet so that it is 

close to the latency in Myrinet networks, which is 10.0 microsec. 

 

Platform Latency (•s) Bandwidth (Byte/sec) 

 

GM – Myrinet 10.0 100.0 

GAMMA – Gigabit Ethernet 9.6 90.0 

GAMMA – Fast Ethernet 12.7 12.2 

VIA – Fast Ethernet  27.0 12 

TCP – Fast Ethernet 108 10.0 

TCP – Gigabit Ethernet 105 62.0 

TCP – Myrinet 103 42 

 

Table 1.3 : Protocol Comparison (Ping-Pong application). Results are from [40, 115, 

116, 132]. 

 

There are several different benchmark programs which can be used to measure the 

performance of MPI communications on parallel computers, such as SKaMPI [21], Pallas 

MPI Benchmark [65], MPBench [19] and Mpptest [17]. The latest benchmark software 

suite that has been developed for measuring MPI performance is MPIBench [1,2], which 

has several important improvements over the existing benchmark software and provides 
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additional results such as distributions of communication times and communication times 

for different processors, that can reveal more details of communication performance.  

 

1.3 Research Rationale 
 

Although most of the existing MPI benchmark software is widely used, Grove 

[8,9] pointed out that all of these benchmarks have one or more of four main inadequa-

cies. Firstly, they use relatively coarse grained clocks for measuring the communication 

time, so they will only give average results over a high number of repetitions for the 

communication routines being measured.  Secondly, the timing for the benchmarks does 

not use a clock that is synchronized across all processors, which means that measure-

ments of point-to-point communication use a ping-pong test to measure the total round-

trip time for two send_recv messages, rather than a single send_recv message, and results 

for collective communications cannot be given for different processes, only for the slow-

est process. Thirdly, the collective communication measurement is taken using a ping-

pong measurement between two processors, which cannot show the effects of contention 

and non-uniform communication times that can occur when multiple processors are used. 

Finally, previous benchmarks were not designed for clusters of SMPs, so users have to be 

careful to ensure that the communication they are measuring is done between nodes, not 

between processors within a node.  

There has been no detailed comparison of MPIBench with existing MPI bench-

marks, and no study has previously been done comparing the techniques used and the re-

sults obtained for all of the different MPI benchmarks. Thus, the current research has 

compared MPIBench to the other existing MPI benchmark software. Consequently, from 

the results of the comparisons of the results and functionality of the different MPI 

benchmarks, improvements and changes have been made to MPIBench.   

Grove developed MPIBench [1,2] to overcome these limitations of existing MPI 

benchmarks. He showed that it was a very useful tool in analyzing the performance of 

different MPI implementations on different parallel computer architectures, and success-

fully used it to identify performance problems in three different MPI libraries [1]. How-

ever his research was mainly focussed on using the distributions of communication times 
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that MPIBench provides in order to provide more accurate modeling and estimation of 

parallel program performance than can be obtained using average times for MPI commu-

nication routines. One of the main motivations for the research presented in this thesis is 

to extend Grove’s initial work by making improvements to MPIBench and applying it 

more widely to investigate MPI performance on a variety of different parallel computer 

architectures, communications networks, and MPI implementations. The aim is to gain a 

better understanding of the capabilities and advantages of MPIBench for the analysis of 

MPI performance as well as potentially identifying and analyzing performance issues 

with different parallel computers and MPI libraries.  

Grove used MPIBench to measure the performance of a few distributed memory 

parallel computers [8]. He found there were several problems in performance for MPICH 

on commodity Beowulf-type clusters using Fast Ethernet and TCP/IP, due to the proto-

col, network congestion and other problems related to the operating system and MPI im-

plementation [8, 9]. However, there was no further work to investigate possible solutions 

to the loss of performance.  Grove also measured the MPI performance of networks de-

signed for parallel computers, using MPIBench on a Sun cluster using Myrinet and a 

DEC/Compaq/HP Alphaserver cluster using Quadrics QsNet, with both clusters having 

quad-processor SMP nodes.  One particular objective of this thesis was to do a detailed 

analysis of the MPI performance of Ethernet in cluster computers and to try to find ideas 

for improving its performance. In order to achieve the objective, this thesis will use 

MPIBench to compare the performance between Ethernet with TCP/IP and Myrinet with 

GM using the same cluster. Grove found some interesting results when comparing 

Ethernet and Myrinet networks, particularly to do with TCP/IP and retransmit timeouts, 

however these measurements were done on two different machines. Using the same clus-

ter would provide a much better comparison. Also, since Grove’s work was done, new 

versions of MPICH have been released that provide significant improvements in the im-

plementation of most of the collective communication routines [11].  

The main purpose of this comparison is to obtain insight into the problems that occur in 

the Ethernet network, particularly for TCP/IP, and the MPI implementation, which in the 

case of MPICH is designed for parallel computers with a high-speed communications 

network and low latency communication protocol. The outcomes from the analysis may 

provide ideas on how to improve the communication performance for  commodity cluster 
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computers with Ethernet networks and TCP/IP. Therefore, the proposed research will 

seek an answer to what circumstances TCP/IP and MPICH cause a problem, why it hap-

pens, and how to solve the problem or to improve performance.  

Previous work on improving communication performance for Beowulf clusters has 

focused more on designing or using new protocols such as VIA or GAMMA to replace 

TCP/IP on Ethernet networks and developing new implementations of MPI to use these 

protocols. These approaches have merit but so far they have had very little uptake. This is 

probably because a new protocol will require a lot of effort to develop new software to 

make it compatible with the commodity cluster computer, for example new drivers for 

the many different types of Ethernet cards and operating systems, and new MPI libraries. 

It would be useful if some of the problems of TCP/IP and MPICH could be fixed and the 

MPI performance of commodity clusters with Ethernet networks could be improved.  

Another aim of this thesis is to analyze the MPI performance of a large shared mem-

ory machine and compare it to a distributed memory cluster with a fast communications 

network. Large shared memory machines such as the SGI Altix offer the potential for 

very good MPI performance compared to a cluster with a high-speed communication 

network, although they are significantly more expensive, However, little work has been 

done comparing MPI performance on large shared memory machines with distributed 

memory clusters. In 2004 the Australian national computing facility migrated from a 

large AlphaServer SC with Quadrics QsNet network, which was one of the fastest dis-

tributed memory communications networks at the time, to a large shared memory SGI 

Altix. This offered a good opportunity to compare MPI performance on these two ma-

chines, which was of particular interest to the users of these machines and also of more 

general interest in terms of comparing MPI performance between large shared memory 

and distributed memory machines.  

1.4  Research Aims and Overview 
 
 
 Fundamentally the aims of the study were as follows: 
 

1. To compare MPIBench with the other existing MPI benchmark software. The 

comparison will test the scalability, functionality and usability of MPIBench 

compared with the existing benchmark software. 
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2. Based on the comparison results, improvements and changes can be done to 

MPIBench. 

 

3.  To analyze the performance between Myrinet with GM and Ethernet with TCP/IP 

on a high performance cluster computer. Results obtained from the test will be 

analyzed and may provide ideas on how to upgrade the communication 

performance for Ethernet network in a commodity cluster.  

 

4. Based on the results of the comparison of different cluster interconnects, 

investigate possible approaches to improving communications performance, 

particularly for Ethernet networks. 

 

5. MPI performance evaluation of a large shared memory machine. SGI Altix 3000, 

and comparison with a high-end cluster with a fast communications network. 

 

An overview of the work that was done in this thesis to fulfill these aims is given below. 

1.4.1   Comparison of Different Benchmark Software 
 
There are several benchmark programs that have been developed to measure the 

performance of MPI on parallel computers.  Each of the MPI benchmark programs has its 

own specialty. However, there have been few comparisons done between the different 

benchmarks, and no detailed, comprehensive analysis and comparison of the functional-

ity, measurement techniques and results produced by all the different benchmarks. Fur-

thermore, the MPI benchmark programs were primarily designed for, and have mostly 

been used on, distributed memory machines. However it is interesting to measure MPI 

performance on shared memory machines such as the SGI Altix, which has become a 

popular system for high-performance computing. The hierarchical non-uniform memory 

architecture (NUMA) that is typical of large shared memory machines means that analy-

sis of the performance of shared memory machines is likely to be more complex than dis-

tributed memory machines, which are typically clusters with fairly uniform communica-

tions architecture. 
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Thus, this study provides a comparison of techniques used and functionality of 

each benchmark, and also a comparison of the results on a distributed memory machine 

and a shared memory machine. All of the most commonly used MPI benchmarks will be 

compared in this analysis.  

 

1.4.2   Improvements to MPIBench 
 

One of the objectives of the comparison analysis between MPI benchmarks was to 

identify any weaknesses of MPIBench compared to other MPI benchmarks and to use 

this information to make improvements to MPIBench. MPIBench has been tested on the 

SGI Altix (which uses a CC-NUMA architecture) and distributed memory architecture 

with two different types of interconnect, Myrinet and Ethernet. Many tests were done, 

which has helped to identify problems in installing and running MPIBench and to make it 

more portable and robust. The new version of MPIBench is available online at [2].   

The analysis from the MPI benchmark comparisons revealed several disadvan-

tages in MPIBench and also in the course of doing the work presented in this thesis some 

additional useful tools have been added to MPIBench and a number of bugs and problems 

have been spotted and fixed. One of the issues that has been addressed is regarding the 

cache effect, whether the cache should be used or not during taking of measurements. 

The procedure of compiling and running the program has also been improved by adopt-

ing the approach of most of the other MPI benchmarks, by providing a default option for 

running the benchmark programs using defaults for configurable parameters such as the 

range of message sizes for each communication routine. Several new settings have also 

been included (with default options), including the ability to choose MPI_Wtime instead 

of the globally synchronized clock provided by MPIBench, 

    

1.4.3    Performance Analysis and Investigation of Communication Performance on 

Different Communication Networks 

 
Most modern parallel computers are clusters using Myrinet or Ethernet communi-

cation networks. Several studies have been published comparing the performance of these 

two networks for parallel computing, however these focus on average performance, and 
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do not address the distributions of communication times, which can have long tails due to 

contention effects. In the case of Ethernet with TCP, retransmit timeouts (RTOs) can also 

occur. Slow communication events may have significant impact, particularly for applica-

tions requiring frequent synchronization, where the performance is determined by the 

slowest process. This study used MPIBench to analyse the distributions of communica-

tion times for standard MPI routines on Ethernet with TCP and Myrinet with GM com-

munications networks on the same cluster, and study the scalability of the distributions as 

the number of communicating processes is increased, and the effect of RTOs for Ethernet 

with TCP. One of the goals of this work was to investigate in more detail the effect of 

these RTOs on Ethernet performance, and how much could be gained from reducing the 

effects of RTOs.  

This study provides a comparison of the performance of MPI communications for 

Myrinet with GM and Fast Ethernet with TCP networks on the same cluster. Measure-

ments were done for both point-to-point and collective communications for up to 200 

CPUs (100 dual CPU nodes), which allows in depth analysis on the scalability of the two 

networks to large numbers of processors.  

 

1.4.4    Analysis of Algorithm Selection for Optimizing Collective Communication 

with MPICH for Ethernet and Myrinet Networks 

 
 This study was motivated by some strange results for certain collective communi-

cation routines in the performance analysis outlined in section 1.4.3. In some cases, larger 

message sizes were giving smaller communication times. So, more work was done on 

analyzing MPICH in order to understand the results.  

MPICH is one of the main implementations of the MPI standard. Recent versions 

of MPICH combine the best algorithms known for each MPI collective communication, 

and those multiple algorithms are differentiated based on message sizes. The message 

sizes mainly divide into two, the short-message algorithms aim to minimize latency, 

while the long-message algorithms aim to minimize the bandwidth. Currently, the mes-

sage sizes where the algorithm changes in MPICH are the experimentally determined 

change-over points based on the work of Thakur et al. [11], which used an IBM SP and a 
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Linux cluster machine connected with Myrinet, both with one processor per node. In the 

paper, they acknowledged having a plan to determine automatically the algorithm 

change-over points based on system parameters, since the optimum change-over point 

probably will be different for parallel computers with different architectures, and particu-

larly with different networks. However, the MPICH source code shows that the message 

sizes where the algorithm is changed are still defined as constants and hard coded.  

The aim of this study is to investigate the feasibility of using MPI benchmarks to 

provide an automated process for selecting the optimal choice of collective communica-

tion algorithms for a particular parallel computer and communication network, and to see 

if this approach is worthwhile by comparing the performance of the optimized MPICH 

implementation with the current MPICH implementation where the algorithm selection is 

hard coded. So, this study measured performance over a range of message sizes for all of 

the different algorithms for all of the most common use collective communication rou-

tines in MPICH that use multiple algorithms. 

Measurements were done on a cluster of dual processor machines using two dif-

ferent networks, Myrinet with GM and Ethernet with TCP. In order to compare the dif-

ferent algorithms for all message sizes, the MPICH code was modified so that the 

change-over points could be modified. For each collective communication routine, an 

MPI benchmark such as MPIBench can be run to measure the performance for each pos-

sible algorithm, by varying the change-over parameters to ensure that only a single algo-

rithm is used for each benchmark run. Then the benchmark results for all the different 

algorithms for a particular collective communication routine can be compared and the 

optimal change-over points for that particular parallel computer can be determined.  

 

1.4.5 Performance Evaluation on ccNUMA Shared Memory Machine SGI Altix 

3000 

The SGI Altix [70,27] is a cache coherent, non-uniform memory architecture 

(ccNUMA) shared memory multiprocessor system that is a popular machine for high-

performance computing, with several large systems now installed, including the 10,160 

processor Columbia machine at NASA. In Australia, a 1680 processor Altix (the APAC 

AC) has recently replaced an ageing AlphaServer SC [72] with a Quadrics network [20] 
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(the APAC SC) as the new peak national facility of the Australian Partnership for Ad-

vanced Computing (APAC) [84], and was number 26 in the June 2005 list of the Top 500 

supercomputers [91]. There are several other Altix machines at APAC partner sites, in-

cluding two systems with 160 processors and another with 208 processors. 

Most parallel programs used for scientific applications on high-performance com-

puters are written using the Message Passing Interface (MPI), so the performance of MPI 

message passing routines on a parallel supercomputer is very important. Shared memory 

machines such as the Altix typically have very high-speed data transfer between proces-

sors, however this will only translate into good MPI performance if the MPI library can 

efficiently translate the distributed memory, message-passing model of MPI onto shared 

memory hardware. It is therefore of interest to measure the performance of MPI routines 

on a shared memory machines such as SGI Altix, and to compare it with a distributed 

memory supercomputer with a high-end communications network. This study will pro-

vide results for MPI performance on the SGI Altix, and comparisons with similar meas-

urements on the AlphaServer SC with a Quadrics network.  

 

1.5 Thesis Outline 
 

This section will explain the organization of this thesis. Chapter 2 presents a basic in-

troduction to parallel architectures, parallel programming and interconnects. The idea of 

this chapter is to briefly give the required information on parallel computing. Next, Chap-

ter 3 discusses the MPI benchmark comparison on both distributed memory and shared 

memory ccNUMA architecture machines. Chapter 4 discusses the improvements to 

MPIBench that have been made, mainly based on the comparison results from Chapter 3. 

The performance comparison between Ethernet and Myrinet is described in Chapter 5. 

Chapter 6 investigates how MPICH performance can be improved by analysis of the 

threshold points changing between different algorithms for collective communication 

routines, with results for Myrinet and Ethernet networks. Chapter 7 presents the results of 

the performance evaluation for the a ccNUMA shared memory machine, the SGI Altix 

3000, and comparison with a high-end distributed memory machine. Finally, Chapter 8 

will conclude the thesis and discuss future work that could be done. 
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CHAPTER 2 
 

Parallel Computing 

 
 

Fundamentally, the concept of parallel computing is to have more than one proc-

essor in the same computer. The use of multiple processors in the same computer system 

introduces some additional requirements on the architecture, software and hardware of 

the computer. This chapter will explain relevant issues related to parallel computers, par-

allel programming, interprocessor communication and the evaluation of communication 

performance. 

 

2.1 Parallel Computers  
 
 The taxonomy of Flynn [109] has classified computers into four categories.  The 

classification is based on the way instructions are manipulated and the flow of the data 

streams. Single Instruction Single Data (SISD) is a conventional system that contains one 

CPU and the parallelism is incorporated at the level of the arithmetic operations in the 

central processing unit, for example vector pipeline machines. Single Instruction Multiple 

Data (SIMD) is where each instruction may operate on more than one data element si-

multaneously. Most SIMD machines comprise very large numbers of custom processors, 

which is often called massively parallel processing (MPP). The connectivity between 

processors depends on the actual machine but it is usually very tight so that there is rapid 

interchange of data between neighboring processors. The array and pipelined computers 

are examples of this type [109]. 

  Multiple Instruction Single Data (MISD) theoretically has multiple instructions 

for single stream of data, however this type of machine has not yet has been constructed. 

Finally, Multiple Instruction Multiple Data (MIMD) machines can execute different in-

struction streams in parallel on different data. Interconnection of these machines is much 

looser than in SIMD architecture.  
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SIMD and MIMD machines are the two main classes of parallel computers. On 

SIMD machines, the same task, usually of small granularity, is executed simultaneously 

on different data, while for the MIMD machines, different tasks can be executed concur-

rently on different processors. The distinctive aspect of SIMD execution consists of the 

control unit broadcasting a single instruction to all processors, which execute the instruc-

tion in lockstep fashion on local data. The MIMD architecture consists of multiple proc-

essors that can execute independent instruction streams. Thus, MIMD computers support 

parallel solutions that require processors to operate in a largely autonomous manner. 

Modern supercomputers are virtually all MIMD architecture, so this thesis will focus on 

this model of parallel computing. 

MIMD parallel computers can be divided into two distinct classes: shared mem-

ory machines, including symmetric multiprocessors (SMPs), and message-passing multi-

processors or multicomputers, including clusters. Shared memory machines have a set of 

processing elements and a pool of memory available to all processors. The processors 

have access to a large global random access memory of which they have the same view. 

Message-passing multiprocessor systems consist of a number of identical processors 

where each processor has its own local memory. These systems are also known as local 

memory systems, loosely coupled systems or distributed memory systems [160]. Each 

processor is provided with a small private random access memory and interconnects. The 

processors have no direct access to the memory of other processors, access is only via 

message passing between the processors.  

There are also parallel computers that combine both technologies, which is be-

coming more common. Most of the largest and fastest computers in the world today make 

use of both shared and distributed memory architectures, with SMP nodes (usually with 

multi-core processors) connected by a message-passing communications network.  

Parallel applications in turn can be classified as a fine-grained or coarse-grained 

depending on the frequency of communication between various processing nodes [160, 

162, 163]. The fine-grained parallel applications involve relatively small amounts of 

computational work between communication events, while the coarse-grained involve 

relatively large amounts of computational work between communication events [162, 

163]. More detailed discussion on parallel applications and programming is in Section 

2.3, while  Section 2.1 and Section 2.2 provide more detail on parallel architectures. 
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2.1.1 Shared Memory MIMD Systems 
 

         All modern computer systems have cache memory, high-speed memory closely 

attached to each processor for holding recently referenced data and code. Such cache 

memory is used because the speed at which a processor can make references to memory 

locations greatly exceeds the time that main memory requires to respond. A higher-speed, 

but smaller, cache memory can be matched more closely to the speed of the processor. 

Systems may even have more than one level of cache memory; a small first-level cache 

connecting the processor and a larger second-level cache between the first-level cache 

and the main memory. Programs consist of executable instructions (code) and associated 

data. It is current practice that executable instructions are not altered when the program is 

executed, the CPU just reads and executes the instructions. In contrast, the data may be 

read and altered by different processors [28].  

This may cause significant complexities to the system design with a cache and af-

fect the performance. When a processor first references a main memory location, a copy 

of its content is transferred to the cache memory associated with the processor. Suppose 

the information being brought into the cache is data. When the processor subsequently 

references the data, it accesses the cache for it in the first instance. If another processor 

references the same main memory location, a copy of data is transferred to the cache as-

sociated with that processor, thus creating more than one copy of the data. This is not a 

problem until a processor alters its cached copy, which writes a new data. Here the cache 

coherence protocol is needed to ensure that subsequently processors obtain the newly al-

tered data when they reference the data. Cache coherence protocols use either an update 

policy or an invalidate policy. In the update policy, copies of data in all caches are up-

dated at the same time one copy is altered. In the invalidate policy, when one copy of 

data is altered, the same data in any other cache is invalidated, this is more common tech-

nique used in modern computers. These copies are only updated when the associated 

processor makes reference to it [28]. 

Shared memory systems have multiple CPUs, all of which share the same address 

space. This means that information on where data is stored is of no concern to the user as 
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there is only one memory accessed by all CPUs on an equal basis. Shared memory ma-

chines can be divided into UMA and NUMA, which are the two main classes based on 

memory access times. The Uniform Memory Access (UMA) is most commonly repre-

sented by Symmetric Multiprocessor (SMP) machines, where each processor has equal 

access and access times to memory. Sometimes it is called CC-UMA (Cache Coherent 

UMA). 

Non-Uniform Memory Access (NUMA) is a different approach in which two or 

more SMPs with their own local memory are linked by an interconnect that preserves the 

shared memory access. However in NUMA, not all processors have equal access time to 

all the memory, since access to the local memory within the SMP is faster than memory 

access across the interconnect link between the SMPs. If cache coherency is maintained 

then this is called CC-NUMA (Cache Coherent NUMA).  

The advantages of shared memory computers are that global address space pro-

vides a simpler programming model, and data sharing between tasks is fast. The disad-

vantages are that cache-coherent shared memory machines are expensive compared to 

distributed memory machines, and the lack of scalability between memory and CPUs 

means that adding more CPUs can geometrically increase traffic on the shared memory-

CPU path, and for cache coherent systems, geometrically increase traffic associated with 

cache/memory management [28].  

The main problem with shared-memory systems is that of the connection of the 

CPUs to each other and to the memory. As more CPUs are added, the collective band-

width to the memory ideally should increase linearly with the number of processors, 

while each processor should preferably communicate directly with all others without the 

much slower alternative of having to use the memory in an intermediate stage. Unfortu-

nately, full interconnection is quite costly, growing with O(n²) while increasing the num-

ber of processors with O(n). So, various alternatives have been tried. Figure 2.1 shows 

some of the interconnection structures that have been used.  

Referring to Figure 2.1, a crossbar uses n² connections, an Ω-network uses nlog2n 

connections while, with the central bus, there is only one connection. This is reflected in 

the use of each connection path for the different types of interconnections: for a crossbar 
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each data path is direct and does not have to be shared with other elements. Crossbar or 

multistage is a network in which all input ports are directly connected to all output ports 

without interference from messages from other ports. In a one-stage crossbar this has the 

effect that for instance all memory modules in a computer system are directly coupled to 

all CPUs. This is often the case in multi-CPU vector systems. In multistage crossbar net-

works the output ports of one crossbar module are coupled with the input ports of other 

crossbar modules. In this way one is able to build networks that grow with logarithmic 

complexity, thus reducing the cost of a large network. In case of the Ω-network there are 

log2 n switching stages and as many data items may have to compete for any path. For the 

central databus all data has to share the same bus, so n data items may compete at any 

time [137, 147]. 

The bus connection is the least expensive solution, but it has the obvious draw-

back that bus contention may occur thus slowing down the communications. Various in-

tricate strategies have been devised using caches associated with the CPUs to minimise 

the bus traffic. This leads however to a more complicated bus structure which raises the 

costs. In practice it has proved to be very hard to design buses that are fast enough, espe-

cially where the speed of the processors have been increasing very quickly and it imposes 

an upper bound on the number of processors thus connected that in practice appears not 

to exceed a number of 10-20. In 1992, a new standard (IEEE P896) for a fast bus to con-

nect either internal system components or to external systems has been defined. This bus, 

called the Scalable Coherent Interface (SCI) should provide a point-to-point bandwidth of 

200-1,000 Mbyte/s. It is in fact used in the HP Exemplar systems, but also within a clus-

ter of workstations as offered by SCALI. The SCI is much more than a simple bus and it 

can act as the hardware network framework for distributed computing [149, 150].  

A multi-stage crossbar is a network with a logarithmic complexity and it has a 

structure which is situated somewhere in between a bus and a crossbar with respect to 

potential capacity and costs. The Ω-network depicted in Figure 2.1 is an example. Com-

mercially available machines like the IBM eServer p575 and the SGI Altix 4000 use such 

a network structure [137]. For a large number of processors the nlog2n connections 

quickly become more attractive than the n² used in crossbars. Of course, the switches at 

the intermediate levels should be sufficiently fast to cope with the bandwidth required. 

Obviously, not only the structure but also the width of the links between the processors is 
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important: a network using 16-bit parallel links will have a bandwidth which is 16 times 

higher than a network with the same topology implemented with serial links.  

In all present-day multi-processor vector processors crossbars are used. However, 

when the number of processors is increased, technological problems might arise. Not 

only does it become harder to build a crossbar of sufficient speed for the larger numbers 

of processors, the processors increase in speed over time, compounding the problems of 

making the speed of the crossbar match that of the bandwidth required by the processors 

[137, 147].  

 

Figure 2.1 : Examples of interconnection structures used in shared-memory MIMD sys-
tems [137, 147]. 
 
 

2.1.2 Distributed Memory MIMD Systems 

 
Distributed memory systems vary widely but share a common characteristic, that 

they require a communication network to connect the memory of different processors.  

Each of the processors have their own local memory and the memory addresses in one 
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processor do not automatically map to another processor, so there is no concept of global 

address space across all processors. Since each processor has its own local memory, it 

operates independently and the changes it makes to its local memory have no effect on 

the memory of other processors. Hence, the concept of cache coherency does not apply. 

When a processor needs access to data in another processor, it is usually the task of the 

programmer to explicitly define how and when data is communicated, which is usually 

done using the standard Message-Passing Interface (MPI) [28, 53, 137, 147]. Synchroni-

zation between tasks is likewise the programmer's responsibility. The interconnects used 

for data transfer vary widely, though it can be as simple as Ethernet.  

There are several advantages to the distributed memory architecture. It is more 

easily scalable to large numbers of processors. If the number of processors is increased, 

then the size of memory increases proportionately. Each processor can rapidly access its 

own memory without interference and without the overhead incurred with trying to main-

tain cache coherency. It is also very cost effective since it can use commodity, off-the-

shelf processors and interconnects. However the disadvantages are that the programmer is 

responsible for many of the details associated with data communication between proces-

sors. It may be difficult to map existing data structures, based on global memory, to this 

memory organization.  

Distributed memory computers can also be built from scratch by using mass pro-

duced PCs and workstations or servers. These commodity cluster computers are referred 

to by many other names, such as Beowulf clusters, COWs (clusters of workstations), and 

NOWs (networks of workstations). They are much cheaper than traditional MPP (mas-

sively parallel processing) supercomputers that used mostly custom components. Refer-

ring to Table 1.1, 81.2% of the supercomputers in the November 2007 list of the Top 500 

supercomputers in the world are clusters, up from only 0.20% ten years ago [91].  

Figure 2.2 shows some examples of common network topologies for distributed 

memory machines, the hypercube and fat tree topology. It shows the hypercube with 2d 

nodes where the number of steps to be taken by a message between any two nodes is at 

most d. The dimension of the network grows logarithmically with the number of nodes. It 

is also possible to simulate any other topology on a hypercube such as tree, ring, 2-D and 

3-D. In practice, the exact topology for hypercubes is not as important anymore because 

all systems now employ the “wormhole routing” technique. This technique will send a 
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header message from node i to j, resulting in a direct connection between these nodes. As 

soon as the connection is established, all the data are sent through this connection without 

disturbing the operation of the intermediate nodes. Another cost effective way to connect 

a large number of processors is using a fat tree topology. In theory, a simple tree structure 

for a network is sufficient to connect all nodes in a computer system. However, in prac-

tice the congestion occurs at the tree root, since messages have traversed at the higher 

levels in the tree structure before being distributed to the target nodes [137, 147]. The fat 

tree compensates for this limitation by providing more bandwidth in the higher levels of 

the tree. 

Hypercube networks used to be common in MPPs, but are rarely used in clusters, 

which mostly use switches (or routers) to connect nodes. Ethernet, Myrinet and Infini-

band all have switches that allow many nodes to be connected to the ports on each 

switch. The switches need to be connected to each other in some topology, which is usu-

ally some variant of a fat tree. This thesis will focus mostly on distributed memory sys-

tems using fat tree topology.  

 



 
 

 

  
NOTE:  This figure is included on page 22 of the print copy of the 

thesis held in the University of Adelaide Library. 
 

 

 

 
 
Figure 2.2 : Examples of common networks for Distributed Memory machine [147]. 
 
 
 
 
2.1.3 Distributed Memory System with SMP Nodes 

 

Small SMP servers with 2 or 4 processors have been used in clusters for several 

years now. Increasing cache sizes, memory bandwidth and bus speeds have meant that 

clusters with SMP nodes have become more popular over the past few years. The recent 

development of commodity multi-core processors from Intel and AMD has only increased 

this trend, and the largest and fastest supercomputers in the world today are mostly clusters 

with SMP nodes, that employ both shared and distributed memory archi- 

 

 

22 
 



 23 

tectures. The availability of quad core processors means that new clusters often have 8 

and 16 CPUs per node, and the number of CPUs per node is likely to increase in future. 

The common programming approach used for this type of machine is message 

passing. The shared memory component is usually a cache coherent SMP machine, so 

that the processors on a given SMP can address that machine's memory as global. The 

distributed memory component is the networking of multiple SMPs. SMPs know only 

about their own memory - not the memory on another SMP. Therefore, message passing 

network communications are required to move data from one SMP to another. Current 

trends indicate that this type of memory architecture will continue to prevail and increase 

at the high end of computing for the foreseeable future. There are some issues with mes-

sage passing using this type of architecture, in particular that there may be communica-

tion bottlenecks since all CPUs on a node typically share a single network interface card 

(NIC). Also, commonly used MPI implementations such as MPICH implement collective 

communication routines in a way that does not take into account the fast internode com-

munication (via shared memory), slower intranode communication (over the network), 

and NIC bottlenecks. 

Even large shared memory machines such as the SGI Altix have adopted a similar 

architecture, with a NUMA  which is basically SMP nodes connected by a very fast net-

work, although in these machines there is additional custom hardware to enable all proc-

essors to share all memory and to ensure cache coherency.  Figure 2.3 shows a cluster of 

four CPUs are connected by crossbar. This thesis will study the performance of a shared 

memory machine, the SGI Altix 3000, which has an SMP component (called a C-brick) 

consisting of four CPUs which are connected in a hierarchical architecture, with C-bricks 

grouped together with a router (called an R-Brick) and these connected in turn by a 

Metarouter. A further explanation of the SGI Altix 3000 is in Section  3.5.1 and in [22, 

70, 124]. 

 



 
 

 

  
NOTE:  This figure is included on page 24 of the print copy of the 

thesis held in the University of Adelaide Library. 
 

 

 

 
 
Figure 2.3 : Block diagram of a system with a “hybrid" network: clusters of four CPUs are 
connected by a crossbar [147]. 
 
 
 
 

2.2 Cluster Computer Interconnect 

 

In the early days of clusters, Fast Ethernet was widely used as an interconnect since 

it was available as an inexpensive, off-the-shelf commodity component [102, 105, 107, 

146]. Gigabit Ethernet is a version of Ethernet technology that offers one Gigabit per 

second (1 Gbps) raw bandwidth, which has 10 times higher bandwidth than Fast Ethernet 

and now available as a commodity, although the latency is similar, particularly when using 

TCP/IP. 10 Gbps Ethernet is becoming available and is likely to be an important future 

technology for cluster networks and expected to become commodity within a few years. 10 

gigabit Ethernet is still an emerging technology, and it remains to be seen whether it can be 

used effectively with low-latency communications protocols and can scale well with lots of 

nodes, and how long it will take to reduce to a commodity price similar to Gigabit Ethernet. 

The invention of lower latency and higher bandwidth interconnects gave more 

alternatives for cluster computers. Some networks developed by supercomputer vendors 

were proprietary and used only in the particular vendor’s computers. However, several 

network technologies aimed at parallel computing were developed which use a standard 
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PCI interface and hence could be used for any cluster computer. These include Myrinet, 

Giganet, SCI and Quadrics [6, 110, 145, 150] 

Myrinet was developed by Myricom [71] based on communication and packet-

switching technology originally designed for massive parallel processors (MPPs). It was 

the most popular high-end interconnect used to build clusters for several years, but has 

declined in popularity over the last couple years. Apart from the high bandwidth of over 

1000 Mbps, the main advantage is that it is entirely operated in user space, thus avoiding 

operating system interference and the delays that come with it. It can also use the light-

weight communications protocol called GM which has been designed for parallel com-

puting, rather than the much more heavyweight TCP/IP. These two innovations mean that 

Myrinet has a low message passing latency of around 10 microseconds, ten times better 

than TCP/IP over Ethernet. Recently, Myricom supplies Myrinet components and soft-

ware in two series: Myrinet-2000 and Myri-10G. Myrinet-2000 (which is used for this 

thesis) is a superior alternative to Gigabit Ethernet for clusters, whereas Myri-10G offers 

performance and cost advantages over 10-Gigabit Ethernet, while still supporting 10G 

Ethernet standards.. Myri-10G uses Myrinet Express (MX) protocols and software to 

provide lower latency and higher performance than 10G Ethernet, in a similar way to GM 

in Myrinet 2000. Myricom provides MPICH-MX, an MPI library for Myri-10G. The per-

formance for Myrinet 2000 with one-port NIC is 10 microseconds latency and approxi-

mately 230Mbytes/s for the bandwidth. The emergence of Myri-10G with the latency of 

2.1 microseconds and 1215Mbytes/s (MX or MPI unidirectional rate) significantly im-

proves the performance of Myrinet [71, 137].  The use of Myrinet’s lightweight MX pro-

tocol over 10G Ethernet has a great potential in providing very high bandwidth and low 

latency at commodity prices. Refer to [166] which shows that Myri-10G (1.2Gbytes/s) 

produce a higher bandwidth compared to Quadrics (0.9Gbytes/s) and almost similar 

bandwidth with Infiniband (1.3Gbytes/s), while for latency Myri-10G (2.1µs) is lower 

than Quadrics (2.7µs) and Infiniband (4.0µs).  

QsNet is a product of Quadrics and like Infiniband and Myrinet the network has 

effectively two parts: the ELAN interface cards, comparable to Infiniband Host Bus 

Adaptors or Myrinet's Lanai interface cards, and the Elite switch, comparable to an In-

finiband switch/router or a Myrinet switch [137]. Quadrics is the most expensive com-

pared to other interconnects, as shown in Table 1.1Quadrics also offers 10 Gbit Ethernet 
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cards and switches under the name QSTenG. As yet Quadrics does not seem to consider 

developing multi-protocol products like Myricom's Myri-10G and Infiniband [137]. Re-

cently, Quadrics has announced $300 per-port price tag for its 24-Port CX4 10Gbps 

Ethernet Switch and also their pricing strategy for its QsTenG-TG201 Switch, the latest 

member of the QsTenG family, designed for smaller networks. If compared with the 

Quadrics price per port from Table 1.1 it is almost 16 times more expensive compared to 

QsTenG. Probably in future Quadrics will abandon their proprietary networks and mov-

ing to 10 Gigabit Ethernet, since it is much cheaper and the performance is greater.  

 Recently, Infiniband [144] has entered the high performance computing market. 

Unlike Myrinet and QsNet, Infiniband is an industry standard that was developed as a 

generic interconnect for inter-process communication and I/O, rather than specifically 

designed for parallel computing. The Infiniband Architecture [144] defines a System 

Area Network (SAN) for interconnecting servers with remote storage, networking de-

vices and other servers, as well as for use inside servers for interprocessor communica-

tions. The Infiniband standard, which is based on VIA, was designed to eventually re-

place the PCI bus, although with the popularity of the recent PCI-X standard and the de-

velopment of 10 Gbps Ethernet, Infiniband has not yet become as popular (and hence as 

cheap) as was originally expected. However, its high performance, low latency and scal-

ability make it very attractive as a communication layer for high performance computing, 

and this is the area where Infiniband has become most popular. Currently, Infiniband can 

be considered as the main HPC interconnect, since it is fast and relatively cheap. How-

ever, the cost of Infiniband is still over the standard of commodity price, so may not be as 

cheap or as fast as 10Gigabit Ethernet in future.   

At the time this research work was done we did not have access to machines with 

these technologies (Gigabit/10 Gigabit Ethernet, Myri-10G, QSTenG and Infiniband), 

and some of them were not available. So, a detail analysis and comparison on the per-

formance of MPI between new networks and cluster with multicore architecture will be 

part of our future work.  

There has been lots of research comparing the communications performance of 

different networks for clusters, Labosco [6] compared the performance between Fast 

Ethernet, Giganet and Myrinet. Grove [9] compared the performance between two differ-

ent clusters using Fast Ethernet. Chen [25] compared between Gigabit Ethernet and 
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Myrinet. A study conducted by groups of researchers from Ohio State University and 

Ohio Supercomputer Centre [130] showed that Infiniband network can provide better 

performance than Quadrics and Myrinet with the use of the PCI-X bus. Other work such 

as [91, 93, 101, 114, 129, 130] either compared clusters using several different networks 

or investigated network performance including some analysis with MPI or other mes-

sage-passing protocol. 

 
 
Interconnect Bandwidth 

(MBit/s) 
Latency (µs) Cost / port  

 
 
10 Gbps InfiniBand 
Switch [148] 
 

 

800 

 

7 – 10 

 

$495  

QsNet (Quadrics) 
[116] 
 

360 5 $4770 

Myrinet (Myricom) 
[116] 
 

245 8 $2050 

Gigabit Ethernet 
[116] 
 

125 30 – 100 $477 

Fast Ethernet [116] 12 100 $28 

 

Table 2.1 : Comparison for bandwidth, latency and cost between different interconnect 
[148, 116]. 

 
 

 2.3 Parallel Programming 
 

Parallel programming involves decomposing an algorithm or data into parts, dis-

tributing the parts as tasks which are worked on by multiple processors simultaneously, 

and coordinating the work and communications of those processors. Parallel program-

ming needs to consider the type of parallel architecture being used and the type of inter-

processor communications and synchronization used. There are many methods of pro-

gramming parallel computers, the most common being shared memory, message passing 
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and data parallel. Shared memory programming relies upon multiple processes or threads 

sharing common memory space, whereas message passing programming is a more gen-

eral paradigm in which processes have direct access to local memory and message pass-

ing is used to access the memory of other processes. These models are machine or archi-

tecture independent, any of the models can be implemented on any hardware given ap-

propriate operating system support. Distributed memory machines such as clusters to not 

provide shared access to a common memory space, although shared memory program-

ming can be enabled on these machines using a software emulation of shared memory 

hardware, however this approach has limited performance and scalability. An effective 

implementation of a parallel program will utilize the method that closely matches with 

the target hardware and provides the user ease in programming for the particular applica-

tion.  

The data parallel model is a high-level parallel programming model in which 

processing of all data elements can conceptually be done concurrently by multiple proc-

esses in a SIMD style. The data is distributed across physical processors and on a distrib-

uted memory machine, all message passing is done invisibly to the programmer. Pro-

gramming with data parallel model is accomplished by writing a program with data paral-

lel constructs in a data parallel language such as High Performance Fortran (HPF) [28, 

37, 53] and compiling it with a data parallel compiler. The compiler converts the program 

into standard code and calls to a message passing library to distribute the data to all the 

processes and do all the required inter-processor communication. 

Message passing [28, 53, 152, 154] is the parallel programming method that will 

be studied in this thesis. The message-passing model is defined as a set of processes using 

only local memory and processes communicate only by sending and receiving messages. 

For data transfer this will require cooperative operations to be performed by each process 

involved in the communication, for example a send operation must have a matching re-

ceive. Programming with message passing is done by linking with and making calls to 

libraries which manage the data exchange between processors.  

A standard portable message-passing library definition called the Message Pass-

ing Interface (MPI) [53, 69, 81] was developed in 1994 by a group of parallel computer 
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vendors, software developers, and computer scientists. It is available to both Fortran and 

C programs and also available on a wide variety of parallel machines. All parallelism is 

explicit, so the programmer is responsible for parallelism of the program and all inter-

process communication, by calling the appropriate MPI library routines. A revised ver-

sion of the MPI standard known as MPI-2 has been released [136]. There are many dif-

ferent implementations of the MPI standard. Some are portable to most parallel com-

puters, for example LAM [42, 132], OpenMPI [37] and MPICH [69, 136].  Some are 

specific to particular parallel computers and are often provided by the vendors of those 

computers, although they may be based on the portable libraries. MPICH was developed 

jointly by Argonne National Laboratory and Mississippi State University and has been 

one of the most widely used MPI implementations since the MPI standard was first de-

veloped. Recently, MPICH released a new version, MPICH2, which supports MPI-2 and 

uses a new more extensible software architecture to more easily handle different kinds of 

networks and protocols. 

 

2.4 MPI Benchmark Software 

 
There are several existing MPI benchmark software packages that are widely used 

to measure the MPI message-passing performance of parallel computers. The most com-

monly used are Pallas MPI Benchmarks (PMB) [65] (now known as Intel MPI Bench-

marks), MPBench [19], SKaMPI [21], Mpptest [17] and MPIBench [1,2], which is the 

most recently developed MPI benchmark. All of these benchmarks have similar basic 

functionality, providing average completion times for the most commonly used MPI 

communication routines, however the techniques used and the routines measured vary 

somewhat between the different benchmarks. 

The main reason that MPIBench was developed is that previous MPI benchmarks 

have a number of limitations. Firstly, the use of relatively coarse grained clocks for tim-

ing measurements, which forces the benchmarks to average results over a high number of 

test repetitions. This means that the earlier benchmarks cannot generate distributions that 

show the variability in completion times that occur due to network contention and other 

effects, which may have a large effect on program performance. Secondly, the earlier 
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benchmarks are not based on using an accurate, globally synchronized clock on each 

processor. This means measurements of point-to-point communication have to measure 

the round-trip time of a ping-pong communication rather than an individual send and re-

ceive, and measurements of collective communications can only give the average time 

for the slowest process, not the times for all the individual processes, which can provide a 

lot more insight into performance issues. Thirdly, point-to-point communication is only 

done between two processors, which does not give any insight into the effects of the net-

work hierarchy and contention for large numbers of processors. Finally, none of the 

communication patterns used in the earlier benchmarks were design to take into account 

clusters of SMPs. The main issue on this matter is that if care is not taken with process 

placement, it can lead to the measurement of intra-node communication performance 

when usually the intention is to measure inter-node communication performance. 

MPIBench used new measurement techniques to overcome these problems. It 

provides a very accurate clock that uses the 64-bit cycle count registers that are available 

on modern processors. Before and after each measurement phase, MPIBench does a 

synchronization of the clocks on each process, including interpolation to take into 

account the clock drift during the time period of the measurements. The use of an 

accurate, globally synchronized clock means that MPIBench can do accurate timings of 

individual messages and collective communications and provide completion times for 

individual processes. It can also provide distributions (histograms) of communication 

times for MPI routines, with the option of increasing the number of repetitions in order to 

generate more accurate distributions. MPIBench also allows point-to-point 

communications to be measured using many processors communicating simultaneously, 

and ensures that the communication partners are on different nodes in the case of SMP 

clusters. 

 

2.5 Performance Analysis with MPIBench  

 
Grove [8] used MPIBench to measure the performance of a number of large 

message-passing parallel computers. The machines involved in the tests were:  
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•  Two different Beowulf clusters of Linux PCs, each with two Intel processors 

per node, connected by Fast Ethernet, with different switches and network 

topologies;  

•  A Sun Technical Compute Farm with four SPARC processors per node, 

connected with Myrinet;  

•  A Compaq AlphaServer SC with four Alpha processors per node, connected 

with Quadrics’ QsNet.  

 

In each case, some performance problems were identified in the MPI 

implementation. Grove’s work demonstrated that MPIBench is a useful tool for analyzing 

MPI communication performance, particularly due to its ability to generate distributions 

of communication times, which allows more detailed investigation of the causes and 

effects of contention and variability in communication times. 

The main problems identified in the performance analysis were in the Beowulf PC 

clusters and were primarily due to TCP/IP timeouts and congestion control. There were 

also problems with the MPI implementation and network congestion for the PC clusters, 

and to a lesser extent for the other clusters. The measured distributions of communication 

times showed some unusual results, including some distributions with long tails and 

outliers with very long communication times. These can result in large delays in 

message-passing parallel computing, especially when it involves a large number of 

processors.  

In contrast, for Myrinet and QsNet only a small numbers of outlier were observed. 

This is because Myrinet and QsNet hardware and protocols are highly-tuned to provide 

good message-passing performance. However there were some problems identified in the 

implementation of some of the routines, and some bottlenecks due to shared access to the 

NIC for all the processors on the node. Operating system interrupts were another possible 

cause for the observed variation of communication times. 

One of the problems identified was with MPI_Alltoall, which gave very poor 

performance for large message sizes and large numbers of processors on the Beowulf 

clusters. The cause of the problem was identified as an unnecessary bottleneck in the 

implementation that caused particular problems when using Ethernet networks, due to 
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packet collisions and subsequent resends. A proposed fix to the problem was 

incorporated into later versions of MPICH.  

 

2.6 Variation of Communication Performance  

 
There has been some research investigating the variation and degradation of mes-

sage-passing communication times in clusters. Mraz [117] observed performance varia-

tion in point-to-point communication in the IBM SP1 and determined that the variation 

was caused by several factors such as daemons and interruptions from other system ac-

tivities. He noted that since these operating system interrupts were not synchronized 

across all the nodes in the parallel computer, their effect on a parallel program would in-

crease with the number of nodes. He proposed multiple techniques to reduce the variance 

but these required control of interrupts at different levels, process execution priorities and 

time synchronization during run time. Schaubschlager [118] also recorded a large number 

of slow message-passing times on nCube-2 and Origin 2000 hardware. This slow mes-

sage-passing is worse when it involves heavy network load which leads to contention ef-

fects. More recent work by Petrini et al. [15] succeeded in improving the performance of 

an AlphaServer system known as ASCI Q, which was the second fastest supercomputer 

in the world at the time. Their research found that ASCI Q did not perform as expected 

due to interference caused by several types of daemons run by the operating system and 

the cluster management and queueing system. Their solution was to confine daemons to 

the cluster manager, and remove the cluster manager and RMS cluster monitor from each 

cluster’s compute pool. In conclusion, they found that the main cause of the discrepancy 

is because of the combination of tasks for system activities and applications in a same 

processor, separation of these activities is a good solution to eliminate the problems. 

Based on the research cited above, there are several reasons for loss of perform-

ance in message-passing multicomputers, for example, interruptions from the operating 

system, interruptions at process level, the scheduling technique and the MPI implementa-

tion. Based on Grove’s analysis [8,9], the main reasons for problems in clusters using 

Ethernet is because of the use of TCP/IP, which provides a general purpose communica-

tion protocol with time outs and congestion control mechanisms that are not tuned for 
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message-passing in parallel programs. Cozzini [119] showed that MPICH using the GM 

protocol on Myrinet gives much better performance than Fast Ethernet, but using TCP/IP 

over Myrinet gives a similarly high latency to Ethernet. The communication problems 

that Grove found in PC clusters using Ethernet might be reduced with the use of new, 

low-latency communication protocols or modifying the TCP/IP protocol, and improved 

MPI implementations that are better optimized for commodity Ethernet networks. 

 

2.7 Improving the Communication Performance of Cluster Computers 

 
Cluster computers have revolutionized supercomputing. Connecting inexpensive, 

commodity servers with fast, off-the-shelf networks is much cheaper than the custom-

built MPPs that dominated supercomputing in the 1980s and 90s. However as was seen in 

the previous sections, inexpensive commodity Ethernet networks do not provide good 

communications performance, while the high-performance networks that are designed for 

parallel computing are relatively expensive. The challenge for cluster computing is to de-

velop an inexpensive commodity network that provides low latency and high bandwidth 

communication for parallel computing. There have been several different approaches to 

this problem. 

Active Messages [45] was one of the earlier efforts to improve the performance 

for communication in multiprocessor systems. Active Messages is an asynchronous 

communication mechanism intended to expose the full hardware flexibility and perform-

ance of modern interconnection networks. Active messages were aimed at reducing the 

communication overhead and allowing communication to overlap computation. The ad-

vantage of Active Messages over other communication paradigms is that it eliminates the 

need of intermediate copies of messages along the communication path, thus speeding up 

communications. Many researchers have applied the Active Message approach and idea 

to develop a new protocol or hardware (compatible with Active Messages) that can im-

prove the performance of communication for multiprocessor, for example Fast Messages, 

U-Net, VIA and GAMMA. 

The U-Net architecture [43] aims to remove the operating system kernel from the 

critical path of sending and receiving messages. These activities will eliminate the system 
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call overhead, and more importantly, offers the opportunity to streamline the buffer man-

agement, which can now be performed at user-level. Eliminating the kernel from the send 

and receive path required some form of a message multiplexing and demultiplexing de-

vice. However, U-net took a radical approach by removing all protocol-based communi-

cation abstractions from the Operating System Kernel, and due to this U-Net has several 

weaknesses. This is supported by Chiola and Ciaccio [40], who compared the perform-

ance of U-Net to their new approach, which is GAMMA, an extension layer in the com-

munication layer for Linux. They found that the level of a virtualization is very low and 

also the usability of U-Net for parallel programming is quite poor.  

Chiola and Ciaccio [38,39,115] have developed Genoa Active Message Machine 

(GAMMA), which is an efficient communication layer for Linux PC clusters using 

Ethernet. It is based on Active Ports, a communication mechanism derived from Active 

Messages [39]. GAMMA Active Ports deliver excellent communication performance at 

user level, thus enabling cost-effective cluster computing on Ethernet.  It was initially 

developed for Fast Ethernet, but has since been upgraded to support Gigabit Ethernet, and 

a new driver developed for a Gigabit Ethernet adapter [115]. Moreover, they have applied 

the Abstract Device Interface (ADI) [38] of MPICH, so that all MPI calls are imple-

mented in terms of ADI functions. Therefore, porting the ADI layer to GAMMA means 

running the whole of MPICH on top GAMMA. GAMMA provides excellent latency that 

is comparable to Myrinet, the latency and bandwidth for GAMMA with Fast Ethernet 

network is 12.7 us and 12.2 Mbytes. 

VIA or Virtual Interface Architecture [33, 111] was proposed as a standard com-

munication infrastructure for System Area Networks (SANs) that provides protected, 

zero-copy user-space inter-process communication. VIA defines a mechanism that by-

passes the intervention of the operating system layers and avoid excess data copying dur-

ing sending and receiving of packets, which solves the problems of many multiple mem-

ory copies and use of the operating system for receiving and transmission of packets. It 

also reduces latency and lowers the impact on bandwidth. Since the introduction of VIA, 

several software and hardware implementations of VIA have become available, for ex-

ample Giganet VIA and Servernet VIA. MVICH [42,44,113] is an MPICH-based imple-

mentation of MPI for VIA. However, studies of MVICH [42,44] found several weak-
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nesses, and it has never been widely used. In fact VIA has not become a widely-used in-

dustry standard for SANs as expected, and has been superceded by Infiniband [122,130], 

which is based on VIA, and by the popularity of the PCI-X bus [76]. 

BIP [36] is the abbreviation for Basic Interface for Parallelism, an interface for 

network communication targeted towards message-passing parallel computing. The idea 

in BIP was to provide protocols with low level functionalities. The functionalities of BIP 

is similar to MPI. The basic idea of BIP is to build a library interface accessible from ap-

plications that will implement a high-speed protocol with the fewest accesses to the sys-

tem kernel. However, to implement BIP for UNIX needs an IP-BIP driver. BIP also has a 

problem with flow control, since it relies on the hardware flow-control [36]. 

Based on this literature review, previous research in this area has been more fo-

cused on designing new hardware, protocols and software to overcome the limitations of 

commodity Ethernet networks and TCP/IP for parallel computing. However, these ap-

proaches require significant investment of effort, such as designing new protocols, soft-

ware to support them, new driver software for the wide variety of Ethernet hardware and 

also new MPI libraries. For examples, GAMMA has released a new driver to support Gi-

gabit Ethernet, but it only works for a particular Ethernet card [115]. The use of VIA re-

quired a new MPI implementation (MVICH), and in order to optimize performance, spe-

cial hardware for VIA was designed, such as Servenet VIA and Giganet VIA. It would 

perhaps be easier and more cost effective to modify TCP/IP and MPICH to improve their 

performance for parallel computing on Ethernet clusters. 

Some of the features of TCP/IP are unsuitable for new applications such as mo-

bile computing, storage area networks and parallel computing. There has been much re-

cent interest in modifying TCP/IP to make it more flexible, so that different algorithms 

for handling congestion and packet loss can be applied in different situations, and more 

dynamically responsive to changes in network conditions. For example, Pope et al. [14] 

have introduced a modified stack model, the “Embedded Inverted Stack” (EIS), which is 

an instantiation of the generic Compliant System Architecture [41]. Their aim is to pro-

vide flexible TCP/IP and they proposed the argument for separation of policy and 

mechanism, and examined what policies are suitable for TCP/IP stacks, which depends 

on the types of communication. Currently, their focus is in mobile networking and they 

have identified the policies and mechanisms needed to support a high level of adaptivity 
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for mobile network devices and applications, however they have also explored the suit-

ability of this model to parallel computing. Future work in this area may have significant 

implications for cluster computing. 
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Chapter 3 

 

Comparison of MPI Benchmark Programs on Shared Memory and   

Distributed Memory Machines 

 

3.1 Introduction 
 

Several benchmark programs have been developed to measure the performance of 

MPI on parallel computers, such as SKaMPI [21], Pallas MPI Benchmark [65], MPBench 

[19], Mpptest [17] and MPIBench [1, 2].  Each of the MPI benchmark programs has its 

own speciality, since the development of new software is usually because of some limita-

tion or inadequacy of the existing software. However, there have been few comparisons 

done between the different benchmarks, and no detailed, comprehensive analysis and 

comparison of the functionality, measurement techniques and results produced by all the 

different benchmarks.  

Furthermore, the MPI benchmark programs were primarily designed for, and have 

mostly been used on, distributed memory machines. However it is interesting to measure 

MPI performance on shared memory machines such as the SGI Altix, which has become 

a popular system for high-performance computing. The SGI Altix [70,27] is a cache co-

herent, non-uniform memory architecture (ccNUMA) shared memory multiprocessor sys-

tem that is a popular machine for high-performance computing, with several large sys-

tems now installed, including the 10,160 processor Columbia machine at NASA. In Aus-

tralia, a 1680 processor Altix (the APAC AC) has recently replaced an ageing Al-

phaServer SC with a Quadrics network (the APAC SC) as the new peak national facility 

of the Australian Partnership for Advanced Computing (APAC) [84], and was number 26 

in the June 2005 list of the Top 500 supercomputers [91]. The hierarchical non-uniform 

memory architecture (NUMA) that is typical of large shared memory machines means 

that analysis of the performance of shared memory machines is likely to be more com-
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plex than distributed memory machines, which are typically clusters with fairly uniform 

communications architecture. 

Thus, this chapter will discuss a comparison of techniques used and functionality 

of each benchmark, and also a comparison of the results on a distributed memory ma-

chine and shared memory machine. All of the MPI benchmarks listed above will be com-

pared in this analysis. It is expected that the results from difference benchmarks should 

be similar, however this analysis found substantial differences in the results for certain 

MPI communications, particularly for shared memory machines.   

3.2 Related Work 
 

There has been surprisingly little work on comparing the results produced by dif-

ferent MPI benchmark programs. The papers describing the different MPI benchmark 

programs [1,17,19,21,65] typically provide a discussion of the differences in some of the 

measurement techniques used by the different benchmarks, but give little or no results 

comparing measurements from the different benchmark programs on different machines. 

Mierendorff et al. [23] compare the results of PMB, SKaMPI, MPBench and 

Mpptest on an SGI Origin 2000, but only for point-to-point communication and only for 

4 CPUs. However they provide useful insights into communication performance issues 

related to cache effects on ccNUMA architectures.  

Unlike the previous related work, the work presented in this chapter provides a 

comparison of the functionality and the measurement techniques for all the main MPI 

benchmarks, as well as a detailed, comprehensive comparison of the results produced by 

the benchmarks. Results are presented for both a shared memory machine, the SGI Altix 

3000 [70], and a distributed memory machine, the IBM eServer 1350 Linux cluster [35], 

for more MPI operations and more processes (up to 128), and a more detailed analysis of 

the differences in the results between different benchmarks is presented. 

 

3.3 MPI Benchmark Measurement Technique 
 

There are several different MPI benchmark programs that are in common use. 

They typically measure the average times to complete a selection of MPI routines for dif-

ferent data sizes on a specified number of processors using the following basic approach:  
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loop over different MPI routines 
     loop over different message sizes 

                       get start time 
           loop over number of repetitions 
                 if this is a collective communication routine, do a barrier synchronization             
                 call the MPI routine 
             end loop over repetitions 

                       get finish time 
                       average time = (finish time - start time) / number of repetitions 
                   end loop over message sizes 

end loop over MPI routines 
 

 Figure 3.1: MPI benchmark measurement technique pseudocode 

 

Most benchmarks use the standard MPI timer MPI_Wtime, and get accurate re-

sults by making lots of repetitions of the measurements. Most benchmarks have a fixed 

number of message sizes (at least by default), but some also provide adaptive message 

length refinement in order to focus on message sizes where the communication time is 

changing rapidly. Some benchmarks also consider error control mechanisms to handle 

potentially large variations in communication times that may be caused by external influ-

ences, for example operating system interrupts, or other programs that are also using the 

communications network.  

Most benchmark programs measure the time for collective communications on the 

root process. However, since the root process finishes first for many collective opera-

tions, this can bias the results. This is usually avoided by adding a barrier synchronization 

before each collective communication call. This will add some additional time to the re-

sult, but it will be negligible unless the message size is very small.  

Most of the benchmarks use ping-pong to measure point-to-point communication 

times, where a process will send a message to another process (the ping) and then receive 

a message back from the same process (the pong).  In this case, only local clock times are 

needed, instead of a globally synchronized clock. The benchmark program usually di-

vides the result for the ping-pong by two and reports that as the time for a single point-to-

point communication. 

An important point that can significantly affect the results is whether the message 

to be sent is in cache memory. Most benchmarks provide an option for specifying 

whether or not the data to be sent is in cache [2,17,19,21]. The default setting for most 

benchmarks is that the data is in cache, and they do some preliminary repetitions of the 
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MPI routine, which are not measured, in order to warm up the cache. In some cases the 

benchmarks also provide an option to ensure that the message data for each iteration is 

accessed from main memory instead of cache. 

 

3.3.1 Mpptest 
 
 

The fundamental design philosophy of Mpptest [17, 63] is that the results of 

performance benchmarks should be reproducible. To reduce biases due to external 

influences, Mpptest spreads the test for each message length over the full time of the 

benchmark run, and measures the minimum average time over a number of repetitions in 

order to reduce variations. The structure of the measurement process is: 

 

loop over number of repetitions 
     loop over different message sizes 

                                    get start time 
              loop over a small number of iterations 
                   call the MPI routine 
              end loop over iterations 

                                    get finish time 
                                    average time = (finish time - start time) / number of iterations 
            if this is the fastest average time yet, accept it 
                               end loop over message sizes  
  end loop over number of repetitions 

Figure 3.2 : Mpptest pseudocode 

 
 

Mpptest uses MPI_Wtime as a timer. The output is data files which provide 

message size, average communication time and bandwidth for all MPI communications. 

It also provides several error control options such as adaptive message length refinement 

in order to focus on message sizes where the communication time is changing rapidly. 

Mpptest provides a basic selection of MPI communication routines, which are 

MPI_Send, MPI_Recv, MPI_Bcast and MPI_Scatter. Although the selection is limited, it 

has many options to fit a variety of circumstances. Mpptest divides the options into 

several groups such as those in the following list (note that the options that are listed for 

each point are only an example - for a complete list of options refer to [17,63]) :  
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•  Protocol provides synchronous and asynchronous options;  

•  Message Data provides option to clear the cache and vector data option;  

•  Message Pattern includes roundtrip and head-to-head messages;  

•  Message Test Type considers overlap communication and computation;  

•  Message Sizes provides options to produce data by logscale or dynamic selection 

of message sizes;  

•  Detailed Control of Test provides options for maximum number of seconds for all 

tests or the number of times a test is run.  

•  Collective Test provides options for collective communication such as broadcast, 

scatter.  

•  Collective Test Control  which provides specific range of processors to run the 

collective test, for example from nodes n to m;  

•  Output which provides choices for output file name and several other document 

settings to generate the output;  

•  Pattern (Neighbour) Choices which provides choices to measure distance of 

processors for different topology.  

 

For point-to-point communication, Mpptest does a ping pong and divides the re-

sults by two. To counter the problem for MPI collective communication for which the 

root node finishes first, Mpptest changes the root node at each repetition. By default 

Mpptest warms-up the cache but it also provides the option to not do this.  However, not 

warming up the cache just means that the cache is cleared for every new message size, 

but it does not clear the cache for each iteration in the same message size, and this is the 

only approach that would make a difference in the results.  

 

3.3.2 Pallas MPI Benchmark 
 

Pallas GMBH has recently been taken over by Intel, so the Pallas MPI Benchmark 

(PMB) is now officially known as Intel MPI Benchmark (IMB) [65], however this thesis 

will refer it as PMB. PMB is a thorough, well documented and easy to use benchmark 

program that is commonly used. It provides a wide selection of common MPI routines, 
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and even more are provided in PMB Part-2 [65]. PMB Part-1 measures MPI_Send, 

MPI_Sendrecv, MPI_Bcast, MPI_Allgather, MPI_Allgatherv, MPI_Alltoall, 

MPI_Reduce, MPI_Reduce_Scatter, MPI_Allreduce and MPI_Barrier. For MPI_Bcast 

and MPI_Reduce, instead of using barrier synchronization to avoid biases due to 

pipelining effects, PMB changes the root node for each repetition. PMB also provides a 

multi version for all of the MPI routines that it measures, which will group the process 

numbers that are specified by user. Based on the documentation, PMB warms up the 

cache in order to hide initialization overheads of message passing systems. However, for 

MPI_Bcast and MPI_Reduce the message data will not be in cache since the root node is 

changed at every iteration. 

PMB presents the results in data files that include average communication time 

and computed bandwidth (data size / communication time) for point-to-point 

communication in data sizes that are a power of two, and only average communication 

time for collective communication.  PMB uses MPI_Wtime as a timer. PMB 

synchronizes all the processes using MPI_Barrier before collective communication 

benchmarks are started and averages the results over the numbers of repetitions. PMB 

does not provide any specific technique for error control, basically it uses the repetitions 

to obtain more accurate results. By default only 2 processes are involved for point-to-

point measurements and the ping-pong results are divided into two and reported as the 

time for a single communication.  

 

3.3.3 MPBench 
 

MPBench [19, 64] follows the basic MPI benchmark approach, except that it uses 

the UNIX timer gettimeofday() [80] rather than MPI_Wtime. It measures the performance 

of the most common MPI routines, which are point-to-point for Bandwidth, Bidirectional 

Bandwidth, Roundtrip and Application latency measurement, and for collective commu-

nications are Broadcast, Reduce, Allreduce, and Alltoall. MPBench synchronizes the 

processes before the benchmarking is started using MPI_Barrier and then the receiving 

processes will send a signal to the root after the message is received. MPBench records 

the measurement time until it receives the completion feedback from each of the proc-

esses.  MPBench produces data files which provide computed bandwidth for most of the 
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measurements except for application latency and roundtrip measurement, for which the 

average communication time is provided. 

MPBench does not provide any special error control besides allowing the user to 

change the number of repetitions for every message size. MPBench reports the times for 

for MPI_Send and MPI_Recv as half the roundtrip time. For the problem of MPI 

collective communications for which the root node finishes first, MPBench uses 

MPI_Barrier to synchronize the processes and does not change the root node. By default 

MPBench warms-up the cache and provides the option for message data not to be in 

cache, using a technique similar to Mpptest. 

 

3.3.4 SKaMPI 
 

SKaMPI [21, 24, 62, 103] probably provides the most functionality of all the MPI 

benchmarks, with a large number of user-definable parameters and MPI routines that can 

be measured. SKaMPI has divided the measurements into five categories: Point-to-Point, 

Master-Worker, Barrier Measured Collective, Synchronous Measured Collective and 

Simple. The Point-to-Point category includes all types of Point-to-Point communication 

such as MPI_Send, MPI_Recv, MPI_Isend, MPI_Bsend and MPI_Sendrecv. The purpose 

of the Master-Worker category is to test the network throughput and its handling of 

simultaneous communication, using MPI routines such as MPI_Waitsome, MPI_Waitany 

and MPI_Any_Source as well as asynchronous send and receive routines. The Barrier 

Measured Collective category is an older version that uses the standard approach of a 

barrier synchronization before each collective communication. The new version is the 

Synchronous Measured Collective approach, which uses a globally synchronized clock to 

specify the time that each processor should call the collective communication routine, 

and uses the time taken by the slowest process as the time for each repetition. This is 

expected to give more accurate results for collective communications, since it eliminates 

the need for an additional barrier operation, and possible pipelining effects due to 

processes completing the barrier operation at different times, however it takes about 

twice as long to run and the effects are only noticeable for small message sizes [24]. Both 

the new and old versions measure essentially all the MPI collective routines. Finally, the 
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Simple category covers MPI routines that involve only one process and without any 

communication, such as MPI_Wtime and MPI_Comm_rank. 

SKaMPI has more sophisticated error controls than the other MPI benchmarks. 

SKaMPI aims to control all the systematic and statistical errors, and has identified that 

systematic errors occur due to the measurement overhead such as the calling time for 

MPI_Wtime, while the statistical error is cause by the finite clock resolution, execution 

time fluctuation and outliers. SKaMPI handles problems cause by external delays such as 

operating system interrupts by providing the option to ignore the 25% lowest and highest 

results to get the average. It also allows the user to specify a maximum statistical error 

(the default is 0.03%), and the measurements are repeated until the statistical error drops 

below this value, or the number of repetitions reaches a specified maximum value. 

SKaMPI also allows adaptive refinement of message sizes.  

This study uses the synchronous measured collective pattern for the testing 

because this pattern is the default setting for SKaMPI and also based on their paper [24] 

this pattern is more accurate and reliable. Below is the pseudocode describing the 

Synchronous Measured Collective approach in SKaMPI.  

 
/ server code / 
clock synchronization 
repeat 
 start synchronous with other nodes 
 start_time = MPI_Wtime() 
    routine_to_measure() 
 end_time = MPI_Wtime() 
 finalize_server_routine() 
 wait till end of time slot 
 collect results from each process, maximum is the result for single measurement 

 until result exact enough 
 send stop signal 
 /client code / 

clock synchronization 
repeat 
 start synchronous with other nodes 
 start_time = MPI_Wtime() 
    client _routine()  /* counterpart of routine_to_measure */ 
 end_time = MPI_Wtime() 
 finalize_server_routine() 
 wait till end of time slot 
 send result to server 

 until stop signal received 
 

  Figure 3.3 : SKaMPI pseudocode 
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For point-to-point measurement SKaMPI presents the measurement for 

MPI_Send and MPI_Recv as a roundtrip time and does not divide the result by two to get 

the point-to-point communication time. Unlike the other MPI benchmarks, by default 

SKaMPI ensures that the messages are not in cache by using randomized numbers for the 

message data in every iteration. SKaMPI provides a detailed configuration file to change 

this default as well as many options, and to enable the user to choose which MPI routines 

to measure.  

3.3.5 MPIBench 
 

MPIBench [1, 2, 8] is the most recently developed MPI benchmark. The main fea-

ture of MPIBench is that it uses a very accurate, globally synchronized clock that is based 

on CPU cycle counters. This allows accurate measurement of individual MPI communi-

cations. MPIBench is therefore able to provide distributions (histograms) of communica-

tion times, rather than just average values, which can provide additional insight into 

communications performance.  

 

loop over different MPI routines 
                  run global clock synchronization process 

     loop over different message sizes 
          loop over number of repetitions 
                 if this is a collective communication routine, do a barrier synchronization             
                 save a timestamp for the start time (done by each process) 
                 call the MPI routine 
                 save a timestamp for the finish time (done by each process) 
            end loop over repetitions 

                   end loop over message sizes 
                   run global clock synchronization process 
                   fix the timestamps by correcting for clock skew based on the synchronization process  
                   compute communication times for each repetition and each process 
                   compute average time by averaging over all repetitions and  
                       1) all processes for point-to-point communication 
                       2) the slowest process for each repetition for collective communications 
                   generate histograms of completion times 

end loop over MPI routines 

 

Figure 3.4: MPIBench Pseudocode 
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Rather than using a simple 2 processor ping-pong for point-to-point communica-

tions, MPIBench measures results for N processors communicating concurrently, and can 

therefore take into account effects of network contention. For point-to-point communica-

tions it can measure the time for a single communication, not just the average over a 

measurement of multiple ping-pongs. For collective communications, it can measure the 

different completion times for each process.  

MPIBench measures the most common MPI communications: MPI_Send, 

MPI_Isend, MPI_Recv, MPI_Irecv, MPI_Sendrecv, MPI_Bcast, MPI_Barrier, 

MPI_Scatter, MPI_Gather, MPI_Allgather and MPI_Alltoall. In addition, MPIBench 

defines each and total keywords to identify message sizes for collective communications, 

which specify the amount of message data sent by each processor, or the total amount of 

message data sent by all processes, respectively.  

Originally MPIBench assumed the message data was in cache and warmed up the 

cache before each measurement, however a newer version has been developed that 

provides the option of using data that is not in cache, by using a very large array to store 

the message data and giving a pointer to a different part of the array for each iteration. 

MPIBench can optionally handle outliers by discounting measurements that are larger 

than a specified factor above the average value. 

Because MPIBench uses a globally synchronized clock, it is possible to apply the 

process synchronization required for measuring collective communications times by us-

ing a synchronized start, where each processor starts each collective routine at a pre-

scribed time, and the time reported for each repetition is the time taken by the slowest 

process to complete the communication. This is the same as the Synchronous Measured 

Collective approach used by SKaMPI. However by default, MPIBench uses a barrier op-

eration to synchronize the start of all collective communications, with the option of using 

a synchronized start for some routines.  

There are 5 different data files that are generated by MPIBench, which have 

filenames ending with .summary, .subsamples, .histograms, .outliers and .gnu, which 

respectively contained the minimum and average values at each message size, a per-

process subsampling of completion times at each message size, a histogram of 

completion times at each message size, outliers recorded at each message size and 

gnuplot instructions. 
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3.4 MPI Benchmark Functionality and Ease of Use 
 

The different MPI benchmarks all provide different functionality, so in order to 

standardize the comparison of functionality, only some items will be discussed, which are 

the compile and run procedure, the MPI routines that are measured, the presentation of 

results and documentation. Some other functions that are available only in specific 

benchmarks will also be highlighted. 

 

3.4.1 Compiling and Running the Benchmarks 

 

The procedure and settings for compiling and running the benchmark programs 

can vary for different kinds of machine, operating system and MPI implementation. The 

purpose of this comparison is to compare a general task that is commonly required for the 

compile and run procedure, such as auto-generate for compiling or scripts for running a 

benchmark. Mostly, the benchmark software will provide an auto-generate function to 

compile the program, which is usually by providing a makefile.  All the benchmark 

software provides this function except for SKaMPI [62]. SKaMPI only has one source 

file, the user only needs one compiler call to compile the program. 

There are several aspects of running the program that will be discussed, such as 

the use of a configuration file, the parameters involved and user definable functions. 

Among the MPI benchmark software, PMB and SKaMPI use a configuration file to make 

the benchmark run more structured and easily definable. The use of a configuration file in 

SKaMPI makes it the simplest to run, this is because it does not have any additional 

parameter besides one compiled source file to put with the basic MPI instruction to run 

the benchmark software. In SKaMPI, the configuration file includes various user 

definable settings such as the interval and range for message size, number of repetitions, 

and the error controls. In the configuration file all the settings are grouped by the MPI 

routine and each MPI routine has its own reference number which refers to their 

category, either point-to-point, master-worker, simple, barrier collective or synchronous 

collective. Although the configuration file in SKaMPI makes it the simplest to run, 

however under certain circumstances, such as if the user would like to run only a certain 

type of MPI routine at a particular time, the user needs to make a change in the 
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configuration file to select the required MPI routine to run the benchmark. But, if using 

the default settings, the task to run the benchmark program is really easy.  

PMB [65] also uses a configuration file, but MPI routine selection has to be 

identified in the run command, which is more straightforward than SKaMPI approach. 

The configuration file that PMB uses only contains all the details that seldom need to 

change, for example number of repetitions and the range of message sizes. However, if 

the configuration file is changed then PMB needs to be recompiled. In PMB, the interval 

of message sizes is fixed, which is to use a log scale. In our experience PMB is the easiest 

benchmark to use. 

MPIBench [2], Mpptest [63] and MPBench [64] use a similar approach by 

passing the parameters as arguments to the program, such as number of processors and 

repetition, selection of MPI routine and the interval of message sizes. There are 

advantages and disadvantages of passing the parameters as arguments to the program. 

The disadvantages are the user has to write their own scripts to run the program. The 

advantages are there is no re-compilation after changing the number of repetitions or 

range of message size and there is no tedious task to reset the configuration file every 

time to change the routine to measure.  

In addition, MPIBench and Mpptest provide a simple function for specifying the 

interval of message sizes by allowing the user to define the minimum, maximum and the 

increment of the message sizes. The message sizes will start with the minimum value and 

increase using the given increment until it reaches the maximum value. Notably, the new 

version of MPIBench has made taking measurements for larger message sizes simpler by 

adding the capability to use message sizes that are a power of 2, from advice based on the 

analysis done in this work. Additionally, Mpptest and SKaMPI provide the capability to 

adaptively choose the message sizes in order to isolate sudden changes in performance. 

They also allow for measurements of cache effects and computation and communication 

overlap. 

 

3.4.2 Measured communication routines 

 

This section analyses the selection of MPI communications routines that are 

measured in each of the benchmarks. Generally, all of the benchmarks will group the 
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tests into point-to-point and collective communications. SKaMPI has the largest selection 

of MPI routines. It has divided the routines into five categories, which are point-to-point, 

master-worker, barrier collective, synchronous collective and simple. Basically, the 

point-to-point and master-worker categories involve all types of Point-to-Point 

communication, which has been explained in section 3.3.4, while the barrier and 

synchronous categories are for collective routines, which are measured using different 

techniques. The benchmark with the least selection for MPI routines is MPBench, which 

provides only a common MPI routine for each type of communication, such as the 

Roundtrip, MPI_Send, MPI_Bcast, MPI_Alltoall and MPI_Allreduce. Mpptest also 

measures the performance of only a few of the basic MPI routines, but Mpptest measures 

the routines in a variety of situations. As an example, for the point-to-point (ping-pong) 

test Mpptest can measure performance with many participating processes, which can 

expose contention and scalability problems.  

 

3.4.3 Presentation of output  
 

Generally, most of the benchmark programs will generate a set of output data files 

that will include a user-specified range of parameters, such as the type of MPI routine, 

message size, the average communication time and calculated bandwidth. In addition, 

some of the benchmarks provide additional output such as gnuplot files for plotting the 

results and functions to auto-generate postscript files of results to ease the task of data 

processing for users.  

 MPIBench and Mpptest produce gnuplot files to enable easy plotting of results. 

SKaMPI provides a script to auto-generate a postscript file, which will read the output 

file and generates a postscript file that contains a graphical representation of the results. 

Similarly, MPBench automatically generates a postscript file containing graphical output 

for every measurement, but only if using the default selection of measurements. PMB 

only provides a set of data files with the average communication time and calculated 

bandwidth for the output. 

MPIBench has an extra capability from the other benchmark software, which is 

that it can log the results of all measurements for all processes, or a subset of the 
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measurements (e.g. every 10th iteration). It also records the distribution of 

communication times for generating a histogram and also a list of outlier events. The 

advantage of the distribution data is that researchers can analyze more detail about the 

behaviour of the MPI routine.  

 

3.4.4 Documentation 

 

This study found that the Pallas MPI Benchmarks (PMB) [65] and SKaMPI [62] 

have the best user manual documentation among all of the benchmark software. They 

provide a complete documentation that describes in detail the purpose for each of the 

functions in their software and the procedure to compile and run the program. The other 

benchmark software, which are MPIBench [2], Mpptest [63] and MPBench [64], provide 

brief documentation, which basically explains the procedure to compile and run the 

program and also main functions in the software.  

 

3.5 Machines Used 

3.5.1 ccNUMA Shared Memory Machine  
 

The SGI Altix 3000 [70,124] series has a cache coherent non-uniform memory 

architecture (ccNUMA). It is based upon the hierarchical composition of two basic build-

ing blocks, or bricks: computational nodes (C-bricks) and routers (R-bricks). The C-brick 

units contain two computational nodes, each consisting of two Itanium-2 processors con-

nected to a custom network and memory controller ASIC (known as the SHUB (Scalable 

HUB)) (refer to Figure 3.5). The two processors share a 6.4 Gbytes/s bus to a SHUB. The 

two SHUBs in each C-brick are linked by a further 6.4 Gbytes/s link. Each SHUB is pro-

vided with one SGI NUMAlink channel to the outside, with a bandwidth of 3.2 Gbytes/s 

(1.6 Gbytes/s each direction) for NUMAlink3. These external links provide the cache co-

herent interconnection between C-Bricks. It is possible to directly connect a pair of C-

Bricks, however for large machines a set of routers (the R-Bricks) are employed to ex-

pand the network in a scalable manner. Each R-Brick contains a router chip, which pro-

vides eight connections. Each connection is again 3.2 Gbytes/s (1.6 Gbytes/s each direc-

tion). The R-Bricks are configured so that four ports connect to C-Bricks, and the other 
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four interconnect with other R-Bricks to form a fat tree network. Pairs of R-Bricks are 

connected by two links, and in large machines the remaining two links connect to the 

next higher layer of the tree, to routers (called meta-routers) that use each of their eight 

links to provide connectivity to the lower levels. Figure 3.6 depicts a 128 node Altix.  

The benchmark results reported in this thesis were carried out on Aquila, an SGI 

Altix 3000 managed by the South Australian Partnership for Advanced Computing (SA-

PAC) [131]. SGI Altix has 160 1.3 GHz Itanium 2 processors with a total of 160 Gbytes 

of memory, and a NUMAlink3 network. At the time of the benchmarks, it was running 

SGI Linux ProPac3. Intel compilers were used to compile the MPI benchmark programs, 

and the SGI MPI libraries were used. On shared memory machines, the operating system 

can switch processes between processors to try to improve overall system utilization. 

However this can adversely affect parallel programs, since after process migration, data 

will no longer be available in local cache. The performance of MPI programs on the Altix 

can be improved significantly by binding each process to a particular processor. So, for 

this analysis the experiment has done benchmark measurements using the 

MPI_DSM_CPULIST environment variable, which assigns MPI processes in order to the 

specified list of CPUs. The Altix documentation suggests that applications should avoid 

using processor 0, particularly for parallel jobs, since it is used to run system processes. 

Therefore this analysis only used processors 32 to 159 for the measurements. It started 

with processor number 32 in order to maintain the hierarchical pattern of 32 processor 

groups shown in Figure 3.6.  

By default, the SGI MPI implementation buffers messages, but uses single copy 

(i.e. no buffering) for large message sizes in most collective communication routines and 

in MPI_Sendrecv, which significantly improves performance [70, 124]. The message size 

where the communication changes over to single copy is not specified in the documenta-

tion but our measurements indicate it is around 2 Kbytes. By default, single copy is not 

used for MPI_Send, however it is possible to force it to use single copy by setting the en-

vironment variable MPI_BUFFER_MAX n, where n is the maximum message size where 

buffering will be used, so messages larger than n will be communicated using single 

copy. The choice of buffering or single copy can give a big difference in the performance 

of MPI_Send for large message sizes, and hence the bandwidth reported by an MPI 

benchmark program. 
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Figure 3.5 : An Altix C-brick with 2 nodes, 2 NUMAlink-3 and 2 XIO channels [124]. 

 
 
 
 

Brick Type Purpose 

C-Brick Computational module housing CPUs and memory. 

M-Brick Memory expansion module. 

R-Brick NUMAflex router interconnect module. 

D-Brick Disk expansion module. 

IX-Brick Base system I/O module. 

PX-Brick PCI-X expansion module. 

 

Table 3.1 : The SGI Altix brick type. 
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Figure 3.6 : SGI Altix 3000 communications architecture for 128 processors [124]. 

 
 

3.5.2. Distributed Memory Machine 
 
 

 The measurements reported in this thesis were done on Hydra, which is an IBM 

eServer 1350 Linux cluster [35] which is managed by SAPAC [131]. The cluster has 128 

compute nodes connected by a Myrinet 2000 [71,110] network as well as a 100 Mbit/s 

Fast Ethernet network [134]. Each of the nodes are IBM xSeries 335 servers with dual 

2.4 GHz Intel Xeon processors and 2 GBytes of RAM, so the machine has a total of 256 

CPUs. 

  The Myrinet configuration has 8 nodes connected to each switch, and the switches 

connected together in a fat tree topology. The Ethernet configuration is that each rack of 

the cluster has a Fast Ethernet switch (100 Mbit/s full duplex) connecting all the nodes in 

the rack. The nodes in each rack are 1-38, 39-76, 77-114 and 115-126. Each of these 

switches has a Gigabit Ethernet (full duplex) uplink to a Cisco Gigabit switch. The clus-
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ter nodes were running Redhat Enterprise Linux version 3.2.3-47 with kernel 2.4.21-

27.ELsmp of the Myrinet drivers, MPICH-GM version 1.2.6..14a was used with the 

Myrinet and MPICH version 1.2.6-gnu for the Ethernet network. All compilations were 

performed with gcc v3.2.3. 

All measurements were run with dedicated access to the cluster, so there were no 

other processes affecting the results. At the time the measurements were taken, not all of 

the nodes were usable, so the benchmark only took measurements for up to 100 nodes 

(200 CPUs). The measurement used 2 CPUs per node, with 1000 repetitions of each of 

the MPI operations except for MPI_Alltoall (the slowest operation) where only 100 repe-

titions were used.  

 

3.6 Point-to-Point Communication 
 
 

All of the MPI benchmark applications provide measurement for basic point-to-

point communication using MPI_Send/MPI_Recv. The main difference between the MPI 

benchmark applications is the communication pattern. Figure 3.7 to Figure 3.9 illustrate 

the communication patterns of the different benchmarks for 8 processors. Figure 3.7 

shows the point-to-point communications pattern for PMB and Mpptest, which involve 

processors 0 and 1 only. In order to measure communications times between processors 

that are not on the same node of a cluster of SMP nodes, the locations of the processors 

would have to be specified when calling mpirun, otherwise the benchmark would meas-

ure the performance of the shared memory system on the node rather than the perform-

ance of the communications network connecting the nodes. Figure 3.8 is for SKaMPI and 

MPBench, which use the first and last processor. In fact the approach used by SKaMPI is 

more complicated, in that it does short tests on all the processors to find which processor 

has the slowest communication with processor 0, and then does its timings using that 

processor. However for the communication networks on both of the machines used in this 

work, this would be equivalent to choosing the last processor. 

MPIBench measures not just the time for a ping-pong communication between 

two processors, but can also take into account the effects of contention when all proces-

sors simultaneously take part in point-to-point communication. The default communica-
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tion pattern used by MPIBench is shown in Figure 3.9. MPIBench sets up pairs of com-

municating processors, with processor p communicating with processor (p + n/2) mod n 

when a total of n processors are used. Half of the processors send while the other half re-

ceive, and then vice versa. The send/receive pairs are chosen to ensure that for a cluster 

of SMPs or a hierarchical communications network (such as on the SGI Altix) the per-

formance of the full communication hierarchy can be measured, not just local communi-

cations within an SMP node (or a brick on the SGI Altix). MPIBench also allows the user 

to specify another communication pattern by specifying a list of communication partners.  

 

.  

 
 

Figure 3.7 : PMB and Mpptest Point-to-Point pattern 

 
 
 

 
 
 

Figure 3.8 : SKaMPI and MPBench Point-to-Point pattern 

 
 
 
 
 
 
 

Figure 3.9 : MPIBench Point-to-Point pattern 

 
 

3.6.1 MPI_Send/MPI_Recv 
 
 

The difference in communication patterns between the different benchmarks leads 

to different results, as shown in Figure 3.10 for the default settings of the SGI MPI im-

plementation for the SGI Altix (i.e. buffered copy for MPI_Send). MPIBench has the 

highest results due to the contention effects from all 8 processors, while MPBench and 

P1 P2 P0 P7 P6 P5 P4 P3 

P1 P2 P0 P7 P6 P5 P4 P3 

P1 P2 P0 P7 P6 P5 P4 P3 
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SKaMPI obtain the second highest results since they are measuring the communication 

times between two C-Bricks. The lowest results are obtained by Mpptest and PMB, since 

they just measure intranode communication within a C-Brick. By carefully selecting the 

processors that are used (e.g. P0 and P7), it is possible to force each of the benchmarks to 

measure the same thing, i.e. point-to-point communication between two processors across 

any level of the communication hierarchy, and the results for different benchmarks agree 

fairly closely, within a few percent, as shown in Figure 3.11. This is similar to bench-

marking clusters of SMP nodes, where care must be taken (particularly for PMB and 

Mpptest) in choosing the processors to ensure measurement of internode rather than in-

tranode communication.  On the SGI Altix it is possible to significantly improve the 

benchmark results for MPI_Send by enabling the option of single copy (i.e. non-buffered) 

sends in the SGI MPI implementation, as shown in Figure 3.10 and Figure 3.12. This is 

done by setting the environment variable MPI_BUFFER_MAX to be the maximum mes-

sage size (in bytes) for which buffered copy send will be used, so single copy send is 

used for any message larger than this specified size. As shown in Figure 3.12, it is best to 

set this value to be very small, although there is no effect below about 128 bytes. Note 

that the improvement from using single copy can be large, up to a factor of 10, however it 

is much less than this for very large message sizes. 

In measuring the results using single copy MPI_Send, we were surprised to find 

that while most of the benchmarks gave the expected improvement in performance, the 

results for SKaMPI and MPIBench were the same as for the default MPI setting that uses 

buffered copy. After much experimentation and comparison of the code for the different 

benchmarks, we concluded that this problem is because both SKaMPI and MPIBench use 

the same array to hold send and receive message data. When we changed the MPIBench 

code to declare different arrays for send and receive data, the results showed the expected 

improvement, as shown in Figure 3.10. We did not change the SKaMPI program, so we 

do not present SKaMPI results for the single copy option. 
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Figure 3.10 : Comparison of results from different MPI benchmarks for Point-to-Point 
(send/receive) communications using 8 processors between default settings and Single 
Copy (indicated by SC) on SGI Altix. 
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Figure 3.11 : Comparison of results from different MPI benchmarks for Point-to-Point 
(send/receive) communications using the same process placement, with a single process 
on each of 2 different C-Bricks connected by a router, on the SGI Altix. 
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Figure 3.12 : Ratio of Send/Recv time using buffered compared (default) to non-buffered 
communication for PMB from 2 to 32 Processors . 

 

Figure 3.13 shows the results comparison from different MPI benchmarks for 

Point-to-Point (send/receive) communications using 8 processors on the IBM Linux clus-

ter. Similarly with the results from the SGI Altix, the lowest times are obtained by PMB 

and Mpptest, while the highest time is obtained by MPIBench. The results for PMB and 

Mpptest are lower because they measure intranode communication (within the same 

node). The gap between the results for the different benchmarks appears to be getting 

closer for large message size due to the effect of the log plot. The difference in results 

between MPIBench (where all processes are communicating) with SKaMPI and 

MPBench (where only 2 processes are communicating) is much smaller than for the SGI 

Altix. The differences start to increase after 65 KByte due to more contention occurring 

for larger message sizes, which is seen in the MPIBench results but not in the other 

benchmarks. However, in the SGI Altix the results start to differ from as small as 1 

KByte. Although there are still differences among the MPI benchmarks, the differences 

are not as big as for the SGI Altix, except for Mpptest and PMB since they measure 

shared memory communication within a node. As with SGI Altix, by selecting specific 

processors across different nodes (e.g. P0 and P7), it is possible to force each of the 

benchmarks to measure the same thing, and then the results for different benchmarks 

agree fairly closely, within a few percent, as shown in Figure 3.14. 
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Figure 3.13 : Comparison of results from different MPI benchmarks for Point-to-Point 
(send/receive) communications using 8 processors on IBM Linux Cluster. 
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Figure 3.14 : Comparison of results from different MPI benchmarks for Point-to-Point 
(send/receive) communications using the same process placement, with a single process 
on each of 2 different nodes on IBM Linux Cluster. 
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3.6.2 Bandwidth for MPI_Send/MPI_Recv 
 

Bandwidth results are calculated by default for all message sizes for Mpptest and 

PMB and in this section the CPUs have been chosen to make the measurement the same 

as with MPBench and SKaMPI. MPBench provides bandwidth results instead of commu-

nication time for all the collective communications but not for point-to-point communica-

tion, while SKaMPI and MPIBench do not provide any bandwidth results. However, 

SKaMPI does provide bandwidth results, calculated only for the smallest and the highest 

message sizes, in their auto-generated postscript files of results. 

 The bandwidth results in Table 3.2 and Table 3.3 are calculated based on the 

measurement results for 1 MByte and 4 MByte message sizes for the SGI Altix and the 

IBM Linux cluster, respectively. As shown in Table 3.2, at 1 MByte for 2 processors 

MPIBench and SKaMPI obtained significantly higher bandwidth than the other bench-

marks, while the results are similar for 4 MByte messages. For two processors, all of the 

benchmarks show a difference of almost a factor of 2 between the results for the two dif-

ferent message sizes, so the Altix does not conform to the usual expectation that larger 

message sizes should give similar or larger bandwidth measurements. The results be-

tween both message sizes started to get closer for MPIBench at 4 processors,  and for the 

other benchmarks at more than 4 processors. The bandwidth decreases drastically as the 

message sizes and number of processors increase. Referring to [27], the bandwidth re-

ported by SKaMPI is higher than for the largest times plotted for each node. So, there is a 

possibility that the reported bandwidth in Table 3.2 may be smaller than the peak band-

width. 

Table 3.3 shows the bandwidth results for the IBM Linux cluster. Mpptest obtains 

the highest bandwidth for both message sizes. There is little difference between the re-

sults for both message sizes for all MPI benchmarks. The bandwidth results for 4 up to 32 

CPUs is the same for all benchmarks except MPIBench, which shows the lowest per-

formance due to more contention effects from having all the processes doing point-to-

point communications concurrently. All the other benchmarks are just doing a ping-pong 

between two nodes, which are at different distances in the network in each case. The fact 

that the results are the same in each case indicates the low overhead of Myrinet’s hierar-

chical fat tree network.  



 61 

 

No. 
of 
CPU 

MPIBench MPBench SKaMPI PMB Mpptest 

 1MB 4MB 1MB 4MB 1MB 4MB 1MB 4MB 1MB 4MB 

2 1775 851 1320 831 1756 832 1308 806 1314 843 

4 606 671 987 925 1056 963 1012 945 1090 987 

8 405 464 562 562 570 560 563 560 593  588 

16 396 462 564 562 573 559 563 560 592 587 

32 260 256 552 549 560 548 555 548 579 574 

 

Table 3.2 : Bandwidth results in MBytes/sec for various numbers of processors using 
default settings on SGI Altix. 

 
 
No. 
of 
CPU 

MPIBench MPBench SKaMPI PMB Mpptest 

 1MB 4MB 1MB 4MB 1MB 4MB 1MB 4MB 1MB 4MB 

2 306 294 306 293 308 295 305 294 322 309 

4 112 140 218 222 218 223 218 222 228 233 

8 112 144 218 222 218 222 218 222 228 232 

16 113 142 218 222 217 222 218 222 228 233 

32 97 100 218 222 218 223 218 222 228 233 

 

Table 3.3 : Bandwidth results in MBytes/sec for various numbers of processors on IBM 
Linux Cluster. 

 
 
  

Figure 3.15 and Figure 3.16 show PMB and MPIBench bandwidth results for 2 up to 32 

CPUs for the SGI Altix, respectively. Note that the results for PMB are taken by selecting 

the CPUs to make the measurements similar with MPBench and SKaMPI (as shown in 



 62 

Figure 3.8). PMB bandwidth shows the results for 2 and 4 CPUs is different with 8, 16 

and 32 CPUs. The differences illustrate that the bandwidth for intra C-Brick is higher 

compared to inter C-Brick, while MPIBench shows the bandwidth decreases as more 

CPUs are used. This shows that the architecture of SGI Altix creates contention between 

the bricks.   

 Figure 3.17 and Figure 3.18 show the same plots for the IBM Linux Cluster. In-

terestingly, the performance for inter-node is similar between different numbers of CPUs, 

while MPIBench shows that the bandwidth between different number of CPUs for inter-

node communication has very little difference, except for 32 CPUs for message sizes 

more than 1 MByte. 

 It is interesting that the differences between PMB and MPIBench are bigger on 

the SGI Altix than the IBM Linux cluster. It shows that the performance of the Myrinet 

network in the Linux cluster scales better with more communicating processes, while the 

performance of the ccNUMA SGI Altix is noticeably reduced, although the overall per-

formance of the Altix is much better than the Linux cluster. 
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Figure 3.15 : PMB Bandwidth Results for 2 until 32 Processors for Default Settings on 
SGI Altix. 
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Figure 3.16 : MPIBench Bandwidth Results for 2 until 32 Processors for Default Settings 
on SGI Altix. 
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Figure 3.17 : PMB Bandwidth Results for 2 until 32 Processors for Default Settings on 
IBM Linux Cluster. 
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Figure 3.18 : MPIBench Bandwidth Results for 2 until 32 Processors on IBM Linux 
Cluster. 

 

3.7 MPI_Sendrecv  
 
 Only MPIBench, PMB and SKaMPI provide measurements for MPI_Sendrecv.  

MPIBench uses the same communication pattern as for MPI_Send/MPI_Recv, however 

each processor does a combined MPI_Sendrecv to its communication partner, rather than 

alternating sends and receives. SKaMPI and PMB use a different technique, where each 

process sends to the right and receives from the left neighbour in a chain of N processors. 

Most communication networks are capable of providing the same bandwidth if messages 

are sent simultaneously in both directions. MPI_Sendrecv provides a good way of testing 

that the MPI implementation can indeed provide this bidirectional bandwidth. The 

MPIBench approach means that if this is the case, then the results for MPI_Sendrecv and 

MPI_Send/MPI_Recv should be similar.  

The results for MPI_Sendrecv in Figure 3.19 show that this is the case for the SGI 

Altix, e.g. the result for 256 Kbyte message size for 8 processors is similar to the results 

for 8 processors in MPI_Send/MPI_Recv with Single Copy option (see Figure 3.10 and 
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Table 3.4). Noticeably, in Figure 3.19 shows that SKaMPI and PMB have a similar re-

sult, however the results are higher than MPIBench. As mentioned earlier SKaMPI and 

PMB are using the same ring pattern technique. The newest version of MPIBench also 

has a function to measure MPI_Sendrecv using the ring pattern, the results in Figure 3.19 

shows that MPIBench with the ring pattern obtains similar results with SKaMPI and 

PMB. Note that, the results for MPIBench default sendrecv is lower than the results for 

PMB, SKaMPI and MPIBench ring pattern, particularly after 2KByte. It is unclear why 

this is the case, or why the MPIBench results for MPI_Sendrecv using the ring pattern are 

so much slower than for using the default MPIBench communication pattern for 

MPI_Sendrecv. More precise analysis should be done to understand the problem of the 

ring pattern with Single Copy options, which will be included for the future work. 

However, the bidirectional bandwidth does not seem to be working for the Myri-

net network on the IBM Linux cluster, since the results for MPI_Sendrecv are a factor of 

two higher than for MPI_Send/Recv (see Figure 3.13). Figure 3.20 shows the comparison 

results between the benchmarks on IBM Linux cluster. It shows that MPIBench obtains 

the highest time compared to the PMB and SKaMPI, while on the SGI Altix MPIBench 

obtains the lowest time. As with the SGI Altix, PMB and SKaMPI have very similar re-

sults, which due to their similar technique for MPI_Sendrecv. Figure 3.20 shows that 

when using MPIBench ring pattern measurement, the results are similar to the PMB and 

SKaMPI.  

It can therefore be concluded that the differences in results between MPIBench 

and the other benchmarks are because of the differences in the communication partners 

used for MPI_Sendrecv, since using the same partners gives results that are within a few 

percent of the other benchmarks (see Figure 3.19 and Figure 3.20). 
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Message Sizes 
(Byte) 
 

 
MPI_Send/MPI_Recv 
(Microsec) 
 

MPI_Sendrecv 
(Microsec) 
 

0 2.88 2.19 

4 2.97 2.53 

16 3.17 2.49 

64 3.43 3.18 

256 8.61 5.63 

1024 7.59 4.48 

4096 6.92 4.72 

16384 8.45 6.44 

65536 14.61 12.56 

262144 44.64 42.22 

 

Table 3.4 : Comparison for average communication time (microsec) between 
MPI_Send/MPI_Recv with MPI_Sendrecv for MPIBench on SGI Altix. 
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Figure 3.19 : Comparison between MPI benchmarks for MPI_Sendrecv and MPIBench 
ring pattern on 8 processors on SGI Altix. 
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Figure 3.20 : Comparison between MPI benchmarks for MPI_Sendrecv with MPIBench 
ring pattern on 8 processors on IBM Linux cluster. 

 

3.8 Barrier 
 
 
 Figure 3.21 shows the MPI_Barrier results on the SGI Altix for SKaMPI, 

MPIBench and PMB, which are the only MPI benchmarks that measure barrier. The re-

sults show that SKaMPI is a bit higher compared to MPIBench and PMB. This is proba-

bly due to the global clock synchronization that is set by default for their measurement. 

The developers of SKaMPI argue that this is a more accurate result since it avoids “pipe-

lining” effects where some processes (e.g. the root) finish the barrier earlier and can start 

the next barrier operation before other processes have exited the barrier [24].  

Figure 3.22 shows the same plot for the IBM Linux cluster. The results are almost the 

same for all benchmarks with only a slight difference between 16 to 64  processes. 
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Figure 3.21 : Comparison between MPI benchmarks for MPI_Barrier for 2 to 128 proc-
essors on the SGI Altix. 
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Figure 3.22 : Comparison between MPI benchmarks for MPI_Barrier for 2 to 128 proc-
essors on the IBM Linux cluster. 
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3.9 Broadcast 
 
 

All of the MPI benchmark applications measure MPI_Bcast. There are some dif-

ferences in the measurement technique between the benchmark applications. The main 

difference is that by default SKaMPI makes the assumption that data should not held in 

cache memory, so it ensures data to be broadcast is not in cache before each measurement 

repetition. MPIBench, on the other hand, always sends the same data for each repetition, 

and does some preliminary “warm-up” repetitions (that are not measured) to ensure that 

the data is in cache before measurements are taken. The other benchmarks allow the user 

to choose whether or not data to be broadcast is in cache, although the default is that data 

is in cache memory. In a real application, data to be broadcast may or may not be in the 

cache, so there is really no “right” choice for whether or not an MPI benchmark should 

place the data in the cache.  

Another difference is how the broadcasts are synchronized. Most MPI bench-

marks measure collective communication time on the root node. However for some col-

lective operations, such as broadcast, the root node is the first to finish, and this may lead 

to biased results due to pipelining effects. Most benchmarks get around this problem by 

inserting a barrier operation (MPI_Barrier) after each repetition of the collective commu-

nication operation. This provides an additional overhead which will affect the average 

time, although only for very small message sizes, since broadcast of a large message 

takes much longer than a barrier operation. Mpptest and PMB adopt a different approach 

to avoid this problem – they assign a different root processor for each repetition. 

Figure 3.23 shows the average times reported by the different MPI benchmarks to 

complete an MPI_Bcast operation on the SGI Altix. Clearly there are significant differ-

ences in the measured results due to the differences in measurement technique. Mpptest 

and PMB give the highest results, presumably due to the overhead of changing the root 

node at each iteration. Because of the cache coherency protocol on the shared memory 

Altix, moving the root to a different processor has a significant overhead, which is re-

flected in the results. We are not sure why Mpptest is so much higher than PMB. The 

only difference between the two approaches seems to be that PMB uses different arrays 

for the broadcast data on the root node and the other processors. SKaMPI has the next 

highest result, since it uses data that is not in cache, while MPIBench and MPBench ob-
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tained the same results with the same measurement techniques.  On a distributed memory 

cluster the effects of changing the root and having messages in cache has little affect on 

the results, as shown in Figure 3.25.  

To check that these differences in the benchmark measurement techniques were 

causing the difference in broadcast times, we enabled the option to warm up the cache in 

SKaMPI, and for Mpptest and PMB we commented out the code to move the root process 

at each repetition, and then reran the benchmarks. The results after modifying the pro-

grams were very similar, mostly within about 10% percent, as shown in Figure 3.24. 
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Figure 3.23 : Comparison between MPI benchmarks for MPI_Bcast on 8 processors be-
fore tuning the code on SGI Altix. 
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Figure 3.24 : Comparison between MPI benchmarks for MPI_Bcast on 8 processors after 
tuning the code on SGI Altix. 
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Figure 3.25 : Comparison between MPI benchmarks for MPI_Bcast on 8 processors on 
IBM Linux Cluster. 
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Both SKaMPI and MPIBench use a barrier operation to synchronize the start of 

all collective communications. However they also have the option of avoiding the over-

head of the barrier operation by using a synchronized start, where each processor starts 

each broadcast at a prescribed time, and the time reported for each repetition is the time 

taken by the slowest process. Clearly this requires a globally synchronized clock, which 

is provided by MPIBench and SKaMPI. Since they both use a globally synchronized 

clock, they are able to generate average times for each process in a collective communi-

cation, which can be significantly different for different processes.  

Figure 3.26 shows a figure from the SKaMPI report for an MPI_Bcast operation 

on 8 processors for SGI Altix (using cache warmup to enable a direct comparison to 

MPIBench results), which shows the average completion time for each processor. The 

SKaMPI report also states that the average time for the MPI_Bcast is about 9500 µs, 

which is very different to the largest times for each node shown in Figure 3.26. We are 

not sure why this is the case. Figure 3.27 show the distribution results for MPI_Bcast on 

8 processors for the same data size on SGI Altix using MPIBench. This figure shows the 

combined results for all 8 processors, although recently MPIBench has been modified to 

allow distributions to be generated individually for each processor, so we are able to 

check that the overall distribution shown in Figure 3.27 shows peaks that are consistent 

with the binary tree broadcast algorithm, with the first peak corresponding to completion 

times for processors 0 and 1, the second peak is for processors 2 and 3 and final peak is 

for 4-7. As with SKaMPI, MPIBench gives an average time for broadcast of 9500 micro-

sec, but unlike SKaMPI, this agrees with the value for the slowest process in the distribu-

tion of times in Figure 3.27. 

Figure 3.28 and Figure 3.29 shows the same plot for the IBM Linux Cluster. 

However, the distribution for MPIBench does not show the effect of the binary tree 

broadcast algorithm. This is because the IBM Linux Cluster used the latest version of 

MPICH 1.2.6, which has a new algorithm for broadcast. The new algorithm uses a com-

bination of scatter and allgather for 8 or more processors and long message sizes (greater 

than 512 Kbytes) [11]. For SKaMPI the average time is reported to be approximately 

49000µs, but similarly with Altix, this is significantly different to the largest times for 

each node. We do not know the reason for this discrepancy, but it implies that the node 

times reported by SKaMPI may not be very accurate. As with the SGI Altix, MPIBench 
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agrees with the SKaMPI average time of 49000 µs, but the slowest node time agrees with 

the average broadcast time, as it should. Figure 3.30 shows the minimum, average and 

maximum time for the IBM Linux Cluster on the same plot. This figure shows that the 

first two small peaks in the distribution plot in Figure 3.29 correspond to the minimum 

completion time for all processors. Then, the first high peak is for processors 0, 3, 4 and 

7, the second high peak is for processor 1, 2, 5 and 6. The small distribution after the av-

erage completion time corresponds to the maximum time obtained by all of the proces-

sors, where a small number of repetitions are very slow.  
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Figure 3.26 : Node time produced by SKaMPI for MPI_Bcast at 4MBytes for 8 CPUs on 
SGI Altix. 
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Figure 3.27 : Distribution result produced by MPIBench for MPI_Bcast at 4MBytes for 8 
CPUs on SGI Altix. 
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Figure 3.28 : Node time produced by SKaMPI for MPI_Bcast at 4MBytes for 8 CPUs on 
IBM Linux Cluster. 
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Figure 3.29 : Distribution result produced by MPIBench for MPI_Bcast at 4MBytes for 8 
CPUs on IBM Linux Cluster. 
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Figure 3.30 :  Minimum, Average and Maximum time from MPIBench for MPI_Bcast at 
4MBytes for 8 cpus on IBM Linux Cluster. 
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3.10 Scatter and Gather 
 
 

Only MPIBench and SKaMPI provide measurements for MPI_Scatter and 

MPI_Gather, and both benchmarks apply the same measurement technique.  Scatter and 

gather are typically used to distribute data at the root process (e.g. a large array) evenly 

among the processors for parallel computation, and then recombine the data from each 

processor back into a single large data set on the root process. Figure 3.31 shows the 

comparison between MPIBench and SKaMPI for MPI_Scatter for 32 processors on Altix. 

The result shows that MPIBench and SKaMPI agree with each other. The results also 

show an unexpected hump at a data sizes between 128 bytes and 2 KBytes per process, so 

that the time for scattering larger data sizes than this is actually lower. This is presumably 

due to the use of buffering for asynchronous sends for messages of these sizes. Note that 

overall, the time for an MPI_Scatter operation grows remarkably slowly with data size. 

Figure 3.32 shows the same plot for the IBM Linux Cluster, and as with the SGI Altix, 

MPIBench and SKaMPI agree with each other. On the cluster, the time for the scatter op-

eration grows in proportion with the data size. 
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Figure 3.31 : Comparison between MPI benchmarks for MPI_Scatter for 32 processors 
on SGI Altix. 



 77 

10

100

1000

10000

100000

10 100 1000 10000 100000

Size of Data (Byte)

T
im

e 
(M

ic
ro

se
c)

MPIBench

SKaMPI

 

Figure 3.32 : Comparison between MPI benchmarks for MPI_Scatter for 32 processors 
on IBM Linux Cluster. 

 
 

The performance of MPI_Gather is mainly determined by how much data is re-

ceived by the root process, which is the bottleneck in this operation. Hence the time taken 

is expected to be roughly proportional to the total data size for a fixed number of proces-

sors, with the time being slower for larger numbers of processors due to serialization and 

contention effects.  

Figure 3.33 and Figure 3.34 shows comparison results between MPIBench and 

SKaMPI for 32 processors on the SGI Altix and the cluster. Similarly with MPI_Scatter, 

MPIBench and SKaMPI agreed with each other. The communication time grows in pro-

portion with the message size for both machines. 
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Figure 3.33 : Comparison between MPI benchmarks for MPI_Gather for 32 processors 
on SGI Altix 
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Figure 3.34 : Comparison between MPI benchmarks for MPI_Gather for 32 processors 

on IBM Linux Cluster. 
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3.11 Alltoall 
 
 

The final collective communication operation that was measured is MPI_Alltoall, 

where each process sends its data to every other process. MPI_Alltoall is measured by 

MPIBench, PMB and SKaMPI. Figure 3.35 shows that the results on SGI Altix for 32 

processors are similar to scatter but with a sharper increase for larger data sizes.  Figure 

3.36 shows the same plot for the IBM Linux Cluster, where the times increase with data 

size. Again similarly with MPI_Scatter and MPI_Gather, all of the benchmarks agree 

with each other within a few percent. 
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Figure 3.35 : Comparison between MPI benchmarks for MPI_Alltoall on 32 processors 
on SGI Altix. 
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Figure 3.36 : Comparison between MPI benchmarks for MPI_Alltoall on 32 processors 
on IBM Linux Cluster. 

 

3.12 Other Collective Communication 
 
 

Another collective communication that is measured by PMB, SKaMPI and 

MPBench is MPI_Reduce. MPI_Reduce does a reduction operation such as summation of 

data distributed over processes and brings the results to the root process. SKaMPI and 

MPBench use MPI_SUM as the parameter to MPI_Reduce, and therefore do a global 

sum. PMB uses a null operation and therefore only measures the communication in-

volved in the reduction operation, and hence gives very different results to the other two 

benchmarks.  

 

3.13 Discussion 
 

This analysis shows that different MPI benchmarks can give significantly differ-

ent results for certain MPI routines particularly on the SGI Altix. This is primarily due to 

the Altix having a hierarchical ccNUMA architecture, which can enhance the variations 
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due to different measurement techniques employed by the different benchmarks. Particu-

larly for point-to-point communications, the variations are due to the different communi-

cations patterns used by the different benchmarks,  differences in how averages are com-

puted,  errors are handles and how bandwidth is reported. There are also significant ef-

fects due to implementation details of SGI MPI on the Altix, which affects whether single 

copy of buffered copy is used, which has a major impact on communications speed. 

There are also significant differences in measurements of some collective communica-

tions routines, particularly broadcast, due to differences in use of cache and in synchro-

nizing the calls to the routines on each processor. 

MPI benchmarks were designed primarily for use on distributed memory ma-

chines, and the results show that some of the different design decisions made for the dif-

ferent benchmarks can significantly affect the results for ccNUMA shared memory ma-

chines. Users of MPI benchmarks on shared memory machines should therefore be care-

ful in the interpretation of the benchmark results, and developers of MPI benchmarks 

may need to make some minor modifications to their codes to provide more accurate re-

sults for ccNUMA machines. 
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CHAPTER 4  

 

Improvements for MPIBench 
 
 

4.1 Introduction 
 
 
 One of the objectives for the comparison analysis between MPI benchmarks that 

has been done in Chapter 3 was to identify any weaknesses of MPIBench compared to 

other MPI benchmarks and to use this information to make improvements to MPIBench. 

The improvements have been implemented by a team of programmers from the Univer-

sity of Adelaide and the South Australian Partnership of Advanced Computing (SAPAC). 

The team members are Nor Asilah Wati Abdul Hamid (the author of this thesis), Alex 

Chichowski, Tim Seely and Paul Martinaitis. Nor Asilah Wati Abdul Hamid focused on 

the specification and testing of the additional functionality and identifying problems and 

bugs, and also implemented the user-specified point-to-point pattern and ring pattern. 

MPIBench has been tested on the SGI Altix (which uses a CC-NUMA architecture) and 

distributed memory architecture with two different types of interconnect, Myrinet and 

Ethernet. Many tests were done, which has helped MPIBench to be more portable and 

robust. The new version of MPIBench is available online at [2].   

This chapter will discuss the improvements that have been done to MPIBench, 

based on the results of the MPI benchmark comparison in Chapter 3, The analysis from 

the MPI benchmark comparisons revealed several disadvantages in MPIBench and also 

in the course of doing the work presented in this thesis some additional useful tools have 

been added to MPIBench and a number of bugs and problems have been spotted and 

fixed. One of the disadvantages that has been solved is regarding the cache effect, 

whether the cache should be used or not during taking of measurements. The procedure 

of compiling and running the program also has been improved by adopting the approach 

of most of the other MPI benchmarks, by providing a default option for running the 

benchmark programs using defaults for configurable parameters such as the range of 

message sizes for each communication routine. Several new settings have also been in-
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cluded (with default options), including the ability to choose MPI_Wtime instead of the 

globally synchronized clock provided by MPIBench, 

  Besides improvements to address the weaknesses of MPIBench, several additional 

tools have been added: user-specified point-to-point communication pattern; ring pattern 

for point-to-point; improved measurement for collective communication; analysis of re-

sults over arbitrary sets of processes; more options to improve the ease of compiling and 

running the benchmarks, plotting the message sizes, and producing the output; and more 

information for the documentation. Additionally, this chapter also provides results from 

testing the new ring communication pattern for point-to-point on an SGI Altix 3000 and 

an IBM eServer 1350 Linux cluster, and testing of the clock synchronization mechanism 

used by MPIBench by comparing it with an accurate and globally synchronized imple-

mentation of MPI_Wtime. The following sub-sections will explain the details for each 

improvement that has been done in MPIBench. 

 

4.2 Cache Effects 
  

Cache effects are more important on modern CPUs, particularly machines with 

cache coherent shared memory architecture, for example SGI Altix (refer section 3.6.1). 

Typically MPI benchmark programs were developed based on older generation distrib-

uted memory machines, for which cache effects were not as important. However, in re-

cent years more high performance computers have been developed using the architecture 

of cache coherent shared memory multiprocessor system. The analysis in Chapter 3 

shows that if the message is accessed from the cache,  the communication time will be 

lower than the communication time without using the cache, where the data must be ac-

cessed from memory.  

 There was discussion related to the cache effect from Mierendorff et al. [23] and 

they provide useful insights into communication performance issues related to cache ef-

fects on ccNUMA architectures. Noticeably, SKaMPI [62], Mpptest [63] and the new 

version of MPBench [64] addresses the cache effect issue and they all have options either 

to avoid using the cache or warm-up the cache before measurements are taken. However, 

only SKaMPI’s technique affected the results, this is because it clears the cache for every 
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single repetition, while Mpptest and MPBench only clear the cache when the message 

size is changing.  

In a real applications, data that needs to be passed between processors may or 

may not be in the cache, so there is really no “right” choice for whether or not an MPI 

benchmark should place the data in the cache. It is useful to be able to measure results for 

data in and out of cache. Note that earlier versions of MPIBench only measured with data 

in cache. The above discussion motivated a change in MPIBench, to add the same option  

as SKaMPI but with a different technique for ensuring the message data is not in the 

cache. In SKaMPI the cache is avoided by generating new message data for each repeti-

tion using random numbers, while in the new version of MPIBench, the use of the cache 

is avoided by placing the message data in an array that is much larger than the cache size, 

to guarantee that it will be stored in memory. For each repetition, a pointer to a different 

part of the array is used for the message data, to avoid the data remaining in cache.  Fur-

ther discussion and examples on the cache effect for each MPI benchmark have been ex-

plained in Chapter 3.  

 

4.3 Testing the MPIBench Globally Synchronized Clock 
 

MPIBench provides an accurate and globally synchronized clock.  This is enabled 

by the existence of 64-bit CPU cycle count registers in modern processors that are incre-

mented on every clock cycle. These can provide greater local timing precision than has 

previously been possible. MPIBench also implements a global clock synchronization al-

gorithm based on message passing [8]. In order to facilitate the use of MPIBench on par-

allel computers with CPUs where a 64-bit cycle count is unavailable, the use of the stan-

dard MPI timer, MPI_Wtime, is also provided. However, MPI_Wtime only can be used 

on machines where MPI_Wtime is globally synchronized, which can be checked using 

the standard MPI parameter MPI_WTIME_IS_GLOBAL, and where the granularity of 

MPI_Wtime is acceptably fine, which can be checked using the MPI parameter 

MPI_WTICK .  

The implementation of MPI_Wtime in the SGI MPI library on the SGI Altix 3000 

qualifies or meets the above requirements to be used for MPIBench.  This enables us to 
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do a more precise validation of the globally synchronized clock implemented within 

MPIBench than has previously been possible, by checking the consistency between the 

MPI benchmark results from using the default MPIBench clock and the results from us-

ing SGI MPI_Wtime. 

The tests were done on Aquila, the SGI Altix 3000 described in Section 3.5.1. 

MPIBench results were obtained using the globally synchronized implementation of 

MPI_Wtime provided by SGI MPI  (Figure 4.1) and by using the global clock synchroni-

zation techniques used by MPIBench (Figure 4.2). Note that the averages for the results 

obtained using these two different methods are consistent. In each case, the distributions 

have very similar overall shapes, the peaks occur at similar times, and the average values 

agree very closely. Figure 4.1 and Figure 4.2 show point-to-point communication times 

for 2 processors for a small message size (128 bytes), using SGI MPI_Wtime and the 

MPIBench clock, respectively. Figure 4.3 and Figure 4.4 show the same pattern for a 

large message size (256 Kbytes). There are four obvious peaks shown in Figure 4.1, fol-

lowed by a long tail. In Figure 4.2 there are more peaks and finer details in the distribu-

tion. Figure 4.3 and Figure 4.4 both show a single wide peak, but Figure 4.4 again shows 

a finer distribution followed by the long tail.  

Based on the above comparisons, the globally synchronized clock provided by 

MPIBench gives results that agree with the MPI_Wtime provided by the SGI MPI li-

brary, however the MPIBench clock shows finer details in the distribution results, which 

indicates that the MPIBench clock has higher precision than SGI MPI_Wtime. This con-

firms that MPIBench provides a very accurate and globally synchronized clock for its 

measurements of MPI performance. 
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Figure 4.1: Point-to-Point with 2 processors using MPI_Wtime at 128 Bytes. 
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Figure 4.2 : Point-to-Point with 2 processors using MPIBench approach for global clock 
synchronization at 128 Bytes. 
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Figure 4.3 : Point-to-Point with 2 processors using MPI_Wtime at 256 Kbytes. 
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Figure 4.4 : Point-to-Point with 2 processors using MPIBench approach for global clock 
synchronization at 256 KBytes. 
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4.4 Improved Measurement for Collective Communication 
 

 
Previously, MPIBench measured the average collective communication time by 

taking the average time from all the distribution results for all processors. However, in 

collective communication the time should be taken from the slowest processor to com-

plete. The new version of MPIBench has been changed to calculate the average time by 

taking the maximum time from all processes for each repetition and averaging these re-

sults. SKaMPI also measures collective communication times on each process and uses 

the same method to calculate the average time [24]. Note that measurements done using 

earlier versions of MPIBench by Grove [8]  required a separate analysis to get the correct 

results for the average collective communication time.  

 Figure 4.5 shows the distribution results for MPI_Bcast for 128 CPUs on Hydra 

using Ethernet for 64 KByte message size. If the average time is taken based on the new 

measurement it will be approximately 289 ms. However, if using the previous method, 

the time will be approximately 100 ms. Another example is shown in Figure 4.6, for 

MPI_Alltoall at 64 CPUs for 4 KByte on the same machine. The current reported average 

time is 718 ms, however if the average of all the times for all processors is used, it will be 

approximately 300 ms.  
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Figure 4.5: MPI Bcast on Ethernet for 128 CPUs at 64KByte. 
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Figure 4.6 : MPI Alltoall on Ethernet for 64 CPUs at 4KByte 

 

4.5 User-specified Communication Pattern for Point-to-Point Communications  
 

The communication pattern used to measure point-to-point communication times 

in MPIBench is to set up pairs of communicating processors, with processor p communi-

cating with processor (p + n/2) mod n when a total of n processors are used, as shown in 

Figure 3.9. Half of the processors send while the other half receive, and then vice versa. 

Thus, MPIBench measures not just the time for a ping-pong communication between two 

processors, but can also take into account the effects of contention when all processors 

simultaneously take part in point-to-point communication. PMB and Mpptest only in-

volve processors 0 and 1. SKaMPI and MPBench use only the first and last processor. A 

further explanation and figures on this discussion  are provided in section 3.7 

 In order to create more flexibility for the point-to-point communication pattern a 

new capability has been added to MPIBench which allows users to test any point-to-point 

communication pattern easily by listing pairs of communicating processes by their proc-

ess number in an input file. The sequence of process numbers inside the input file should 

be as in the following example for 8 processes, which gives the communication pattern 

shown in Figure 4.7. Each communication pair should be on a different row of the input 



 90 

file and the program also checks that all communication pairs are correctly specified, i.e. 

each process number is listed once. 

 

0 2 

1 3 

4 6 

5 7 

 

 
 
 
 
 

Figure 4.7 : MPIBench User-specified Point-to-Point Communication Pattern 

 

4.6 Ring Pattern for Point-to-Point Communication 
 

 
Ring communication involves each process sending to the right and receiving 

from the left neighbour in the process chain. This is a commonly used communication 

pattern for which MPI_Sendrecv is typically used. PMB and SKaMPI provide a meas-

urement for ring communication using MPI_Sendrecv. However, MPIBench uses a dif-

ferent pattern to benchmark MPI_Sendrecv communication, which is the same pattern as 

MPI_Send/MPI_Recv. So, in order to facilitate users in measuring the performance for 

ring topology and to provide more options for MPIBench, the ring pattern has been added 

using MPI_Sendrecv point-to-point communication. The following analysis will discuss 

the performance measurement from SGI Altix 3000 and IBM eServer 1350 Linux cluster 

on the ring pattern.  Note that, for sanity checking the results of both machines we have 

compared these with PMB and SKaMPI and agree reasonably well. Figure 4.8 shows the 

illustration of ring pattern on a cluster machine for 4 CPUs and 2 CPUs per node. 

 

 

 

 

P1 P2 P0 P7 P6 P5 P4 P3 
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Figure 4.8 : Ring Pattern for 4 CPU and 2 CPU per node. 

 

 
Figure 4.9 shows the average time on SGI Altix 3000 using ring pattern for up to 

64 CPUs. The results for different numbers of processors clearly illustrate the non-

uniform memory architecture of the Altix. For 4 processors the time is for internode 

communication within a C-Brick, which is approximately 0.009 ms for a 1 KByte mes-

sage. The results for 8 processors and 16 processors are about the same, around 0.011 ms, 

since both communicate between C-Bricks and in the same R-Brick. Communication be-

tween 32 processors is done directly between R-Bricks, and takes around 0.015 ms. Re-

sults for 64 processors involve communication between R-Bricks through a meta-router, 

which is only marginally slower than direct communication between R-Bricks, however 

the results for MPI_Sendrecv are significantly slower, taking approximately 0.039 ms for 

a 1 KByte message. It is surprising that the results for 64 CPUs are almost constant with 

message size up to 128 Kbytes. At 256 KByte the results merge together for the different 

numbers of CPUs, taking around 0.08 ms, and these results are similar to sendrecv results 

using SKaMPI and PMB.  

 

Figure 4.10 shows the average time for Myrinet on Hydra using ring pattern up to 

64 CPUs. The results for different numbers of CPUs are closer to each other than the SGI 

Altix, probably because of the more uniform Myrinet network architecture. The results 

for different numbers of CPUs start to differ after 64 Kbyte, where the difference is ap-

proximately up to 10% and the difference is growing as the message size increases, up to 

20% at 4 MBytes. The difference is higher particularly between small and large number 

of CPUs, for example between 4 and 64 CPUs. The increasing difference is suspected to 

be due to more contention occurring in Myrinet switches for larger data transfer, and per-

haps contention on the network interface on each node.  

0 1 2 3 
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Figure 4.11 and Figure 4.12 show the distributions of communication times for 4 

CPUs and 256KByte messages on SGI Altix and Myrinet on Hydra, respectively. No-

ticeably, both figures show 2 main peaks, presumably representing times for intranode 

and internode communication. Note that the peaks for Myrinet on Hydra show slight 

double peaks, perhaps because the full bidirectional bandwidth is not obtained for 

MPI_Sendrecv for Myrinet with GM, so the send and recv are serialized. Grove [8] found 

the same problem with Myrinet on a cluster of Sun E420R SMP servers. He postulated 

that the reason for the limitation of Myrinet with GM layer is that the bidirectional mes-

sage-passing is serialized in the GM layer implementations.  

In Figure 4.11 the average time reported for SGI Altix at 256KByte is 0.08ms. 

The first peak, which is for process 1 and process 2, is at 0.05ms, while the second peak 

at 0.13ms is for process 0 and process 3.  The result for send/recv for 2 CPUs at the same 

message size is approximately 0.14 ms, while the result using Single Copy option is 0.04 

ms. So it may be that the first peak in Figure 4.11 is representing unbuffered communica-

tion for 2 CPUs, while the time for the second peak is for buffered communication. The 

average time reported by MPIBench is 0.08 ms, which is the average of the time for the 

two peaks. SKaMPI and PMB give approximately the same average time.  

The average time for Myrinet on the Linux cluster for 4 CPUs at 256 KByte is 

2.15ms. This result is similar to the results from SKaMPI and PMB. The result is midway 

between the two main peaks in Figure 4.12, where the first peak is at 0.5 ms, while the 

second peak is at 3.5 – 4 ms. The gap between the two peaks is larger for Myrinet on the 

Linux cluster compared to the SGI Altix. This illustrates the difference in the architecture 

between cluster and shared memory machines, since the cluster has a much bigger differ-

ence in internode and intranode communications than the shared memory machine. The 

same pattern as in SGI Altix obtained here, which is the first double peak is for process 0 

and followed by process 3, while the second double peak is represented by process 1 and 

followed by process 2.  

 Some of the results for MPI_Sendrecv are difficult to understand, and more time 

than was available for this work would be required to be certain of the explanation for 

these results. Future work beyond the scope of this thesis could include a more detailed 

analysis of the MPIBench results for MPI_Sendrecv for ring communication.  
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Figure 4.9 :  Average times for MPI_Sendrecv with Ring pattern from 4 to 64 CPUs on 
SGI Altix. 
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Figure 4.10 : Average times for MPI_Sendrecv with Ring pattern from 4 to 64 CPUs on 
IBM Linux Cluster. 
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Figure 4.11 : Distribution for 4 CPUs on SGI Altix at 256KByte. 
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Figure 4.12 : Distribution for 4 CPUs for Myrinet on Hydra at 256KByte. 
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4.7 Programming Errors Fixed   
 

A few problems in the original MPIBench code were observed during the meas-

urements taken for collective communication on IBM eServer 1350 Linux cluster. Some 

of these had a big effect on the results. In certain cases, the previous MPIBench code took 

some shortcuts such as hardcoding certain values, for example values used to specify out-

liers, that should have been configurable or handled more flexibly. This caused errors in-

cluding NaNs (Not a Number) for some results, particularly for collective communica-

tion. Thus, the solution to these problems was to make the code more general or with less 

restrictions.  

Secondly, there were bus errors that would sometimes occur   for  MPI_Scatter. 

Our analysis found that the bus error was due to  a memory allocation error and this has 

now been fixed. Furthermore, there was a problem found during the measurement for 

MPI_Send/Recv with the SGI Altix. It is not strictly a bug, but it caused problems for 

measurements using SGI MPI (refer to section 3.7.1). The problem is that while most of 

the benchmarks gave the expected improvement in performance by using the Single Copy 

option (non-buffered communication), the results for SKaMPI and MPIBench were the 

same as for the default MPI setting that uses buffered copy. The problem was due to both 

SKaMPI and MPIBench using the same array to hold send and receive message data. The 

MPIBench code was changed to use different arrays, which fixed the problem. 

 

4.8 Analysis of results over arbitrary set of processes 
 

 The previous version of MPIBench was only capable of producing combined re-

sults from all the processes. The outputs are the summary of the average time for each 

message size, the histograms (distribution data), the gnuplot script (for plotting results) 

and the raw data (which is called the subsample file).  

In some cases, particularly for analyzing the performance of collective communi-

cations, it would be more useful, and more in depth analysis can be done, if separate re-

sults from each of the processes could be revealed. Hence, the new version provides op-

tions whereby the users can choose which process (or processes) they would like to pro-

duce the results. With this option more detailed analyses have been done that have pro-
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vided us with useful information about performance issues for both point-to-point and 

collective communications. Some of these findings have been reveal in the previous and 

in the next chapters. Examples of these results for point-to-point are in section 5.4.1, 

while results in section 5.6 are for collective communication.  

 

4.9 Added Options to Ease of Use 
 
 There were several additional changes to improve the ease of use of MPIBench. 

Part of the changes is the auto configuration, which eases the compilation task. The auto 

configuration included handling the two main platform specific settings that affect port-

ability of MPIBench, which are the mechanism for binding a process to a CPU (which is 

specific to the particular operating system), and for using a clock cycle counter for the 

MPIBench timer (which is specific to the particular CPU architecture). There were a few 

more options that have been considered in the auto configuration which can be referred to 

in [2]. 

  Another option is the choice of message sizes for the measurements. Previously 

the message size is manually selected by choosing the minimum size, an increment value, 

and the maximum size. However, this selection will often provide too long a list of mes-

sage sizes. The newer version provides more options, including the option of increasing 

the message size exponentially, e.g. by factors of 2. This method is often used by other 

well-known MPI benchmarks [17, 19, 21, 65].  MPIBench also sets default message sizes 

in a script to run MPIBench, so that the user can run MPIBench without having to specify 

the message sizes by themselves. 

 Besides all the above, the newer version also provides more information (and up-

dated information) for the documentation. This is also important since it helps users to 

understand how the benchmark works and be aware of all the available options. 

 

4.10 Future Work in MPIBench 
  

MPIBench is a new MPI benchmark software that provides a more useful tool in 

helping researchers to analyse in detail the message-passing communication behavior of 

an MPI implementation on a particular parallel computer. The work described in this 
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chapter has improved the functionality, ease of use, robustness and portability of 

MPIBench. Furthermore, Section 2.4 explained that MPIBench was designed to handle 

clusters of SMP nodes better than other MPI benchmarks, while Chapter 3 and Chapter 7 

show that it works well for SMP machines. Since multi-core processors are similar to 

SMP nodes, MPIBench should be able to handle these new processor architectures with 

no change needed. 

Based on our use of MPIBench and analysis of other MPI benchmarks, here are a 

few more suggestions for improving MPIBench that have not yet been implemented.  

1. The adaptive message refinement tools that focus on message sizes where the com-

munication time is changing rapidly, as in Mpptest and SKaMPI.  

2. More MPI communication routines should be added to give more choices to the user, 

particularly for the collective communication.  

3. Making available a variety of common communication patterns would also be useful. 

4. Providing estimates of errors in the average results. 

5. User-specified calculation of average time for the ring pattern, calculated based on 

the average time of the overall processes or the average time of the slowest processes.  
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CHAPTER 5 
 

Averages, Distributions and Scalability of MPI Communication 
Times for Ethernet and Myrinet Networks  

 

5.1  Introduction  
 

Most modern parallel computers are clusters using Myrinet or Ethernet communi-

cation networks. Several studies have been published comparing the performance of these 

two networks for parallel computing, however these focus on average performance, and 

do not address the distributions of communication times, which can have long tails due to 

contention effects. In the case of Ethernet with TCP, retransmit timeouts (RTOs) can also 

occur. Slow communication events may have significant impact, particularly for applica-

tions requiring frequent synchronization, where the performance is determined by the 

slowest process. This chapter will analyse the distributions of communication times for 

standard MPI routines on Ethernet with TCP and Myrinet with GM communications net-

works on the same cluster, and study the scalability of the distributions as the number of 

communicating processes is increased, and the effect of RTOs for Ethernet with TCP. 

In the past few years, commodity clusters have become the dominant architecture 

for high-performance computing. Currently most clusters are connected by an inexpen-

sive commodity Ethernet network (usually 100 Mbit/s Fast Ethernet or 1 Gbit/s Ethernet, 

although 10 Gbit/s Ethernet is on the horizon) or by a more expensive network with 

higher bandwidth and lower latency (When this work began, Myrinet was the most com-

mon fast interconnect, although recently Infiniband has overtaken it). Most parallel pro-

grams that run on clusters use the Message Passing Interface (MPI) for communicating 

data between nodes of the clusters. It is therefore of great interest to compare the per-

formance of MPI communication routines between different cluster communication net-

works, and in particular the two most common such networks, Ethernet and Myrinet. 

It is well known that Myrinet with GM has significant advantages over Fast 

Ethernet with TCP, having much higher bandwidth (1.2 Gbit/s compared to 100 Mbit/s) 
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and much lower latency (around 10 microseconds compared to around 100 microseconds 

for Fast Ethernet). Gigabit Ethernet has similar bandwidth to Myrinet, although the la-

tency is little better than Fast Ethernet, since much of the latency is due to software over-

head from the use of TCP. Some work has been done on improving Ethernet with TCP 

performance by developing alternative lightweight communication protocols, or by cus-

tomizing the configuration of Ethernet drivers or default TCP settings (which are tuned 

for use over wide-area networks rather than clusters), however most Ethernet clusters use 

standard Ethernet and TCP. One of the problems with using TCP for communication on a 

cluster is that the system must wait for a specified time, known as the Retransmit Time-

out (RTO), before deciding that a packet has been dropped, and retransmitting it. By de-

fault this time is very large relative to interprocessor communication times on a cluster, 

since is tuned for communication over a wide-area network between machines on the 

Internet. One of the goals of this work was to investigate in more detail the effect of these 

RTOs on Ethernet performance, and how much could be gained from reducing the effects 

of RTOs.  

This chapter provides a comparison of the performance of MPI communications 

for Myrinet with GM and Fast Ethernet with TCP networks on the same cluster. The 

analysis will involve the results for both point-to-point and collective communications for 

up to 200 CPUs (100 dual CPU nodes), which allows in depth analysis on the scalability 

of the two networks to large numbers of processors. Unlike performance comparisons 

using traditional MPI benchmarks, which are only able to measure average communica-

tion times, the benchmark software used for this analysis is MPIBench [1,2], a recently-

developed MPI benchmark that allows measurement of distributions of communication 

times. The distinguishing feature of this MPI benchmark is that it uses a very accurate, 

globally synchronized clock that is based on CPU cycle counters. This allows accurate 

measurement of individual MPI communications. MPIBench is therefore able to provide 

distributions of communication times, rather than just the average values. Also, rather 

than using a simple two-processor ping-pong for point-to-point communications, 

MPIBench measures results for N processors communicating concurrently, and can there-

fore measure the effects of network contention. For collective communications, it can 

measure the different completion times for each process.  This provides greater insight 

into the effects of contention on network performance, the variation of communication 
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times, and particularly the occurrence and impact of retransmit time-outs (RTOs) in 

Ethernet networks. For applications requiring frequent synchronization, the effects of 

slow communication times (i.e. the tail of the distribution, and in particular Ethernet 

RTOs) could have significant effects, particularly for large numbers of processors.  

New clusters have Gigabit Ethernet rather than Fast Ethernet networks. Unfortunately we 

did not have dedicated access to a cluster with Myrinet and Gigabit Ethernet for this 

work, however many of the main issues addressed in this chapter, such as comparison of 

distributions of communication times and how RTOs affect Ethernet performance, would 

apply just as well to Gigabit Ethernet networks, although the values of communication 

times would be different. Gigabit Ethernet also supports Jumbo Frames [164, 165], which 

are Ethernet frames with more than the standard 1,500 bytes of payload (MTU). Most of 

the Gigabit Ethernet switches and interface cards support Jumbo Frames. However, all 

Fast Ethernet switches and interface cards support only standard-sized frames [164, 165].  

The use of Jumbo Frames in Ethernet may improve MPI performance on Ethernet and 

reduce the effects of RTOs, however we were unable to test this because Fast Ethernet 

does not support Jumbo Frame. In future, we plan to include this test as part of our analy-

sis of the MPI performance of Gigabit Ethernet networks. 

  

5.2 Related Work 
 

Many researchers have used standard MPI benchmarks to measure and compare 

the performance of Ethernet and Myrinet networks for MPI communications, although 

the number of published papers describing and analysing such results is fairly small. Al-

most all of these publications (e.g. [4,5,6,7]) measure only the average times for point-to-

point (ping-pong) communications between two nodes, and do not analyse contention 

effects (due to multiple processes communicating concurrently) or the performance of 

collective communications. Grove et al. [3] have studied the effects of TCP Retransmit 

Timeouts (RTO) on MPI communications over Ethernet networks, however this paper is 

mostly focused on comparing the performance of two different cluster network topolo-

gies and only presents results for MPI_Alltoall for collective communications [3]. Many 

papers (e.g. [3,4,5,6]) also compare network performance using applications benchmarks 
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such as the NAS Parallel Benchmarks, although most results are for small numbers of 

processors, typically 16 CPUs or less, so scalability issues are not really addressed. Some 

papers have analysed the effects of tuning Ethernet drivers or TCP configuration to im-

prove MPI performance on Ethernet networks [3,4]. The work presented in this chapter  

compares the performance of point-to-point and collective MPI communications for up to 

200 CPUs (100 dual processor nodes), using MPIBench to measure the distributions of 

communication times, which gives more insight into network performance, particularly 

contention problems and RTOs. 

Grove [8] has used MPIBench to compare the MPI performance (including distri-

butions of communication times) of Ethernet and Myrinet networks, but these were not 

direct comparisons since the Ethernet results were for a dual Pentium III cluster running 

Linux, whereas the Myrinet results were for a cluster of 4-way Sun E420R servers with 

SPARC 2 CPUs running Solaris. This analysis will compare Ethernet with TCP versus 

Myrinet with GM performance on the same Linux PC cluster. The results from Grove’s 

comparisons, and similar work by Grove et al. [9] comparing the performance of differ-

ent Ethernet network topologies in commodity clusters, showed that there were signifi-

cant problems with the performance of collective communications in MPICH version 

1.2.0 on Fast Ethernet networks, primarily due to the effect of TCP Retransmit Timeouts 

when the network becomes saturated. However, later versions of MPICH feature much 

improved algorithms for collective communication routines [11], which should give 

much better performance on Ethernet networks and perhaps reduce the number of RTOs. 

In this chapter the results are from the latest version of MPICH. 

 

5.3 Methodology 
 

  The measurements reported in this chapter were done on an IBM eServer 1350 

Linux cluster with 128 compute nodes connected by a Myrinet 2000 network as well as a 

100 Mbit/s Fast Ethernet network. More details on this system were given in section 

3.5.2.  The cluster nodes were running Redhat Enterprise Linux version 3.2.3-47 with 

kernel 2.4.21-27.ELsmp of the Myrinet drivers, MPICH-GM version 1.2.6..14a was used 
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with the Myrinet and MPICH version 1.2.6 for the Ethernet network. All compilations 

were performed with gcc v3.2.3. 

Measurements of MPI communication times were obtained using MPIBench 

[1,2,8]. All measurements were run with dedicated access to the cluster, so there were no 

other processes affecting the results. At the time the measurements were taken, not all of 

the nodes were usable, so the analyses only took measurements for up to 100 nodes (200 

CPUs). The measurement used 2 CPUs per node, with 1000 repetitions of each of the 

MPI operations except for MPI_Alltoall (the slowest operation) where 100 repetitions 

were used. Note that the number of repetitions affects the total number of occurrences on 

the figures showing the distributions of communication times, in particular there will be 

smaller numbers for MPI_Alltoall than for other MPI communications. MPIBench was 

run so that the message data was in cache memory. 

 

5.4 Point-to-Point Communication  
 

MPIBench measures not just the time for a ping-pong communication between 

two processors, but can also take into account the effects of contention when all proces-

sors simultaneously take part in point-to-point communication. As mentioned in section 

3.7, MPIBench sets up pairs of communicating processors, with processor p communicat-

ing with processor (p + n/2) mod n when a total of n processors are used. Half of the 

processors send while the other half receive, and then vice versa. The send/receive pairs 

are chosen to ensure that for a cluster of SMPs or a hierarchical communications net-

work, the performance of the full communication hierarchy can be measured.  

 

5.4.1 Send/Receive 
 

Figure 5.1 shows the average completion times for MPI_Send/MPI_Recv between 

Myrinet and Ethernet. The results for Fast Ethernet are about 10 times higher than Myri-

net. For small message sizes this is due to the higher latency of Ethernet and the software 

overhead of TCP compared to the GM protocol used by Myrinet. For higher message 

sizes the difference is primarily due to the difference in bandwidth for each network, i.e. 
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100 Mbits/s for Fast Ethernet and 1.2 Gbit/s for Myrinet 2000. For a Gigabit Ethernet 

network, the results for larger messages would be much closer. 

Note that the Myrinet performance for different numbers of CPUs is very similar, 

which illustrates the scalability of the Myrinet fat tree architecture, where the switch la-

tencies are low and the available bandwidth stays constant throughout the switch hierar-

chy. However, for Ethernet there is a jump between 64 and 128 CPUs, which is due to the 

communication no longer being between processors connected by a single switch. Once 

this occurs, the Gbit Ethernet connection between switches becomes a bottleneck.  
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Figure 5.1 :  Average Time for MPI_Send/MPI_Recv on Myrinet (MY) and Ethernet 
(ET). 

 

Figure 5.2 shows the distribution of point-to-point times for 16 KByte messages 

on 128 CPUs using Myrinet. It shows the average is around 0.15ms and the long tail goes 

until approximately 1ms.  Figure 5.3 shows the distribution of point-to-point communica-

tion times for 64 Kbyte messages on 128 CPUs using Myrinet. It shows that for large 

message sizes and numbers of CPUs, there is a wide range of completion times, due to 



 104 

contention effects and possibly other effects such as operating system interrupts. The 

minimum time is a little under 0.5 ms and the average is around 0.6 ms, and although 

most results are between 0.4 and 0.8 ms, there is a long tail to the distribution and some 

communications take several times longer than the average value. Other work [1,8,9] has 

shown that the distributions of point-to-point communication times across a variety of 

communications networks (including Ethernet and Myrinet) approximate a log-normal 

distribution.  

Figure 5.4 shows the distribution of point-to-point times for 16 KByte messages 

on 128 CPUs for Fast Ethernet network. The average is approximately 8ms. Interestingly, 

there is a small distribution after 200 ms, which is due to the TCP Retransmit-Timeout 

(RTO). Then, there is also a single distribution after 600 ms, which due to a communica-

tion pair that is occasionally very slow. Figure 5.5 shows the distribution of point-to-

point communication times for 64 Kbyte messages on 128 CPUs for the Fast Ethernet 

network. There is a main peak around the average time of 25msec, and the log-normal 

tail that goes out to about 5 times the average time. Then there is a gap which repeats the 

same pattern as in Figure 5.4, with a small peak at 225 ms followed by a reasonably long 

tail, then more results starting around 425 ms and 625 ms. This is due to the effect of the 

TCP Retransmit-Timeout (RTO), which the TCP specifications [3] say should be given 

by: 

 

RTO = SRTT + 4 * RTTVAR 

 

RTO is the Retransmit-Timeout, SRTT is the Smoothed Round-Trip Time and 

RTTVAR is the Round-Trip Time Variation. Both SRTT and RTTVAR are sampled and 

measured in the TCP stack. For MPI communications on clusters RTTVAR is quite small 

(unlike the variation in times for TCP packets over the Internet), however in the Linux 

TCP implementation the minimum time for 4 * RTTVAR is set to 200 msec. This makes 

the RTO approximately RTT + 200 msec for Linux. Therefore the peak at 225 msec in 

Figure 5.4 corresponds to the RTO, being the average communication time (SRTT = 25 

msec) plus the 200 msec minimum value for 4 * RTTVAR set by the Linux kernel. The 

results starting around 425 msec and 625 msec are presumably caused by communica-

tions that suffer 2 or 3 RTOs before finally being completed. Therefore the default 200 
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msec timeout value set in Linux means that some point-to-point communications take a 

very long time (over 20 times the average value), although in most cases the impact on 

the average communication time will be fairly small, since only a small percentage of 

communications suffer a timeout. However for some synchronous applications where 

progress is determined by the completion time of the slowest process, this may have a 

significant effect. 
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Figure 5.2 : Distribution of MPI_Send/Recv for Myrinet at 128 CPUs for 16 KByte. 
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Figure 5.3: Distribution of MPI_Send/Recv times for Myrinet at 128 CPUs for 64 
KByte. 

 

0

1000

2000

3000

4000

5000

6000

7000

0 100 200 300 400 500 600 700

Time (Milisec)

O
cc

u
rr

en
ce

s

 

Figure 5.4 : Distribution of MPI_Send/Recv times for Ethernet at 128 CPUs for 16 
KByte. 
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Figure 5.5 : Distribution of MPI_Send/Recv for Ethernet at 128 CPUs for 64 KByte. 

 

In order to analyze the effect of RTO with no communication on the central 

switch, a check of the performance for less than 32 nodes (64 CPUs) is needed. The re-

sults showed that there were no occurrences of RTO for 64 CPUs and below for point-to-

point communications. This shows that the bottleneck and contention problem at the cen-

tral switch, and the 1 Gbit uplinks to the central switch, would be one of the main causes 

of RTO.  

For any Ethernet network, the amount of RTOs will depend a lot on the network 

architecture. Grove [8, 9] did a comparison between two different cluster computers 

(Perseus and Bunyip), which both used 100 Mbit/s Ethernet but had very different 

switching and network topology. Perseus contained 116 dual processor nodes and was 

connected with a conventional stacked switch architecture by using a proprietary high 

speed link of 2.1 GB/s per switch, while Bunyip consisted of 96 dual processor nodes 

connected using Hewlett Packard ProCurve 400M Fast Ethernet switches configured in a 

novel tetrahedral interconnection architecture [9]. The switch used on Perseus showed a 

significant decrease in performance as the amount of traffic in the network was increased. 

In contrast, Bunyip’s switches performed well with only a marginal increase in comple-

tion times, even with a significant number of communicating processes. Bunyip had a 
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better architecture with less bottlenecks and therefore had less RTOs than Perseus, and 

consequently better MPI communications performance.  

 The rest of this sub-section discusses the scalability issues for the distributions of 

Point-to-Point communications as the number of processes is increased for Ethernet and 

Myrinet. As the message size and the number of processors is increased, the distributions 

of communication times broaden and the tail of the distribution gets longer, giving an in-

creased proportion of communications that take much longer than the average time. The 

following analysis aims to provide a more quantitative analysis of this phenomena for the 

two different networks. 

Two different approaches were taken in analyzing the tails of the distributions. 

The first was to measure the percentage of occurrences that were more than a factor of n 

times the minimum communication time, for n=2,3,4,… This analysis will give a com-

parison of the breadth of the distribution and the length of its tail, both of which give an 

indication of contention effects. 

The second approach is to compute the percentage of measured communication 

times that are more than n standard deviations from the average time, i.e.  tmean+(n * Std. 

Dev.) where n=1,2,3,4,… The rationale behind this analysis is to illustrate the skewed-

ness of the distributions, and show long tails that might indicate deviation from the ex-

pected log-normal distribution.  

The analyses were done for 8, 32 and 128 CPUs and at 16 KByte, 64 KByte and 

256KByte. Figure 5.6 shows an example of the point of Min, Mean and Standard Devia-

tion for 32 CPUs at 16 KByte for Myrinet. 
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Figure 5.6: Examples of the calculation of Min, Mean and Std. Dev. for 32 CPUs at 16 
KByte for Myrinet 

 

Table 5.1 and Table 5.2 show the percentage of times that are greater than n * 

Min and smaller than (n+1) * Min, for both Myrinet and Ethernet. Interestingly, for 32 

CPUs for all message sizes Ethernet shows a smaller percentage of times >2 * min com-

pared to Myrinet. This is possibly due to the contention that occurs during communica-

tion between switches, note that for Myrinet there are only 8 nodes (16 CPUs) per switch 

compared to 32 nodes (64 CPUs) per switch for Ethernet. However, for 128 CPUs the 

results for Myrinet remain about the same, whereas for Ethernet percentage of times that 

are >2 * min increases dramatically. Ethernet performs badly because of the communica-

tion between switches for 128 CPUs. As mention in the above section, the occurrences of 

Mean + Std. Dev. 
(Mean + 0.031 = 0.217) 
 

Mean 
(0.186) 

Min 
(0.136) 

Mean – Std. Dev. 
(Mean - 0.031 = 0.155) 
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RTOs and more contention occur for Ethernet when there is communication between 

switches.  

Table 5.3 and Table 5.4 show the percentage of communication times that are be-

tween than the mean plus n times the standard deviation and the mean plus (n+1) times 

the standard deviation, for n = 1,2,3,4 on Myrinet and Ethernet. The results are surpris-

ingly similar, probably because the Ethernet results have RTOs that increase the standard 

deviation. Myrinet has a slightly higher percentage of values that are close to the average. 

Based on the scalability analyses and discussion in this section, it can be con-

cluded that Ethernet performance is reasonably good for communication between proc-

esses on a single switch, however it experiences a significant amount of contention and 

RTOs for communication between switches. Myrinet performs well and scales well even 

for communication between switches, but still experiences some variation in communica-

tion times, presumably due to contention, particularly for larger number of CPUs.  

 

 

 

 8 CPUs 32 CPUs 128 CPUs 

 16 KB 64 KB 256 KB 16 KB 64 KB 256 KB 16 KB 64 KB 256 KB 
 

Time < 2x Min 
 

100 100 99.99 95.93 75.57 71.76 92.51 72.53 54.96 

2 x Min > Time 
< 3 x Min 
 

0 0 0.01 4.07 20.09 19.59 5.56 19.68 30.13 

3 x Min > Time 
< 4 x Min 
 

0 0 0 0 1.68 5.05 0.58 4.84 7.42 

4 x Min > Time 
< 5 x Min 
 

0 0 0 0 2.51 0.06 0.57 1.23 3.66 

5 x Min > Time 
< 6 x Min 
 

0 0 0 0 0.14 2.60 0.53 0.65 1.81 

Time > 6 x Min 
 

0 0 0 0 0.01 0.94 0.25 1.07 2.03 

 

Table 5.1 : Percentage of times that are greater than n times and smaller than n+1 times 
the minimum values for Myrinet. 
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 8 CPUs 32 CPUs 128 CPUs 

 16 KB 64 KB 256KB 16 KB 64 KB 256KB 16 KB 64 KB 256KB 
 

Time < 2x Min 
 

100 99.96 99.61 99.97 99.71 99.43 26.90 14.22 10.22 

2 x Min > Time 
< 3 x Min 
 

0 0 0.39 0.03 0.28 0.57 30.23 28.94 13.02 

3 x Min > Time 
< 4 x Min 
 

0 0 0 0 0 0 26.34 23.17 22.37 

4 x Min > Time 
< 5 x Min 
 

0 0 0 0 0.01 0 9.92 16.26 23.50 

5 x Min > Time 
< 6 x Min 
 

0 0.01 0 0 0 0 2.92 8.17 15.94 

Time > 6 x Min 
 

0 0.03 0 0 0 0 3.68 9.24 14.95 

 

Table 5.2 : Percentage of times that are greater than n times and smaller than n+1 times 
the minimum values for Ethernet. 

 
 
 8 CPUs 32 CPUs 128 CPUs 

 16 KB 64 KB 256 
KB 

16 KB 64 KB 256 
KB 

16 KB 64 KB 256 
KB 
 

Time < 
mean +(1xStd) 
 

84.60 83.65 97.49 90.91 90.91 90.72 90.66 88.92 88.81 

mean +(1xStd) 
< Time <  
mean +(2xStd) 
 

14.56 16.34 2.40 3.73 3.73 5.68 5.66 7.39 7.54 

mean +(2xStd) 
< Time <  
mean +(3xStd) 
 

0.59 0.01 0.08 2.42 2.42 0.14 1.78 2.05 2.43 

mean +(3xStd) 
< Time <  
mean +(4xStd) 
 

0.19 0 0.03 2.45 2.45 3.45 0.42 0.97 1.08 

Time > 
mean +(4xStd) 
 

0.06 0 0 0.49 0.49 0.01 1.49 0.67 0.14 

Table 5.3 : Myrinet, percentage for average plus standard deviation for n = 1,2,3,4. 
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 8 CPUs 32 CPUs 128 CPUs 

 16 KB 64 KB 256 
KB 

16 KB 64 KB 256 
KB 

16 KB 64 KB 256 
KB 
 

Time < 
mean +(1xStd) 
 

87.34 71.20 77.28 89.95 83.58 80.09 92.66 90.39 86.48 

mean +(1xStd) 
< Time <  
mean +(2xStd) 
 

11.40 28.77 22.59 0.97 10.63 13.13 6.11 8.53 13.52 

mean +(2xStd) 
< Time <  
mean +(3xStd) 
 

1.19 0 0.04 5.87 3.52 6.69 0.97 0.96 0 

mean +(3xStd) 
< Time <  
mean +(4xStd) 
 

0 0 0.06 3.01 2.26 0.05 0.12 0.12 0 

Time > 
mean +(4xStd) 
 

0.08 0.04 0.03 0.21 0.01 0.05 0.14 0 0 

Table 5.4 : Ethernet, percentage for average plus standard deviation for n = 1,2,3,4. 

 

5.4.2 Combined Send and Receive  
 

Most communication networks are capable of providing the same bandwidth if 

messages are sent simultaneously in both directions on the same communications link. 

MPI_Sendrecv provides a good way of testing that the MPI implementation can indeed 

provide this bidirectional bandwidth. MPIBench uses the same communication partners 

for MPI_Sendrecv and MPI_Send/MPI_Recv, so if the MPI implementation can make 

full use of duplex communication links, the results for these two measurements should be 

similar. However all of the results for MPI_Sendrecv, for both Ethernet and Myrinet, give 

results that are approximately a factor of 2 larger than the MPI_Send/MPI_Recv results 

shown in Table 5.5, indicating that the duplex capability of these networks is not being 

utilized. This may be due to limitations of the nodes, perhaps caused by bottlenecks in the 

network interface cards or memory accesses.  

Grove [8] found the same problem with Myrinet on a cluster of Sun E420R SMP 

servers and with QsNet on the AlphaServer SC. He postulated that the reason for the 

limitation of Myrinet with GM layer is that the bidirectional message-passing is serialized 
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in the GM layer implementations. For QsNet, Petrini et al. [13] suggest that PCI bottle-

necks and DMA contention between system memory and the network interface are the 

cause of the unexpectedly poor performance.  

The distributions for MPI_Sendrecv on Myrinet and Ethernet are very similar to 

MPI_Send/MPI_Recv. For Ethernet, RTOs occur for more than 64 CPUs, where inter-

switch communication is required, and this affects the average communication time. 

There are no RTOs for less than 64 CPUs. So, the comparison of Myrinet and Ethernet 

for MPI_Sendrecv is basically the same as for MPI_Send/MPI_Recv. Figure 5.7 shows 

the average time on Ethernet and Myrinet for MPI_Sendrecv. Note that the pattern of the 

figure is the same as MPI_Send/MPI_Recv (Figure 5.1) except that the values are in-

creased by approximately a factor of two.  
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Figure 5.7 : Average Time for MPI_Sendrecv on Myrinet (MY) and Ethernet (ET). 
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 Ethernet Myrinet 

 

No. of 

CPU 

MPI Send / 

MPI_Recv 

MPI_Sendrecv MPI Send / 

MPI_Recv 

MPI_Sendrecv 

 

4 30.19 59.65 2.29 3.62 

16 33.46 62.99 2.27 3.61 

64 33.46 66.61 2.90 4.96 

128 119.85 230.31 2.74 5.09 

200 134.64 261.86 2.74 5.21 

Table 5.5 : Comparison for MPI_Send/MPI_Recv and MPI_Sendrecv Between Myrinet 
and Ethernet for 256 KByte messages. 

 

5.5  Barrier 
 

Figure 5.8 shows the comparison of times for MPI_Barrier. As expected, the time 

grows approximately logarithmically with the number of processors, although Ethernet is 

approximately 4-5 times slower than Myrinet. The reason for the big jump in the Ethernet 

result for 200 CPUs is probably due to a different algorithm being used in MPICH 1.2.6 

code when the number of CPUs is not a power of two [69], although this is not noticeable 

for smaller number of CPUs, for example 40 or 48 CPUs. Figure 5.9 shows the distribu-

tion of the communication times for Ethernet for 64, 128 and 200 CPUs. The peak for 

200 CPUs corresponds to the average value, so it shows that the jump in the average 

value is not due to some anomalous large values or RTOs that are dragging up the aver-

age, which can cause results such as this, as will be seen in the next section. Figure 5.10 

shows that MPI_Barrier on Myrinet performs as expected, with the completion time 

gradually increasing as more processes participate.  
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Figure 5.8 : Average time for MPI_Barrier Myrinet and Ethernet. 

 

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

0 0.5 1 1.5 2 2.5 3 3.5 4

Time (ms)

O
cc

ur
an

ce
s

64 CPUs
128CPUs
200 CPUs

 

Figure 5.9 : Distribution of MPI_Barrier times for Ethernet at 64,128 and 200 CPUs. 
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Figure 5.10 : Distribution of MPI_Barrier times for Myrinet at 64,128 and 200 CPUs. 

 

5.6 Broadcast 
 

MPICH 1.2.6 uses a new broadcast algorithm [11,69]. For small message 

size(<12KByte) and for less than 8 CPUs the binomial tree algorithm is used, while for 

medium (12KByte < medium < 512KByte) and long message size (>512KByte) it uses 

the scatter followed by allgather algorithm. Furthermore, the allgather algorithm for me-

dium message size and for power of two number of processes uses the recursive doubling 

algorithm, while for medium message size and for non power of two number of processes 

and also for long message size, the ring algorithm is used. 

Figure 5.11 and Figure 5.12 show the average completion time for MPI_Bcast for 

Myrinet and Ethernet. The average times for both networks increases gradually as the 

message size and number of processes is increased. For 200 CPUs both networks show 

the same pattern, with a jump at 1 KByte and again at 16 KByte.  The precise reason for 

the jump at 1 KByte is still unknown, but a similar jump for 48 and 80 CPUs is also ob-

served. So, it is suspected that the cause of the jump is related to the fact that the number 

of CPUs is not power of two. The jump at 16 KByte is clearly due to where a different set 
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of algorithms is used [11,69]. For Ethernet there is also a large jump for 128 CPUs at 16 

KByte. The reason for the large increase for Ethernet is clear when the distributions of 

communication times is analysed - it is caused by retransmit timeouts. 
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Figure 5.11 : Average time for MPI_Bcast on Myrinet 
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Figure 5.12 : Average time for MPI_Bcast on Ethernet 

 
 

Figure 5.13 shows the distribution of times for 128 CPUs at 256 KByte for Myri-

net. The main peak shows a fairly narrow log normal distribution, with a much smaller 

average time than for Ethernet. However there are a small number of measurements, cor-

responding to just a few iterations that are much slower than the rest, which create a long 

tail after the main peak.  

Figure 5.14 shows that for 128 CPUs for Ethernet, there are no retransmit time-

outs for 8 KByte messages, although there are a few larger times in the distribution, that 

were due to one of the 1000 repetitions taking significantly longer. A small number of 

RTOs start to occur for 16 Kbytes, as seen in Figure 5.15, and a few iterations have two 

RTOs, giving a time over 400ms. The number of RTOs increases significantly for larger 

message sizes, as seen in Figure 5.16 to Figure 5.18.  

Table 5.6 shows the percentage of measured communication times that have 

RTOs, which grows to be a substantial fraction of the total number of measurements. The 

table also shows an estimate of the time that the broadcast would have taken if there were 

no RTOs, which can be up to half the actual measured time. Note that the times shown in 

Figure 5.14 to Figure 5.18 are times for all repetitions and all processes. The time for a 
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collective communication is measured as the time for the slowest process, so only one of 

the processes has to suffer an RTO for it to affect the average broadcast time.  

The results presented in Table 5.6 and Table 5.7 are calculated based on the fol-

lowing technique. The range of measurements with no occurrences of RTO is taken by 

the minimum communication time plus 200ms (tm + 200ms). The reason 200ms is chosen 

for the above estimation is because that is the minimum time sets for 4 * RTTVAR in the 

Linux TCP implementation [3], as explained in Section 5.4.1. So, the percentage of times 

without RTOs is calculated from all occurrences of communication times between tm and 

tm + 200ms. Another 200ms will be added (tm + 200ms + 200ms = tm + 400ms) to make it 

as the maximum point for the first RTO. Then the percentage of measurements with one 

RTO (1xRTO) will be calculated from tm + 200ms until tm + 400ms. Next, the percentage 

with two RTOs (2xRTO) will be calculated from tm + 400ms until tm + 600ms.  This is 

continued until all measured times were accounted for. Finally, the estimation of the av-

erage communication time without RTOs is calculated by taking the average from the 

10% of maximum time data without the occurrences of RTO. This is because for collec-

tive communication the time is taken from the slowest processors to complete.   
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Figure 5.13 : Myrinet at 128 CPUs for 256 KByte. 
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Figure 5.14 : Ethernet at 128 CPUs for 8 KByte. 
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Figure 5.15 : Ethernet at 128 CPUs for 16 KByte. 
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Figure 5.16 : Ethernet at 128 CPUs for 32 KByte. 
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Figure 5.17 : Ethernet at 128 CPUs for 64 KByte. 
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Figure 5.18 : Ethernet at 128 CPUs for 256 KByte. 

 

 

 No RTO 1 x RTO 2 x RTO 3 x RTO 
 

Average 
Time 
(msec) 

Estimated 
Average 
Time With-
out RTO 
(msec) 
 

8 KByte 100 0 0 0 7.92 7.92 

16 KByte 98.9 0.99 0.01 0 90.81 49.33 

32 KByte 78.4 21.3 0.29 0 243.7 69.39 

65 KByte 85.2 14.7 0.01 0 289.70 94.43 

256KByte 73.0 26.9 0.04 0 412.38 202.99 

Table 5.6 : Percentage of RTO occurrences for Broadcast for Ethernet on 128 CPUs and 
estimated average time without RTOs. 

 

In order to check whether RTOs occur with no communication on the central 

switch, the performance for CPU less than 64 has been analysed. The results for 64 CPUs 

showed that there were no RTOs, but surprisingly for 32 CPUs the results in Figure 5.19 

showed a small number of RTOs. However, these RTOs were anomalous, since they only 
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occurred for one of the 1000 repetitions of the broadcast, and did not occur again when 

the benchmark runs were repeated two more times. These kinds of outliers occur occa-

sionally, possibly due to a problem in the switch, or an operating system interrupt or 

some other problem on one of the nodes of the cluster. Similar outliers occur occasionally 

even for Myrinet, as shown in Figure 5.21.  

Although these outliers only occur for a single test, it is instructive to explore 

them in more detail, by investigating the minimum, average and maximum times for each 

process. This also illustrates the capability and usefulness of MPIBench in analyzing the 

behavior of message passing communication in more detail. Figure 5.20 shows that all of 

the processes were affected by the RTO that occurred on one of the iterations. However 

the maximum time was obtained by CPU rank 0, 8, 16 and 24. This sequence indicates the 

pattern of the binomial tree algorithm, where a delay at one of the processes would affect 

the results of all others further down the tree. An analysis of the outliers measured for 

Myrinet shows a similar pattern, with Figure 5.22 showing the maximum time is obtained 

by processes 3, 11, 19 and 27. 
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Figure 5.19 : Ethernet at 32 CPUs for 256 KByte. 
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Figure 5.20 : Minimum and Average Time for each CPU on Ethernet for  32 CPUs at 
256 KByte 
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Figure 5.21 : Myrinet at 32 CPUs for 256 KByte. 
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Figure 5.22 : Minimum and Average Time for each CPU on Myrinet for 32 CPUs at 256 
KByte. 

 

5.7 Scatter and Gather 
 

Scatter and gather are typically used to distribute data at the root process (e.g. a 

large array) evenly among the processors for parallel computation, and then recombine 

the data from each processor back into a single large data set on the root process. The 

performance of MPI_Scatter is dependent on how fast the root process can send all the 

data, since it is a bottleneck. However the root process can use asynchronous sends, 

which means that the overall performance of the scatter operation is also dependent on 

the overall communications performance of the system and the effects of contention.  The 

algorithm used by MPICH 1.2.6 in all data sizes for Scatter and Gather is the binomial 

tree algorithm [11,12,69].  

 

5.7.1 Scatter 
 

Figure 5.23 and Figure 5.24 shows the average completion time for MPI_Scatter 

on Myrinet and Ethernet for 4 to 200 CPUs. The average times for both networks in-

crease slowly as the message size and number of processes are increased. The larger mes-
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sage sizes the time increases approximately linearly with the message size. There is a 

small jump at 32 Byte, 512 Byte and 2048 Byte for 200 CPUs on Myrinet and this jump 

is not experienced by Ethernet. It is also noticeable that the results for Ethernet are about 

10 times higher than Myrinet.   

Figure 5.25 and Figure 5.27 shows the distributions at 64 Kbyte for Myrinet and 

Ethernet, respectively.  The completion times for Myrinet are mostly between 45 and 50 

ms, with a long tail going out to 70 ms, then a big gap to a small number of results around 

90 ms, which are from just a single iteration. Figure 5.26 shows that the results at 90 ms 

were from half of the processes, from process 0 to 63, while the another half of the proc-

esses had maximum times between 50 to 70 ms. On Ethernet there are several peaks, for 

node 0 the average completion times is at 710 ms, nodes 63 the times is 730 ms and for 

nodes 127 the completions times is 752 ms as shown in Figure 5.28. Figure 5.26 and 

Figure 5.28 shows the main difference between the Myrinet and Ethernet results, that the 

average time for each process is almost the same for Myrinet but for Ethernet the average 

time is increasing gradually. The constant performance of Myrinet is presumably due to 

the scalability of the Myrinet fat tree architecture, where the switch latencies are low and 

the available bandwidth stays constant throughout the switch hierarchy. It is surprising 

that the Myrinet distribution has a long tail. This appears to be due to a very small num-

ber of repetitions that take much longer than the rest.   

Although the average time for scatter is higher than broadcast for the same num-

ber of processes and message size, there is no occurrence of RTOs for scatter. This is be-

cause  for scatter, the size of the data received by each process is the message size di-

vided by the number of processes, so the total amount of data passing through the net-

work and the central switch will be lower compared to broadcast.  

Notice that in Figure 5.26, Figure 5.28 and Figure 5.29, process 0 finishes first for 

Scatter on Myrinet and Ethernet. This is different from the SGI MPI results on SGI Altix 

3700, given in Section 7.9, where process 0 finishes last [22]. This indicates that for SGI 

MPI, process 0 will wait for the acknowledgement from all CPUs, while in MPICH 1.2.6, 

it only waits for the acknowledgements from the processes that it sent the message to.  

Figure 5.29 shows the minimum and average time for each of 16 processes for 64 

KByte message sizes. The purpose of this figure is to show the effect of binomial tree 

algorithm more clearly. In binomial tree algorithm, process 0 will send data to processes 
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1, 2, 4 and 8, process 1 to processes 3, 5 and 9, process 2 to processes 6 and 10, process 3 

to processes 7 and 11, process 4 to process 12 and from process 7 and higher, each proc-

ess will distribute to one process only.   Since process 1 is placed in the same node with 

process 0, it will finish after process 0. However, process 2 finishes a bit later than proc-

ess 4 and 8 since it has to distribute data to 2 other processes, while processes 4 and 8 

only have to distribute to 1 process. Referring to the figure, the completion of each proc-

ess is synchronized with the sequence of the binomial tree algorithm and affected by the 

position of the process, either in the same node or otherwise.  
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Figure 5.23 : Average time for MPI_Scatter on Myrinet. 
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Figure 5.24 : Average time for MPI_Scatter on Ethernet. 
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Figure 5.25 : Myrinet at 128 CPUs for 64 KByte. 
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Figure 5.26 : Minimum, Maximum and Average Time for each CPU on Myrinet for  128 
CPUs at 64 KByte 
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Figure 5.27 : Ethernet at 128 CPUs for 64 KByte. 
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Figure 5.28 : Minimum, Maximum and Average Time for each CPU on Ethernet for  
128 CPUs at 64 KByte 
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Figure 5.29 : Minimum and Average Time for each CPU on Ethernet for 16 CPUs at 64 
KByte 
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5.7.2 Gather 
 

The performance of MPI_Gather is mainly determined by how much data is re-

ceived by the root process, which is the bottleneck in this operation. Hence the time taken 

is expected to be roughly proportional to the total data size for a fixed number of proces-

sors, with the time being slower for larger numbers of processors due to serialization and 

contention effects. Figure 5.30 and Figure 5.31 shows the average completion time for 

MPI_Gather on Myrinet and Ethernet for 4 to 200 CPUs. The average times for both 

networks increase proportionally as the message size and number of processes is in-

creased.  
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Figure 5.30 : Average time for MPI_Gather on  Myrinet 
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Figure 5.31 : Average time for MPI_Gather on Ethernet. 

 
The spread of the distributions for both networks indicate different completion 

times for different processes rather than any wide variation in completion times for each 

process or the effect of RTOs for Ethernet. Although MPI_Gather does the reverse proc-

ess from MPI_Scatter, Figure 5.33, Figure 5.35 and Figure 5.36 show that the pattern of 

average times for each process is clearly very different to scatter.  The capability of 

MPIBench to show average times for each process clearly illustrates the inverse binary 

tree algorithm used for gather, particularly in Figure 5.35 and Figure 5.36. Each of the 

odd numbered processes sends their data to an intermediate even numbered process, 

which combines this data with its own. Then this combined data will be forwarded to the 

next intermediate process which has a rank that is a multiple of 4, where it is combined 

again and forwarded to an intermediate process with rank a multiple of 8, and so on, until 

finally all the data is gathered on process 0 [69]. 

The broad distribution of times for Myrinet in Figure 5.32 is mostly due to the dif-

ference in average completion times for processes at different levels of the binary tree, as 

well as some variation between the average and maximum completion times of each 
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process, as shown in Figure 5.33. There are a small number of outliers between 80ms and 

100ms. Figure 5.33 shows that these are from the maximum times for the last processes 

to complete, i.e. 64 and 0. 

This distribution of times for Ethernet in Figure 5.34 shows a similar scenario. 

While the clusters of times at 200ms, 400ms and 800ms appear as though they may be 

due to RTOs, they actually represent the different completion times for processes at dif-

ferent levels of the binary tree, as seen in Figure 5.35.  This analysis shows that RTOs 

have no effect on the performance of scatter and gather. This is because for scatter and 

gather, the size of the data being sent by each process decreases as the number of com-

municating processes in the binary tree increases, which will reduce the bottleneck prob-

lem at the central switch on the Ethernet network.  
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Figure 5.32 : Myrinet for 128 CPUs at 64 KByte. 
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Figure 5.33 : Minimum, Maximum and Average Time for each CPU on Myrinet for  128 
CPUs at 64 Kbyte. 
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Figure 5.34 : Ethernet for 128 nodes at 64 KByte 
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Figure 5.35 : Minimum, Maximum and Average Time for each CPU on Ethernet for 128 
CPUs at 64 KByte 
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Figure 5.36 : Minimum and Average Time for each CPU on Ethernet for 16 CPUs at 64 
KByte. 
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5.8 Alltoall 
 

The final collective communication that has been measured is MPI_Alltoall, 

where each process sends its data to every other process. This provides a good stress test 

of the communications network. MPICH 1.2.6 uses four algorithms for MPI_Alltoall 

[11,12,69]. For short messages (<256Bytes) and (number of processes >= 8) it uses store-

and-forward algorithm. For medium size messages (256Bytes<medium<32KBytes) and 

(short messages for number of processes < 8) it uses an algorithm that posts all irecvs and 

isends and then does a waitall, then scatter the order of sources and destinations among 

the processes. For long messages and power-of-two number of processes, it uses a pair-

wise exchange algorithm. For a non-power-of-two number of processes, it uses an algo-

rithm in which, in step i, each process receives from (rank-i) and sends to (rank+i).  

Figure 5.37 shows that average completion time for Myrinet increases gradually 

with message size and number of processes (for 128 and 200 cpus the size of data is only 

until 32Kbytes due to time contraints). However, in Figure 5.38 the communication times 

for Ethernet increase markedly for more than 32 CPUs, which shows the effect of Re-

transmit Timeouts (for 128 and 200 cpus the size of data is only until 16Kbytes due to 

time contraints). Note that there is often a hump (indicating slower times for smaller mes-

sage sizes) where the algorithm changes, particularly after 256Byte and 32KByte.  

 Figure 5.39 shows the distribution for 128 CPUs for 2 KByte on Myrinet. Be-

sides the single point at around 28 ms, which is due to a slow result only for a single it-

eration, it can be seen that even for a large number of CPUs, Myrinet has a single, fairly 

narrow peak at a much smaller communication time than Ethernet, and with a short tail, 

so the performance of All-to-All is excellent. In contrast, Figure 5.40 shows that RTOs 

occur for Ethernet at 128 CPUs even for relatively small message sizes. Figure 5.40 to 

Figure 5.45 show the distribution of times for 128 CPUs on Ethernet for message sizes 

from 64 Byte to 2 KByte. These figures show the increase of RTO with the increasing of 

message sizes. At 2 KByte there are several peaks which are due to occurrences of multi-

ple RTOs. Above this message size the RTOs are hard to detect, since the average time is 

much larger than the 200 ms RTO delay and the distribution of times becomes very 

broad.  
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 Figure 5.41 and Figure 5.43 shows the minimum, average and maximum time for 

128 CPUs on Ethernet for 64 Byte and 256 Byte message sizes, respectively.  For 64 

Byte messages, there are only a small number of RTOs which are only experienced by 1 

CPU, which is CPU rank 80, while for 256 Byte message sizes RTOs are experienced by 

all CPUs. 

 

0.01

0.1

1

10

100

1000

32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4

32
76

8

65
53

6

Size 0f Data (Bytes)

T
im

e 
(M

ili
se

c)

4

8

16

32

64

128

200

 

Figure 5.37 : Average time for MPI_Alltoall on Myrinet for 4 to 200 CPUs. 
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Figure 5.38 : Average time for MPI_Alltoall on Ethernet for 4 to 200 CPUs. 
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Figure 5.39 : Myrinet at 128 CPUs for 2KByte. 
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Figure 5.40 : Ethernet at 128 CPUs for 64Byte. 
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Figure 5.41 : Minimum, Maximum and Average time on Ethernet for 128 CPUs at 64 
Byte 
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Figure 5.42 : Ethernet at 128 CPUs for 256 Byte. 
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Figure 5.43 : Minimum, Maximum and Average time on Ethernet for 128 CPUs at 256 
Byte 
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Figure 5.44 : Ethernet at 128 CPUs for 1KByte. 
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Figure 5.45 : Ethernet at 128 CPUs for 2KByte. 
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Similarly with point-to-point and broadcast, on Fast Ethernet the performance for 

64 CPUs was checked in order to see if there were any occurrences of RTO without the 

effect of communication problems at the central switch. As seen in the previous sections, 

point-to-point and broadcast communication suffered little or no RTOs for 64 CPUs and 

below, where there is no inter-switch communication. However, for MPI_Alltoall, which 

involves all processes communicating at the same time, it is more likely that RTOs would 

occur even for communication within a switch. It was found that RTOs did indeed occur 

for 64 CPUs, starting at message sizes as small as 2 KBytes. Figure 5.46 to Figure 5.50 

show the distribution of times for 64 CPUs from 2 to 32KByte.  The figures show that the 

number of RTOs is increasing as the message size increases. For larger data sizes, Figure 

5.48 shows a large number of multiple RTOs above the first significant peak at 200ms. 

The small number of results below 200ms occur only for certain processors. Once the 

message size gets large enough, as in Figure 5.49 and Figure 5.50, the distribution be-

comes so broad that it is impossible to identify delays due to RTOs. Myrinet still per-

forms well for large message sizes and similar number of CPUs, as shown in Figure 5.51. 

Table 5.7 shows the percentage of occurrences of RTO for All-to-All for different 

message sizes and numbers of CPUs. The percentage of single and multiple RTOs in-

creases rapidly as the message size increases, until the point where the average time is 

large enough, and the distribution is broad enough, that it is not possible to identify the 

number of RTOs (as in Figure 5.50). Table 5.7 also shows the estimated average commu-

nication time if there were no RTOs. Again, this shows that RTOs have a significant ef-

fect on the communications performance of MPI over Ethernet networks. 

Grove et al. [8,9] did a similar performance measurement on MPI_Alltoall using a 

Beowulf-type cluster and MPICH 1.2.0. Based from the paper, the TCP RTO badly af-

fected the results at a smaller number of processors (for example 16 CPUs) and smaller 

message sizes (for example 4 KByte) and above certain message sizes the communication 

failed completely. They found that one of the problems was due to the contention for 

buffer access by the switches input queueing processes and that MPICH 1.2.0 had an in-

efficient implementation of the algorithm for MPI_Alltoall, which was fixed in subse-

quent versions. However the analysis presented in this section found the effects of RTOs 

to be much less serious than for these previous measurements. The improvement is 
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probably due to both improved algorithms and implementations of the collective commu-

nications routines used in MPICH, and improved Ethernet network in the machine used 

in this study, which had switches with more ports and a faster backplane. 
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Figure 5.46 : Ethernet at 64 CPUs for 2 KByte. 
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Figure 5.47 : Ethernet at 64 CPUs for 4 KByte. 
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Figure 5.48 : Ethernet at 64 CPUs for 8 KByte 
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Figure 5.49 : Ethernet at 64 CPUs for 16 KByte 
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Figure 5.50: Ethernet at 64 CPUs for 32 KByte. 
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Figure 5.51 : Myrinet at 64 CPUs for 32 KByte. 
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 No RTO 1 x RTO 2 x RTO ≥ 3 x 
RTO 

Avg. 
Time 
(msec) 

Est. Avg.  Time 
Without RTO 
(msec) 

32 CPU 

2KB 99.9 0.06 0 0 15.6 15.6 

4 KB 100 0 0 0 28.4 28.4 

8 KB 97.2 2.63 0 0 117.3 84.41 

16 KB 81.19 18.81 0 0 287.1 239.91 

32 KB NA NA NA NA 420.5 NA 

64 CPU 

2KB 97.6 2.4 0 0 115.5 112.24 

4 KB 55.7 33.0 6.9 4.4 718.6 205.83 

8 KB 3.5 78.4 13.1 5.0 528.7 282.23 

16 KB 0.2 28.6 61.5 9.6 742.8 381.14 

32 KB NA NA NA NA 844.3 NA 

128 CPU 

256 B 89.28 10.72 0 0 217.1 75.13 

512 B 96.59 3.29 0.10 0 660.7 407.12 

1 KB 95.5 4.37 0.05 0.08 773.7 425.86 

2 KB NA NA NA NA 2425 NA 

4 KB NA NA NA NA 2572 NA 

 

Table 5.7 : Percentage of RTO Occurrences for Alltoall for 32, 64 and 128 CPUs 

 

5.9 Summary 
 

This chapter has compared the performance of Fast Ethernet and Myrinet net-

works for MPI communications on a commodity Linux PC cluster. In particular, the 

analyses have investigated the effects of network contention (including Ethernet retrans-

mit time-outs) by measuring and analyzing distributions of communication times for 

point-to-point and collective communications, and how they scale with increasing mes-

sage sizes and numbers of processes. As expected, the Myrinet network performs signifi-
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cantly better than Fast Ethernet. The TCP RTO on the Ethernet network does affect 

communications performance, but only for large message sizes and large numbers of 

processors (especially where multiple Ethernet switches are needed for communication), 

where the network becomes saturated. Importantly, in the case for lots of small messages 

are sent very quickly between lots of processors, which is what happens with MPIBench 

tests, RTOs do not occur. Hence they should only affect parallel applications that com-

municate very large messages. So even fine-grained applications that are dominated by 

lots of communications should not be affected unless the message sizes are large. So, it 

can have significant impact on the performance of collective communications, particu-

larly MPI_Bcast and MPI_Alltoall. Earlier measurements by Grove et al. [8,9] for older 

versions of MPICH showed that TCP RTO can greatly reduce the performance of 

MPI_Bcast and MPI_Alltoall, and even cause them to fail at large message sizes. How-

ever the analysis presented in this chapter found the effects of RTOs to be much less seri-

ous than for these previous measurements, probably due mostly to improvements in the 

collective communications routines used in MPICH, although the improved Ethernet 

network in the machine used in this study, which had switches with more ports and a 

faster backplane, would also have helped.  

This chapter also presented an analysis on the distributions of the communication 

times for each MPI collective operation, particularly focused on the causes of the slowest 

communication times. For Ethernet these are often due to RTOs. Even for Myrinet, there 

were some infrequent occurrences of very slow communications that may be due to prob-

lems on the nodes, perhaps operating system interrupts. In other cases, such as Scatter 

and Gather, RTOs had no effect on the communication times, and the slowest processes 

in the distribution of communication times were just due to the communication pattern of 

the algorithm used to implement the MPI operation.  

This study also found that MPIBench is a very useful tool for detailed analysis of 

communications performance, particularly the capability to provide distributions of 

communication times to enable study of the effects of contention and the occurrence and 

impact of TCP RTO. It should be useful for researchers who are working on approaches 

for improving Ethernet performance, such as selecting the best approach for tuning the 

TCP RTO times, or analyzing the performance of new communication protocols for 

Ethernet networks.  
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CHAPTER 6 
 

Analysis of Algorithm Selection for Optimizing Collective                 

Communication with MPICH for Ethernet and Myrinet Networks  

 

6.1 Introduction  
 
 This work was motivated by the collective communication results in Chapter 5, 

particularly for MPI_Bcast and MPI_Alltoall. The plots of average times for MPI_Bcast 

and MPI_Alltoall for various numbers of CPUs shows a gap or hump at certain message 

sizes, so the communication times are faster for larger message sizes just above the 

hump. So, more work has been done in analyzing MPICH in order to understand these 

unexpected results. MPICH is one of the main implementations of MPI. Recently 

MPICH research group released a new version, MPICH2. MPICH2 is an all-new imple-

mentation of MPI, designed to support research into high-performance implementations 

of MPI-1 and MPI-2 functionality. All the latest improved algorithms and new support 

and also the new functionality are included in it.  

In MPI, the communication is divided into point-to-point and collective commu-

nication. The point-to-point involves communication between two processes, while col-

lective communication involves communication for many processes at the same time. For 

years the collective communication algorithms have been the main concern of MPI re-

searchers in improving the performance of message passing programming. There have 

been many papers improving on existing collective communication algorithms, either by 

suggesting a new algorithm or by identifying which algorithms are suitable for small or 

large message sizes. Recently, MPICH developers have released implementations of new 

collective communication algorithms and these have been reported in Thakur et al. [11]. 

The new algorithms have been applied in MPICH 1.2.6, the following versions, and also 

in MPICH2 [136]. 

The new MPICH implementations combine the best algorithms known for each 

MPI collective communication, and those multiple algorithms are differentiated based on 
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message sizes. The message sizes mainly divide into two, the short-message algorithms 

aim to minimize latency, while the long-message algorithms aim to minimize the band-

width [11]. For example the broadcast algorithm has changed from using the standard 

binomial tree algorithm to a combination of three algorithms, which are binomial tree for 

small message sizes and scatter followed by allgather for large message sizes, and for all-

gather either using recursive doubling or ring algorithm.  

Currently, the message sizes where the algorithm changes in MPICH are the ex-

perimentally determined change-over points based on the work of Thakur et al. [11] 

which used an IBM SP and a Linux cluster machine connected with Myrinet,  both with 

one process per node. In the paper, they did acknowledge having a plan to determine 

automatically the algorithm change-over points based on system parameters, since the 

optimum change-over point probably will be different for parallel computers with differ-

ent architecture, and particularly with different networks. However, the MPICH 1.2.6 and 

MPICH2 1.0.4 source code shows that the message sizes where the algorithm is changed 

are still defined as constants and hard coded.  

The aim of this study is to investigate the feasibility of using MPI benchmarks to 

provide an automated process for selecting the optimal choice of collective communica-

tion algorithms for a particular parallel computer and communication network, and to see 

if this approach is worthwhile by comparing the performance of the optimized MPICH 

implementation with the current MPICH implementation where the algorithm selection is 

hard coded. 

So, this study measured performance over a range of message sizes for all of the 

different algorithms for all of the  collective communication routines in MPICH that use 

multiple  algorithms, which are: 

•  MPI_Bcast – binomial tree, recursive doubling and ring with scatter algo-

rithms; 

•  MPI_Alltoall - store-and-forward and pairwise exchange algorithms; 

•  MPI_Allgather - a variant of the distribution algorithm for barrier, recursive 

doubling and ring algorithms;  

•  MPI_Reducescatter - recursive halving, recursive doubling and pairwise ex-

change algorithms. 
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•  MPI_Reduce and MPI_Allreduce – binomial tree algorithm or reducescatter 

(using recursive halving) followed by allgather using binomial tree or recur-

sive doubling algorithms.   

 

Thakur et al. [11] provide a detailed description of all of these algorithms.  

 

Measurements were done on a cluster of dual processor machines using two dif-

ferent networks, Myrinet with GM and Ethernet with TCP. In order to compare the dif-

ferent algorithms for all message sizes, the MPICH code was modified so that the 

change-over points were no longer constants, but variables that were initialized to the 

current static values in MPICH, which could then be overridden by reading from an  en-

vironment variables or a configuration file. For each collective communication routine, 

an MPI benchmark such as MPIBench can be run to measure the performance for each 

possible algorithm, by varying the change-over parameters (e.g. by setting them to be the 

shortest or longest message sizes possible) to ensure that only a single algorithm is used 

for each benchmark run. Then the benchmark results for all the different algorithms for a 

particular collective communication routine can be compared and the optimal change-

over points for that particular parallel computer can be determined. In future, this ap-

proach could be developed further to create automated software for configuring MPICH 

to provide optimal change-over points for a particular parallel computer, based on 

benchmark results.  

There were four main outcomes from this study. Firstly to demonstrate that it is feasible 

to use MPI benchmark results to vary the message sizes where the algorithms change 

from the fixed values in MPICH, and that this can provide a significant improvement in 

some cases. Secondly, a comparison of results between different interconnects, Myrinet 

with GM and Ethernet with TCP, showing that the change-over points for different net-

works can be quite different. Thirdly, comparison of results using the new MPICH2 with 

MPICH 1.2.6. Finally, comparing algorithms using two processes per node instead of one 

process per node which was used by Thakur et al.[11], since the advent of multi-core 

processors means that all modern clusters have multiple CPUs per node. 
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6.2 Related Work 
 
 

Thakur et al. [11] reported on improved implementations of collective communi-

cation algorithms in recent versions of MPICH and MPICH2. They compared the per-

formance of different algorithms over a range of message sizes, for a Linux cluster with a 

Myrinet network and an IBM SP. In both cases the measurements were done using one 

process per node. The results from these measurements were used to fix the selection of 

algorithms for different message sizes in MPICH and MPICH2. Our work does similar 

measurements on a machine with more recent processors, and for more than one process 

per node, which is typical of modern parallel computers. Thakur et al. say that in future 

work they aim to develop models to allow the selection of changeover points between al-

gorithms to be customized based on system parameters, whereas our work enables cus-

tomization to be done based on benchmark results. 

Recently there have been several efforts aimed at automatically tuning the per-

formance of collective communications algorithms for the particular parallel computer 

being used [4,5]. These approaches are primarily aimed at tuning the implementation of 

each collective communication algorithm, for example selecting the optimum buffer size 

or communication topology for a particular machine. 

The most relevant of these studies to our work is by Vandhiyar et al.[139]. They 

have developed automatically tuned collective communication by conducting several ex-

periments on the system to obtain the optimum algorithm and optimum buffer size for a 

given collective communication using HARNESS FT-MPI [146], which is a fault tolerant 

MPI implementation. Since the buffer is the closest temporary storage with the processor, 

the optimized use of buffer will help in improving the communication performance. They 

also developed a set of algorithms implementing some of the MPI collective communica-

tion routines, for example for broadcast their algorithms are sequential, chain, binary and 

binomial. Basically, their approach followed three phases. In the first phase, the best 

buffer size for a given algorithm and for a given number of processors is determined by 

evaluating the performance of the algorithm for different buffer sizes. For the second 

phase, the best algorithm for a given message size is chosen by repeating the first phase 

with a known set of algorithms and choosing the algorithm that gives the best results. In 
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the third phase, the first and the second phase are repeated for different number of proc-

essors. Thus, the best algorithm will be chosen for the system and in certain cases there 

will be several algorithms for each collective communication which are differentiated by 

different message size, either small or large message sizes. Based on their results, the use 

of the tuned collective communication resulted in about 30% to 650% improvement in 

performance over the native implementation on a variety of architectures including an 

IBM SP2 and clusters connected by Ethernet, Giganet and Myrinet networks. The differ-

ence between the work reported in this section and Vandhiyar et al. is that our work used 

MPICH rather than HARNESS FT-MPI, up to 64 processors rather than 8, and the recent 

best known algorithms. Also the work of Vandhiyar et. al  was primarily focused on find-

ing the optimal buffer size whereas our work is mainly on finding the choice of best algo-

rithm for different message sizes. 

  Other related research is more focused on suggesting new algorithms or combina-

tion of algorithms for each collective communication. For example Van de Geijn [12,13] 

suggested the best algorithm for short and long vector message sizes for most of the 

common collective communication such as broadcast, scatter and gather. Rabenseifner 

[140] suggest a new algorithm for reduce and allreduce, Kale et al. [141] developed a 

new algorithm for alltoall, Bruck et al. [142] proposed algorithms for allgather and all-

toall that are mainly efficient for small message sizes. Those previous works either sug-

gested new algorithms or analyzed the algorithms used in old versions of MPICH.  

This study will compare the results between the different algorithms for collective 

communication used in the latest version 1.0.4 of MPICH2. It is valuable to investigate 

ways to improve the performance of MPICH since it is widely used. Furthermore, this 

study will compare the result from different interconnects which are Myrinet with GM 

and also commodity Ethernet with TCP, and also will experiment using two processors 

per node instead of one process per node, so the effect of shared memory will be ana-

lyzed too. It is expected that the change-over points for Myrinet will be similar to the de-

faults set in MPICH, but different for Ethernet which has higher latency and lower band-

width. This is because Thakur et al. [11] used Myrinet as interconnect for their experi-

mental works to determine the change-over points for collective communications that are 

used in MPICH 1.2.6. 
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6.3 Methodology 
 
 
 The measurements for the work in this chapter were done using the same parallel 

computer as for Chapter 5, which was done on an IBM eServer 1350 Linux cluster with 

128 compute nodes connected by a Myrinet 2000 network as well as a 100 Mbit/s Fast 

Ethernet network. So, all the setting and systems configuration were the same. This 

analysis used the latest MPICH, which is MPICH2 1.0.4 for Ethernet, however 

MPICHGM 1.2.7 is used for Myrinet since MPICH2 was not available yet for GM when 

the test was done. However, the collective communication algorithms used are the same 

in each case.  

In order to allow different change-over points in collective communications algo-

rithms for MPICH some changes have been done to the MPICH code, as well as a few 

lines of code for the setting of environment variables, as shown in the following code 

fragments. The first code fragment shows the constant value in the existing MPICH pro-

gram for specifying the short message size in MPI_Bcast. This is followed by some of the 

modified code to enable dynamic change-over points to be specified using environment 

variables. The constant MPIR_BCAST_SHORT_MSG_DEFAULT is set to the fixed 

value used by MPICH. Then, MPIR_BCAST_SHORT_MSG is declared as a variable 

and initialized to the default value, however it can obtain the new change-over value from 

the environment variable, using the setConstant function. If the environment variable is 

not set, there is no change from the fixed default value. The next code fragment shows 

the environment variable setting  to change the fixed value from 1Kbyte to 16 Kbyte for 

broadcast. Note that, these changes have been made to MPICH2 1.0.4 for Ethernet with 

TCP and MPICH 1.2.7 for Myrinet with GM. 
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Fixed values for change-over points in the existing MPICH code 

(in mpiimpl.h) 

#define MPIR_BCAST_SHORT_MSG 1024 

… 

Part of modified code to enable dynamic change-over points 
 

(in mpiimpl.h ) 
 

#define MPIR_BCAST_SHORT_MSG_DEFAULT 1024 
#define MPIR_BCAST_LONG_MSG_DEFAULT   524288 
#define MPIR_BCAST_MIN_PROCS_DEFAULT  8 
…  
 
extern int MPIR_BCAST_SHORT_MSG; 
extern int MPIR_BCAST_LONG_MSG; 
extern int MPIR_BCAST_MIN_PROCS; 
….. 

 
(in init.c) 
 
int MPIR_BCAST_SHORT_MSG = MPIR_BCAST_SHORT_MSG_DEFAULT; 
int MPIR_BCAST_LONG_MSG = MPIR_BCAST_LONG_MSG_DEFAULT; 
int MPIR_BCAST_MIN_PROCS = MPIR_BCAST_MIN_PROCS_DEFAULT; 
….. 
 
void setConstant(int *constant, char *envVar ) { 
        char *envStr = getenv(envVar); 
        int constantValue = 0; 
 
        if (envStr != 0) { 
                constantValue = atoi(envStr); 
                *constant = constantValue; 
              printf("EnvironmentVar %s defined with value: %d\n", envVar, constantValue); 
             }  
      else { 
                // do nothing 
              printf("EnvironmentVar %s not defined.\n", envVar); 
             } 
} 
void setThresholds() { 
   setConstant(&MPIR_BCAST_SHORT_MSG, "MPIR_BCAST_SHORT_MSG"); 
   setConstant(&MPIR_BCAST_LONG_MSG, "MPIR_BCAST_LONG_MSG"); 
   setConstant(&MPIR_BCAST_MIN_PROCS, "MPIR_BCAST_MIN_PROCS"); 
…. 

Environment Variable Setting 

export MPIR_BCAST_SHORT_MSG=16384 
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  The MPI benchmark used for measurements was SKaMPI 4.1 [21, 62] and all 

measurements were done using the default settings for SKaMPI. SKaMPI was chosen 

since it has a bigger variety of collective communication routines compared to other MPI 

benchmarks. It was not possible to run the measurements with dedicated access to the 

cluster. In order to ensure the accuracy of the results, the measurements of different algo-

rithms were taken one after another and using the same set of CPUs. For sanity checking 

there were at least three measurements taken for each test and at least one measurement 

for the same test was also taken using PMB and MPIBench, where the MPI routine was 

provided by both MPI benchmarks.   The measurements were done up to 16 nodes (32 

CPUs) with 2 CPUs per node and using 100 repetitions as a default setting for SKaMPI. 

There were also some preliminary results using 64 CPUs (32 nodes) and using one proc-

essor per node, and for numbers of CPUs which are not power of two in order to check 

for unusual results. 

In the following subsections, the formulas for the approximate time expected for the 

different algorithms are taken from Thakur et al.[11], or (in some cases where that paper 

does not specify a formula) from comments in the MPICH2 1.0.4 source code [136]. The 

latency and bandwidth values used in the formulas are based on internode point-to-point 

communication using SKaMPI. The latency for Myrinet is 15µs, while on Ethernet it is 

97µs. The bandwidth for Myrinet is 200 Byte/µs, while on Ethernet it is 11Byte/µs.  The 

analysis of Thakur et al. is done using one process per node, while the analysis here will 

also consider the performance for shared memory nodes since there are two CPUs per 

node used for the measurements.  

 

6.4 Broadcast 
 
 

MPICH2 1.0.4 [136] and MPICH-GM 1.2.7 [69] use some new broadcast algorithms. 

For small message size (<12KByte) or for less than 8 CPUs the standard binomial tree 

algorithm is used and the time taken for this algorithm is approximately Ttree = [lg 

p](α+nβ), where p is the number of processors, α is the latency, β is the bandwidth and n 

is the message size.  For medium (12KByte < medium < 512KByte) and for long 

(>512KByte) message sizes it uses scatter followed by allgather algorithm, and for all-
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gather algorithm for medium message size and for power of two (POF2) number of proc-

esses uses recursive doubling algorithm and the time taken is Trecursive= lg p α + (p-1)/p 

nβ, while for medium message size and for non power of two number of processes and 

also for long message size, a ring algorithm is used and the time taken is Tring=(lg p + p-

1)α + 2(p-1)/p nβ. 

 

0             12KByte             512KByte 
 
 
 
 
 
 

 

Table 6.1 : Summary of Algorithms used by MPICH for Broadcast 

 
 

Figure 6.1 shows the performance of MPI_Bcast for different message sizes for 8 

CPUs on Myrinet using the three different algorithms used by MPICH: binomial tree al-

gorithm, scatter with recursive doubling and scatter with ring algorithm. Figure 6.3 shows 

the same plot for Ethernet. For 8 processes (4 nodes with 2 ppn) on both Myrinet and 

Ethernet the performance of scatter and allgather becomes close to the binomial tree algo-

rithm when the message size increases to around 16 Kbytes. However for both networks, 

the binary tree algorithm remains the best algorithm for all message sizes measured (up to 

1 Mbyte), so on this machine the binary tree algorithm should be chosen when the num-

ber of processes is less than or equal to 8, rather than less than 8 as in standard MPICH. It 

is also interesting to note that for medium message sizes (between 12 and 512 Kbytes) 

where MPICH uses recursive doubling for the allgather, using the ring algorithm for all-

gather gives up to 50% better performance for Myrinet and even more for Ethernet.  

The same effect can also be seen for larger numbers of processors. Figure 6.2 and 

Figure 6.4 show the performance of MPI_Bcast for different message sizes for 32 CPUs 

(16 nodes with 2 ppn) on Myrinet and Ethernet using different algorithms. Again, the 

time for the binomial tree algorithm starts to exceed that of the other algorithms at ap-

proximately 16 Kbytes. For Ethernet, the binomial tree and the scatter with ring allgather 

perform better than scatter with recursive doubling allgather for all message sizes. For 

Message Size > 12 KByte or 
CPU < 8 
use Binomial Tree Algorithm 

POF2 use Scatter with recur-
sive doubling algorithm for 
Allgather. 
Not POF2 use Ring Algorithm 
for Allgather  

Scatter with Ring Algorithm for 
Allgather  
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medium message sizes where recursive doubling is the default in MPICH, the im-

provement is approximately 40% to 50%. 

For Myrinet, scatter with recursive doubling is (marginally) the best algorithm for 

message sizes in the range 8 KByte to 32 Kbyte. The change-over point to using the ring 

algorithm for allgather for large message is therefore much lower than the MPICH de-

fault of 512 Kbytes, and the improvement in using the ring algorithm rather than recur-

sive doubling between 32 and 512 Kbytes is approximately 30% to 40%. This result is a 

bit surprising, since the fixed change-over values in MPICH were taken from measure-

ments on a Linux cluster with Myrinet. The only difference is that the experimental re-

sults of Thakur et al., and their theoretical models for estimating the communications 

time, are all based on one process per node, whereas our measurements were using two 

processes per node, since the cluster had dual processor nodes. 

In order to check this theory, the same test was also run with 8 CPUs for one 

process per node using Ethernet and 32 CPUs for one processor per node on Myrinet. 

Figure 6.7 and Figure 6.8 shows the comparison between 1 and 2 processes per node 

(ppn) with the model for 32 processors on Myrinet and Figure 6.9 and Figure 6.10 shows 

the same for large message sizes. The model is a close fit to the measured results for 1 

process per node, but a poor match to the results for 2 processes per node, particularly for 

medium message sizes. The results show that recursive doubling is relatively much better 

for 1ppn than 2ppn. This indicates that in order to be able to specify customized change-

over points based on system parameters, as suggested by Thakur et al. [1], a new model is 

needed that will provide good time estimates for multiple processes per node. 

  The results in Figure 6.5 and Figure 6.6 show a comparison of results between 

one and two processors per node  for medium message size (between 16 KByte until 1 

MByte) for 8 CPUs on Ethernet. The results show a similar trend to those for Myrinet, in 

that for 2 processors per node the recursive doubling has the worst performance com-

pared to other algorithms for all message sizes, while for 1 ppn recursive doubling shows 

good performance after 16 KByte and until approximately 128 KByte. The change-over 

values for small message sizes at 1 ppn agree with the MPICH defaults, however for me-

dium message sizes the change-over occurs earlier than the fixed MPICH value (refer to 

Table 6.6). 
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  It is also noticeable that for 2 ppn the ring algorithm performs very well for all 

message sizes. The excellent performance of ring algorithm may be due to the new facil-

ity in MPICH2, for example the mpd [136] which pre-forms a ring to facilitate rapid 

process startup for the communication. The ring algorithm will take advantage of the 

nearest neighbor communication patterns, whereas for recursive doubling processes 

communicate much farther apart. The performance comparison between MPICH 1.2.6 

and MPICH2 1.0.4 on Ethernet for 8 CPUs is shown in Table 6.7. It shows MPICH2 

1.0.4 has an improvement of around 1% to 37% compared with MPICH 1.2.6.  Note that 

for non-power-of-two number of processors the performance is not much different to the 

default settings, since only binomial tree and ring algorithm are used.  
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Figure 6.1: 8 CPUs broadcast on Myrinet. 

 
 

Message Size 
(Bytes) Default(S-12KB/L-

512KB) Binomial Recursive Ring 

8192 218 190 257 254 
11584 236 241 299 290 
16384 435 330 432 359 
23168 522 446 523 421 
32768 750 503 728 606 
46336 954 652 941 781 
65536 1378 855 1376 951 
92680 1842 1147 1852 1209 

131072 2527 1593 2529 1667 
185360 3312 2286 3256 2178 
262144 4750 3220 4770 3703 
370728 6924 4642 6669 5080 
524288 6876 6637 9473 6972 
741456 9403 9419 12686 9368 

1048576 12949 13242 18792 13019 
 

Table 6.2 : Results for 8 CPUs for broadcast on Myrinet. 
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Figure 6.2 : 32 CPU Broadcast on Myrinet. 
 

 

Message Size 
(Bytes) Default(S-12KB/L-

512KB) Binomial Recursive Ring 

8192 439 432 412 750 
11584 535 551 464 800 
16384 637 819 640 921 
23168 756 1133 791 1006 
32768 1130 1034 1135 1196 
46336 1452 1362 1405 1364 
65536 1935 1589 1923 1584 
92680 2636 2110 2521 1963 

131072 3393 2904 3380 2480 
185360 4615 4102 4540 3215 
262144 6270 5757 6384 4283 
370728 9075 65135 8737 5583 
524288 7557 89719 13031 7493 
741456 10257 85287 17406 10198 

1048576 17663 51897 238326 17519 

Table 6.3 : Results for 32 CPUs for broadcast on Myrinet 
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Figure 6.3 : 8 CPU Broadcast on Ethernet. 
 

 

Message Size 
(Bytes) Default(S-12KB/L-

512KB) Binomial Recursive Ring 

8192 2109 2109 2955 2733 
11584 2693 2702 3627 3399 
16384 4402 3525 4405 3910 
23168 5849 4696 5819 4697 
32768 7529 6358 7515 5750 
46336 10618 8713 10140 7678 
65536 13783 17320 13853 10316 
92680 19637 22477 20031 14646 

131072 38543 28214 36072 25269 
185360 64552 38381 58071 37453 
262144 72284 46800 72153 52977 
370728 95923 65740 99160 69376 
524288 86080 92542 156638 86139 
741456 116839 130327 213474 116845 

1048576 154694 183758 313106 154704 

Table 6.4 : Results for 8 CPUs for broadcast on Ethernet. 
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Figure 6.4 : 32 CPU Broadcast on Ethernet. 

 

Message Size 
(Bytes) 

Default(S-12KB/L-
512KB) 

Binomial Recursive Ring 

8192 4608 4609 5459 16117 
11584 5910 5950 6512 6644 
16384 7306 7452 7659 7992 
23168 9580 10030 9828 8919 
32768 12041 13230 12263 11177 
46336 15823 18500 17961 14497 
65536 20809 56731 20605 17071 
92680 28077 66079 28863 20684 

131072 43687 63074 52855 31201 
185360 76610 81804 87138 43309 
262144 112449 93977 108673 64177 
370728 157913 132165 154155 87682 
524288 112351 185899 204248 111132 
741456 153483 261935 293599 154442 

1048576 191141 369545 391933 192628 

Table 6.5 : Results for 32 CPUs for broadcast on Ethernet 
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 Figure 6.5 : Broadcast for 8 CPUs with 2 ppn for 16 KByte to 1 Mbyte on Ethernet. 
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Figure 6.6 :  Broadcast for 8 CPUs with 1 ppn for 16 KByte to 1 Mbyte on Ethernet. 
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Message 

Sizes (Byte) 8 CPUs with  2ppn 

 

8 CPUs with 1ppn 

 Binomial Recursive Ring Binomial Recursive Ring 

16384 3525 4405 3910 6278 
6673 

9061 

23168 4696 5819 4697 8020 
7738 

10114 

32768 6358 7515 5750 10502 
9166 

11525 

46336 8713 10140 7678 14368 
11254 

13638 

65536 17320 13853 10316 15924 
14143 

16469 

92680 22477 20031 14646 21066 
18248 

21066 

131072 28214 36072 25269 34573 
33733 

31883 

185360 38381 58071 37453 45665 
45190 

44602 

262144 46800 72153 52977 62215 
73715 

62215 

370728 65740 99160 69376 80651 
89404 

80651 

524288 92542 156638 86139 100702 
100532 

100702 

741456 130327 213474 116845 141273 
167739 

134273 

1048576 183758 313106 154704 196857 
235789 

176857 

Table 6.6 : Comparison results between 8p and 2ppn with 8p and 1ppn for Broadcast on 
Ethernet. 

Message Sizes 
(Byte) 
 

MPICH2 1.0.4 
 

MPICH1.2.6 
 

Differences between 
MPICH2 - MPICH1.2.6 

1024 726 770 
5.7 % 

2048 1043 1058 
1.4 % 

4096 1399 1415 
1.1 % 

8124 2109 2140 
1.4 % 

12288 2693 2739 
1.7 % 

16384 4402 4452 
1.1 % 

32768 7529 7674 
1.9 % 

65536 13783 18035 
23.6 % 

131072 38543 39149 
1.5 % 

262144 72284 80364 
10.1 % 

370728 69376 110097 
36.9 % 

524288 86139 108738 
20.8 % 

741456 116845 138908 
15.9 % 

1048576 154704 186145 
16.9 % 

Table 6.7 : Comparison between MPICH2 1.0.4 with MPICH 1.2.6 for Broadcast on 
Ethernet. 
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Figure 6.7 : Comparison between test results and model for 2 ppn for 32 CPUs for me-
dium message size on Myrinet. 
 

10

100

1000

10000

256 512 1024 2048 4096 8124 12288 16384 32768

Size of Data (Byte)

T
im

e 
(M

ic
ro

se
c)

Test Binomial-MY

Test Recursive Long-MY

Test Ring-MY

Model Binomial-MY

Model Recursive Long-MY

Model Ring-MY

 
Figure 6.8 : Comparison between test results and model for 1 ppn for 32 CPUs for me-
dium message size on Myrinet.   
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Figure 6.9 : Comparison between test results and model for 2ppn for 32 CPUs for large 
message size on Myrinet. 
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Figure 6.10 : Comparison between test results and model for 1 ppn for 32 CPUs for large 
message size on Myrinet. 
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6.5 Alltoall 
 
 

MPICH2 1.0.4 uses four algorithms for MPI_Alltoall [136]. For short messages 

(<256Bytes) and (number of processors >= 8) it uses store-and-forward algorithm, which 

takes [lg p] steps at the expense of some extra data communication (n/2 lg p β instead of 

nβ, where n is the total amount of data to be sent or received by any process) and the time 

taken is Tstoreforward = lgp.α + (n/2).lgp.β. Therefore, it is a good algorithm for very short 

messages where latency is an issue. For medium size messages (256Bytes =< medium 

message size =< 32768Bytes) and (short messages for number of processes < 8) it uses an 

algorithm that posts all irecvs and isends and then does a waitall, then scatter the order of 

sources and destinations among the processes, so that all processes will not be sending 

and receiving to or from the same process at the same time. 

For long messages and power-of-two number of processes, it uses a pairwise ex-

change algorithm, which takes p-1 steps. In each step k, 1<= k < p, each process calcu-

lates its target process as (rank ̂ k) (exclusive-or-operation) and exchanges data directly 

with that process. This algorithm, however, does not work if the number of processes is 

not a power of two. So, for the non-power-of-two number of processes, it uses an algo-

rithm in which, in step k, each process receives from (rank-k) and sends data to (rank+k). 

In both these algorithms, data is directly communicated from source to destination, with 

no intermediate steps. The time taken by these algorithm is given by T long= (p-1).α + nβ. 

For more detailed explanation on the algorithms refer to Thakur et al. [11]. 

 
0               256Bytes                            32 KByte 
 
 
 
 
 
 

Table 6.8 : Summary of Algorithms used  for Alltoall in MPICH. 

 

Figure 6.11 and Figure 6.13 show the average time for 8 CPUs and 32 CPUs on 

Myrinet for the default settings, store and forward, isend and irecv and pairwise exchange 

For CPU >=8 use store-
and-forward algorithm. 
For CPU < 8 uses irecvs 
and isends and then does a 
waitall. 

For CPU >=8 uses irecvs and 
isends and then does a waitall. 
 

For POF2 uses pairwise exchange 
algorithm. 
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algorithms for MPI_Alltoall. Figure 6.12 and Figure 6.14 shows the same plot for 

Ethernet. Measurements using Myrinet and 2 ppn show that the default settings are close 

to optimal, although moving the small message change-over point from 256 Bytes to 512 

Bytes gives an improvement of 30% to 50% for messages in that range. The transition 

from medium to larger message sizes should occur at 32 KByte, where the isend and 

irecv algorithm should change to the pairwise exchange algorithm. However the results 

show that the pairwise exchange algorithm performs about the same as isend and irecv 

algorithms.  

The improvement for Ethernet with 2 ppn is much greater. In that case, the store-

and-forward algorithm turns out to be slower than isend/irecv even for small messages, so 

using isend/irecv improves performance by around a factor of 2 for messages of size 256 

bytes or less. The pronounced hump in the results for 32 CPUs is probably due to RTOs 

(see Section 5.8) which do not seem to have as much of an effect for the store and for-

ward algorithm. 

 Figure 6.15 shows the results from running the benchmarks using 1 process per 

node for 32 processors on Myrinet, and the change-over values for small message sizes 

agrees with the MPICH defaults. Figure 6.16 and Figure 6.17 shows the comparison be-

tween 1 and 2 processes per node (ppn) with the model for 32 processors on Myrinet. The 

results for isend/irecv and pairwise exchange are a close fit to the measured results for 1 

process per node, but a poor match to the results for 2 processes per node. However, for 

store/forward model, the results for 1 processor per node only have a slight improvement 

compared with 2 processes per node measured results.  

Based on the above results and discussions, it is suggested that for Myrinet on this 

cluster only two algorithms are needed, which are the store-and-forward and isend and 

irecv or pairwise exchange, and the change over points for smaller message sizes is the 

same as the default settings. On Ethernet, it shows that only one algorithm is needed 

which is either the isend and irecv algorithms or the pairwise exchange, since the per-

formance is almost the same. The improvement using the suggested algorithms and 

change-over point for MPI_Alltoall is nearly 50% for small message sizes on Ethernet, 

while for Myrinet there was little change.  For large message sizes there was no im-

provement for both networks since the result between isend and irecv and pairwise ex-

change is almost the same. 
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Figure 6.11 : 8 CPU and 2 ppn for Alltoall on Myrinet. 
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Figure 6.12 : 8 CPU and 2ppn for  Alltoall on Ethernet. 
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Figure 6.13 : 32 CPU and 2 ppn for Alltoall on Myrinet 
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Figure 6.14 : 32 CPU and 2 ppn  Alltoall on Ethernet. 
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Figure 6.15: 32 CPU and 1 ppn for Alltoall on Myrinet 
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Figure 6.16 : Comparison between test results and model for 2ppn for 32 CPUs on Myri-
net.   
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Figure 6.17 : Comparison between test results and model for 1ppn for 32 CPUs on Myri-
net.   

 

6.6 Reduce Scatter 
 

The algorithm for reduce scatter considers two types of reduction operation, either 

commutative or non-commutative. A binary operation is commutative if ab = ba for any 

possible a and b. Commonly, addition and multiplication are commutative operations, 

whereas multiplication of matrices is generally non-commutative. If the operation is 

commutative, for short and medium-size messages, MPICH uses a recursive-halving al-

gorithm in which the first p/2 processes send the second n/2 data to their counterparts in 

the other half and receive the first n/2 data from them. This procedure continues recur-

sively, halving the data communicated at each step, for a total of lgp steps. So the time 

taken will be Trec_half = lgp.α + ((p-1)/p)n.β + ((p-1)/p)n.γ. The time required for a typi-

cal arithmetic operation such as multiple or add is indicated by γ. If the number of proc-

esses is not a power-of-two, it will convert to the nearest lower power-of-two by having 

the first few even-numbered processes send their data to the neighboring odd-numbered 

process at (rank+1). Those odd-numbered processes compute the result for their left 

neighbor as well in the recursive halving algorithm, and then at the end send the result 

back to the processes that do not participate. The time taken for non-power-of-two is 
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Trec_halv = ([lgp] + 2)α + 2nβ + (1+(p-1)/p)n.γ. However, the above cost in the non power-

of-two case is approximate because there is some imbalance in the amount of work each 

process does since some processes do the work of their neighbors as well [11]. 

For commutative operations and very long messages a pairwise exchange algo-

rithm is used, similar to the one used in MPI_Alltoall. At step i, each process sends n/p 

amount of data to (rank+i) and receives n/p amount of data from (rank-i) and the time 

taken is Tlong = (p-1)α + ((p-1)/p)n.β + ((p-1)/p)n.γ. 

For non-commutative operations a recursive doubling algorithm is used for very short 

message sizes, which takes lgp steps. At step 1, processes exchange (n-n/p) amount of 

data; at step 2, (n-2n/p) amount of data; at step 3, (n-4n/p) amount of data, and so forth. 

So the time taken will be Tshort = lgp.α + n(lgp-(p-1)/p)β + n(lgp-(p-1)/p)γ. The time re-

quired for the reduction operation is indicated by γ and this thesis takes 0.1 microsecond 

as an estimate for γ. It is hard to estimate the value for γ. Therefore, we choose 0.1 as the 

value since it gives the best match between the predicted and measured values. The algo-

rithm for medium and long messages uses the same algorithm as commutative for long 

message sizes, which is pairwise exchange, and the time taken will be the same as above. 

 

0             512B            512KB 
 
C 
 
 
 

 

Table 6.9 : Summary of Algorithms used for Reduce Scatter in MPICH. 

 

The default setting of SKaMPI is using non-commutative operations, so the 

change-over point should have an effect at smaller message sizes. SKaMPI Reduce Scat-

ter operation performs a tree-wise data reduction operation (Bitwise OR1) on all partici-

pating processes and then distributes the result partially to all participating nodes, with 

every node receiving a different part of the result array.  

                                                 
1 A bitwise OR takes two bit patterns of equal length, and produces another one of the same length by 
matching up corresponding bits (the first of each; the second of each; and so on) and performing the logical 
OR operation on each pair of corresponding bits. In each pair, the result is 1 if the first bit is 1 OR the sec-
ond bit is 1 (or both), and otherwise the result is 0 

- For Commutative uses re-
cursive-halving algorithm. 
- For Not Commutative uses 
recursive doubling algorithm. 

- For Commutative uses recur-
sive-halving algorithm. 
- For Not Commutative uses 
pairwise exchange algorithm. 

- For Commutative and Not 
Commutative uses pairwise ex-
change algorithm. 
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In order to check for commutative operations, measurements using PMB were 

performed, which uses MPI_FLOAT as the data type and MPI_SUM as the MPI opera-

tion. The results for PMB show that if the change-over point is decreased to 100 KByte 

from 512 KByte (the fixed setting for long message size for commutative operation), then 

in that range the pairwise exchange algorithm gives approximately 5% to 10% improve-

ment compared to using the recursive-halving algorithms. So, for commutative operations 

there is little benefit in using a different change-over point. 

Figure 6.18 to Figure 6.21 show the average time for the default settings, recursive 

doubling and pairwise exchange on Myrinet and Ethernet for 8 and 32 CPUs, for the non-

commutative operation measured by SKaMPI. The results for Myrinet for 8 CPUs show 

that recursive doubling performs better than pairwise exchange up to 8 Kbytes, rather 

than the MPICH default of 512 Bytes. As the number of CPUs is increased, the cross-

over between the two algorithms increases also, as shown in Figure 6.20 for 32 CPUs, 

where the change-over point is 16 KByte. The improvement in performance from using 

the optimum change-over point increases as the number of CPUs increases. At 32 CPUs 

it is more than a factor of 4 between 512 bytes and 4 Kbytes, and more than a factor of 2 

up to 8 Kbyes. 

On Ethernet there is little difference in performance between the two algorithms for 8 

CPUs, but as with Myrinet, as the number of CPUs is increased the improvement by us-

ing recursive doubling is increased. For 8 CPUs the change-over occurs at 2 KByte in-

stead of 512 Byte, while at 32 CPUs the change-over point is at 8 KByte. As shown in 

Figure 6.21, the performance improvement from moving the change-over value is quite 

significant, although not as large as for Myrinet. 

Figure 6.22 shows the performance for 32 CPUs on Myrinet using one process per 

node (1ppn) rather than two, which again shows results consistent with the default 

change-over point in MPICH, so the difference in the optimal change-over points from 

the MPICH defaults is again due to the use of 2ppn rather than 1ppn. Figure 6.23 and 

Figure 6.24 shows the comparison between 1 and 2 processes per node (ppn) with the 

model for 32 processors on Myrinet. The cross over based from the calculated value from 

the model is approximately at 1 KByte, which is very near to the default cross over at 

512Byte. The measured results for 1ppn shows a very close fit with recursive doubling 
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algorithm until larger message sizes. However, for 2ppn the measured result shows a 

poor performance particularly for recursive doubling algorithm. 

Based on this analysis it is suggested that the change over point for smaller mes-

sage sizes should increase from 512 Byte to 16 KByte for both networks on this cluster. 

Although for 8 CPUs and Ethernet the cross-over between the algorithms occurs at less 

than 16 KByte, the performance is almost the same between both algorithms until 16 

KByte, So it is still worth using recursive doubling until 16 KByte for at least 32 CPUs 

for non-commutative operations.  
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Figure 6.18 : 8 CPU on Myrinet for Reduce Scatter 
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Figure 6.19 : 8 CPU on Ethernet for Reduce Scatter 
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Figure 6.20 : 32 CPU on Myrinet for Reduce Scatter 
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Figure 6.21 : 32 CPU and 2 ppn on Ethernet for Reduce Scatter 
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Figure 6.22 : Results for 32 CPUs and 1 ppn for Reduce Scatter on Myrinet. 
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Figure 6.23 : Comparison between test results and model for 2ppn for 32 CPUs on Myri-
net.   
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Figure 6.24 : Comparison between test results and model for 1ppn for 32 CPUs on Myri-
net.   
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6.7 Allgather 
 

In allgather, for short messages and non-power-of-two number of processes 

MPICH uses the algorithm by Bruck et al. [142] which is a variant of the distribution al-

gorithm for barrier, and takes ceiling(lg p) steps and time Tdistribution= lgp.α + n.((p-1)/p).β.  

For short or medium-size messages and power-of-two number of processes MPICH uses 

the recursive doubling algorithm and the time taken is the same as the Bruck algorithm 

which is Tdistribution= lgp.α + n.((p-1)/p).β. For long messages or medium-size messages 

and non-power-of-two number of processes a ring algorithm is used. At the first step, 

each process i sends its contribution to process i+1 and receives the contribution from 

process i-1. From the second step onwards, each process i forwards to process i+1 the 

data it received from process i-1 in the previous step. This takes a total of p-1 steps and 

the time taken is Tring= (p-1).α + n.((p-1)/p).β. This algorithm is used instead of recursive 

doubling for long messages because the nearest neighbor communication pattern used in 

ring algorithm performs twice as fast as recursive doubling for long messages particularly 

on Myrinet and IBM SP[11]. The change over point is occurring based on the  equation 

comm_size*type_size<MPIR_ALLGATHER_LONG_MSG in the MPICH code, where 

comm_size is the number of processors used and type_size is the message size to be sent. 

So if the change-over point for long message size is set at 512 KByte and number of 

CPUs used is 8, the algorithm changes will occur at 64 KByte (8 x 64 KByte = 512 

KByte) and for 32 CPUs the occurrence will be at 16KByte.  

 
0     comm_size*type_size < 80KB        comm_size*type_size < 512KB 
 
 
 
 
 
 
 

Table 6.10 : Summary of Algorithms used for Allgather in MPICH. 

 
The average time for the default settings, recursive doubling and ring algorithm is 

shown in Figure 6.25 to Figure 6.28 on Myrinet and Ethernet network for 8 and 32 CPUs. 

- For POF2 uses recursive dou-
bling algorithm. 
- For Non POF2 uses variant of 
the disemmination algorithm 
for barrier. It takes ceiling(lg p) 
steps. 

- For POF2 uses recursive dou-
bling algorithm. 
- For Non POF2 uses ring algo-
rithm. 

- Ring Algorithm for POF2 and 
Non POF 2. 
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The figures show that the change over point should occur earlier since the ring algorithm 

is performing well compared to recursive doubling for smaller message sizes. Both 8 and 

32 CPUs show a similar change-over point approximately at 1 KByte, however due to the 

above equation the change-over point should be different between 8 and 32 CPUs. Based 

from the equations the long message sizes should be set at 128 Byte for 8 CPUs and 32 

Byte for 32 CPUs. It is also noticeable that on Ethernet the improvement is much bigger 

compared to Myrinet network, mainly for larger number of CPUs. This occurrence has a 

similarity with broadcast, where the ring algorithm performs better than recursive dou-

bling. The improvement from using a different change-over point to the MPICH default 

can be quite significant, up to approximately 40% to 50% for Myrinet and around 50% or 

more for Ethernet, particularly for larger number of CPUs. 

For non-power-of-two number of CPUs,  the results show that even for small 

message sizes, the ring algorithm is better than using the variant of the dissemination al-

gorithm for barrier by Bruck et al.[142]. However the improvements are fairly small, 

around 10% to 20%. Note that, similarly to broadcast, for one process per node there was 

not much difference between the different algorithms, and the default cross-over points 

work well. 
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Figure 6.25 : 8 CPU and 2ppn on Myrinet for Allgather. 
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Figure 6.26 : 8 CPU and 2ppn on Ethernet for Allgather 
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Figure 6.27 : 32 CPU and 2 ppn on Myrinet for Allgather 
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Figure 6.28 : 32 CPU and 2 ppn on Ethernet for Allgather 
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6.8 Other Collective Communication 
 
 This section describes other collective communications that have changes in the 

new MPICH implementation but have very small percentage differences between the dif-

ferent algorithms. The small difference is also observed for one processor per node and 

non-power-of-two number of CPU. The MPI collective communications discussed in this 

section are allreduce and reduce. All of these routines only have two different algorithms 

and the change between them all occurs at the same message size, which is 2 KByte. The 

performances for all of these routines only have about 2% to 3% differences between dif-

ferent algorithms from modifying the change-over point. 

  

6.8.1 Allreduce  
 

In Allreduce the algorithm is divided into two major components, which are for 

predefined (built-in) reduction operation and user-defined reduction operation. For Allre-

duce the recursive doubling algorithm is used for short and long message sizes with user-

defined reduction operation. The same algorithm is used for short message sizes for built- 

in reduction operation, while for long messages sizes, Rabenseifner's algorithm [138] is 

used. This algorithm implements the allreduce in two steps, firstly a reduce-scatter, fol-

lowed by an allgather. A recursive-halving algorithm (beginning with processes that are 

distance 1 apart) is used for the reduce-scatter, and a recursive doubling algorithm is used 

for the allgather.  

The non-power-of-two case is handled by dropping to the nearest lower power-of-

two: the first few even-numbered processes send their data to their right neighbors 

(rank+1), and the reduce-scatter and allgather happen among the remaining power-of-two 

processes. At the end, the first few even-numbered processes get the result from their 

right neighbors.  

 In SKaMPI, the Allreduce is measured using a built-in operation, which is the 

MPI_SUM operation. So the effect of different algorithms is between recursive doubling 

and reduce-scatter followed by allgather.  
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Table 6.11 : Summary of Algorithm uses in Allreduce. 

 

6.8.2 Reduce 
 

Similarly with allreduce, in reduce for long messages and for built-in operations, 

Rabenseifner's algorithm [138] is used, while for short message sizes the binomial tree 

algorithm is used. The Rabenseifner's algorithm implements the reduce in two steps, 

firstly a reduce-scatter, followed by a gather to the root. A recursive-halving algorithm 

(beginning with processes that are distance 1 apart) is used for the reduce-scatter, and a 

binomial tree algorithm is used for the gather. The non-power-of-two case is handled by 

dropping to the nearest lower power-of-two, the first few odd-numbered processes send 

their data to their left neighbors rank-1, and the reduce-scatter happens among the re-

maining power-of-two processes. If the root is one of the excluded processes, then after 

the reduce-scatter, rank 0 sends its result to the root and exits; the root now acts as rank 0 

in the binomial tree algorithm for gather.  

For short messages and long message sizes, the binomial tree algorithm is used 

for user-defined operations. Similarly with Allreduce, the reduce test in SKaMPI uses the 

built-in MPI_SUM operation. So the effect of different algorithms is between binomial 

tree algorithms and reduce-scatter followed by allgather. The small difference in per-

formance in using different change-over-points is suspected to be due to the use of bino-

mial tree algorithms, which is also used for long message sizes under the allgather algo-

rithm.   

 

 

2 KB 
- For built-in ops uses recursive doubling 
algorithm. 
 
- For user-defined ops uses recursive dou-
bling algorithms. 
 

- For built-in ops uses reduce-scatter  followed 
by an allgather. (A recursive-halving algorithm 
for the reduce-scatter, and a recursive doubling 
algorithm for the allgather.) 
 
- For user-defined ops uses recursive doubling 
algorithms. 
 

0 
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Table 6.12 : Summary of Algorithm uses in Reduce 

 

6.9 Summary 
 

MPICH provides a mechanism for selecting between different algorithms for a 

particular collective communication routine based on whether the message size is greater 

than or less than a specified change-over point. In current versions of MPICH this value 

is hard-coded, based on experimental results and theoretical models that assume a single 

process per node. 

This study has demonstrated that it is straightforward to modify the MPICH code 

to allow the change-over points between different algorithms to be customized. This en-

ables the change-over values to be set so that MPI benchmarks can be run to measure the 

performance of each different algorithm over any range of message sizes, and to therefore 

be able to find the optimal change-over points for any parallel computer. These custom-

ized change-over points can then be set in a configuration file and used by MPICH, in 

order to optimize the performance of collective communications for a particular parallel 

computer. 

 This study has shown that the values of the optimal change-over points can vary sig-

nificantly for different networks and different numbers of CPUs per node, and that using 

these customized change-over points can provide significant performance improvements 

for collective communications routines in the range of message sizes between the default 

MPICH change-over point and the optimum change-over point for the particular ma-

chine. All of the collective communications routines for which MPICH implements mul-

tiple algorithms showed improvements of over 50% for some message sizes, and in some 

cases improvements of a factor of 2 or more. 

2 KB 
- For builtin ops uses binomial tree algo-
rithms. 
 
- For user-defined ops uses binomial tree 
algorithms. 
 
. 

- For builtin ops uses reduce-scatter  followed 
by gather. (A recursive-halving algorithm for 
the reduce-scatter, and a binomial tree algo-
rithm for the gather.) 
 
- For user-defined ops uses binomial tree algo-
rithms.  
 

0 
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 One of the main factors in determining the change-over point was the number of 

processes per node. With the advent of multi-core processors, all modern clusters will 

have more than one CPU per node, so it will be useful to be able customize collective 

communications rather than use the default change-over points that are based on meas-

urements for a single process per node. 

 Additionally, it is noticeable that in most cases the change over point on Ethernet 

occurs at lower message sizes than Myrinet, this is probably due to the effect of the 

higher latency and lower bandwidth. Figure 6.29 shows the expected performance for dif-

ferent algorithms on broadcast with 32 CPUs for Gigabit Ethernet which has similar la-

tency with 100 Mbit/s Ethernet (90 microsec) and similar bandwidth with Myrinet 

(180Byte/microsec). The performance is calculated based on the broadcast formula, so 

the results should be assumed to only hold for one processor per node. The results indi-

cate that the change over-value will occur higher than the fixed value used by MPICH, 

with the cross-over value for small and medium message size increasing from 12 KByte 

to 32 KByte and from 512 KByte to 4 MByte approximately. So, it shows that if the 

bandwidth is increased by factor of 10, with the latency remaining constant, then the 

cross-over point will be increased too in this case. 

In conclusion, this study provides information on better change over points for 

two processors per node on Myrinet with GM and Ethernet with TCP on IBM eServer 

1350 Linux cluster. This study also provides comparison results between MPICH2 1.0.4 

and MPICH 1.2.6 and it shows that MPICH2 has improvement for certain algorithms. 

Besides, this study also shows that with better change over point and MPICH2, Ethernet 

can improve the performance until 50% in some cases. Finally, it is possible to get sig-

nificant performance improvement by allowing tuning of the change over point between 

difference collective communication algorithms based on measurements from MPI 

benchmarks, rather than have then set to fixed values 
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Figure 6.29 : Expected performance for 32 CPU and 1ppn for Gigabit Ethernet 

 
 
 
 
6.10 Future Work 
 
 

In future a fully automated mechanism for configuring the change-over points for 

each collective communication to maximize the performance will be developed. The idea 

is run an MPI benchmark for each algorithm used in each collective communication rou-

tine using the smallest and largest message sizes possible. Then the results will be proc-

essed to compute the optimal change-over points, which will be written to a configuration 

file for use by MPICH.  

With the move to multi-core CPUs, new clusters are likely to have many cores per 

node. We plan to repeat these measurements on a new cluster with dual quad-core proc-

essors (i.e. 8 CPUs) per node, to see if there is an even greater variation from the default 

values in MPICH which are based on measurements with 1 CPU per node, and also to 
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obtain results for Infiniband and Gigabit Ethernet networks. It would also be interesting 

to do a detailed performance comparison between MPICH2 and MPICH1 on the same 

network, e.g. for Myrinet with GM and Ethernet with TCP, particularly to analyse the 

performance for ring algorithm, since it is suspected to have improvement in MPICH2 by 

using the new mpd facilities. Finally, more dynamic change-over points used in the equa-

tion for Allgather algorithm need to be revised and suggested.  
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CHAPTER 7  

 

Performance Evaluation on ccNUMA Shared Memory Machine         

SGI Altix 3000 

 

7.1 Introduction 
 

The SGI Altix [70,27] is a cache coherent, non-uniform memory architecture 

(ccNUMA) shared memory multiprocessor system that is a popular machine for high-

performance computing, with several large systems now installed, including the 10,160 

processor Columbia machine at NASA. In Australia, a 1680 processor Altix (the APAC 

AC) has recently replaced an ageing AlphaServer SC with a Quadrics network (the 

APAC SC) as the new peak national facility of the Australian Partnership for Advanced 

Computing (APAC) [84], and was number 26 in the June 2005 list of the Top 500 super-

computers [91]. There are several other Altix machines at APAC partner sites, including 

two systems with 160 processors and another with 208 processors. 

Most parallel programs used for scientific applications on high-performance com-

puters are written using the Message Passing Interface (MPI), so the performance of MPI 

message passing routines on a parallel supercomputer is very important. Shared memory 

machines such as the Altix typically have very high-speed data transfer between proces-

sors, however this will only translate into good MPI performance if the MPI library can 

efficiently translate the distributed memory, message-passing model of MPI onto shared 

memory hardware. It is therefore of interest to measure the performance of MPI routines 

on a shared memory machine such as the SGI Altix, and to compare it with a distributed 

memory supercomputer with a high-end communications network. This section will pro-

vide results for MPI performance on the SGI Altix, and comparisons with similar meas-

urements on the AlphaServer SC [72] with a Quadrics network [20].  

This work was done in early 2005, and was of particular interest to users of the 

APAC National Facility, due to the change from the Alphaserver SC to the SGI Altix as 
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the peak Australian supercomputing facility. Note that, Quadrics had the best MPI per-

formance of any network used in large clusters at that time. For example Grove [8] did a 

comparison between Fast Ethernet, Myrinet and Quadrics network, which showed that 

for point-to-point communication using 32 nodes and 2 processors per node for 64 KByte 

messages, Quadrics obtained 0.5 ms, while Myrinet was approximately 1.5 ms.  

However, at the current time Quadrics is no longer the best performance network. 

This is because the recent commodity interconnect known as Infiniband now offers better 

performance.  Liu et al. [130] compared the performance between Infiniband, Myrinet 

and Quadrics network and found that for 8 node clusters Infiniband can provide signifi-

cant performance improvements for applications compared with Myrinet and Quadrics.   

A number of benchmark programs have been developed to measure the perform-

ance of MPI on parallel computers, including Pallas MPI Benchmark (PMB) [65], 

SKaMPI [21,62], MPBench [19,64], Mpptest [17,63], and the most recently developed, 

MPIBench [1,2,8]. The measurements reported here used MPIBench, which is the only 

MPI benchmark that takes into account the effects of contention in point-to-point com-

munications, and can also generate distributions of communication times, not just aver-

ages. These are the first results of using MPIBench on a large shared memory machine.  

 

7.2 MPI Benchmark Experiments on the Altix 
 

The benchmark results reported in this chapter were carried out on Aquila, an SGI 

Altix 3000 managed by the South Australian Partnership for Advanced Computing (SA-

PAC) [131]. Details about Aquila, the Altix architecture and benchmark methodology are 

given in section 3.6.1. 
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7.3 Selection of Processors for Benchmarking 
 

The Altix documentation suggests that applications should avoid using processor 

0, particularly for parallel jobs, since it is used to run system processes. Preliminary test 

runs using processor 0 showed that communication involving this processor was indeed 

slower than for other CPUs, although the effect is fairly small, just a few percent. Figure 

7.1 shows two peaks for 8 processors using processor number from 0 to 7, with the peak 

at the larger time corresponding to processor 0, but for processor number from 16 to 23 

there is only one peak.  

Therefore the benchmark runs reported here have avoided using processor 0, with 

all measurements being done using processors 32 to 159. The benchmarks started with 

processor number 32 in order to maintain the hierarchical pattern of 32 processor groups 

shown in Figure 3.6. 

 

 

Figure 7.1 : 8 CPUs for Point-to-Point at 256 KBytes using processor number from 0 to 
7 and 16 to 23 

 

Process 0 to 7 
 
Process 16 to 23 
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Another issue to investigate is the difference in communication time between 32 

processors that have a direct link to each other or otherwise. Figure 3.6 shows that each 

group of C-Bricks is linked by R-Bricks (router brick) and there is a direct link between 

groups of two R-Bricks. For example, R1A is connected with a direct link to R2A, how-

ever R2A has to communicate with R3A using meta-router MR1A. So, it is interesting to 

know the difference in performance between communications that go directly between 

routers such as R1A and R2A or those that need to use an intermediate router such as 

R2A and R3A.  

Figure 7.2 shows the different results for communications within groups of 32 

processors for 256KByte. The communications for 0 to 31, 32 to 63 and 64 to 95 are the 

communications that have direct connection between the R-Bricks or router brick, while 

16 to 47 and 48 to 79 need to use the intermediate router for communications. Noticea-

bly, for 0 to 31 there are two peaks and the peak at the shortest time is from process 

4,5,6,7 and their partners 20,21,22,23 (refer to section 3.7 on MPIBench point-to-point 

pattern). The direct link between R1A and R2A is probably the cause of the faster time 

for those processes. Unfortunately, we do not have more precise explanation on the rea-

son for the faster time that obtain by those processors. The main peak still overlaps with 

the results from the communication between processors 32 to 63 and 64 to 95, which also 

have direct links between the R-Brick for a processor and the R-Brick for its communica-

tion partner. However, if we look closely at the communication between processors 16 to 

47 and processors 48 to 79 there is about 25 µs difference with the other group of com-

munication. This shows that the communication is faster when using the direct link be-

tween two R-Bricks. However, the overhead of having to go through an intermediate 

router is very small, around 2.5%. This means that users do not need to understand the 

communication architecture of the parallel computer, or be concerned about the place-

ment of MPI processes to particular processors, in order to get good MPI performance. 
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Figure 7.2 : Communication for 32 processor for different group of processor for 
256KBytes. 

 

7.4 MPI_Send with Default Settings and Single Copy 

 
 The issue of buffered (default) and non-buffered (Single Copy) options in the SGI 

MPI library has been discussed in section 3.6.1. This section gives a more detailed com-

parison of Point-to-Point communication results between default setting and Single Copy.  

Figure 7.3 shows the average time for MPI_Send using default settings and Single Copy. 

It shows that the communication time using Single Copy is decreased by more than a fac-

tor of ten for large numbers of CPUs. The performance of Single Copy does not depend 

as much on the network architecture of the SGI Altix as with the default settings. How-

ever, for message size larger than 512 KByte the communication starts to show the hier-

archical pattern of 32 processors groups shown in Figure 3.6. Figure 7.4 shows the band-

width comparison for the same pattern and the bandwidth starts to show the hierarchical 

pattern of 32 processors groups for message sizes larger than 512 Kbytes too.  
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Figure 7.3 : Average time for point-to-point using the default setting and single copy. 
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Figure 7.4 : Bandwidth for point-to-point using the default setting and single copy. 
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7.5 Point-to-Point Communications 
 
 

MPIBench uses MPI_Isend and MPI_Recv to measure point-to-point communica-

tion, so it uses non-blocking sends and blocking receives. For the comparison between 

the other MPI benchmark applications, the MPI_Isend was changed to MPI_Send in or-

der to standardize the comparison methodology, however the results were essentially un-

changed. This section concentrates on analysis of the point-to-point communications per-

formance of the SGI Altix 3700 based on measurements using MPIBench. Firstly, the 

performance for different numbers of processors is analysed, to determine the different 

communication times due to the memory hierarchy of the Altix ccNUMA architecture.  

 

Number of 

Processors 

2 4 8 16 32 64 128 

 

Latency  

(MPIBench) 

1.96 us 1.76 us 2.14 us 2.21 us 2.56 us 2.61 us 2.70 us 

Latency 

(MPBench) 

1.76 us 2.07 us 2.48 us 2.41 us 2.53 us 3.06 us 3.01 us 

Bandwidth 

(MPIBench) 

851 

MByte/s 

671 

MByte/s 

464 

MByte/s 

462 

MByte/s 

256 

MByte/s 

256 

MByte/s 

248 

MByte/s 

Bandwidth  

(MPBench) 

831 

MByte/s 

925 

MByte/s 

562 

MByte/s 

562 

MByte/s 

549 

MByte/s 

532 

MByte/s 

531 

MByte/s 

Table 7.1 : Measured latency (for sending a zero byte message) and bandwidth (for a 4 
MByte message) for different numbers of processes on the Altix. Results for MPIBench 
are for all processes communicating concurrently, so include contention effects. Results 
for MPBench (in bold font) are for only two communicating processes (processes 0 and 
N-1) with no network or memory contention. 

 

Table 7.1 shows latency and bandwidth data for the Altix, obtained by running the 

MPI benchmarks on different numbers of processors, which gives an indication of the 

performance of the different levels of memory hierarchy in the Altix. The results from 

MPBench give the best possible results, where only two processors are communicating 

with no contention. The results from MPIBench show the more realistic case where all 

processors are communicating at the same time, and therefore show the effects of conten-
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tion in the communications network. The results within a C-Brick (2 and 4 processors) 

show very good performance, although for 2 processors the bandwidth for smaller mes-

sages (around 512 KB) is about twice as large, which is surprising. The results between 

C-Bricks (more than 4 processors) show remarkably little degradation in performance as 

the number of processors is increased, indicating that the routers are very fast. Note that 

the bandwidth measurements are for buffered MPI_Send, which is the default for SGI 

MPI. Using a single copy send gives significantly higher bandwidth, as shown in section 

7.4, giving results that are much closer to the theoretical NUMAlink network speed of 3.2 

Gbytes/sec.  

In comparison, measurements with MPIBench on the AlphaServer SC with Quad-

rics network [18] gave a latency of around 5 microseconds for internode communication 

with a single process per node, however this increased to around 10 microsec when all 4 

processors per node were communicating. The latency for shared memory communica-

tion within a node was also around 5 microsec. The bandwidth within a node was 740 

MBytes/sec, while the bandwidth over the Quadrics network was 262 MBytes/sec. So in 

all cases, the performance of MPI point-to-point message passing performance of the 

Altix is significantly better than the AlphaServer SC. 

 Figure 7.5 shows the performance for point-to-point communications for small 

message sizes and Figure 7.6 shows the results for larger message sizes. The results for 

different numbers of processors in Figure 7.5 and Figure 7.6 clearly illustrate the non-

uniform memory architecture of the SGI Altix. For 2 processors the time is for intranode 

communication, which is approximately 0.14 ms for a 256 KByte message. We are not 

sure what it causing the strange results for 2 processors in Figure 7.5. The result for 4 

processors represents internode communication within a C-Brick, which takes approxi-

mately 0.42 ms for the same message size. The results for 8 processors and 16 processors 

are about the same, around 0.82 ms, since both communicate between C-Bricks and in 

the same R-Brick. Communication between 32 processors is done directly between R-

Bricks, and takes around 0.95 ms. Results for 64, 96 and 128 processors all involve 

communication between R-Bricks through a meta-router, which is only marginally 

slower than direct communication between R-Bricks, taking approximately 1.0 ms for a 

256 Kbyte message.  
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Figure 7.5 : Point-to-Point performance for small message sizes. 
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Figure 7.6 : Point-to-Point performance for large message sizes. 
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Figure 7.6 show that performance is essentially bandwidth limited for large mes-

sage sizes.  However it also displays a curious anomaly in the results for 48, 80 and 112 

processors, which are all slower than for 128 processors. For 48 nodes the bandwidth is 

around 15% worse than might be expected. However this may be explained by a reduc-

tion in effective bandwidth due to the impost of additional router latency for some of the 

traffic, since the point-to-point test distributes the participating pairs evenly across the 

nodes. The division of 48 nodes across the Altix will place the nodes on three separate 16 

processor sub-clusters, where each sub-cluster is connected by a single router. Two of the 

three routers will be interconnected directly by two of their NUMAlink ports, whilst the 

third router can only access the other two routers via two meta-routers, to which it only 

has a single connection each.  To maintain bandwidth the third router is dependant upon 

the dual port connection to its peer router, and that router’s additional connections to the 

meta-routers.  Hence, half the traffic to the third sub-cluster must transit one additional 

router hop. This accounts for one third of the traffic in the test. If we examine the band-

width difference between 16 and 32 nodes for this test we can see a similar issue. One 

half of the traffic in the 32 node test transits the meta-routers, and the bandwidth impost 

of the additional router step is roughly 64MB/s for the whole test, or 128MB/s for the 

half of the traffic affected.  The reduction in performance seen in the 48 node test is con-

sistent with this. 

To explore this anomalous behaviour in more detail, Figure 7.7 shows the distri-

bution of communication times for 48 and 64 processors, which shows a significant dif-

ference in performance. For 64 processors it shows the expected result of a single peak 

centred at the average communication time through the meta-router for this message size. 

However for 48 CPUs there are multiple peaks and a very long tail, which is often indica-

tive of contention effects, something that is unexpected in the SGI Altix design. The 

cause of the anomalous behavior is suspected to be that the grouping of the 32 processors 

is not maintained, as discussed in the above section and also section 7.4, which might af-

fect the buffering settings. The buffering is suspected to be affected because in Single 

Copy the anomalous behaviour is not observed as shown in Figure 7.8. In this figure both 

peaks overlap within each other. 
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Figure 7.7 : Probability distributions for MPI point-to-point communications using 48 
and 64 processors for 256 KByte message size. 
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Figure 7.8 : Probability distributions for MPI point-to-point communications using 48 
and 64 processors for 256 KByte message size using Single Copy options. 
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7.5.1 MPI_Sendrecv 

 
As discussed in section 3.8, results for MPI_Sendrecv using the Point-to-Point com-

munication pattern of MPIBench has proven that SGI Altix provides full bidirectional 

bandwidth,  since all the results of MPI_Sendrecv are similar to the results of 

MPI_Send/Recv for Single Copy options. However, measurements by Grove [8] showed 

that the Quadrics network on the AlphaServer SC does not provide the expected bidirec-

tional bandwidth facilities [8]. Petrini et al. [143] suggest that PCI bottlenecks and DMA 

contention between system memory and the network interface are the cause of the unex-

pectedly poor performance.  

 

 7.6 Broadcast 
 

Figure 7.9 shows average times measured by MPIBench for MPI_Bcast for dif-

ferent data sizes for 2 up to 128 processors. Above 16 Kbytes (which is the page size on 

the Altix) the results increase almost linearly with the data size.  
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Figure 7.9 : Performance of MPI_Bcast as a function of data size on 2 to 128 CPUs. 

 

The Quadrics network on the AlphaServer SC provides a very fast hardware 

broadcast, but only if the program is running on a contiguous set of processors. Other-

wise, a standard software broadcast algorithm is used. A simple comparison of broadcast 

performance on the two machines is difficult, since for smaller numbers of processors 

(around 32 processor or less, but this depends somewhat on the message size) the Altix 

does better due to its higher bandwidth, whereas for larger numbers of processors the Al-

phaServer starts to do better since the hardware broadcast of the Quadrics network scales 

really well (much better than logarithmic) with the number of processors. For example, 

hardware-enabled broadcast of a 64 KByte message on the AlphaServer SC takes around 

0.40 ms for 16 CPUs and 0.45 on 128 CPUs [18], while on the Altix is takes approxi-

mately 0.22 ms on 16 CPUs, 0.34 ms on 32 CPUs, 0.45 ms on 64 CPUs, and 0.62 ms for 

128 CPUs. If the processors for an MPI job on the AlphaServer SC are not contiguous, 

which will often be the case on a shared machine running many jobs, the software broad-
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cast is a few times slower than the hardware-enabled broadcast and doesn’t scale as well, 

so broadcast on the Altix will always beat it.  

Figure 7.11 show the distribution results for MPI_Bcast on 32 CPUs for smaller 

and larger messages sizes, respectively. Analysing this data is more difficult than for a 

cluster due to the non-uniform memory hierarchy on the Altix and since there is no 

documentation on what broadcast algorithms the SGI MPI libraries are using. However, 

MPIBench allows distributions to be generated individually for each processor, so we are 

able to check that the overall distribution shown in Figure 7.11 shows peaks that are con-

sistent with a binary tree broadcast algorithm, with the first peak corresponding to com-

pletion time for processors 0 and 1, the second peak is for 2 and 3, the third peak around 

0.65 ms is for 4,5,6,7, the next group between 0.8 and 1.0 ms is for 8-15, and the final 

clump is for 16-31. 
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Figure 7.10 : Distribution results for MPI_Bcast at 64 Bytes on 32 cpus. 
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Figure 7.11 : Distribution result for MPI_Bcast at 256Kbytes on 32 cpus. 

 
 
 

7.7 Barrier 
 
 

Results for the MPI_Barrier operation for 2 to 128 processors are shown in Figure 

7.12. As expected, the times scale logarithmically with the numbers of processors. The 

hardware broadcast on the Quadrics network means that a barrier operation on the Al-

phaServer SC is very fast and takes almost constant time of around 5-8 microseconds for 

2 to 128 processors, which is similar to the Altix. 
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Figure 7.12 : Average time for an MPI barrier operation for 2 to 128 processors. 

 

7.8 Scatter and Gather 

 

Scatter and gather are typically used to distribute data at the root process (e.g. a 

large array) evenly among the processors for parallel computation, and then recombine 

the data from each processor back into a single large data set on the root process. The 

performance of MPI_Scatter is dependent on how fast the root process can send all the 

data, since it is a bottleneck. However the root process can use asynchronous sends, 

which means that the overall performance of the scatter operation is also dependent on 

the overall communications performance of the system and the effects of contention. 

Figure 7.13 shows the average communication time for an MPI_Scatter operation for dif-

ferent data size per processor on different numbers of processors. The results show an 

unexpected hump at a data sizes between 128 bytes and 2 KBytes per process, so that the 

time for scattering larger data sizes than this is actually lower. This is presumably due to 

the use of buffering for asynchronous sends for messages of these sizes. Note that overall, 

the time for an MPI_Scatter operation grows remarkably slowly with data size. In the 

worst case, at 1 Kbyte per process, the Altix is around 4 to 6 times faster than the APAC 

SC, while at 4 Kbytes per process it is around 10 times faster. 
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Figure 7.13 : Performance for MPI_Scatter for 2 to  128 processors 

 
 

Figure 7.14 shows the probability distribution for 64 processors and at 256 Kbytes 

per process. Each processor completes the scatter operation in the order that they receive 

the data from the root processor. The root process is the last to complete (shown by the 

small peak at the right of the plot) since it needs to receive an acknowledgement from all 

of the processors that they received the data. 
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Figure 7.14 : Distribution for MPI_Scatter for 64 processors at 256Kbytes 



 206 

 

The performance of MPI_Gather is mainly determined by how much data is re-

ceived by the root process, which is the bottleneck in this operation. Hence the time taken 

is expected to be roughly proportional to the total data size for a fixed number of proces-

sors, with the time being slower for larger numbers of processors due to serialization and 

contention effects. Figure 7.15 shows the results from MPIBench for average times to 

complete an MPI_Gather operation. The times are roughly proportional to data size, at 

least for larger sizes. The Altix gives significantly better results than the APAC SC. In 

the worst case, at 1 Kbyte per process, it is around 2 to 4 times faster, while at 2 Kbytes 

per process it is around 10 times faster. Above 2 Kbytes per process the implementation 

on the AlphaServer SC became unstable and crashed, whereas the Altix continues to give 

good performance. 

Figure 7.16 shows the probability distribution for 64 processors and at 4 Kbytes 

per process. Process 0 is by far the slowest process to complete, since it has to gather and 

merge results from all other processors. Process 1 is the first to complete (the small peak 

at the left in Figure 7.16) since it is on the same node as the root process, and therefore 

has a much faster communication time.  



 207 

0.001

0.01

0.1

1

10

100

1000

16 32 64 25
6

51
2

10
24

20
48

40
96

81
92

16
38

4

32
76

8

65
53

6

13
10

72

26
21

44

52
42

88

10
48

57
6

Size of Data (Byte)

T
im

e 
(M

ili
se

c)

2

4

8

16

32

64

128

 

Figure 7.15 : Performance for MPI_Gather for 2 to 128 processors 
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Figure 7.16 : Distribution for MPI_Gather for 64 processors at 4Kbytes 
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7.9 Alltoall 

 
The final collective communication operation that we measured is MPI_Alltoall, 

where each process sends its data to every other process. This provides a good test of the 

communications network. We might expect the communication times to be roughly linear 

in the data size, however Figure 7.17 shows the results are more complex than that, with 

the same broad hump around 1 Kbyte per processor that was seen MPI_Scatter, again 

presumably due to the use of buffered communications for messages of this size. Figure 

7.18 shows that for large messages, there is a wide range of completion times, due to con-

tention effects.  

The times for MPI_Alltoall are significantly better on the Altix than the Al-

phaServer SC. In the worst case, for 1 Kbyte per processor, the Altix is around 2 to 4 

times faster than the results measured on the APAC SC [18]. It is around 20 times faster 

for 4 Kbytes per process and around 30 times faster for 8 Kbytes per process. This is 

partly because the MPI implementation on the AlphaServer SC did not appear to be op-

timized for SMP nodes [18]. 
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Figure 7.17 : Performance for MPI_Alltoall for 2 to 128 processors 
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Figure 7.18 : Distribution for MPI_Alltoall for 32 processors at 256Kbytes 

 
 

7.10 Discussion 

 

The SGI Altix shows very good MPI communications performance that scales well 

up to 128 processors. Overall the performance was significantly better than the measured 

performance of the AlphaServer SC with Quadrics network, which has been replaced by 

a large SGI Altix as the Australian national supercomputer facility. The Altix provides 

higher bandwidth and lower latency for point-to-point MPI communication than the 

Quadrics network on the AlphaServer SC, with significantly better collective communi-

cations performance, except for broadcast and barrier operations on contiguous nodes, 

where the Quadrics network provides very fast hardware-enabled broadcast.  

The performance of some communications routines on the Altix can be significantly 

improved by using the Single Copy option provided in the SGI MPI library rather than a 

buffered copy, in the cases where it is not already used as the default.   
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CHAPTER 8 
 

Conclusion and Further Work 
 
 

This thesis provides information on several different aspects of the performance 

analysis of Message Passing Interface (MPI) implementations on both distributed mem-

ory and shared memory parallel computers. A major focus of this thesis was the use of 

MPIBench, a new MPI benchmark program that provides some useful new functionality 

compared to existing MPI benchmarks. The work presented in this thesis involved a de-

tailed comparison of MPIBench with other MPI benchmarks, making a number of im-

provements to MPIBench, and then using MPIBench to investigate MPI performance for 

a variety of commonly used architectures for parallel computing. Measurements and 

comparisons were done for a Linux PC cluster with Ethernet and Myrinet networks, and 

for ccNUMA shared memory machines. Particular attention was given to the variability 

of communication times and how the performance scales to large numbers of processors, 

and to identifying performance problems and mechanisms for improving performance, 

particularly for commodity cluster computers. MPIBench proved to be a useful tool for 

investigating MPI performance, particularly the capability of providing distributions of 

communication times for each processor.    

The work in chapter 3 is the first detailed comparison of the functionality of dif-

ferent MPI benchmarks and the results they produce on both distributed memory and 

shared memory machines. The analysis involved five widely used MPI benchmarks: 

SKaMPI; PMB; Mpptest; MPBench and MPIBench. The analysis showed that different 

MPI benchmarks can give significantly different results for certain MPI routines, particu-

larly on the SGI Altix. This is primarily due to the SGI Altix having a hierarchical 

ccNUMA architecture, which can enhance the variations due to different measurement 

techniques employed by the different benchmarks. The variations for point-to-point 

communications are due to the different communications patterns used by the different 

benchmarks, differences in how averages are computed and errors are handled, and how 

bandwidth is reported. There are also significant differences in measurements of some 
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collective communications routines, particularly broadcast, due to differences in the use 

of cache for message data and in synchronizing the calls to the routines on each proces-

sor.  

The differences in the results of the MPI benchmarks is understandable, since the 

MPI benchmarks were designed primarily for use on distributed memory machines, and 

the analysis shows that some of the different design decisions made for the different 

benchmarks can significantly affect the results for ccNUMA shared memory machines. In 

contrast, the results on distributed memory machines show not much difference between 

the benchmarks either for point-to-point or collective communication. The users of MPI 

benchmarks on shared memory machines should therefore be careful in the interpretation 

of the benchmark results, and developers of some of the MPI benchmarks may need to 

make some minor modifications to their codes to provide more accurate results for shared 

memory machines.  

 Chapter 4 explains the improvements and additional functionality that were pro-

vided for MPIBench, based on the comparison between MPI benchmarks from Chapter 3, 

and experiences in using MPIBench on a variety of machines. Improvements were made 

to the functionality, ease of use, robustness and portability of MPIBench. There are a 

number of improvements in functionality, for example addition of ring communication 

pattern and user-specified communication pattern for point-to-point communication, op-

tions for messages to be in cache or not, and analysis of results over an arbitrary set of 

processes. For ease of use, part of the changes is the auto configuration, which eases the 

compilation task and the choices of message sizes for the measurements. In terms of 

portability, there were some errors that have been fixed, particularly for collective com-

munication, memory allocation error and array problems which fixed the problem with 

non-buffered communication in the SGI Altix. Tests were also done to compare the re-

sults of measurements using the global clock synchronization provided by MPIBench 

with results obtained using MPI_Wtime on the SGI Altix MPI library, which uses the 

Altix hardware to provide an accurate synchronized clock. This comparison showed that 

the approach used by MPIBench gave reliable results. Based on the current uses of 

MPIBench and analysis of other MPI benchmark, Chapter 4 presents a few suggestions 

for further improvements to MPIBench, for example, the adaptive refinement of message 
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sizes in order to find results for additional message sizes where the results are changing 

rapidly, which has been provided by Mpptest and SKaMPI.  

One of the reasons for undertaking the detailed comparison between MPI bench-

marks, and the improvements to MPIBench, was is to ensure that it could be easily and 

reliably used for analysis of MPI performance in a number of different situations. Chapter 

5 compares the performance of Fast Ethernet and Myrinet networks for MPI communica-

tions on the same commodity Linux PC cluster. In particular, the analyses have investi-

gated the effects of network contention (including Ethernet packet loss and subsequent 

Retransmit Time-Outs) by measuring and analyzing distributions of communication 

times for point-to-point and collective communications, and how they scale with increas-

ing message sizes and numbers of processes. As expected, the Myrinet network performs 

significantly better than Fast Ethernet. The TCP RTO on the Ethernet network does affect 

communications performance, but only for large message sizes and large numbers of 

processors, where the network becomes saturated so that packets are dropped at a fairly 

high rate. In that case, it can have significant impact on the performance of collective 

communications, particularly MPI_Bcast and MPI_Alltoall. Earlier measurements by 

Grove et al. [8,9] for older versions of MPICH showed that TCP RTOs and congestion 

control mechanisms can greatly reduce the performance of MPI_Gather and 

MPI_Alltoall, and even cause them to fail at large message sizes. However the new 

analysis described in Chapter 5 found the effects to be much less serious than for these 

previous measurements, probably due to improvements in the collective communications 

routines used in the latest versions of MPICH. The results presented in this chapter also 

found some anomalous results for all-to-all and broadcast routines, where communication 

was sometimes faster for larger message sizes.  

 Chapter 6 analysed the anomalous results that were presented in Chapter 5 and 

found that they were caused by the changeover points between different algorithms for 

collective communication for the new version of MPICH. The experiments done in this 

chapter found that for a number of collective routines, the best changeover points be-

tween algorithms for Myrinet and Ethernet on a Linux PC cluster with two processors per 

node are quite different to the fixed settings in MPICH. The experiments demonstrated 

that tuning the changeover points to a particular architecture can give a significant im-

provement in performance, particularly for Ethernet networks. The main reason for the 
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improvements seems to be that the best changeover points can be very different depend-

ing on whether 1 or 2 CPUs per node are used, and the MPICH values are on the meas-

urements of Thakur et al. [11] on clusters with 1 CPU per node. This study provides val-

ues for better cutoff points for a Linux PC cluster with dual processor nodes connected by 

Myrinet with GM and Fast Ethernet with TCP. This study also provides a comparison of 

results between MPICH2 1.0.4 and MPICH-GM 1.2.7 and it shows that MPICH2 shows 

improvement for certain algorithms.  

 Finally, chapter 7 used MPIBench to analyse the MPI performance of a large 

ccNUMA shared memory machine, the SGI Altix 3000, and compared the results with an 

AlphaServer SC, a high-end cluster of SMP nodes connected by a high-speed network, 

Quadrics QsNet.  This is an interesting contrast of MPI performance between shared 

memory and distributed memory machines. It is particularly of interest to users of the 

Australian national computing facility, where an AlphaServer was replaced with an Altix. 

The results show that the Altix has very good MPI communications performance that 

scales well up to 128 processors. Overall the performance was significantly better than 

the measured performance of the AlphaServer SC. The Altix provides higher bandwidth 

and lower latency than the Quadrics network, with significantly better collective commu-

nications performance, except for broadcast and barrier operations on contiguous nodes, 

where the Quadrics network provides very fast hardware-enabled broadcast. It was found 

that the Single Copy (non-buffered) communication option significantly improved per-

formance over buffered copy. Single Copy is not always the default option, but should be 

used wherever possible in order to get best performance. 

In completing this thesis work, there were many obstacles that had to be passed. A 

major problem was to get dedicated access to large parallel computers in order to test the 

MPI performance of different networks for large numbers of processors. The machines 

we had access to were an IBM Linux cluster and SGI Altix at SAPAC. Since these ma-

chines are a shared resource with many users, it was difficult to get dedicated access to 

the whole machine for large periods of time. Tests on smaller numbers of processors 

were easily done. Dedicated access was arranged during times after the machines were 

taken down for upgrades or reboots. The architecture of SGI Altix took some time to un-

derstand, since at the time the research was done the SGI Altix architecture was still new 

and not many references could be found, this made it difficult to understand some of the 
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results from this machine, such as differences in results between the MPI benchmarks for 

certain MPI routines, and the problem with Single Copy option with MPIBench. A prob-

lem on the IBM Linux cluster was to find on how to analyse the performance using the 

same machine but different networks, Ethernet and Myrinet. This required understanding 

the configurations of the switches for Ethernet and Myrinet. A different code have been 

created to refer either the switches are for Ethernet or Myrinet, for example node1-m and 

m is referring to Myrinet. Another issues that take longer time to understand is the 

anomalous performance results that were obtained from some of the MPI routine from 

both machines. In general, it was often difficult to explain the results obtained from the 

MPI benchmarks in terms of the machine architecture and the details of the MPI imple-

mentation, collective communication algorithm and the MPI benchmark used. Implemen-

tation details of the different MPI benchmarks were often not available from the papers 

and user documentation for the benchmarks, so an understanding of the coding from all 

MPI benchmarks involved in this thesis was required, which was one of the hardest tasks 

in completing this thesis work.  

  

 In summary, the main contributions of this thesis are: 

 
i.  Obtained results from MPIBench on several different types of parallel computers, and 

demonstrated that it is a very useful tool for detailed MPI performance analysis, 

particularly for machines with SMP nodes 

ii. Significantly improved the functionality, ease of use, robustness and portability of 

MPIBench. 

iii. Provided the first detailed comparison of the functionality and results of different MPI 

benchmarks, and showed that results can differ significantly between the different 

benchmarks in some situations, particularly for shared memory architectures. 

Importantly, some of these differences could also affect results from future clusters 

with many cores per node.    

 
iv. Comparison of Myrinet and Ethernet performance using MPIBench for large numbers 

of nodes, particularly analysis of variations in communication times, including the 

effects of TCP retransmit timeouts on Ethernet performance. The results showed that 

new versions of MPICH using improved collective communication algorithms no 
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longer have the major problems that were found with older versions on Ethernet 

clusters. They also showed that RTOs were only a problem with large message sizes or 

collective operations such as Alltoall that have a large amount of aggregate 

communication. 

 
v. Demonstrated that significant performance improvements can be obtained by 

converting MPICH to enable tuning of changeover points between different algorithms 

for collective communications, particularly for clusters with multiprocessor SMP 

nodes.  

 

vi. The first comprehensive analysis of MPI performance on the SGI Altix shared memory 

architecture, providing results for point-to-point and collective communications and for 

large numbers of processors. There is also the comparison with an AlphaServer SC, a 

distributed memory cluster with a high-speed communications network 

 

The following are a few suggestions for improving MPIBench and further work that has 

not been done in this thesis.  

 
i. In improving MPIBench, 

a. The adaptive message refinement tools in order to fix results for certain 

message sizes which have been applied by Mpptest and SKaMPI.  

b. More MPI communications routines should be added to give more choice 

to user, particularly for the collective communication.  

c. Making available a variety of common communication patterns would also 

be useful.  

d. The user-specified calculation of average time for the ring pattern for test-

ing MPI_Sendrecv, either it is calculated based on the average time of all 

processes or the average time of the slowest process.  

 
ii. Investigate current research aiming to make TCP policies more flexible and dynamic, 

which could allow improved performance on Ethernet clusters. 
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iii. In future, software could be developed to automate the process of selecting the optimal 

changeover points between different algorithms for MPI collective communication rou-

tines. When a portable MPI library such as MPICH is installed on a machine, a configu-

ration script could run MPI benchmarks for a wide range of message sizes for all of the 

multiple algorithms used by MPI collective routines. Then the results could be auto-

matically compared and the default changeover points can be replaced with new im-

proved changeover points. 

 
iv. Use MPIBench for additional analysis and comparison of different communication 

networks (e.g. Infiniband and Gigabit Ethernet) and MPI libraries (e.g. OpenMPI), par-

ticularly for SMP clusters with many CPUs per node. 

 

v. Use MPIBench for measuring the effects of RTOs and MPI performance on Gigabit 

Ethernet with Jumbo Frame.  
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