SAFETY AND EFFICACY OF HIGH DOSE DOCOSAHEXAENOIC ACID FOR THE PRETERM INFANT

Lisa G Smithers B App Sc, Grad Dip Hu Nut

This thesis is submitted for the degree of Doctor of Philosophy

Discipline of Paediatrics, School of Paediatrics and Reproductive Health Faculty of Health Sciences University of Adelaide

August 2006

TABLE OF CONTENTS

	Page
SUMMARY	viii
DECLARATION	Х
ACKNOWLDEGEMENTS	xi
LIST OF ABBREVIATIONS	xiii

Chapter 1: LITERATURE REVIEW 1

1.1	Scope of the Review	1
1.2	DHA During Development: Location and Importance of DHA	2
	Tissues Containing DHA	2
	Demand for DHA During Development	3
	Supply of DHA to the Fetus During Gestation	4
	Postnatal Supply of DHA for the Preterm Infant	6
1.3	Improving Infants DHA status Through Nutrition	7
	Achieving High Levels of DHA in Milk	7
	Digestion and Absorption of DHA	8
	Dietary DHA Incorporation into Brain and Retinal Tissue	8
	Blood Phospholipids Reflect Dietary LCPUFA Intake in Breast Fed Infants	9
	Blood Phospholipids & High Dietary DHA Intake in Formula Fed Preterm Infants	12
1.4	Visual Development and Influence of LCPUFA in Preterm Infants	14
	Visual Acuity and Influence of n-3 LCPUFA in Preterm Infants	14
	Breast Milk, DHA and Visual Acuity	22
	VEP Latency and Influence of DHA and other n-3 LCPUFA	24
	Effects of n-3 LCPUFA on Retinal Function in Preterm Infants	27
1.5	Global Development and Influence of DHA and other n-3 LCPUFA	29
	Deficits of Development in Preterm Infants	29
	Breast Milk and Development of Preterm Infants	29
	RCT of LCPUFA Supplementation and Development of Preterm Infants	30
1.6	Growth of Preterm Infants Fed Formulas Enriched in LCPUFA	33
	Growth of Preterm Infants Fed Formula Enriched with n-3 LCPUFA (No	
	n-6 LCPUFA)	33
	Growth of Preterm Infants Fed Formula Enriched with n-3 LCPUFA and	
	n-6 LCPUFA	40
1.7	Clinical Measures of Safety from LCPUFA Trials in Preterm Infants	45
1.8	Rationale for Thesis	49

Chapter 2: DEVELOPMENT OF A SWEEP VEP ACUITY TECHNIQUE AND EVALUATION OF LATENCY RESONSES 51

2.1	Introduction	51
2.2	Prospective, Observational Study of VEP Responses of Infants	56
	Eligibility and Recruitment of Term Infants	57
	Eligibility and Recruitment of Preterm Infants	57
	Consent	57
	VEP Recordings	58
	Description of Subjects	59
2.3	Sweep VEP Protocol	61
	Development of Analysis Software for Sweep VEP Acuity Data	61
	Evaluation of Sweep, SNR and Phase Analysis Criterion on Mean Acuity	63
	Results of Comparisons of Acuity Analysis Criteria	65
	Sweep VEP Acuity at 2 Months Compared With 4 Months of Age	69
	Comparison of Acuity Data with Norcia et al	70
	Comparison of Sweep VEP Acuity at 2 and 4 Months with Other Studies	70
	Summary of Optimisation of the Sweep VEP Acuity Technique	72
2.4	VEP Latency Responses to Transient Checkerboard Stimuli	73
	Method for Recording VEP Latency Responses	73
	Results of VEP Latencies to Transient Checkerboard Images	74
	Discussion of Latency Responses	76
	Summary of Transient VEP Responses	78

Chapter 3: Design and Implementation of Double-Blind RANDOMISED CONTROLLED DHA INTERVENTION TRIAL IN PRETERM INFANTS 79

3.1	Trial Design and Implementation	79
	Introduction	79
	Aims	79
	Hypothesis	80
	Primary Outcomes	80
	Secondary Outcomes	80
	Eligibility, Inclusion and Exclusion Criteria	81
	Randomisation Schedule	81
	Masking of Treatment	82
	Enrolment Procedure	82
	Allocation of Intervention	82
	Implementation of Trial	83
	Data Collection during Hospitalisation	85
	Follow-up of Infants Transferred to Other Hospitals	85
	Data Collection at the Estimated Due Date	86
	Data Collection at 2 Months Corrected Age	86
	Data Collection at 4 Months Corrected Age	

	Compliance and the Success of the Intervention	87
	Data Management and Maintaining the Trial Blinding	88
	Sample Size Estimates	89
	Analysis of Trial Data	89
3.2	Method for Fatty Acid Analysis of DHA Intervention Trial Samples	91
	Introduction	91
	Extraction of Total Fatty Acids	92
	Separation of Erythrocyte Phospholipids	92
	Methylation of Extracted Fatty Acids	92
	Gas Chromatograph Analysis of FAME	93
3.3	Measuring Growth of Infants	93
	Weight	93
	Length	93
	Head Circumference	94
	Mid Upper Arm Circumference	
	Abdominal Girth	
3.4	Descriptions and Definitions of Clinical Measurements	94
	Sepsis	94
	Feeding and Tolerance	95
	Necrotising Enterocolitis	95
	Respiratory Data	95
	Retinopathy of Prematurity	95
	Neural Injury	
	Other Clinical Data	96

Chapter 4: EFFICACY OF HIGH DOSE DHA (1%) ON PRETERM INFANT VEP ACUITY AND LATENCY 97

4.1	Abstract	97
4.2	Introduction	98
4.3	Method	98
	Statistical Analyses	98
4.4	Results	99
	Enrolment and Flow of Participants through the Trial	99
	Baseline Characteristics of the Trial Participants	101
	Compliance with Trial Intervention	106
	Success of the Intervention	109
	Masking of Treatment	111
	Primary Visual Outcome: Sweep VEP Acuity at 2 and 4 Months CA	112
	Sweep VEP Acuity: Gender and Birth Weight Subgroup Comparisons	114
	Exploratory Acuity Analysis of Infants Primarily Fed Breast Milk	115
	Secondary Visual Outcome: VEP Latency at 2 and 4 Months CA	116
4.	.5 Discussion	119

Chapter 5: GROWTH AND SAFETY OF FEEDING PRETERM INFANTS 1% DHA IN MILK; OUTCOMES OF A RCT______125

5.1 Abstract	125
5.2 Introduction	127
5.3 Method	128
Statistical Analyses	128
5.4 Results of Primary Safety Outcome: Infant Growth Data	130
Growth Velocity	135
Z-Score	136
5.5 Discussion of Primary Safety Outcome:	137
5.6 Results of Secondary Safety Outcome: Clinical Data	141
Gastrointestinal Data and Incidence of NEC	141
Respiratory Data	144
Retinopathy of Prematurity	146
Brain Injury	150
Sepsis	154
General Morbidity	156
5.7 Discussion of Clinical Data	158
Gastrointestinal Data and Incidence of NEC	158
Respiratory Data	159
Retinopathy of Prematurity	160
Brain Injury	161
Sepsis	163
General Morbidity	164
5.8 Summary of Safety Data	165

Chapter 6: GENERAL DISCUSSION 166

APPENDICES	171
Appendix A: Additional Tables of Anthropometric Data (CHAPTER 5)	171
Appendix B: Publications In Support of This Thesis	174

REFERENCES	1	7	5

LIST OF TABLES

- 1.1 Estimated DHA Intake (in mg/kd/day) Based on Fluid Intake Recommendations for Preterm Infants According to Various Concentrations of DHA (% total fat) in Milk
- 1.2 Infant Erythrocyte LCPUFA Status after Feeding Milk Containing Approximately 1% (of total fat) as n-3 LCPUFA
- 1.3 Acuity Measures from RCT in Preterm Infants Fed Formula Containing LCPUFA
- 1.4 Growth Performance of Preterm Infants Enrolled in RCT of n-3 LCPUFA Formula Supplementation
- 1.5 Growth Performance of Preterm Infants Enrolled in RCT of n-3 and n-6 LCPUFA Formula Supplementation
- 2.1 Comparison of Sweep VEP Acuity Techniques
- 2.2 Description of Infants Enrolled in Observational Study of VEP
- 2.3 Successful Extrapolations and Acuity (in cpd) from Different Analysis Criterion at 4 Months of Age
- 2.4 Successful Extrapolations and Acuity (in cpd) from 14 Hz Noise Frequency at 4 Months of Age
- 2.5 Latency (msec) of Transient VEP Responses at 2 and 4 Months of Age
- 3.1 Fatty Acid Composition (% Total) of One 500 mg Capsule
- 3.2 Composition of Preterm Infant Formula
- 3.3 Sample Size Estimates for Primary Outcomes at 4 Months CA
- 4.1 Enrolment Characteristics of Trial Participants
- 4.2 Family and Lifestyle Details of Trial Participants by Intervention Group
- 4.3 Clinical Picture of Trail Participants at Birth
- 4.4 Infant Erythrocyte Membrane Phospholipid Fatty Acid (% Total) at the End of the Intervention Period
- 4.5 Maternal Guess of Treatment Allocation
- 4.6 Intention-to-treat Comparisons of Sweep VEP Acuity (in cpd)
- 4.7 Acuity (cpd) of 2 and 4 Months CA by Gender Subgroup
- 4.8 Acuity (cpd) of 2 and 4 Months CA by Birth Weight subgroups
- 4.9 Sweep VEP Acuity (in cpd) at 2 and 4 Months CA of Infants Primarily Fed Breast Milk at the End of the Intervention Period
- 4.10 Comparisons of VEP Latency (in milliseconds) at 2 and 4 months CA
- 4.11 Latency (milliseconds) at 2 and 4 Months CA by Gender Subgroups
- 4.12 Latency (milliseconds) at 2 and 4 Months CA by Birth Weight Subgroups
- 5.4.1 Anthropometry of control and Treatment Groups at the End of the Intervention Period (EDD) and at 4 Months CA
- 5.4.2 Anthropometry of the control and treatment infants at 4 months CA by gender subgroup

- 5.4.3 Anthropometry of control and treatment groups at 4 months CA by birth weight subgroups
- 5.4.4 Growth velocity from enrolment to EDD and EDD to 4 months CA by intervention group
- 5.6.1 Gastrointestinal data and incidence of NEC by intervention group
- 5.6.2 Respiratory Characteristics of Trial Participants by Intervention Group
- 5.6.3 Retinopathy of Trial Infants by Intervention Group, Categorised According to Most Severely Affected Eye
- 5.6.4 Incidence of Neural Injuries by Intervention Group
- 5.6.5 Sepsis Data by Trial Intervention Group
- 5.6.6 Morbidity and Mortality Data According to Intervention Group

LIST OF FIGURES

- 2.1 An Infant and Her Mother are Photographed after a Transient VEP Test
- 2.2 Comparison of Acuity Data at 2 and 4 Months of Age with Norcia *et al*
- 4.1 Flow of Participants through the DHA Intervention Trial
- 4.2 Proportion of Breast Milk in Infants' Diet
- 4.3 Breast Milk and Formula Fatty Acid Content of Control and Treatment Groups
- 4.4 Increasing Erythrocyte DHA in Response to Higher Milk DHA
- 5.1 Intention-to-treat Comparisons of Z-scores at EDD and 4 Months CA
- 5.2 Meta-analysis of the Incidence of Necrotising Enterocolitis (NEC) in Preterm Infants in LCPUFA Intervention Trials
- 5.3 Meta-analysis of the Incidence of Bronchopulmonary Dysplasia (BPD), defined as Requirement for Oxygen at 36 weeks PMA in Preterm Infants in LCPUFA Intervention Trials
- 5.4 Meta-analysis of the Incidence of Any Retinopathy of Prematurity (ROP) in Preterm Infants in LCPUFA Intervention Trials
- 5.5 Meta-analysis of the Incidence of Severe Retinopathy of Prematurity (Defined as Grade ≥3) in Preterm Infants in LCPUFA Intervention Trials
- 5.6 Meta-analysis of the Incidence of Any Intraventricular Haemorrhage (IVH) in Preterm Infants in LCPUFA Intervention Trials
- 5.7 Meta-analysis of the Incidence of Severe Intraventricular Haemorrhage (Defined as Grade ≥3) in Preterm Infants in LCPUFA Intervention Trials
- 5.8 Meta-analysis of the Incidence of Sepsis in Preterm Infants in LCPUFA Intervention Trials

SUMMARY

There has been substantial research demonstrating improvements in visual and cognitive performance of preterm infants after feeding formulas containing n-3 long chain polyunsaturated fatty acid (LCPUFA). The amount of docosahexaenoic acid (DHA) estimated to be accrued by the fetus in the last trimester of gestation is greater than that supplied in current preterm formulas and breast milk of average DHA content (~0.3% of total fat in Western women). Yet many trials have compared infants fed formula containing concentrations near 0.3% DHA with infants fed formula containing no LCPUFA. No research has addressed whether the average breast milk DHA milk results in optimal development of preterm infants. The focus of this thesis was to compare the efficacy and safety of supplementing preterm infants with milk containing docosahexaenoic acid (DHA) at concentrations that meet the estimated *in utero* accretion rate (~1%) compared with current clinical practices (~0.3%).

In a double-blind, randomised controlled trial (RCT), infants born <33 weeks gestation were assigned to receive milk containing one of two doses of DHA. Treatment group infants received milk containing high dose DHA (1%) and infants in the control group infants received milk containing standard levels DHA (0.2 - 0.35%). Lactating mothers consumed capsules containing either tuna oil (900mg DHA) or soy oil (no DHA) that resulted in breast milk with either a high or typical concentration of DHA. Standard preterm formula milk with a corresponding DHA composition was fed to infants if formula feeds were required. The intervention period was from five days of commencing enteral feeds through to the infants estimated due date (EDD). Primary efficacy assessment was sweep visual evoked potential (VEP) acuity at 4 months corrected age (CA). Secondary efficacy outcomes included VEP acuity at 2 months CA and VEP latency at 2 and 4 months CA. Infant anthropometry was assessed regularly throughout the trial and the primary safety outcome was weight at 4 months CA. Other clinical safety

data including incidence and severity of diseases commonly associated with prematurity were also assessed.

The success of the intervention was demonstrated with infants in the treatment group having a significantly higher level of erythrocyte membrane DHA at EDD compared with the control group (% total erythrocyte phospholipids (mean \pm SD), treatment group 6.8 \pm 1.2, control group 5.2 \pm 0.7, p<0.0005). The primary efficacy outcome of acuity at 4 months CA was significantly higher in the treatment compared with the control group infants (mean \pm SD acuity (in cpd) treatment group 9.6 \pm 3.7, control group 8.2 \pm 1.8, p = 0.025). No significant differences were found in acuity at 2 months CA or latency at 2 or 4 months CA between infants in the control and treatment groups.

No significant differences in weight, length or head circumference were found between treatment compared with control infants at EDD or at 4 months CA. Nor were any differences found in other clinical outcomes commonly associated with prematurity including, tolerance, necrotising enterocolitis, sepsis, retinopathy of prematurity, bronchopulmonary dysplasia or intraventricular haemorrhage.

Increasing milk DHA to 1% of total fat suggests that the DHA requirement of preterm infants may be higher than the level available in preterm formula or breast milk of Australian women. Addressing both breast and formula milks demonstrates wide generalisability of these findings to common feeding practices in neonatal nurseries. Further studies are needed to determine whether this feeding strategy and dose of DHA is capable of improving other aspects of infant development.

İХ

DECLARATION

This work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference is made in the text of the thesis.

I give consent to this copy of my thesis, when deposited in the University Library, being made available for loan and photocopying.

Lisa G Smithers B App Sc, Grad Dip Hu Nut

ACKNOWLEDGEMENTS

Firstly, many thanks go to the parents that volunteered their infants for study, I sincerely appreciate your time and effort.

Secondly, to my supervisors Dr Maria Makrides and Professor Bob Gibson, I thank you both for this fantastic opportunity. Maria, for your unlimited patience and guidance, and Bob for your lively and judicious comments.

I would have never been able to undertake this work without the personal financial support I received with a scholarship. This research was also supported with a grant from the Channel 7 Research Foundation. Other support was provided through the donation of preterm formula from Nutricia Australia and fish oil capsules from Clover Corporation.

Thank-you to all the neonatal staff, particularly to neonatalogist Dr Andy McPhee, and to research midwives Ros Lontis and Louise Goodchild for assistance enrolling participants, collecting data while infants where in hospital and reviewing case notes. Thanks to the many nursery staff at hospitals to which infants were transferred.

To the laboratory staff, Kate Boyd, Ela Zeilinski and Mark Neumann many thanks for endless fatty acid analyses. Kate, thank you for your patience with all my data queries and for your expertise in maintaining the blind. Thanks to all CNRC staff for their support, but particularly to Heather Garreffa for heel pricks and to Jenni Scambiatterra for administrative support. Further thanks go to Dr Brett Jeffrey for assistance in setting up the VEP technique and to Sherry Randhawa for your delightful persistence in writing analysis software. Special thanks to Assoc Prof Algis Vingrys and Dr Bang Bui for expert advice on the analysis of sweep VEP traces. Also thank you to the biometricians at the Women's and Children's Hospital, Public Health Research Unit, Women's and Children's Hospital, in particular Kate Dowling, Janine Jones and Professor Ari Verbyla for advice on statistical methods.

I also want to thank the people that have offered personal support during this time. Thank you to my student office-mates Dr Jo Zhou, Dr Debbie Palmer and Roxanne Portolesi for the friendship and supportive chats we shared. Thanks go to Janet and Bill Smithers for reliable and caring help with family commitments. I could not underestimate the unwavering support I have come to rely on from my family, I must sincerely thank my late mum Juanita, my dad Graham and my sister Michelle for their interest, encouragement and endless faith in me. And finally, tremendous thanks to my husband Jeff, for your understanding of my desire to do this and accepting the impact on our family.

'Fight through ignorance, want, and care Through the griefs that crush the spirit; Push your way to a fortune fair, And the smiles of the world, you'll merit.

Long, as a boy, for the chance to learn For the chance that Fate denies you; Win degrees where the Life-lights burn, And the scores will teach and advise you.'

Henry Lawson

LIST OF ABBREVIATIONS

AA	Arachidonic acid	EEG	electroencephalogram
AC	alternating current	EFA	essential fatty acid
AFT	adaptive filter technique	EI	enteral intake
AGA	appropriate for gestational age	EPA	Eicosapentaenoic acid
ALA	Alpha linolenic acid	ERG	Electroretinogram
ANZNN	Australia and New Zealand Neonatal	Exc	Exclusive or exclusively
	Network	FAME	fatty acid methyl ester
AR	analytical reagent	FF	Formula fed
BF	Breast fed	FFA	Free fatty acids
BPD	Bronchopulmonary dysplasia	FT	full term
BSID	Bayley Scales of Infant Development	FTII	Fagan test of infant intelligence
CA	Corrected age	GA	gestational age
CDC	Centre for Disease Control	GC	gas chromatograph
CDI	Communicative development inventory	GI	gastrointestinal
CI	confidence interval	HC	Head circumference
cm	centimetre	HDL	high density lipoprotein
CNRC	Child Nutrition Research Centre	HMD	Hyalin membrane disease
CPAP	continuous positive airway pressure	Hz	hertz
cpd	cycles per degree	IQ	intelligence quotient
CLD	Chronic lung disease	ITT	intention-to-treat
df	degrees of freedom	IV	intravenous
DHA	Docosahexaenoic acid	IVH	Intraventricular haemorrhage
DPA	docosapentaenoic acid	kJ	kilojoule
EDD	estimated due date	kg	kilogram

L	litre	PE	Phosphatidyl ethanolamine
LA	Linoleic acid	PET	Positron emission tomography
LBW	low birth weight	PI	Phosphatidyl inositol
LCPUFA	A Long chain polyunsaturated fatty acid	PL	phospholipid
LDL	low density lipoprotein	PMA	Post menstrual age
LED	Light emitting diode	PS	Phosphatidyl serine
105	longth of stay	PUFA	polyunsaturated fatty acid
103	length of stay	PVL	periventricular leukomalacia
LPL	Lipoprotein lipase	RBC	red blood cell
MDI	motor development index	RCT	Randomised Controlled Trial
mL	millilitres	RDS	Respiratory distress syndrome
mo	months	REC	Research Ethics Committee
MRI	Magnetic Resonance Imaging	ROP	Retinopathy of prematurity
msec	milliseconds	RR	Relative Risk
MUAC	mid upper arm circumference	SD	Standard deviation
ND	no difference	SES	socioeconomic status
NEC	necrotising enterocolitis	SGA	Small for gestational age
NH&MF	RC National Health and Medical Research	SNR	signal to noise ratio
	Council	TLC	Thin layer chromatography
NICU	neonatal intensive care unit	UV	ultraviolet
NR	reported	VEP	Visual evoked potential
NS	not significant	VLBW	very low birth weight
PC	Phosphatidyl choline	yr	year
PCA	post conceptual age		
PDA	patent ductus arteriosus		

PDI psychomotor development index