Identifying target proteins of the CreB deubiquitination enzyme in the fungus Aspergillus nidulans

By

Niyom Kamlangdee

BSc. (Biology), MSc. (Biotechnology) Prince of Songkla University, Thailand

A thesis submitted to the University of Adelaide in total fulfillment of the requirements for admission to the degree of Doctor of Philosophy.

Genetics Discipline School of Molecular and Biomedical Sciences Faculty of Sciences The University of Adelaide

November 2007

Table of contents

Page
AbstractIV
DeclarationVI
AcknowledgementsVII
List of FiguresVIII
List of TablesX
List of AbbreviationsXI
CHAPTER 1: INTRODUCTION AND LITERATURE REVIEWS1
1.1 Introduction1
1.2 Aspergillus nidulans as a model organism2
1.3 Carbon catabolite repression4
1.3.1 Introduction
1.3.2 Carbon catabolite repression in bacteria4
1.3.3 Carbon catabolite repression in <i>Saccharomyces cerevisiae</i>
1.3.3.1 <i>MIG1</i>
1.3.3.2 <i>SSN6</i> and <i>TUP1</i> 7
1.3.3.3 <i>SNF1</i>
1.3.3.4 <i>SNF4</i> 10
1.3.3.5 <i>REG1</i> , <i>GLC7</i> and <i>GRR1</i> 10
1.3.3.6 SNF3, RGT2, and RGR111
1.3.3.7 HXK and their role in glucose signaling in S. cerevisiae12
1.3.4 Carbon catabolite repression in Aspergillus nidulans
1.3.4.1 Identification of creA as a suppressor of areA loss-of-
function mutation
1.3.4.2 Molecular analysis of <i>creA</i> 18
1.3.4.3 The homologues of CreA in other eukaryotes
1.3.4.4 <i>creB</i> and <i>creC</i>
1.3.4.5 <i>creD</i>
1.3.4.6 <i>acrB</i>
1.3.5 Hexokinases and glucose signaling in filamentous fungi
1.4 Ubiquitination and deubiquitination systems25
1.4.1 Ubiquitination system
1.4.2 Deubiquitination system
1.5 Roles of CreA, CreB, CreC and CreD in carbon catabolite
repression in Aspergillus nidulans
1.6 Permease enzymes in fungi
1.6.1 Proline permease in A. nidulans
1.6.2 Quinate permease in A. nidulans
1.7 Conclusion
1.8 Aims of the study35
1.8.1 CreA: a candidate protein target for the CreB/CreC complex
1.8.2 Proline permease: a candidate protein target for the CreB/CreC
complex
1.8.3 Quinate permease: candidate protein target for the CreB/CreC
complex
1.8.4 Proteomic approach to identifying other proteins that interact
with CreA

	APTER 2: METERIALS AND METHODS	
	2.1 Materials	
	2.1.1 Antibodies	
	2.1.2 Enzymes	
	2.1.3 Molecular weight makers	
	2.1.4 Radioactive isotopes and nucleotides	
	2.1.5 Bacterial strain	
	2.1.6 Aspergillus nidulans strains	
	2.1.7 Plasmids and Oligonucleotides	
	2.1.8 Kits and miscellaneous materials	
	2.2 Media, Solutions and Buffers	
	2.2.1 Media	
	2.2.2 Solutions and Buffers	
	2.3 Methods	
	2.3.1 Plasmid amplification	
	2.3.2 Conditions for producing A. nidulans mycelia in liquid culture	
	2.3.3 Preparation of Aspergillus nidulans protoplasts	
	2.3.4 Transformation of A. nidulans protoplasts	
	2.3.5 Meiotic cross in A. nidulans	
	2.3.6 Diploid formation in A. nidulans	50
	2.3.7 Nucleic acids (DNA and RNA) isolation	
	2.3.8 Polymerase Chain Reaction (PCR)	51
	2.3.9 DNA sequencing	
	2.3.10 DNA restriction endonuclease digestion	51
	2.3.11 DNA Gel purification	51
	2.3.12 Radioactive labelling of probes	52
	2.3.13 DNA gel electrophoresis and Southern transfer	52
	2.3.14 RNA gel electrophoresis and Northern transfer	52
	2.3.15 Protein analysis	53
	2.3.15.1 Total protein extracts from A. nidulans	53
	2.3.15.2 Immunoprecipitaion and Western analysis	53
	2.3.15.3 Ubiquitinylated protein enrichment and	
	Immunoprecipitation	54
	2.4 Bioinformatic tools	
	2.4.1 Aspergillus nidulans online database	54
	2.4.2 DNA sequence analysis	54
	2.4.3 Protein analysis	55
CH	APTER 3:STUDY OF CREA, A CANDIDATE PROTEIN TARGET	
	FOR THE CREB DEUBIQUITINATION PROTEIN	57
	3.1 Introduction	57
	3.2 Epitope tagged version of CreA and CreB constructs	57
	3.2.1 Co-immunoprecipitation experiment using a strain containing	
	pMycCreA and pCreBFLAG	
	3.2.2 Construction the CreAHA and CreBFLAG containing strain	61
	3.2.3 CreAHA and CreBFLAG were precipitated with anti-FLAG	
	antibody	
	3.2.4 Construction the CreA2HAHis and CreBFLAG containing strain	64
	3.2.5 CreA2HAHis and CreBFLAG were precipitated with a His-Trap	
	column and anti-HA matrix	
	3.3 CreA is a ubiquitinated protein	
	3.4 Summary	70

CHAPTER 4:STUDY OF PROLINE PERMEASE, PRNB, A	
CANDIDATE PROTEIN TARGET FOR THE CREB	
DEUBIQUITINATION PROTEIN7	3
4.1 Introduction	3
4.2 Expression of the pGPDMycPrnB and pPRNB-HA7	4
4.3 Southern analysis of pPRNB-HA transformants	
4.4 pGPDPrnBHA construction8	
4.4.1 PCR amplification and re-design of epitope-tagged PrnBHA	
4.4.2 Ligation of <i>prnBHA</i> into a pGPD-containing vector and	
plasmid amplification	0
4.5 Transformation and Expression of pGPDPrnBHA in A. nidulans8	
4.6 Southern analysis of pGPDPrnBHA transformants	
4.7 Western analysis of pGPDPrnBHA transformants	
4.8 Summary	
	1
CHAPTER 5:STUDY OF QUINATE PERMEASE, QUTD, CANDIDATE	
PROTEIN TARGET FOR CREB DEUBIQUITINATION	
PROTEIN	1
5.1 Introduction	
5.2 Transformation of pGPDMycQutD into the <i>qutD312</i> mutant strain9	
5.3 pGEMTQutDHA construction	
5.3.1 Redesign of epitope tag and PCR amplification of <i>qutDHA</i> 9.	
5.3.2 Directional cloning of the $qutD$ into pGEM [®] -T easy vector and	2
plasmid amplification	2
	5
5.4 Transformation of pGEMTQutDHA construction into the <i>qutD</i>	^
mutant strain	
5.5 Southern Analysis of the <i>qutDHA</i> transformants	
5.6 Expression of pGEMTQutDHA in a <i>qutD</i> mutant strain	
5.7 Co-Immunoprecipitation of CreBFLAG and QutDHA10	
5.8 Expression of QutDHA in a strain containing a <i>creB</i> null mutation10	7
5.8.1 <i>Aspergillus</i> crosses between QutDHA containing strain with	_
<i>creB1937</i> mutant strain10	
5.8.2 Southern analysis to confirm <i>qutDHA</i> in the progeny10	
5.8.3 Western and Northern analysis of <i>creB1937;qutDHA</i> strain10	
5.9 QutD is a ubiquitinated protein11	
5.10 Summary11	3
CHAPTER 6: IDENTIFICATION OF PROTEINS INTERACTING	
WITH CREA USING A PROTEOMIC APPROACH11	
6.1 Introduction11	
6.2 Purification of CreA2HAHis and Western analysis11	
6.3 Silver staining of proteins11	6
6.4 Proteomic analysis11	9
CHAPTER 7: GENERAL DISCUSSION12	
7.1 CreA interacts with CreB deubiquitination protein12	
7.2 Quinate Permease interacts with the CreB deubiquitination protein12	8
7.3 Conclusion	
REFERENCES13	5

Abstract

Carbon catabolite repression in *A. nidulans* is a regulatory system which allows the organism to utilize the most preferable carbon source by repressing the expression of genes encoding enzymes utilizing alternative carbon sources. A ubiquitination pathway was shown to be one of the key mechanisms which regulate carbon source utilization, when *creB* was found to encode a deubiquitinating enzyme. Strains containing mutations in *creB* show loss of repression for some metabolic pathways in carbon catabolite repressing conditions, and also grow very poorly on several sole carbon sources such as quinate and proline, suggesting CreB plays multiple roles in the cell.

This work describes the analysis of the interaction of CreB with CreA, and with PrnB and QutD. Various epitope-tagged versions of CreA were expressed in *A. nidulans*, and an internally located HA-epitope tag was found to allow detection of CreA using Western analysis. A diploid strain was constructed between strains containing HAtagged CreA and FLAG-tagged CreB. When CreB was immunoprecipitated, HAtagged CreA was also precipitated in the diploid, indicating that CreA and CreB are present in a complex *in vivo*. To determine whether CreA is a ubiquitinated protein, a version of CreA that was tagged with both an HA epitope and a His-tag was expressed in *A. nidulans*, and protein extracts were precipitated with an UbiQaptureTM-Q matrix. Western analysis was used to show that CreA was present in the precipitate. These findings suggest that CreA is a ubiquitinated protein, and a target of the CreB deubiquitination enzyme.

To determine whether the proline permease (PrnB) is a direct substrate of CreB, plasmids to express epitope-tagged versions of PrnB were constructed and introduced into the *prnB* mutant strain. No tagged protein could be detected by Western analysis, even when these constructs were over-expressed from the *gpdA* promoter. However, a construct to express an HA epitope tagged version of quinate permease (QutD) fully complemented the *qutD* mutant strain, and HA-tagged QutD could be easily detected in Western analysis when probed with the anti-HA monoclonal antibody. A diploid strain was made between a complementing transformant and a strain expressing a FLAG-tagged CreB construct. When QutDHA was immunoprecipitated, CreBFLAG was detected in the immunoprecipitate of the diploid. A proportion of QutDHA was also coprecipitated in the diploid when CreBFLAG was immunoprecipitated. Thus, CreB is

present in a complex with QutD *in vivo*. Further results showed that the concentration of QutD in the cell is lower in a *creB* null mutant background than in the wild-type background, indicating that deubiquitination is required to prevent protein turnover. Northern analysis of mRNA showed that the failure of *creB* mutant strains to grow on quinate medium was not due to a failure of transcriptional induction of *qutD*, as the amount of mRNA was not lower in a *creB1937* mutant background compared to the wild-type. Furthermore, experiments were undertaken that showed that QutD is a ubiquitinated protein. These findings suggest that quinate permease is regulated through deubiquitination involving the CreB deubiquitination protein in *A. nidulans*.

In addition to the candidate protein approach asking whether CreA is a substrate of CreB, a proteomics approach was also used to identify proteins that interact with CreA. However, no clear interacting proteins were identified using this approach.

Declaration

This work contains no material which has been accepted for the award of any other degrees or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference had been made in the text.

I certify that any help received in preparing this thesis, and all sources used, have been acknowledged in this thesis.

I give consent to this copy of my thesis, when deposited in the University Library, being made available in all forms for loan and photocopying.

Niyom Kamlangdee

22nd November, 2007

Data presented in this thesis has been presented and published as in the following:

- Kamlangdee, N., Lockington, R. A., and Kelly, J. M. **2005**. Expression of the tagged PrnB and QutD proteins in *Aspergillus nidulans* to identify targets of the CreB deubiquitination protein. The ComBIO2005 Combined Conference. Adelaide Convention Center, Adelaide, South Australia, Australia. September 2005.
- Kamlangdee, N., Lockington, R. A., and Kelly, J. M. 2006. Transformational study of the tagged *prnB* and *qutD* genes in *Aspergillus nidulans* to identify targets of the CreB deubiquitinating enzyme. The 20th IUBMB International Congress of Biochemistry and Molecular Biology and 11th FAOBMB Congress. Kyoto International Conference Hall, Kyoto, Japan. June 2006.
- Kamlangdee, N., Lockington, R. A., and Kelly, J. M. 2007. The CreB deubiquitinating protein interacts with quinate permease (QutD) in vivo in Aspergillus nidulans. 28th Lorne Genome Conference. Erskine Mantra Resort, Lorne, Victoria, Australia. February 2007.
- Kamlangdee, N., Lockington, R. A., and Kelly, J. M. 2007. Roles of the CreB deubiquitination protein in carbon catabolite repression (CCR) in *Aspergillus nidulans*. Asian Mycology Congress 2007 and Xth International Maine and Freshwater Mycology Symposium. Royal Park Hotel, Penang, Malaysia, December 2007.
- Kamlangdee, N., Lockington, R. A., and Kelly, J. M. 2007. Ubiquitinated CreA is a target and interacts with the CreB deubiquitinating protein *in vivo* in *Aspergillus nidulans*. International Conference on Cellular & Molecular Bioengineering 2007, Nanyang Technological University, Singapore. December 2007.

Acknowledgements

I would like to thank Thai Government for providing me the Ph.D. Scholarship to study at the University of Adelaide. Most importantly, I wish to acknowledge the guidance I have received from my proficient supervisor, Dr. Joan M. Kelly. I am very fortunate to have my comprehensive training experience with her, and Joan has been ever generous with her time and patient with my labours. Joan is not only a professional supervisor but she is always the great "*Teacher*" in my mind. I am grateful for her assistance in this thesis preparation. Her sagacious comments and positive approach have sustained my enthusiasm through all the tasks.

I would like to acknowledge Professor Dr. Jeremy N. Timmis, co-supervisor, for his support and constructive advice, and for putting up with me during these years.

Thank you to Dr. Robin Lockington, who has an enthusiasm and with a huge of knowledge in the *Aspergillus* experiences. You always give me with the excellent answers in all of my questions, and thank again for reading the thesis manuscript.

Thank to my fellow Ph.D. students, Jai Denton, Preeti Roy and Adrian Hunter. It had been the great to have all of you in this lab. Thank you for all of your helps, supports and for making me a lot of fun. My time here was shares with Damien Ferragamo, Jianliang Liang and Vivian Georgakopoulos as well as another adjoining laboratory. Hopefully all of you will successful with a real fungi world on the Globe.

I would like to thank School of Molecular and Biomedical Science (SMBS), and Faculty of Health Sciences (FHS) for granting me the Postgraduate traveling fellowship to presenting parts of this work both in National and International conferences. I also thank for people in SMBS for all of their help when I was having any problems.

Finally, I would like to acknowledge all of supports and assistances of my family in Thailand. They never come here but I always know their concerns through their gentle words. I am appreciative of the encouragement I have received from my parents.

List of Figures

Chapter 1 Pag
Figure 1.1 Lifecycle of <i>A. nidulans</i> showing the sexual, asexual and parasexual cycles
Figure 1.2 Pathway of glucose signaling elements and the regulation of genes in <i>S. cerevisiae</i> leading to glucose repression or derepression14
Figure 1.3 Diagram showing the ubiquitination and deubiquitination systems2'
Figure 1.4 Model for interaction of CreB, CreC, CreD, HulA with CreA and permeases in repressing (Ai and B) or derepressing (Aii) conditions
Chapter 3
Figure 3.1 Diagram showing epitope tagged versions of <i>creA</i> and <i>creB</i> constructs
Figure 3.2 Immunoprecipitation using anti-FLAG antibody60
Figure 3.3 Co-immunoprecipitation of CreAHA and CreBFLAG
Figure 3.4 Immunoprecipitation of CreAHA probed with anti-FLAG antibody66
Figure 3.5 Immunoprecipitation of CreAHA when probed with anti-HA
antibody, after probing with anti-FLAG antibody
Figure 3.6 CreA is a ubiquitinated protein
Chapter 4
Figure 4.1 pPRNB-HA can complement the <i>prnB6</i> mutation75
Figure 4.2 Homologous integration events producing PrnB without a HA-tag77
Figure 4.3 <i>Eco</i> RI sites in native <i>prnB</i> and in pPRNB-HA78
Figure 4.4 Southern and Western analysis of pPRNB-HA transformants
Figure 4.5 Sequence of <i>prnB</i> genomic region81
Figure 4.6 Construction of pGPDPrnBHA82
Figure 4.7 Confirmation of pGPDPrnBHA83
Figure 4.8 Phenotype analysis of pGPDPrnBHA transformants85
Figure 4.9 Southern hybridization of pGPDPrnBHA transformants87
Figure 4.10 Western analysis of pGPDPrnBHA transformants and the T7
strain
Chapter 5
Figure 5.1 Sequence of <i>qutD</i> genomic region
Figure 5.2 Amplification of the <i>qutD</i> region from <i>A. nidulans</i> genomic DNA
using NKQHAF and NKQXhoHAR primers95
Figure 5.3 Diagram of the pGEMTQutD plasmid95
Figure 5.4 pGEMTQutD digestion with <i>Xho</i> I and <i>Sph</i> I96
Figure 5.5 Scheme for insertion HA tag into pGEMTQutD97
Figure 5.6 Diagram of the pGEMTQutDHA plasmid
Figure 5.7 Sequencing result of pGEMTQutDHA plasmids showed the correct
insertion of HA epitope tag before the stop codon of the <i>qutD</i> gene98
Figure 5.8 Complementation of <i>qutD312</i> by pGEMTQutDHA100
Figure 5.9 Integration of <i>qutDHA</i> in the <i>qutD</i> 312 strain101
Figure 5.10 Westerns analysis to determine the expression of QutDHA in a
<i>qutD312</i> strain
Figure 5.11 Co-immunoprecipitation of CreBFLAG and QutDHA105
Figure 5.12 Growth testing of TQBD5 [creB1937qutDHA] and TQBD6
[creB1937qutDHA]107

Figure 5.13	Southern analysis of <i>qutDHA</i> in a <i>creB1937</i> background	108
Figure 5.14	Expression of the <i>qutDHA</i> in the $creB^+$ and $creB^-$ background	110
Figure 5.15	QutD is a ubiquitinated protein	112
Chapter 6		
Figure 6.1 T	Swo-step purification of CreA2HAHis	116
Figure 6.2 S	ilver staining of protein fractions of the control and TA3H2 strains	
V	when purified with a His-Trap column and anti-HA matrix	117
Figure 6.3 S	ilver staining of protein fractions of the control and TA3H2 strains	
u	sing a anti-HA matrix	118
Figure 6.4 T	he proteomic analysis of the P35 sample	121

List of Tables

Chapter 2	Page
Table 2.1 Strains of <i>A. nidulans</i> used in this study	41
Table 2.2 Plasmids and vectors used in this study	43
Table 2.3 Oligonucleotide primers used in this study	
Chapter 6 Table 6.1 Combined MS and MS/MS MASCOT results s protein samples	5

List of Abbreviations

ANM	Aspergillus nitrogen free media
A	Adenine
ANGIS	Australian National Genomic Information Service
$[\alpha^{-32}P]dATP$	alpha-labelled deoxyadenosine triphosphate
BLAST	basic local alignment search tool
bp, kb	base pairs, kilobase pairs
BSA	bovine serum albumin
С	cytosine
⁰ C	degree Celsius
cDNA	deoxyribonucleic acid complementary to ribonucleic acid
CCR	carbon catabolite repression
C-terminal	carboxy-terminal
Da, kDa	Dalton(s), kiloDaltons
dATP	2'-deoxyadenosine-5'-triphosphate
dCTP	2'-deoxycytosine-5'-triphosphate
dGTP	2'-deoxyguanosine-5'-triphosphate
dTTP	2'-deoxythymidine-5'-triphosphate
DNA	deoxyribonucleic acid
dNTPs	2'-deoxynucleotide-5'-triphosphates
DTT	dithiothreitol
EDTA	ethylenediaminetetraaminoacetic acid
G	guanine
g, mg, μg, ng CED	gram(s), milligram(s), microgram(s), nanogram(s)
GFP His	green fluorescent protein histidine
IPTG	isopropylthio-β-D-galactosidase (or 1-isopropyl-β-D-1-
1110	thiogalactopyranoside
КОР	potassium orthophosphate
L, ml, µl	litre(s), millilitre(s), microlitre(s)
M, mM	mole per litre, millimole per litre
mCi	microCurie
min, hr	minute(s), hour(s)
mRNA	messenger ribonucleic acid
NAD	β -nicotinamide adenine dinucleotide
NCBI	National Center of Biotechnology Information
N-terminal	amino-terminal
OD	optical density
ORF	open reading frame
PAGE	polyacrylamide gel electrophoresis
PBS	phosphate buffer saline
PCR	polymerase chain reaction
PEG	polyethylene glycol
R	registered
RNA	ribonucleic acid
rpm DSD	revolutions per minute
RSP SDS	reverse sequencing primer sodium dodecyl sulphate
SDS-PAGE	SDS polyacrylamide gel electrophoresis
SSC	saline sodium citrate buffer
SSPE	saline sodium phosphate-EDTA buffer
	Sume sourum phosphure LD IT build

STC	Sorbital-TrisHCL-CaCl ₂ buffer
TM	Trademark
Τ	thymidine
TAE	Tris-acetate EDTA
Taq	Thermus aquaticus
TE	Tris-EDTA
TEMED	N,N,N',N'-tetramethylethylenediamine
Tris	Tris[hydroxymethyl] aminomethane
U	unite(s) of enzyme
UAS	Upstream activation sequence
Ub	ubiquitin
X-gal	5'-bromo-4-chloro-3-idoyl-β-D-galactopyranoside
(%) v/v	percent volume per volume
(%) w/v	percent weight per volume

Chemical Formula		
CaCl ₂	calcium chloride	
CH ₃ COONa	sodium acetate	
CHCl ₃	chloroform	
HCl	hydrochloric acid	
KCl	potassium acetate	
KH ₂ PO ₄	potassium dihydrogen phosphate (monopotassium phosphate)	
MgSO ₄	Magnesium sulfate	
MOPS	3-(N-Morpholino)propanesulfonic acid	
NaCl	sodium chloride	
NaH ₂ PO ₄	monosodium phosphate	
Na ₂ HPO ₄	sisodium hydrogen phosphate	
Na ₃ C ₆ H ₅ O ₇ .2H ₂ O	sodium citrate dihydrate	
NaOH	sodium hydroxide	