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Abstract

This thesis concerns sets of points in the finite projective space PG(n, q) that are

combinatorially identical to quadrics. A quadric is the set of points of PG(n, q)

whose coordinates satisfy a quadradic equation, and the term quadral is used in this

thesis to mean a set of points with all the combinatorial properties of a quadric.

Most of the thesis concerns the characterisation of certain sets of subspaces associ-

ated with quadrals. Characterisations are proved for the external lines of an oval

cone in PG(3, q), of a non-singular quadric in PG(4, q), q even, and of a large class of

cones in PG(n, q), q even. Characterisations are also proved for the planes meeting

the non-singular quadric of PG(4, q) in a non-singular conic, and for the tangents

and generator lines of this quadric for q odd.

The second part of the thesis is concerned with the intersection of ovoids of PG(3, q).

A new bound is proved on the number of points two ovoids can share, and configu-

rations of secants and external lines that two ovoids can share are determined. The

structure of ovoidal fibrations is discussed, and this is used to prove new results on

the intersection of two ovoids sharing all of their tangents.
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Introduction

The tension between algebra and combinatorics is central to the study of finite

geometry. The finite projective space PG(n, q) itself (for n > 2) can be equally well

defined algebraically using the underlying field GF(q) or combinatorially using the

axioms of incidence. This connection between algebra and combinatorics in the very

definition of projective space leads to the belief that similar connections should exist

for each object contained in PG(n, q). That is, an object with an algebraic definition

is expected to have an equally valid combinatorial definition; and vice versa an object

with a combinatorial definition is expected to have a simple algebraic description.

The simplest algebraic description is a linear equation, and the points satisfying

linear equations are exactly the subspaces. The next simplest algebraic description

is a quadratic equation and the set of points defined by a quadratic equation is

called a quadric. The connection between algebra and combinatorics leads to the

expectation that quadrics should also have a valid combinatorial definition. That

is, it should be possible to show that if a set of points has some key combinatorial

properties of a quadric, then it must in fact be a quadric. Such a result is called a

characterisation result – the quadrics would be characterised by these key properties.

Unfortunately, it is not possible to characterise certain quadrics using only combi-

natorial properties. In certain cases, there exist objects with all the combinatorial

properties of quadrics, but which are not quadrics. That is, their points do not all

satisfy a quadratic equation. In this thesis, the term quadral is used to mean a set

of points combinatorially identical to a quadric.

A large part of this thesis is concerned with characterisation, but not characterisation

of the quadrals themselves. Instead the focus is on characterising the families of

subspaces associated with the quadral. One of the key properties of quadrals is that
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subspaces can only meet a quadral in certain ways. The subspaces of PG(n, q) can

be grouped into families based on how they meet a particular quadral, and then each

family has its own combinatorial properties. For example, consider the lines that

contain no point of the quadral Q – the external lines of Q. This set of lines has

many combinatorial properties. Given a set of lines L with some of these properties,

the aim is to prove that L is in fact the family of external lines to a quadral like

Q. In a sense, the family of lines is used to reconstruct the quadral Q.

This leads to the remaining part of the thesis. Given that the external lines of Q

can be used to reconstruct Q, it is natural to ask how much information is required

to fully determine Q. For example, how many external lines are required to fully

determine Q? Another way to ask this is to ask how many external lines two

quadrals may share. The second part of the thesis concerns this type of problem for

a particular family of quadrals – the ovoids of PG(3, q).

Outline of Thesis

The thesis begins with the necessary background information. Chapter 0 contains

the basic definitions and results of projective geometry that are needed to discuss

quadrals. Chapter 1 describes quadrals, which are the objects of interest in this

thesis. The definitions and important properties of quadrics, ovals, ovoids and their

cones are included here.

Chapter 2 discusses the characterisation of quadrals. Several results are stated

characterising quadrals by their intersections with lines and planes, including the

characterisations of Tallini, Buekenhout and Thas. These characterisations will

be used in later chapters to prove characterisations of the families of subspaces

associated with quadrals.

Chapter 3 discusses the existing characterisations of the families of subspaces asso-

ciated with quadrals. Of particular note are those characterising the external lines

of an ovoid and of a hyperbolic quadric in PG(3, q).

The next three chapters present original results characterising certain families of

subspaces associated with quadrals. Chapter 4 presents characterisations of the
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external lines of an oval cone in PG(3, q) for q odd and q even. Chapter 5 presents

characterisations of the planes meeting a parabolic quadric of PG(4, q) in a non-

singular conic, and of the external lines of this quadric when q is even. Chapter 6

presents characterisations of the external lines of an oval cone in PG(n, q), and also

the external lines of a cone over any parabolic quadric.

Chapter 7 is concerned with the question of how much information is required to fully

determine a quadral, in particular for ovals and ovoids. This question is related to

the number of points that two distinct ovals or ovoids may share. The intersection of

ovals and ovoids is discussed, and several new results for the case q even are proved.

The number of secant or external lines that two ovoids can share is also investigated.

The thesis concludes with a short discussion on what has been achieved and the

direction of future research. A list of the main original results in the thesis is given

in this concluding chapter.

Note on Original Work

This thesis presents original results and proofs, but it also reviews existing results

by other authors. Results and proofs due to other authors will be clearly marked

with a citation such as [1]. Any result not marked in this way is an original result

whose proof is due to the author of this thesis.
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Chapter 0

Preliminaries

This chapter provides an introduction to the basic concepts required to understand

the content of this thesis. Most of the definitions and results used in the proofs later

in the thesis are collected here. Very few proofs will be given, and the citation given

for each result refers to a reference book where the proof can be found. For further

information on the topics in this chapter, the reader is referred to the following good

books [35, 21, 36, 37, 39, 26, 7].

0.1 Algebra

In this section the definitions and basic results about groups, fields and vector spaces

are collected. All the definitions and results here can be found in an algebra reference

such as [35]. This information is necessary to discuss projective spaces. Finite groups

are discussed first.

Definition 0.1.1 Let G be a set and let ∗ be a binary operation on G. The set G

is called a group under ∗ if

• a ∗ b ∈ G for all a, b ∈ G,

• a ∗ (b ∗ c) = (a ∗ b) ∗ c for all a, b, c ∈ G,

• There exists an element e ∈ G such that a ∗ e = e ∗ a = a for all a ∈ G,
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• For all a ∈ G, there exists a′ ∈ G such that a′ ∗ a = a ∗ a′ = e.

The group G is called abelian if also

• a ∗ b = b ∗ a for all a, b ∈ G.

In the groups considered in this thesis, the operation ∗ is either addition (+), mul-

tiplication (·) or composition of functions. The element e in the definition above is

unique and is called the identity of G. The unique element a′ such that a ∗ a′ = e is

called the inverse of a.

For a group under addition, the identity is denoted by 0, and the inverse of a is

denoted by −a. The element a + (−b) is written a− b. The element a + a + · · ·+ a

(n times) is denoted by na, and the element −a − a − · · · − a (n times) is denoted

by −na.

For a group under multiplication, the identity is denoted by 1, and the inverse of

a is denoted by a−1. The element a · b is often written ab. The element aa . . . a (n

times) is denoted by an, and the element a−1a−1 . . . a−1 is denoted by a−n. It is a

convention to write a0 = 1. These elements are called the powers of a. Composition

of functions is generally written as multiplication, with the same terminology and

notation. The identity function is usually denoted by ι.

If the set G is finite, then the group is called a finite group. All groups considered

in this thesis are finite groups. If G is a finite group, then the size |G| of G is called

the order of G.

Definition 0.1.2 Let G be a group under the operation ∗ and let H be a subset of

G. The subset H is called a subgroup of G if H is a group under ∗.

An important result about subgroups is Lagrange’s theorem.

Theorem 0.1.3 [35] Let H be a subgroup of the finite group G. Then the order of

H divides the order of G.
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Given a particular element g of a group G, it is possible to form a subgroup using g.

To describe this subgroup, it is convenient to assume G is a group under multipli-

cation. Then the subgroup generated by g is 〈g〉 = {gm | m ∈ N}. This is indeed a

subgroup, since gmgn = gm+n. The order of this subgroup is the smallest number n

such that gn = 1 and is called the order of g. This leads to the following corollary

of Lagrange’s theorem:

Corollary 0.1.4 [35] Let g be an element of the finite group G. Then the order of

g divides |G|.

The subgroup generated by an element is a special kind of group called a cyclic

group.

Definition 0.1.5 The group G is called cyclic if G = 〈g〉 for some g ∈ G. The

element g is called a generator of G.

A cyclic group is necessarily abelian, and it has easily determined subgroups.

Lemma 0.1.6 [35] Let G be a finite cyclic group. Then for each natural number d

dividing |G|, there is a unique subgroup of G of order d.

If G = 〈g〉 has order n, then the unique subgroup of order d is 〈g n
d 〉.

This completes the discussion on finite groups. Finite fields are discussed next.

Definition 0.1.7 A set F with binary operations + and · is called a field if

• F is an abelian group under +,

• F \{0} is an abelian group under · (where 0 is the identity of F under +),

• a(b + c) = ab + ac and (a + b)c = ac + bc for all a, b, c ∈ F .
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The field F is called a finite field if F is a finite set. Only finite fields are considered

in this thesis. The size of F is called the order of F . In addition to the conventions

listed for groups, the element n1 is denoted simply by n. The smallest number n

such that n = 0 is called the characteristic of F . For finite fields, the characteristic

is always a prime number.

Definition 0.1.8 Let E be a field and let F be a subset of E. The subset F is called

a subfield of E if F is a field under the same operations as E. The field E is called

an extension of F .

An important theorem about subfields is the following.

Theorem 0.1.9 [35] Let E be a field and let F be a subfield of E. Then E is a

vector space over F , with scalar multiplication the multiplication in E.

For the definition of vector space, see Definition 0.1.17. The set of elements {n | n ∈ N}
is the smallest possible subfield of a finite field F , and necessarily has prime order.

It follows that a finite field has prime power order.

At this point, it is appropriate to describe how different fields are distinguished.

Definition 0.1.10 Let F1 and F2 be two fields. An isomorphism between F1 and

F2 is a one-to-one function φ : F1 → F2 such that φ(a + b) = φ(a) + φ(b) and

φ(ab) = φ(a)φ(b) for all a, b ∈ F1. If there exists an isomorphism between F1 and

F2, the two fields are said to be isomorphic. An isomorphism φ : F → F is called

an automorphism.

Theorem 0.1.11 [35] If q is a prime power, then all finite fields of order q are

isomorphic.

The above theorem implies that there is essentially a unique finite field of each prime

power order. This field is denoted by GF(q). Some properties of GF(q) are listed

below.
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Lemma 0.1.12 [35] The group GF (q) \{0} under · is cyclic.

Corollary 0.1.13 [35] If a is an element of GF(q), then aq = a.

Lemma 0.1.14 [35] The set of elements a of GF(q2) such that aq = a is the

subfield GF(q).

Lemma 0.1.15 [35] Let f(x) = a0 + a1x + · · · + arx
r be a polynomial with co-

efficients a0, a1, . . . , ar ∈ GF(q). Then f has at most r zeros in GF(q) unless

a0 = · · · = ar = 0, in which case every element of GF(q) is a zero of F .

Lemma 0.1.16 [35] Let f(x) = a0+a1x+· · ·+arx
r be a polynomial with coefficients

a0, a1, . . . , ar ∈ GF(q) such that r > 0 and ar �= 0. There exists an extension field

F of GF(q) such that f(x) has r zeros in F .

If the zeros of f are z1, . . . , zr, then it is possible to write f(x) = (x−z1) . . . (x−zr).

The polynomial f is said to factorise over F . In this thesis, the particular interest

is in quadratic polynomials of the form f(x) = a0 + a1x + a2x
2. If f has no zeros in

GF(q), then the extension field containing the zeros of f is isomorphic to GF(q2).

Similar terminology is applied to quadratic equations in several variables. Consider

the homogeneous quadratic equation

φ(x0, . . . , xn) = a00x
2
0 + · · · + annx

2
n +

∑

i<j

aijxixj = 0

where aij ∈ GF(q) for all 0 ≤ i, j ≤ n and not all aij are equal to 0

The expression φ may factorise into two linear expressions. If this is possible using

coefficients from GF(q), then φ is said to factorise over GF(q). If this is only possible

using coefficients from an extension field, then this extension field is isomorphic to

GF(q2) and φ is said to factorise over GF(q2). If it is not possible to factorise φ

even over GF(q2), then φ is said to be irreducible.

Homogeneous quadratic equations will be used to define quadrics in Chapter 1.

This completes the discussion of finite fields. Finite vector spaces are discussed next.
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Definition 0.1.17 A set V with a binary operation + is a vector space over the

field K if the following axioms hold.

• V is an abelian group under +,

• av ∈ V for all a ∈ K and v ∈ V ,

• a(bv) = (ab)v for all a, b ∈ K and v ∈ V ,

• (a + b)v = av + bv for all a, b ∈ K and v ∈ V ,

• a(v + w) = av + aw for all a ∈ K and v, w ∈ V ,

• 0v = 0 and 1v = v for all v ∈ V , where 0 is the identity of K under +, 1 is

the identity of K under · and 0 is the identity of V under +.

The elements of V are called vectors and the elements of K are called scalars. The

operation av for a ∈ K and v ∈ V is called scalar multiplication. Note that the

symbol + is used to represent addition in both K and V , and juxtaposition is used

to represent both multiplication in K and scalar multiplication.

A linear combination of vectors v1, . . . , vm is a vector of the form a1v1 + · · ·+amvm

for a1, . . . , am ∈ K. The vectors v1, . . . , vm are linearly independent if the only

solution to the equation x1v1 + · · · + xmvm = 0 is x1 = · · · = xm = 0. The set of

all linear combinations of vectors v1, . . . , vm is called the span of v1, . . . , vm and is

denoted by 〈v1, . . . ,vm〉. The span of a set of vectors forms a subspace of a vector

space, which is now defined.

Definition 0.1.18 Let V be a vector space over the field K. A subset W is called

a subspace of V if W is a vector space over K under the same operations.

To show that the subset W is a subspace, it is sufficient to show that any linear

combination of vectors in W is also a vector in W . If the subspace W = 〈v1, . . . ,vm〉
for vectors v1, . . . , vm, then these vectors are said to span W . A basis for the vector

space V is a set of linearly independent vectors B such that B spans V . The following

theorem describes the important properties of a basis.
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Theorem 0.1.19 [35] Let V be a vector space over the field K and suppose

B = {u1, . . . ,um} is a basis for V . Then every basis of V has m elements and

every element v ∈ V can be written uniquely as v = a1u1 + · · · + amum for some

a1,. . . ,am ∈ K.

The number of vectors in a basis for V is called the dimension of V over K. The

vector spaces considered in this thesis are always finite, so a finite basis always exists.

Note that the dimension of V is the smallest number m such that m vectors span V .

The above theorem implies that if V has dimension m over GF(q), then |V | = qm.

In fact, all vector spaces of the same dimension over GF(q) are essentially the same

vector space.

Apart from finite fields themselves, the vector spaces considered in this thesis are sets

of n-tuples with coordinates from GF(q). Here, addition and scalar multiplication

are defined in the natural way as follows.

(a1, . . . , am) + (b1, . . . , bm) = (a1 + b1, . . . , am + bm)

k(a1, . . . , am) = (ka1, . . . , kam)

If the set of vectors is written as V = {(x1, . . . , xm) | x1, . . . , xm ∈ GF(q)}, then it

is possible to describe subspaces using linear equations in x1, . . . , xm. In fact, the

following theorem is true.

Theorem 0.1.20 [35] Let V = {(x1, . . . , xm) | x1, . . . , xm ∈ GF(q)} be the vector

space of m-tuples with coordinates from GF(q). A subset W of V is a subspace of

V if and only if W is the set of solutions to some number of homogeneous linear

equations in x1, . . . , xm.

For example, a single linear equation a1x1 + · · ·+ amxm = 0 describes a subspace of

dimension m − 1.

This completes the discussion of finite vector spaces.
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0.2 Projective Spaces

This section presents definitions and results for finite projective spaces.

Definition 0.2.1 Let Σ be a finite set of elements called points and let n be an

integer with n ≥ 2. Distinguish certain subsets of Σ called subspaces and for each

subspace Π define an integer dim(Π), called the dimension of Π, such that −1 ≤
dim(Π) ≤ n. The set Σ, together with its subspaces, is called a finite projective

space of dimension n if the following axioms hold.

• There exists a subspace of dimension d for every integer d with −1 ≤ d ≤ n.

• The set Σ is the unique subspace of dimension n.

• The empty set is the unique subspace of dimension −1.

• The subspaces of dimension 0 are the points of Σ.

• The intersection of two subspaces is a subspace.

• If Π and Λ are subspaces with Π ⊆ Λ, then dim(Π) ≤ dim(Λ)

and dim(Π) = dim(Λ) if and only if Π = Λ.

• If Π and Λ are subspaces and Π ⊕ Λ is the intersection of all the subspaces

containing both Π and Λ, then dim(Π⊕Λ) + dim(Π∩Λ) = dim(Π) + dim(Λ).

• There exists a subspace of dimension 1 containing at least 3 points.

Let Σ be a finite projective space of dimension n. A subspace of Σ of dimension m

is called an m-space. An (n − 1)-space is called a hyperplane, a 1-space is called a

line and a 2-space is called a plane. Note that for m ≥ 2, an m-space is a finite

projective space of dimension m.

Let Π and Λ be subspaces of Σ. The subspace Π⊕Λ is called the span of Π and Λ.

The subspaces Π and Λ are said to span Π ⊕ Λ.

If Π ⊆ Λ, then Λ is said to pass through Π. If P is a point in Π, then P is said to

lie in or lie on Π. If the line � is contained in Π, it is said to lie in Π.

18



A set of points is said to be collinear if they lie on the same line, and coplanar if

they lie in the same plane. A set of lines are said to be coplanar if they lie in the

same plane, and concurrent if they pass through the same point.

If Π ∩ Λ is a d-space, then Π and Λ are said to meet in a d-space. If Π ∩ Λ is the

empty set, then Π and Λ are said to be skew. A set of subspaces is called mutually

skew if every pair of them are skew.

If Π and Λ are skew subspaces and also Π ⊕ Λ = Σ, then Π and Λ are said to be

complementary subspaces. The subspace Λ is said to be a complementary subspace of

Π. Note that if Π and Λ are complementary subspaces, then dim(Π)+dim(Λ) = n−1.

If P and Q are distinct points, then the subspace P ⊕ Q is a line, which is usually

denoted by PQ. The line PQ is said to join P and Q.

Some important results about subspaces are now given.

¤

¦

¡

¡ \ ¤

Lemma 0.2.2 [7] Let Π be a d-space of Σ and let Λ

be a complementary subspace of Π. Suppose Γ is a

(d + m)-space through Π for m ≥ 0. Then Γ meets Λ

in an (m − 1)-space.

Corollary 0.2.3 [7] Let Σ be a hyperplane and let Π be a d-space that is not con-

tained in Σ. Then Π meets Σ in a (d − 1)-space. In particular, every line not

contained in Σ meets Σ in a unique point and every hyperplane other than Σ meets

Σ in an (n − 2)-space.

Lemma 0.2.4 [7] Suppose Π and Λ are distinct non-empty subspaces of Σ. Then

Π ⊕ Λ is the set of all points on the lines joining a point of Π to a point of Λ.

Lemma 0.2.5 [7] A subset A of Σ is a subspace if and only if every line containing

two points of A is contained in A.
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This completes the basic properties of projective spaces and their subspaces. A

particular example of a finite projective space will now be given using a vector

space.

Definition 0.2.6 Let V be a vector space with dimension n + 1 over GF(q), for

n ≥ 2. Then PG(n, q) is the finite projective space whose d-spaces are the (d + 1)-

dimensional subspaces of V for −1 ≤ d ≤ n.

It is important to note that the vector 0 is the 0-dimensional subspace of V and

corresponds to the empty subspace in PG(n, q). Also note that it is possible to define

PG(0, q) and PG(1, q) in a similar way, but these are not technically projective spaces

according to Definition 0.2.1. In this thesis, PG(n, q) always has dimension n ≥ 2.

The number q is called the order of PG(n, q), and PG(n, q) is a finite projective

space of dimension n. In fact, for n ≥ 3, it is the only finite projective space.

Theorem 0.2.7 [26] Let Σ be a finite projective space of dimension n. If n ≥ 3,

then Σ is isomorphic to PG(n, q) for some q.

For the definition of isomorphism between projective spaces, see Definition 0.3.2.

The above theorem means that projective spaces (of dimension at least 3) can be

defined equally well axiomatically using Definition 0.2.1 or algebraically using Defi-

nition 0.2.6. Note that while there exist projective planes other than PG(2, q), these

are not considered in this thesis. Some notational conventions are now introduced.

Let V be the vector space of (n + 1)-tuples with coordinates from GF(q) and with

addition and scalar multiplication defined in the natural way. The points of PG(n, q)

are the 1-dimensional subspaces of V . That is, a point of PG(n, q) is of the form

〈v〉 = {λv | λ ∈ GF(q)} for some v ∈ V . If points P and Q are represented by 〈v〉
and 〈w〉, then the line PQ is the vector subspace 〈v,w〉.

It is more convenient to speak of a point of PG(n, q) as an (n + 1)-tuple. That

is, PG(n, q) is the set of points (x0, . . . , xn) with x0, . . . , xn ∈ GF(q), not all zero,

with the identification that for λ ∈ GF(q)\{0}, the vector (λx0, . . . , λxn) represents

the same point as (x0, . . . , xn). It P is a point, then the symbol P is often used to

represent both the point and also any particular coordinates representing P . With
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this convention, if P and Q are distinct points of PG(n, q), then the line PQ consists

of the points λP + μQ for λ, μ ∈ GF(q), not both zero.

The points P0, . . . , Pm are linearly independent if their coordinate vectors are lin-

early independent. A (d+1)-dimensional subspace of V is the span of d+1 linearly

independent vectors, so a d-space of PG(n, q) is the span of d+1 linearly independent

points.

A hyperplane of PG(n, q) is a subspace of V of dimension n. It is therefore the span

of n linearly independent points. The whole space PG(n, q) is itself the span of n+1

linearly independent points. A hyperplane can also be defined as the set of solutions

to a homogeneous linear equation a0x0 + · · · + anxn = 0. The vector [a0, . . . , an]

is called the coordinates of the hyperplane. Note that any scalar multiple of these

coordinates represents the same hyperplane. A vector subspace of V is the set of

solutions to several linear equations, so a subspace of PG(n, q) is also the set of

solutions to several linear equations.

The fact that points and hyperplanes have similar representations leads to the con-

cept of duality for a projective space.

Definition 0.2.8 The dual space of PG(n, q) is denoted by PG(n, q)∗ and is the

projective space whose points are the hyperplanes of PG(n, q). For each integer d

with −1 ≤ d ≤ n, the d-spaces of PG(n, q)∗ are the (n − 1 − d)-spaces of PG(n, q).

If Π and Λ are two subspaces of PG(n, q)∗, then Π ⊆ Λ as subspaces of PG(n, q)∗ if

and only if Λ ⊆ Π as subspaces of PG(n, q).

The dual space PG(n, q)∗ is indeed a projective space. In fact, PG(n, q)∗ is iso-

morphic to PG(n, q). If π is a projective plane other than PG(2, q), then the dual

plane π∗ is the projective plane whose points are the lines of π and whose lines are

the points of π. It is important to note that π∗ is not necessarily isomorphic to π,

although PG(2, q)∗ is isomorphic to PG(2, q).

The above theorem implies that for any statement true of d1-spaces, . . . , dk-spaces

of PG(n, q), there is a corresponding dual statement true of (n−1−d1)-spaces, . . . ,

(n−1−dk)-spaces of PG(n, q). This is the principle of duality for projective spaces.

The final results in this section concern the numbers of various subspaces in PG(n, q)

and relationships between these numbers.
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Lemma 0.2.9 [36] The number of points in an m-space of PG(n, q) is
qm+1 − 1

q − 1
.

In particular, a line contains q + 1 points and a plane contains q2 + q + 1 points.

The number
qm+1 − 1

q − 1
is denoted by θm. The value of q is to be understood by

context. The following identities will be useful.

Lemma 0.2.10 [36]

• θ−1 = 0, θ0 = 1, θ1 = q + 1 and θm = qm + qm−1 + · · · + 1 for m ≥ 2.

• θm(q − 1) = qm+1 − 1.

• qθm + 1 = θm+1.

• θk divides θm if and only if k + 1 divides m + 1. In particular, q + 1 divides

θm if and only if m is odd.

• If q is even, then θm is odd for m ≥ 0. If q is odd, then θm is odd for m even

and even for m odd.

The following lemmas give some results involving various numbers of subspaces in

PG(n, q).

Lemma 0.2.11 [36]

In PG(n, q) the number of lines is
θnθn−1

q + 1

and the number of planes is
θnθn−1θn−2

(q + 1)(q2 + q + 1)
.

Lemma 0.2.12 [36] In PG(n, q), the number of d-spaces is the same as the number

of (n− d− 1)-spaces for each dimension d. Also, for each dimension d and for each

integer m with 0 ≤ m ≤ n − d, the number of (d + m)-spaces through a d-space is

the same as the number of (m − 1)-spaces in an (n − d − 1)-space.
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Corollary 0.2.13 [36]

In PG(n, q) the number of hyperplanes is θn

and the number of (n − 2)-spaces is
θnθn−1

q + 1
.

Corollary 0.2.14 [36] In PG(n, q) the number of (m+1)-spaces through an m space

is θn−m−1. In particular, the number of lines through a point is θn−1, the number of

planes through a line is θn−2, the number of 3-spaces through a plane is θn−3 and the

number of hyperplanes through an (n − 2)-space is q + 1.

The following corollaries calculate the numbers of various subspaces in PG(n, q) for

n ≤ 4.

Corollary 0.2.15 [36] In PG(2, q),

• The number of points is q2 + q + 1,

• The number of lines is q2 + q + 1,

• The number of lines through a point is q + 1.

Corollary 0.2.16 [36] In PG(3, q),

• The number points is q3 + q2 + q + 1 = (q + 1)(q2 + 1),

• The number of lines is q4 + q3 + 2q2 + q + 1 = (q2 + 1)(q2 + q + 1),

• The number of planes is q3 + q2 + q + 1,

• The number of lines through a point is q2 + q + 1,

• The number of planes through a point is q2 + q + 1,

• The number of planes through a line is q + 1.
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Corollary 0.2.17 [36] In PG(4, q),

• The number of points is q4 + q3 + q2 + q + 1,

• The number of lines is q6+q5+2q4+2q3+2q2+q+1 = (q2+1)(q4+q3+q2+q+1),

• The number of planes is q6 + q5 + 2q4 + 2q3 + 2q2 + q + 1,

• The number of 3-spaces is q4 + q3 + q2 + q + 1,

• The number of lines through a point is q3 + q2 + q + 1,

• The number of planes through a point is q4 + q3 + 2q2 + q + 1,

• The number of 3-spaces through a point is q3 + q2 + q + 1,

• The number of planes through a line is q2 + q + 1,

• The number of 3-spaces through a line is q2 + q + 1,

• The number of 3-spaces through a plane is q + 1.

Finally, the following characterisation of subspaces is given.

Theorem 0.2.18 [10] Let A be a set of points of PG(n, q) such that every m-space

meets A in at least one point. Then |A| ≥ θn−m and |A| = θn−m if and only if A is

an (n−m)-space. In particular, a set of size θn−1 that meets every line of PG(n, q)

is a hyperplane.

0.3 Collineations and Polarities

Definition 0.3.1 A collineation of PG(n, q) is a one-to-one map g that sends sub-

spaces of PG(n, q) to subspaces of PG(n, q) and such that if Π and Λ are subspaces

with Π ⊆ Λ, then g(Π) ⊆ g(Λ).
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Lemma 0.2.5 states that a subspace is a set of points A such that if P and Q are

distinct points of A, then the line PQ is contained in A. So a collineation may be

defined as a one-to-one map from points of PG(n, q) to points of PG(n, q) such that

if � is a line of PG(n, q), then g(�) = {g(P ) | P ∈ �} is also a line of PG(n, q).

The set of all collineations of PG(n, q) forms a group under composition of functions.

The identity of this group is the map that sends every point of PG(n, q) to itself.

This map is called the identity collineation and is denoted by ι.

It is also possible to define a collineation from one projective space to another.

Definition 0.3.2 Let Σ1 and Σ2 be finite projective spaces. A collineation from Σ1

to Σ2 is a one-to-one map g sending subspaces of Σ1 to subspaces of Σ2 such that

if Π and Λ are subspaces of Σ1 with Π ⊆ Λ, then g(Π) ⊆ g(Λ). If there exists a

collineation from Σ1 to Σ2, then Σ1 and Σ2 are said to be isomorphic

Again, a collineation may be defined as a one-to-one map g from points of Σ1 to

points of Σ2 such that if � is a line of Σ1, then g(�) is a line of Σ2. A collineation

between projective spaces is analogous to an isomorphism of fields, which is why two

projective spaces are called isomorphic when there is a collineation between them.

A collineation of PG(n, q) is analogous to an automorphism of fields.

If a collineation exists between two sets of points in PG(n, q), then any theorem

true of one will also be true of the other. That is, if X and Y are sets of points in

PG(n, q) and there exists a collineation g such that g(X) = {g(P ) | P ∈ X} = Y ,

then a theorem true of X will also be true of Y . The sets X and Y are said to be

projectively equivalent. The concept of projective equivalence can be used to assign

coordinates to PG(n, q) in a convenient way.

Theorem 0.3.3 [36] Let {P0, . . . , Pn+1} be an ordered set of n+2 points in PG(n, q)

such that any n+1 are linearly independent. Let {Q0, . . . , Qn+1} be another ordered

set of n + 2 points in PG(n, q) such that any n + 1 are linearly independent. Then

there exists a collineation h such that h(Pi) = Qi for i = 0, . . . , n + 1.

Using the above theorem, the set of points {P0, . . . , Pn+1} may be chosen without

loss of generality to be any set of n + 2 points such that any n + 1 are linearly

independent. This assignment of coordinates makes it possible to use coordinates

to prove theorems in a straightforward manner.
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P

g(P)

Some particular collineations will now be de-

scribed. The first are collineations between the

subspaces of PG(n, q). Let Π be a subspace of

PG(n, q), for n ≥ 3, with dimension at most

(n − 3) and let Λ1 and Λ2 be distinct comple-

mentary subspaces of Π. Let P be a point of

Λ1. Then the subspace Π ⊕ P has dimension

one greater than Π. By Lemma 0.2.2, the sub-

space Π⊕P meets Λ2 in a unique point. Define

the map g : Λ1 → Λ2 by g(P ) = (Π ⊕ P ) ∩ Λ2.

If � is a line in Λ1, then the image of � is the intersection of the subspace Π⊕ � with

Λ2, which is a line of Λ2 by Lemma 0.2.2. So the map g is a collineation from Λ1 to

Λ2. This collineation is called a projection from Π.

¤2

¤1

g(X)

¦

X

If X is a set of points in Λ1, then the set of points

g(X) = {(Π ⊕ P ) ∩ Λ2 | P ∈ X} is called a pro-

jection of X. The projection map is also defined if

Λ1 and Λ2 are lines or points, but the map is not

technically a collineation in this case. However, the

two sets X and g(X) are still projectively equiva-

lent when considered as sets in PG(n, q). These

observations will be important in the discussion of

cones in Section 1.3.

Before the next collineations are discussed, some terminology is introduced.

If P is a point of PG(n, q), then a collineation g is said to fix P if g(P ) = P . The

point P is then called a fixed point of g. If X is any set of points in PG(n, q), then

the collineation g is said to fix X if g(X) = X. That is, g(P ) ∈ X for every P ∈ X.

This is not the same as saying that g(P ) = P for every point P ∈ X. If this is the

case, then X is said to be fixed pointwise by g.

Given a group G of collineations, the set of images of a point under the collineations

of G is also of interest.
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Definition 0.3.4 Let G be a group of collineations of PG(n, q) and let P be a point

of PG(n, q). The set of points G(P ) = {g(P ) | g ∈ G} is called an orbit of G.

Theorem 0.3.5 [36, Chapter 2] Let G be a group of collineations of PG(n, q). The

orbits of G partition the points of PG(n, q). If X is an orbit of G, then X = G(P )

for every point P ∈ X. Also, |X| divides |G|.

With the above terminology in hand, the next type of collineation will be discussed.

Definition 0.3.6 Let S be a cyclic group of collineations of PG(n, q) such that for

every pair of points P , Q ∈ PG(n, q) there exists a unique collineation g ∈ S with

g(P ) = Q. Then S is called a cyclic Singer group of PG(n, q).

There do exist cyclic Singer groups for every PG(n, q). This is proved by represent-

ing PG(n, q) as the (n + 1)-dimensional vector space GF(qn+1) over GF(q). Then

GF(qn+1)\{0} is a cyclic group under multiplication. Writing GF(qn+1)\{0} = 〈β〉,
the map g : P → β · P is a collineation and 〈g〉 is a cyclic Singer group. Note that

a cyclic Singer group necessarily has order θn and fixes no points of PG(n, q).

Since a cyclic Singer group S is cyclic, it has a unique subgroup of order d for every

d dividing θn. In particular, a cyclic Singer group of PG(3, q) has unique subgroups

of orders (q +1) and (q2 +1), since θ3 = q3 + q2 + q +1 = (q +1)(q2 +1). The orbits

of these subgroups are described by Lemmas 0.4.11 and 7.5.3. Note that if G is a

subgroup of a cyclic Singer group of PG(n, q) and P is a point of PG(n, q), then the

orbit G(P ) has size |G|, since each collineation in G sends P to a distinct point. In

fact, if X is a set of size |G| such that g(X) = X for each g ∈ G, then X contains

G(P ) for any point P ∈ X, so X is an orbit of G.

The last types of collineations to be discussed are collineations between PG(n, q)

and its dual space PG(n, q)∗. Such maps are called correlations.

Definition 0.3.7 Let σ be a one-to-one map from subspaces of PG(n, q) to sub-

spaces of PG(n, q) such that if Π and Λ are subspaces with Π ⊆ Λ, then σ(Λ) ⊆ σ(Π).

Then σ is called a correlation of PG(n, q).
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A correlation σ necessarily interchanges points and hyperplanes, and in general if

Π is a d-space then σ(Π) is an (n − 1 − d)-space. So, a correlation can be thought

of as a collineation between PG(n, q) and PG(n, q)∗. If Π and Λ are subspaces of

PG(n, q) and σ is a correlation, then the definition of correlation also implies that

σ(Π ⊕ Λ) = σ(Π) ∩ σ(Λ) and σ(Π ∩ Λ) = σ(Π) ⊕ σ(Λ).

Using correlations of PG(n, q) it is possible to construct collineations of PG(n, q),

as the following lemma states.

Lemma 0.3.8 [24] Let σ and ρ be two correlations of PG(n, q). Then the map

σρ : PG(n, q) → PG(n, q) is a collineation.

Proof Let Π and Λ be subspaces of PG(n, q) with Π ⊆ Λ. Then ρ(Π) and ρ(Λ) are

subspaces of PG(n, q) such that ρ(Λ) ⊆ ρ(Π). Thus σρ(Π) and σρ(Λ) are subspaces

of PG(n, q) such that σρ(Π) ⊆ σρ(Λ). Thus σρ is a collineation of PG(n, q). �

Certain special correlations are of particular interest.

Definition 0.3.9 Let σ be a correlation of PG(n, q) such that σ2 = ι. That is,

σ(σ(P )) = P for every point P ∈ PG(n, q). Then σ is called a polarity of PG(n, q).

The definition of a polarity implies the following result.

Lemma 0.3.10 [36] Let σ be a polarity of PG(n, q) and let P and Q be points of

PG(n, q). Then P ∈ σ(Q) if and only if Q ∈ σ(P ).

The image of a point P under the polarity σ is called the polar of P under σ. If

P ∈ σ(P ) for some point P , then P is called an absolute point of σ. Similarly, if Π

is any subspace such that Π ⊆ σ(Π), then Π is called absolute. A polarity such that

every point is absolute is called a null polarity. The set of absolute lines of a null

polarity in PG(3, q) is described in Section 0.4.
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0.4 Special sets of lines

In this section, various special sets of lines in PG(3, q) are discussed. In order to do

this, the Klein correspondence is introduced. For a more complete discussion of the

Klein correspondence, and for proofs of the following statements, see Hirschfeld [37,

Chapter 15].

Let P = (p0, p1, p2, p3) and Q = (q0, q1, q2, q3) be distinct points of PG(3, q) and let

� be the line PQ. The Plücker coordinates of the line PQ are

(p0q1 − p1q0, p0q2 − p2q0, p0q3 − p3q0, p1q2 − p2q1, p3q1 − p1q3, p2q3 − p3q2).

These coordinates can be interpreted as a point in PG(5, q). If the points P and

Q on � are chosen differently, then the resulting coordinates are a scalar multiple

of the ones listed above and so represent the same point of PG(5, q). The above

correspondence between lines of PG(3, q) and points of PG(5, q) is called the Klein

correspondence.

If � is a line of PG(3, q) with Plücker coordinates (a0, a1, a2, a3, a4, a5), it is possible

to show that a0a5 + a1a4 + a2a3 = 0. That is, the point (a0, a1, a2, a3, a4, a5) of

PG(5, q) satisfies the homogeneous quadratic equation x0x5 + x1x4 + x2x3 = 0. The

set of points of PG(5, q) satisfying this equation is called the Klein quadric and there

is a one-to-one correspondence between the points of the Klein quadric and the lines

of PG(3, q).

The Klein quadric is a set of q4 + q3 + 2q2 + q + 1 points in PG(5, q), which contains

lines and planes. A plane contained in the Klein quadric corresponds either to the

set of lines of PG(3, q) in a plane or to the set of lines of PG(3, q) through a point.

A line contained in the Klein quadric corresponds to the set of q+1 lines of PG(3, q)

through a point in a plane. Such a set of lines is called a pencil of lines.

Of particular interest are the sets of lines whose Plücker coordinates satisfy a ho-

mogeneous linear equation. These correspond to the intersection of a hyperplane of

PG(5, q) with the Klein quadric. Such sets of lines are called linear complexes, and

there are two distinct types.

A special linear complex is the set of lines of PG(3, q) meeting a particular line �,

including � itself.
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A general linear complex is a set T of lines of PG(3, q) such that every point of

PG(3, q) lies on q + 1 lines of T , and every plane contains q + 1 lines of T . Also,

the q + 1 lines of T through a point are coplanar, and the q + 1 lines of T in a

plane are concurrent.

If σ is the map sending a point P to the plane formed by the lines of T through

P , then σ is a null polarity. The lines of T are the absolute lines of σ. That is, if

� ∈ T , then σ(�) = �. In fact, the set of absolute lines of a null polarity is always

a general linear complex, and σ is the unique null polarity with T as its set of

absolute lines. The polarity σ is called the polarity associated with T .

The intersection of two linear complexes is called a linear congruence. A linear

congruence corresponds to the intersection of a 3-space of PG(5, q) with the Klein

quadric. There are four distinct types of linear congruence.

A degenerate linear congruence is the set of lines either in a plane π or through a

point P , where P ∈ π. A degenerate linear congruence is contained in q + 1 special

linear complexes and no general linear complexes.

An elliptic linear congruence is a special set of q2+1 mutually skew lines of PG(3, q).

These lines necessarily partition the points of PG(3, q). An elliptic linear congruence

is contained in q + 1 general linear complexes and no special linear complexes. It

is important to note that every general linear complex contains many elliptic linear

congruences.

A parabolic linear congruence is a special set of q + 1 pencils, all sharing a common

line. A parabolic linear congruence is contained in q general linear complexes and

one special linear complex.

Finally, a hyperbolic linear congruence is the set of lines meeting both of two skew

lines. That is, the set of transversals of two skew lines. A hyperbolic linear congru-

ence is contained in q−1 general linear complexes and two special linear complexes.

There are some sets of lines related to those above that are also of interest.

A hyperbolic linear congruence is the set of transversals of two skew lines. The set of

transversals of three mutually skew lines is called a regulus. If �, m and n are three

mutually skew lines and R is the regulus of their transversals, then R is a set of
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q + 1 mutually skew lines [37]. These lines also have q + 1 transversals, which form

another regulus R∗, called the opposite regulus of R. This is the unique regulus

containing �, m and n [37].

An elliptic linear congruence is an example of a set of lines called a spread.

Definition 0.4.1 Let S be a set of q2 + 1 mutually skew lines of PG(3, q). Then

S is called a spread of PG(3, q).

A regular spread is a spread S such that if �, m and n are distinct lines of S , then

each line of the regulus containing �, m and n is also contained in S .

The lines of a spread necessarily partition the points of PG(3, q). That is, every point

of PG(3, q) lies on exactly one line of the spread. The following result describes the

regular spreads of PG(3, q).

Lemma 0.4.2 [37, Chapter 17] A spread S is regular if and only if it is an elliptic

linear congruence.

It is worth noting that for most values of q, there exist spreads which are not regular.

In fact, for many q there exist spreads which contain no reguli at all [13].

Spreads and general linear complexes are both examples of the following special set

of lines.

Definition 0.4.3 An m-cover of PG(3, q) is a set of lines M such that every point

of PG(3, q) lies on m lines of M .

With this definition, a spread is a 1-cover and a general linear complex is a (q + 1)-

cover. The set of tangents and generator lines of a non-singular quadric of PG(3, q),

q odd, is an example of a (q + 1)-cover that is not a general linear complex (see

Lemma 1.5.33). It is possible to partition the lines of PG(3, q) into q2 + q + 1

disjoint spreads [37, Chapter 17], so for every m ≤ q2 + q + 1, an m-cover can be

constructed as the union of m disjoint spreads. The following result can be proved

about m-covers.
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Lemma 0.4.4 [43] Let M be an m-cover of PG(3, q). Then every plane of PG(3, q)

contains m lines of M , and |M | = m(q2 + 1).

For more information about m-covers, see [43].

This section is completed with some results about the collineations that fix each line

of a regular spread. In Chapter 7, these collineations will be used to investigate the

intersection of ovoids.

Let S be a spread of PG(3, q). The set of all collineations that fix each line of S

is called the kernel of S . The following four results describe the kernel of S . The

analogous results for regular spreads are proved in [12], but the proofs given here

are more elementary and apply to any spread.

Lemma 0.4.5 The kernel of S is a group under composition of functions.

Proof Let g and h be collineations in the kernel of S and let � be a line of S .

The collineation g fixes �, so the collineation g−1 also fixes �. Also, gh(�) = g(�) = �,

so gh is in the kernel of S . Thus S is a subgroup of the group of collineations. �

Lemma 0.4.6 Let g be a collineation in the kernel of S . If g fixes any point or

plane, then g is the identity.

P

¼

`

m

Proof Suppose g fixes the plane π and let � be the

unique line of S in π. Let P be a point of π not on �.

Then P lies on a unique line m of S . Since � is the only

line of S in π and P is not on �, the line m is not in π.

Thus P = m∩ π and g(P ) = g(m)∩ g(π). But g fixes π

and every line of S , so g(P ) = m ∩ π = P . Thus every

point of π not on � is fixed by g.

Let n be a line of π other than �, and let P and Q be two points of n not lying on

�. Then n = PQ, so g(n) = g(P )g(Q). Since every point of π not on � is fixed by g,

g(n) = PQ = n. So every line of π is fixed.
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Let α be a plane not through �, meeting π in the line

n �= �. Also let m be the unique line of S in α. Then

α = m ⊕ n, so g(α) = g(m) ⊕ g(n). But g fixes every

line in π and every line of S , so g(α) = m ⊕ n = α. So

every plane not through � is fixed.

However, since g fixes the plane α through the line m of

S , a similar argument to that above will show that every plane not through m is

fixed. Thus every plane through � is fixed. Hence g fixes every plane, and so g is

the identity collineation.

A dual argument shows that if g fixes any point, then g is the identity. �

Lemma 0.4.7 Let S be a spread of PG(3, q) and let g1 and g2 be distinct collineations

fixing each line of S . Then, for any point P , g1(P ) �= g2(P ).

Proof Suppose g1(P ) = g2(P ) for some point P . Then g−1
2 g1(P ) = P . Now

g−1
2 g1 is a collineation fixing each line of S , and also fixing the point P . So by

Lemma 0.4.6, g−1
2 g1 = ι, the identity collineation. Thus g1 = g2. �

Corollary 0.4.8 Let S be a spread of PG(3, q) and let G be the group of collineations

fixing each line of S . Then |G| ≤ q + 1.

Proof Let P be a point of PG(3, q) and let � be the unique line of S through P .

If g is a collineation in G, then g fixes �, so g(P ) ∈ �. That is, each collineation in

G sends P to a point of �. By Lemma 0.4.7, no two of these collineations sends P

to the same point. Thus, since there are q + 1 points of �, there are at most q + 1

collineations in G. �

The next few lemmas describe the kernel of S when S is a regular spread. The first

follows directly from the fact that a regular spread is an elliptic linear congruence

(Lemma 0.4.2).
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Lemma 0.4.9 [37, Chapter 15] Suppose S is a regular spread. Then there are q+1

general linear complexes containing S , each defining a distinct null polarity.

Lemma 0.4.10 Suppose S is a regular spread and let R be the set of q+1 polarities

defined by the general linear complexes containing S . Let G be the kernel of S and

let ρ be a fixed polarity in R. Then |G| = q + 1 and G = {ρσ | σ ∈ R}.

Proof By Lemma 0.3.8, each of the maps ρσ for σ ∈ R is a collineation. Moreover,

each of the polarities σ ∈ R fixes the lines of its general linear complex, so in

particular, each of the polarities σ fixes the lines of S . Thus the collineation ρσ

also fixes the lines of S .

Finally, ρσ1 = ρσ2 if and only if σ1 = σ2. Thus the set {ρσ | σ ∈ R} contains q + 1

distinct collineations fixing each line of S . By Corollary 0.4.8, this is the maximum

number of such collineations, so G = {ρσ | σ ∈ R}. �

The next result gives another way to represent the kernel of S . It will not be proved

here.

Lemma 0.4.11 [33] Suppose S is a regular spread and G is the kernel of S . Then

there exists a cyclic Singer group S such that G is the unique subgroup of S of order

q + 1, and the orbits of G are the lines of S .

The final result in this section gives some technical details on the composition of

the collineations in the kernel of S with the polarities associated with S .

Corollary 0.4.12 Suppose S is a regular spread and let R be the set of q + 1

polarities defined by the general linear complexes containing S . Let G be the kernel

of S . Then gρ = ρg−1 for any g ∈ G and ρ ∈ R.
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Proof Let g ∈ G and ρ ∈ R. By Lemma 0.4.10, g = ρσ for some σ ∈ R. First,

g−1 is determined.

For points P and Q of PG(3, q),

g−1(P ) = Q ⇐⇒ P = g(Q)

⇐⇒ P = ρσ(Q)

⇐⇒ ρ(P ) = σ(Q)

⇐⇒ σρ(P ) = Q.

Thus g−1 = σρ. It follows that ρg−1 = ρ(σρ) = ρσρ = gρ. �
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Chapter 1

Quadrals

This thesis is concerned with the families of subspaces associated with quadrics

of PG(n, q). The main aim is to characterise these families of subspaces by their

combinatorial properties. In order to achieve such characterisations, the combina-

torial properties of the quadrics and their subspaces must first be determined. The

purpose of this chapter is to present detailed combinatorial information about the

families of subspaces associated with different quadrics and some related objects.

These related objects are combinatorially identical to quadrics, but may not have

the same algebraic properties. They are the ovals, the ovoids and the cones over

them. The quadrics, ovals, ovoids and the cones over them are collectively called

quadrals.

In this chapter each type of quadral is carefully defined. Appropriate notation and

terminology is introduced and this is used to describe the important properties of

the quadrals. Since this chapter is introductory in nature, very few proofs will be

given. The citations refer to an appropriate reference where the proof can be found.

1.1 Ovals

The discussion of quadrals begins with ovals in PG(2, q). Ovals are included in the

list of quadrals because they are combinatorially identical to non-singular conics (see

Section 1.5). Since ovals are examples of arcs, this section begins with a discussion

of the properties of arcs.
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Definition 1.1.1 If k is a positive integer, then a set K of k points in PG(2, q) is

called a k-arc if every line meets K in 0, 1 or 2 points. For simplicity, a k-arc will

be called an arc.

In order to make the discussion of arcs easier, special names are given to each type

of line.

Definition 1.1.2 Let K be an arc in PG(2, q) and let � be a line of PG(2, q). If

� contains no point of K , it is called an external line of K . If � contains exactly

one point of K , it is called a tangent of K . If � contains exactly two points of K ,

it is called a secant of K .

If it is clear that K is the arc under consideration, an external line of K may be

referred to simply as an external line, and similarly for tangents and secants. The

first result gives a relationship between the size of an arc and the number of lines of

each type.

Lemma 1.1.3 [36, Chapter 8] Let K be a k-arc of PG(2, q) and let P be a point

of K . Through P there are k − 1 secants and q + 2 − k tangents. Also, K has in

total k(q +2− k) tangents, 1
2
k(k− 1) secants and 1

2
q(q− 1)+ 1

2
(q +1− k)(q +2− k)

external lines.

The relationships given above make it possible to calculate the maximum number

of points in an arc.

Theorem 1.1.4 [36, Chapter 8] Let K be an arc of PG(2, q). If q is odd, then

|K | ≤ q + 1. If q is even, then |K | ≤ q + 2.

These arcs of largest size have special names, which are now defined.

Definition 1.1.5 Let K be an arc in PG(2, q). If |K | = q + 1, then K is called

an oval. If |K | = q + 2, then K is called a hyperoval.
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Because of their similarity to certain conics (see Theorem 1.5.23), ovals are included

in the list of quadrals (see Definition 1.6.1). Hyperovals are not quadrals, but are

very closely related to ovals. The combinatorial properties of ovals and hyperovals

are now described. First, Lemma 1.1.3 is restated for ovals and hyperovals.

Lemma 1.1.6 [36, Chapter 8] Let O be an oval of PG(2, q) and let P be a point

of O. Through P there are q secants and one tangent. Also O has in total q + 1

tangents, 1
2
q(q + 1) secants and 1

2
q(q − 1) external lines.

Let Ō be a hyperoval of PG(2, q). Then in total, Ō has no tangents, 1
2
(q + 1)(q + 2)

secants and 1
2
q(q − 1) external lines.

Using Lemma 1.1.3, ovals and hyperovals can be described using tangents and ex-

ternal lines.

Corollary 1.1.7 [36, Chapter 8] Let K be an arc of PG(2, q).

• K is a hyperoval if and only if K has no tangents.

• K is an oval if and only if there is exactly one tangent at each point of K .

• If K has 1
2
q(q − 1) external lines, then K is either an oval or a hyperoval.

It is important to note the structure of a hyperoval in PG(2, 2).

In PG(2, 2), a hyperoval has 4 points, and 1 external line. Since

there are 7 points in PG(2, 2), a hyperoval is the set of 4 points

not on the 1 external line.

The properties of ovals in PG(2, q), for q odd are now described.

Lemma 1.1.8 [36, Chapter 8] Let O be an oval of PG(2, q), q odd, and let Q be a

point not on O. Then Q lies on 0 or 2 tangents. If Q lies on 0 tangents, then it lies

on 1
2
(q + 1) secants and 1

2
(q + 1) external lines. If Q lies on 2 tangents, then it lies

on 1
2
(q − 1) secants and 1

2
(q − 1) external lines.
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In light of the above lemma, the following definition is made.

Q Q

Definition 1.1.9 Let O be an oval of PG(2, q), q odd, and let Q be a point not on

O. If Q lies on no tangents, then Q is called an interior point of O. If Q lies on 2

tangents, then Q is called an exterior point of O.

It is possible to count the number of interior and exterior points of O in total, and

on each line.

Lemma 1.1.10 [36, Chapter 8] Let O be an oval of PG(2, q), q odd. Then there

are 1
2
q(q + 1) exterior points and 1

2
q(q − 1) interior points. A tangent contains 1

point of O and q exterior points; a secant contains 2 points of O, 1
2
(q − 1) interior

points and 1
2
(q − 1) exterior points; and an external line contains 1

2
(q + 1) interior

points and 1
2
(q + 1) exterior points.

Using the above properties, the set of tangents of an oval can be described as a set

of points in the dual plane.

Lemma 1.1.11 Let O be an oval of PG(2, q), q odd. Denote by O∗ the set of q + 1

tangents of O. Then O∗ is an oval of the dual plane PG(2, q)∗.

Proof By Lemma 1.1.8, no three lines of O∗ are concurrent. Thus O∗ is an oval

of PG(2, q)∗. �

Using the notation of the above lemma, a point of O lies on one tangent of O, and

so a point of O corresponds to a tangent of O∗. An exterior point of O lies on two

tangents, and so corresponds to a secant of O∗. An interior point of O lies on no

tangents, and so corresponds to an external line of O∗.

This completes the basic combinatorial properties of an oval when q is odd. The

properties of an oval when q is even are now described.
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Lemma 1.1.12 [36, Chapter 8] Let O be an oval of PG(2, q), q even. Then the

tangents of O all pass through a single point.

In light of the above lemma, the following definition is made.

Definition 1.1.13 Let O be an oval of PG(2, q), q even, and let N be the unique

point through which all the tangents of O pass. The point N is called the nucleus of O.

Using the notation of the above lemma, since O has q+1 tangents, every line through

N meets O in one point. Thus every line meets the set of points O ∪ {N} in at

most two points. That is, O ∪ {N} is a hyperoval. Thus every oval is contained in

a hyperoval. On the other hand, each hyperoval contains q + 2 ovals, each obtained

by removing one point of the hyperoval.

An analogue of Lemma 1.1.8 can now be given.

Lemma 1.1.14 [36, Chapter 8] Let O be an oval of PG(2, q), q even, with nucleus

N . Then every point not on O other than N lies on 1 tangent, 1
2
q secants and 1

2
q

external lines.

Let Ō be a hyperoval of PG(2, q), q even. Then every point not on Ō lies on no

tangents, 1
2
q + 1 secants and 1

2
q external lines.

Before the discussion of ovals is complete, it is appropriate to give the following

result. The statement for q odd was proved by Segre in 1955 [52]. (For the definition

of a conic, see Section 1.5.)

Theorem 1.1.15 [36, Chapter 8] For q odd, q = 2 and q = 4, every oval in PG(2, q)

is a non-singular conic. For q even, q > 4, there exist ovals in PG(2, q) that are not

conics. For q = 2, 4 or 8, the only hyperovals are those formed by a conic plus its

nucleus. For q even, q > 8, there exist hyperovals that do not contain conics.

This completes the discussion of arcs, ovals and hyperovals.
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1.2 Ovoids

The next quadrals to be discussed are the ovoids. Ovoids are included in the list of

quadrals because they are combinatorially identical to elliptic quadrics of PG(3, q)

(see Theorem 1.5.26). Since ovoids are examples of caps, this section begins with a

discussion of the properties of caps.

Definition 1.2.1 If k is a positive integer, then a set K of k points in PG(n, q)

is called a k-cap if every line meets K in 0, 1 or 2 points. For simplicity, a k-cap

will be called a cap.

Note that a cap in PG(2, q) is an arc. The lines associated with arcs were given

special names, and the same names are given to the lines associated with caps.

Definition 1.2.2 Let K be a cap of PG(n, q) and let � be a line of PG(n, q). If �

contains no point of K , it is called an external line of K . If � contains exactly one

point of K , it is called a tangent of K . If � contains exactly two points of K , it

is called a secant of K .

If it is clear that K is the cap under consideration, an external line of K may be

referred to simply as an external line, and similarly for tangents and secants.

The first result is an analogue of Lemma 1.1.3.

Lemma 1.2.3 [37, Chapter 16] Let K be a k-cap of PG(n, q) and let P be a point

of K . Through P there are k − 1 secants and θn−1 + 1 − k tangents. Also, K has

in total k(θn−1 + 1 − k) tangents and 1
2
k(k − 1) secants.

It can be shown that a cap has size at most θn−1 + 1, which is analogous to The-

orem 1.1.4 for arcs. However, the following lemma shows that this case is only

possible for q = 2.

Lemma 1.2.4 [37, Chapter 27] A cap with no tangents has size θn−1 + 1. A cap of

size θn−1 +1 in PG(n, q) only exists when q = 2, in which case it is the set of points

not in a hyperplane.
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There is a much smaller upper bound for the size of a cap when q �= 2. The theorem

below was proved by Bose [9] for PG(3, q), q odd, by Qvist [45] for PG(3, q), q even,

q > 2, and by Tallini [53] for PG(n, q), n ≥ 4, q > 2.

Theorem 1.2.5 [9, 45, 53] Let K be a cap in PG(n, q), n ≥ 3, q > 2. Then

|K | ≤ qn−1 + 1.

The caps of particular interest in this thesis are ovoids, which were first defined by

Tits [56].

Definition 1.2.6 An ovoid of PG(n, q) is a cap Ω such for any point P of Ω, the

union of the tangents of Ω through P is a hyperplane. This hyperplane is called the

tangent hyperplane of Ω at P .

The first result shows that ovoids only exist in PG(2, q) and PG(3, q).

Theorem 1.2.7 [26] There are no ovoids in PG(n, q) for n ≥ 4.

Note that in PG(2, q), an ovoid is an arc such that there is a unique tangent through

each point of the arc. That is, an ovoid of PG(2, q) is an oval. In light of this fact

and the theorem above, the term ovoid will always be used to mean an ovoid of

PG(3, q).

The properties of ovoids are now discussed. If Ω is an ovoid, then the tangents

through each point of Ω form a plane, so there are q+1 tangents through each point

of Ω. Lemma 1.2.3 implies the following result.

Lemma 1.2.8 An ovoid of PG(3, q) has q2 + 1 points.

The converse of the above lemma is also true for q > 2. This was proved indepen-

dently by Barlotti [5] and Panella [44].

Lemma 1.2.9 [5, 44] Let K be a (q2 + 1)-cap in PG(3, q). Then K is an ovoid.
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For q = 2, an alternative can be given using the number of points of the cap in a

plane.

Lemma 1.2.10 Let K be a cap of PG(3, 2) such that every plane meets K in at

least one point. Then K is an ovoid of PG(3, 2).

Proof Let � be a line containing no points of K . There are 3 planes through �,

each containing at least one point of K , so |K | ≥ 3.

Let α be a plane containing three points of K , and let m be a line in π containing

no points of K . The other two planes through m each contain at least one point of

K , so |K | ≥ 3 + 2 = 5.

Suppose π is a plane meeting K in a hyperoval, which is the set of points of π not

on a line �. There are 3 planes through �, including π. Denote the other two planes

through � by π1 and π2.

P1

P2

¼
`

Suppose P1 is a point of K in π1 and P2 is a point of K

in π2. Consider the line P1P2. This line contains points

of π1 and π2 not in �, so it is skew to �. Hence, it meets

π in a point not on �.

However, every point of π not on � is a point of K ,

so the line P1P2 contains three points of K . This is a

contradiction, so the planes π1 and π2 cannot both contain points of K . That is,

there exists a plane containing no points of K . This is also a contradiction, so there

exist no planes meeting K in a hyperoval.

Let s be a line containing two points of K . Each of the three planes through s

meets K in at most 3 points, so |K | ≤ 2 + 3 = 5. Thus |K | = 5 and each plane

through s contains 3 points of K . It follows that every plane meets K in 0, 1 or 3

points.

Let P be a point of K . By Lemma 1.2.3, the point P lies on 3 tangents of K . Let

t be a tangent through P . The planes through t meet K in 1 or 3 points. Since

there are 5 points of K , it follows that exactly one plane through t meets K in
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only P . The 3 lines through P in this plane are tangents of K . Thus the 3 tangents

through a point of K form a plane. That is, K is an ovoid. �

Further properties of ovoids are now discussed. First, Lemma 1.2.3 is restated for

ovoids.

Lemma 1.2.11 [37, Chapter 16] Let Ω be an ovoid of PG(3, q). Then Ω has

q3 + q2 + q + 1 tangents, 1
2
q2(q2 + 1) secants and 1

2
q2(q2 + 1) external lines. Also,

through each point of Ω there are q+1 tangents, which form a plane, and q2 secants.

Next, the possible intersections of planes with an ovoid may be determined.

Lemma 1.2.12 [37, Chapter 16] Let Ω be an ovoid of PG(3, q). Then every plane

meets Ω in one point or an oval.

In light of the above lemma, the following definitions are made.

Definition 1.2.13 Let Ω be an ovoid of PG(3, q). A plane meeting Ω in one point

is called a tangent plane. A plane meeting Ω in an oval is called a secant plane.

It is possible to count the number of each type of plane through each type of line.

Lemma 1.2.14 [37, Chapter 16] Let Ω be an ovoid of PG(3, q). Then Ω has q2 + 1

tangent planes and q3 + q secant planes. An external line lies on 2 tangent planes

and q − 1 secant planes. A tangent lies on 1 tangent plane and q secant planes. A

secant lies on 0 tangent planes and q + 1 secant planes.

Using the above information, the number of each type of line through each point

not on an ovoid can be determined.

Lemma 1.2.15 [37, Chapter 16] Let Ω be an ovoid of PG(3, q) and let P be a point

not in Ω. Through P there are 1
2
q(q +1) external lines, q +1 tangents and 1

2
q(q− 1)

secants. Also, through P there are q + 1 tangent planes and q2 secant planes.
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This concludes the numerical information on the lines and planes associated with

ovoids. The remaining part of this section deals with other geometrical properties.

First, the tangent planes of an ovoid may be described using the dual space.

Lemma 1.2.16 [37, Chapter 16] Let Ω be an ovoid of PG(3, q) and denote the set

of tangent planes of Ω by Ω∗. Then Ω∗ is an ovoid of the dual space PG(3, q)∗.

Proof By Lemma 1.2.14, every line of PG(3, q) is contained in 0, 1 or 2 tangent

planes. Thus, each line of the dual space PG(3, q)∗ contains 0, 1 or 2 points of the

set Ω∗. Since Ω∗ has q2 + 1 points of PG(3, q)∗, Lemma 1.2.9 implies that Ω∗ is

an ovoid of PG(3, q)∗ for q > 2. For q = 2, every point of PG(3, 2) is contained

in a tangent plane of Ω, so every plane of PG(3, 2)∗ contains a point of Ω∗. Thus

Lemma 1.2.10 implies that Ω∗ is an ovoid of PG(3, 2)∗. �

Using the notation of the above lemma, a point of Ω lies on 1 tangent plane, and

so is a tangent plane of Ω∗. A point not in Ω lies on q + 1 tangent planes, and so

is a secant plane of Ω∗. An external line of Ω lies on 2 tangent planes, and so is a

secant of Ω∗. A secant of Ω lies on no tangent planes, and so is an external line of

Ω∗. Finally, a tangent of Ω lies on one tangent plane, and so is a tangent of Ω∗.

The structure of the tangents of an ovoid for q even is now described. The following

lemma is required first.

Lemma 1.2.17 [37, Chapter 16] Let Ω be an ovoid of PG(3, q), q even, and let P

be a point not on Ω. The q + 1 tangents of Ω through P are coplanar.

Lemma 1.2.18 [37, Chapter 16] Let Ω be an ovoid of PG(3, q), q even, and let T

be the set of tangents of Ω. Then T is a general linear complex.
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The fact that the tangents of an ovoid form a general linear complex when q is even

makes it easier to describe the set of lines that are tangents of two ovoids. This

will be seen in Chapter 7. It also means that there is a polarity associated with the

ovoid.

Let Ω be an ovoid of PG(3, q), q even, and let T be the general linear complex

formed by the tangents of Ω. There is a unique polarity σ which fixes all the lines

of T (see Section 0.4). This polarity interchanges a plane π with the point where

the tangents in π meet. That is, if π is a tangent plane meeting Ω in the point P ,

then σ interchanges π with P ; and if π is a secant plane meeting Ω in the oval O,

then σ interchanges π with the nucleus of O. The polarity σ is called the polarity

associated with Ω.

®

¯

`

¾(`)

Ω

The polarity σ fixes the tangents of Ω. It is

important to describe the action of σ on secants

and external lines. Let � be an external line

contained in the tangent planes α and β. Then

σ(�) = σ(α ∩ β) = σ(α) ⊕ σ(β). Thus σ(�) is

the line joining the two points σ(α) and σ(β).

These points are points of Ω, so σ(�) is a secant. Thus σ sends an external line to

a secant.

Let s be a secant meeting Ω in the points P and Q. Then σ(s) = σ(PQ) =

σ(P ) ∩ σ(Q). Thus σ(s) is the line where the two tangent planes σ(P ) and σ(Q)

meet. This line is necessarily an external line. Thus σ sends a secant to an external

line. It is important to note that in both cases, a non-tangent line and its image are

skew. The final result in this section describes the tangents of an ovoid meeting a

line.

Lemma 1.2.19 Let Ω be an ovoid of PG(3, q), q even, with associated polarity

σ. Let � be a secant or external line of Ω. Then the tangents meeting � are the

transversals of the two skew lines � and σ(�).
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`

¾(`)

¾(P)

Proof Let P be a point of �. Then the tangents of Ω

through P are precisely the lines through P in the plane

σ(P ). The line � is not a tangent of Ω, so � does not

lie in σ(P ). Thus σ(�) does not pass through P . Hence,

the transversals of � and σ(�) through P are the lines

through P in the plane σ(�) ⊕ P .

Since � is not in σ(P ), it follows that P = �∩σ(P ), and so σ(P ) = σ(�)⊕P . Hence,

the tangents of Ω through P are the transversals of � and σ(�) through P . Since

this is true for each point P on �, the tangents of Ω meeting � are the transversals

of � and σ(�). �

The set of tangents of an ovoid when q is odd do not form a general linear complex.

However, there is still a polarity associated with the ovoid. This will be described

in Section 1.5 on quadrics, because all ovoids for q odd are elliptic quadrics. This

result was proved independently by Barlotti [5] and Panella [44]. (For the definition

of an elliptic quadric, see Section 1.5.)

Theorem 1.2.20 [37, Chapter 16] Every ovoid in PG(3, q), q odd, is an elliptic

quadric.

The above result is not true in general for q even (although it has been proved true

for q = 2, q = 4 and q = 16 [42, 41]). To date, one other type of ovoid has been

discovered, which is known as the Tits ovoid. This ovoid was first discovered by

Segre [50] in PG(3, 8), but Tits [57] constructed an infinite family. Fellegara [31]

proved that Segre’s example in PG(3, 8) was part of the family constructed by Tits.

Tits ovoids exist when q is a non-square (and q > 2). It is conjectured that all

ovoids are either elliptic quadrics or Tits ovoids.

This completes the discussion of ovoids.
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1.3 Cones

The quadrals defined thus far are the ovals of PG(2, q) and the ovoids of PG(3, q).

From these quadrals, other quadrals in higher-dimensional spaces may be con-

structed. This section gives details on this construction.

V

¦

Definition 1.3.1 Let Π be a subspace of PG(n, q)

of dimension at most (n− 1) and let B be a set of

points in Π. Let V be a complementary subspace of

Π. The cone with vertex V and base B is denoted

by VB and is defined to be the set of points either

in V, or in B, or on a line joining a point of V

to a point of B. A cone with base B is also called

a cone over B.

Note that it is possible to define a cone more generally by not assuming that the

vertex V is a complementary subspace of Π, but only assuming that it is skew to Π.

However, the only cones considered in this thesis are those satisfying Definition 1.3.1.

The set of points B may be empty, in which case the cone VB = V∅ is just the

subspace V. It is more usual to consider cones where the base is non-empty. If

P ∈ B, then the set of points on the lines joining a point of V to P is the subspace

V ⊕ P . Thus if B is non-empty, then VB is the union of the subspaces V ⊕ P for

P ∈ B.

V

P

Q
`

Some examples of cones are now given. Let � be a

line of PG(n, q), n ≥ 2, and let B = {P, Q} be a

pair of points of �. Let V be an (n− 2)-space skew

to �. Then the cone VB is the pair of hyperplanes

V ⊕ P and V ⊕ Q.
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¼

Let π be a plane of PG(n, q), n ≥ 3, and let O

be an oval in π. Let V be an (n − 3)-space skew

to π. Then the cone VO is called an oval cone. It

consists of the q+1 (n−2)-spaces formed by joining

V to each point of O. In particular, in PG(3, q),

an oval cone consists of q+1 lines joining the point

V to O.

V

¼

Let π be a plane of PG(n, q), n ≥ 3, q even, and let

Ō be a hyperoval in π. Let V be an (n − 3)-space

skew to π. Then the cone VŌ is called a hyperoval

cone and consists of the q+2 (n−2)-spaces formed

by joining V to each point of Ō. (A hyperoval cone

in PG(3, q) is pictured to the left.) Let N be a point

of Ō and let O be the oval obtained by removing

the point N from Ō. Then the oval cone VO is

contained in the hyperoval cone VŌ.

V

¦

Ω

Let Π be a 3-space of PG(n, q), n ≥ 4, and let Ω

be an ovoid of Π. Let V be an (n − 4)-space skew

to Π. Then the cone VΩ is called an ovoid cone

and consists of the q2 + 1 (n− 3)-spaces formed by

joining V to a point of Ω.

In the examples presented so far, the set B contains

no lines, but this is not necessarily always the case,

as the following examples illustrate.

V

g

¼

h

V © h

V © g

Let π be a plane of PG(n, q), n ≥ 3 and let

B = g ∪ h be a pair of lines in π. Let V be an

(n−3)-space skew to π. Then the cone VB consists

of the (n−2)-spaces V⊕P for P ∈ g∪h. However,

the union of the (n− 2)-spaces V⊕ P for P ∈ g is

the hyperplane V⊕g, and the union of the (n−2)-

spaces V ⊕ P for P ∈ h is the hyperplane V ⊕ h.

Thus the cone VB is the pair of hyperplanes V⊕g

and V ⊕ h.
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 = ¤

V  = V © ¤

Let Π be a subspace of PG(n, q) of dimension

at most n − 1, and let B = Λ be a subspace of

Π. Let V be a complementary subspace of Π.

Then the cone VB is the subspace V ⊕ Λ.

Given the examples above, it is reasonable to

ask what form a cone VB takes when the set

B is itself a cone. This is the subject of the

following lemma.

Lemma 1.3.2 Let V be a non-empty subspace of PG(n, q) and let Π be a comple-

mentary subspace of PG(n, q). Suppose U is a non-empty subspace of Π and let

Λ be a complementary subspace of U in Π. Let B be a set of points in Λ. Then

V(UB) = (V ⊕ U)B.

¦

¤

V

U

V (U )

¦

¤

V

U

(V © U)

Proof Denote the dimensions of V and U by d and c respectively. Then the

dimension of Π is n − d − 1 and the dimension of Λ is n − d − c − 2. Also, since

V and U are skew, the dimension of V ⊕ U is d + c + 1. In order for the notation

(V⊕U)B to make sense, the subspaces V⊕U and Λ must be complementary. Now

n−d−c−2+d+c+1 = n−1, and (V⊕U)⊕Λ = V⊕(U⊕Λ) = V⊕Π = PG(n, q),

so V ⊕ U and Λ are complementary subspaces.
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V

P

U

V © P

¦

¤

V

U

Q

U © Q

If B is empty, then V(UB) = (V⊕U)B = V⊕U. Assume that B is non-empty.

Then V(UB) is the union of the subspaces V ⊕ P for all points P ∈ UB. Also,

UB is the union of the subspaces U ⊕ Q for all points Q ∈ B.

¦

¤

V

U

Q

U © Q

Consider a subspace U ⊕ Q for Q ∈ B. The

union of the subspaces V⊕P for P ∈ U⊕Q

is the subspace V⊕ (U⊕Q) = (V⊕U)⊕Q.

Thus V(UB) is the union of the subspaces

(V ⊕ U) ⊕ Q for Q ∈ B. That is V(UB) =

(V ⊕ U)B. �

Further examples of cones will appear later

in this chapter, and will be used to describe

many of the quadrals, and quadrics in particular. It is appropriate to include infor-

mation that decides if a set of points is a cone. In order to do this, a special type of

point is defined.

Definition 1.3.3 Let C be a set of points in PG(n, q) and let V be a point of C .

The point V is called a singular point of C if every line through V meets C in 1 or

q + 1 points. Otherwise, V is called a non-singular point.

In a cone VB, the points of the vertex V are all singular points of B, because of

the way that the cone VB is constructed. In fact, the set of singular points of any

set always forms a subspace. The citation for the following lemma refers to a proof

when every line meets C in 0, 1, 2 or q + 1 points. However, the result is true for

any set of points.
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Lemma 1.3.4 [39, Chapter 22] Let C be a set of points of PG(n, q). Then the set

of singular points of C forms a subspace.

Proof Denote the set of singular points of C by V. Suppose P and Q are distinct

points of V. If will be shown that the line joining PQ is contained in V.

Let X be a point of PQ other than P or Q. Since P is a singular point, and the line

PQ contains two points of C , it follows that the line PQ is contained in C . Thus

X ∈ C . For X to be a singular point, every line through X must meet C in 1 or

q + 1 points. That is, if a line through X contains a further point of C , then every

point on it must be a point of C .

QP

R

S

X

Y

Suppose R is a point of C not on PQ and let S be a

point on XR other than X and R. Let Y = PS∩QR.

The line QR passes through the singular point Q and

contains the point R ∈ C , so QR is contained in C .

Thus Y ∈ C . The line PY passes through the singular point P and contains the

point Y ∈ Q, so PY is contained in C . Thus S ∈ C . It follows that every point of

XR is a point of C . So every line through X with a further point of C is contained

in C , and hence X is a singular point of C . Thus PQ ⊆ V and V is a subspace by

Lemma 0.2.5. �

In light of the above lemma, the set of singular points of a set C is called the singular

space of C . Using the singular space of C , it is possible to show that C is a cone.

The following result is implicit in many proofs concerning quadrics and quadratic

sets, which are discussed later. For examples of such proofs, see [39, Chapter 22].

Lemma 1.3.5 Let C be a set of points of PG(n, q) and suppose U is a non-empty

subspace contained in the singular space of C . Let Π be a complementary subspace

of U meeting C in the set of points B. Then C is the cone UB.

52



U

P

W

X

¤

¦

Proof Let P be a point of C . If P ∈ U, then P

is a point of UB. Suppose P /∈ U and consider the

subspace Λ = P ⊕ U. Since U is complementary

to Π, the subspace Λ meets Π in exactly one point.

Denote this point by X. The line PX is contained

in Λ and so meets U in a point, W say. The line

PW passes through the singular point W of C and

contains a point P ∈ C , so PX is contained in C .

Thus X is a point of C in Π. That is, X ∈ B.

Thus P lies on a line joining a point of U to a point of B. That is, P is a point of

the cone UB. So every point of C is a point of UB and C ⊆ UB.

U

Q

W

X
¦

Let Q be a point of UB. If Q ∈ U, then Q is a

point of C . Suppose Q /∈ U. Then Q lies on a line

joining a point W of U to a point X of B. Now

the line WX contains two points of C , and passes

through the singular point W of C . Thus the line

WX is contained in C and so Q ∈ WX is a point

of C . Hence, every point of UB is a point of C

and UB ⊆ C . Since also C ⊆ UB, it follows that

C = UB. �

The above lemma will be used several times in the course of the thesis, both to

describe quadrals and to show that a set of points is a quadral. Next, several

combinatorial properties of cones are given. Many of these results have been used

implicitly by other authors, but no formal statements or proofs seem to exist in the

literature. The proofs given here are the author’s.

Let V be a non-empty subspace of PG(n, q) and let Π be a complementary subspace

of V. Let B be a set of points in Π. Denote the dimension of Π by b and the

dimension of V by d. Note that since Π and V are complementary subspaces,

b + d = n − 1. Denote the cone VB by C . The following results all concern the

cone C . The first results concern the intersection of a subspace with C .

53



¦

¦0

V

0

Lemma 1.3.6 Let Π′ be any b-space of PG(n, q)

skew to V. Then Π′ meets the cone VB in a set of

points B′ projectively equivalent to B. Moreover,

VB = VB′.

Proof Since Π′ is skew to V, it follows that Π′

and V are complementary subspaces. If B is the

empty set, then VB is the subspace V, so every

b-space skew to V meets the cone in the empty set.

¦

¦0

V

0
Q

P

If B is non-empty, then VB is the union of the

(d+1)-spaces V⊕P for the points P ∈ B. Thus

the set of points where VB meets Π′ is the set of

points where these (d+1)-spaces meet Π′. Since

Π′ and V are complementary subspaces, each

(d + 1)-space through V meets Π′ in a unique

point. Moreover, each point not in V lies in a

unique (d + 1)-space through V, so the (d + 1)-

spaces V ⊕ P for P ∈ B each define a distinct

point of VB in Π′. Thus the intersection of Π′ and VB is a projection of B from

V and so B′ is projectively equivalent to B.

The cone VB is the union of the (d + 1)-spaces V ⊕ P for P ∈ B. But each

of these subspaces defines a distinct point of B′. So VB is also the union of the

(d + 1)-spaces V ⊕ Q for Q ∈ B′. That is VB = VB′. �

The above information about the structure of a cone makes it possible to count the

number of points in a cone, and the number of each different type of line associated

with the cone.

Lemma 1.3.7 Denote the size of B by B. Then the number of points of the cone

VB is qd+1B + θd.
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Proof If B is empty, then VB = V, so |VB| = |V| = θd = qd+1 · 0 + θd.

If B is non-empty, then VB is the union of the B (d + 1)-spaces V⊕P for P ∈ B.

These (d + 1)-spaces each contain qd+1 points not in V, so |VB| = qd+1B + θd. �

Lemma 1.3.8 Denote by LmΠ the number of lines in Π meeting B in m points,

where m �= 1, q + 1. Then the number of lines of PG(n, q) meeting the cone VB in

m points is q2d+2LmΠ.

Proof The statement will be proved by induction on the dimension d of V. Sup-

pose d = 0. That is, V is a point and Π is a hyperplane.

Consider the set of pairs X = {(�, Σ) | � is a line meeting VB in m points, Σ is a

hyperplane through � but not through V }. The size of X will be counted in two

ways.

Let � be a line meeting VB in m points. Denote the number of such lines by Lm.

The cone VB is either just the point V or is the union of lines through V. So every

line of PG(n, q) through V meets VB in 1 or q + 1 points. Thus � does not pass

through V. There are θn−2 hyperplanes through �, and there are θn−3 hyperplanes

through the plane �⊕V. So there are qn−2 hyperplanes through � but not V. This

gives |X| = qn−2Lm.

Let Σ be a hyperplane not through V. Then Σ meets VB in a set of points

projectively equivalent to B by Lemma 1.3.6. So Σ contains LmΠ lines meeting

VB in m points. The number of hyperplanes through V is θn−1, so the number of

hyperplanes not through V is qn. This gives |X| = qnLmΠ.

Hence qn−2Lm = qnLmΠ and so Lm = q2LmΠ.
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Suppose d > 0 and assume that the result is true

when V has dimension d − 1. Let U be a (d −
1)-space in V and let W be a point of V not in

U. Then V = W ⊕ U, so VB = (W ⊕ U)B =

W (UB). Since U is a (d− 1)-space in U⊕Π, the

number of lines of U⊕Π meeting UB in m points

is q2dLmΠ.

Since the dimension of W is zero, it follows that the

number of lines of PG(n, q) meeting W (UB) in m points is q2 · q2dLmΠ = q2d+2LmΠ.

�

This section is completed with some results concerning the number of each type of

line through a point. The following terminology is introduced for the next three

lemmas. If P is a point of PG(n, q), denote by LmP the number of lines through

the point P meeting C in m points. If Λ is a subspace through P , then denote by

LmPΛ the number of lines of Λ through P meeting C in m points.

Lemma 1.3.9 Let P be a point of Π. Then LmP = qd+1LmPΠ, for m �= 1, q + 1.

Proof The statement is proved by induction on the dimension d of V. Suppose

d = 0. That is, suppose V is a point, and Π is a hyperplane.

V

P

` ¦

The lines through P are contained the planes through

PV, so consider a plane π through PV. The plane

π meets Π in a line through P . Denote this line by

� and denote the number of points of B on � by k.

The cone VB is the union of the lines VQ for

Q ∈ B. Thus VB meets π in the union of the

lines VQ for Q ∈ � ∩ B. Since � has k points of

B, the plane π meets VB in the union of k lines

through V . (If k = 0, then π meets VB in just the point V .) Thus in π the line

PV meets VB in one point or q + 1 points, and the remaining q lines of π through

P each meet VB in k points.
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So the number of lines through P meeting C in m points in each plane through PV

is q or 0, depending on whether the line π∩Π meets B in m points or not. There are

LmPΠ lines of Π meeting B in m points, so the number of lines of PG(n, q) through

P meeting VB in m points is qLmPΠ.

Suppose d > 0 and assume that the result is true when V has dimension d− 1. Let

U be a (d− 1)-space in V and let W be a point of V not in U. Then V = W ⊕U,

so VB = (W ⊕U)B = W (UB). Since U is a (d− 1)-space in U⊕Π, the number

of lines of U ⊕ Π through P meeting UB in m points is qdLmPΠ.

Since the dimension of W is zero, it follows that the number of lines of PG(n, q)

through P meeting W (UB) in m points is q · qdLmPΠ = qd+1LmPΠ. That is, LmP =

qd+1LmPΠ. �

¦

¦0

V

0

P

Lemma 1.3.10 Let P be a point of Π. If Π′ is a

b-space through P skew to V, then LmPΠ′ = LmPΠ,

for m �= 1, q + 1.

Proof Denote by B′ the set of points Π′ ∩ C .

By Lemma 1.3.9, LmP = qd+1LmPΠ. However,

by Lemma 1.3.6, VB = VB′, so also LmP =

qd+1LmPΠ′ . Equating these two expressions for LmP

gives LmPΠ = LmPΠ′ . �

Lemma 1.3.11 Let P be a point of Π and let P ′ be a point of V ⊕ P not in V.

Then LmP ′ = LmP , for m �= 1, q + 1.
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Proof Let Π′ be a b-space through P ′ skew

to V and meeting C in the set of points B′.

Then B and B′ are projectively equivalent and

VB = VB′. This equivalence is defined by pro-

jecting Π′ onto Π from V. Under this projection,

B maps to B′ and P maps to P ′. Thus the

number of lines of Π through P meeting B in

m points is the number of lines of Π′ through P ′

meeting B′ in m points. Lemma 1.3.10 implies

that LmP = LmP ′ . �

1.4 Oval and Ovoid Cones

The previous section described the properties of cones. In this section, these prop-

erties are described in particular for oval and ovoid cones, which are included in the

list of quadrals. First, the oval cones are dealt with.

V

¯

Let β be a plane of PG(n, q), n ≥ 3, and let O be

an oval in β. Let V be an (n− 3)-space skew to β.

Denote the cone VO by C . The following lemmas

concern the oval cone C . Many are restatements

of the lemmas in the previous section on general

cones. The first lemma follows from Lemma 1.3.6.

Lemma 1.4.1 Let π be a plane of PG(n, q) skew to V meeting C in the set of

points O ′. Then O ′ is an oval projectively equivalent to O and C = VO ′.

A plane meeting C in an oval is called a secant plane of C . Using the secant planes,

it is possible to determine how lines meet C .

Lemma 1.4.2 Every line meets C in 0, 1, 2 or q + 1 points.
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Proof Let � be a line of PG(n, q). If � meets the vertex V, it necessarily meets C

in 1 or q + 1 points. If � is skew to V, it is contained in a plane skew to V, which

meets C in an oval. Thus � meets C in 0, 1 or 2 points. �

In light of the above lemma, the following names are given to the lines of PG(n, q).

Definition 1.4.3 Let � be a line of PG(n, q). If � contains no point of C , it is called

an external line of C . If � contains exactly one point of C , it is called a tangent of

C . If � contains exactly two points of C , it is called a secant of C . If � contains

q + 1 points of C , it is called a generator line of C , or a line of C .

It is also possible to determine the intersection of a plane with C .

Lemma 1.4.4 Every plane meets C in one point, a line, a pair of lines, an oval,

or else is contained in C .

Proof Let π be a plane of PG(n, q). If π is skew to V, then π ∩ C is an oval by

Lemma 1.4.1.

Suppose π∩V contains the point W and let � be a line in π not through W , meeting

C in the set of points C�. The point W is a singular point of the set π ∩ C so by

Lemma 1.3.5, π ∩ C is the cone WC�. By Lemma 1.4.2, the line � meets C in 0, 1,

2 or q + 1 points, so WC� is the point W , a line through W , a pair of lines through

W , or the whole of π. �

The above result is the main reason why oval cones are included in the list of

quadrals. This will become clear in the following chapter, where quadrals are char-

acterised by their plane sections. The following lemma completes the results on the

intersection of a subspace with an oval cone.

Lemma 1.4.5 Suppose n ≥ 4 and let Λ be a 3-space of PG(n, q). Then Λ meets C

in a line, a plane, a pair of planes, an oval cone or the whole of Λ.

59



Proof Since V is an (n − 3)-space, the 3-space Λ meets V in at least one point.

Let W be a point of V in Λ and let π be a plane in Λ not through W meeting C

in the set of points Cπ. The point W is a singular point of the set Λ ∩ C , so by

Lemma 1.3.5, Λ ∩ C is the cone WCπ.

By Lemma 1.4.4, the plane π meets C in a point, a line, a pair of lines, an oval or

the whole of π. Thus WCπ is a line through W , a plane through W , a pair of planes

through W , an oval cone with vertex W or the whole of Λ. �

Next, the numbers of various points and lines are counted. These results follow from

Lemmas 1.3.7 to 1.3.11 and the properties of ovals listed in Lemmas 1.1.6, 1.1.8 and

1.1.14.

Lemma 1.4.6 The oval cone C has θn−1 points, 1
2
q2n−3(q − 1) external lines and

1
2
q2n−3(q + 1) secants. A point of C not in V lies on qn−1 secants.

Lemma 1.4.7 Suppose q is odd and let P be a point not in C . Then one of the

following occurs.

• The point P lies on 1
2
qn−2(q−1) secants and 1

2
qn−2(q−1) external lines, and is

an exterior point of the oval C ∩ π for every secant plane π through P . Every

point in V ⊕ P not in V also lies on 1
2
qn−2(q − 1) secants and 1

2
qn−2(q − 1)

external lines.

• The point P lies on 1
2
qn−2(q+1) secants and 1

2
qn−2(q+1) external lines, and is

an interior point of the oval C ∩ π for every secant plane π through P . Every

point in V ⊕ P not in V also lies on 1
2
qn−2(q + 1) secants and 1

2
qn−2(q + 1)

external lines.

In light of the above lemma, the following definition is made.

Definition 1.4.8 Suppose q is odd. A point P not in C lying on 1
2
qn−2(q−1) secants

of C is called an exterior point of C . A point P not in C lying on 1
2
qn−2(q + 1)

secants of C is called an interior point of C .
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The case where q is even is dealt with now.

Lemma 1.4.9 Suppose q is even and let P be a point not in C . Then one of the

following occurs.

• The point P lies on 1
2
qn−1 secants and 1

2
qn−1 external lines, and is not the

nucleus of the oval C ∩ π for any secant plane π through P . Every point of

V ⊕ P not in V also lies on 1
2
qn−1 secants and 1

2
qn−1 external lines.

• The point P lies on no secants and no external lines. That is P lies only

on tangents of C . The point P is the nucleus of the oval C ∩ π for every

secant plane π through P . Every point of V ⊕ P also lies on no secants and

no external lines.

In light of the above lemma, the following definition is made.

Definition 1.4.10 Suppose q is even and let N be the nucleus of the oval O in β.

The subspace V ⊕ N is called the nuclear space of C . If n = 3, then the nuclear

space is called the nuclear line.

By Lemma 1.4.9, the points of the nuclear space not in the vertex are the points of

PG(n, q) lying only on tangents of C . This implies that the tangents and generator

lines of the cone C are the lines meeting the nuclear space. If n = 3, then this means

that the tangents and generator lines of the cone are the lines meeting the nuclear

line, and so form a special linear complex.

The set of points obtained by adjoining the nuclear space to C is a hyperoval cone.

Similar statements to those above also apply to hyperoval cones. In particular, every

line meets a hyperoval cone in 0, 1, 2 or q + 1 points, and the same terms are used

for lines depending on how they meet the hyperoval cone. The following lemma will

be useful later.

Lemma 1.4.11 Suppose q is even and let N be the nucleus of the oval O in β.

Denote the hyperoval O ∪ {N} by Ō and the hyperoval cone VŌ by C̄ . The set of

external lines of C is the same as the set of external lines of C̄ .
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Proof Let � be an external line of C̄ . Since C is contained in C̄ , � is also an

external line of C .

Let � be an external line of C . The points of the nuclear space V ⊕ N of C lie on

no external lines, and so � contains no point of V⊕N . Thus � contains no point of

C ∪ (V ⊕ N) = C̄ . That is, � is an external line of C̄ . �

Note that if O ′ is an oval obtained by removing any point of the hyperoval Ō in the

above lemma, then the oval cone VO ′ also has the same set of external lines as VŌ.

This completes the discussion on the properties of oval cones.

V

¯

Ω

The properties of ovoid cones will now be discussed.

Let β be a 3-space of PG(n, q), n ≥ 4, and let Ω be

an ovoid in β. Let V be an (n−4)-space skew to β.

Denote the cone VΩ by D . The following lemmas

concern the ovoid cone D . Many are restatements

of the lemmas in the previous section on general

cones. The first results follows from Lemma 1.3.6.

Lemma 1.4.12 Let Π be a 3-space of PG(n, q)

skew to V meeting D in the set of points Ω′. Then Ω′ is an ovoid projectively

equivalent to Ω and D = VΩ′.

Lemma 1.4.13 Every line meets D in 0, 1, 2 or q + 1 points.

Proof Let � be a line of PG(n, q). If � meets the vertex V, it necessarily meets D

in 1 or q + 1 points. If � is skew to V, it is contained in a 3-space skew to V, which

meets D in an ovoid. Thus � meets D in 0, 1 or 2 points. �

In light of the above lemma, the following names are given to the lines of PG(n, q).

Definition 1.4.14 Let � be a line of PG(n, q). If � contains no point of D , it is

called an external line of D . If � contains exactly one point of D , it is called a

tangent of D . If � contains exactly two points of D , it is called a secant of D . If �

contains q + 1 points of D , it is called a generator line of D , or a line of D .
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Lemma 1.4.15 Every plane meets D in one point, a line, a pair of lines, an oval,

or else is contained in D .

Proof Let π be a plane of PG(n, q). If π is skew to V, then π is contained in a

3-space skew to V. This 3-space meets D in an ovoid, and so π meets D in a point

or an oval.

Suppose π∩V contains the point W and let � be a line in π not through W , meeting

D in the set of points D�. The point W is a singular point of the set π ∩ D so by

Lemma 1.3.5, π ∩ D is the cone WD�. By Lemma 1.4.2, the line � meets D in 0, 1,

2 or q + 1 points, so WD� is the point W , a line through W , a pair of lines through

W , or the whole of π. �

This completes the investigation of the intersection of subspaces with ovoid cones.

The following lemma counts the numbers of various points and lines. This lemma

follows from Lemmas 1.3.7 to 1.3.11 and the properties of ovoids listed in Lem-

mas 1.2.11 and 1.2.15.

Lemma 1.4.16 The ovoid cone D has θn−1 − qn−2 points, 1
2
q2n−4(q2 + 1) secants

and 1
2
q2n−4(q2 + 1) external lines. A point of D not in V lies on qn−1 secants. A

point not in D lies on 1
2
qn−2(q − 1) secants and 1

2
qn−2(q + 1) external lines.

This completes the discussion of ovoid cones.

1.5 Quadrics

The quadrals defined so far are the ovals, the ovoids, the oval cones and the ovoid

cones. The remaining quadrals are all quadrics, so this section deals with the prop-

erties of quadrics.
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Definition 1.5.1 A quadric of PG(n, q) is the set of points of PG(n, q) satisfying

a homogeneous quadratic equation of degree 2. That is, an equation of the form:

φ(x0, . . . , xn) = a00x
2
0 + · · · + annx

2
n +

∑

i<j

aijxixj = 0

where aij ∈ GF(q) for 0 ≤ i, j ≤ n and not all aij are equal to 0

A quadric of PG(2, q) is called a conic.

In some situations, points satisfying the equation in PG(n, q2) are also considered

to be points of the quadric. However, in this thesis only those points in PG(n, q)

satisfying the equation are considered to be points of the quadric. That is, a quadric

is identified with its set of points in PG(n, q).

Before any of the particular types of quadric are described, it is appropriate to

state some combinatorial properties of quadrics. Let Q be a quadric of PG(n, q)

with equation φ(x0, . . . , xn) = 0 as given above. The following discussion concerns

the quadric Q. Firstly, the interesection of subspaces with Q are considered. The

intersection of an m-space with Q is called an m-space section of Q. The following

lemma asserts that in general, an m-space section of Q is a quadric of PG(m, q).

Lemma 1.5.2 [21] Let Π be a subspace of PG(n, q) of dimension at least 2. Then

either Π is contained in Q or Π ∩ Q is a quadric of Π.

The above lemma implies in particular that if n ≥ 3, then a plane of PG(n, q) is

either contained in Q, or else meets Q in a conic. The converse of this statement is

also true. That is, if K is a set of points such that every plane is either contained

in K or else meets K in a conic, then K is a quadric. This is Theorem 2.2.5 in

Chapter 2.

A similar argument to that used to prove the above theorem can be used to describe

how a line meets Q.

Lemma 1.5.3 [21] Every line of PG(n, q) meets Q in 0, 1, 2 or q + 1 points.

In light of the above result, the following special names are given to the lines of

PG(n, q).
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Definition 1.5.4 Let � be a line of PG(n, q). If � contains no point of Q, it is

called an external line of Q. If � contains exactly one point of Q, it is called a

tangent of Q. If � contains exactly two points of Q, it is called a secant of Q. If �

contains q + 1 points of Q, it is called a generator line of Q, or a line of Q.

As for caps and their cones, if it is clear that Q is the quadric under consideration,

an external line of Q may be referred to simply as an external line, and similarly

for tangents, secants and generator lines.

Using the equation φ = 0 of Q, it is possible to define algebraic conditions to decide

when a line is a tangent, secant, external line or generator line. Using this algebraic

condition, the following results may be proved.

Lemma 1.5.5 [39, Chapter 22] Let Q be a point of the quadric Q. Denote the set

of points lying on the tangents and generator lines of Q through Q by TQ. Then

TQ is either a hyperplane or the whole of PG(n, q).

The subspace TQ of all the points lying on a tangent or generator line of Q through

Q is called the tangent space of Q at Q. If TQ is a hyperplane, then it is called the

tangent hyperplane of Q at Q.

In light of the above discussion, the following definition is made.

Definition 1.5.6 Let Q be a point of Q. The point Q is called a singular point

of Q if TQ = PG(n, q). Otherwise the point Q is called a non-singular point. A

quadric Q is called a singular quadric if it contains a singular point. Otherwise the

quadric is called non-singular.

From Lemma 1.5.5, a point Q of the quadric Q is a singular point if and only if

every line through Q is a tangent or generator line of Q. Thus the definition of

singular point for a quadric matches with the definition of singular point given in

Section 1.3. Lemma 1.3.4 implies that the set of singular points of Q is a subspace,

which is called the singular space of Q. Using the singular space, it is possible to

construct the quadric Q as a cone. The following lemma restates Lemma 1.3.5 for

quadrics.

65



Lemma 1.5.7 Suppose U is a non-empty subspace contained in the singular space

of Q. Let Π be a complementary subspace of U meeting Q in the set of points QΠ.

Then Q is the cone UQΠ.

If the subspace U is chosen to be the whole singular space of Q, then more can

be said about the structure of the singular quadric. First, the quadrics with the

singular spaces of largest dimension are considered.

Lemma 1.5.8 [39, Chapter 22] Suppose the singular space of Q has dimension at

least n − 2. Then Q is an (n − 2)-space, a hyperplane or a pair of hyperplanes.

Proof Let U be an (n − 2)-space contained in the singular space of Q and let �

be a line skew to U meeting Q in the set of points Q�. Then Q is the cone UQ�. If

Q� is non-empty, this cone is the union of the hyperplanes U⊕P for P ∈ Q�. Since

� meets Q in 0, 1, 2 or q + 1 points, this implies that Q is the (n − 2)-space U, a

hyperplane through U, a pair of hyperplanes through U or the whole of PG(n, q).

This last case is not a quadric, so the result follows. �

The three quadrics described in the above lemma are called the reducible quadrics.

The quadric Q is reducible if and only if the homogeneous quadratic expression

φ factorises into two homogeneous linear expressions over GF(q) or GF(q2) [39,

Chapter 22]. If Q is not reducible, it is called irreducible. The irreducible singular

quadrics are now described.

Lemma 1.5.9 [39, Chapter 22] Suppose Q is an irreducible singular quadric and

denote its singular space by V. Let Π be a complementary subspace of V meeting

Q in the set of points QΠ. Then QΠ is a non-singular quadric of Π and Q is the

cone VQΠ.
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Proof By the previous lemma, Q = VQΠ. The set of points QΠ is a quadric by

Lemma 1.5.2, so it remains to show that QΠ is a non-singular quadric.

Suppose QΠ contains the singular point W as a quadric of Π. Then every line in Π

through W is a tangent or generator line of QΠ. That is, the number of secants of

QΠ through W is zero. Lemma 1.3.9 implies that the number of secants of VQΠ

through W is also zero. Thus W is a singular point of Q. This is a contradiction,

so QΠ is a non-singular quadric of Π. �

The converse of the above lemma is also true. That is, a cone over a quadric is a

quadric.

Lemma 1.5.10 [39, Chapter 22] Let V and Π be complementary subspaces of PG(n, q)

such that the dimension of Π is at least 2. Let Q0 be a quadric of Π. Then the cone

VQ0 is a quadric of PG(n, q).

The above lemmas imply that in order to describe the combinatorial properties of

irreducible quadrics, it is reasonable to consider only non-singular quadrics, since

every irreducible singular quadric is a cone over a non-singular quadric.

It is appropriate to mention here the following combinatorial properties of non-

singular quadrics and their tangent spaces. The first three results may be proved

using the structure of conics (described below) and the fact that every plane meets

a quadric in a conic.

Lemma 1.5.11 [39, Chapter 22] Suppose Q is non-singular and n ≥ 3. Let Σ be a

hyperplane that is not a tangent hyperplane of Q at any point of Q. Then Σ meets

Q in a non-singular quadric of Σ.

Lemma 1.5.12 [39, Chapter 22] Suppose Q is non-singular and n ≥ 3. Let P be

a point of Q with tangent hyperplane TP . Then P is the unique singular point of

the quadric Q ∩ TP of TP .

Lemma 1.5.13 [39, Chapter 22] Suppose Q is non-singular and n ≥ 4. Let P be a

point of Q. The tangent hyperplane TP meets Q in a cone with vertex P and base

a non-singular quadric in an (n − 2)-space.
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Lemma 1.5.14 [39, Chapter 22] Suppose Q is non-singular and n ≥ 3. Then every

tangent hyperplane of Q meets Q in the same number of points.

Proof Let P be a point of Q and denote the number of points of Q in the tangent

hyperplane TP by T . The points of TP are the points of PG(n, q) on the tangents

and generator lines of Q through P . The qn−1 lines through P not in TP are secants,

each containing one further point of Q. Thus |Q| = qn−1 + T . In this equation, T

is determined by |Q|, so every tangent hyperplane meets Q in the same number of

points. �

The discussion above concerned the structure of the tangents and generator lines of

Q through a point of Q, and the consequences of this information. The structure

of the tangents through a point not on Q will now be discussed.

Lemma 1.5.15 [39, Chapter 22] Let Q be a point not on Q. Either every point of

Q lies on a tangent through Q or there exists a hyperplane Σ such that Σ∩Q is the

set of points of Q lying on tangents through Q.

If q is even, more can be said about the tangents through a point not on Q.

Lemma 1.5.16 [39, Chapter 22] Suppose q is even and let Q be a point not on Q.

The tangents of Q through Q form a subspace, which is either a hyperplane or the

whole of PG(n, q).

According to the above lemma, it is possible when q is even for a point not on Q

to lie only on tangents. If q is odd, this is only possible if Q is a hyperplane [39,

Chapter 22].

If q is even, a point N not on Q such that every line through N is a tangent is

called a nucleus of Q. The set of nuclei and singular points of Q is the set of points

P of PG(n, q) such that every line through P meets Q in 1 or q + 1 points. Using

arguments similar to those used to prove Lemma 1.3.4, it can be proved that this

set of points is a subspace. This subspace is called the nuclear space of Q.

The following lemmas describe the structure of the nuclear space of Q for q even,

depending on the the dimension n.
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Lemma 1.5.17 [39, Chapter 22] Suppose q is even and Q is non-singular. Then

Q has no nucleus if n is odd, and a unique nucleus if n is even.

Corollary 1.5.18 [39, Chapter 22] Suppose q is even and Q has non-empty singular

space V with dimension at most (n − 3). Let Π be a complementary subspace of V

meeting Q in the non-singular quadric Q0. If Q0 has nucleus N , then the nuclear

space of Q is V ⊕ N . If Q0 has no nucleus, then Q has no nucleus.

¦

V

0M

N

Proof Denote the nuclear space of Q by N. Ev-

ery point of N not in V lies only on tangents of Q.

Thus every point of N∩Π lies only on tangents of

Q0. That is, any point of N ∩ Π is a nucleus of

Q0. On the other hand, if M is a nucleus of Q0,

then M lies on no secants or external lines of Q0

in Π. Lemma 1.3.9 then implies that there are no

secants or external lines of VQ0 = Q through M

in PG(n, q). That is, M is a nucleus of Q. Hence,

N ∩ Π is the set of nuclei of Q0 in Π.

Suppose Q0 has no nucleus, this implies that N∩Π is empty. Since N contains the

singular space V, and V is a complementary subspace of Π, this implies N = V.

Suppose Q has a unique nucleus M . Then N∩Π = M . Now Π is a complementary

subspace of V and N contains V and meets Π in a unique point. Thus N has

dimension one larger than V. Hence N = V ⊕ M . �

This completes the discussion of the nuclear space of a quadric. If Q has no singular

points and no nuclei, then Lemmas 1.5.15 and 1.5.5 imply that for every point P

there is a unique hyperplane ΣP containing all the points of Q on the tangents

and generator lines through P . If P ∈ Q, then the hyperplane ΣP is the tangent

hyperplane of Q at P .

Denote by σ the map sending P to the hyperplane ΣP for each P in PG(n, q).

Lemma 1.5.19 [39, Chapter 22] The map σ defined above is a polarity of PG(n, q).
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The polarity σ is called the polarity associated with Q or simply the polarity of Q.

Given a subspace Π, its image σ(Π) is called the polar of Π. The polar of a point

P on Q is the tangent hyperplane of Q at P . The polar of a point P not on Q is a

non-tangent hyperplane of Q. The polarity associated with Q will be described in

more detail later for particular quadrics. Three basic properties are be given now.

Lemma 1.5.20 [39, Chapter 22] Suppose q is odd and Q is non-singular. Then the

set of points of PG(n, q) lying on their own polar is the set of points of Q.

Lemma 1.5.21 [39, Chapter 22] Suppose q is even, n is odd and Q is non-singular.

Then every point lies on its own polar, so σ is a null polarity. Also, if P is a point

not on Q, then P is the nucleus of the quadric σ(P ) ∩ Q.

Proof Let P be a point of PG(n, q). If P ∈ Q, then σ(P ) is the tangent hyperplane

at P , so P ∈ σ(P ). If P /∈ Q, then σ(P ) is the hyperplane containing all points of Q

on tangents through P . By Lemma 1.5.5, the tangents through P form a subspace,

so P is contained in σ(P ). Since P lies only on tangents in σ(P ), it is the nucleus of

the quadric σ(P )∩Q. Note that σ(P ) is not a tangent hyperplane, so σ(P )∩Q is a

non-singular quadric in a hyperplane and so has a unique nucleus by Lemma 1.5.17.

�

Lemma 1.5.22 [39, Chapter 22] Suppose Q is non-singular and either q is odd or

q is even and n is odd. Denote the set of tangent hyperplanes of Q by Q∗. Then

Q∗ is a non-singular quadric of the dual space PG(n, q)∗.

Proof Denote the polarity of Q by σ. Then σ is a collineation from PG(n, q) to

PG(n, q)∗. The image of a point P of Q under σ is the tangent hyperplane of Q

at P . So Q∗ is the image of Q under σ. Hence Q∗ is a non-singular quadric of

PG(n, q)∗. �

This completes the discussion of the properties of general quadrics. The various

quadrics in certain dimension will now be described. First, the conics in PG(2, q)

are considered.
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Theorem 1.5.23 [36, Chapter 7] Let Q be a conic of PG(2, q). If Q is non-

singular, then Q is an oval. If Q is singular, then Q is a point, a line or a pair of

lines.

Proof Suppose Q is singular. That is, suppose the singular space has dimension

at least 0. By Lemma 1.5.8, Q is a point, a line or a pair of lines.

Suppose Q is non-singular and non-empty, and let P be a point of Q. The tangent

space of Q at P is a hyperplane of PG(2, q) – a line. The remaining q lines through

P are secants with one further point of Q. Thus Q has q + 1 points, and also a line

containing a point of Q meets Q in 1 or 2 points. Thus Q is an oval.

Hence, every conic is either the empty set, a point, a line, a pair of lines or an oval.

The number of conics that are a point, a line, a pair of lines or an oval may be

counted. The sum of these numbers is the total number of conics in PG(n, q) (see

[21]). Thus every conic contains at least one point. Hence, a non-singular conic is

an oval. �

Using Lemma 1.5.2, the above lemma implies that every plane meets a quadric in a

point, a line, a pair of lines, an oval or the whole plane. As stated in Lemmas 1.2.12,

1.4.4 and 1.4.15, this property is also true of the other quadrals. In the next chapter,

this property will be shown to characterise the quadrals. Also, a singular conic in

PG(2, q) is a reducible conic and vice versa.

Before the quadrics in PG(n, q), n ≥ 3 are described, the following results are stated.

Theorem 1.5.24 [36, Chapter 7] All non-singular conics of PG(2, q) are projec-

tively equivalent.

Lemma 1.5.25 [36, Chapter 7] Let {P1, P2, P3, P4, P5} be a set of five distinct points

of PG(2, q) with no three collinear. Then there is a unique non-singular conic con-

taining P1, P2, P3, P4 and P5.

The quadrics in PG(3, q) are now described.
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Theorem 1.5.26 [37, Chapter 15] A non-singular quadric of PG(3, q) is either an

ovoid or the set of points on the lines of a regulus.

Proof Let Q be a non-singular quadric in PG(3, q) and let P be a point of Q. Let

π be the tangent plane of Q at P and denote by Qπ the intersection of π with Q.

By Lemma 1.5.12, the point P is the only singular point of Qπ. Thus Qπ is either

the single point P or a pair of lines through P . By Lemma 1.5.14, either every

tangent plane meets Q in a single point or every tangent plane meets Q in a pair

of lines.

Suppose Q contains no lines. Then every line meets Q in 0, 1 or 2 points, and the

tangents at each point of Q form a plane. Thus Q is an ovoid.

Suppose Q contains a line g and let Q be a point of g. The tangent plane TQ of Q

at Q contains all points on tangents or generator lines through Q, so TQ contains g.

Thus the plane TQ meets Q in a pair of lines, and so every tangent plane meets Q

in a pair of lines. Since all the generator lines through Q lie in the tangent plane at

Q, this implies that there are exactly two generator lines of Q through each point

of Q.

g

Consider the q + 1 tangent planes at the points of g.

These planes are all distinct and each defines a further

line of Q. Denote this set of lines by R. Each line of

R is contained in a different plane through g and passes

through a different point of g. Thus the lines of R are

mutually skew.

By Lemma 1.5.14, there are q2 + q + 1 points on Q. Thus Q is the set of points on

the lines of R. However, choosing a line of R in place of g shows that Q is also the

set of points on another set of q + 1 mutually skew lines. Thus R is a regulus. �

In light of the above theorem, the following definitions are made.

Definition 1.5.27 Let Q be a non-singular quadric of PG(n, q). If Q is an ovoid,

then Q is called an elliptic quadric. If Q is the set of points on the lines of a regulus,

then Q is called a hyperbolic quadric.
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Using these definitions, it is possible to describe all the non-singular quadrics of

PG(3, q).

Lemma 1.5.28 [37, Chapter 15] All hyperbolic quadrics of PG(3, q) are projectively

equivalent. All elliptic quadrics of PG(3, q) are projectively equivalent.

The above lemma can be proved by assigning coordinates to PG(3, q) in such a way

that the equation of the quadric is fully determined. Also of interest is the following

partial converse.

Theorem 1.5.29 [37, Chapter 15] The set of points on the lines of a regulus in

PG(3, q) is always a hyperbolic quadric.

Unfortunately, not every ovoid is an elliptic quadric if q is even, which is why ovoids

are included in the list of quadrals, separately from elliptic quadrics. The combina-

torial properties of elliptic quadrics are the combinatorial properties of ovoids and

were given in Section 1.2. Some special properties of elliptic quadrics in PG(3, q), q

odd, are mentioned here.

¾(Q)

Q
Let E be an elliptic quadric in PG(3, q),

q odd, and denote the polarity associ-

ated with E by σ. If P is a point of

E , then σ(P ) is the tangent plane of E

at P . If Q is a point not on E , then

σ(Q) is a secant plane of E . The points

of E on the tangents through Q are the

points of the non-singular conic σ(Q) ∩ E . By Lemma 1.5.20, the point Q does not

lie in the plane σ(Q), so the tangents through Q form a quadric cone. Thus the

tangents of E form a (q + 1)-cover that is not a general linear complex.

The polarity σ sends secants of E to external lines of E and vice versa. Also, it

sends tangents of E to tangents of E , although it does not fix any of these tangents.

Finally, if E ∗ is the set of tangent planes of E , then E ∗ is an elliptic quadric of the

dual space PG(3, q)∗ by Lemma 1.5.22.

The properties of hyperbolic quadrics will now be described. First, the number of

each type of lines is counted.
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Lemma 1.5.30 [37, Chapter 15] Let H be a hyperbolic quadric of PG(3, q). Then

H has (q − 1)(q + 1)2 tangents, 1
2
q2(q + 1)2 secants, 1

2
q2(q − 1)2 external lines and

2(q + 1) generator lines.

Next, the possible plane sections of a hyperbolic quadric are considered.

Lemma 1.5.31 [37, Chapter 15] Let H be a hyperbolic quadric of PG(3, q). Then

every plane meets H in a pair of lines or an oval.

Proof In Theorem 1.5.26, it was determined that the tangent planes of H meet

H in a pair of lines. By Lemma 1.5.11, every non-tangent plane meets H in a

non-singular conic. �

A plane meeting a hyperbolic quadric H in a conic is called a secant plane of H .

The number of each type of plane through each type of line is given in the next

lemma.

Lemma 1.5.32 [37, Chapter 15] Let H be a hyperbolic quadric of PG(3, q). Then

H has q2+2q+1 tangent planes and q3−q secant planes. An external line lies on no

tangent planes and q +1 secant planes. A generator line lies on q +1 tangent planes

and no secant planes. A tangent lies on one tangent plane and q secant planes. A

secant lies on two tangent planes and q − 1 secant planes.

Using the above information, the number of each type of line through each point on

and off a hyperbolic quadric can be determined.

Lemma 1.5.33 [37, Chapter 15] Let H be a hyperbolic quadric of PG(3, q). Through

a point on H there are 2 generator lines, q − 1 tangents, q2 secants, 2q + 1 tangent

planes and q2−q secant planes. Through a point not on H there are q+1 tangents,

1
2
q(q+1) secants, 1

2
q(q−1) external lines, q+1 tangent planes and q2 secant planes.
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Q

¾(Q)

Note that when q is even, the q+1 tangents through

a point not on H form a plane and the set of tan-

gents and generator lines of H is a general linear

complex. When q is odd, the q + 1 tangents of H

form a quadric cone (pictured to the left), so they

are not coplanar. Thus the tangents and generator

lines form a (q+1)-cover that is not a general linear

complex.

The final property of a hyperbolic quadric of PG(3, q) to be discussed is the structure

of the set of tangent planes.

Let H be a hyperbolic quadric of PG(3, q). Denote by H ∗ the set of tangent

planes of H . Then by Lemma 1.5.22, H ∗ is a quadric of PG(3, q)∗. In fact, H ∗ is

a hyperbolic quadric of PG(3, q)∗, since it has q2 + 2q + 1 points.

A secant of H lies on 2 tangent planes, and so is a secant of H ∗ in PG(3, q)∗. An

external line of H lies on no tangent planes, and so is an external line of H ∗ in

PG(3, q)∗. A tangent of H is a tangent of H ∗ in PG(3, q)∗, and a generator line of

H is a generator line of H ∗ in PG(3, q)∗.

This completes the list of properties of the non-singular quadrics in PG(3, q). It is

appropriate to mention here the singular quadrics of PG(3, q). If a quadric has a

line contained in its singular space, then it is reducible and forms a line, a plane or

a pair of planes by Lemma 1.5.8. One important property of a reducible quadric in

PG(3, q) is listed here.

Lemma 1.5.34 Let � be a line of PG(3, q). Then there are q4 lines of PG(3, q) not

meeting �.

If a quadric has a unique singular point V , then it forms a cone V C , where C is a

non-singular conic in a plane not through V . The quadric V C is called a quadric

cone and is an example of an oval cone. The quadric cone is the singular irreducible

quadric in PG(3, q). Its properties are described in Section 1.4.

The non-singular quadrics in PG(n, q) for n ≥ 4 will now be discussed. In PG(2, q)

there is one type of non-singular conic, and in PG(3, q), there are two types of

non-singular quadric. This pattern continues for the higher dimensions.
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Theorem 1.5.35 [36, Chapter 5] In PG(n, q), n even, all non-singular quadrics

are projectively equivalent. In PG(n, q), n odd, there are two distinct non-singular

quadrics, up to projective equivalence.

The above theorem is proved by applying successive collineations until the equation

of the quadric is of a particular form. For these equations see Hirschfeld and Thas

[39, Chapter 22]. For the purposes of this thesis, the two types of non-singular

quadric in PG(n, q), n odd, will be distinguished by their combinatorial properties,

just as was done for in Theorem 1.5.26 for PG(3, q). The distinguishing property

is the intersection of a tangent hyperplane with the quadric, which is described in

Lemma 1.5.13. This property is used to give the following recursive definition.

Definition 1.5.36 Let Q be a non-singular quadric of PG(n, q), n odd, n > 3, and

let P be a point of Q. The quadric Q is called a hyperbolic quadric if TP meets

Q in a cone PH for H a hyperbolic quadric in PG(n − 2, q). The quadric Q is

called an elliptic quadric if TP meets Q in a cone PE for E an elliptic quadric in

PG(n − 2, q).

Definition 1.5.37 A non-singular quadric in PG(n, q), n even, is called a parabolic

quadric.

The different types of non-singular quadric can also be distinguished by their size,

as shown by the following lemma.

Lemma 1.5.38 [36, Chapter 5] Let Q be a non-singular quadric of PG(n, q). If

Q is a parabolic quadric, then |Q| = θn−1. If Q is a hyperbolic quadric, then

|Q| = θn−1 + q
1
2
(n−1). If Q is an elliptic quadric, then |Q| = θn−1 − q

1
2
(n−1).

Proof The proof is by induction on the dimension n. Each case is treated sepa-

rately.

A parabolic quadric in PG(2, q) is a non-singular conic with q + 1 = θ1 points. Sup-

pose a parabolic quadric in PG(n − 2, q) has θn−3 points and let Q be a parabolic

quadric in PG(n, q). Consider the tangent hyperplane TP at a point P ∈ Q.

By Lemma 1.5.13, TP meets Q in a cone PP, where P is a parabolic quadric
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in an (n − 2)-space. Thus |TP ∩ Q| = qθn−3 + 1 = θn−2. By Lemma 1.5.14,

|Q| = qn−1 + θn−2 = θn−1.

An elliptic quadric in PG(3, q) has q2 + 1 = θ2 − q points. Suppose an elliptic

quadric in PG(n − 2, q) has θn−3 − q
1
2
(n−3) points and let Q be an elliptic quadric

in PG(n, q). Consider the tangent hyperplane TP at a point P ∈ Q. By Defini-

tion 1.5.36, TP meets Q in a cone PE , where E is an elliptic quadric in an (n− 2)-

space. Thus |TP ∩ Q| = q(θn−3 − q
1
2
(n−3)) + 1 = θn−2 − q

1
2
(n−1). By Lemma 1.5.14,

|Q| = qn−1 + θn−2 − q
1
2
(n−1) = θn−1 − q

1
2
(n−1).

A hyperbolic quadric in PG(3, q) has q2 +2q+1 = θ2 +q points. A similar argument

to that above shows that a hyperbolic quadric in PG(n, q) has θn−1 + q
1
2
(n−1) points.

�

Given the above results, it is possible to calculate the number of each type of line

and plane associated with a quadric, and to describe the incidence between them.

This will only be shown here for selected lines and points of certain quadrics. First,

the parabolic quadric in PG(4, q) will be dealt with.

Let P be a parabolic quadric in PG(4, q). The following results concern the quadric

P. The first result is a restatement of Lemmas 1.5.11 and 1.5.12.

Lemma 1.5.39 [39, Chapter 22] The quadric P has q3 + q2 + q + 1 points. A

tangent hyperplane of P meets P in a quadric cone of the hyperplane. A non-

tangent hyperplane meets P either in an elliptic quadric or a hyperbolic quadric of

the hyperplane.

Since an irreducible quadric in PG(3, q) contains no planes, the above result implies

that P contains no planes. A plane meeting P in a non-singular conic is called a

secant plane of P. The number of the different types of lines through a point on

P can easily be calculated.

Lemma 1.5.40 [39, Chapter 22] Through a point of P there pass q3 secants, q + 1

generator lines and q2 tangents.
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Proof Let P be a point of P and consider the tangent hyperplane TP at P . This

hyperplane is the union of the tangents and generator lines through P and meets P

in a quadric cone. Thus through P there pass q + 1 generator lines and q2 tangents.

The remaining q3 lines through P are secants. �

Using the above information, the number of secant planes through each point and

each line can be calculated.

Lemma 1.5.41 A generator line of P lies on no secant planes. Every other line

of PG(4, q) lies on q2 secant planes. A point on P lies on q4 secant planes. A point

not on P lies on q4 + q2 secant planes.

Proof A secant plane contains no generator lines, so a generator line is contained

in no secant planes.

Let t be a tangent meeting P in the point P . Denote the number of secant planes

through t by St and let X = {(π, s) | π is a plane through t, s is a secant in π

through P }. The size of X will be counted in two ways. Note that the planes

through a tangent meet P in a single point, a line, a pair of lines, or a non-singular

conic. Of these types of planes, only the secant planes contain both a secant and a

tangent through P . So, counting π then s, there are St planes through t containing q

secants through P , and the remaining planes through t contain no secant through P .

So |X| = qSt. Counting s then π, there are q3 secants through P by Lemma 1.5.40,

and each defines one plane through t. So |X| = q3. Equating these two expressions

for |X| gives St = q2.

Let s be a secant and denote by Ss the number of secant planes through s. Every

point of P lies in a plane through s, so consider the planes through s. Each of these

planes is either a secant plane or meets P in a pair of lines, since the other possible

intersections have no secants. Thus |P|−2 = (q+1−2)Ss+(2q+1−2)(q2+q+1−Ss).

Solving this equation gives Ss = q2.

Let � be an external line and denote by S� the number of secant planes through �.

Each plane through � is either a secant plane or meets P in one point. An argument

similar that above shows that S� = q2.
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Let P be a point of P and denote by SP the number of secant planes through P .

Consider the set of pairs Y = {(π, s) | π is a secant plane through P , s is a secant in

π through P }. The size of Y will be counted in two ways. Counting π then s, there

are SP secant planes through P and q secants through P in each. So |Y | = qSP .

Counting s then π, there are q3 secants through P and q2 secant planes through

each, so |Y | = q3q2 = q5. Equating these two expressions for |Y | gives SP = q4.

Let Q be a point not in P and denote by SQ the number of secant planes through Q.

Consider the set of pairs Z = {(π, �) | π is a secant plane through Q, � is a

line of π through Q }. The size of Z is counted in two ways. Counting π then

�, there are SQ secant planes through P and q + 1 lines through P in each. So

|Z| = (q + 1)SQ. Counting � then π, there are q3 + q2 + q + 1 lines through Q and

q2 secant planes through each, since there are no generator lines through Q. So

|Z| = q2(q3 + q2 + q + 1) = q2(q2 + 1)(q + 1). Equating these two expressions for |Z|
gives SQ = q4 + q2. �

The number of each type of line through a point not on P can also be calculated,

but the result is different for q odd and q even.

Lemma 1.5.42 Suppose q is odd and P is a point not on P. Either P lies on q2+1

tangents, 1
2
q(q2 + 1) secants and 1

2
q(q2 + 1) external lines, or P lies on q2 + 2q + 1

tangents, 1
2
q(q2 − 1) secants and 1

2
q(q2 − 1) external lines.

Proof The polar of P is a non-tangent hyperplane of P, and so meets P in either

an elliptic quadric or a hyperbolic quadric. The points of P lying on tangents

through P are the points where the polar of P meets P. Thus the number of

tangents through P is either q2 +1 or q2 +2q +1. The remaining points of P lie on

secants through P , and this gives the corresponding numbers of secants through P .

The remaining lines through P are external lines, and this gives the corresponding

numbers of external lines through P . �

Lemma 1.5.43 Suppose q is even and P is a point not on P other than the nucleus

of P. Then P lies on q2 + q + 1 tangents, 1
2
q3 secants and 1

2
q3 external lines.
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Proof Since P is not the nucleus of P, there exists a secant s through P . Let π

be a plane through s. Since π contains a secant of P, it meets P either in a pair

of lines or a non-singular conic, since the other conics have no secants. If π meets

P in a pair of lines, P lies on one tangent in π. If π meets P in a non-singular

conic C , then P is not the nucleus of C , since it lies on a secant. Thus P lies on

one tangent in π. Since there are q2 + q + 1 planes through s, each containing one

tangent through P , it follows that there are q2 + q + 1 tangents through P . The

remaining q3 points of P lie on secants through P , so there are 1
2
q3 secants through

P . The remaining 1
2
q3 lines through P are external lines. �

For q odd, the polarity of P makes it possible to discuss the set of tangent hyper-

planes of P as a quadric of the dual space PG(4, q)∗. Then each plane of PG(4, q)

corresponds to a line of PG(4, q)∗. Of particular interest are the secant planes of P.

Lemma 1.5.44 [39, Chapter 22] Suppose q is odd and denote by P∗ the set of

tangent hyperplanes of P. The set of secant planes of P in PG(4, q) is the set of

external lines and secants of the quadric P∗ in PG(4, q)∗.

Proof It is possible to count the number of each type of 3-space through each type

of plane using arguments similar to those above. From this information it follows

that a plane meeting P in one point is contained in one tangent hyperplane, a

plane meeting P in a pair of lines is contained in one tangent hyperplane, a plane

meeting P in one line is contained in q +1 tangent hyperplanes, and a secant plane

is contained in either 0 or 2 tangent hyperplanes. Thus, as a line of PG(4, q)∗, a

secant plane of P contains 0 or 2 points of PG(4, q)∗. That is, the set of secant

planes of P in PG(3, q) is the set of external lines and secants of the quadric P∗

in PG(4, q)∗. �

This completes the discussion on the parabolic quadric P in PG(4, q). For non-

singular quadrics in higher dimensions, only one combinatorial property will be

considered apart from size. This is the number of each type of line through a point

not on the quadric. For parabolic quadrics, this will only be calculated for q even.
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Lemma 1.5.45 Let P be a parabolic quadric of PG(n, q), n even, n ≥ 4, q even.

Let P be a point not on P other than the nucleus of P. Then P lies on θn−2

tangents, 1
2
qn−1 secants and 1

2
qn−1 external lines of P.

Proof Since P is not the nucleus of P, there exists a secant s through P . Let π

be a plane through s. Since π contains a secant of P, it meets P either in a pair of

lines or a non-singular conic, since the other conics have no secants. If π meets P

in a pair of lines, P lies on one tangent in π. If π meets P in a non-singular conic

C , P is not the nucleus of C , since it lies on a secant. Thus P lies on one tangent

in π. Since there are θn−2 planes through s, each containing one tangent through

P , it follows that there are θn−2 tangents through P . The remaining qn−1 points of

P lie on secants through P , so there are 1
2
qn−1 secants through P . The remaining

1
2
qn−1 lines through P are external lines. �

Lemma 1.5.46 Let H be a hyperbolic quadric of PG(n, q), n odd, n ≥ 3. Let P

be a point not on H . Then P lies on θn−2 tangents, 1
2
(qn−1 + q

1
2
(n−1)) secants and

1
2
(qn−1 − q

1
2
(n−1)) external lines.

Let E be an elliptic quadric of PG(n, q), n odd, n ≥ 3. Let Q be a point not on

E . Then Q lies on θn−2 tangents, 1
2
(qn−1 − q

1
2
(n−1)) secants and 1

2
(qn−1 + q

1
2
(n−1))

external lines.

Proof The points of H on the tangents through P are the points of H in the

polar of P . Since P is not on H , its polar is a non-tangent hyperplane, which meets

H in a non-singular quadric. This quadric has size θn−2 by Theorem 1.5.38, so there

are θn−2 tangents through P . The remaining points of H lie on secants through P .

The number of points of H is θn−1 + q
1
2
(n−1), so there are 1

2
(qn−1 + q

1
2
(n−1)) secants

through P . The remaining 1
2
(qn−1 − q

1
2
(n−1)) lines through P are external lines.

The remaining part of the theorem is proved using a similar argument. �

This completes the discussion of non-singular quadrics. The singular quadrics of

PG(n, q), n ≥ 2, will now be considered. The following terminology will be useful.
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Definition 1.5.47 A quadric is of parabolic type if it is either a parabolic quadric,

a cone over a parabolic quadric, or consists of a hyperplane. A quadric is of elliptic

type if it is either an elliptic quadric, a cone over an elliptic quadric, or consists of

an (n−2)-space. A quadric is of hyperbolic type if it is either a hyperbolic quadric,

a cone over a hyperbolic quadric, or consists of a pair of hyperplanes.

The inclusion of the reducible quadrics in the above lists is justified by the basic

combinatorial property of their sizes, as seen in the following result.

Lemma 1.5.48 [39, Chapter 22] Let Q be a quadric in PG(n, q), n ≥ 2. If Q is of

parabolic type, then |Q| = θn−1. If Q is of elliptic type, then |Q| = θn−1 − qm for

some m. If Q is of hyperbolic type, then |Q| = θn−1 + qm for some m.

Proof Suppose Q is of parabolic type. If Q is a hyperplane, then |Q| = θn−1. If

Q is a parabolic quadric, then |Q| = θn−1 by Lemma 1.5.38. If Q is singular and

irreducible, then Q is a cone VP for some subspace V of dimension d ≥ 0 and

some parabolic quadric P in a complementary subspace of V. By Lemma 1.3.7,

|Q| = qd+1θn−2−d + θd = θn−1.

Suppose Q is of elliptic type. If Q is an (n−2)-space, then |Q| = θn−2 = θn−1−qn−1.

If Q is an elliptic quadric, then |Q| = θn−1 − q
1
2
(n−1) by Lemma 1.5.38. If Q is

singular and irreducible, then Q is a cone VE for some subspace V of dimension d ≥
0 and some elliptic quadric E in a complementary subspace of V. By Lemma 1.3.7,

|Q| = qd+1(θn−2−d − q
1
2
(n−2−d)) + θd = θn−1 − q

1
2
(n+d).

Finally suppose Q is of hyperbolic type. If Q is a pair of hyperplanes, then |Q| =

θn−1+qn−1. If Q is a hyperbolic quadric, then |Q| = θn−1+q
1
2
(n−1) by Lemma 1.5.38.

If Q is singular and irreducible, then Q is a cone VH for some subspace V of

dimension d ≥ 0 and some elliptic quadric H in a complementary subspace of V.

By Lemma 1.3.7, |Q| = qd+1(θn−2−d + q
1
2
(n−2−d)) + θd = θn−1 + q

1
2
(n+d). �

The final result in this section is a calculation of the number of external lines through

a point not on a each type of quadric for q even.
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Lemma 1.5.49 Let Q be a quadric in PG(n, q), q even, and suppose P is a point

not on Q lying on at least one external line of Q. The number of external lines

through P is less than 1
2
qn−1 if Q is of hyperbolic type, greater than 1

2
qn−1 if Q is

of elliptic type and exactly 1
2
qn−1 if Q is of parabolic type.

Proof If Q is a hyperplane or pair of hyperplanes, then Q has no external lines.

If Q is an (n − 2)-space then there are θn−2 lines through P meeting Q, and so

there are qn−1 lines through P not meeting Q. Thus the result is true when Q is

reducible. The result is also true when Q is non-singular by Lemmas 1.5.45 and

1.5.46.

Assume Q is singular and irreducible and denote the singular space of Q by V.

Let � be an external line through P and let Π be a complementary subspace of V

through �, meeting Q in the non-singular quadric Q0. Denote the dimension of V

by d and the dimension of Π by b. Note that b + d = n − 1, since V and Π are

complementary subspaces.

Denote by E0 be the number of external lines of Q0 in Π through P , and denote

by E the number of external lines of Q through P . By Lemma 1.3.9, E = qd+1E0.

If Q is of hyperbolic type, then Q0 is a hyperbolic quadric and E0 < 1
2
qb−1 by

Lemma 1.5.46. Thus E < 1
2
qd+1qb−1 = 1

2
qn−1. If Q is of elliptic type, then Q0 is

an elliptic quadric and E0 > 1
2
qb−1 by Lemma 1.5.46. Thus E > 1

2
qd+1qb−1 = 1

2
qn−1.

Finally, if Q is of parabolic type, then Q0 is a parabolic quadric and E0 = 1
2
qb−1 by

Lemma 1.5.45. Thus E = 1
2
qd+1qb−1 = 1

2
qn−1. �

This completes the discussion of quadrics.

1.6 Quadrals

In this section, a quadral is formally defined by making reference to the definitions

given so far.

Definition 1.6.1 A quadral of PG(2, q) is an oval or a conic. A quadral of PG(3, q)

is an ovoid, an oval cone or a quadric. A quadral of PG(n, q), n ≥ 4 is an oval

cone, an ovoid cone or a quadric.
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The reasoning behind this definition is that oval cones and ovoid cones are com-

binatorially identical to quadrics. That is, using only combinatorial information,

it is not possible to distinguish between a non-quadric quadral and a quadric. It

is reasonable to ask why there are no other objects in the list of quadrals. That

is, are there any more sets of points with all the same combinatorial properties as

quadrics? The answer is no, and this is proved by the characterisations given in the

following chapter.

At this point it is appropriate to define some further terminology. Since an oval

is combinatorially identical to a conic, oval cones are combinatorially identical to

certain quadrics of parabolic type. In a similar way, ovoid cones are combinatorially

identical to certain quadrics of elliptic type. Thus the following terminology is

introduced.

Definition 1.6.2 A parabolic quadral is an oval in PG(2, q) or a parabolic quadric

in PG(n, q), n ≥ 4. An elliptic quadral is an ovoid in PG(3, q) or an elliptic quadric

in PG(n, q), n ≥ 5. A hyperbolic quadral is a hyperbolic quadric.

A quadral of parabolic type is an oval in PG(2, q), an oval cone in PG(n, q) for

n ≥ 3, or a quadric of parabolic type. A quadral of elliptic type is an ovoid of

PG(3, q), an ovoid cone in PG(n, q) for n ≥ 4, or a quadric of elliptic type. A

quadral of hyperbolic type is a quadric of hyperbolic type.

In order to distinguish the quadrals that are cones, the following terminology is

introduced.

Definition 1.6.3 Let Q be a quadral of PG(n, q) and let P be a point of Q. Then

P is called a singular point of Q if every line through P is either a tangent or a

generator line of Q. Otherwise, P is called a non-singular point.

The quadral Q is called singular if it has a singular point, and non-singular other-

wise.
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This definition matches with the definition of singular points given in Definition 1.3.3

for a general set. Note that if the quadral Q is a cone with vertex V, then every point

of V is a singular point, by the definition of a cone. Thus the non-singular quadrals

are the ovals of PG(2, q), the ovoids of PG(3, q) and the non-singular quadrics. Also

note that in PG(n, q), n ≥ 4, a non-singular quadral is always a quadric.

If the quadral Q in PG(n, q), q even, is of parabolic type, then the singular points

of Q are not the only points of PG(n, q) lying on only tangents and generator lines.

There also exist points not on Q lying only on tangents. These points, along with

the set of singular points of Q form the nuclear space of Q. The nuclear space was

defined separately for quadrics and for oval cones.

Finally, a quadral will be called reducible if it is an (n− 2)-space, a hyperplane or a

pair of hyperplanes. That is, a quadral is reducible if it is a reducible quadric. All

other quadrals are called irreducible quadrals. That is, the irreducible quadrals are

the irreducible quadrics, the ovals of PG(2, q), the ovoids of PG(3, q), the oval cones

and the ovoid cones.

This chapter is completed with the following results, which combine some of the

information given in the previous sections. The first theorem combines Defini-

tions 1.1.1 and 1.2.1 and Lemmas 1.4.2, 1.4.13 and 1.5.3.

Theorem 1.6.4 [21] Let Q be a quadral in PG(n, q). Then every line of PG(n, q)

meets Q in 0, 1, 2 or q + 1 points.

The next theorem combines Lemmas 1.2.12, 1.4.4, 1.4.15 and 1.5.2.

Theorem 1.6.5 Let Q be a quadral in PG(n, q). Then every plane of PG(n, q)

meets Q in a point, a line, a pair of lines, an oval or else is contained in Q.

The next theorem combines Lemmas 1.4.6, 1.4.16 and 1.5.48.

Theorem 1.6.6 Let Q be a quadral in PG(n, q). If Q is of parabolic type, then

|Q| = θn−1. If Q is of elliptic type, then |Q| = θn−1 − qm for some m. If Q is of

hyperbolic type, then |Q| = θn−1 + qm for some m.
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The final theorem combines Lemmas 1.4.9, 1.4.16 and 1.5.49.

Theorem 1.6.7 Let Q be a quadral in PG(n, q), q even, and suppose P is a point

not on Q lying on at least one external line of Q. The number of external lines

through P is less than 1
2
qn−1 if Q is of hyperbolic type, greater than 1

2
qn−1 if Q is

of elliptic type and exactly 1
2
qn−1 if Q is of parabolic type.
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Chapter 2

Characterisations of the set of

points of a quadral

In the previous chapter, the objects that are the focus of this thesis were introduced.

These are the ovals, the ovoids, the quadrics and the cones over them, which are

collectively called quadrals. Detailed information about the quadrals and their as-

sociated subspaces was presented. In later chapters, this information will be used

to prove characterisations of the families of subspaces associated with quadrics.

This chapter discusses existing characterisations of the quadrics themselves as sets

of points. Given a set of points K in PG(n, q), different properties are assumed for

K , and the consequences of these properties are investigated. It will become clear

that for quadrals, the most useful properties are the different ways that lines and

planes meet the set of points.

2.1 Tallini Sets

One of the basic combinatorial properties of a quadric is the way that lines meet

it: all lines meet a quadric in 0, 1, 2 or q + 1 points. In this section, sets of

points with this property will be investigated. Lefévre called such sets Tallini sets

in honour of G. Tallini, who was first to publish detailed results about them. The

same convention is followed here.
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Definition 2.1.1 A Tallini set of PG(n, q) is a set of points K such that every line

meets K in 0, 1, 2 or q + 1 points.

Quadrals are examples of Tallini sets by Theorem 1.6.4. Any subspace is a Tallini

set, and so is any cap. Also, if q is even and P is a quadral of parabolic type,

then any point in the nuclear space of P lies only on tangents of P. So P ∪ Π is

a Tallini set for any subspace Π contained in the nuclear space of P. For further

examples of Tallini sets see [40]. When q = 2, there are q + 1 = 3 points on a line,

so any set of points K has the property that every line meets K in 0, 1, 2 or q + 1

points. That is, any set of points is a Tallini set for q = 2.

In order to make the following discussion easier, special names are given to each

type of line. These names match those given to the lines associated with each of the

quadrals in Chapter 1.

Definition 2.1.2 Let K be a Tallini set of PG(n, q) and let � be a line of PG(n, q).

If � contains no point of K , it is called an external line of K . If � contains exactly

one point of K , it is called a tangent of K . If � contains exactly two points of K ,

it is called a secant of K . If � contains q + 1 points of K (that is, � is contained

in K ), it is called a generator line of K , or a line of K .

If only one Tallini set K is under consideration, an external line of K may be re-

ferred to simply as an external line, and similarly for tangents, secants and generator

lines.

Some basic results about Tallini sets can now be stated. The first result gives

information about the sections of a Tallini set.

Lemma 2.1.3 [53] Let K be a Tallini set of PG(n, q) and let Π be a subspace of

PG(n, q) meeting K in the set of points KΠ. Then KΠ is a Tallini set.

In particular, a plane meets a Tallini set in a Tallini set. It is appropriate then, to

describe the possible Tallini sets in the plane.
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Lemma 2.1.4 [53] Let K be a Tallini set of PG(2, q), q > 2. Then K is one of

the following: the empty set, a point, a pair of points, an arc, a line, a line plus a

point, a pair of lines, or the whole of PG(2, q).

Proof If K contains no lines, it is the empty set, a point, a pair of points or an

arc. Suppose K contains a line g. There may be no further points of K , in which

case K is a line. Suppose this is not the case and let P be a point of K not on g.

There may be no further points of K , in which case K is a line plus a point.

g

¼

P
Q

Suppose this is not the case and Q is a point of K

not on g and distinct from P . The line PQ meets g

in a point of K and so contains three points of K .

Thus PQ is a generator line of K . There may be

no further points of K , in which case K is a pair of

lines.

g

`

m

R

¼

P
Q

Suppose this is not the case and R is a point of K not

on g or PQ. Let m be the line R⊕ (g∩PQ). Let � be

any other line of π through R. The line � meets g and

PQ in distinct points, and so contains three points of

K . Thus � is a generator line of K and any point of

π not on m is a point of K .

g \ PQ

n

m

S

¼

Let S be a point of m and let n be a line of π through

S other than m. The line n has q points of π not on m,

which are all points of K . Thus the line n contains

at least three points of K and so is a generator line

of K . Thus S ∈ K and every point of PG(2, q) is a

point of K . �

In order to investigate the structure of a Tallini set in more detail, the singular

points of a Tallini set are discussed.
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Definition 2.1.5 Let K be a Tallini set of PG(n, q) and let P be a point of K .

The point P is called a singular point of K if it lies on only tangents and generator

lines of K . That is, there are no secants of K through P .

If the Tallini set K contains a singular point, it is called a singular Tallini set.

Otherwise, it is called non-singular

The above definition agrees with that for each type of quadral and for general sets as

given in Definition 1.3.3. By Lemma 1.3.4, the set of all singular points of a Tallini

set K forms a subspace, which is called the singular space of K . The following

lemmas describe the structure of a Tallini set using its singular space.

Lemma 2.1.6 Let K be a singular Tallini set of PG(n, q) and let U be any subspace

contained in the singular space of K . Let Π be a complementary subspace of U

meeting K in the set of points KΠ. Then K is the cone UKΠ.

If the subspace U is chosen to be the whole singular space of K , then more can be

said about the structure of the Tallini set. The following lemmas are analogues of

Lemmas 1.5.8 and 1.5.9, and are proved by the same arguments.

Lemma 2.1.7 [53] Let K be a Tallini set of PG(n, q) and suppose the singular

space of K has dimension at least n−2. Then K is an (n−2)-space, a hyperplane,

a pair of hyperplanes or the whole of PG(n, q).

Lemma 2.1.8 [53] Let K be a singular Tallini set of PG(n, q) with singular space

V. Suppose V has dimension at most (n−3) and let Π be a complementary subspace

of V meeting K in the set of points KΠ. Then KΠ is a non-singular Tallini set of

Π and K is the cone VKΠ.

The above lemma implies that in order to describe all Tallini sets (other than the

reducible quadrics), only the non-singular Tallini sets need to be considered.

To complete this section, one more concept for Tallini sets is introduced. This is

the concept of a tangent set. The concept of tangent set has been used by various

authors [17, 18, 38, 55] to prove characterisations similar to that of Buekenhout

discussed in Section 2.2.
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Definition 2.1.9 Let K be a Tallini set of PG(n, q) and let P be a point of K .

The tangent set of K at P is the set of all points of PG(n, q) lying on either a

tangent or generator line of K through P , plus the point P itself. The tangent set

of K at P is denoted by TP (K ), or simply by TP .

If P is a singular point of the Tallini set K , then every point of PG(n, q) lies on

a tangent or generator line of K through P , so TP (K ) = PG(n, q). If K is a

quadric and P is a non-singular point of K , then TP (K ) is the tangent hyperplane

of K at P .

For quadrics and ovoids, the tangent set is always a hyperplane or the whole of

PG(n, q) (see Chapter 1). It is appropriate to mention that this is not true of every

Tallini set. For example, consider a hyperoval Ō in PG(2, q), and a point P ∈ Ō.

A hyperoval has no tangents, so TP (Ō) is just the point P . For a further example,

consider a cap K of size q2 in PG(3, q). If Q is a point of K , then there are q + 2

tangents of K through Q by Lemma 1.2.3. Since TQ(K ) is the union of these

tangents, it cannot be a subspace. Tallini sets whose tangent sets do form subspaces

are discussed in the next section.

The last results in this section concerns Tallini sets with a large number of points.

Theorem 2.1.10 [53] Let K be a Tallini set of PG(n, q), q > 2, with at least θn−1

points. Then K is one of the following:

• The whole of PG(n, q),

• A hyperplane, plus a further subspace of dimension d, −1 ≤ d ≤ n − 1,

• A quadral of parabolic type,

• A quadral of parabolic type plus a subspace contained in its nuclear space (if q

is even),

• A quadric of hyperbolic type.

The above theorem was proved by Tallini [53] in 1955. The same proof can be

applied to the case q = 2, given some assumptions on the plane sections of the set.
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Theorem 2.1.11 Let K be a set of at least θn−1 points in PG(n, 2) such that no

plane meets K in 0, 2 or 6 points. Then K is one of the following:

• The whole of PG(n, 2),

• A hyperplane, plus a further subspace of dimension d, −1 ≤ d ≤ n − 1,

• A quadral of parabolic type,

• A quadral of parabolic type plus a subspace contained in its nuclear space,

• A quadric of hyperbolic type.

The proof of the above theorem follows Tallini’s proof of Theorem 2.1.10 exactly.

The assumptions that no plane meets K in 0, 2 or 6 points are necessary to make

various arguments in Tallini’s proof applicable to the case q = 2. Of particular note

is the condition that every plane meets K . Using Lemma 1.2.10 and the size of an

ovoid, this condition ensures that K is not a cap.

2.2 Quadratic Sets

In this section a characterisation of quadrics that Buekenhout published in 1969

[16] is presented (for an English translation see [39]). Buekenhout considered sets of

points with two basic properties of quadrics. He called these objects quadratic sets.

Definition 2.2.1 A quadratic set of PG(n, q) is a set of points K such that

• Every line meets K in 0, 1, 2 or q + 1 points,

• For any point P ∈ K , the set of points lying on tangents or generator lines

of K through P forms either a hyperplane or all of PG(n, q).
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Using the terminology of the previous section, a quadratic set is a Tallini set such

that the tangent set at any point is either a hyperplane or all of PG(n, q). In light

of this, the tangent set at each point is called a tangent space. A point P of the

quadratic set K such that the tangent space at P is PG(n, q) is called a singular

point of K . A quadratic set is called singular if it has a singular point and non-

singular otherwise.

For any quadric Q, the tangent set at each non-singular point is a hyperplane, and

at each singular point the tangent set is PG(n, q). So all quadrics are quadratic

sets. The set of tangents at each point of an ovoid is a plane, so ovoids are also

quadratic sets. In fact, the definition of an ovoid (Definition 1.2.6) is essentially a

non-singular quadratic set with no generator lines. Finally, if Π is a subspace, then

every point of Π lies on only tangents and generator lines of Π, so any subspace is

a quadratic set. The oval and ovoid cones are also quadratic sets, and this will be

shown shortly.

Before Buekenhout’s characterisation is given, some properties of quadratic sets will

be stated. First, the sections of a quadratic set will be considered.

Lemma 2.2.2 [16] Let K be a quadratic set and let Π be a subspace meeting K

in the set of points KΠ. Then KΠ is a quadratic set of Π.

In particular, every plane meets a quadratic set in a quadratic set of the plane. In

fact, this is all that is needed to show that a set of points is a quadratic set.

Lemma 2.2.3 [16] Let K be a set of points in PG(n, q) such that every plane meets

K in a quadratic set of the plane. Then K is a quadratic set.

The above result means that a quadratic set can be defined as a set of points whose

plane sections are quadratic sets of the plane. In light of this, it is appropriate at

this point to describe the possible quadratic sets of the plane.

Lemma 2.2.4 [16] The quadratic sets of PG(2, q) are the empty set, a single point,

a line, a pair of lines, an oval, or the whole of PG(2, q).
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Proof Suppose K contains no lines. If K has a singular point V , then every line

through V is a tangent (since there are no generator lines), so K is just the point

V . If K has no singular points, then it may have no points at all. That is, K is

the empty set. Suppose this is not the case and let P be a point of K . The tangent

space of K at P is a hyperplane of PG(2, q), so it is a line. Since there are no

generator lines, this line is a tangent. That is, at each point of K there is a unique

tangent. Thus K is a set of points such that every line meets K in 0, 1 or 2 points

and there is a unique tangent at each point. That is, K is an oval.

P
g

Suppose K contains a line g. There may be no further points

of K , in which case K is a line. Suppose this is not the case

and let P be a point of K not on g. If P is singular, then

every line through it is a generator line or a tangent. But

every line through P meets g in a further point of K , so every line through P is

a generator line and every point of PG(2, q) is in K . That is K = PG(2, q). If P

is non-singular, then exactly one line through P is a generator line or tangent, but

again every line through P contains a further point of K , so there are no tangents

through P and K consists of two lines.

Thus K is the empty set, a point, a line, a pair of lines, an oval or the whole of

PG(2, q). �

By Lemmas 1.4.4 and 1.4.15, every plane meets an oval cone or an ovoid cone in a

point, a line, a pair of lines, an oval or the whole plane. It follows that oval and

ovoid cones are quadratic sets, and so every quadral is a quadratic set.

The plane sections of a quadratic set can also be used to show that particular

quadratic sets are quadrics. In order to state this result, some terminology is intro-

duced. Let K be a quadratic set and let π be a plane meeting K in an oval O.

Then the oval O is called an oval section of K .

Theorem 2.2.5 [16] Let K be a quadratic set of PG(n, q) that is not a subspace.

If every oval section of K is a conic, then K is a quadric.
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Note that the above result was proved for ovoids by Barlotti [5] and Panella [44]

before Buekenhout.

The singular quadratic sets are now considered. The following lemmas are Lem-

mas 2.1.7 and 2.1.8 reworded for quadratic sets.

Lemma 2.2.6 [16] Let K be a quadratic set of PG(n, q) and suppose the singular

space of K has dimension at least n−2. Then K is an (n−2)-space, a hyperplane,

a pair of hyperplanes or the whole of PG(n, q).

Lemma 2.2.7 [16] Let K be a singular quadratic set of PG(n, q) with singular

space V. Suppose V has dimension at most (n − 3) and let Π be a complementary

subspace of V meeting K in the set of points KΠ. Then KΠ is a non-singular

quadratic set of Π and K is the cone VKΠ.

The above lemma implies that in order to classify all quadratic sets, it is only

necessary to consider the non-singular quadratic sets. The fundamental result about

non-singular quadratic sets is the following.

Theorem 2.2.8 [16] Let K be a non-singular quadratic set of PG(n, q) containing

a line. Then K is a quadric.

Note that in Buekenhout’s original proof of the above result, the quadratic sets in

PG(3, q) were classified first, and their properties were used to complete the theorem.

In particular, Buekenhout used the fact that the points on the lines of a regulus form

a hyperbolic quadric (Theorem 1.5.29). However, the theorem can be proved directly

without this fact, and then Theorem 1.5.29 is a corollary of Theorem 2.2.8.

The non-singular quadratic sets can now be classified.

Lemma 2.2.9 [16] Let K be a non-empty, non-singular quadratic set in PG(n, q).

Then K is a non-singular quadric, or n = 2 and K is an oval, or n = 3 and K is

an ovoid.
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Proof If K contains a line, then by Theorem 2.2.8, K is a (non-singular) quadric.

If K contains no lines, then it satisfies the definition of an ovoid. By Theorem 1.2.7,

there are no ovoids in PG(n, q) for n ≥ 4, so either n = 2 and K is an oval or n = 3

and K is an ovoid. �

Using Lemma 2.2.9 and 2.2.7, it is now possible to completely classify all quadratic

sets.

Theorem 2.2.10 [16] Let K be a quadratic set of PG(n, q), n ≥ 2. Then K is

either a subspace or a quadral.

Proof Assume K is not a subspace and suppose K is non-singular. Then by

Lemma 2.2.9, K is a non-singular quadric, or n = 2 and K is an oval, or n = 3

and K is an ovoid. That is, K is a quadral.

Suppose K is singular with singular space V. If the dimension of V is at least n−2,

then K is a reducible quadric by Lemma 2.2.6. If the dimension of V is at most

n− 3, let Π be a subspace complementary to V meeting K in the set of points KΠ.

Then by Lemma 2.2.7, KΠ is a non-singular quadratic set and K is the cone VKΠ.

By the previous argument, Π is a plane and KΠ is an oval, or Π is a 3-space and

KΠ is an ovoid, or KΠ is a non-singular quadric. Thus KΠ is either an oval cone,

an ovoid cone, or a quadric.

Hence K is either a subspace or a quadral. �
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2.3 Characterisation of quadrals by their plane

sections

In the previous section it was shown that a quadratic set is either a quadral or

a subspace. It was also proved that a set of points is a quadratic set if its plane

sections are quadratic sets. In this section, these two ideas are drawn together to give

characterisations of quadrals by their plane sections. Some useful characterisations

of ovoids in PG(3, q) are also listed.

First, Theorem 2.2.10 and Lemma 2.2.3 are combined into one result characterising

quadrals.

Theorem 2.3.1 Let K be a set of points in PG(n, q) such that every plane meets

K in one point, a line, a pair of lines, an oval or the whole plane. If K is not the

whole of PG(n, q), then K is a quadral.

Proof Every plane meets K in a quadratic set of the plane, so by Lemma 2.2.3,

K is a quadratic set. Theorem 2.2.10 implies that K is either a subspace or a

quadral.

Suppose K is a subspace of dimension d ≤ n− 3. Then a complementary subspace

of K has dimension at least 2. Thus there exist planes skew to K . This is a

contradiction. So if K is a subspace, then it has dimension n − 2 or n − 1 and is a

(reducible) quadral. �

Plane sections can also be used to distinguish between singular and non-singular

quadrals.

Corollary 2.3.2 Let K be a quadral of PG(n, q) such that every point of K is

contained in a plane meeting K in an oval. Then K is a non-singular quadral. If

n ≥ 4 then K is a non-singular quadric.
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Proof Every point of K lies in a plane meeting K in an oval, and every point

of an oval lies on a secant. Thus every point of K lies on a secant, and so K is

a non-singular quadral. By Lemma 2.2.9, a non-singular quadral is a quadric for

n ≥ 4, so the result follows. �

As well as the above characterisation provided by Buekenhout, there are some other

useful characterisations of ovoids and elliptic quadrics in PG(3, q) by their plane

sections. The following result was proved by Thas in 1973.

Theorem 2.3.3 [54] Let K be a set of points in PG(3, q) such that every plane

meets K in 1 or k > 1 points. Then K is either a line or an ovoid.

For the purposes of combinatorial characterisation, it is not possible to distinguish

between an elliptic quadric and any other ovoid. However, in some other situations,

the distinction is very important. Theorem 2.2.5 implies that if all the oval sections

of an ovoid are conics, then the ovoid is an elliptic quadric. In fact, it is only

necessary to know that one oval section is a conic. The following result is due to

Brown [11] in 2000.

Theorem 2.3.4 [11] Let Ω be an ovoid of PG(3, q) such that one secant plane meets

Ω in a conic. Then Ω is an elliptic quadric.

The above theorem implies that in order to show a quadral is a quadric, it is only

necessary to show that one oval section is a conic. That is, the following corollary

is true.

Corollary 2.3.5 Let K be a set of points in PG(n, q), n ≥ 3, such that every plane

meets K in a point, a line, a pair of lines, an oval or the whole plane. Suppose that

there exists a plane meeting K in a non-singular conic. Then K is a quadric.
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Proof The set K is a quadral by Theorem 2.3.1. If K is reducible, then K is an

(n− 2)-space, a hyperplane or a pair of hyperplanes, so there are no planes meeting

K in an oval. Thus K is an irreducible quadral.

Denote the singular space of K by V. Let π be a plane meeting K in a non-

singular conic. The plane π has no singular points and so is skew to V. Let Π be a

complementary subspace of V through π meeting K in the set of points KΠ. Then

KΠ is a non-singular quadral of Π and K = VKΠ.

If Π has dimension at least 4, then Lemma 2.2.9 implies that KΠ is a non-singular

quadric, and so K is a quadric.

If Π is a 3-space, then KΠ is either a hyperbolic quadric or an ovoid. If KΠ is a

hyperbolic quadric, then K = VKΠ is a quadric. Suppose KΠ is an ovoid. Then

the plane π meets KΠ in a non-singular conic, and so KΠ is an elliptic quadric by

Theorem 2.3.4. Thus K = VKΠ is a quadric.

Finally, if Π is a plane, then Π = π and KΠ is a non-singular conic. Thus K = VKΠ

is a quadric. �
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Chapter 3

Existing characterisations of the

subspaces associated with quadrals

In the previous chapters, the properties of quadrals have been discussed, and char-

acterisations of their sets of points have been presented. It is now possible to dis-

cuss characterisations of the families of subspaces associated with quadrals. In this

chapter, the past research in this area is outlined. Of particular note are the char-

acterisations of the external lines of the non-singular quadrals in PG(3, q) provided

by Durante and Olanda [29] and Di Gennaro, Durante and Olanda [27].

3.1 Lines associated with quadrals in PG(2, q)

In this section, some results are presented which characterise sets of lines associated

with quadrals in PG(2, q). The reducible quadrals are considered first.

Suppose K is a quadral in PG(2, q) with exactly one singular point V . Then K

is either the point V or a pair of lines through V . If K is the point V , then K

has no secants and the external lines of K are the lines not through V . If K is a

pair of lines through V , then K has no external lines and the secants of K are the

lines not through V . The following results characterise the set of lines in PG(2, q)

not through a point. The first result was proved in [32] but with greater restriction

on the numbers of lines that pass through a point.
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Lemma 3.1.1 Let L be a set of q2 lines in PG(2, q) such that no point of PG(2, q)

lies on q + 1 lines of L . Then every point of PG(2, q) lies on 0 or q lines of L .

Proof Let � be a line of L . Since every line meets �, the lines of L may be

counted by counting the lines of L through each point on �. For i = 1, . . . , q,

denote by ai the number of points of � lying on i lines of L . Counting this way, the

line � itself has been included q + 1 times – once for each point on �. Thus

a1 · 1 + · · · + aq−1 · (q − 1) + aq · q = q2 + q. (3.1)

Also,

a1 + · · · + aq−1 + aq = q + 1. (3.2)

Subtracting Equation (3.1) from q times Equation (3.2) gives

(q − 1) · a1 + · · · + 1 · aq−1 = 0. (3.3)

Now q − 1, . . . , 1 > 0 and a1, . . . , aq−1 ≥ 0, so Equation 3.3 is only possible if

a1 = · · · = aq−1 = 0.

Hence, aq = q + 1 and so every point on a line of L lies on q lines of L . That is,

every point of PG(2, q) lies on 0 or q lines of L . �

Lemma 3.1.2 [36] Let L be a non-empty set of lines in PG(2, q) such that every

point of PG(2, q) lies on 0 or q lines of L . Then L is the set of lines not through

a single point.

Proof Let � be a line of L . Each point on � lies on a line of L and so lies on q

lines of L . Since every line of L in PG(2, q) meets �, it follows that

|L | = (q + 1)(q − 1) + 1 = q2.

Denote by W the number of points in PG(2, q) lying on q lines of L . Consider the

set X = {(�, P ) | � is a line of L , P is a point on � }. The size of X will be counted

in two ways. Counting � then P , there are q2 choices for � and q + 1 choices for P

on �. So, |X| = q2(q + 1). Counting P then �, there are W points lying on q lines

of L , and the remaining points lie on no lines of L . So |X| = qW . Equating these
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two expressions for |X| gives W = q2 + q. Thus there is one point on no lines of L .

Denote this point by V . There are q2 lines not through V , and there are q2 lines of

L , none of which pass through V . So L is the set of lines not through V . �

Next, the lines associated with an oval in PG(2, q), q even, are considered.

Lemma 3.1.3 [46] Let L be a set of 1
2
q(q + 1) lines in PG(2, q), q even, such that

every point of PG(2, q) lies on 0, 1
2
q or q lines of L . Then L is the set of secants

of an oval.

The following theorem was proved by Di Gennaro, Durante and Olanda in [27] as

part of their proof of Theorem 3.2.7.

Lemma 3.1.4 [27] Let L be a non-empty set of lines in PG(2, q), q even, such that

every point of PG(2, q) lies on 0 or 1
2
q lines of L . Then L is the set of external

lines of a hyperoval.

Proof Let � be a line of L . Every point of � lies on 1
2
q lines of L , and every line

of L meets �. Thus |L | = (q + 1)(1
2
q − 1) + 1 = 1

2
q(q − 1).

Let m be a line not in L and let B be the number of points on m lying on no lines

of L . The remaining q + 1 − B points on m lie on 1
2
q lines of L each. Every line

of L passes through a point of m, so 1
2
q(q − 1) = 1

2
q(q + 1 − B). Thus B = 2.

Denote the set of points lying on no lines of L by B. Then every line meets B in

0 or 2 points. That is, B is an arc with no tangents. Hence B is a hyperoval and

the lines of L are its external lines. �

Finally, the lines associated with a non-singular conic in PG(2, q), q odd, are con-

sidered. The original results were stated in terms of sets of points of PG(2, q). The

lemmas below are the dual statements.

Lemma 3.1.5 [32] Let L be a set of 1
2
q(q + 1) lines in PG(2, q), q odd, such that

every point of PG(2, q) lies on 1
2
(q − 1), 1

2
(q + 1) or q lines of L . Then L is the

set of secants of a non-singular conic.

Lemma 3.1.6 [25] Let L be a set of lines in PG(2, q), q odd, q > 3, such that

every point of PG(2, q) lies on 0, 1
2
(q − 1) or 1

2
(q + 1) lines of L . Then L is the

set of external lines of a non-singular conic.
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3.2 Lines associated with Quadrals in PG(n, q)

Below are listed several results characterising special sets of lines associated with

quadrals. The first few results concern the tangents and generator lines of a quadric.

This first result is due to Venezia in 1983.

Theorem 3.2.1 [58] Let L be a set of lines in PG(3, q), q odd, such that

(I) In every plane of PG(3, q), there are 0, 1, 2 or q + 1 lines of L through each

point,

(II) Every point of PG(3, q) lies on q + 1 lines of L ,

(III) Every plane of PG(3, q) contains q + 1 lines of L .

Then L is either a general linear complex or the set of tangents and generator lines

of a non-singular quadric in PG(3, q).

The proof of this theorem made heavy use of the Klein correspondence, and the

original statement of the theorem listed the conditions in terms of the correspon-

dence. That is, L is represented by a set of points K on the Klein quadric such

that every line of the quadric meets K in 0, 1, 2 or q + 1 points and every plane

on the Klein quadric meets K in q + 1 points. Using the same ideas, Bichara and

Zanella [8] proved a similar characterisation for the tangents and generator lines of

a quadric in PG(n, q), n ≥ 3, q odd.

Theorem 3.2.2 [8] Let L be a set of lines in PG(n, q), n ≥ 3, q odd such that

(I) Every plane of PG(n, q) contains q + 1 or q2 + q + 1 lines of L ,

(II) In every plane of PG(n, q), there are 0, 1, 2 or q + 1 lines of L through any

point,

(III) For every line � ∈ L , there is a point P on � and a hyperplane Σ of PG(n, q)

through � such that every line in Σ through P is a line of L .
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Then L is either a linear complex, or the set of tangents and generator lines of a

quadric in PG(n, q).

In 1985, de Resmini proved a characterisation of the tangents and generator lines of

a parabolic quadric in PG(4, q) using purely combinatorial arguments.

Theorem 3.2.3 [47] Let L be a set of lines in PG(4, q), q odd, such that:

(I) Every point of PG(4, q) lies on q2 + 1, q2 + q + 1 or q2 + 2q + 1 lines of L ,

(II) In every plane of PG(4, q), there are 0, 1, 2 or q + 1 lines of L through each

point,

(III) If a point P of PG(4, q) lies on n lines of L in some plane, then every line

of L through P is contained in a plane with n lines of L through P ,

(IV) For any hyperplane of PG(4, q), there are at most two possible choices for the

number of lines of L in each of its planes.

Then L is the set of tangents and generator lines of a parabolic quadric in PG(4, q).

The proof of this theorem made use of the characterisation of large Tallini sets given

in Theorem 2.1.10.

The above characterisations were only proved for q odd. When q is even, the tan-

gents and generator lines of a non-singular quadral in PG(3, q) form a general linear

complex, and the tangents and generator lines of an oval cone form a special linear

complex. The following theorem was proved by de Resmini in 1984 and characterises

the linear complexes in PG(3, q).

Theorem 3.2.4 [48] Let L be a set of lines in PG(3, q) such that

(I) Every point of PG(3, q) lies on m or n lines of L ,

(II) In every plane of PG(3, q), the number of lines of L through each point is 1

or m.
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Then either L is a special linear complex (in which case m = q+1 and n = q2+q+1),

or L is a general linear complex (in which case m = n = q + 1).

The above results concern the tangents and generator lines of a quadral. Similar

results have been obtained for some other types of lines associated with quadrals. In

the 1980s, Ferri and Tallini [32] and de Resmini [49] proved characterisations of the

secants of an ovoid for q odd and q even respectively. These results were improved

recently. In 2005, Durante and Olanda published the following characterisations of

the secants and external lines of an ovoid.

Theorem 3.2.5 [29] Let L be a set of lines in PG(3, q), q > 2, such that

(I) Every point of PG(3, q) lies on q2 or 1
2
q(q − 1) lines of L ,

(II) Every plane of PG(3, q) contains 0 or 1
2
q(q + 1) lines of L .

Then L is the set of secants of an ovoid.

Theorem 3.2.6 [29] Let L be a set of lines in PG(3, q), q > 2, such that:

(I) Every point of PG(3, q) lies on 0 or 1
2
q(q + 1) lines of L ,

(II) Every plane of PG(3, q) contains q2 or 1
2
q(q − 1) lines of L .

Then L is the set of external lines of an ovoid.

In their article, the characterisation of the secants is proved first, and then the

characterisation of the external lines follows using duality. Note that while the

above theorems are stated for q > 2, it is also possible to prove them in the case

q = 2.

In 2004, Di Gennaro, Durante and Olanda published characterisations of the external

lines of a hyperbolic quadric of PG(3, q) [27]. In their proof, an assumption was made

that was not stated in their theorems. Also, a possibility was omitted in the case

q = 2. These omissions have been rectified in the statements below.
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Theorem 3.2.7 [27] Let L be a non-empty set of lines in PG(3, q), q odd, such

that

(I) Every point of PG(3, q) lies on 0 or 1
2
q(q − 1) lines of L ,

(II) Every plane of PG(3, q) contains 0 or 1
2
q(q − 1) lines of L ,

(III) In every plane of PG(3, q), there are 0, 1
2
(q−1) or 1

2
(q+1) lines of L through

any point,

(IV) There exists a point of PG(3, q) lying on no lines of L .

Then the set of points lying on no lines of L forms a line, a pair of lines or a

hyperbolic quadric. In the last case, L is the set of external lines of this quadric.

Theorem 3.2.8 [27] Let L be a non-empty set of lines in PG(3, q), q even, such

that

(I) In every plane of PG(3, q), there are 0 or 1
2
q lines of L through any point,

(II) There exists a point of PG(3, q) lying on no lines of L .

If q > 2, then the set of points lying on no lines of L forms a line, a pair of lines or

a hyperbolic quadric. In the last case, L is the set of external lines of this quadric.

If q = 2, then L may also be a single line.

This completes the list of existing characterisations of subspaces associated with

quadrals. The next three chapters present original results characterising sets of lines

and planes associated with quadrals. In Chapter 4, the external lines of an oval cone

in PG(3, q) are characterised for q odd and q even. In Chapter 5, characterisations

are proved for sets of subspaces associated with a parabolic quadric in PG(4, q).

The external lines are characterised for q even, the secant planes are characterised

for q even and q odd, and the tangents and generator lines are characterised for q

odd. Finally in Chapter 6, characterisations are proved for the external lines of an

oval cone in PG(n, q), q even, and for the external lines of a quadral of parabolic

type in PG(n, q), q even. The methods used to prove these results are inspired by

those used to prove the theorems above.
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Chapter 4

Characterisation of the external

lines of an oval cone in PG(3, q)

In the previous chapter, several existing characterisations of line sets related to

quadrics were listed. In particular, Theorems 3.2.6, 3.2.7 and 3.2.8 were stated,

which characterised the external lines of the ovoid and the hyperbolic quadric in

PG(3, q). The ovoid and the hyperbolic quadric are the non-singular irreducible

quadrals in PG(3, q). In PG(3, q), there also exists a singular irreducible quadral

– the oval cone. Since it is possible to characterise the external lines of the other

irreducible quadrals, it is reasonable to attempt to characterise the external lines of

an oval cone.

This chapter presents original results characterising the external lines of an oval

cone in PG(3, q) for q even and q odd.

4.1 The external lines of an oval cone in PG(3, q),

q even

In this section, a characterisation of the set of external lines of an oval cone in

PG(3, q), q even, will be proved. Before this is done, it is appropriate to highlight

some important features of this set of lines.
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n

Let C be an oval cone of PG(3, q), q even, with

nuclear line n. Then every point of C lies on no ex-

ternal lines. However, these are not the only points

with this property. The points on the nuclear line

n lie only on tangents of C , and so these points lie

on no external lines. Every other point of PG(3, q)

lies on 1
2
q2 external lines (Lemma 1.4.9).

This means that the set of external lines of the oval cone C is the same as the set

of external lines of the hyperoval cone C ∪ n. Indeed, if an oval cone is formed by

removing any of the generator lines of C ∪ n, then this cone also has the same set

of external lines (Lemma 1.4.11). In light of this observation, the following theorem

is proved.

Theorem 4.1.1 Let L be a non-empty set of lines in PG(3, q), q even, such that

(I) Every plane of PG(3, q) contains 0, q2 or 1
2
q(q − 1) lines of L ,

(II) Every point of PG(3, q) lies on 0 or 1
2
q2 lines of L .

Then L is the set of external lines of a hyperoval cone C . Further, L is the set of

external lines of each of the q + 2 different oval cones contained in C .

The proof of Theorem 4.1.1

Let L be a set of lines as described in Theorem 4.1.1. By a series of lemmas, it will

be proved that L is the set of external lines of a hyperoval cone. In order to make

the argument clearer, some terminology is now introduced.

• A point on 0 lines of L is called a black point ; a point on 1
2
q2 lines of L is

called a white point.

• A plane containing 0 lines of L is called a null plane.

• A plane containing q2 lines of L is called a V-plane.
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• A plane containing 1
2
q(q − 1) lines of L is called a secant plane.

It will be shown that the set of black points is a hyperoval cone C̄ . The null planes

are those planes meeting C̄ in a pair of lines, the V-planes are those planes meeting

C̄ in only its vertex, and the secant planes are the planes meeting C̄ in a hyperoval.

The first lemma gives the number of each type of plane through a line of L .

Lemma 4.1.2 There are q secant planes and one V-plane through any line of L .

Proof Let � be a line of L and let v� be the number of V-planes through �.

Denote by L� the number of lines of L meeting � in one point. The number L� will

be counted in two ways.

Each point on � is a white point, and so lies on 1
2
q2 lines of L (including �). Counting

this way, � itself has been included q + 1 times. So L� = 1
2
q2(q + 1) − (q + 1).

On the other hand, every line of L meeting � lies in a plane through �, so L� may

be counted by considering the lines in each plane through �. There are v� V-planes

through �, and no null planes. This gives (q + 1− v�) secant planes through �. Each

V-plane contains q2 lines of L (including �) and each secant plane contains 1
2
q(q−1)

lines of L (including �). Again � itself has been counted q + 1 times, so

L� = q2 · v� + 1
2
q(q − 1) · (q + 1 − v�) − (q + 1)

= 1
2
q(q + 1)v� + 1

2
q2(q + 1) − 1

2
q(q + 1) − (q + 1).

Equating these two expressions for L� gives

1
2
q2(q + 1) − (q + 1) = 1

2
q(q + 1)v� + 1

2
q2(q + 1) − 1

2
q(q + 1) − (q + 1)

v� = 1.

That is, there is one V-plane through �, and hence there are q secant planes through �.

�

The above lemma ensures the existence of both secant planes and V-planes since L

is non-empty. The next few lemmas determine the number of black points in each

type of plane.
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Lemma 4.1.3 There is at most one black point in a V-plane

Proof Let π be a V-plane and suppose P and Q are two black points in π. Then

P and Q lie on no lines of L . There are q2 − q lines in π not through P and Q, so

there are at most q2 − q lines of L in π. But π is a V-plane and contains q2 lines

of L . This is a contradiction, so there is at most one black point in π. �

Lemma 4.1.4 All secant planes have the same number of black points, all V-planes

have the same number of black points, and all null planes have the same number of

black points.

Proof Let π be a plane containing Lπ lines of L . Denote the number of black

points in π by Bπ. Thus there are (q2 + q + 1 − Bπ) white points in π. The size of

L will be counted by considering the lines of L through each point in π.

Through each black point there are no lines of L , and through each white point

there are 1
2
q2 lines of L . Counting this way, each line of L in π has been included

q + 1 times – once for each white point on it. Thus

|L | = 0 · Bπ + 1
2
q2 · (q2 + q + 1 − Bπ) − qLπ

= 1
2
q2(q2 + q + 1 − Bπ) − qLπ.

In the above equation, |L | is a constant, so Bπ is only dependent on Lπ. That

is, two planes with the same number of lines of L have the same number of black

points. �

Lemma 4.1.5 There are 1
2
q3(q− 1) lines of L and q2 +2q +1 black points. A null

plane contains 2q + 1 black points, a V-plane contains 1 black point, and a secant

plane contains q + 2 black points.
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Proof Denote by B0 be the number of black points in a null plane, by BV the

number of black points in a V-plane, and by Bs the number of black points in a

secant plane. From the proof of Lemma 4.1.4, if π is a plane containing Bπ black

points and Lπ lines of L , then

|L | = 1
2
q2(q2 + q + 1 − Bπ) − qLπ. (4.1)

If π is a V-plane, then Lπ = q2 and Equation (4.1) becomes

|L | = 1
2
q2(q2 + q + 1 − BV ) − q3.

By Lemma 4.1.3, there is at most one black point in a V-plane, so BV = 0 or 1. If

BV = 0, then |L | = 1
2
q2(q2 + q + 1) − q3 = 1

2
q2(q2 − q + 1) and if BV = 1, then

|L | = 1
2
q2(q2 + q) − q3 = 1

2
q3(q − 1).

Let X = {(�, π) | � is a line of L , π is a V -plane through � }. The size of X will

be counted in two ways.

Count � first, then π: There are |L | choices for �, and then 1 choice for π through

� by Lemma 4.1.2. So, |X| = |L |.
Count π first, then �: Let v be the total number of V-planes. Then there are v

choices for π, and q2 choices for � within π. So, |X| = v · q2.

Thus, |L | = q2v, and so v = |L |
q2 .

If |L | = 1
2
q2(q2 − q + 1), then v = 1

2
(q2 − q + 1). But q2 − q + 1 is an odd number,

which implies that v is not a whole number. This is a contradiction, since v is the

number of V-planes, so |L | = 1
2
q3(q − 1), and hence BV = 1.

If π is a secant plane, then Lπ = 1
2
q(q − 1). Substituting this and the value of |L |

into equation (4.1) gives

1
2
q3(q − 1) = 1

2
q2(q2 + q + 1 − Bs) − 1

2
q2(q − 1)

Bs = q + 2.

If π is a null plane, then Lπ = 0. Substituting this and the value of |L | into equation

(4.1) gives

1
2
q3(q − 1) = 1

2
q2(q2 + q + 1 − B0)

B0 = 2q + 1.
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Finally, let � be a line of L and consider the planes through �. The line � has one

V-plane through it and q secant planes by Lemma 4.1.2. The V-plane has one black

point, and the secant planes each have q +2 black points. Thus the number of black

points is 1 · 1 + q · (q + 2) = q2 + 2q + 1. �

Lemma 4.1.6 There exists a unique (black) point V such that all null planes and

V-planes pass through V . The secant planes are the planes not containing V .

Proof Let π be a V-plane. By Lemma 4.1.5, π contains a single black point, V .

The q2 lines of L in π do not pass through V . There are q2 lines of π not through

V , so every line of π not through V is a line of L .

V

¼

®

`

Suppose α is a plane not through V . Then α meets π

in a line � not through V . This line is a line of L , so

α is not a null plane. By Lemma 4.1.2, a line of L is

contained in one V-plane. Since � is contained in the

V-plane π, the plane α is a secant plane. Thus every

plane not through V is a secant plane.

V

¼

¯

`

Suppose β is a secant plane through V and let � be

a line of L in β. By Lemma 4.1.2, a line of L is

contained in exactly q secant planes. Consider the

planes through �. One of these planes is β, which

contains V . The remaining planes do not contain V

and so are secant planes. Thus there are q + 1 secant

planes through �. This is a contradiction, so there exist no secant planes through

V . Thus the secant planes are the planes not through V and all V-planes and null

planes pass through V . �

Lemma 4.1.7 Let m be a line not in L . If m passes through V , then m contains 1

or q + 1 black points. If m does not pass through V , then m contains 2 black points.
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Proof Suppose m passes through V and contains a further black point P . Let π

be a plane through m. By Lemma 4.1.6, π is not a secant plane, since it contains

V . By Lemma 4.1.5, π is not a V-plane, since it contains at least two black points.

Thus π is a null plane, and so every plane through m is a null plane. Since there

are no lines of L in any null plane, there are no lines of L meeting m. Thus every

point on m is a black point. So a line through V either has V as its only black

point, or contains q + 1 black points.

Suppose m does not pass through V and denote by Bm the number of black points

on m. The total number of all black points will be counted by considering the black

points in the planes through m.

Exactly one plane passes through both m and V . , If this plane is a V-plane, then

m is a line of L (as noted in the proof of Lemma 4.1.6). This is a contradiction, so

the plane m ⊕ V is a null plane and contains 2q + 1 black points by Lemma 4.1.5.

The other q planes through m are secant planes and each contains q+2 black points.

Counting this way, the black points on m have been counted q + 1 times, once for

each plane through m. Thus

q2 + 2q + 1 = 2q + 1 + q(q + 2) − qBm

Bm = 2.

Hence a line not through V is either a line of L or contains exactly 2 black points.

�

It is now possible to show that the set of black points is a hyperoval cone.

Lemma 4.1.8 Denote the set of black points by C̄ . Then C̄ is a hyperoval cone

and L is its set of external lines.

Proof Every line meets C̄ in 0, 1, 2 or q + 1 points by Lemma 4.1.7, so C̄ is a

Tallini set. By Lemma 4.1.7, the point V lies only on tangents and generator lines

of C̄ , so V is a singular point of C̄ .
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V

¼

Let π be a secant plane and let Ō be the set of black

points in π. The plane π does not pass through V

by Lemma 4.1.6, so each line in π contains 0, 1 or

2 black points by Lemma 4.1.7. Thus Ō is an arc,

which has q +2 points by Lemma 4.1.5. That is, Ō

is a hyperoval. Since V is a singular point of C̄ , it

follows from Lemma 2.1.6 that C̄ is the hyperoval

cone V Ō.

By Lemma 4.1.7, a line not in L contains a black point, so the lines of L are the

external lines of C̄ . �

Finally, note that if g is a generator line of the hyperoval cone C̄ , then the set of

points obtained by removing all the points of g except V is an oval cone. Since C̄

has q + 2 generator lines, there are q + 2 different oval cones contained in C̄ . If C is

one of these cones, then L is the set of external lines of C by Lemma 1.4.11. This

completes the proof of Theorem 4.1.1.

4.2 The external lines of an oval cone in PG(3, q),

q odd

In this section, a characterisation of the set of external lines of an oval cone in

PG(3, q), q odd, is proved. Before the result is stated, the combinatorial properties

of this set of lines will be discussed.

Let C be a quadric cone in PG(3, q), q odd, and let L be its set of external lines.

By Lemmas 1.4.4 and 1.4.7, the set of lines L has the following properties.

(I) Every point of PG(3, q) lies on 0, 1
2
q(q − 1) or 1

2
q(q + 1) lines of L ;

(II) Every plane of PG(3, q) contains 0, 1
2
q(q − 1) or q2 lines of L .
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There are several different sets of lines with these properties. For example, the set of

external lines of a hyperbolic quadric has the above properties (Lemma 1.5.33), as

does the set of external lines of an ovoid (Lemma 1.2.15). Thus further conditions

must be placed on a set of lines in order to prove that it is the set of external lines

of a quadric cone.

A possibility is to require that all the possible types of point and plane do exist.

However, using only properties (I) and (II) and this assumption, it does not seem

possible to show that the set of points on no lines of L is a quadric cone, or even a

Tallini set.

Another possibility is to use the possible numbers of lines through a point in a plane.

That is, to use the following property in addition to properties (I) and (II) above.

(III) In every plane of PG(3, q), there are 0, 1
2
(q − 1), 1

2
(q + 1) or q lines of L

through any point.

However, the sets of external lines of a hyperbolic quadric or an ovoid also satisfy

this condition. It is necessary to find a property unique to the set of external lines

of a quadric cone.

Let P be a point not in the quadric cone C and let π be a secant plane through P .

The plane π meets C in a non-singular conic O, and P is either an interior point or

an exterior point of O.

V

P

By Lemma 1.4.7, if P is an interior point in π,

then P is an interior point in every secant plane

through P ; and if P is an exterior point in π,

then P is an exterior point in every secant plane

through P . In other words, if P is on some num-

ber of lines of L in a secant plane, it is on the

same number of lines of L in every secant plane

through P . It is this property that will be used to characterise the external lines of

the quadric cone. That is, the following theorem is proved.
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Theorem 4.2.1 Let L be a non-empty set of lines in PG(3, q), q odd, such that

(I) Every point of PG(3, q) lies on 0, 1
2
q(q + 1) or 1

2
q(q − 1) lines of L ,

(II) Every plane of PG(3, q) contains 0, q2 or 1
2
q(q − 1) lines of L ,

(III) For any point P of PG(3, q), if P lies on two planes which contain the same

number of lines of L , then P lies on the same number of lines of L in both

planes.

Then L is the set of external lines of a quadric cone.

The Proof of Theorem 4.2.1

Let L be a set of lines as described in Theorem 4.2.1. By a series of lemmas, it will

be proved that L is the set of external lines of a quadric cone. In order to make

the argument clearer, some terminology is now introduced.

• A point on 0 lines of L is called a black point ; all other points are called white

points.

• A (white) point on 1
2
q(q−1) lines of L is called an exterior point and a (white)

point on 1
2
q(q + 1) lines of L is called an interior point.

• A plane containing 0 lines of L is called a null plane.

• A plane containing q2 lines of L is called a V-plane.

• A plane containing 1
2
q(q − 1) lines of L is called a secant plane.

It will be shown that the set of black points is a quadric cone C , and that L is the

set of external lines of C . The null planes are those planes containing a generator

line of C , the V-planes are those planes that meet C in only its vertex, and the

secant planes are those planes that meet C in a non-singular conic. The first two

lemmas concern the number of each type of plane through a line of L .

Lemma 4.2.2 Let P be a white point. Then every line of L through P lies on the

same number of V-planes.
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Proof Denote by LP the number of lines of L through P . By Condition (III)

of Theorem 4.2.1, P lies on the same number of lines of L in every secant plane

through P . Denote this number of lines by LPs. If there are no secant planes

through P , set LPs = 0. Similarly, P lies on the same number of lines of L in every

V-plane through P . Denote this number by LPv. If there are no V-planes through

P , set LPv = 0.

Let � be a line of L through P and denote by v� the number of V-planes through

�. Since a null plane contains no lines of L , there are no null planes through �. So

the number of secant planes through � is (q + 1 − v�). The number of lines of L

through P will be counted by considering the lines of L through P in each plane

through �.

Each V-plane through � contains LPv lines of L through P , including �. Each secant

plane through � contains LPs lines of L through P , including �. Counting this way,

the line � itself has been included q + 1 times, so

LP = v�LPv + (q + 1 − v�)LPs − q. (4.2)

In the above equation, LP , LPv and LPs are constants, so v� is uniquely determined

by P . That is, every line of L through P lies on the same number of V-planes. �

Lemma 4.2.3 A line of L lies on at most two V-planes.

Proof Let � be a line of L . Denote by v� the number of V-planes through � and

by I� the number of interior points on �. Since � contains no black points, there

are (q + 1 − I�) exterior points on �; and since � lies on no null planes, there are

(q + 1 − v�) secant planes through �. Let L� be the number of lines of L meeting �

in one point. The number L� will be counted in two ways.

Each interior point lies on 1
2
q(q+1) lines of L (including �), and each exterior point

lies on 1
2
q(q − 1) lines of L (including �). Counting this way, the line � itself has

been included q + 1 times, so L� = 1
2
q(q + 1)I� + 1

2
q(q − 1)(q + 1 − I�) − (q + 1).

On the other hand, every line meeting � is contained in a plane through �, so L� may

be counted by considering the lines of L in the planes through �. Each V-plane

through � contains q2 lines of L (including �), and each secant plane through �
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contains 1
2
q(q− 1) lines of L (including �). Again, � itself has been included (q + 1)

times, so L� = q2v� + 1
2
q(q − 1)(q + 1 − v�) − (q + 1).

Equating the above two expressions for L� gives

1
2
q(q + 1)I� + 1

2
q(q − 1)(q + 1 − I�) − (q + 1) = q2v� + 1

2
q(q − 1)(q + 1 − v�) − (q + 1)

(q + 1)v� = 2I�. (4.3)

Now I� ≤ q + 1, so (q + 1)v� ≤ 2(q + 1). Thus v� ≤ 2. �

The above lemma ensures the existence of secant planes, since there are at most two

V-planes through a line of L . There is no guarantee at this stage that a V-plane

exists. However, if a V-plane does exist, the following lemma gives information

about the structure of the set of lines of L in it.

Lemma 4.2.4 Suppose π is a V-plane. Then each point in π lies on 0 or q lines of

L in π.

Proof First it is shown that every point of π lies on at most q lines of L in π.

Suppose that P is a point of π on q + 1 lines of L in π. Denote by LP the total

number of lines of L through P and by vP the number of V-planes through P .

By Condition (III) of Theorem 4.2.1, every V-plane through P contains the same

number of lines of L through P . That is, every V-plane through P contains q + 1

lines of L through P . Also, by Lemma 4.2.2, every line of L through P lies on the

same number of V-planes. Denote this number by vP�. By Lemma 4.2.3, vP� ≤ 2.

However, since P lies on lines of L in the V-plane π, every line of L through P is

contained in at least one V-plane. That is, vP� = 1 or 2. An equation relating LP ,

vP and vP� will be formed by counting a set of pairs.

Let X = {(�, α) | � is a line of L through P , α is a V-plane through � }. The size

of X will be counted in two ways.

Count � first, then α: There are LP choices for a line � of L through P , and vP�

choices for a V-plane α through each. So |X| = LP vP�.

Count α first, then �: There are vP choices for a V-plane α through P , and (q + 1)

choices for a line � of L through P in each. So |X| = (q + 1)vP . Thus

(q + 1)vP = LP vP�. (4.4)
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Suppose vP� = 1. That is, suppose that there is exactly one V-plane through each

line of L containing P . Any V-plane α through P other than π meets π in a line

through P . Since all lines through P in π are lines of L , the line α ∩ π is a line of

L with two V-planes through it. However, each line of L through P lies on exactly

one V-plane. So, P lies on no V-plane other than π. That is vP = 1. Equation 4.4

now becomes q + 1 = LP . Now LP = 1
2
q(q − 1) or 1

2
q(q + 1), and neither of these

are equal to q + 1 for odd integer q. Thus vP� �= 1 and hence vP� = 2.

Since every line of L through P lies on two V-planes, the q+1 lines of L in π define

q + 1 further V-planes through P . There are no further V-planes through P since

any plane through P other than π meets π in a line through P . Thus vP = q + 2.

Equation 4.4 now becomes (q + 1)(q + 2) = 2LP . But 2LP = q(q + 1) or q(q − 1).

Again this is a contradiction, so there cannot be q + 1 lines of L through P in π.

That is, every point of π lies on at most q lines of L in π. Since there are q2 lines

of L in π, Lemma 3.1.1 implies that every point of π lies on 0 or q lines of L in π.

�

Lemma 4.2.5 A line of L lies on one V-plane and q secant planes. A line of L

contains 1
2
(q + 1) interior points and 1

2
(q + 1) exterior points.

Proof Let � be a line of L lying on v� V-planes and containing I� interior points.

Equation 4.3 states that 2I� = (q + 1)v�. Also, by Lemma 4.2.3, v� ≤ 2. The cases

of v� = 0, 2 will be ruled out by considering the lines through one point on �.

Let P be a point on � lying on LP lines of L in total and LPs lines of L in each

secant plane. If π is a V-plane through �, then P lies on at least one line of L in

π. Lemma 4.2.4 implies that P lies on q lines of L in π, so by Condition (III) of

Theorem 4.2.1, P lies on q lines of L in every V-plane through P . Equation 4.2

gives

LP = v� · q + (q + 1 − v�)LPs − q.

If v� = 0, then from Equation 4.3 it follows that I� = 0, so all points on � are exterior

points. Thus LP = 1
2
q(q − 1). Hence,

1
2
q(q − 1) = (q + 1)LPs − q

LPs = 1
2
q.
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But q is odd, so 1
2
q is not an integer. This is a contradiction, so v� �= 0.

If v� = 2, then from Equation 4.3, it follows that I� = q + 1, so all points on � are

interior points. Thus LP = 1
2
q(q + 1). Hence,

1
2
q(q + 1) = 2q + (q − 1)LPs − q

LPs = 1
2
q.

This is a contradiction as before, so v� �= 2.

Hence v� = 1 and I� = 1
2
(q + 1) · 1 = 1

2
(q + 1). It follows that there are q secant

planes through � and 1
2
(q + 1) exterior points on �. �

The above lemma ensures the existence of V-planes, interior points and exterior

points since L is non-empty. It is now possible to calculate the number of lines of

L through any point in any plane.

Lemma 4.2.6 Let P be a white point. If P is an interior point, then P lies on q

lines of L in every V-plane through P and 1
2
(q+1) lines of L in every secant plane

through P . If P is an exterior point, then P lies on q lines of L in every V-plane

through P and 1
2
(q − 1) lines of L in every secant plane through P .

Proof Let P be a white point and let � be a line of L through P . By Lemma 4.2.5,

� is contained in a unique V-plane. Denote this plane by π. In the plane π, P lies

on at least one line of L , and so by Lemma 4.2.4, P lies on q lines of L in π. By

Condition (III) of Theorem 4.2.1, the point P lies on q lines of L in every V-plane

through P .

Denote by LPs the number of lines of L through P in a secant plane and let

LP be the total number of lines of L through P . Through � there are q secant

planes and one V-plane, and the V-plane contains q lines of L through P . From

Equation 4.2, it follows that LP = qLPs + 1 · q − q = qLPs. If P is an interior

point, then LP = 1
2
q(q + 1), and so LPs = 1

2
(q + 1). If P is an exterior point, then

LP = 1
2
q(q − 1), and so LPs = 1

2
(q − 1). �
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Lemma 4.2.7 A V-plane contains exactly one black point, and the lines of L in

the plane are the lines not through this black point.

Proof Let π be a V-plane. Then every point of π lies on 0 or q lines of L in π.

By Lemma 3.1.2, there exists a point V in π such that the lines of L in π are the

lines not through V . By Lemma 4.2.6, a white point lies on a line of L in every

V -plane through it, so V is a black point, and every other point of π is white. �

Note that since V-planes exist, the above lemma ensures that there exists a black

point.

Lemma 4.2.8 There exists a unique (black) point V through which all null planes

and V-planes pass. The secant planes are the planes not containing V .

Proof Let π be a V-plane. By Lemma 4.2.7, π contains a single black point, V ,

and the q2 lines of π not through V are the lines of L in π.

V

¼

®

`

Suppose α is a plane not through V . Then α meets π

in a line � not through V . This line is a line of L , so

α is not a null plane. By Lemma 4.2.5, a line of L is

contained in one V-plane. Since � is contained in the

V-plane π, the plane α is a secant plane. Thus every

plane not through V is a secant plane.

V

¼

¯

`

Suppose β is a secant plane through V and let � be

a line of L in β. By Lemma 4.2.5, a line of L is

contained in exactly q secant planes. Consider the

planes through �. One of these planes is β, which

contains V . The remaining planes do not contain V

and so are secant planes. Thus there are q + 1 secant

planes through �. This is a contradiction, so there are no secant planes through

V . Thus the secant planes are the planes not through V and all V-planes and null

planes pass through V . �

The next three lemmas complete the proof of Theorem 4.2.1.
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Lemma 4.2.9 Let m be a line not in L . If m passes through V , then m contains

1 or q + 1 black points. If m does not pass through V , then m contains 1 or 2 black

points.

Proof Suppose m contains V and a further black point P . Let π be a plane

through m. By Lemma 4.2.8, π is not a secant plane, since it contains V . By

Lemma 4.2.7, π is not a V-plane, since it contains at least two black points. Thus

π is a null plane, and so every plane through m is a null plane. Since there are no

lines of L in any null plane, there are no lines of L meeting m. Thus every point

on m is a black point. So a line through V either has 1 or q + 1 black points.

Suppose m does not contain V . Then exactly one plane through m contains V and

the remaining q planes through m do not. These q planes are secant planes by

Lemma 4.2.8. In light of this, let π be a secant plane through m.

Denote by Bm the number of black points on m, by Em the number of exterior

points on m, and by Im the number of interior points on m. The number of lines of

L in π will be counted by considering the lines of L in π through each point on

m. There are no lines of L in π through each black point, 1
2
(q + 1) through each

interior point and 1
2
(q − 1) through each exterior point by Lemma 4.2.6. Thus

1
2
q(q − 1) = 1

2
(q + 1)Im + 1

2
(q − 1)Em

1
2
(q − 1)(q − Em) = 1

2
(q + 1)Im. (4.5)

Now 1
2
(q+1) and 1

2
(q−1) are coprime, so 1

2
(q+1) divides q−Em. That is, q−Em ≡ 0

(mod 1
2
(q + 1)), and so Em ≡ q (mod 1

2
(q + 1)). Since 0 ≤ Em ≤ q + 1, this implies

that Em = 1
2
(q − 1) or q.

If Em = q, then by Equation 4.5, Im = 0 and so Bm = 1. If Em = 1
2
(q − 1), then by

Equation 4.5, Im = 1
2
(q − 1) and so Bm = 2. Thus if m does not pass through V , it

contains 1 or 2 black points. �

Denote the set of black points by C . The above lemma shows that C is a Tallini

set, and that V is a singular point of C . This means that the set of black points is

a cone. The following lemmas show that C is a quadric cone.
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Lemma 4.2.10 The set of black points in a secant plane forms a non-singular conic.

Proof Let π be a secant plane and denote by Bπ the set of black points in π.

By Lemma 4.2.8, the plane π does not contain V , so by Lemma 4.2.9, a line of π

contains at most two black points. Thus Bπ is an arc. The lines of L in π are

the external lines of Bπ by Lemma 4.2.9. Since there are 1
2
q(q − 1) lines of L in

π, Corollary 1.1.7 implies that Bπ is an oval. By Theorem 1.5.24, every oval in

PG(2, q), q odd, is a non-singular conic, so the set of black points in π forms a

non-singular conic. �

Lemma 4.2.11 The set of black points C is a quadric cone and L is the set of

external lines of C .

Proof By Lemma 4.2.9, every line meets C in 0, 1, 2 or q + 1 points, so C is a

Tallini set. By Lemma 4.2.9, the point V lies only on tangents and generator lines

of C . That is, V is a singular point of C .

Let π be a secant plane and denote by O the non-singular conic of black points in

π. Since V /∈ π, C is the quadric cone V O by Lemma 2.1.6.

By Lemma 4.2.9, a line not in L contains a black point, so the lines of L are the

external lies of C . �

This completes the proof of Theorem 4.2.1.
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Chapter 5

Characterisation of subspaces

associated with a parabolic

quadric in PG(4, q)

The previous chapters contained characterisations of the external lines of the three

irreducible quadrals in PG(3, q). That is, characterisations of the external lines of

an ovoid, a hyperbolic quadric, and an oval cone (the characterisations for the oval

cone are new). The next natural step is to investigate the external lines of the

quadrals in PG(4, q). A reasonable place to begin is with the parabolic quadric in

PG(4, q). This chapter presents an original result characterising the external lines

of this quadric for q even.

In PG(4, q), there are families of planes associated with a parabolic quadric which

can also be characterised by their combinatorial properties. This chapter presents

a new characterisation result for the set of secant planes of a parabolic quadric of

PG(4, q). Using this result, an alternative to de Resmini’s characterisation (Theo-

rem 3.2.3) of the tangents and generator lines of this quadric is proved for q odd.
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5.1 The external lines of a parabolic quadric in

PG(4, q), q even

In this section, a new characterisation of the external lines of the non-singular

quadric in PG(4, q), q even, is proved. In PG(3, q), it was possible to characterise the

external lines of the irreducible quadrals using the number of the lines through each

point and in each plane. For the external lines of the parabolic quadric in PG(4, q),

it does not seem possible to complete the characterisation using only these prop-

erties. To complete the characterisation, it is necessary to also use the number of

external lines in each 3-space. Hence, the following theorem is proved.

Theorem 5.1.1 Let L be a set of lines in PG(4, q), q even, such that

(I) Every point of PG(4, q) lies on 0 or 1
2
q3 lines of L ,

(II) Every plane of PG(4, q) contains 0, q2 or 1
2
q(q − 1) lines of L ,

(III) Every 3-space of PG(4, q) contains 1
2
q2(q2 +1), 1

2
q2(q−1)2 or 1

2
q3(q−1) lines

of L .

Then L is the set of external lines of a parabolic quadric of PG(4, q).

The above theorem only applies for q even. The case of q odd is much more difficult

and is a topic for future research.

The Proof of Theorem 5.1.1

Let L be a set of lines of PG(4, q), q even, with the properties described in The-

orem 5.1.1. By a series of lemmas, it is proved that L is the set of external lines

of a parabolic quadric in PG(4, q). In order to make the argument clearer, some

terminology is introduced.
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• A point on 0 lines of L is called a black point. A point on 1
2
q3 lines of L is

called a white point.

• A plane containing 0 lines of L is called an null plane. A plane containing q2

lines of L is called a tangent plane. A plane containing 1
2
q(q − 1) lines of L

is called a secant plane.

• A 3-space containing 1
2
q2(q2 + 1) lines of L is called an elliptic 3-space. A

3-space containing 1
2
q2(q − 1)2 lines of L is called a hyperbolic 3-space. A

3-space containing 1
2
q3(q − 1) lines of L is called a tangent 3-space.

It will be shown that the set of black points is a parabolic quadric Q of PG(4, q),

plus its nucleus. The null planes are the planes containing a line of Q; the tangent

planes are the planes meeting Q in a single point. The secant planes are the planes

meeting Q in a non-singular conic. Finally, an elliptic 3-space is a 3-space meeting

Q in an elliptic quadric; a hyperbolic 3-space is a 3-space meeting Q in a hyperbolic

quadric; and a tangent 3-space is a 3-space meeting Q in a quadric cone.

The first lemma concerns the planes through a line of L . Note that there exist lines

of L because every 3-space contains lines of L .

Lemma 5.1.2 Each line of L is contained in q + 1 tangent planes and q2 secant

planes.

Proof Let � be a line of L contained in T� tangent planes. Since there are no

lines of L in a null plane, � is contained in no null planes, so the number of secant

planes through � is (q2 + q + 1− T�). Let L� be the number of lines of L meeting �

in one point. The number L� will be counted in two ways.

Each point on � is a white point and lies on 1
2
q3 lines of L including �. Counting

this way, the line � itself has been included q + 1 times, so

L� = 1
2
q3(q + 1) − (q + 1)

= 1
2
q4 + 1

2
q3 − q − 1.

On the other hand, every line of L meeting � is contained in a plane through �.

Each tangent plane through � contains q2 lines of L including � and each secant
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plane through � contains 1
2
q(q − 1) lines of L including �. The line � itself has been

included q2 + q + 1 times, so

L� = q2T� + 1
2
q(q − 1)(q2 + q + 1 − T�) − (q2 + q + 1)

= 1
2
q(q + 1)T� + 1

2
q4 − 1

2
q − q2 − q − 1.

Equating these two expressions for L� gives

1
2
q(q + 1)T� + 1

2
q4 − 1

2
q − q2 − q − 1 = 1

2
q4 + 1

2
q3 − q − 1

T� = q + 1.

So � is contained in q + 1 tangent planes. Hence, � is contained in q2 secant planes.

�

The above lemma ensures the existence of both tangent planes and secant planes

since lines of L exist. The next several lemmas determine the numbers of each type

of 3-space through each plane, and the number of black points in each type of plane.

In order to do this, the following notation is introduced. If π is a plane, then the

number of black points in π is denoted by Bπ, the number of hyperbolic 3-spaces

through π is denoted by Hπ, the number of elliptic 3-spaces through π is denoted

by Eπ and the number of tangent 3-spaces through π is denoted by Cπ.

Lemma 5.1.3 For any plane π, Cπ = 1 or q + 1.

Proof Let π be a plane. Denote by Lπ the number of lines of L in π and by

L1π the number of lines of L meeting π in exactly one point. The number L1π is

counted in two ways.

There are Bπ black points in π, each lying on no lines of L , and q2 + q + 1 − Bπ

white points in π, each lying on 1
2
q3 lines of L (including those in π). Counting this

way, any line of L in π has been included (q + 1) times. So,

L1π = 1
2
q3(q2 + q + 1 − Bπ) − (q + 1)Lπ

= 1
2
q3(q2 + q + 1) − 1

2
q3Bπ − (q + 1)Lπ.

On the other hand, every line meeting π in one point is contained in a 3-space

through π, so consider the 3-spaces through π. In each elliptic 3-space there are
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1
2
q2(q2 + 1) lines of L , in each hyperbolic 3-space there are 1

2
q2(q − 1)2 lines of L ,

and in each tangent 3-space there are 1
2
q3(q − 1) lines of L . Counting this way, the

lines of L in π have been included (q + 1) times. So

L1π = 1
2
q2(q2 + 1)Eπ + 1

2
q2(q − 1)2Hπ + 1

2
q3(q − 1)Cπ − (q + 1)Lπ.

Equating these two expressions for L1π and simplifying gives

(q2 + 1)Eπ + (q − 1)2Hπ + q(q − 1)Cπ = q(q2 + q + 1) − qBπ

(q2 + 1)(Eπ + Hπ + Cπ) − 2qHπ − (q + 1)Cπ = q3 + q2 + q − qBπ

(q2 + 1)(q + 1) − 2qHπ − (q + 1)Cπ = q3 + q2 + q − qBπ

qBπ + 1 = 2qHπ + (q + 1)Cπ. (5.1)

Reducing the above equation mod q gives 1 ≡ Cπ (mod q). Since Cπ ≤ q + 1, this

implies that Cπ = 1 or q + 1. �

The above lemma ensures the existence of tangent 3-spaces, since every plane is

contained in at least one tangent 3-space. The following lemma gives a useful rela-

tionship between the number of hyperbolic 3-spaces through a plane and the number

of black points in the plane. This relationship makes it possible to determine the

structure of the black points in a tangent plane.

Corollary 5.1.4 Let π be a plane. If π is contained in q +1 tangent 3-spaces, then

Bπ = q + 2. If π is contained in 1 tangent 3-space, then Bπ = 2Hπ + 1.

Proof Equation 5.1 states that qBπ + 1 = 2qHπ + (q + 1)Cπ. If Cπ = q + 1, then

Hπ = 0, so qBπ + 1 = q2 + 2q + 1. Hence Bπ = q + 2.

If Cπ = 1 then qBπ + 1 = 2qHπ + q + 1, which implies that Bπ = 2Hπ + 1. �

Corollary 5.1.5 Let π be a tangent plane. Then π is contained in 1 tangent 3-space

and q elliptic 3-spaces. Also, there is exactly one black point in π, and the lines of

L in π are the lines of π not through this point.
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Proof Firstly note that the lines of L in π cannot pass through any black points

in π. Thus π contains at most one black point, since otherwise there would not be

q2 lines of L in π. If π is contained in q + 1 tangent 3-spaces, then Bπ = q + 2

by Corollary 5.1.4. But Bπ ≤ 1, so π is contained in exactly one tangent 3-space.

Corollary 5.1.4 implies that Bπ = 2Hπ + 1 ≥ 1. Since π contains at most one black

point, it follows that Bπ = 1. Thus Hπ = 0 and the remaining q 3-spaces through π

are elliptic 3-spaces.

Let V be the unique black point in π. There are q2 lines of L in π, none of which

contains V . On the other hand, there are q2 lines in π not passing through V . Thus

the lines of L in π are the lines of π not through V . �

The above lemma ensures the existence of elliptic 3-spaces, since there exist tangent

planes. In order to fully determine the structure of the black points in any plane,

the number of black points on a line not in L is determined.

Lemma 5.1.6 Every line contains 0, 1, 2 or q +1 black points. The lines of L are

precisely those lines with no black points.

Proof Let m be a line not in L and let Wm be the number of white points on L .

Denote by Tm the number of tangent planes through m and by Sm the number of

secant planes through m. Finally, denote by Lm the number of lines of L meeting

m. The number Lm is counted in two ways.

There are Wm white points on m, each lying on 1
2
q3 lines of L . The remaining

points on m are black and lie on no lines of L , so Lm = 1
2
q3Wm.

On the other hand, there are Tm tangent planes through m, each containing q2 lines

of L , and there are Sm secant planes through m, each containing 1
2
q(q − 1) lines of

L . The remaining planes through m are null planes and contain no lines of L . So

Lm = q2Tm + 1
2
q(q − 1)Sm.

Equating the above two expressions for Lm gives

1
2
q3Wm = q2Tm + 1

2
q(q − 1)Sm

q2Wm = 2qTm + (q − 1)Sm. (5.2)
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Suppose m is contained in a tangent plane π. By Corollary 5.1.5, π contains exactly

one black point and the lines of π not through this point are lines of L . Since m is

not a line of L , it therefore contains exactly one black point.

Suppose m is contained in no tangent planes. That is, suppose Tm = 0. Then

Equation 5.2 becomes q2Wm = (q−1)Sm. The numbers q2 and q−1 are coprime, so

this implies that q2 divides Sm. The number of planes through m is q2 +q+1 < 2q2,

so Sm < 2q2. Thus Sm = 0 or q2. If Sm = 0, then Wm = 0 and m contains q + 1

black points. If Sm = q2, then Wm = q − 1 and m contains 2 black points. Thus a

line not in L contains 1, 2 or q + 1 black points. �

The above lemma shows that the set of black points is a Tallini set and that L is

its set of external lines. The next lemma determines the structure of black points in

each type of plane, depending on the number of tangent 3-spaces through the plane.

Lemma 5.1.7 Let π be a plane and let Bπ be the set of black points in π.

(i) Suppose π is a secant plane. If π is contained in q + 1 tangent 3-spaces, then

Bπ is a hyperoval. If π is contained in 1 tangent 3-space, then Bπ is an oval.

In this case, π is contained in 1
2
q hyperbolic 3-spaces and 1

2
q elliptic 3-spaces.

(ii) Suppose π is a null plane. If π is contained in q + 1 tangent 3-spaces, then

Bπ is a line plus one point. If π is contained in 1 tangent 3-space, then Bπ

is either a line or a pair of lines. If Bπ is a line, then π is contained in 1
2
q

hyperbolic 3-spaces and 1
2
q elliptic 3-spaces. If Bπ is a pair of lines, then π is

contained in q hyperbolic 3-spaces and no elliptic 3-spaces.

Proof By Corollary 5.1.4, if Cπ = q + 1 then Bπ = q + 2; and if Cπ = 1, then

Bπ = 2Hπ + 1.

(i) Suppose π is a secant plane and let � be a line of L in π. Then every line of

π meets � and so contains a white point. Lemma 5.1.6 implies that every line of

π contains 0, 1 or 2 black points. That is, the set Bπ of black points in π is an

arc. The lines of L in π are the external lines of Bπ by Lemma 5.1.6, so Bπ has

1
2
q(q − 1) external lines. Corollary 1.1.7 implies that Bπ is an oval or a hyperoval.
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If π is contained in q +1 tangent 3-spaces, then Bπ = q +2, so Bπ is a hyperoval. If

π is contained in exactly one tangent 3-space, then Bπ = 2Hπ + 1, which is an odd

number. So Bπ is an oval. Since 2Hπ + 1 = Bπ = q + 1, it follows that Hπ = 1
2
q.

That is, there are 1
2
q hyperbolic 3-spaces through π. Hence there are 1

2
q elliptic

3-spaces through π.

(ii) Suppose π is a null plane. If there are no lines in π with q +1 black points, then

Bπ is an arc and has an external line. However, line with no black points is a line

of L by Lemma 5.1.6 and a null plane contains no lines of L . Thus there exists a

line in π with q + 1 black points. Let g be such a line.

Suppose π is contained in q + 1 tangent 3-spaces. Then Bπ = q + 2, so Bπ is the

line g, plus one further point.

Suppose π is contained in exactly one tangent 3-space, then Bπ = 2Hπ + 1. The set

Bπ may consist of just the line g, in which case Bπ = q + 1 and Hπ = 1
2
q. Thus, π

is contained in 1
2
q hyperbolic 3-spaces, and 1

2
q elliptic 3-spaces.

Suppose Bπ contains a point P not on g. Then it contains another point Q as Bπ

is an odd number. The line PQ meets m in a further black point and so contains

at least three black points. Since any line contains 0, 1, 2 or q + 1 black points, this

implies that Bπ contains two lines and Bπ ≥ 2q + 1. However, note that Hπ ≤ q as

Cπ = 1, so Bπ ≤ 2q + 1. Thus Bπ = 2q + 1 and Bπ is a pair of lines. It follows that

Hπ = q. That is, π is contained in q hyperbolic 3-spaces, and no elliptic 3-spaces.

�

With the above information, the structure of the black points in each 3-space can

now be determined. In order to do this, the following notation is introduced. If Σ

is a 3-space, then the set of black points in Σ is denoted by BΣ and the number of

black points in Σ is denoted by BΣ.
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Lemma 5.1.8 Let Σ be an elliptic 3-space. Then BΣ is an ovoid of Σ.

Proof By Corollary 5.1.5 and Lemma 5.1.7, the planes in the elliptic 3-space Σ

are tangent planes containing one black point, secant planes containing q + 1 black

points forming an oval, or null planes containing q + 1 black points forming a line.

Thus every plane of Σ meets BΣ in 1 or q + 1 points. By Theorem 2.3.3, BΣ is

either a line or an ovoid.

The set of lines of L in Σ is the set of external lines of BΣ. If BΣ is a line, there

are q4 lines of Σ not meeting BΣ by Lemma 1.5.34. Since lines containing no black

points are lines of L , this implies that there are q4 lines of L in Σ. However, the

number of lines of L in Σ is 1
2
q2(q2 + 1), which is not equal to q4, so BΣ is not a

line. Thus BΣ is an ovoid. �

If π is a null plane whose black points form a line, then Lemma 5.1.7 implies that π

is contained in an elliptic 3-space. However, by Lemma 5.1.8, the set of black points

in an elliptic 3-space is an ovoid and contains no lines. Thus null planes whose black

points form a single line do not exist.

Lemma 5.1.9 Let Γ be a tangent 3-space. Then BΓ is an oval cone plus one point

on its nuclear line.

Proof Let Σ be any 3-space. Denote by LΣ the number of lines of L in Σ and

by L be the total number of lines of L . Since every line of PG(4, q) meets Σ, the

number L can be counted by considering the lines of L through each point of Σ.

There are BΣ black points in Σ, each lying on no lines of L , and there are

q3 + q2 + q + 1−BΣ white points in Σ, each lying on 1
2
q3 lines of L . Counting this

way, the lines of L in Σ have been included q + 1 times. So

L = 1
2
q3(q3 + q2 + q + 1 − BΣ) − qLΣ. (5.3)

If Σ is an elliptic 3-space, then BΣ = q2 + 1 and LΣ = 1
2
q2(q2 + 1). Substituting

these values into the above equation gives

L = 1
2
q3(q3 + q2 + q + 1 − q2 − 1) − q · 1

2
q2(q2 + 1)

= 1
2
q3(q3 − q2 + q − 1).

132



If Σ is a tangent 3-space, then LΣ = 1
2
q3(q − 1). Substituting this and the value of

L into Equation 5.3 gives

1
2
q3(q3 − q2 + q − 1) = 1

2
q3(q3 + q2 + q + 1 − BΣ) − q · 1

2
q3(q − 1)

BΣ = q2 + q + 2.

That is, a tangent 3-space contains q2 + q + 2 black points. In particular,

BΓ = q2 + q + 2.

Let � be a line of L in the tangent 3-space Γ. By Corollary 5.1.5 and Lemma 5.1.7

the planes through � in the tangent 3-space Γ are tangent planes with one black

point, secant planes with an oval of black points, or secant planes with a hyperoval

of black points. Denote by S1 the number of secant planes in Γ through � with

q + 1 black points, and by S2 be the number of secant planes in Γ through � with

q + 2 black points. The remaining q + 1−S1 −S2 planes through � in Γ are tangent

planes, each containing one black point. Since every black point of Γ lies in exactly

one plane through �, it follows that

(q + 1)S1 + (q + 2)S2 + q + 1 − S1 − S2 = q2 + q + 2

qS1 + (q + 1)S2 = q2 + 1 (5.4)

S2 ≡ 1 (mod q).

Since S2 ≤ q + 1, this implies that S2 = 1 or q + 1. There are q + 1 planes

through a line in PG(3, q), so if S2 = q + 1, then S1 = 0 and Equation 5.4 becomes

(q + 1)(q + 1) = q2 + 1. This is a contradiction, so S2 = 1, and Equation 5.4 implies

that S1 = q − 1. Thus the number of tangent planes in Γ through � is 1.

Let P be a point on �. The lines of L through P in Γ are contained in the planes

through �. In the tangent plane through �, P lies on q lines of L . In each secant

plane through � (whether the plane contains an oval or a hyperoval of black points),

P lies on 1
2
q lines of L . Counting this way, the line � itself has been included q + 1

times, so the number of lines of L through P in Γ is q + q · 1
2
q − q = 1

2
q2. Thus,

every point in Γ on a line of L in Γ lies on 1
2
q lines of L in Γ.

Denote by LΓ the set of lines of L in Γ. Then LΓ has these properties:

(I) Every point of Γ lies on 0 or 1
2
q2 lines of LΓ,

(II) Every plane of Γ contains 0, q2 or 1
2
q(q − 1) lines of LΓ.
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By Theorem 4.1.1, LΓ is the set of external lines of a hyperoval cone C̄ of Γ. That

is, the set of points of Γ on no lines of LΓ is C̄ .

¯

®

`

V Denote by α the unique tangent plane in Γ through

the line � and by β the secant plane in Γ through

� containing a hyperoval of black points. Let V

be the unique black point in α and let Ō be the

hyperoval of black points in β. Then C̄ is the cone

V Ō.

Consider a black point P in Γ not in α or β. The line PV is a line of the cone C̄

and so meets Ō in a point. This is a black point, so the line PV contains three

black points, and hence contains q + 1 black points by Lemma 5.1.6. Thus every

black point in Γ not in α or β lies on a line of black points through V . Since there

are q2 + q + 2 black points in Γ, it follows that the set of black points in Γ consists

of q + 1 lines of the hyperoval cone C̄ , plus one further point of C̄ . That is BΓ is

an oval cone, plus one point on its nuclear line. �

In light of the above lemma, if Γ is a tangent 3-space whose black points form an

oval cone C plus the point N , then the point N is called the special point of Γ. The

following lemma shows that the tangent 3-spaces all contain the same special point.

Lemma 5.1.10 There exists a point N such that N is the special point in every

tangent 3-space. The set of tangent 3-spaces is the set of 3-spaces through N .

Proof Let Γ be a tangent 3-space whose black points form the oval cone C , plus

the special point N . The planes in Γ through N meet C in a single line or an oval,

since N is on the nuclear line of C . Thus each plane in Γ through N contains q + 2

black points. By Lemma 5.1.7, each plane in Γ through N is contained in q + 1

tangent 3-spaces. Since any 3-space through N meets Γ in a plane through N , this

implies that every 3-space through N is a tangent 3-space.

Let Σ be an elliptic 3-space. Then no plane in Σ is contained q + 1 tangent 3-

spaces, so by Lemma 5.1.3, every plane in Σ is contained in exactly one tangent

3-space. Thus the number of tangent 3-spaces is the number of planes in Σ, which is
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q3 + q2 + q + 1. But this is also the number of 3-spaces through a point in PG(4, q),

so the set of tangent 3-spaces is the set of 3-spaces through N .

Finally, let Γ′ be a tangent 3-space with special point N ′. The same argument as

above shows that the tangent 3-spaces are the 3-spaces through N ′. Thus N ′ = N

and every tangent 3-space has N as its special point. �

It is now possible to complete the proof of Theorem 5.1.1.

Lemma 5.1.11 Let Q be the set of black points, excluding the point N . Then Q

is a parabolic quadric of PG(4, q) and L is the set of external lines of Q.

Proof First it is shown that L is the set of lines containing no point of Q.

N

m

Let m be a line through N . Since every 3-space

through N is a tangent 3-space, it follows that any

3-space through m is a tangent 3-space. Let Γ be a

tangent 3-space through m. The set of black points

in Γ consists of an oval cone C , plus the point N ,

which is on the nuclear line of C . Since N is on

the nuclear line of C , every line through N meets

C in exactly one point. In particular, m contains one black point other than N .

Hence, every line through N meets Q in one point. This implies that the set of lines

containing no black points is the same as the set of lines containing no point of Q.

That is, L is the set of external lines of Q.

Now it is shown that Q is a non-singular quadric. Let π be a plane and let Γ be

a tangent 3-space through π. The black points in Γ form an oval cone C , plus the

point N , which lies on the nuclear line of C . Thus Γ meets Q in the oval cone C .

The plane π meets C in a point, a line, a pair of lines, or an oval. Thus every plane

meets Q in a point, a line, a pair of lines or an oval. By Theorem 2.3.1, Q is a

quadral.

Let P be a point of Q and consider the line PN . By Lemma 5.1.10, P and N

are the only black points on PN . Using Equation 5.2, the number of secant planes

through PN is q2. Thus P is contained in a secant plane.

Hence, Q is a quadral such that every point of Q lies in a plane meeting Q in an

oval. Corollary 2.3.2 implies that Q is a parabolic quadric of PG(4, q). �
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5.2 The secant planes of a parabolic quadric of

PG(4, q)

In the previous section, a set of lines associated with a parabolic quadric in PG(4, q)

was characterised. In PG(4, q), it is also reasonable to consider the sets of planes

associated with this quadric. The secant planes of a parabolic quadic (the planes

that meet the quadric in a non-singular conic) have particularly amenable properties

for characterisation (see Lemma 1.5.41), which are the same for all q. Using these

properties, the following new characterisation result is proved.

Theorem 5.2.1 Let S be a set of planes in PG(4, q) such that

(I) Every point of PG(4, q) lies on q4 or q4 + q2 planes of S ,

(II) Every line of PG(4, q) lies on 0 or q2 planes of S .

Then either S is the set of secant planes of a parabolic quadric of PG(4, q), or there

exists a 3-space Σ and a (q + 1)-cover M in Σ such that S is the set of planes not

containing any line of M .

In the proof of the above theorem, Lemma 5.2.14 provides a third condition to

separate the two possible cases for S . Thus the proof of Theorem 5.2.1 also proves

the following theorem.

Theorem 5.2.2 Let S be a set of planes in PG(4, q) such that

(I) Every point of PG(4, q) lies on q4 or q4 + q2 planes of S ,

(II) Every line of PG(4, q) lies on 0 or q2 planes of S ,

(III) Every 3-space of PG(4, q) contains at least one plane of S .

Then S is the set of secant planes of a parabolic quadric of PG(4, q).

The proof of these two theorems follows.
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The Proof of Theorems 5.2.1 and 5.2.2

Let S be a set of planes of PG(4, q) with the properties described in Theorem 5.2.1.

By a series of lemmas, it will be shown that if every 3-space contains a plane of S ,

then S is the set of secant planes of a parabolic quadric of PG(4, q). Otherwise,

there exists a 3-space Σ and a (q +1)-cover M in Σ such that S is the set of planes

not containing any line of M . This will prove both Theorem 5.2.1 and Theorem

5.2.2.

In order to make the proof clearer, some terminology is introduced.

• A point on q4 planes of S is called a black point. A point on q4 + q2 planes of

S is called a white point. The total number of black points is denoted by B.

• A line on no planes of S is called a dark line. A line on q2 planes of S is

called a light line. The total number of dark lines is denoted by D.

• Finally, the number of planes of S is denoted by S.

The first lemma can now be stated.

Lemma 5.2.3 The number of dark lines through a black point is q + 1. There are

no dark lines through a white point.

Proof Let P be a point lying on DP dark lines and SP planes of S . Consider the

set of pairs X = {(�, π) | � is a line through P , π is a plane of S through � }. The

size of X is counted in two ways.

Count �, then π: There are DP dark lines through P , each lying on no planes of S

and (q3 + q2 + q + 1 − DP ) light lines through P , each lying on q2 planes of S . So

|X| = 0 · DP + q2(q3 + q2 + q + 1 − DP ) = q5 + q4 + q3 + q2 − q2DP .

Count π, then �: There are SP planes of S through P and q + 1 lines through P in

each. So |X| = (q + 1)SP .

Hence, (q + 1)SP = q5 + q4 + q3 + q2 − q2DP .
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If P is a black point then SP = q4, so

(q + 1) · q4 = q5 + q4 + q3 + q2 − q2DP

DP = q + 1.

So there are (q + 1) dark lines through a black point.

If P is a white point then SP = q4 + q2, so

(q + 1)(q4 + q2) = q5 + q4 + q3 + q2 − q2DP

DP = 0.

So there are no dark lines through a white point. �

This lemma has two immediate corollaries.

Corollary 5.2.4 A dark line contains only black points. A line containing a white

point is a light line.

Proof A white point lies on no dark lines, so a dark line contains no white points.

That is, a dark line contains only black points. Equivalently, a line containing a

white point is a light line. �

Note that a line containing only black points is not necessarily a dark line.

Corollary 5.2.5 The number of dark lines is the same as the number of black

points. That is, D = B.

Proof Consider the set of pairs X = {(P, �) | P is a black point, � is a dark

line through P }. By Lemma 5.2.3, each black point lies on q + 1 dark lines, so

|X| = B(q + 1). By Corollary 5.2.4, each dark line contains q + 1 black points, so

|X| = D(q + 1). Hence B(q + 1) = D(q + 1) and so B = D. �

The above results make it possible to find the number of black points in a plane of S .
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Lemma 5.2.6 A plane of S contains q + 1 black points and q2 white points.

Proof Let π be a plane of S containing Bπ black points. Note that there are

no dark lines contained in π as dark lines are contained in no planes of S . Every

plane of S (other than π) meets π in a line or in a single point. So the number S

of planes of S may be counted by considering the planes of S through each point

of π. To do this, it is necessary to first find how many planes of S meet π in a line

and how many meet π in a point.

Consider the lines of π. There are q2 + q + 1 lines in π and they are all light lines

lying on q2 planes of S each, including π itself. Hence, the number of planes of S

meeting π in a line is (q2 + q + 1)(q2 − 1) = q4 + q3 − q − 1. Thus, the number of

planes of S meeting π in a point is S − 1 − (q4 + q3 − q − 1) = S − q4 − q3 + q.

Let X1 = {(P, σ) | P is a point of π, σ is a plane of S through P }. The size of

X1 is counted in two ways.

Count P , then σ: There are Bπ black points in π, each lying on q4 planes of S .

There are q2 + q + 1 − Bπ white points in π, each lying on q4 + q2 planes of S . So

|X1| = Bπq4 + (q2 + q + 1 − Bπ)(q4 + q2)

= q6 + q5 + 2q4 + q3 + q2 − q2Bπ.

Count σ, then P : There is one plane of S (π itself) meeting π in q2 + q + 1 points.

There are (q4 + q3 − q− 1) planes of S meeting π in q + 1 points. Finally, there are

S − q4 − q3 + q planes of S meeting π in one point. So

|X1| = q2 + q + 1 + (q4 + q3 − q − 1)(q + 1) + S − q4 − q3 + q

= q5 + q4 + S.

Equating the above two expressions for |X1| gives:

q6 + q5 + 2q4 + q3 + q2 − q2Bπ = q5 + q4 + S

S = q6 + q4 + q3 + q2 − q2Bπ (5.5)

Since S is a constant, it follows that Bπ is the same for all choices of π in S .

Denote by BS the number of black points in a plane of S . Several sets of pairs will

be counted in order to form an equation that can be solved for BS.

139



Let X2 = {(P, π) | P is a black point, π is a plane of S through P }.
Count P , then π: There are B black points and q4 planes of S through each, so

|X2| = Bq4.

Count π, then P . There are S planes of S and BS black points in each, so

|X2| = SBS.

So, q4B = SBS. (5.6)

Substituting Equation 5.5 into Equation 5.6 gives

q4B = (q6 + q4 + q3 + q2 − q2BS)BS

q2B = (q4 + q2 + q + 1)BS − B2
S. (5.7)

Let X3 = {(�, π) | � is a light line, π is a plane of S through � }.
Count �, then π: There are B dark lines by Corollary 5.2.5 and so there are

q6 + q5 + 2q4 + 2q3 + 2q2 + q + 1 − B light lines. Each of these lines has q2 planes

of S through it, so

|X3| = q2(q6 + q5 + 2q4 + 2q3 + 2q2 + q + 1 − B)

= q8 + q7 + 2q6 + 2q5 + 2q4 + q3 + q2 − q2B.

Count π, then �: There are S = q6 + q4 + q3 + q2 − q2BS planes of S (from

Equation 5.5) and each contains q2 + q + 1 light lines, so

|X3| = (q6 + q4 + q3 + q2 − q2BS)(q2 + q + 1)

= q8 + q7 + 2q6 + 2q5 + 3q4 + 2q3 + q2 − (q4 + q3 + q2)BS.

Equating the above two expressions for |X3| and simplifying gives:

q2B = (q4 + q3 + q2)BS − q4 − q3 (5.8)

Substituting Equation 5.8 into Equation 5.7 gives

(q4 + q3 + q2)BS − q4 − q3 = (q4 + q2 + q + 1)BS − B2
S

B2
S + (q3 − (q + 1))BS − q3(q + 1) = 0

(BS + q3)(BS − (q + 1)) = 0
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The number BS is non-negative, since it is a number of points, so the above equation

implies that BS = q + 1. �

Using the above lemma and its proof, the number of each type of point, line and

plane can now be determined.

Corollary 5.2.7 There are q3+q2+q+1 black points, q4 white points, q3+q2+q+1

dark lines, q6 + q5 + 2q4 + q3 + q2 light lines and q6 + q4 planes of S .

Proof From Equation 5.5, and using the fact that BS = q + 1 (Lemma 5.2.6),

S = q6 + q4 + q3 + q2 − q2(q + 1) = q6 + q4.

From Equation 5.6 and using the above value of S, q4B = (q6 + q4)(q + 1), so

B = (q2 + 1)(q + 1) = q3 + q2 + q + 1. That is, there are q3 + q2 + q + 1 black

points. All other points of PG(4, q) are white points, so there are q4 white points.

By Corollary 5.2.5, the number of dark lines is q3 + q2 + q + 1. All other lines of

PG(4, q) are light lines, so there are q6 + q5 + 2q4 + q3 + q2 light lines. �

The next lemma gives a useful relationship between the number of black points and

the number of dark lines in a plane not in S . In order to state the lemma, the

following notation is introduced. If π is a plane, then the number of black points in

π is denoted by Bπ and the number of dark lines in π is denoted by Dπ.

Lemma 5.2.8 Suppose π is a plane not in S . Then Bπ = qDπ + 1.

Proof Every plane of S meets π in a line or a single point. So the number of

planes in S may be counted by considering the planes of S through each point of π.

Each of the Dπ dark lines in π lies on no planes of S and each of the (q2+q+1−Dπ)

light lines in π lies on q2 planes of S . Thus the number of planes of S meeting

π in a line is q2(q2 + q + 1 − Dπ) = q4 + q3 + q2 − q2Dπ. The remaining planes of

S meet π in a single point. So the number of planes of S meeting π in a point is

q6 + q4 − (q4 + q3 + q2 − q2Dπ) = q6 − q3 − q2 + q2Dπ.

Let X = {(P, σ) | P is a point of π, σ is a plane of S through P }. The size of X

is counted in two ways.
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Count P , then σ: There are Bπ black points in π, each lying on q4 planes of S .

There are (q2 + q + 1−Bπ) white points in π, each lying on q4 + q2 planes of S . So

|X| = q4Bπ + (q2 + q + 1 − Bπ)(q4 + q2)

= q6 + q5 + 2q4 + q3 + q2 − q2Bπ.

Count σ, then P : There are q4 + q3 + q2 − q2Dπ planes of S containing q +1 points

of π. There are q6 − q3 − q2 + q2Dπ planes of S containing one point of π. So

|X| = (q4 + q3 + q2 − q2Dπ)(q + 1) + q6 − q3 − q2 + q2Dπ

= q6 + q5 + 2q4 + q3 − q3Dπ.

Equating the above two expressions for |X| gives

q6 + q5 + 2q4 + q3 + q2 − q2Bπ = q6 + q5 + 2q4 + q3 − q3Dπ

Bπ = qDπ + 1.

�

There are two useful corollaries of the above result:

Corollary 5.2.9 Suppose π is a plane not in S containing no dark lines. Then π

contains exactly one black point.

Proof By Lemma 5.2.8, Bπ = qDπ + 1 = q · 0 + 1 = 1. �

Corollary 5.2.10 Suppose � is a line containing no black points. Then through �

there are q2 planes of S , each containing exactly q+1 black points, and q+1 planes

not in S , each containing exactly one black point.

Proof Since � contains no black points, it is a light line by Corollary 5.2.4. That

is, � lies on q2 planes of S and q + 1 planes not in S . Each plane of S contains

exactly q +1 black points by Lemma 5.2.6. It remains to show that a plane through

� that is not in S contains exactly one black point.
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Let π be a plane through � that is not in S . Now � contains only white points,

and white points lie on no dark lines by Lemma 5.2.3. Thus there are no dark lines

meeting �. Since any line in π meets �, this implies that there are no dark lines in

π. Hence, π contains exactly one black point by Corollary 5.2.9. �

Note that there is no guarantee at this stage that there exist planes with no dark

lines, or lines with no black points. The next lemma gives a relationship between

the number of black points, dark lines and planes of S in a 3-space. In order to

do this, the following notation is introduced. If Σ is a 3-space, then the number of

planes of S in Σ is denoted by SΣ, the number of black points in Σ is denoted by

BΣ and the number of dark lines in Σ is denoted by DΣ.

Lemma 5.2.11 Let Σ be a 3-space. Then there exists a non-negative integer k such

that DΣ = k(q + 1), BΣ = q2 + 1 + qk and SΣ = q3 + q − qk.

Proof By counting sets of pairs, equations will be formed relating the three num-

bers SΣ, BΣ and DΣ.

Let X1 = {(P, π) | P is a point of Σ, π is a plane of S through P }.
Count P , then π: There are BΣ black points in Σ, each lying on q4 planes of S .

There are q3 + q2 + q + 1−BΣ white points in Σ, each lying on q4 + q2 planes of S .

So

|X1| = q4BΣ + (q3 + q2 + q + 1 − BΣ)(q4 + q2)

= q7 + q6 + 2q5 + 2q4 + q3 + q2 − q2BΣ.

Count π, then P : There are SΣ planes of S in Σ, each containing q2 + q + 1 points

of Σ. There are q6 + q4 −SΣ planes of S not in Σ, which each meet Σ in a line and

so contain q + 1 points of Σ. So

|X1| = (q2 + q + 1)SΣ + (q6 + q4 − SΣ)(q + 1)

= q2SΣ + q7 + q6 + q5 + q4.

Equating the above two expressions for |X1| gives:

q7 + q6 + 2q5 + 2q4 + q3 + q2 − q2BΣ = q2SΣ + q7 + q6 + q5 + q4

BΣ = q3 + q2 + q + 1 − SΣ (5.9)
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Let X2 = {(�, π) | � is a line in Σ, π is a plane of S through � }.
Count �, then π: There are DΣ dark lines in Σ, each lying on no planes of S . There

are q4 + q3 + 2q2 + q + 1 − DΣ light lines in Σ, each on q2 planes of S . So,

|X2| = q2(q4 + q3 + 2q2 + q + 1 − DΣ)

= q6 + q5 + 2q4 + q3 + q2 − q2DΣ

Count π, then �: There are SΣ planes of S contained in Σ, each containing q2+q+1

lines of Σ. There are (q6 + q4 − SΣ) planes of S not in Σ, each meeting Σ in one

line. So,

|X2| = (q2 + q + 1)SΣ + q6 + q4 − SΣ

= (q2 + q)SΣ + q6 + q4

Equating the above two expressions for |X2| gives:

q6 + q5 + 2q4 + q3 + q2 − q2DΣ = (q2 + q)SΣ + q6 + q4

qDΣ = (q + 1)(q3 + q − SΣ) (5.10)

From this equation it follows that (q + 1) divides qDΣ. Since q and (q + 1) are

coprime, this implies that (q + 1) divides DΣ.

Let DΣ = k(q + 1), for some integer k ≥ 0. Substituting this into Equation 5.10

gives:

qk(q + 1) = (q + 1)(q3 + q − SΣ)

SΣ = q3 + q − qk

Finally, substituting this value into Equation 5.9 gives:

BΣ = q3 + q2 + q + 1 − (q3 + q − qk) = q2 + 1 + qk

�

The above lemma has these two useful corollaries.
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Corollary 5.2.12 Suppose Σ is a 3-space containing exactly q2 + 1 black points.

Then these points form an ovoid of Σ.

Proof For the 3-space Σ, the number of black points is BΣ = q2+1. By Lemma 5.2.11,

it follows that DΣ = 0. In particular, no plane of Σ contains a dark line. Corol-

lary 5.2.9 implies that a plane of Σ not in S contains exactly one black point. By

Lemma 5.2.6, a secant plane contains q+1 black points, so every plane of Σ contains

1 or q + 1 black points. Theorem 2.3.3 implies that the set of black points in Σ is

either a line or an ovoid. Since there are q2 + 1 black points in Σ, the set of black

points in Σ is an ovoid. �

Corollary 5.2.13 Suppose � is a line containing no black points, then every 3-space

through � contains q2 + 1, q2 + q + 1 or q2 + 2q + 1 black points.

Proof By Corollary 5.2.10, � has through it q2 planes of S with q+1 black points

each, and q + 1 planes not in S with one black point each.

Let Σ be a 3-space through �. By Lemma 5.2.11, there exists a non-negative integer

k such that BΣ = q2 + 1 + qk. Denote by a the number of planes of Σ through �

containing exactly one black point. Consider the black points in the planes of Σ

through �. There are a planes of Σ through � with one black point, and q + 1 − a

planes of Σ through � with q + 1 black points, so

a · 1 + (q + 1 − a)(q + 1) = q2 + 1 + qk

a + k = 2

Since both a and k are non-negative, it follows that k ≤ 2. Thus the number of

black points in Σ is q2 + 1, q2 + q + 1 or q2 + 2q + 1. �

Note that there is no guarantee at this stage that there exists a line with no black

points, or a 3-space with q2 + 1 black points.

The two possibilities stated in Theorem 5.2.1 may now be isolated. Firstly, the case

where there exists a 3-space containing no planes of S is considered.
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Lemma 5.2.14 Suppose there exists a 3-space Σ containing no planes of S . Then

the set of dark lines M is a (q+1)-cover of Σ and S is the set of planes of PG(4, q)

not containing a line of M .

Proof By Lemma 5.2.11, there is a non-negative integer k such DΣ = k(q + 1),

BΣ = q2 + 1 + qk and SΣ = q3 + q − qk. Since Σ contains no planes of S , it

follows that k = q2 + 1 and so DΣ = (q2 + 1)(q + 1) = q3 + q2 + q + 1 and

BΣ = q2 + 1 + q(q2 + 1) = q3 + q2 + q + 1. By Corollary 5.2.7, these are all the

black points and dark lines, so Σ is the set of black points, and all the dark lines are

contained in Σ.

By Lemma 5.2.3, there are q +1 dark lines through any black point. Thus the set of

dark lines forms a (q + 1)-cover of Σ (see Definition 0.4.3). It remains to show that

a plane not in S contains a dark line, as then S is the set of planes which contain

no dark lines.

§

¼

Consider a plane π not in S . If π is contained in

Σ, then by Lemma 0.4.4 it has q + 1 dark lines,

as the dark lines form a (q + 1)-cover. If π is not

contained in Σ, then it meets Σ in a line and so

has q + 1 black points. Lemma 5.2.8 then implies

that π has one dark line. (Note that this dark line

is π ∩ Σ, since all the dark lines are in Σ.) Thus

a plane not in S has at least one dark line and so S is the set of planes which

contain no dark lines. �

In light of the above lemma, from this point the following assumption is made. This

assumption is Condition (III) in Theorem 5.2.2:

Assume from now on that every 3-space contains at least one plane of S .

This assumption makes it possible to use Corollaries 5.2.9, 5.2.10, 5.2.12 and 5.2.13,

which did not apply in the situation of Lemma 5.2.14.
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Lemma 5.2.15 There exists a line containing no black points, and a 3-space con-

taining q2 + 1 black points.

Proof Suppose every line contains a black point. Theorem 0.2.18 for PG(4, q)

states that if K is a set of points in PG(4, q) such that every line meets K , then

K has at least q3 + q2 + q + 1 points. Moreover, if K has exactly q3 + q2 + q + 1

points, then it is a 3-space. Since the set of black points has size q3 + q2 + q + 1

points, it is a 3-space.

However, by Lemma 5.2.11, a 3-space with q3 + q2 + q + 1 black points contains

no planes of S (see the proof of Lemma 5.2.14). This is a contradiction to the

assumption that every 3-space contains a plane of S , so there exists a line with no

black points. Let � be such a line.

By Corollary 5.2.10, there exist q + 1 planes through � containing exactly one black

point. Let Γ be the 3-space spanned by two of these planes. Using the proof of

Corollary 5.2.13 (with a = 2), it follows that there are q2 + 1 black points in Γ. �

Lemma 5.2.16 Any 3-space contains q2 + 1, q2 + q + 1 or q2 + 2q + 1 black points.

Proof Let Σ be a 3-space of PG(4, q) containing exactly q2 +1 black points, which

exists by Lemma 5.2.15. Let Γ be any 3-space of PG(4, q). Then either Γ = Σ in

which case Γ contains exactly q2 +1 black points, or Γ meets Σ in a plane π = Γ∩Σ.

§

¡

¼

The black points in Σ form an ovoid by Corollary 5.2.12.

The planes in Σ meet this ovoid in one point or the

q + 1 points of an oval. In either case, there exists

a line in π containing no black points. Thus there

is a line in Γ containing no black points. By Corol-

lary 5.2.13, Γ contains q2 + 1, q2 + q + 1 or q2 + 2q + 1

black points. �
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Lemma 5.2.17 The set of black points in a plane not in S is either a single point,

the q + 1 points on a dark line, or the set of 2q + 1 black points on a pair of dark

lines.

Proof Let π be a plane not in S . An upper bound for Bπ may be found by

considering the black points in the 3-spaces through π. Let X = {(Σ, P ) | Σ is a

3-space through π, P is a black point in Σ }. The size of X is counted in two ways.

Count Σ, then π: By Lemma 5.2.16, the 3-spaces through π contain q2 +1, q2 +q+1

or q2 + 2q + 1 black points. Denote by A2π the number of 3-spaces through π with

q2 +2q +1 black points, by A1π the number with q2 + q +1 black points and by A0π

the number with q2 + 1 black points. Then

|X| = (q2 + 2q + 1)A2π + (q2 + q + 1)A1π + (q2 + 1)A0π

= (q2 + q + 1)(A2π + A1π + A0π) + qA2π − qA0π

= (q2 + q + 1)(q + 1) + qA2π − qA0π

= q3 + 2q2 + 2q + 1 + qA2π − qA0π.

Count P , then Σ: There are Bπ black points in π which are contained in each of

the q + 1 3-spaces through π. There are (q3 + q2 + q + 1 − Bπ) black points not in

π which are contained in one 3-space through π. So

|X| = (q + 1)Bπ + q3 + q2 + q + 1 − Bπ

= qBπ + q3 + q2 + q + 1.

Equating these two expressions for |X| gives

qBπ + q3 + q2 + q + 1 = q3 + 2q2 + 2q + 1 + qA2π − qA0π

Bπ = q + 1 + A2π − A0π

Bπ ≤ q + 1 + A2π

Bπ ≤ q + 1 + q + 1

Bπ ≤ 2q + 2.

By Lemma 5.2.8, Bπ = qDπ + 1. So,

qDπ + 1 ≤ 2q + 2

Dπ ≤ 2 +
1

q
.

So Dπ ≤ 2 as Dπ is an integer.
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If Dπ = 0, then there is one black point in π by Corollary 5.2.9. If Dπ = 1,

then there is one dark line in π, which contains q + 1 black points. However,

Bπ = qDπ + 1 = q + 1, so the black points in π are those on the one dark line.

Finally, if Dπ = 2, then there are two dark lines in π, which together contain 2q + 1

black points. However, Bπ = qDπ + 1 = 2q + 1, so the black points in π are those

on the two dark lines. �

Corollary 5.2.18 The black points in a plane of S form an oval.

Proof Let α be a plane of S and let � be a line in α. Note that a plane of S

contains no dark lines, so � is a light line. Thus � lies on q2 planes of S and q + 1

planes not in S . Let π be a plane through � that is not in S . From Lemma 5.2.17,

the only lines in π containing q + 1 black points are dark lines, and all other lines

contain 0, 1 or 2 black points. Since � is a light line, it follows that � contains 0, 1

or 2 black points. Hence, every line in σ contains 0, 1 or 2 black points, and so the

set of black points in α is an arc. By Lemma 5.2.6, there are q + 1 black points in

α, so the set of black points in α is an oval. �

Lemma 5.2.19 The set of black points is a parabolic quadric and S is the set of

its secant planes.

Proof Denote the set of black points by B. By Lemma 5.2.17 and Corollary 5.2.18,

every plane meets B in a point, a line, a pair of lines, or an oval. So B is a quadral

by Theorem 2.3.1. Also, every point of B lies in q4 planes of S , each meeting B in

an oval. Thus B is a non-singular quadric in PG(4, q) by Corollary 2.3.2. Finally,

the planes of S are the planes that meet B in an oval. Since B is a quadric, the

planes of S are the planes that meet B in a non-singular conic. That is, S is the

set of secant planes of B. �

This completes the proof of Theorems 5.2.1 and 5.2.2.
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5.3 The tangents and generator lines of the non-

singular quadric in PG(4, q), q odd

Theorem 5.2.2 can be used to provide a new characterisation of the tangent and

generator lines of the non-singular quadric in PG(4, q) when q is odd. In order to

do this, the dual nature of the quadric in PG(4, q) is used.

Theorem 5.3.1 Let L be a set of lines in PG(4, q), q odd, such that

(I) Every point of PG(4, q) lies on at least one line not in L ,

(II) Every plane of PG(4, q) contains q + 1 or q2 + q + 1 lines of L ,

(III) Every 3-space of PG(4, q) contains q3 + q2 + q + 1 or q3 + 2q2 + q + 1

lines of L .

Then L is the set of tangents and generator lines of a parabolic quadric of PG(4, q).

Proof Denote by L c the set of lines of PG(4, q) not in L . Then L c has the

following properties:

(Ic) Every point of PG(4, q) lies on at least one line of L c,

(IIc) Every plane of PG(4, q) contains q2 or 0 lines of L c,

(IIIc) Every 3-space of PG(4, q) contains q4 + q2 or q4 lines of L c.

The set of lines L c may be considered as a set of planes of the dual space PG(4, q)∗.

That is, L c is a set of planes of PG(4, q)∗ with the following properties:

(Ic∗) Every 3-space of PG(4, q)∗ contains at least one plane of L c,

(IIc∗) Every line of PG(4, q)∗ lies on q2 or 0 planes of L c,

(IIIc∗) Every point of PG(4, q)∗ lies on q4 + q2 or q4 planes of L c.
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By Theorem 5.2.2, L c is the set of secant planes of a parabolic quadric of PG(4, q)∗.

Denote this quadric by P∗ and the set of its tangent hyperplanes by P. Then P is

a set of points in PG(4, q), which is a parabolic quadric by Lemma 1.5.22. The set of

secant planes of P∗ is the set of external lines and secants of P by Lemma 1.5.44.

Thus L c is the set of external lines and secants of the parabolic quadric P in

PG(4, q). Hence, L is the set of tangents and generator lines of the parabolic

quadric P in PG(4, q). �
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Chapter 6

Characterisation of the external

lines of quadrals of parabolic type

in PG(n, q), q even

In the previous two chapters, the external lines of an oval cone in PG(3, q) and of

a parabolic quadric in PG(4, q) (q even) were characterised. The quadrals involved

are examples of quadrals of parabolic type. Since it is possible to characterise their

external lines, it is reasonable to expect that it is possible to characterise the external

lines of other quadrals of parabolic type. This chapter presents new characterisation

results for the external lines of the quadrals of parabolic type in PG(n, q), q even.

That is, Theorems 4.1.1 and 5.1.1 are generalised to PG(n, q).

First, a characterisation is proved for the external lines of an oval cone in PG(n, q),

q even, n ≥ 3. As for n = 3, this set of external lines is also the set of external lines

of a hyperoval cone, and so the set of external lines of q + 1 other oval cones.

Next, a characterisation is proved for the external lines of any quadral of parabolic

type in PG(n, q), q even. The proof of this result combines the common elements of

the previous characterisations, and makes use of Tallini’s characterisation of quadrals

given in Theorems 2.1.10 and 2.1.11.
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6.1 The external lines of a hyperoval cone in PG(n, q),

q even

In Chapter 4, the set of external lines of an oval cone in PG(3, q), q even, was

characterised by the number of lines through a point and in a plane. The aim

of this section is to generalise this result to the external lines of an oval cone in

PG(n, q), n ≥ 4.

Let C be an oval cone of PG(n, q), n ≥ 4, q even, and denote by L the set of

external lines of C . By Lemmas 1.4.9 and 1.4.4, C has the following properties:

(I) The number of lines of L through a point of PG(n, q) is 0 or 1
2
qn−1,

(II) The number of lines of L in a plane of PG(n, q) is 0, q2 or 1
2
q(q − 1).

However, the set of external lines of any quadral of parabolic type also has the

above properties, by Theorem 1.6.7. Thus the above properties are not enough to

characterise L , and a third property must be used.

A natural third property is the number of lines of L in a 3-space. That is, an option

is to include the following property, which follows from Lemma 1.4.5.

(III) The number of lines of L in a 3-space of PG(4, q) is 0, q4 or 1
2
q3(q − 1).

Including this property does make it possible to complete the characterisation. How-

ever, further investigation reveals that it is not actually necessary to know the exact

number of lines of L in each 3-space. It is only necessary to assume that if a 3-space

contains a line of L , then the number of lines of L it contains is congruent to 1

(mod q + 1). Thus the following theorem is proved.

Theorem 6.1.1 Let L be a non-empty set of lines in PG(n, q), n ≥ 4, q even,

such that

(I) The number of lines of L through a point of PG(n, q) is 0 or 1
2
qn−1,

(II) The number of lines of L in a plane of PG(n, q) is 0, q2 or 1
2
q(q − 1),
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(III) The number of lines of L in a 3-space of PG(n, q) is 0, or congruent to 1

(mod q + 1).

Then L is the set of external lines of a hyperoval cone C̄ of PG(n, q). Further, L

is the set of external lines of each of the q + 2 oval cones contained in C̄ .

The proof of Theorem 6.1.1

Let L be a set of lines of PG(n, q), n ≥ 4, q even, with the properties described

in Theorem 6.1.1. By a series of lemmas, it is proved that L is the set of external

lines of a hyperoval cone of PG(n, q). In order to make the argument clearer, some

terminology is now introduced.

• A point on 0 lines of L is called a black point. A point on 1
2
qn−1 lines of L

is called a white point.

• A plane containing 0 lines of L is called an null plane. A plane containing q2

lines of L is called a tangent plane. A plane containing 1
2
q(q − 1) lines of L

is called a secant plane.

The first lemma can now be stated.

Lemma 6.1.2 Let � be a line of L . Then through � there are θn−3 tangent planes

and qn−2 secant planes.

Proof Denote by T� the number of tangent planes through �. Since every plane

through � contains a line of L , the remaining θn−2 − T� planes through � are secant

planes. Denote by L� the number of lines of L meeting � in one point. The number

L� is counted in two ways.
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Each point on � is a white point and lies on 1
2
qn−1 lines of L . Counting this way,

the line � itself has been included q + 1 times, so

L� = 1
2
qn−1(q + 1) − (q + 1)

= 1
2
(q + 1)(qn−1 − 2)

= 1
2
(q + 1)

[
(q − 1)θn−2 − 1

]
.

On the other hand, each line of L meeting � is contained in a plane through �.

Each tangent plane through � contains q2 lines of L and each secant plane through

� contains 1
2
q(q−1) lines of L . Counting this way, the line � itself has been included

θn−2 times, so

L� = q2T� + (θn−2 − T�)
1
2
q(q − 1) − θn−2

= 1
2
q(q + 1)T� + (1

2
q2 − 1

2
q − 1)θn−2

= 1
2
(q + 1)

[
qT� + (q − 2)θn−2

]
.

Equating these two expressions for L� and dividing by 1
2
(q + 1) gives

qT� + (q − 2)θn−2 = (q − 1)θn−2 − 1

qT� = θn−2 − 1 = qθn−3

T� = θn−3.

So there are θn−3 tangent planes through �, which implies there are qn−2 secant

planes through �. �

Note that this lemma ensures the existence of both tangent planes and secant planes,

since L is non-empty. The following lemma will make it possible to determine the

structure of the black points in the tangent and secant planes. In order to make the

discussion easier, the following notation is introduced. If π is a plane, then denote

by Wπ the number of white points in π and by Bπ the set of black points in π.

Lemma 6.1.3 Let π be a plane containing at least one line of L . Then Wπ is a

multiple of q + 1.
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Proof Denote by Lπ the number of lines of L in π, and by L1π the number of

lines of L meeting π in one point. The number L1π is counted in two ways.

Consider the lines of L through the points of π. Each black point in π lies on no

lines of L , and each white point in π lies on 1
2
qn−1 lines of L . Counting this way,

each line of L in π has been included (q + 1) times – once for each point on it. So

L1π = 1
2
qn−1Wπ − (q + 1)Lπ.

On the other hand, every line of L meeting π is contained in a 3-space through

π, so consider the lines of L in the 3-spaces through π. The plane π contains a

line of L , so every 3-space through π contains a line of L . By Condition (III) of

Theorem 6.1.1, the number of lines of L in every 3-space through π is congruent to 1

(mod q+1). Denote by Ak the number of 3-spaces through π containing k(q+1)+1

lines of L , for k ≥ 0. Counting this way, every line of L in π has been included θn−3

times – once for each 3-space through π. So L1π =
∑

k

[
k(q + 1) + 1

]
Ak − θn−3Lπ.

Equating these two expressions for L1π gives

1
2
qn−1Wπ − (q + 1)Lπ =

∑

k

[
k(q + 1) + 1

]
Ak − θn−3Lπ

qn−1Wπ − 2(q + 1)Lπ = 2
∑

k

[
k(q + 1) + 1

]
Ak − 2θn−3Lπ (6.1)

Since π contains lines of L , it follows that Lπ = q2 or 1
2
q(q − 1). In either case,

2Lπ ≡ 2 (mod q + 1), so reducing Equation 6.1 modulo (q + 1) gives

(−1)n−1Wπ ≡ 2
∑

k

Ak − 2θn−3 (mod q + 1)

≡ 2θn−3 − 2θn−3 (mod q + 1)

≡ 0 (mod q + 1)

Wπ ≡ 0 (mod q + 1).

That is, Wπ is a multiple of q + 1. �

Using the above lemma, it is now possible to find the number of black points in a

tangent plane.

Corollary 6.1.4 Each tangent plane has exactly one black point and the lines of

L in the plane are the lines not through this black point.
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Proof Let π be a tangent plane. Then π has q2 lines of L , which do not pass

through any black point in π. Since the number of lines not through a point in a

plane is q2, the plane π has at most one black point. Thus Wπ = q2 + q or q2 + q +1.

But Wπ ≡ 0 (mod q + 1), so Wπ = q2 + q. That is, π contains exactly one black

point, and the q2 lines of L in π are the lines not through this point. �

In order to find the structure of the black points in a secant plane, first the number

of black points on a line not in L is calculated.

Lemma 6.1.5 A line not in L contains 1, 2 or q + 1 black points.

Proof Let m be a line not in L . Denote by Wm the number of white points on

m, by Sm the number of secant planes through m and by Tm the number of tangent

planes through m. Finally, denote by Lm the number of lines of L meeting m in

one point. The number Lm is counted in two ways.

Each white point on m lies on 1
2
qn−1 lines of L , and each black point on m lies

on no lines of L . So Lm = 1
2
qn−1Wm. On the other hand, each secant plane

through m contains 1
2
q(q − 1) lines of L , and each tangent plane through m con-

tains q2 lines of L . The remaining planes through m contain no lines of L , so

Lm = 1
2
q(q − 1)Sm + q2Tm. Thus

1
2
qn−1Wm = 1

2
q(q − 1)Sm + q2Tm

qn−2Wm = (q − 1)Sm + 2qTm.

Suppose m is contained in a tangent plane π. By Corollary 6.1.4, the lines of π not

in L all pass through the unique black point in π. Thus m contains exactly one

black point.

Suppose m is not contained in a tangent plane. That is, suppose Tm = 0. The

above equation then becomes qn−2Wm = (q − 1)Sm. Since q and q − 1 are coprime,

it follows that qn−2 divides Sm. Now Sm ≤ θn−2 < 2qn−2. Thus Sm = 0 or qn−2 and

so Wm = 0 or q − 1. Hence m contains q + 1 or 2 black points. �

Denote by B the set of black points. Then the above lemma implies that B is a

Tallini set and that L is the set of external lines of B. Before B can be proved to

be a hyperoval cone, more must be proved about the structure of the black points

in a secant plane and a null plane.
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Lemma 6.1.6 The black points in a secant plane form a hyperoval.

Proof Let π be a secant plane and consider a line � of L in π. Every line of π

meets �, and so every line of π contains a white point. By Lemma 6.1.5, this implies

that every line of π contains 0, 1 or 2 black points. That is, the set Bπ of black

points in π is an arc. By Lemma 6.1.5, any line not in L contains a black point,

so the set of lines of L in π is the set of external lines of Bπ. Thus Bπ has exactly

1
2
q(q − 1) external lines.

By Corollary 1.1.7, it follows that Bπ is either an oval or a hyperoval. Thus Wπ = q2

or q2 − 1. By Lemma 6.1.3, the number of white points in π is a multiple of q + 1,

so Wπ = q2 − 1 and Bπ is a hyperoval. �

Lemma 6.1.7 The set of black points in a null plane contains a line.

Proof Let π be a null plane and suppose Bπ contains no lines. Then every line

of π contains 0, 1 or 2 black points. That is, the set Bπ is an arc. Every arc has

external lines, so there exists a line in π with no black points. By Lemma 6.1.5, the

lines with no black points are the lines of L , so π contains a line of L . This is a

contradiction, so Bπ contains a line. �

The set of black points B is a Tallini set by Lemma 6.1.5. In order to show that

B is a hyperoval cone, it is necessary to show that the singular space of B is an

(n − 3)-space. The following lemma makes this possible.

Lemma 6.1.8 A black point contained in a secant plane is a non-singular point of

B. A black point contained in a tangent plane is a singular point of B.

Proof Let π be a secant plane and let P be a black point in π. The set of black

points in π is a hyperoval, and every point on a hyperoval lies on q+1 secants. Thus

P lies on a secant of B and so P is a non-singular point of B.

Let π be a tangent plane and let V be the unique black point in π. To show that

V is a singular point of B, it must be shown that the lines through V are either

tangents or generator lines of B.

Consider a line m through V . If m is a line of π, then it is a tangent of B. Suppose

m is not a line of π.
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®

Vt

m Let t be a line of π through V and let α = t ⊕ m. By

Lemma 6.1.6, a secant plane meets B in a hyperoval and

so contains no tangents of B. Since t is a tangent of B in

α, the plane α is not a secant plane.

If α is a tangent plane, then P is its only black point, so

the line m is a tangent of B. If α is a null plane, then the set of black points in α

is a Tallini set containing a line, which also has a tangent t. Using the list of plane

Tallini sets in Lemma 2.1.4, this implies that the set of black points in α is either

a line through V or a pair of lines through V . In both cases the line m is either a

tangent or a generator line of B. (Note that this also applies in the case q = 2.)

Thus every line through V is a tangent or generator line of B. That is, V is a

singular point of B. �

The proof of Theorem 6.1.1 can now be completed.

Lemma 6.1.9 The set of black points B is a hyperoval cone of PG(n, q) and L is

its set of external lines.

Proof The set of black points B is a Tallini set by Lemma 6.1.5. Denote by V

the singular space of B.

Let � be a line of L . Then every black point lies in a unique plane through �. By

Lemma 6.1.8, the black points in the tangent planes through � are singular points

and the black points in the secant planes through � are non-singular points. Thus

the singular points of B are the black points in the tangent planes through �. By

Lemma 6.1.2, the line � lies on θn−3 tangent planes. By Corollary 6.1.4, each of

these planes contains one black point, so there are θn−3 singular points of B. Thus

the singular space V of B is an (n − 3)-space.

159



V

¼

Let π be a secant plane containing the hyperoval

Ō of black points. Since a secant plane contains no

singular points, the plane π is skew to V. Thus B

is the hyperoval cone VŌ by Lemma 2.1.6. Since

a line not in L contains a black point, it follows

that L is the set of external lines of VŌ. �

In the above lemma, if O is an oval obtained by removing one point of the hyperoval

Ō, then the oval cone VO has the same set of external lines as the hyperoval cone

VŌ by Lemma 1.4.11. Thus L is the set of external lines of q + 2 oval cones. This

completes the proof of Theorem 6.1.1.

6.2 The external lines of a quadral of parabolic

type.

In the previous section, the set of external lines of an oval cone of PG(n, q), q even,

was characterised by some of its combinatorial properties. In this section, this result

is generalised to the set of external lines of any quadral of parabolic type.

Let Q be a quadral of parabolic type in PG(n, q), q even, n ≥ 2 (see Definition 1.6.2)

and let L be the set of external lines of Q. Then L has the following two properties:

(I) The number of lines of L through any point is 0 or 1
2
qn−1,

(II) The number of lines of L in any plane is 0, q2 or 1
2
q(q − 1).

Property (I) is given in Theorem 1.6.7. Property (II) follows from the fact that

every plane meets Q in a point, a line, a pair of lines, an oval or the whole plane.

By Lemma 3.1.4, only the first property is needed to show that a set of lines in

PG(2, q) is the external lines of an oval. In the proof of Theorem 4.1.1, both were

used to show that a set of lines in PG(3, q) is the external lines of an oval cone.

However, the two conditions do not seem to be sufficient to prove that a set of lines

in PG(n, q), n ≥ 4, is the external lines of a quadral of parabolic type.
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In the proof of Theorem 6.1.1, many of the crucial arguments relied on the fact that

a plane containing q2 lines of “L ” also contains a “black” point. For this reason,

the condition that every plane contains a “black” point has been chosen in order to

complete the characterisation. That is, the following theorem is proved.

Theorem 6.2.1 Let L be a set of lines in PG(n, q), n ≥ 4, q even, such that

(I) The number of lines of L through a point of PG(n, q) is 0 or 1
2
qn−1,

(II) The number of lines of L in a plane of PG(n, q) is 0, q2 or 1
2
q(q − 1),

(III) Every plane of PG(n, q) contains at least one point which lies on no

lines of L .

Then L is the set of external lines of a quadral of parabolic type.

The proof of Theorem 6.2.1

Let L be a set of lines of PG(n, q), n ≥ 4, q even, with the properties described

in Theorem 6.2.1. By a series of lemmas, it is proved that L is the set of external

lines of a quadral of parabolic type. In order to make the argument clearer, some

terminology is introduced.

• A point on 0 lines of L is called a black point. A point on 1
2
qn−1 lines of L

is called a white point.

• A plane containing 0 lines of L is called an null plane. A plane containing q2

lines of L is called a tangent plane. A plane containing 1
2
q(q − 1) lines of L

is called a secant plane.

Firstly, note that a hyperplane is a quadral of parabolic type which has no external

lines. Thus if L is empty, it is the set of external lines of a quadral of parabolic

type. Assume from now on that L is non-empty.
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Lemma 6.2.2 Let � be a line of L . Then through � there are qn−2 secant planes

and θn−3 tangent planes.

Proof Let T� be the number of tangent planes through �. Then the number of

secant planes through � is θn−2 − T�, since there are no lines of L in a null plane.

Denote by L� the number of lines of L meeting � in one point. The number L� is

counted in two ways.

Each point on � lies on 1
2
qn−1 lines of L including �. Counting this way, � itself has

been included q + 1 times, so L� = 1
2
qn−1(q + 1) − (q + 1).

On the other hand, each tangent plane through � contains q2 lines of L , and each

secant plane through � contains 1
2
q(q− 1) lines of L . Counting this way, � itself has

been included θn−2 times, so L� = q2T� + 1
2
q(q − 1)(θn−2 − T�) − θn−2.

Equating these two expressions for L� and solving for T� gives T� = θn−3. That is,

the number of tangent planes through � is θn−3. Thus the number of secant planes

through � is θn−2 − θn−3 = qn−2. �

Note that since L is non-empty, the above lemma implies the existence of both

tangent planes and secant planes. The next lemma determines the number of black

points in a tangent plane.

Lemma 6.2.3 Let π be a tangent plane. Then there is exactly one black point in π

and the lines of L in π are the lines not through this point.

Proof There is at least one black point in π by Condition III of Theorem 6.2.1.

Let V be a black point in π. There are q2 lines of π not through V . On the other

hand, there are q2 lines of L in π, none of which contain a black point. Thus V is

the only black point in π and the lines of L in π are the lines not through V . �

Using the above lemma, the number of black points on a line not in L can now be

counted.

162



Lemma 6.2.4 Let m be a line not in L . Then m has 1, 2 or q + 1 black points.

Proof Suppose the tangent plane π passes through � and denote the unique black

point in π by V . By Lemma 6.2.3, the lines of π not through V are lines of L , so

m passes through V , since it is not a line of L . Thus m contains exactly one black

point.

Suppose m is contained in no tangent planes. Denote by Sm the number of secant

planes through m and by Wm the number of white points on m. Denote by Lm the

number of lines of � meeting m in one point. The number Lm is counted in two

ways.

Each white point on m lies on 1
2
qn−1 lines of L and the remaining points lie on no

lines of L , so Lm = 1
2
qn−1Wm. Each secant plane through m contains 1

2
q(q − 1)

lines of L and the remaining planes contain no lines of L . So Lm = 1
2
q(q − 1)Sm.

Equating these two expressions gives

1
2
qn−1Wm = 1

2
q(q − 1)Sm

qn−2Wm = (q − 1)Sm.

Since (q − 1) and q are coprime, it follows that qn−2 divides Sm. Since Sm is a

number of planes through a line, Sm ≤ θn−2 < 2qn−2. Thus Sm = 0 or qn−2, and so

Wm = 0 or q − 1. Hence the number of black points on m is either q + 1 or 2. �

Denote by B the set of black points. The above lemma implies that B is a Tallini

set and that the lines of L are the external lines of B. In order to show that B is a

quadral of parabolic type, the structure of the black points in a secant plane needs

to be determined.

163



Lemma 6.2.5 Let π be a secant plane. Then the black points in π form a hyperoval

or an oval.

Proof Denote the set of black points in π by Bπ and let � be a line of L in π.

Every line of π meets � in a white point, so by Lemma 6.2.4, every line of π contains

0, 1 or 2 black points. Thus Bπ is an arc. The lines of L in π are the lines with

no black points, so Bπ has exactly 1
2
q(q − 1) external lines. By Corollary 1.1.7, it

follows that Bπ is either an oval or a hyperoval. �

Now the size of the Tallini set B can be calculated.

Lemma 6.2.6 There are at least θn−1 black points.

Proof Let � be a line of L . By Lemma 6.2.5, each of the qn−2 secant planes

through � contains at least q + 1 black points, and by Lemma 6.2.3, each of the

θn−3 tangent planes through � contains exactly one black point. Thus |B| ≥ (q +

1)qn−2 + θn−3 = θn−1. �

The above lemma makes it possible to use the characterisation of large Tallini sets

for q > 2 given in Theorem 2.1.10. For q = 2, the following lemma is required.

Lemma 6.2.7 Suppose q = 2. Then no plane has exactly 2 or 6 black points.

Proof Suppose π is a plane containing exactly 2 black points. Then there exists

a line � in π containing no black points. By Lemma 6.2.4, the line � is a line of

L . Thus π is a tangent plane or a secant plane. By Lemmas 6.2.3 and 6.2.5, the

number of black points in π is 1, 3 or 4. This is a contradiction, so no plane has

exactly 2 black points.
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Suppose π is a plane containing exactly 6 black points and

let P be the unique white point in π. Suppose Π is a 3-space

through π containing two lines �1 and �2 of L through P .

Consider the plane α = �1 ⊕ �2. The plane α meets π in a

line. Since all the points of π except P are black, this line

contains two black points. By Lemma 6.2.3, a tangent plane contains exactly one

black point. Thus α is a secant plane. However, the number of lines of L in a

secant plane is 1
2
q(q − 1) = 1. This is a contradiction, since π contains two lines of

L . So every 3-space through Π contains at most one line of L through P .

The number of 3-spaces through π is θn−3 = 2n−2−1. Each of these 3-spaces contains

at most one line of L through P . Since each line of L through P is contained in a

3-space through π, this implies that there are at most 2n−2−1 lines of L through P .

But the number of lines of L through P is 1
2
qn−1 = 2n−2. This is a contradiction,

so no plane contains exactly 6 black points. �

The proof of Theorem 6.2.1 can now be completed.

Lemma 6.2.8 The set of lines L is the set of external lines of a quadral of parabolic

type.

Proof The set of black points B is a Tallini set with at least θn−1 points by

Lemmas 6.2.4 and 6.2.6. If q = 2, then no plane meets B in 0, 2 or 6 points

by Lemma 6.2.7. By Theorems 2.1.10 and 2.1.11, the Tallini set B is either a

hyperplane plus a subspace, a quadric of hyperbolic type or a quadric of parabolic

type plus a subspace contained in its nuclear space.

If B contains a hyperplane, then it has no external lines and L is empty, which is a

contradiction. If B is a quadral of hyperbolic type containing no hyperplanes, then

Theorem 1.6.7 implies that a point not in B lies on greater than 1
2
qn−1 external

lines. This is also a contradiction. Thus, B is a quadral Q of parabolic type plus a

subspace contained in its nuclear space N.

If P is a point in the nuclear space N but not in Q, then every line through P meets

Q in a unique (black) point. Thus a line through P is not a line of L . Since L is

the set of external lines of B, this implies that L is also the set of external lines of

the quadral Q of parabolic type. �
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Chapter 7

The intersection of ovals and

ovoids

In Chapter 3, Theorem 3.2.6 of Durante and Olanda [29] was presented, which

characterises the set of external lines of an ovoid by its combinatorial properties. In

the proof of this result, the set of points lying on no external lines is shown to be

an ovoid. Thus, an ovoid Ω is uniquely determined by its set of external lines. It is

reasonable to ask how many of the external lines are needed to uniquely determine

Ω. An alternative way to ask this question is to ask how many external lines two

distinct ovoids can share. This naturally leads to the question of how many points

two distinct ovoids can share, and in what configuration. These questions are the

subject of this chapter.

The chapter begins with an investigation of the intersection of ovals, and then moves

on to prove several existing and new results concerning the relationships between

the number of shared points, lines and planes of ovoids. Using this information, a

new bound is proved for the number of points two distinct ovoids can share. This

new bound makes it possible to investigate configurations of shared external lines,

secants and points. Finally, the action of certain collineations on ovoids is used to

prove new results on the intersection of two ovoids sharing all of their tangents.
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7.1 The intersection of two ovals

Let OA and OB be two ovals in PG(2, q). A point in both ΩA and ΩB is called a

shared point. Similarly, a line is called a shared tangent when it is a tangent of both

ovals. Similar definitions apply for shared secants and external lines. Note that it is

possible for a shared tangent to meet each oval in a different point. In this section,

several results are collected about the number of shared points or lines that OA and

OB may have.

First it is appropriate to describe how two non-singular conics meet. This is a

corollary of Lemma 1.5.25.

Theorem 7.1.1 [36, Chapter 7] Two distinct conics share at most 4 points.

When q is odd, all ovals are conics, so the above theorem describes the situation

for all ovals. When q is even, there exist ovals that are not conics. Moreover, every

oval is contained in a hyperoval which contains q + 1 other ovals, and two ovals

contained in the same hyperoval share exactly q points. Thus it is the intersection

of hyperovals that is of interest for q even.

Theorem 7.1.2 [36, Chapter 8] Two distinct hyperovals of PG(2, q), q even, share

at most 1
2
q + 1 points. Hence, two distinct ovals of PG(2, q), q even, sharing a

nucleus, share at most 1
2
q points.

It is also possible to consider the number of shared tangents that two ovals have.

For q even, two distinct ovals may share a nucleus and so share all of their tangents.

Otherwise two distinct ovals share exactly one tangent. For q odd, the set of tangents

of a non-singular conic C is a non-singular conic of the dual plane PG(2, q)∗ by

Lemma 1.5.22. Also, C is determined by its set of tangents. Thus two non-singular

conics in PG(2, q), q odd, share at most 4 tangents.

The following result shows that two ovals cannot share all of their secants.

Corollary 7.1.3 Let O be an oval of PG(2, q) and let S be the set of secants of

O. Then O is the only oval with S as its set of secants.
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Proof The points on O lie on q secants of O. If q is even, the points not on O lie

on 0 or 1
2
q secants by Lemma 1.1.14. If q is odd, the points not on O lie on 1

2
(q + 1)

or 1
2
(q − 1) secants by Lemma 1.1.8. Thus the points of PG(2, q) which lie on q

secants are the points of O. Hence, O is the only oval with S as its set of secants.

�

This result will be useful when the shared secants and external lines of ovoids are

considered in Section 7.7.

7.2 Relationships Between Shared Points, Shared

Tangents and Shared Tangent Planes

Let ΩA and ΩB be two ovoids. A point in both ΩA and ΩB is called a shared point.

Similarly, a line is called a shared tangent when it is a tangent of both ovoids, and

a plane is called a shared tangent plane when it is a tangent plane of both ovoids.

Similar definitions apply for shared external lines, shared secants and shared secant

planes. Note that a shared tangent may meet the two ovoids in different points, and

a shared tangent plane may meet the two ovoids in different points.

In this section, several relationships between the numbers of shared points, shared

tangents and shared tangent planes are proved. The first result provides a relation-

ship for all q between the number of shared points and the number of shared tangent

planes. This result was proved by Bruen and Hirschfeld [14] for elliptic quadrics,

but the proof can be applied to any ovoid.

Lemma 7.2.1 Let ΩA and ΩB be two ovoids of PG(3, q). Then the number of shared

tangent planes is the same as the number of shared points of ΩA and ΩB.

Proof Let x be the number of shared points of ΩA and ΩB and z the number of

shared tangent planes. Consider the set X = {(P, π) | P is a point of ΩA, π is a

tangent plane of ΩB, P ∈ π }. The size of X is counted in two ways.

Count P first, then π: If P ∈ ΩB, then it lies on 1 tangent plane of ΩB. If P /∈ ΩB,

then it lies on q + 1 tangent planes of ΩB.
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Thus |X| = x · 1 + (q2 + 1 − x)(q + 1) = (q + 1)(q2 + 1) − qx.

Count π first, then P : If π is a tangent plane of ΩA, then it has 1 point of ΩA.

Otherwise, π has q + 1 points of ΩA.

Thus |X| = z · 1 + (q2 + 1 − z)(q + 1) = (q + 1)(q2 + 1) − qz.

Hence, (q +1)(q2 +1)− qx = (q +1)(q2 +1)− qz and so x = z. That is, the number

of shared points is the same as the number of shared tangent planes. �

The above result implies that an ovoid is uniquely determined by its set of tangent

planes. This can also be seen using duality. The tangent planes of an ovoid Ω form

an ovoid Ω∗ of the dual space PG(3, q)∗, and the tangent planes of Ω∗ in the dual

space are the points of Ω. Thus Ω is determined by Ω∗.

When q is odd, the tangents of an elliptic quadric E through a point P are only

coplanar when P lies on E . Thus the points of E are determined by the tangents

of E . So, two distinct elliptic quadrics in PG(3, q), q odd, cannot share all of their

tangents.

This is not the case when q is even. When q is even, the tangents of an ovoid form

a general linear complex, and there are many examples of ovoids sharing the same

general linear complex of tangents. However, the structure of the tangents of an

ovoid when q is even does make it possible to fully describe the shared tangents of

two ovoids.

Lemma 7.2.2 Let ΩA and ΩB be two ovoids of PG(3, q), q even. If ΩA and ΩB do

not share all of their tangents, then the shared tangents form a regular spread, the

set of transversals of two skew lines, or q + 1 pencils sharing a line.

Proof Denote by TA the set of tangents of ΩA and by TB the set of tangents of

ΩB. By Theorem 1.2.18, the sets of lines TA and TB are general linear complexes,

so the set of shared tangents is a linear congruence. A linear congruence contained

in a general linear complex is one of the possibilities listed (see Section 0.4). �

Note that by Lemma 1.2.19, the tangents meeting a secant � of an ovoid Ω in

PG(3, q), q even, are the transversals of � and its polar line. So, if the polar of a

shared secant � is the same with respect to both ovoids, then the two ovoids either

share of all their tangents, or they share the tangents meeting �. This information

can be used to give some conditions for when two ovoids share all of their tangents.
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Lemma 7.2.3 Let ΩA and ΩB be two ovoids of PG(3, q), q even. Suppose there

exist two shared points P and Q, each lying in a shared tangent plane. Then all

tangents of ΩA meeting the shared secant PQ are shared tangents.

Proof Denote the polarity of ΩA by σA, the polarity of ΩB by σB, and the line

PQ by �. Since the shared point P lies on a shared tangent plane, it follows that

σA(P ) = σB(P ). Similarly σA(Q) = σB(Q).

Thus σA(�) = σA(PQ) = σA(P ) ∩ σA(Q) = σB(P ) ∩ σB(Q) = σB(PQ) = σB(�).

By Lemma 1.2.19, the tangents of ΩA meeting � are the transversals of � and

σA(�), and the tangents of ΩB meeting � are the transversals of � and σB(�). But

σB(�) = σA(�), so the tangents of ΩA meeting � are also tangents of ΩB. That is,

they are shared tangents. �

Lemma 7.2.4 Let ΩA and ΩB be two ovoids of PG(3, q), q even. Suppose that ΩA

and ΩB have at least three shared points, each lying in a shared tangent plane. Then

ΩA and ΩB share all of their tangents.

Proof Let P , Q and R be three shared points, each lying in a shared tangent

plane. By Lemma 7.2.3, the ovoids ΩA and ΩB share all tangents meeting the line

PQ. By Lemma 1.2.19, these shared tangents are the transversals of two skew lines.

Lemma 7.2.2 implies that if ΩA and ΩB share any further tangents then they must

share all of their tangents. By Lemma 7.2.3, the ovoids ΩA and ΩB also share all

tangents meeting QR and RP . Thus ΩA and ΩB share all of their tangents. �

Using the above relationships, it is possible to give bounds on the intersection of

ovoids. First, the intersection of elliptic quadrics is described.
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7.3 Intersections of elliptic quadrics.

In this section, some results are stated concerning the intersection of elliptic quadrics

in PG(3, q).

Let E1 and E2 be distinct elliptic quadrics of PG(3, q). The intersection of E1 and

E2 is the set of points in PG(3, q) satisfying the equations of both E1 and E2. This

set of points is known as a quartic curve. It is known that a quartic curve has at

most 2(q + 1) points (see [15]). Thus the following theorem holds

Lemma 7.3.1 [15] Two distinct elliptic quadrics in PG(3, q) intersect in at most

2(q + 1) points.

It is important to note that the above bound is too large for the smallest values of q.

If q = 2, an elliptic quadric has 5 points and two distinct elliptic quadrics share at

most 3 points. If q = 3, an elliptic quadric has 10 points, and two distinct elliptic

quadrics share at most 5 points. If q = 4, an elliptic quadric has 17 points, and two

distinct elliptic quadrics share at most 9 points.

If the intersection of the two quadrics is known to contain the points of a non-

singular conic in a plane, then more can be said. The following lemma is taken from

the results in [15].

Lemma 7.3.2 [15] Let E1 and E2 be distinct elliptic quadrics of PG(3, q). Let π be

a plane and let C be a non-singular conic in π. Suppose that E1 ∩ E2 contains C .

Then E1 ∩ E2 is one of the following sets of points.

0

¼0¼

¼¼

0

¼0¼

0

¼0¼
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• The non-singular conic C ,

• The non-singular conic C , plus one point lying in a shared tangent plane,

• The non-singular conic C , plus a second non-singular conic C ′ in a second

plane π′.

Note that the maximum possible intersection of two elliptic quadrics is provided by

two non-singular conics C1 and C2 in two planes such that C1 and C2 are disjoint.

It is important to note that if the points in PG(3, q2) satisfying the equations of E1

and E2 are also considered, then the two conics C1 and C2 are no longer disjoint but

share exaclty two points on the line π ∩ π′.

The above statements apply when q is even or odd. When q is even, the two

elliptic quadrics may share all of their tangents, which further restricts the possible

intersections. The following theorem was proved by Glynn [34].

Theorem 7.3.3 Let E1 and E2 be distinct elliptic quadrics of PG(3, q), q even. If

E1 and E2 share all of their tangents, then they either meet in one point, or they

meet in the q + 1 points of a non-singular conic section.

7.4 Bounds on the intersection of ovoids.

In 1959, Segre [51] proved the following result about the size of the intersection of

ovoids.

Theorem 7.4.1 [51] Let ΩA and ΩB be distinct ovoids of PG(3, q). Then ΩA and

ΩB share at most 1
2
q(q + 1) + 1 points.
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Proof Let Ω be an ovoid and let K be a set of 1
2
q(q + 1) + 2 points contained

in Ω. It will be shown that if K is contained in a larger cap, then this cap is also

contained in Ω. This will be done by showing that a point not on Ω lies on a secant

of K .

Let P /∈ Ω. There are 1
2
q(q − 1) secants of Ω and q + 1 tangents of Ω through P .

Thus there are 1
2
q(q + 1) + 1 lines through P meeting Ω. However, K contains

1
2
q(q + 1) + 2 points, and is contained in Ω. Hence, at least one of the lines through

P has two points of K .

Thus any cap containing K is contained in Ω. In particular, any ovoid containing

K coincides with Ω. Hence, two distinct ovoids cannot share 1
2
q(q + 1) + 2 points.

�

In the cases of q odd, q = 2 and q = 4, every ovoid is an elliptic quadric and

the intersections of elliptic quadrics were described in Section 7.3. In all of these

cases, the maximum number of points that two elliptic quadrics can share is smaller

than the bound given in Theorem 7.4.1. For q even, q > 4, the bound given in

Theorem 7.4.1 is the best existing bound for general ovoids.

If two ovoids share all of their tangents, then there is a smaller bound, proved by

Glynn [34]. Glynn’s proof used special representations of ovoids, but a more direct

proof is given here.

Theorem 7.4.2 [34] Let ΩA and ΩB be distinct ovoids of PG(3, q), q even, sharing

all their tangents. Then ΩA and ΩB share at most 1
2
q(q − 1) points.

ΩA ΩB

P

X
Proof Let K = ΩA ∩ΩB and let P be a

point of ΩB not in ΩA. Let X be a point

of K and consider the line PX.

The line PX is a secant of ΩB, so it con-

tains no further point of K . Since all tan-

gents of ΩA are tangents of ΩB and PX is a secant of ΩB, the line PX is not a

tangent of ΩA. Since PX contains the point X of ΩA, the line PX is a secant of

ΩA. Hence, each point of K lies on a secant of ΩA through P , and each such secant
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contains at most one point of K . There are 1
2
q(q − 1) secants of ΩA through P , so

there are at most 1
2
q(q − 1) points of K . �

Note that in the above proof, it is not actually necessary for ΩA and ΩB to share

all of their tangents. It is only necessary for them to share the tangents through a

point in one but not the other.

Theorems 7.4.1 and 7.4.2 are the best existing bounds for the size of the intersection

of two ovoids. However, using Theorem 7.4.2 and the structure of the shared tangents

of two ovoids, it is possible to improve the bound given in Theorem 7.4.1.

Theorem 7.4.3 Let ΩA and ΩB be distinct ovoids of PG(3, q), q even. Then ΩA

and ΩB share at most 1
2
q2 + 1 points.

Proof Suppose ΩA and ΩB share 1
2
q2+1+a points for a ≥ 1. Then they also share

1
2
q2 + 1 + a tangent planes by Lemma 7.2.1. Each of these tangent planes contains

one point of ΩA. There are 1
2
q2 − a points of ΩA \ ΩB, so there are at most 1

2
q2 − a

shared tangent planes containing a point of ΩA \ ΩB. It follows that the number of

shared tangent planes containing a point of ΩA ∩ ΩB is at least 2a + 1 ≥ 3. Thus

there exist three shared points each lying on a shared tangent plane. Lemma 7.2.4

then implies that ΩA and ΩB share all of their tangents.

Two distinct ovoids sharing all of their tangents share at most 1
2
q(q − 1) points by

Theorem 7.4.2. But ΩA and ΩB share 1
2
q2 + 1 + a points, which is greater than

1
2
q(q − 1). This is a contradiction, so ΩA and ΩB share at most 1

2
q2 + 1 points. �

Note that T. Penttila (personal communication) has found examples of Tits ovoids

in PG(3, 8) sharing exactly 1
2
× 82 + 1 = 33 points, so the above bound is sharp.

That is, it is the best possible bound for at least the cases q = 2, 4 and 8.

The bound given in Theorem 7.4.3 will be used later in this chapter to investigate

the structure of the external lines and secants that two ovoids share.
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7.5 Ovoidal fibrations

Thus far, upper bounds on the number of points that two distinct ovoids share have

been considered. In Section 7.6, further results will be proved on ovoids sharing all

their tangents. In order to do this, certain sets of mutually disjoint ovoids are used.

Definition 7.5.1 A set of q + 1 mutually disjoint ovoids of PG(3, q) is called an

ovoidal fibration of PG(3, q).

Note that since the number of points in PG(3, q) is (q + 1)(q2 + 1), the ovoids of

an ovoidal fibration partition the points of PG(3, q). Ebert [30] first constructed

an ovoidal fibration using the orbits of a subgroup of a cyclic Singer group. In

[22], these ovoids were shown to be elliptic quadrics. Cossidente and Veerecke [23]

used group theory to construct an ovoidal fibration of PG(3, 8) using both elliptic

quadrics and Tits ovoids.

The first result in this section shows that when q is even, it is possible to construct

an ovoidal fibration from any ovoid. This result was mentioned without proof in

[28].

Theorem 7.5.2 Let Ω be an ovoid of PG(3, q), q even, and let S be a regular

spread contained in the set of tangents of Ω. Let G be the kernel of S , and let

G(Ω) = {g(Ω) | g ∈ G} be the set of images of Ω under G. Then G(Ω) is an ovoidal

fibration.

Proof Firstly note that the set of tangents of Ω is a general linear complex by

Lemma 1.2.18. This general linear complex contains many elliptic linear congru-

ences. An elliptic linear congruence is a regular spread, so there do exist regular

spreads contained in the set of tangents of Ω.

The group G is the set of collineations fixing each line of the regular spread S , so

by Lemma 0.4.10, |G| = q + 1. Thus G(Ω) is a set of q + 1 ovoids. It is required to

show that any two ovoids of G(Ω) are disjoint.
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Let g1 and g2 be collineations in G and suppose P is a point of g1(Ω) ∩ g2(Ω).

Then P = g1(Q1) for some Q1 ∈ Ω and also P = g2(Q2) for some Q2 ∈ Ω. Thus

Q1 = g−1
1 (P ) and Q2 = g−1

2 (P ).

Let � be the unique line of S through P . Then � is fixed by both g−1
1 and g−1

2 , since

these are collineations in G. Thus g−1
1 (P ) = Q1 ∈ � and g−1

2 (P ) = Q2 ∈ �. However,

� is a tangent of Ω and so contains exactly one point of Ω. Since Q1 and Q2 are

both points of Ω on �, it follows that Q1 = Q2.

Now g2(Q2) = P and g1(Q2) = g1(Q1) = P . By Lemma 0.4.7, no two collineations

in G send Q2 to the same point. Thus g1 = g2 and g1(Ω) = g2(Ω).

Hence, two distinct ovoids of G(Ω) are disjoint, and so G(Ω) is an ovoidal fibration.

�

If the ovoid Ω is an elliptic quadric and the regular spread S is chosen correctly,

then the above construction produces the ovoidal fibration originally constructed by

Ebert in [30]. There are some very special properties of this fibration, which will be

described now.

Lemma 7.5.3 Let E be an elliptic quadric of PG(3, q), q even. Then there exists

a cyclic Singer group S of PG(3, q) with the following properties:

• S contains a subgroup G of order q +1, which is the kernel of a regular spread

S contained in the set of tangents of E ;

• S contains a subgroup H of order q2 + 1 such that the orbits of H are the

elliptic quadrics in the ovoidal fibration G(E ), including E itself;

• Each line of PG(3, q) not in S is a tangent of exactly one of the elliptic

quadrics of G(E ).
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Proof Let S be a cyclic Singer group of PG(3, q). Since S is cyclic, there is a unique

subgroup of S of order d for each number d dividing the order of S (Lemma 0.1.6).

Now |S| = q3 + q2 + q + 1 = (q + 1)(q2 + 1), so S has unique subgroups of size q + 1

and q2 + 1. Denote these subgroups by G and H respectively.

In [33], Glynn showed that the orbits of G form a regular spread (Lemma 0.4.11).

That is, each orbit forms a line of PG(3, q) and the set of these lines is a regular

spread. In [30], Ebert showed that the orbits of the group H form an ovoidal

fibration. That is, the orbits of H are disjoint ovoids partitioning the points of

PG(3, q). In [22], it was shown that these ovoids are in fact elliptic quadrics.

Let S be the regular spread formed by the orbits of G and let E ′ be one of the orbits

of H. Note that since G is of order q + 1, it is the kernel of S by Corollary 0.4.8.

Let P ∈ E ′ and let � be the unique line of the spread S through P . Suppose Q is a

point of E ′ on �. Since E ′ is an orbit of H, Q = h(P ) for some h ∈ H. On the other

hand, since � is an orbit of G, Q = g(P ) for some g ∈ G. Then g(P ) = h(P ). From

the definition of a cyclic Singer group (Definition 0.3.6), it follows that g = h. The

element g is contained in both G and H, so its order divides both q + 1 and q2 + 1

by Corollary 0.1.4. However, q + 1 and q2 + 1 are coprime when q is even, so the

order of g is 1. That is, g = ι and so P = Q. Hence, the line � contains exactly one

point of E ′. Since there are q2 + 1 lines of S and q2 + 1 points of E ′, this implies

that the regular spread S is contained in the set of tangents of E ′.

Let g ∈ G and h ∈ H. Then hg = gh, since g and h are elements of the abelian

group S. Hence h(g(E ′)) = g(h(E ′)) = g(E ′), since E ′ is an orbit of H. Thus

g(E ′) is fixed by every element of H. Since no element of H fixes any point and

|H| = |g(E ′)| = q2 + 1, it follows that g(E ′) is an orbit of H. That is, the orbits of

H are the elliptic quadrics in the fibration G(E ′).

In [30], it was shown that the number of lines that are tangents of all of the elliptic

quadrics in the fibration G(E ′) is q2 + 1, and that every other line of PG(3, q) is

a tangent of exactly one of the elliptic quadrics. That is, any line not in S is a

tangent of exactly one elliptic quadric of the fibration G(E ′).

Finally, every elliptic quadric of PG(3, q) is projectively equivalent to E ′, so the

result follows. �
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This section is completed with a result on general ovoidal fibrations. In the above

lemma, the lines of the regular spread S are the shared tangents of the elliptic

quadrics in the ovoidal fibration. Also, every line not in S is a tangent of one of

the elliptic quadrics in the fibration. This property is also true of the other existing

examples of ovoidal fibrations, even those containing two different types of ovoids.

The result below shows that it is true for any ovoidal fibration.

Theorem 7.5.4 Let F be an ovoidal fibration of PG(3, q), q even. Then there

exists a regular spread S such that S is the set of shared tangents of every pair of

ovoids of F . Moreover, every line of PG(3, q) not in S is a tangent of exactly one

of the ovoids in F .

Proof Denote the q + 1 ovoids of the fibration F by Ω0, Ω1, . . . , Ωq. Let π be a

plane and let s be the number of ovoids Ωi from F such that π is a secant plane of

Ωi. The remaining q + 1 − s ovoids of F have π as a tangent plane. The ovoids of

F partition the points of π, so s(q + 1) + (q + 1− s) · 1 = q2 + q + 1. It follows that

s = q. Thus every plane is a tangent plane of exactly one ovoid of F .

Let � be a line of PG(3, q) and suppose � is not a tangent of any ovoid of F . Then

� contains 0 or 2 points of each ovoid of F . This implies there are an even number

of points of � lying on the ovoids of F . Since the ovoids of F partition all points of

PG(3, q), this implies there are an even number of points on �. However, � contains

q + 1 points, which is odd. This is a contradiction, so � is a tangent of at least one

ovoid of F .

Suppose π is a tangent plane of Ωj and denote the point π ∩Ωj by Nj. The plane π

is a secant plane of Ωi for i �= j. For each i �= j, denote the oval where π meets Ωi

by Oi and denote the nucleus of Oi by Ni. Since every line of PG(3, q) is a tangent

of at least one ovoid of F , it follows that every line of π passes through at least one

of the points N0, . . . , Nq. Denote by N the set of points {N0, . . . , Nq}.

Let P be a point of π not in the set N . Every line through P contains at least

one point of N . There are q + 1 lines through P , so every line through P contains

exactly one point of N . This implies that the q+1 points of N are distinct. It also

implies that if a line contains a point not in N , then it contains exactly one point

of N . The line joining N0 and Nq contains two points of N , and so every point
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on this line is a point of N . Thus the set N is a line. The line N is necessarily a

tangent of each ovoid of F . Each of the remaining lines of π is a tangent of exactly

one ovoid of F .

Thus, every plane contains one line which is a tangent of every ovoid of F . This

implies that the set of lines that are tangents of every ovoid of Ω forms a spread S .

Every line not in this spread is a tangent of exactly one ovoid of F . Thus S is the

set of shared tangents of any two ovoids of F . Since the set of shared tangents of

two ovoids forms a linear congruence, the spread S is a regular spread. �

The above result will be useful in future research on the possible fibrations that

can exist. The fibrations themselves are useful for investigating the intersection of

ovoids, which is the subject of the following section.

7.6 The intersection of ovoids sharing all tangents

The question of how two ovoids may meet is a very difficult one, and is not even

fully solved for elliptic quadrics. Many authors have considered the question under

the assumption that the two ovoids share all of their tangents. In this section, some

existing results about this question will be generalised.

In his PhD thesis, Glynn [34] showed that two distinct elliptic quadrics sharing all

of their tangents meet in 1 or q + 1 points. Bagchi and Sastry [1] showed that an

elliptic quadric and a Tits ovoid sharing all of their tangents meet in q ± √
2q + 1

points. If it is only assumed that one of the ovoids is of a known type, then the

exact size of the intersection has not yet been isolated. However, Bagchi and Sastry

[2] and Ball [3] have showed the following result, each using different methods.

Theorem 7.6.1 [2, 3] Let ΩA and ΩB be ovoids of PG(3, q), q even, sharing all

of their tangents, and suppose that ΩA is either an elliptic quadric or a Tits ovoid.

Then ΩA and ΩB share an odd number of points. In particular, they share at least

one point.

Here, Theorem 7.6.1 is generalised to any pair of ovoids sharing all of their tangents.

That is, it is not necessary to assume one is an elliptic quadric or a Tits ovoid.
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Theorem 7.6.2 Let ΩA and ΩB be ovoids of PG(3, q), q even, sharing all of their

tangents. Then ΩA and ΩB share an odd number of points. In particular, they share

at least one point.

Proof Let ΩA and ΩB be two ovoids sharing all of their tangents. Let ρ be the

null polarity defined by their shared general linear complex of tangents, and let S

be a regular spread contained in this linear complex. Let G be the kernel of S

and let G(ΩB) = {g(ΩB) | g ∈ G} be the set of images of ΩB under G. Then the

q + 1 ovoids of G(ΩB) form an ovoidal fibration by Theorem 7.5.2. Thus the ovoids

partition all of the points of PG(3, q) and the points of ΩA in particular.

For each g ∈ G define xg = |g(ΩB) ∩ ΩA|. In particular, xι = |ΩB ∩ ΩA|, where ι is

the identity collineation. Since the ovoids of G(ΩB) partition the points of ΩA,

∑

g∈G

xg = |ΩA|

xι +
∑

g∈G\{ι}
xg = q2 + 1

|ΩB ∩ ΩA| +
∑

g∈G\{ι}
xg = q2 + 1. (7.1)

It will be shown that the sum
∑

g∈G\{ι} xg on the left-hand side of Equation 7.1 is

an even number. In order to show this, it will be proved that xg = xg−1 for any

g ∈ G. Let g ∈ G and consider the ovoids g(ΩB) and ΩA. These ovoids share xg

points, and Lemma 7.2.1 implies that they also share xg tangent planes.

g(ΩB) ΩA

g(P  ) Q

¼
Let π be one of these shared tangent planes.

Then π contains one point of g(ΩB) and

one point of ΩA. Let g(P ) be the point of

g(ΩB) in π (for some P ∈ ΩB), and let Q

be the point of ΩA in π.

The tangent plane of ΩA at Q is the image of Q under the polarity of ΩA. That is,

π = ρ(Q). Similarly, the tangent plane of ΩB at P is ρ(P ), so the tangent plane of

g(ΩB) at g(P ) is gρ(P ). That is, π = gρ(P ). Hence ρ(Q) = gρ(P ) = ρg−1(P ) by

Corollary 0.4.12. Thus Q = g−1(P ) and Q is a point of g−1(ΩB) ∩ ΩA.
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Each tangent plane of ΩA contains a different point of ΩA, so the xg shared tangent

planes of g(ΩB) and ΩA define xg points of g−1(ΩB)∩ΩA. Thus xg−1 ≥ xg. However,

the same argument beginning with g−1 shows that xg ≥ xg−1 , so xg = xg−1 for all

g ∈ G.

Suppose g = g−1. Then g2 = ι, so if g �= ι, the collineation g has order 2. However,

the order of g divides the order of G by Corollary 0.1.4. The order of G is q + 1,

which is an odd number, so g has odd order. Hence, g = ι. That is, g = g−1 if and

only if g = ι.

Hence, every summand in
∑

g∈G\{ι} xg occurs twice, and so the sum is an even

number. Since q is even, the number q2 + 1 is odd, so Equation 7.1 implies that

|ΩB ∩ΩA| is odd. That is, ΩA and ΩB share an odd number of points. In particular,

ΩA and ΩB share at least one point. �

The above result applies to any pair of ovoids sharing all tangents. If one of the

ovoids is assumed to be an elliptic quadric, then it is possible to strengthen the

statement slightly. In [4], the following result was shown.

Theorem 7.6.3 [4] Let Ω be an ovoid of PG(3, q), q even. Then either |Ω∩E | ≡ 1

(mod 4) for all elliptic quadrics E sharing all tangents with Ω, or |Ω ∩ E | ≡ 3

(mod 4) for all elliptic quadrics E sharing all tangents with Ω.

Using the ovoidal fibration as before, and the cyclic Singer group associated with

the elliptic quadric as described in Lemma 7.5.3, it will be shown that only one of

these cases actually occurs. That is, the following result is proved.

Theorem 7.6.4 Let Ω be an ovoid of PG(3, q), q even, and let E be an elliptic

quadric sharing all tangents with Ω. Then |Ω ∩ E | ≡ 1 (mod 4).

Proof By Lemma 7.5.3, there exists a cyclic Singer group S of PG(3, q) with the

following properties:

• S contains a subgroup G of order q + 1 which is the kernel of a regular spread

S contained in the set of tangents of E ,
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• S contains a subgroup H of order q2 + 1 such that the orbits of H are the

elliptic quadrics in the ovoidal fibration G(E ), including E itself,

• Each line of PG(3, q) not in S is a tangent of exactly one of the elliptic

quadrics of G(E ).

The two subgroups G and H will be used to prove the result. For each g ∈ G, define

xg = |Ω ∩ g(E )|. In particular, if g = ι, then xι = |Ω ∩ E |. The elliptic quadrics of

G(E ) partition the points of Ω, so

xι +
∑

g∈G\{ι}
xg = q2 + 1. (7.2)

From the proof of Theorem 7.6.2, xg = xg−1 for all g ∈ G. Since the order of G

is odd, g = g−1 if and only if g = ι, so G may be partitioned into ι and 1
2
q pairs

{g, g−1}. Let A be a subset of G formed by choosing one member from each of these

pairs. Then Equation 7.2 becomes

xι + 2
∑

g∈A

xg = q2 + 1. (7.3)

It will be shown that xg is even for each g �= ι.

Let g ∈ G and let P be a point of g(E ). Let HP = {h ∈ H | P ∈ h(Ω) } and

denote |HP | by m. Let Q be another point of g(E ). Since g(E ) is an orbit of H,

there exists a collineation h′ ∈ H such that Q = h′(P ). The point P lies on h(Ω) if

and only if h ∈ HP . So the point Q = h′(P ) lies on h′h(Ω) if and only if h ∈ HP .

Hence, for each point Q ∈ g(E ) there are |HP | = m collineations h ∈ H such that

Q ∈ h(Ω).

Let h ∈ H and consider the intersection of the ovoid h(Ω) with g(E ):

|h(Ω) ∩ g(E )| = |h−1h(Ω) ∩ h−1g(E )|
= |Ω ∩ g(E )| since g(E ) is an orbit of H.

= xg

Thus, |h(Ω) ∩ g(E )| = xg for every h ∈ H. Next is is shown that m = xg.

Consider the set of pairs X = {(P, h) | P ∈ g(E ), h ∈ H and P ∈ h(Ω) }. The

size of X will be counted in two ways. Counting P then h, there are q2 + 1 points
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P ∈ g(E ), and for each of these points there are m collineations h ∈ H such that

P ∈ h(Ω). So |X| = (q2 + 1)m. Counting h then P , there are q2 + 1 collineations

h ∈ H and for each of these collineations there are xg points of g(E ) in h(Ω). So

|X| = (q2 + 1)xg. Thus (q2 + 1)m = (q2 + 1)xg, and it follows that m = xg.

Suppose g �= ι and let � be a tangent of g(E ) not in the regular spread S . The

spread S is the set of shared tangents of any pair of elliptic quadrics of the fibration

G(E ). So, the line � is not a tangent of any elliptic quadric in G(E ) except g(E ).

That is, � is either a secant or an external line of g′(E ) for each g′ ∈ G \ {g}. Let

B = {g′ ∈ G | � is a secant of g′(E ) }.

The ovoids E and Ω share all of their tangents, so � is not a tangent of Ω, since it

is not tangent of E . Also, every collineation h ∈ H fixes E , and so fixes its set of

tangents. Thus any ovoid h(Ω) for h ∈ H has the same set of tangents as E . Hence,

� is not tangent of any ovoid h(Ω) for h ∈ H. That is, for each h ∈ H, the line �

is either a secant or an external line of h(Ω). Let s be the number of collineations

h ∈ H such that � is a secant of h(Ω).

Consider the set Y = {(P, h) | P ∈ �, h ∈ H and P ∈ h(Ω) }. The size of Y will be

counted in two ways. Counting P then h, there is one point on � in g(E ) and there

are two points on � in each of the ovoids g′(E ) for g′ ∈ B. For a point P ∈ g′(E ),

there are xg′ collineations h ∈ H such that P ∈ h(Ω), so |Y | = xg + 2
∑

g′∈B xg′ .

Counting h then P , there are s collineations h ∈ H such that h(Ω) contains two

points of �. The remaining collineations h ∈ H are such that h(Ω) contains no points

of �. So |Y | = 2s. Thus xg + 2
∑

g′∈B xg′ = 2s. From this equation, it follows that

xg is even for g �= ι. In light of this, write xg = 2zg for each g ∈ G \ {ι}.

Substituting these values into Equation 7.3 gives:

xι + 2
∑

g∈A

xg = q2 + 1

xι + 2
∑

g∈A

2zg = q2 + 1

xι + 4
∑

g∈A

zg = q2 + 1

Since q is even, the number q2 is a multiple of 4, so this equation implies that

xι ≡ 1 (mod 4). That is, |Ω ∩ E | ≡ 1 (mod 4). �
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7.7 The external lines or secants that two ovoids

may share

Let Ω be an ovoid of PG(3, q) and let L be the set of external lines of Ω. In

Theorem 3.2.6, the set of points lying on no lines of L was shown to be an ovoid.

Thus Ω is the only ovoid with L as its set of external lines. Another way to say

this is to say that two ovoids cannot share all of their external lines. In this section,

further restrictions are placed on the set of external lines and secants that two ovoids

may share. This is done by finding subsets L ′ of L such that Ω is the only ovoid

containing L ′ among its external lines. For the first result, L ′ is the set of external

lines meeting a line.

Theorem 7.7.1 Let Ω be an ovoid of PG(3, q), and let m be any line of PG(3, q).

Denote by L the set of external lines of Ω meeting m, and by B the set of points

lying on no line of L . If q is odd, then B = Ω. If q is even and m is a tangent of

Ω, then B = Ω. If q is even and m is not a tangent of Ω, then B is Ω, plus the set

of points on the polar of �.

Proof Let P be a point of B. That is, P is a point lying on no lines of L . Since

L is the set of all external lines meeting m, if P ∈ m, then it lies on no external

lines of Ω and so P ∈ Ω.

Suppose P /∈ m, and denote the plane P ⊕m by π. The external lines of Ω in π all

meet m, and so the lines of L in π are the external lines of Ω in π.

Suppose π is a tangent plane. The only point of π not lying on any external lines

in π is the point where π meets Ω, so P ∈ Ω.

Suppose π is a secant plane meeting Ω in the oval O. Then the lines of L in π are

the external lines of O in π.

If q is odd, the points in π lying on no external lines of O are the points of O. Thus

P ∈ Ω and it follows that B = Ω for q odd.

If q is even, then the points in π lying on no external lines of O are the points of

O, plus the nucleus of O. Denote by σ the polarity associated with Ω. Then the
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nucleus of O is the point σ(π). Thus either P ∈ Ω, or P = σ(π). The line σ(m) is

the union of the points σ(π) for the planes π through m. So B ⊆ Ω ∪ σ(m).

If m is a tangent, then each point on m not on Ω lies on an external line of Ω. Thus

B = Ω. If m is not a tangent, then σ(m) is skew to m, and the transversals of m

and σ(m) are tangents. Thus B = Ω ∪ σ(m). �

In the above lemma, for q even, the set of points on no lines of L may be larger

than the ovoid Ω. However, Ω is still the only ovoid with L contained in its set of

external lines. Thus the following corollaries are proved:

Corollary 7.7.2 Let Ω be an ovoid of PG(3, q) and let m be a line of PG(3, q).

Denote by L the set of external lines of Ω meeting m. Then Ω is the only ovoid of

PG(3, q) containing L among its external lines

Corollary 7.7.3 Let ΩA and ΩB be distinct ovoids of PG(3, q) and let m be a line

of PG(3, q). There exists an external line of ΩA meeting m which is not an external

line of ΩB.

Using the dual nature of an ovoid, it is possible to prove the following results for

secants.

Corollary 7.7.4 Let Ω be an ovoid of PG(3, q) and let m be a line of PG(3, q). Let

S be the set of secants of Ω meeting m. Then Ω is the only ovoid containing S

among its secants.

Proof Denote the set of tangent planes of Ω by Ω∗. Then Ω∗ is an ovoid of the

dual space PG(3, q)∗, and the secants of Ω in PG(3, q) are the external lines of Ω∗

in PG(3, q)∗ (see the discussion after Lemma 1.2.16). Thus, S is the set of lines

of PG(3, q)∗ meeting m that are external lines of Ω∗. By Corollary 7.7.3, Ω∗ is the

only ovoid of PG(3, q)∗ containing S among its external lines.

The ovoid Ω of PG(3, q) is the set of tangent planes of the ovoid Ω∗ in PG(3, q)∗, so

Ω is uniquely determined by Ω∗. Thus Ω is the only ovoid containing S among its

secants. �
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Corollary 7.7.5 Let ΩA and ΩB be distinct ovoids of PG(3, q) and let m be a line

of PG(3, q). There exists a secant of ΩA meeting m which is not a secant of ΩB.

It is natural to ask whether similar results may be proved if L is only a subset of

the external lines meeting m. This question is answered by the following theorem

for q even.

Theorem 7.7.6 Let Ω be an ovoid of PG(3, q), q even.

(i) Let m be a line of PG(3, q) and let Y be a set of 1
2
q + 1 secant planes of Ω

through m. Let S be the set of secants of Ω in the planes of Y . Then Ω is the

only ovoid containing S among its secants.

(ii) Let � be a line of PG(3, q) and let X be a set of 1
2
q + 1 points of � not on Ω.

Let L be the set of external lines of Ω passing through the points of X. Then

Ω is the only ovoid containing L among its external lines.

Proof (i) Suppose Ω′ is an ovoid containing S among its secants. Let π be a

plane of the set Y and denote the oval where π meets Ω by O. By Lemma 7.1.3,

the only oval with the same secants as O is O itself. Thus the ovoid Ω′ also meets

π in the oval O.

If m is a secant then each secant plane through m contains q − 1 points of Ω

not on m. Since Ω and Ω′ coincide in the planes of Y , this implies that |Ω ∩ Ω′| ≥
(1

2
q+1)(q−1)+2 = 1

2
q2 + 1

2
q+1 > 1

2
q2 +1. If m is a tangent, then each secant plane

through it contains q points of Ω not on m. Thus |Ω∩Ω′| ≥ (1
2
q +1)q +1 > 1

2
q2 +1.

Finally, if m is an external line, then each secant plane through it contains q + 1

points of Ω not on m. Thus |Ω ∩ Ω′| ≥ (1
2
q + 1)(q + 1) > 1

2
q2 + 1. Hence Ω and Ω′

coincide by Theorem 7.4.3.

(ii) Denote the set of tangent planes of Ω by Ω∗. Then Ω∗ is an ovoid of the dual

space PG(3, q)∗, and the external lines of Ω in PG(3, q) are the secants of Ω∗ in

PG(3, q)∗. Also, the points not on Ω are the secant planes of Ω∗ in PG(3, q)∗. Thus,

the set X is a set of 1
2
q+1 secant planes of PG(3, q)∗ through �. The set L is the set

of secants of Ω∗ in these planes. Thus Ω∗ is the only ovoid of PG(3, q)∗ containing

L among its secants. Since Ω is the set of tangent planes of Ω∗ in PG(3, q)∗, it
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is uniquely determined by Ω∗. Thus Ω is the only ovoid of PG(3, q) containing L

among its external lines. �

For q odd, all ovoids are elliptic quadrics, so there is a more accurate version of the

above result for q odd. It also applies to elliptic quadrics in the q even case.

Theorem 7.7.7 Let E be an elliptic quadric of PG(3, q).

(i) Let α, β and γ be three distinct secant planes of E and let S be the set of

secants of E in α, β and γ. Then E is the only ovoid of PG(3, q) containing

S among its secants.

(ii) Let P , Q and R be three distinct points not on E and let L be the set of

external lines of E through P , Q and R. Then E is the only ovoid of PG(3, q)

containing L among its external lines.

Proof (i) Suppose Ω is an ovoid of PG(3, q) containing S among its secants.

Consider the non-singular conic α ∩ E . By Lemma 7.1.3, the only oval with the

same secants as α∩ E is α∩ E . Thus α meets Ω in the non-singular conic α∩ E . If

q is even, then Theorem 2.3.4 implies that Ω is an elliptic quadric.

Since the two elliptic quadrics E and Ω share the secants in the planes α, β and γ,

Lemma 7.1.3 implies that the two elliptic quadrics coincide in these three planes.

By Lemma 7.3.2, it follows that E = Ω.

(ii) Denote the set of tangent planes of E by E ∗. Then E ∗ is an elliptic quadric of

the dual space PG(3, q)∗. The set of lines L is the set of secants of E ∗ in the three

secant planes P , Q and R of E ∗ in PG(3, q)∗. Thus E ∗ is the only ovoid of PG(3, q)∗

containing L among its secants. Since E is uniquely determined by E ∗, it follows

that E is the only ovoid of PG(3, q) containing L among its external lines. �

Included in the above proof is the remarkable fact that if an ovoid and an elliptic

quadric share all the external lines through a point not on either, then the ovoid is

also an elliptic quadric. This completes the discussion of the points and lines that

two ovoids may share.

187



Conclusion

In this thesis, several new results have been proved characterising sets of subspaces

associated with quadrals. Existing results have characterised the set of tangents and

generator lines of a non-singular quadric in PG(n, q), the set of external lines of a

non-singular quadral in PG(3, q), and the set of secants of an ovoid in PG(3, q) (See

Chapter 3).

The following new characterisations have been presented here. Theorems 4.1.1 and

4.2.1 give characterisations of the external lines of an oval cone in PG(3, q) for q odd

and q even. The oval cone was the only irreducible quadral in PG(3, q) that did not

have a characterisation for its external lines. Theorem 5.1.1 gives a characterisation

of the external lines of a parabolic quadric in PG(4, q). Previously, only tangents

and generator lines of quadrics in PG(n, q), n ≥ 4 had been characterised. Theo-

rems 5.2.1 and 5.2.2 give characterisations of the secant planes of a parabolic quadric

in PG(4, q). These are the first characterisations of a set of planes associated with

a quadral. Finally, Theorems 6.1.1 and 6.2.1 give characterisations of the external

lines of quadrals of parabolic type in PG(n, q).

The above results lead to certain possibilities for future research into characterisa-

tions of subspaces.

Let L be a set of lines of PG(3, q) with the following properties.

(I) Every point of PG(3, q) lies on 0, 1
2
q(q + 1) or 1

2
q(q − 1) lines of L ,

(II) Every plane of PG(3, q) contains 0, q2 or 1
2
q(q − 1) lines of L .
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The set of external lines of an ovoid or a hyperbolic quadric have these properties.

If q is odd, then the set of external lines of an oval cone also has these properties.

A natural extension to the characterisations given in this thesis is to completely

classify all sets of lines in PG(3, q) with Properties (I) and (II).

The set of secant planes of a parabolic quadric in PG(n, q), n even, is also worth fur-

ther investigation. If P is a parabolic quadric in PG(n, q), n even, then arguments

similar to those in the proof of Lemma 1.5.41 can be used to calculate the number

of secant planes through each line and each point of PG(n, q). In fact, there are two

possibilities for the number of secant planes through a point, and two possibilities

for the number of secant planes through a line. It should be possible to characterise

the set of secant planes of P using arguments analogous to those in the proof of

Theorem 5.2.1.

As well as results characterising sets of subspaces associated with quadrals, this

thesis also presents several new results about ovoids of PG(3, q). Theorem 7.4.3

improves the existing bound on the number of points that two distinct ovoids share

when q is even. Theorem 7.5.2 describes a method for constructing ovoidal fibrations,

and Theorem 7.5.4 proves that all ovoidal fibrations have an associated regular

spread. Theorem 7.6.2 proves that any two ovoids sharing all their tangents must

share an odd number of points. Until now this was only known to be true if one

of the ovoids is a Tits ovoid or an elliptic quadric. Theorem 7.6.4 proves that an

elliptic quadric and an ovoid sharing all their tangents must share a number of

points congruent to 1 (mod 4). Until now, this number was only known to be 1 or

3 (mod 4). The methods used to prove these results are new, and very different to

the existing methods. Finally, Section 7.7 gives configurations of external lines and

secants that determine ovoids.

The above results suggest several problems for future research. The bound on the

number of shared points of two ovoids given in Theorem 7.4.3 is the best possible

for q = 2, 4 or 8. Future research could focus on whether this is true for q > 8. The

intersection of ovoids sharing all tangents was discussed in Section 7.6, and certain

sets of ovoids sharing a regular spread of tangents were discussed in Section 7.5.

Investigating the intersection of ovoids sharing other configurations of tangents is a

natural extension of this work.

189



The kernel of a regular spread was used in Theorem 7.5.2 to construct an ovoidal

fibration in PG(3, q), q even. By Theorem 7.5.4, there is a regular spread of tangents

associated with any ovoidal fibration in PG(3, q), q even. This suggests that it may

be possible to construct new ovoidal fibrations using a small selection of ovoids and

the kernel of a regular spread. Finally, Chapter 7 gives several conditions to decide if

two ovoids coincide, or to decide if an ovoid is an elliptic quadric. These conditions

were based on information about the number of points, tangents, secants or external

lines that two ovoids share. Further investigations into the possible ways that ovoids

intersect will produce other conditions, and may provide the necessary tools to help

classify all ovoids of PG(3, q), q even.
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