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Abstract 

Fa

 Three common molecular biology techniques were applied here in an attempt to 

further characterise known interactions of FAM, including interactions with the cell adhesion 

molecule β-catenin and the protein trafficking pathway proteins epsin-1 and itch. The aim of 

these investigations was to generate FAM mutants that could abolish individual interactions, 

enabling investigation of individual interactions in cellular function and development. These 

experiments failed to identify the amino acids of FAM that were critical for its interactions 

with β-catenin, epsin-1, or itch. Experiments aimed at characterising a novel ubiquitin-like 

domain located in the N-terminal half of the FAM protein, did however identify novel 

interactions of FAM with the three Golgi associated adaptor proteins GGA1, GGA2, and 

GGA3. Further investigations prompted by this interaction, examined the role of FAM in the 

trafficking of proteins from the Golgi apparatus. Cellular FAM protein levels were altered 

either by exogenous expression of FAM protein or knockdown of endogenous FAM using 

FAM specific shRNA triggers. The cellular protein levels and extent of post-translational 

modification of eleven lysosomal proteins were monitored in each case. It was found that 

increased FAM protein levels resulted in decreased cellular protein levels of five of the eleven 

lysosomal proteins studied. In contrast, a reduction in FAM protein levels was found to result 

t facets in Mouse (FAM) or mUSP9x is a deubiquitylating enzyme of the USP class. 

Knockdown of FAM protein levels in mouse pre-implantation embryos by antisense 

oligonucleotides is known to prevent embryos from progressing to the blastocyst stage 

indicating an important role for FAM in early mammalian development. In mammals, the 

Fam gene is located on the X-chromosome. In mice, the Y homologue, Dffry or usp9y, is 

expressed exclusively in the testes and maps to the Sxrb deletion (Brown et al., 1998). Sxrb is 

associated with an early post-natal blockage of spermatogonial proliferation and 

differentiation leading to absence of germ cells (Bishop et al., 1988; Mardon et al., 1989). The 

human Y homologue of Fam is closely associated with oligozoospermia (Sargent et al., 1999; 

Sun et al., 1999) and the human X homologue has been linked to the failure of oocytes to pass 

through the first meitoc prophase in Turner syndrome (Cockwell et al., 1991; Speed, 1986) 

Despite these associations, the substrates and precise role of Fam and its homologues in these 

processes have not yet been defined. Due to the complex nature of Fam expression and the 

lack of data tying FAM to specific cellular functions, much attention has been paid in 

identifying interacting partners and cellular targets of FAM activity to aid in the definition of 

its role in the cell and development. 
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in an increase in the cellular protein levels of eight of the eleven lysosomal proteins. This 

study provides the first evidence of a deubiquitylating enzyme that is able to interact with the 

GGA proteins. It is also the first to describe a deubiquitylating enzyme that can affect the 

biosynthesis of lysosomal proteins and provides valuable new insight into the cellular 

function of FAM/USP9X. 
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