FUNCTIONAL ANALYSIS OF THE DEUBIQUITYLATING ENZYME FAT FACETS IN MOUSE IN PROTEIN TRAFFICKING

MARK PRODOEHL

School of Molecular and Biomedical Sciences (Biochemistry)

University of Adelaide

September 2007

,

Abstract	iv
Declaration of Originality	vi
Acknowledgements	vii
Abbreviations:	viii
List of Tables	xiii
List of Figures	xiv
Chapter 1: Introduction	1
The Ubiquitin Proteasome Pathway	
The Importance of Protein Half-life Regulation	2
Ilbiavitin and the Proteasome	2
Regulation of Protein Substrates by the 26S Proteasome and the Need for Substrate Specificity	2 A
Perulation of Protain Trafficking By Ubiquitylation	
The Endeantia/Endeannal Dathum	0
Signala for International Failway	0
Signals for Internalisation	
Ubiquitylation at the Late Endosome	
The Bole of the ESCRT Completes in Endeserval Serving	
Sorting on the Biosynthetic Pathum	10
Targeting Proteins to the Lucosome	
I libiquitin on the Riosunthetic Pathum	<i>22</i> 20
The Dual Poles of Libraritin in Protoin Trafficking	
The R Grass Fold Illiquitin I its Madifians Illiquitin Downin Dustains and Their French	
The p-Grasp Fold – Obiquilin-Like Modifiers, Obiquilin-Domain Proteins, and Their Functions	
Deubiquityiation	
Classes of Deubiquitylating Enzyme	
Fat Facets, a Deubiquitylating Enzyme of the Usp Class	40
Fat Facets and Fat Facets in Mouse	
FAM and its Substrates	
Aims and Hypotheses	
Hypotheses	
Specific Aims and Objectives	
CHAPTER 2: MATERIALS AND METHODS	60
Materials and Antibodies	61
Cell Culture Materials:	
Antibodies	
Plasmide	62
Vactor Construction	
Plasmid Dyanawation	
Veset Stusies	
Y east Strains:	
MAV203 Genotype:	
Control Strains:	
Bacterial Strains:	69
Cloning:	69
Protein Expression:	69
Yeast Transformation and Growth:	69
Preparation and transformation of Competent Yeast:	69
Growth and selection of transformants:	69
Bacterial Protein Induction:	
Tissue Culture Techniques:	70
Cell Culture and Transfection of HFK 203T Cells	70
Cell Culture and Transfection of COS-1 Cells	71
Dual Lugifarasa Assays	71
Dual Lucher ase Assays.	
Protein Electrophoresis and Western Blotting:	72
Immunoprecipitation:	73
Antibody Purification Procedures:	
Protein Immobilisation	
Purification	
GST-Affinity Chromatography	74
Purification of GST-Tagged Proteins on Glutathione Senharose	
GST-Affinity Chromatography:	75

1

Microscopy: 75 Indirect Immunofluorescence. 76 Multiplex ELISA Analysis: 76 Solutions: 77 Yeast Media: 77 Troduction and Chapter Summary 80 Introduction and Chapter Summary 80 Chapter Summary 80 Chapter Summary 82 Results. 83 Yeast Two-Hybrid: 83 Mammalian Two-Hybrid: 83 Mammalian Two-Hybrid: 83 Yeast Two-Hybrid 135 Discussion 139 Yeast Two-Hybrid Analysis of Known Interactions 139 Yeast Two-Hybrid Analysis of Known Interactions 140 GST Affinity Chromatography 141 Identifying Interactors of FAM-UBLD 142 FAMAUBLD 142 FAMAUBLD <td< th=""><th>Purification of His-tagged Proteins on a Nickel Column:</th><th>75</th></td<>	Purification of His-tagged Proteins on a Nickel Column:	75
Indirect Immunofluorescence. 76 Multiplex ELISA Analysis: 76 Solutions: 77 Yeast Media: 77 CHAPTER 3: INVESTIGATION OF THE PROTEIN-PROTEIN INTERACTIONS OF FAM/USP9X 79 10 Introduction and Chapter Summary 80 Introduction 80 Introduction 80 Chapter Summary 82 Results 83 Yeast Two-Hybrid: 83 Mammalian Two-Hybrid. 90 GST Affinity Binding Assay 100 Characterisation of the FAM UBLD and Bacterial Expression. 110 Identifying Interactors. 113 FAMAUBLD 135 Discussion 139 Yeast Two-Hybrid Analysis of Known Interactions 139 Mammalian Two-Hybrid 140 GST Affinity Chromatography 141 Identifying Interactors of FAM-UBLD 142 FAMAUBLD 141 Identifying Interactors of FAM-UBLD 142 FAMAUBLD 142 FAMAUBLD 142 FAMAUBLD 142 FAMAUBLD 151	Microscopy: Indirect Immunofluorescence. Multiplex ELISA Analysis: Solutions:	
Multiplex ELISA Analysis: 76 Solutions: 77 Yeast Media: 77 CHAPTER 3: INVESTIGATION OF THE PROTEIN-PROTEIN INTERACTIONS OF FAM/USP9X 79 77 CHAPTER 3: INVESTIGATION OF THE PROTEIN-PROTEIN INTERACTIONS OF FAM/USP9X 79 80 Introduction 80 Introduction 80 Introduction 80 Chapter Summary 82 Results 83 Yeast Two-Hybrid: 83 Mammalian Two-Hybrid: 83 Mammalian Two-Hybrid: 83 Mammalian fusion of the FAM UBLD and Bacterial Expression 110 Identifying Interactors 113 FAMAUBLD 135 Discussion 139 Yeast Two-Hybrid Analysis of Known Interactions 139 Yeast Two-Hybrid Analysis of Known Interactions 140 GST Affinity Chromatography 141 Identifying Interactors of FAM-UBLD 142 FAMAUBLD 142 FAMAUBLD 142 FAMAUBLD 142 FAMAUBLD 141 Identifying Interactors of FAM-UBLD 142 <t< th=""></t<>		
Solutions: 77 Yeast Media: 77 CHAPTER 3: INVESTIGATION OF THE PROTEIN-PROTEIN INTERACTIONS OF FAM/USP9X 79 Introduction and Chapter Summary 80 Introduction 80 Chapter Summary 82 Results 83 Yeast Two-Hybrid: 83 Mammalian Two-Hybrid. 99 GST Affinity Binding Assay. 100 Characterisation of the FAM UBLD and Bacterial Expression. 110 Identifying Interactors. 113 FAMAUBLD 135 Discussion 139 Yeast Two-Hybrid Analysis of Known Interactions 139 Yeast Two-Hybrid Analysis of Known Interactions 141 Identifying Interactors of FAM-UBLD. 142 FAMAUBLD 141 Identifying Interactors of FAM-UBLD. 142 FAMAUBLD 141 Concluing Remarks 151 Chapter Summary 158 Results 150 Sorted Cell Multiplex-ELISA analysis. 160 Effect of Altered FAM Levels on Lysosomal Proteins – Multiplex ELISA Analysis. 150 Sorted Cell Multiplex-ELISA		
Yeast Media: 77 CHAPTER 3: INVESTIGATION OF THE PROTEIN-PROTEIN INTERACTIONS OF FAM/USP9X 79 Introduction and Chapter Summary. 80 Introduction. 80 Results. 80 Chapter Summary 82 Results. 83 Yeast Two-Hybrid: 83 83 Mammalian Two-Hybrid. 99 GST Affinity Binding Assay. 100 Characterisation of the FAM UBLD and Bacterial Expression. 110 104 Identifying Interactors. 113 113 FAMAUBLD. 135 135 Discussion 139 140 GST Affinity Chroatography 141 Identifying Interactors of FAM-UBLD. 142 FAMAUBLD 141 Identifying Interactors of FAM-UBLD 142 FAMAUBLD 151 Chapter Summary 158		
CHAPTER 3: INVESTIGATION OF THE PROTEIN-PROTEIN INTERACTIONS OF FAM/USP9X 79 Introduction 80 Introduction 80 Introduction 80 Chapter Summary 82 Results 83 Yeast Two-Hybrid: 83 Mammalian Two-Hybrid: 99 GST Affinity Binding Assay. 100 Characterisation of the FAM UBLD and Bacterial Expression. 110 Identifying Interactors. 113 FAMAUBLD 135 Discussion 139 Yeast Two-Hybrid Analysis of Known Interactions 139 Yeast Two-Hybrid Analysis of Known Interactions 141 Identifying Interactors of FAM-UBLD. 142 FAMAUBLD 141 Identifying Interactors of FAM-UBLD. 142 FAMAUBLD 142 FAMAUBLD 141 Identifying Interactors of FAM-UBLD. 142 FAMAUBLD 142 FAMAUBLD 142 FAMAUBLD 142 FAMAUBLD 141 Identifying Interactors of FAM-UBLD 142 FAMAUBLD 151	Yeast Media:	
Introduction and Chapter Summary 80 Introduction 80 Chapter Summary 82 Results 83 Yeast Two-Hybrid: 83 Mammalian Two-Hybrid: 99 GST Affinity Binding Assay. 100 Characterisation of the FAM UBLD and Bacterial Expression. 110 Identifying Interactors 113 FAMAUBLD 135 Discussion 139 Yeast Two-Hybrid Analysis of Known Interactions 139 Mammalian Two-Hybrid. 140 GST Affinity Chromatography 141 Identifying Interactors of FAM-UBLD. 142 FAMAUBLD 141 Concluding Remarks 147 Concluding Remarks 147 Alternative Strategies to Investigate FAM Interactions: 157 Chapter Summary 158 Results 160 Effect of Altered FAM Levels on Lysosomal Proteins – Multiplex ELISA Analysis 160 Sorted Cell Multiplex-ELISA analysis 180 Effects of Altered FAM Levels on Lysosomal protein localisation upon modulation of FAM levels 198 Discussion 206	CHAPTER 3: INVESTIGATION OF THE PROTEIN-PROTEIN INTERACTIONS OF FAM/USF	9X 79
Introduction	Introduction and Chapter Summary	80
Chapter Summary 82 Results 83 Yeast Two-Hybrid: 83 Mammalian Two-Hybrid. 99 GST Affinity Binding Assay. 100 Characterisation of the FAM UBLD and Bacterial Expression. 110 Identifying Interactors. 113 FAMAUBLD 135 Discussion 139 Yeast Two-Hybrid Analysis of Known Interactions 139 Mammalian Two-Hybrid 140 GST Affinity Chromatography 141 Identifying Interactors of FAM-UBLD 142 FAMAUBLD 142 FAMAUBLD 141 Identifying Interactors of FAM-UBLD 142 FAMAUBLD 147 Concluding Remarks 141 Identifying Remarks 151 Chapter Summary 158 Results 160 Effect of Altered FAM Levels on Lysosomal Proteins – Multiplex ELISA Analysis. 160 Effects of Altered FAM Levels on Lysosomal Protein localisation upon modulation of FAM levels. 198 Discussion 206 198 Discussion 206 Effect of Altered FAM Le	Introduction	80
Results 83 Yeast Two-Hybrid: 83 Mammalian Two-Hybrid. 99 GST Affinity Binding Assay. 100 Characterisation of the FAM UBLD and Bacterial Expression. 110 Identifying Interactors. 113 FAMAUBLD 135 Discussion 139 Yeast Two-Hybrid Analysis of Known Interactions 139 Mammalian Two-Hybrid. 140 GST Affinity Chromatography 141 Identifying Interactors of FAM-UBLD. 142 FAMAUBLD 141 Identifying Interactors of FAM-UBLD. 142 FAMAUBLD 141 Identifying Remarks 141 Identifying Remarks 141 Identifying Remarks 147 Concluding Remarks 151 CHAPTER 4: INVESTIGATION OF THE ROLE OF FAM IN LYSOSOMAL PROTEIN TRAFFICKING 157 Chapter Summary 158 Results 160 Effect of Altered FAM Levels on Lysosomal Proteins – Multiplex ELISA Analysis. 160 Sorted Cell Multiplex-ELISA analysis of lysosomal protein localisation upon modulation of FAM levels. 198 Discussion	Chapter Summary	
Yeast Two-Hybrid: 83 Mammalian Two-Hybrid. 99 GST Affinity Binding Assay. 100 Characterisation of the FAM UBLD and Bacterial Expression. 110 Identifying Interactors. 113 FAMAUBLD 135 Discussion 139 Yeast Two-Hybrid Analysis of Known Interactions 139 Mammalian Two-Hybrid. 140 GST Affinity Chromatography 141 Identifying Interactors of FAM-UBLD. 142 FAMAUBLD 142 FAMAUBLD 142 FAMAUBLD 147 Concluding Remarks 147 Alternative Strategies to Investigate FAM Interactions: 151 CHAPTER 4: INVESTIGATION OF THE ROLE OF FAM IN LYSOSOMAL PROTEIN TRAFFICKING 157 Chapter Summary 158 Results 160 Effect of Altered FAM Levels on Lysosomal Proteins – Multiplex ELISA Analysis 180 Effects of Altered FAM Levels on Lysosomal protein localisation upon modulation of FAM levels 198 Discussion 206 206 Effect of Altered FAM Levels on Lysosomal Proteins – ELISA Analysis 206 Conclusion	Results	83
Mammalian Two-Hybrid. 99 GST Affinity Binding Assay. 100 Characterisation of the FAM UBLD and Bacterial Expression. 110 Identifying Interactors. 113 FAMAUBLD 135 Discussion 139 Yeast Two-Hybrid Analysis of Known Interactions 139 Mammalian Two-Hybrid. 140 GST Affinity Chromatography 141 Identifying Interactors of FAM-UBLD 142 FAMAUBLD 142 FAMAUBLD 144 Identifying Interactors of FAM-UBLD 142 FAMAUBLD 144 Identifying Interactors of FAM-UBLD 147 Concluding Remarks 147 Alternative Strategies to Investigate FAM Interactions: 151 CHAPTER 4: INVESTIGATION OF THE ROLE OF FAM IN LYSOSOMAL PROTEIN TRAFFICKING 157 Chapter Summary 158 Results 160 Effect of Altered FAM Levels on Lysosomal Proteins – Multiplex ELISA Analysis 180 Effects of Altered FAM Levels on Lamp1, ASA, 125, and 45. 196 Immunofluorescence analysis of lysosomal protein localisation upon modulation of FAM levels. 198 Discu	Yeast Two-Hybrid:	
GST Affinity Binding Assay	Mammalian Two-Hybrid	
Characterisation of the FAM UBLD and Bacterial Expression. 110 Identifying Interactors. 113 FAMAUBLD 135 Discussion 139 Yeast Two-Hybrid Analysis of Known Interactions 139 Mammalian Two-Hybrid. 140 GST Affinity Chromatography 141 Identifying Interactors of FAM-UBLD. 147 Concluding Remarks. 147 Alternative Strategies to Investigate FAM Interactions: 151 Chapter Summary 157 Chapter Summary 158 Results. 160 Effect of Altered FAM Levels on Lysosomal Proteins – Multiplex ELISA Analysis 160 Sorted Cell Multiplex-ELISA analysis 160 Effects of Altered FAM Levels on Lamp1, ASA, 12S, and 4S. 196 Immunofluorescence analysis of lysosomal protein localisation upon modulation of FAM levels. 198 Discussion 206 Effect of Altered FAM Levels on Lysosomal Proteins – ELISA Analysis. 206 Conclusion 218 Discussion 206 Conclusion 218	GST Affinity Binding Assay	100
Identifying Interactors. 113 FAMAUBLD 135 Discussion 139 Yeast Two-Hybrid Analysis of Known Interactions 139 Mammalian Two-Hybrid. 140 GST Affinity Chromatography 141 Identifying Interactors of FAM-UBLD. 142 FAMAUBLD 147 Concluding Remarks 147 Alternative Strategies to Investigate FAM Interactions: 151 CHAPTER 4: INVESTIGATION OF THE ROLE OF FAM IN LYSOSOMAL PROTEIN TRAFFICKING 157 Chapter Summary 158 Results 160 Effect of Altered FAM Levels on Lysosomal Proteins – Multiplex ELISA Analysis 160 Sorted Cell Multiplex-ELISA analysis 180 Effects of Altered FAM Levels on Lamp1, ASA, 12S, and 4S 196 Immunofluorescence analysis of lysosomal protein localisation upon modulation of FAM levels 198 Discussion 206 Effect of Altered FAM Levels on Lysosomal Proteins – ELISA Analysis 206 Conclusion 218	Characterisation of the FAM UBLD and Bacterial Expression	110
FAMAUBLD 135 Discussion 139 Yeast Two-Hybrid Analysis of Known Interactions 139 Mammalian Two-Hybrid 140 GST Affinity Chromatography 141 Identifying Interactors of FAM-UBLD 142 FAMAUBLD 142 FAMAUBLD 142 FAMAUBLD 142 FAMAUBLD 142 FAMAUBLD 144 Identifying Interactors of FAM-UBLD 142 FAMAUBLD 147 Concluding Remarks 147 Alternative Strategies to Investigate FAM Interactions: 151 CHAPTER 4: INVESTIGATION OF THE ROLE OF FAM IN LYSOSOMAL PROTEIN TRAFFICKING 157 Chapter Summary 158 Results 160 Effect of Altered FAM Levels on Lysosomal Proteins – Multiplex ELISA Analysis 160 Sorted Cell Multiplex-ELISA analysis 180 Effects of Altered FAM Levels on Lamp1, ASA, 12S, and 4S 196 Immunofluorescence analysis of lysosomal protein localisation upon modulation of FAM levels 198 Discussion 206 Effect of Altered FAM Levels on Lysosomal Proteins – ELISA Analysis 206	Identifying Interactors	113
Discussion 139 Yeast Two-Hybrid Analysis of Known Interactions 139 Mammalian Two-Hybrid 140 GST Affinity Chromatography 141 Identifying Interactors of FAM-UBLD 142 FAMAUBLD 147 Concluding Remarks 147 Alternative Strategies to Investigate FAM Interactions: 151 CHAPTER 4: INVESTIGATION OF THE ROLE OF FAM IN LYSOSOMAL PROTEIN TRAFFICKING 157 Chapter Summary 158 Results 160 Effect of Altered FAM Levels on Lysosomal Proteins – Multiplex ELISA Analysis 160 Sorted Cell Multiplex-ELISA analysis 180 Effects of Altered FAM Levels on Lamp1, ASA, 12S, and 4S 196 Immunofluorescence analysis of lysosomal protein localisation upon modulation of FAM levels 198 Discussion 206 Effect of Altered FAM Levels on Lysosomal Proteins – ELISA Analysis 206 Conclusion 218	FAMAUBLD	
Yeast Two-Hybrid Analysis of Known Interactions 139 Mammalian Two-Hybrid 140 GST Affinity Chromatography 141 Identifying Interactors of FAM-UBLD 142 FAMAUBLD 147 Concluding Remarks 147 Alternative Strategies to Investigate FAM Interactions: 151 CHAPTER 4: INVESTIGATION OF THE ROLE OF FAM IN LYSOSOMAL PROTEIN TRAFFICKING 157 Chapter Summary 158 Results 160 Effect of Altered FAM Levels on Lysosomal Proteins – Multiplex ELISA Analysis 160 Sorted Cell Multiplex-ELISA analysis 180 Effects of Altered FAM Levels on Lamp1, ASA, 12S, and 4S 196 Immunofluorescence analysis of lysosomal protein localisation upon modulation of FAM levels 198 Discussion 206 Effect of Altered FAM Levels on Lysosomal Proteins – ELISA Analysis 206 Conclusion 218	Discussion	139
Mammalian Two-Hybrid. 140 GST Affinity Chromatography 141 Identifying Interactors of FAM-UBLD. 142 FAMAUBLD 147 Concluding Remarks 147 Alternative Strategies to Investigate FAM Interactions: 151 CHAPTER 4: INVESTIGATION OF THE ROLE OF FAM IN LYSOSOMAL PROTEIN TRAFFICKING 157 Chapter Summary 158 Results 160 Effect of Altered FAM Levels on Lysosomal Proteins – Multiplex ELISA Analysis 160 Sorted Cell Multiplex-ELISA analysis 180 Effects of Altered FAM Levels on Lamp1, ASA, 12S, and 4S 196 Immunofluorescence analysis of lysosomal protein localisation upon modulation of FAM levels 198 Discussion 206 Effect of Altered FAM Levels on Lysosomal Proteins – ELISA Analysis 206 Conclusion 218	Yeast Two-Hybrid Analysis of Known Interactions	139
GST Affinity Chromatography 141 Identifying Interactors of FAM-UBLD 142 FAMAUBLD 147 Concluding Remarks 147 Alternative Strategies to Investigate FAM Interactions: 151 CHAPTER 4: INVESTIGATION OF THE ROLE OF FAM IN LYSOSOMAL PROTEIN TRAFFICKING 157 Chapter Summary 158 Results 160 Effect of Altered FAM Levels on Lysosomal Proteins – Multiplex ELISA Analysis 160 Sorted Cell Multiplex-ELISA analysis 180 Effects of Altered FAM Levels on Lamp1, ASA, I2S, and 4S 196 Immunofluorescence analysis of lysosomal protein localisation upon modulation of FAM levels 198 Discussion 206 Effect of Altered FAM Levels on Lysosomal Proteins – ELISA Analysis 206 Conclusion 218	Mammalian Two-Hybrid	140
Identifying Interactors of FAM-UBLD. 142 FAMAUBLD 147 Concluding Remarks 147 Alternative Strategies to Investigate FAM Interactions: 151 CHAPTER 4: INVESTIGATION OF THE ROLE OF FAM IN LYSOSOMAL PROTEIN TRAFFICKING 157 Chapter Summary 158 Results 160 Effect of Altered FAM Levels on Lysosomal Proteins – Multiplex ELISA Analysis 180 Effects of Altered FAM Levels on Lamp1, ASA, 12S, and 4S 196 Immunofluorescence analysis of lysosomal protein localisation upon modulation of FAM levels 206 Effect of Altered FAM Levels on Lysosomal Proteins – ELISA Analysis 206 Analysis of lysosomal protein localisation upon modulation of FAM levels 206 Effect of Altered FAM Levels on Lysosomal Proteins – ELISA Analysis 206 206 Conclusion 206 206 Conclusion 206 <th>GST Affinity Chromatography</th> <th> 141</th>	GST Affinity Chromatography	141
FAMAOBLD 147 Concluding Remarks 147 Alternative Strategies to Investigate FAM Interactions: 151 CHAPTER 4: INVESTIGATION OF THE ROLE OF FAM IN LYSOSOMAL PROTEIN TRAFFICKING 157 Chapter Summary 158 Results 160 Effect of Altered FAM Levels on Lysosomal Proteins – Multiplex ELISA Analysis 180 Effects of Altered FAM Levels on Lysosomal Proteins – Multiplex ELISA Analysis 180 Effects of Altered FAM Levels on Lysosomal Protein localisation upon modulation of FAM levels 198 Discussion 206 Effect of Altered FAM Levels on Lysosomal Proteins – ELISA Analysis 206 Conclusion 206 Conclusion 206 206 206 206 206 206 206 206 <td colspan="</th> <th>Identifying Interactors of FAM-UBLD.</th> <th> 142</th>	Identifying Interactors of FAM-UBLD.	142
Concluding Remarks 147 Alternative Strategies to Investigate FAM Interactions: 151 CHAPTER 4: INVESTIGATION OF THE ROLE OF FAM IN LYSOSOMAL PROTEIN TRAFFICKING 157 Chapter Summary 158 Results 160 Effect of Altered FAM Levels on Lysosomal Proteins – Multiplex ELISA Analysis 180 Effects of Altered FAM Levels on Lysosomal Protein localisation upon modulation of FAM levels 196 Immunofluorescence analysis of lysosomal protein localisation upon modulation of FAM levels 206 Effect of Altered FAM Levels on Lysosomal Proteins – ELISA Analysis 206 Conclusion	FAMAUBLD	147
Alternative Strategies to Investigate FAM Interactions: 157 CHAPTER 4: INVESTIGATION OF THE ROLE OF FAM IN LYSOSOMAL PROTEIN TRAFFICKING 157 157 Chapter Summary 158 Results 160 Effect of Altered FAM Levels on Lysosomal Proteins – Multiplex ELISA Analysis 160 Sorted Cell Multiplex-ELISA analysis 180 Effects of Altered FAM Levels on Lamp1, ASA, I2S, and 4S 196 Immunofluorescence analysis of lysosomal protein localisation upon modulation of FAM levels 198 Discussion 206 Effect of Altered FAM Levels on Lysosomal Proteins – ELISA Analysis 206 Conclusion	Concluding Remarks	14/ 151
CHAPTER 4: INVESTIGATION OF THE ROLE OF FAM IN LYSOSOMAL PROTEIN TRAFFICKING 157 Chapter Summary 158 Results 160 Effect of Altered FAM Levels on Lysosomal Proteins – Multiplex ELISA Analysis 160 Sorted Cell Multiplex-ELISA analysis 180 Effects of Altered FAM Levels on Lamp1, ASA, I2S, and 4S 196 Immunofluorescence analysis of lysosomal protein localisation upon modulation of FAM levels 198 Discussion 206 Effect of Altered FAM Levels on Lysosomal Proteins – ELISA Analysis 206 218 218	Alternative Strategies to Investigate FAM Interactions	
157 Chapter Summary 158 Results 160 Effect of Altered FAM Levels on Lysosomal Proteins – Multiplex ELISA Analysis 160 Sorted Cell Multiplex-ELISA analysis 180 Effects of Altered FAM Levels on Lamp1, ASA, I2S, and 4S 196 Immunofluorescence analysis of lysosomal protein localisation upon modulation of FAM levels 198 Discussion 206 Effect of Altered FAM Levels on Lysosomal Proteins – ELISA Analysis 206 Conclusion 218	CHAPTER 4: INVESTIGATION OF THE ROLE OF FAMI IN LYSOSOMAL PROTEIN TRAFFI	
Chapter Summary 158 Results 160 Effect of Altered FAM Levels on Lysosomal Proteins – Multiplex ELISA Analysis 160 Sorted Cell Multiplex-ELISA analysis 180 Effects of Altered FAM Levels on Lamp1, ASA, I2S, and 4S 196 Immunofluorescence analysis of lysosomal protein localisation upon modulation of FAM levels 198 Discussion 206 Effect of Altered FAM Levels on Lysosomal Proteins – ELISA Analysis 206 Conclusion 218		157
Results 160 Effect of Altered FAM Levels on Lysosomal Proteins – Multiplex ELISA Analysis 160 Sorted Cell Multiplex-ELISA analysis 180 Effects of Altered FAM Levels on Lamp1, ASA, 12S, and 4S 196 Immunofluorescence analysis of lysosomal protein localisation upon modulation of FAM levels 198 Discussion 206 Effect of Altered FAM Levels on Lysosomal Proteins – ELISA Analysis 206 Conclusion 218	Chapter Summary	158
Effect of Altered FAM Levels on Lysosomal Proteins – Multiplex ELISA Analysis	Results	160
Effects of Altered FAM Levels on Lamp1, ASA, 12S, and 4S	Effect of Altered FAM Levels on Lysosomal Proteins – Multiplex ELISA Analysis Sorted Cell Multiplex-ELISA analysis	160 180
Immunofluorescence analysis of lysosomal protein localisation upon modulation of FAM levels 198 Discussion 206 Effect of Altered FAM Levels on Lysosomal Proteins – ELISA Analysis 206 Conclusion 218	Effects of Altered FAM Levels on Lamp1, ASA, I2S, and 4S	196
Discussion	Immunofluorescence analysis of lysosomal protein localisation upon modulation of FAM levels	<i>19</i> 8
Effect of Altered FAM Levels on Lysosomal Proteins – ELISA Analysis	Discussion	206
Conclusion	Effect of Altered FAM Levels on Lysosomal Proteins – ELISA Analysis	206
	Conclusion	218
APPENDICES	APPENDICES	220
Bibliography	Bibliography	243

<u>Abstract</u>

Fat facets in Mouse (FAM) or mUSP9x is a deubiquitylating enzyme of the USP class. Knockdown of FAM protein levels in mouse pre-implantation embryos by antisense oligonucleotides is known to prevent embryos from progressing to the blastocyst stage indicating an important role for FAM in early mammalian development. In mammals, the Fam gene is located on the X-chromosome. In mice, the Y homologue, Dffry or usp9y, is expressed exclusively in the testes and maps to the Sxr^b deletion (Brown et al., 1998). Sxr^b is associated with an early post-natal blockage of spermatogonial proliferation and differentiation leading to absence of germ cells (Bishop et al., 1988; Mardon et al., 1989). The human Y homologue of *Fam* is closely associated with oligozoospermia (Sargent et al., 1999; Sun et al., 1999) and the human X homologue has been linked to the failure of oocytes to pass through the first meitoc prophase in Turner syndrome (Cockwell et al., 1991; Speed, 1986) Despite these associations, the substrates and precise role of Fam and its homologues in these processes have not yet been defined. Due to the complex nature of *Fam* expression and the lack of data tying FAM to specific cellular functions, much attention has been paid in identifying interacting partners and cellular targets of FAM activity to aid in the definition of its role in the cell and development.

Three common molecular biology techniques were applied here in an attempt to further characterise known interactions of FAM, including interactions with the cell adhesion molecule β -catenin and the protein trafficking pathway proteins epsin-1 and itch. The aim of these investigations was to generate FAM mutants that could abolish individual interactions, enabling investigation of individual interactions in cellular function and development. These experiments failed to identify the amino acids of FAM that were critical for its interactions with β-catenin, epsin-1, or itch. Experiments aimed at characterising a novel ubiquitin-like domain located in the N-terminal half of the FAM protein, did however identify novel interactions of FAM with the three Golgi associated adaptor proteins GGA1, GGA2, and GGA3. Further investigations prompted by this interaction, examined the role of FAM in the trafficking of proteins from the Golgi apparatus. Cellular FAM protein levels were altered either by exogenous expression of FAM protein or knockdown of endogenous FAM using FAM specific shRNA triggers. The cellular protein levels and extent of post-translational modification of eleven lysosomal proteins were monitored in each case. It was found that increased FAM protein levels resulted in decreased cellular protein levels of five of the eleven lysosomal proteins studied. In contrast, a reduction in FAM protein levels was found to result

in an increase in the cellular protein levels of eight of the eleven lysosomal proteins. This study provides the first evidence of a deubiquitylating enzyme that is able to interact with the GGA proteins. It is also the first to describe a deubiquitylating enzyme that can affect the biosynthesis of lysosomal proteins and provides valuable new insight into the cellular function of FAM/USP9X.

Declaration of Originality

This work contains no material which has been accepted for the award of any other degree or diploma in any university or tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent to this copy of my thesis, when deposited in the University Library, being available for loan and photocopying.

Mark J Prodoehl

The Author acknowledges that copyright of published works contained within this thesis (as listed below) resides with the copyright holder/s of those words

<u>Acknowledgements</u>

To begin, I wish to thank Stephen Wood for his supervision and support which has kept me motivated for the past four and a half years. I also wish to thank all of the past and present members of the Wood lab including Lachlan Jolly, Susan Millard, Poon-Yu Khut, Michaela Scherer, and Suzanne Bresatz. Without your encouragement and support, the task of completing this PhD would have been that much harder. I especially wish to thank Suse for proving to me that it could be done.

I specifically acknowledge the contributions of the following people to this study. Poon-Yu Khut performed the partial proteolysis analysis of FAM which enabled the identification of the seven putative FAM domains described in Chapter 3. I had the pleasure of supervising Jess McIntyre for a third year research project in which she aided in the cloning and bacterial expression of the seven putative FAM domains described in chapter 3. Debbie Lang gave generously of her time to perform the multiplex analysis of all of the samples described in Chapter 4, specifically the data presented in Figures 4.2, 4.5, 4.6, 4.8, and 4.10.

I would also like to acknowledge those organisations that provided financial support and bench space throughout my PhD studies. My personal finances were generously supported for three and a half years by a Faculty of Sciences Divisional Scholarship through the University of Adelaide, and by the Child Health Research Institute. The Centre for the Molecular Genetics of Development (CMGD) also provided financial support for travel expenses to an international conference. I conducted all of the research described in this thesis at CHRI and wish to thank the institute for providing me with the space to undertake this study.

Some people that I would like give special thanks to are Assoc Prof Ray Rodgers for offering me employment and encouragement while I was still in the process of writing my thesis, and my friends for their understanding and patience while I undertook the difficult task of writing. To all of my family I give my heartfelt thanks. Without their love and support through the most difficult times I don't know that I could have completed this work.

Abbreviations:

4S	4-iduronate-sulphatase
α	anti
AC-II	acidic di-leucine motif
AE-6	ALL I fusion partner from chromosome 6
a Cal	a galactosidasa
α-Gal	α-galactosidase
AP	adaptor protein complex
ASA	aryl sulphatase A
ASM	acid sphingomyelinase
ATP	adenosine tri-phosphate
b-Gal	β-galactosidase
β-Gal	β-galactosidase
bp	base pair
BSA	bovine serum albumen
°C	degrees Celsius
cbl	Casitas B-lineage lymphoma
CCV	clathrin coated vesicle
CD-MPR	cation dependent mannose-6-phosphate receptor
CI-MPR	cation-independent mannose -6-phosphate receptor
Dcx	doublecortin
DMEM	Dulbeco's Modified Eagle Medium
Doa4	dead on arrival 4
DUB	deubiquitylating enzyme
E1	ubiquitin activating enzyme
E2	ubiquitin conjugating enzyme
E3	ubiquitin ligase
E4	ubiquitin chain elongating factor
ECL	enhanced chemiluminescence

EGFP	enhanced green fluorescent protein
E. coli	Escherichia coli
EDTA	ethylene diamine tetra acetic acid
EE	early endosome
EGF	epidermal growth factor
EGFR	epidermal growth factor receptor
ENTH	epsin NH2-terminal homology
Eps15	EGFR pathway substrate clone no 15
Epsin	Eps15 interacting protein
ER	endoplasmic reticulum
ES	embryonic stem
ESCRT	endosomal sorting complex required for transport
Faf	fat facets
FAM	fat facets in mouse
	(also used to refer to vertebrate homologues of FAM)
FAM CAT	region spanning murine FAM's catalytic domain (amino acids 1475-1918)
FBR	FAM-binding region
FCS	foetal calf serum
FD	FAM domain
GAA	acid alpha glucosidase
GAE	gamma adaptin ear-like
GAL4-DBD	DNA binding domain of the GAL4 transcription factor
GAL4-AD	activation domain of the GAL4 transcription factor
GAT	GGA and Tom-1
GFP	green fluorescent protein
GGA	Golgi-localised, y-ear containing, ARF binding protein
gm	gram
GPC	Golgi to plasma membrane carrier
GTP	guanidine tri-phosphate
GSK3β	glycogen synthase kinase 3β
GST	glutathione S-transferase
GW	gateway

HA	haemaglutinin epitope tag
HECT	homology to E6AP C-terminus
HEK 293T	human embryonic kidney 293T
hr	hour/hours
HRP	horse radish peroxidase
Hrs	hepatocyte growth factor-regulated tyrosine kinase substrate
HSC70	heat shock cognate protein 70
I2S	iduronate-2-sulphatase
IdUA	Iduronidase
ΙκΒ	inhibitor of nuclear factor κB
ΙκΒΚ	inhibitor of nuclear factor κB kinase
IPTG	isopropyl-b-D-thiogalactopyranoside
kb	Kilobase pairs
kDa	KiloDalton
L	Litre
LAMP	lysosomal membrane associated protein
LB	luria broth
LE	late endosome
LEF	lymphoid enhancer factor
LIMP	lysosomal integral membrane protein
Lqf	Liquid facets
М	molar concentration
M6P	mannose-6-phosphate
M6PR manne	ose-6-phosphate receptor
MDa	mega Dalton
mM	milli-molar concentration
μΜ	micro-molar concentration
min	minute(s)
MVB	multivesicular body
Na ⁺	ionic sodium

NaCl	sodium chloride
NF-κB	nuclear factor kB
nM	nano-molar concentration
μL	micro-litres
μg	micro-grams
N-sulph	N-sulphatase
OD	optical density
orf	open reading frame
PAGE	polyacrylamide gel electrophoresis
PBS	phosphate buffered saline
PBST	phosphate buffered saline with 0.3% Tween 20
PBSTM	phosphate buffered saline with 0.3% Tween 20 and powdered milk (Diploma)
PCR	polymerase chain reaction
PEST	praline (P), glutamic acid (E), serine (S), and threonine (T) – an amino acid
	sequence associated with rapid protein degradation
PMSF	phenyl methyl sulphonyl chloride
PVC	pre-vacuolar compartment
Rcf	relative centrifugal force
RING	really interesting new gene
RTK	receptor tyrosine kinase
SDS	sodium dodecyl sulphate
sec	second(s)
Sap-C	saposin-C
STAM	signal transducing adaptor molecule
SUMO	small ubiquitin-related modifier
TCF	T-cell factor
TGN	trans-Golgi network
TGF	transforming growth factor
TEMED	N,N,N'N'-tetramethyl-ethenediamine
TKB	tyrosine kinase binding domain

TTBS	tris buffered saline	with Tween 20
------	----------------------	---------------

Ub	ubiquitin
UBA	ubiquitin associated
UBL	ubiquitin-like
UBLD	ubiquitin-like domain
UDP	ubiquitin domain protein
UBP	ubiquitin specific processing proteases
UEV	ubiquitin E2 variant
UIM	ubiquitin interacting motif
USP	ubiquitin specific processing proteases
UCH	ubiquitin C-terminal hydroxylase
V	Volts
VHS	Vps27/Hrs/Stam
Vol/vol	volume per volume
Vps	vacuolar protein sorting factor

<u>List of Tables</u>

Table 2.1: Primers used for cloning of pDONR201 vectors for prey cDNAs	.63
Table 2.2: Primers used for cloning of pDONR201 vectors for FAM domain cDNAs	.65
Table 3.1: Control yeast strains used in yeast two-hybrid experiments	.84
Table 3.2: Most abundant protein in bands analysed by mass spectrometry	.116
Table 4.1: Summary of results obtained from multiplex ELISA of transient transfections .	.181
Table 4.2: Summary of results obtained from multiplex ELISA of sorted cells	.197

<u>List of Figures</u>

Figure 1.1: The Ubiquitin-Proteasomal Degradation Pathway	3	
Figure 1.2: The Endosomal Pathway and the Role of Ubiquitin	8	
Figure 1.3: Models of Biosynthetic Trafficking from the Golgi-Apparatus Figure 1.4: Domain organization of the three GGA (Golgi-associated, gamma-adaptin ear		
Figure 1.5: Sequence alignments showing the conserved catalytic regions which def	fine the	
five classes of deubiquitylating enzyme	36	
Figure 1.6: Putative Domains and Motifs of the FAM Deubiquitylating Enzyme	44	
Figure 1.7: The Dual Roles of β -catenin	47	
Figure 3.1: Self activation and 3AT titration trial for β-catenin DBD	86	
Figure 3.2: A Yeast two-hybrid assay between a β -catenin FBR-DBD fusion and FA	٩M	
fragment-AD fusions failed to identify any interactions	89	
Figure 3.3: A Yeast two-hybrid assay between an E-cadherin cytoplasmic domain-I	OBD	
fusion and full length FAM or FAM fragment-AD fusions failed to identify any inte	ractions	
Figure 3.4: A Yeast two-hybrid assay between an Epsin1 DBD fusion and full lengt	$\frac{1}{10000000000000000000000000000000000$	
FAM fragment-AD fusions failed to identify any interactions	95	
Figure 3.5: A reverse epsin1 yeast two-hybrid and a yeast two-hybrid between an It	ch-DBD	
fusion and full length FAM or FAM fragment-AD fusions failed to identify any inter-	ractions.	
Figure 3.6: A mammalian two-hybrid assay system could not be successfully applie	97 ed to the	
identification of an interaction between Af-6 or β-catenin, and FAM.		
Figure 3.7: Bacterial Inductions of GST fusions of predicted FAM domains 1, 2, 4,	5. 6. and	
7 by the standard protocol either failed to produce any protein or failed to produce su	ufficient	
quantities of soluble protein		
Figure 3.8: Sequence analysis of the putative FAM UBLD	111	
Figure 3.9: Bacterial expression and purification of GST-tagged FAM-UBLD	114	
Figure 3.10: GST Affinity Chromatography – Unbiased approach	115	
Figure 3.11: GST-affinity binding experiment with twice bound fusion protein	118	
Figure 3.12: Assessment of a-GST and a-GST-FAM-UBLD antibody titre and spec	ificity	
	120	
Figure 3.13: GST affinity chromatography – Best Candidate approach	122	
Figure 3.14: GST affinity chromatography – Best candidate approach optimization.	124	

Figure 3.15: GST-Pulldowns with overexpressed GGA proteins	
Figure 3.16: Assessing the ability of endogenous FAM and the GGA proteins	s to interact in
vivo by co-immunoprecipitation	130
Figure 3.17: Domain organization of the three GGA (Golgi-associated, gamn	na-adaptin ear-
like) proteins	132
Figure 3.18: Reverse GST-Pulldown to test for the ability of the GGA protein	ns to interact
with endogenous FAM	133
Figure 3.19: The effect of overexpression of the GGA proteins on the cellular	r localisation of
FAM	136
Figure 3.20: Test expression of FAMDUBLD	138
Figure 4.1: Optimisation of transient transfection conditions for exogenous F	AM expression
	162
Figure 4.2: Investigating the effect of transient exogenous expression of FAM	I on the total
cellular and secreted protein levels of eleven lysosomal proteins	163
Figure 4.3: Determining the efficacy of shRNA triggers directed against FAN	И166
Figure 4.4: Time course of FAM knockdown	167
Figure 4.5: Effect of reducing endogenous FAM levels on total cellular prote	in levels of
eleven lysosomal proteins	169
Figure 4.6: Effect of reducing endogenous FAM levels on secreted protein le	vels of eleven
lysosomal proteins	175
Figure 4.7: Exogenous expression of FAM protein in GFP sorted transient tra	ansfections 183
Figure 4.8: Effect of using a more homogeneous population of FAM overexp	pressing cells on
the cellular protein levels of eleven lysosomal proteins	
Figure 4.9: Determining the level of FAM knockdown in GFP sorted 1800 sh	IRNA
transfected cells	190
Figure 4.10: Effect of using a more homogeneous population of FAM shRNA	A treated cells on
the cellular protein levels of eleven lysosomal proteins	191
Figure 4.11: Effects of altered FAM levels on maturity and processing of sele	ected lysosomal
proteins	199
Figure 4.12: Exogenous expression of FAM in HEK 293T cells has no effect	on intracellular
distribution or localisation of selected lysosomal proteins	202
Figure 4.13: Exogenous expression of FAM in HEK 293T cells has no effect	on intracellular
distribution or localisation of selected lysosomal proteins	207