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Abstract

Computer vision is concerned with the recovery of useful scene or camera information
from a set of images. One classical problem is the estimation of the 3D scene structure
depicted in multiple photographs. Such estimation fundamentally requires determining
how the cameras are related in space. For a dynamic event recorded by multiple video
cameras, finding the temporal relationship between cameras has a similar importance.
Estimating such synchrony is key to a further analysis of the dynamic scene components.
Existing approaches to synchronisation involve using visual cues common to both videos,
and consider a discrete uniform range of synchronisation hypotheses. These prior methods
exploit known constraints which hold in the presence of synchrony, from which both a
temporal relationship, and an unchanging spatial relationship between the cameras can
be recovered.

This thesis presents methods that synchronise a pair of independently moving cam-
eras. The spatial configuration of cameras is assumed to be known, and a cost function
is developed to measure the quality of synchrony even for accuracies within a fraction of
a frame. A Histogram method is developed which changes the approach from a consid-
eration of multiple synchronisation hypotheses, to searching for seemingly synchronous
frame pairs independently. Such a strategy has increased efficiency in the case of unknown
frame rates. Further savings can be achieved by reducing the sampling rate of the search,
by only testing for synchrony across a small subset of frames. Two robust algorithms
are devised, using Bayesian inference to adaptively seek the sampling rate that minimises
total execution time. These algorithms have a general underlying premise, and should
be applicable to a wider class of robust estimation problems. A method is also devised
to robustly synchronise two moving cameras when their spatial relationship is unknown.
It is assumed that the motion of each camera has been estimated independently, so that
these motion estimates are unregistered. The algorithm recovers both a synchronisation
estimate, and a 3D transformation that spatially registers the two cameras.
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n X x =

>4

NOTATION

A scalar (non-bold lower case).

A random variable (non-bold upper case).
An event (non-bold sans-serif upper case).
A set (bold upper case).

A vector (bold lower case).

A matrix (bold sans-serif upper case).
The transpose of matrix A.

The inverse of matrix A.

The element ¢ of vector v.

The element (7, j) of matrix A.

The row 7 of matrix A.

The column j of matrix A.

The trace of matrix A.

The rank of matrix A.

The Frobenius norm of matrix A.

The probability of event X.

Equality up to scale of two vectors or matrices.

Approximate equality up to scale of two vectors or matrices.
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