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Abstract

This thesis presents results concerning the limiting behaviour of stochastic rumour

processes.

The first result involves our published analysis of the evolution for the general initial

conditions of the (common) deterministic limiting version of the classical Daley-Kendall

and Maki-Thompson stochastic rumour models, [14].

The second result being also part of the general analysis in [14] involves a new

approach to stiflers in the rumour process. This approach aims at distinguishing two

main types of stiflers. The analytical and stochastic numerical results of two types of

stiflers in [14] are presented in this thesis.

The third result is that the formulae to find the total number of transitions of

a stochastic rumour process with a general case of the Daley-Kendall and Maki-

Thompson classical models are developed and presented here, as already presented

in [16].

The fourth result is that the problem is taken into account as an optimal control

xiii



xiv Abstract

problem and an impulsive control element is introduced to minimize the number of final

ignorants in the stochastic rumour process by repeating the process. Our published

results are presented in this thesis as appeared in [15] and [86].

Numerical results produced by our algorithm developed for the extended [MT]

model and [DK] model are demonstrated by tables in all details of numerical values in

the appendices.
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gerçek olanla sevinir. Sevgi
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Chapter 1

Preliminaries

1.1 Structure of the thesis

In this Chapter, a sociological introduction to rumours is presented. Then, a historical

background and motivation of the mathematical theory of epidemics and rumours

and comparisons of distinction of stiflers in epidemics and rumours are presented.

Some useful terms such as meaningful interaction, first type of stiflers and second type

of stiflers are introduced. A general comparison of the deterministic modelling and

stochastic modelling is given. A specific example as a real life application is introduced

for the distinction of the stiflers. A general overview to the literature of mathematical

theory of rumours is given.

Chapter 2 deals with analytical solutions for two types of stiflers and some convexity

1



2 CHAPTER 1. Preliminaries

properties of certain functions of these two types of stiflers. Two extensions are given

in the treatment of the classical Daley-Kendall and Maki-Thompson Stochastic Ru-

mour Models. First, arbitrary initial numbers of ignorants and spreaders are allowed.

Secondly, stiflers are distinguished according to their provenance. In the analysis, an-

alytical and numerical solutions are given for the general extended model introduced

and analytical solution is motivated by the Lambert W function. Some convexity prop-

erties of first type of stiflers and second type of stiflers are also derived. An algorithm

is proposed for a stochastic numerical solutions of the model. It is observed that the

algorithm given converges in all cases considered.

Chapter 3 deals with the formulization of the number of transitions in the rumour

process. The number of transitions of the stochastic rumour process is formulated

for our extended models of both classical Daley-Kendall and Maki-Thompson Rumour

Models. The extension includes general initial conditions and distinguished stiflers that

are described in detail and worked on in Chapter 2.

In Chapter 4, an optimization formulation is given to describe the behaviour of

stochastic rumours with two types of spreaders and two and more than two, multiple

broadcasts initiated in the same process at different times.

Chapter 5 presents general conclusions of this thesis.

This thesis also includes six appendices containing some useful definitions and theo-
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rems and mainly computational details and tables illustrating our stochastic numerical

results. In particular, we give lower and upper bounds for the [DK] model by using

two numerical methods, namely a direct iteration method and Newton’s method in Ap-

pendix E. These two methods both converge to a lower bound at 0.0556483 and an

upper bound, 0.203188. As expected, Newton’s method converges more rapidly than

direct iteration method.

The bibliography gives more than one hundred references, some of which are not

cited in the body of the thesis, but which provide valuable discussion of certain theo-

retical results underlying the techniques used in the thesis.

1.2 Rumours in social life and beyond

Rumours are social facts that can play roles in many aspects of social life from family

life to politics. The spread of rumours, which can be regarded as a specific spread of

information or disinformation, is analyzed by using mathematical tools in this thesis.

Before the mathematical background and analysis are given, we consider the social side

of rumours in this introductory section.

The role of rumours may be illustrated by the following examples, the majority of

which are drawn from Difonzo and Bordia [35]. They may be deliberately employed

in the cases of conflicts for manipulation purposes – for example, they were used by
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German agents in World War II to demoralize the French (Knapp [70]). Rumours can

also play a significant role in the stock market [34]: rumours related to securities have

affected stock price changes (for example, see Koenig [71]; Ross [100]). Rumour and

legend are discussed (Cornwell and Hobbs [31]) with the main theme being irregular

interactions between social psychology and folklore. The role of rumour can also be

seen in ancient life. See [74] for the connections between rumour and communication

in Roman politics. Another example concerns Haiti: rumours in politics have been a

fundamental part of social life in Haiti for the last three decades. This country has

been struggling in the grip of violence, fear and despotic repression where stories of

violence and magic can paralyze people with fear and confusion. See Perice [87] for

further details. How should an organization deal with ugly and potentially damaging

rumours? This question, as well as the reining in of rumours in general, has been

addressed by Difonzo, Bordia and Rosnow [34].

We conclude this section by citing the following sociological definition of rumour

from [35]. “Rumour has been defined as information that: (a) is not verified, (b) is

of local or current interest or importance, and (c) is intended primarily for belief. The

first element of this definition pertains to the poor quality of the authenticating data

for the information. Rumours are coloured by various shades of doubt because they are

not accompanied by the “secure standard of evidence” (Allport and Postman [1]) that
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would either confirm the rumour as truth or discredit it as falsehood. The difference

between news and rumour is helpful here; news is always confirmed, but rumour is

always unconfirmed (Rosnow [96] [97] [98] [99], Shibutani [102], DiFonzo [34])”.

1.3 The beginning of the study of epidemics

The study of rumours was initially motivated and influenced by the study of epidemics

and it was long regarded, from the 1940s to the 1960s, as part of the general scheme of

epidemics. We will outline a historical background of epidemics as given in [7] below.

Studies of epidemics date back to ancient Greek times. Hippocrates (459-377

B.C.) [63] is an example. However the main progress in the area starts in the 19th

century. The most spectacular developments were made by Pasteur(1822-1895) [84]

and Koch(1843-1910) [3] in bacteriological science. Nevertheless, some progress had

already been made in the statistical analysis of records showing the incidence and lo-

cality of known cases of diseases. In the 17th century, John Graunt [59] and William

Petty [88] had paid considerable attention to the London Bills of Mortality .

The above-mentioned work of Graunt and Petty may be taken to mark the begin-

ning of vital and medical statistics and the understanding of large-scale phenomena

connected with disease and mortality—but their approach was far from a connected

theory of epidemics. Indeed, although this was a time of great progress in the field
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of physics, particularly mechanics and astronomy, nearly 200 years passed before any

real progress was achieved in the biological sphere. The next major advance came in

1855 when John Snow [105] showed, by studying the temporal and spatial pattern of

cholera cases, that disease was being spread by the contamination of water supplies.

Later, in 1873, William Budd [21] established a similar manner of spread for typhoid.

Meanwhile, statistical returns had been made by William Farr(1807-1883) [42] [43],

who studied empirical laws underlying the waxing and waning of epidemic outbreaks.

1.4 The mathematical theory of rumours and epi-

demics

The mathematical analysis, particularly stochastic analysis, of a rumour started with

Daley and Kendall [32]. We shall call their model the [DK] model in this thesis. In fact,

earlier literature on a deterministic rumour model dependent on epidemics was started

by Rapoport who developed several models for the diffusion of information during the

period 1948–54: see for example, Rapoport [92]; Rapoport and Rebhun [91].

The mathematical theory of epidemics began with Ross [101] whose mathemati-

cal model is essentially a deterministic model. Later, Kermack and McKendrick [68]

and Soper [106] studied deterministic epidemic models. Bailey [6], in his analysis of
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their (Ross, Kermack and McKendrick, Soper) work, reports that they assumed that

for given numbers of susceptibles and infectious individuals, and given attack and re-

moval rates, a certain definite number of fresh cases would occur in any specified time.

However, it is widely realized that an appreciable element of chance enters into the con-

ditions under which new infections or removals take place. Increasing use of stochastic

modelling was made in the study of epidemics during the middle of last century (eg

see Bailey [6]).

In these models we have, for any given instant of time, probability distributions

for the total numbers of susceptible and infected individuals replacing the single point-

values of the deterministic treatments. Stochastic models have a special importance in

this context due to the fact that for epidemic processes stochastic means are not the

same as the corresponding deterministic values.

1.5 The differences and similarities between

the spread of rumours and epidemics

The spread of rumours and epidemics may be described in a variety of ways. Most

work involves empirical and theoretical work to describe and formulate the spread of

rumours or epidemics. Although rumours and epidemics are often thought of together,
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the literature for rumours is much less developed than that for epidemics. This is partly

because of the relative complexity of the rumour process. The complexity mainly arises

from differences in the removal mechanism. This makes the analysis different from, and

more difficult than, that of epidemics. In epidemics, an individual becomes an immune

through death or isolation. On the other hand, in rumours, spreaders may become

stiflers in two different ways. One is the case when two spreaders encounter each

other, and the other is when a spreader encounters a stifler. The superficial similarities

and differences between rumours and epidemics were discussed for the first time by

Daley and Kendall [32]. Since then, the spread of rumours has been studied as a

separate phenomenon from that of epidemics.

Examples of extension studies on rumour modelling include, in Belen, Kaya and

Pearce [15], the behaviour of stochastic rumour as an optimal control problem. The

general case of the rumour problem is analysed and an optimization formulation is

given where the control input is impulsive. See also Chapter 4.

In Rhodes and Anderson [95], a rumour model is utilized to understand the spread

of forest fires.

A remarkable work for the general stochastic epidemic is due to Siskind [103] who,

more than three decades ago, gave a solution of the general stochastic epidemic1.

1without using Laplace transforms
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1.6 The role of deterministic models and stochastic

models for some real life problems

The models used to explain diffusion of information or the spread of rumours serve as

a tool to understand a social phenomenon better. It is reasonable to model the spread

of rumours as growth (or decay) processes. However, the predictions provided by the

two types of model, deterministic and stochastic, are naturally different.

Stochastic as a word derives from the Greek word “στoχaστηs” meaning “random”

or “chance”. A stochastic model is a mathematical model which describes a natu-

ral phenomenon and predicts the possible outcomes of experiments or chance events

occurring randomly in time that are weighted by their probabilities. Thus, stochas-

tic models are applicable to any system involving random variability as time passes.

There are various application areas from geophysics to social science. Some exam-

ples are as follows: stochastic models have been used for the prediction of the size

and whereabouts of earthquakes [25]; stochastic models are used to describe and solve

environmental and investment problems [77]; they have been applied in the study of

learning [23]; life contingencies [64]; buying behaviour [79]; manufacturing systems [24];

operations research [62]; and the production of material handling systems in the con-

struction industry [50]. Of more immediate relevance to the work presented in this
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thesis, stochastic modelling has been widely applied in the study of epidemics and the

study of diffusion of information or spread of rumours in the population of individuals

(Bailey [6] [7] [8] [9], Daley and Gani [33], Frauenthal [46], Foster [45], Gani [52] [53],

Kermack and McKendrick [68], Siskind [103]).

In comparing stochastic and deterministic models with an example, the determin-

istic model for a rate of growth of population provides a function giving the size of

the population for any specified time while the stochastic model gives a probability

distribution of population size for each time.

It is often found that the deterministic version of a model is required to make

progress towards having a numerical solution. However, the deterministic model is

regarded as an approximation.

1.7 Notation and terminology

Traditionally rumour modelling supposes a homogeneously mixed population without

immigration, emigration, deaths, or births and we will adhere to this assumption. This

closed population is classified into three classes called spreaders, ignorants, and stiflers

who have ceased to spread the rumour, that correspond to infectives, susceptibles and

removed cases respectively in epidemic theory. In this thesis, the notations i, s, and r

are used for the number of ignorants, spreaders and stiflers respectively.
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We shall call an interaction meaningful when it is between two spreaders or a

spreader and an ignorant or a spreader and a stifler.

We shall differentiate stiflers into two types depending on the sort of interaction by

which they became stiflers. Thus, a population of stiflers is further classified into two

stifler sub-populations. Meaningful interaction between two spreaders results in either

both becoming stiflers or one of them becoming a stifler while the other one remains

a spreader. We shall refer to these as stiflers of the first type and denote their number

by r1. If a spreader meets a stifler, then the spreader becomes a stifler of second type

and we denote the number of this type of stifler by r2. Let r0 be the total number of

initial stiflers. Then r0 = r1,0 + r2,0 = 0 in the standard formulation but we shall allow

r0 > 0 in this thesis.

We shall denote the size of population by either n or N . The former is more natural

for our development while the latter, used in earlier literature, makes for simpler com-

parisons with that literature. Each of the notations of population size is re-introduced

when it is used in the context in order to avoid confusion.

The result of a meaningful interaction is a transition from one state to another.

With a closed population, the rumour process is finite in the sense that all of the

spreaders become stiflers after a finite number of transitions. We denote this number

of transitions by T and the number of spreaders at the end of the process is given by
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s(T ) = 0.

1.8 The classical methods in rumour models

A general method to solve a stochastic rumour problem is given as the Principle of the

Diffusion of Arbitrary Constants by Daley and Kendall [32]. The differential equations

represent the deterministic analogue of a stochastic process and if they can be explicitly

solved, then this principle can be applied to other problems.

This method to estimate the rumour process which was constructed and developed

by Daley and Kendall [32] is that of a diffusion approximation. They use the solution

obtained from their deterministic model’s ordinary differential equations to provide

a constant of motion λ(s, i) and replace this2 by a random variable λ(s(t), i(t)). The

distribution of the terminal value of λ is calculated3 as λ∞ = 2n+1+∆λ. They refer to

this as ”the general method” for determining the value of this λ where the representative

point on the path of a stochastic rumour takes small jumps from one deterministic path

to another and each of these paths has its own λ-value”. Monte Carlo experiments are

also used to give numerical results which illustrate the effectiveness of the “principle”

in estimating the evolution of the rumour process.

An important result [32] obtained by the use of the principle was that the proportion

2Here, i represents the number of ignorants and s represents the number of spreaders

3Here, n + 1 is the population size
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of the population who never heard the rumour is 0.203188 asymptotically under the

initial conditions where the initial number of spreaders is 1 and initial stiflers 0. See

further [32].

Barbour [11] also discusses the principle of the diffusion of arbitrary constants. He

derives a technique for obtaining analytical approximations to the first few cumulants of

the continuous-time Markov lattice process when the population size becomes large, in

cases where each transition rate is a multinomial expression in the lattice coordinates.

The second classical model for the spread of rumours, introduced by Maki and

Thompson [78], is formulated as a discrete time Markov chain. We shall call their model

the [MT] model. There is a typographical error in their publication, the proportion of

ignorants to the total population is 0.238. When this is corrected, their paper gives

that when the rumour process having the same initial condition as the [DK] model

stops, the proportion of ignorants will be 0.203188, the same proportion as the [DK]

model.

The ‘principle’ is not our main topic in this thesis— however, the system of differen-

tial equations which represents the deterministic analogue to our stochastic process in

this thesis has the same characteristics as the [DK] model’s differential equations, and

is solved explicitly. The numerical results obtained by our algorithm for the general

stochastic rumour process also illustrate strong agreement with Daley and Kendall’s
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results [32] and Maki and Thompson’s results [78]. We reproduce those classical results

in this thesis. See Table 3.4, Table 3.5 and other tables which appear throughout this

thesis, including Appendices from Appendix C to Appendix F.

In the following paragraphs, we summarise the other main contributions to the

mathematical theory of rumour modelling.

Bartholomew [12] discusses general epidemic models for the diffusion of news, ru-

mours, and ideas. He gives both a deterministic approximation and a stochastic anal-

ysis for these models.

Dunstan [37] considers the general epidemic model developed (e.g. by Bailey [9])

for the diffusion of information and uses it as a model for the spread of rumours.

Recursive expressions are found for the mean of the final size of each generation of

hearers4. Simple expressions are found for the generation size and the asymptotic form

of its final size in his deterministic model.

Sudbury [108] uses a martingale method for the [MT] model and shows that the

proportion of the population never hearing the rumour converges in probability to 0.203

and the proportion of the transitions to the total population converges in probability

to 1.594 as the population size becomes very large.

4Hearer : an individual who receives the information at any time. Generation : someone who

receives the news direct from the source is called first generation, someone who hears from the first

generation but not directly is called second generation and so on.
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Later, Watson [113] examined the size of a rumour, defined as the number of indi-

viduals in the population eventually hearing the rumour.

Lefevre and Picard [75] examined a distribution of the final extent of a continuous-

time rumour process on the basis of the [MT] model by using Gontcharoff polynomials.

Pearce [85] gave a characterization for the time-dependent evolution of rumour pro-

cesses. The method used is a probability generating function method for rumours and

is more general than the [MT] and [DK] models.

Daley and Gani [33] reproduce the results in [32]. They suggest a k-fold stifling

model and describe the deterministic versions of the k-fold stifling and (α, p) probability

variants of the [DK] model, in which they suppose that a spreader attempts to spread

the rumour with probability p and the spreader becomes a stifler with probability α.

The basic model has p = α = 1. It is assumed that a spreader does not decide to cease

spreading the rumour until being involved in k stifling experiences and it is for this

reason that the model is called k-fold stifling.

We give a solution for the k-fold stifling variant of [MT] model on page 125 in

Appendix D.

More relevant works, Belen and Pearce [13] and Belen and Pearce [14], take care

of analytical and numerical solutions for some refinements of the classical [MT] model

with general initial conditions. Chapter 2 gives further details. Also in Belen, Kaya
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and Pearce [15] an optimization formulation is given to describe the behaviour of a

stochastic rumour by introducing two types of spreaders and two broadcasts initiated

in the same process at different times and introducing impulsive control element in the

process. Chapter 4 gives further details.

1.9 More general rumour models

Daley and Kendall were unable to find exact solutions to their models ([DK] model)

and much of the literature has followed a variant of the [MT] model. In this thesis, we

consider a further variant of both of these classical rumour models.

The spread of a rumour as a social process has many interesting aspects but these

have not been considered in depth in mathematical treatments of rumours. One such

aspect is the psychological effect of a rumour on the individual.

If an individual stops spreading a rumour then s/he probably has a psychological

reason behind that decision. In some cases, an individual may stop spreading a rumour

because of economic reasons. (For example, a spreader may be paid to spread the

rumour once but when the payment stops later, the spreader may stop spreading the

rumour.) It is a cynical truism that a spreader may be paid to disseminate a rumour

and will desist when payment discontinues. In our work we consider psychological

reasons behind the decisions for being stiflers and distinguish stiflers into two main
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types.

We shall assume that ignorants, spreaders and stiflers are subject to homogeneous

mixing and that meaningful interactions between individuals occur at a uniform rate

proportional to their rate of encounter. Interaction between an ignorant and a spreader

results in the ignorant becoming a spreader; that between a spreader and a stifler in

the spreader becoming a stifler; that between two spreaders in one of them becoming

a stifler. Other encounters are taken as being without effect. If there is initially at

least one spreader and at least one non-spreader such a process of interactions results

eventually in a population in which no spreaders remain. The proportion of the total

population never to have heard the rumour at this stage (or subsequently) is given by

a probability distribution on the interval (0,1). A remarkable result relating to this has

been outlined in section 1.8.

Surprisingly this result does not appear to have been explored further. If the effect

of a single initial spreader is that nearly 80 per cent of a large population eventually

hear a rumour, what would be the effect of a larger number of initial spreaders? Such

a question is pertinent in the current age of mass media, where a once-off statement

can proceed immediately to a large segment of a population, whence it is further

disseminated by person to person interaction. Depending on the nature of the rumour,

the notion that there are initially no stiflers may also be inappropriate.
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The previous paragraph relates merely to variation of the initial conditions of the

process. There is also a structural variation that suggests itself, namely, the possibility

that spreaders who become stiflers by virtue of an interaction with other spreaders

may in some way be different from those who become stiflers because of interaction

with stiflers. For example, while both groups are stiflers, the former may still believe

the rumour but see no point in further spreading it, while the latter may have actually

ceased to believe the rumour. Here we pursue these possibilities. We allow general

initial conditions and distinguish two types of new stifler according to the mechanism

whereby they became stiflers. These two types occur either after an encounter between

two spreaders or after an encounter of a spreader with a stifler.

The two mechanisms may represent different subpopulations which can be of inter-

est in applications. For example, let us consider a homogeneously mixed population,

whose n + 1 members are assumed to be the voters for certain political parties in a

country. This example is motivated by an actual rumour about the former leader of the

Christian Democrat Party in Germany, Helmuth Kohl, that was related to donations

given to the party [20] [117]. After this rumour was circulated his party lost many

voters in the next local elections.

Let the parties be classified at time t0 into two groups, namely party A of size n1(t0)

and other parties of size n + 1 − n1(t0). Suppose that a rumour about the leader of
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party A is introduced by one or more people in this population.

Other parties hope this will influence voters for party A to change their votes and

so wish to spread it to as many people as possible. Clearly a spreader doesn’t intend

to vote for Party A.

• When two spreaders meet, each mentions the rumour to the other. In rumour

theory it is usually presumed that as a result of this encounter one spreader will

desist from further rumour-mongering ([MT] model) or that both will desist ([DK]

model). Here, a first type of stifler occurs. This assumption is less restrictive

than might appear to be the case at first sight, since the encounter rate can be

nominated so as to reflect only that proportion of encounters associated with

stifling.

• When a spreader encounters a stifler, the spreader thereafter desists from spread-

ing the rumour. Again, use of an appropriate encounter rate allows for the sce-

nario that only a proportion of such encounters stifle spreaders. The spreader is

assumed to come to the belief that the society does not care about the allega-

tion, is not affected by it, or that s/he can not change outcomes by spreading the

allegation. Thus the spreader is discouraged and gives up supporting any party

and becomes a neutral, i.e. a second type of stifler.

These motivations give rise to people who are either voters for the other parties or
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neutral voters. This is a rationale for our assumption of two different types of stiflers

in this specific example.

Suppose the initial population is large. It follows from the results of Chapter 2

and Chapter 4 that, according to the model described above, at the end of the rumour

process other parties will take 0.324(= r1(∞)) votes of the initial ignorant voters of

party A. The proportion of the initial voters of party A who become neutral (r2(∞))

will be 0.473n1(t0) in our example.

The model also indicates that party A will retain 0.368n1(t0) votes of its initial

voters. According to our analysis, the model gives the proportion of the first type of

stiflers to total population as r1(∞) = 0.5, and the proportion of the second type of

stiflers to total population as r2(∞) = 0.5 , with respect to general initial conditions

in which the initial proportions of stiflers and spreaders are greater than zero and α

goes to 0.

Another example as an application for different type of stiflers is given in Chapter

2.



Chapter 2

Rumours with a general number of

initial spreaders

2.1 Introduction

A rigorous treatment of the limiting behaviour of stochastic rumour processes proved

unexpectedly tricky and the literature has mainly addressed technical questions of

stochastic convergence, mostly via diffusion-type approximations and martingale argu-

ments (see, for example, Barbour [11], Sudbury [108], Pittel [89] and Watson [113]). It

is probably true to say that broader questions for those models are still largely unex-

plored. For example, the standard assumption that a rumour is initiated by a single

spreader, while doubtless true in many concrete examples, is certainly inappropriate

21
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for others in this current age of mass communication, where a rumour may be initiated

by television or radio. In this chapter we adopt general initial conditions and consider

the evolution of the models. We examine how the initial conditions bear on what

proportion of ignorants and of the total population never get to hear the rumour.

We discover inter alia the perhaps surprising result that, even when the initial pro-

portion of spreaders in the population tends to unity, the fraction of the subpopulation

of initial ignorants that never hear the rumour does not approach zero.

Our second innovation derives from a closer perspective on stiflers. In stochastic

rumours, stiflers are produced by two distinct mechanisms, the interaction of a spreader

with a stifler and the interaction of two spreaders. However no attention is given to

this differential genesis once a stifler has been produced. The two mechanisms may

represent different subpopulations which can be of interest in applications. A homely

example is supplied by women’s fashion: a person may adopt a new fashion because

it is new and distinctive, another may resist it for that reason until it has obtained

widespread currency. The first person is likely to lose interest in the fashion and become

a stifler when it is widespread (spreader–spreader interactions), the second when many

others have already dropped the fashion (spreader–stifler interaction).

This example suggests it may sometimes be worthwhile to distinguish subpopula-

tions amongst the ignorants and the spreaders as well. We eschew this initiation and
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pursue only the distinction of two types of stiflers within the framework of existing

models.

In order to uncover some new results without becoming enmeshed in technicalities

we shall adopt a broad brush stroke and, after introducing stochastic rumours in Section

(2.2), proceed using a continuous deterministic approximation via differential equations

as in the seminal article of Daley and Kendall [32].

In Section (2.3), we treat the evalution of the deterministic model with time. In

Section (2.4), we find the proportion of the initial ignorants who never hear the rumour

and in Section (2.5), the proportion of the whole population who never hear the rumour.

In Section (2.6) we calculate the final proportions of the population belonging to the

two stifler subpopulations. Again we find a result not obvious by intuition: one of

these proportions is a monotone function of the initial proportion of ignorants while

the other is not!

2.2 The model

In this chapter, a stochastic rumour pertains to a fixed population of n individuals

consisting of subpopulations of ignorants, spreaders and stiflers as we noted at page

10.

Homogeneous mixing of individuals occurs, with a given proportion of ignorant-
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spreader interactions leading to the ignorant becoming a spreader and the same pro-

portion of spreader–stifler interactions resulting in the spreader becoming a stifler. A

similar phenomenon occurs with spreader–spreader interactions. In the [DK] model,

the outcome is two stiflers. The [MT] model distinguishes between an initiating and

a receptor spreader in such an interaction and only one spreader converts to being a

stifler as a result of an encounter.

With each of these models a sequence of state transitions occurs. There are three

types of transitions. Let i, s, r be the respective numbers of ignorants, spreaders and

stiflers at a given moment. The ignorant–spreader and spreader–stifler interactions

respectively may be expressed as state transitions

(i, s, r) −→ (i− 1, s+ 1, r),

(i, s, r) −→ (i, s− 1, r + 1). (2.2.1)

The spreader-spreader interaction is

(i, s, r) −→ (i, s− 2, r + 2) (2.2.2)

for the Daley-Kendall version of the process and

(i, s, r) −→ (i, s− 1, r + 1) (2.2.3)

for the Maki-Thompson version. We remark that (2.2.1) and (2.2.3) are formally the

same, though the first (the spreader–stifler interaction) occurs at rate sr and the latter
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(the spreader–spreader interaction) at rate s(s − 1). Such sequences lead inexorably

(after a finite number of transitions) to states in which there are no spreaders left.

Note that we get r = r1 + r2 at this stage.

We now turn our attention to the limiting forms of these models as the total pop-

ulation size tends to infinity. We adopt a continuum formulation. Let i(t), s(t), r(t)

denote the proportions of the total population at time t that are respectively ignorants,

spreaders and stiflers. With an appropriate choice of time scale, the common coefficient

for interactions leading to a change of subpopulation of an individual can be taken as

unity. The [DK] stochastic model and [MT] stochastic model lead to the same set of

coupled deterministic subpopulation equations

di

dt
= −is, (2.2.4)

ds

dt
= is− s2 − sr = s(2i− 1), (2.2.5)

dr

dt
= s2 + sr

= s(1 − i), (2.2.6)

which apply in the limit of a total population size tending to infinity. We adopt the

initial conditions

i(0) = α > 0, s(0) = β > 0, r(0) = γ, with α + β + γ = 1. (2.2.7)
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We remark that (2.2.6) may be considered redundant, since

r = 1 − i− s. (2.2.8)

It is convenient to introduce the parameter θ = θ(τ) := i/α, the ratio of the proportion

of ignorants at time τ to the initial proportion. In the next section we address the

dynamics and asymptotics of the continuum rumour process.

2.3 Evolution of the System

Theorem 1. The evolution of the rumour process prescribed by (2.2.4)–(2.2.6) is given

parametrically in terms of i by

s = β − 2 (i− α) + ln(i/α) (2.3.1)

= β − 2α (θ − 1) + ln θ (2.3.2)

and (2.2.8).

The process evolves towards an asymptotic state (i∞, 0, r∞), with

i ↓ i∞ = i∞(α, β) as τ → ∞

and

0 < i∞ < 1/2. (2.3.3)
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The parameter θ∞ := i∞/α satisfies the transcendental equation

θ∞ e2 α (1−θ∞) = e−β . (2.3.4)

Further,

s→ 0 and r(τ) ↑ r∞ = 1 − i∞ as τ → ∞.

Proof. Equation (2.2.4) implies that i is a strictly decreasing function of τ and may

therefore be used as an independent parameter. Combining (2.2.4) and (2.2.5) provides

the relation

ds

di
=

1 − 2i

i
, (2.3.5)

which integrates to give (2.3.1). The value of r is then determined by (2.2.8).

Being strictly decreasing and bounded below by zero and above by unity, i must

therefore tend to some limit i∞ < 1 as τ → ∞. By (2.2.6), r is strictly increasing with

time. Since it is bounded above by unity, it must tend to a limit r∞ > 0 as τ → ∞.

Also, since i∞ < 1, we have from (2.2.6) that s → 0 as τ → ∞, or equivalently s → 0

as i→ i∞.

If α ≤ 1/2, then i(τ) < 1/2 for all τ > 0 since i is strictly decreasing, and hence

i∞ < 1/2. If α > 1/2, then by (2.3.5) ds/di < 0 and

ds

dτ
=
ds

di
· di
dτ

> 0
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initially. Since s → 0 as τ → ∞, s(τ) must first increase to a local (and global)

maximum (at which time i = 1/2) and by (2.3.5) decrease thereafter. Because i

is strictly decreasing, we thus have i∞ < 1/2. Since r∞ > 0, we have also that

i∞ = 1 − r∞ > 0.

Finally, letting τ → ∞ in (2.3.2) yields

0 = β − 2α (θ∞ − 1) + ln θ∞, (2.3.6)

which is just (2.3.4).

Equation (2.3.6) may be expressed as

wew = −2αe−2α−β, (2.3.7)

where w := −2αθ∞.

The equation

xex = y (2.3.8)

has two real solutions when −1/e < y < 0 (see Figure 2.1). We have

−2αe−2α < −2αe−2α−β

for any α, β > 0, so that xex|x=−2α < xex|x=−2αθ for 0 < α < 1. Hence one of the real

solutions of (2.3.7) is less than −2α and the other greater than −2α. As we must have

0 < θ < 1, the physical solution to (2.3.7) is the one greater than −2α, that is, the
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Figure 2.1: The graph of the equation x = yey

numerically smaller real solution of (2.3.8). The function w = w(y) giving the unique

real solution to (2.3.8) for y ≥ 0 and the numerically smaller real solution for y < 0

has been in the literature for over 200 years and is known as the Lambert w function

(see [29]). Lagrange’s expansion provides an explicit series evaluation

w =
∞

∑

k=1

(−y)k

k!
kk−1.

Thus for α, β > 0

θ = − 1

2α
w(−2αe−2α−β) =

∞
∑

k=1

(−2αk)k−1

k!
exp (−k(2α + β)) .
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2.4 Proportion of Ignorants Never Hearing the Ru-

mour

Theorem 2.

(a) For α + γ = 1 − β fixed, θ∞ is strictly decreasing in α.

(b) For β + γ = 1 − α fixed, θ∞ is strictly decreasing in β.

(c) For α + β = 1 − γ fixed, θ∞ is strictly decreasing in α.

Proof. Consider situation (a). Implicit differentiation of (2.3.6) with respect to α

provides

1 − (−1) − 2α
∂θ∞
∂α

− 2θ∞ +
1

θ∞

∂θ∞
∂α

= 0

since

γ = 1 − β − α

where 1 − β fixed.

∂θ∞
∂α

(−2α +
1

θ∞
) + 2 − 2θ∞ = 0

∂θ∞
∂α

= −2θ∞
1 − θ∞

1 − 2αθ∞

which is negative since αθ∞ = i∞, 0 < α < 1 and 0 < i∞ < 1/2. This establishes the
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result in (a).

Similarly in the context of (b), we have

β − 2(θ∞ − 1 − βθ∞ + β − γθ∞ + γ) + lnθ∞ = 0

−β − 2θ∞ + 2 + 2βθ∞ + 2γθ∞ − 2γ + lnθ∞ = 0

−1 − 2
∂θ∞
∂β

+ 2β
∂θ∞
∂β

+ 2θ∞ + 2γ
∂θ∞
∂β

− 2θ∞ + 2 +
1

θ∞

∂θ∞
∂β

= 0

∂θ∞
∂β

(−2 + 2β + 2γ +
1

θ∞
) = −1

∂θ∞
∂β

= − θ∞
1 + 2αθ∞

< 0

giving the requisite result.

Finally, for (c), suppose α + β = c, fixed, so that θ∞ = θ∞(α) and

c− α− 2α(θ∞ − 1) + ln θ∞ = 0.

Implicit differentiation yields

0 − 1 − 2((θ∞ − 1) + α
∂(θ∞ − 1)

∂α
) +

1

θ∞

∂θ∞
∂α

= 0
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−1 − 2θ∞ + 2 − 2α
∂θ∞
∂α

+
1

θ∞

∂θ∞
∂α

= 0

dθ∞
dα

= −θ∞(1 − 2θ∞)

1 − 2αθ∞
< 0. (2.4.1)

Hence, the proof is complete.

Figure 2.2 depicts the situation for case (c) with the standard γ = 0, so that

α+ β = 1. For simplicity, we commit an abuse of notation and set θ(α) = θ∞(α). We

have seen that θ is a strictly monotone decreasing function of α on (0, 1). Its infimum

satisfies the Daley–Kendall equation 2(1 − θ) + ln θ = 0 and is θ(1) ≈ 0.2031878. The

other real solution θ = 1 to this equation is aphysical, as noted in [32]. The supremum

of θ is θ(0) = 1/e ≈ 0.36787944. That is, we have the somewhat surprising result

that when nearly all the population are initially spreaders, it is still the case that a

proportion 1/e of the initial ignorants never hear the rumour.

The infimum value θ(1) arises in the limit of total population tending to infinity

for a fixed finite initial number of spreaders. The supremum value θ(0) arises similarly

with a fixed finite number of ignorants.

Despite the suggestion from Figure 2.2, θ is not a concave function of α throughout

(0,1). We may see this as follows. Implicit differentiation of (2.3.6) twice with respect
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Figure 2.2: The behaviour of the function θ

to α yields

θ(1 − 2αθ)
d2θ

dα2
=
dθ

dα

[

4θ2 +
dθ

dα

]

or, using (2.4.1),

(1 − 2αθ)
d2θ

dα2
=
dθ

dα

[

4θ − 1 − 2θ

1 − 2θα

]

.

For α ≈ 0, the expression in brackets on the right is ≈ 4θ(0) − [1 − 2θ(0)] > 0, so

d2θ/dα2 is negative and θ is a strictly concave function of α. On the other hand, for

α ≈ 1, the expression in brackets is ≈ 4θ(1) − 1 < 0, so d2θ/dα2 is positive and θ is a

strictly convex function of α.

In the concluding section we examine the variation of ζ := i∞ = αθ∞ with the

initial conditions.
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2.5 Proportion of Total Population Never Hearing

the Rumour

The dependence on initial conditions of the proportion ζ of the total population who

never hear the rumour is also of interest.

Theorem 3.

(a) For α + γ = 1 − β fixed, ζ is strictly increasing in α for α < 1/2 and strictly

decreasing in α for α > 1/2.

(b) For β + γ = 1 − α fixed, ζ is strictly decreasing in β.

(c) For α + β = 1 − γ fixed, ζ is strictly increasing in α.

Proof . We may rewrite (2.3.6) as

β − 2(ζ − α) + ln ζ − lnα = 0. (2.5.1)

The argument now follows that of Theorem 2. In (a), (b), (c) we have respectively

from implicit differentiation of (4.8.2) that

∂ζ

∂α
=
ζ

α
· 1 − 2α

1 − 2ζ
,

∂ζ

∂β
=

−ζ
1 − 2ζ

,

dζ

dα
=
ζ

α
· 1 − α

1 − 2ζ
,

from which the conclusions follow directly, since ζ < 1/2.
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Corollary 1. We have ζ∗ := sup ζ = 1/2. This occurs in the limiting case α = 1/2 =

γ, with β = 0.

Proof. From (c) of Theorem 2, we have for fixed γ that ζ has supremum approached

in the limit α = 1− γ with β = 0. But from (a), we have in the limit β = 0 that ζ has

supremum arising from α = 1/2. This gives the second part of the enunciation.

From (4.8.2), ζ∗ satisfies

0 = −2ζ∗ + 1 + ln (2ζ∗) . (2.5.2)

For x > 0, set

g(x) := ln x− x+ 1.

Then g is strictly increasing on (0,1) and strictly decreasing on (1,∞). It follows that

x = 1 is the only solution to g(x) = 0. We deduce from (2.5.2) that ζ∗ = 1/2.

Remark: The study of Daley-Kendall and Maki-Thompson places a lower bound for

the proportion of ignorants at the end of the rumour process and our study an upper

bound.

2.6 Two types of stiflers

We now proceed to distinguish between a spreader who became a stifler as a result

of an interaction with another spreader and one who made the change following an
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interaction with a stifler. Denote the proportions at time t of these two subpopulations

in the total population by r1(t), r2(t) respectively, so that r1 + r2 = r. The asymptotic

behaviour of r1 and r2 as t→ ∞ is then characterised by

dr1
dt

= s2,
dr2
dt

= sr.

Coupling the former equation with (2.2.4) provides dr1/di = −s/i, so that by

s = 1 + α− 2i+ ln(i/α), (2.6.1)

dr1
di

= −1 + α− 2i+ ln(i/α)

i
.

With the initial conditions i(0) = α, r1(0) = 0, this may be integrated to yield

r1 = −(1 + α) ln(i/α) + 2(i− α) − (ln(i/α))2/2.

For reference, we note that with the more general initial conditions γ1(0) = γ1 we

derive that

r1(∞) − γ1 = −(1 + α) ln θ − 2α(1 − θ) − 1/2(ln θ)2.

Since i/α→ θ as t→ ∞, we derive

r1(∞) = −(1 + α) ln θ − 2α(1 − θ) − 1

2
(ln θ)2.

Define φ1(α) := r1(∞). Then in the basic γ1(0) = 0 case,
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dφ1

dα
= − ln θ − 2(1 − θ) +

1

θ

dθ

dα
(2αθ − 1 − α− ln θ),

= − ln θ − 2(1 − θ)

= −(1 − α)(1 − 2θ),

where i∞ = αθ (the parameter θ represents the proportion of the ignorant subpop-

ulation who never hear the rumour) was set and since s∞ = 0,

1 + α(1 − 2θ) + ln θ = 0, (2.6.2)

using (2.6.1).

Thus dφ1/dα < 0. Hence φ1 is a strictly decreasing function of α for α ∈ (0, 1) (see

Figure 2.3). It has limit 0.32380.. as α → 1 and limit 0.5 as α → 0. To see the latter,

substitute α = 0 in (2.6.2). Then

θ = 1/e, so φ1(0) = − ln θ − 1

2
(ln θ)2|θ=1/e = 1/2.

Further,

d2φ1

dα2
=

(

2 − 1

θ

)

dθ

dα
> 0,

(2.6.3)

so that φ1 is a strictly convex function of α.
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Figure 2.3: The graphs of φ1, φ2, and their derivatives as functions of α.

We now consider

φ2(α) := r2(∞) (2.6.4)

= 1 − i(∞) − r1(∞)

= 1 − αθ + (1 + α) ln θ + 2α(1 − θ) +
1

2
(ln θ)2.
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We have

dφ2

dα
=

1

θ

dθ

dα
[−3αθ + (1 + α) + ln θ] − 3θ + ln θ + 2,

= −α dθ
dα

− 3θ + ln θ + 2,

by (2.6.2). Hence, noting that dβ
dα

= θ + α dθ
dα

, we obtain

dφ2

dα
= −dβ

dα
− 2θ + ln θ + 2

=
1 − α

1 − 2θ

[

(1 − 2θ)2 +
dθ

dα

]

,

where the derivation of the last equality is detailed in Appendix B. From (2.6.2) it then

follows that dφ2/dα can vanish only when

(1 − 2θ)2 =
θ(1 − 2θ)

1 − 2θα
,

that is, (1 − 2θ)(1 − 2αθ) = θ or 2αθ = (1 − 3θ)/(1 − 2θ).

We have also from (2.6.2) that α = −(1 − logθ)/(1 − 2θ) and so

2αθ = −(1 + ln θ)2θ/(1 − 2θ).

Equating the two expressions or 2αθ, we see that dφ2/dα can vanish only when (1 −

θ)/2θ = − ln θ.

Defining h := 1/θ, this relation becomes

h− 1

2
= lnh, (2.6.5)
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which is easily seen to have a unique solution h∗ on (1,∞). Relation (2.6.5) can be

expressed as

−1

2
e−1/2 = −1

2
he−h/2

so that −h∗/2 = w(−1
2
e−1/2), from which we obtain h∗ ≈ 3.512. It follows that

θ = θ∗ = − [2w(−e−1/2) ]−1 ≈ 0.2847, and finally

α∗ =
1

2θ∗
1 − 3θ∗

1 − 2θ∗
≈ 0.5952.

We can readily verify that dφ2/dα is negative for α = 0+ and positive for α = 1−.

Hence φ2 is strictly decreasing for α ∈ (0, θ∗) and strictly increasing on (θ∗, 1) (see

Figure 2.3).

The second derivative d2φ2/dα
2 can be shown to be

d2φ2

dα2
=

θ(1 − 2θ)

(1 − 2αθ)3

(

4 + 3α− 10αθ + 8α2θ2 − 4α2θ − 1

θ

)

.

The solution to d2φ2/dα
2 = 0 in the interval (0, 1) can numerically be shown to be

α∗∗ ≈ 0.8163. The graph of d2φ2/dα
2 is also shown in Figure 2.3. It follows that, as a

function of α, φ2 is quasiconvex on (0, 1).

The graphs of φ1 and φ2 are depicted together in Figure 2.4. It is interesting to

observe that φ1 and φ2 approach 1/2 when α → 0. So we find it worthwhile to examine

the dynamics of r1 and r2 relative to each other during the process for this particular
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Figure 2.4: The graphs of φ1 and φ2 depicted together.

case. When α → 0, the equations describing the rumour process can be re-written as

ds

dt
= −s (2.6.6)

dr1
dt

= s2 (2.6.7)

and r2 = 1− r1 −s. The solution to Equation (2.6.6) is obtained also using s(0) = 1 as

s(t) = e−t

and then the solution to (2.6.7) can be shown to be

r1(t) =
1

2

(

1 − e−2t
)

. (2.6.8)

Furthermore

r2(t) = 1 − e−t − 1

2

(

1 − e−2t
)

. (2.6.9)
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Now (2.6.8) and (2.6.9) are combined to give the dynamics of r1 and r2 relative to each

other:

r2 = 1 − r1 −
√

1 − 2r1. (2.6.10)

The dynamical relationship between r1 and r2 in (2.6.10) has been illustrated in Figure

2.5. The evolutions of r1 and r2 with respect to s are also plotted in Figure 2.6. Note

that from (2.6.6) and (2.6.7), dr1/ds = −s, and from r2 = 1 − r1 − s, dr2/ds = s− 1;

in other words, when s decreases, the sum of the rates of changes of r1 and r2 with

respect to s is -1. While d2r1/ds
2 = −1, d2r2/ds

2 = 1, or d2r1/ds
2 = −d2r2/ds

2, which

is visualised in Figure 2.6.

Hence, from the application point of view, spreaders encounter stiflers more than

encountering each other while the process goes further, as may be expected. Therefore

the number of second type of stiflers is greater than the number of first type of stiflers

throughout most of the process. When the number of ignorants in the beginning of the

process is very small the number of first type of stiflers is almost equal to the number

of second type of stiflers, whereas half of the population is first type and other half is

second type of stiflers at the end of the stochastic rumour process.
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Chapter 3

Stochastic rumour process and

transitions

3.1 Transitions and transition probabilities

3.1.1 Introduction

In general, every transition in a stochastic system has its own transition probability.

Transition probabilities have been a special and important concept in the study of

Markov processes. Most of the definitions given for transition probabilities are based

on a Markov chain, which may be either discrete-time or continuous-time (we use both a

discrete-time Markovian [MT] model and a continuous-time [MT] model in this thesis),

and they involve construction of the conditional probabilities. For example, consider

45
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a homogeneous Markov chain [7], for which P (Xk = m|Xk−1 = n) = pnm where the

order of the subscripts in pnm corresponds to the direction of the transition, namely

one has n → m. Here, pnm denotes the conditional probability for a system, which is

at state n in the (k−1)th observation and at state m in the kth observation, n,m ∈ Σ.

These probabilities are known as the transition probabilities, which are assumed to be

independent of k. In other words, pnm as a transition probability at stage k depends

only on Xk−1 but not on the previous random variables.

Table 3.1 details the interactions between individuals of the population and the

elements of the sample space for the classical rumour process. With a slight abuse

of notation we shall write s⇋i to denote an interaction between a spreader and an

ignorant, with similar notation for other meaningful interactions. Note that in Table

3.1 T is
k is the number of transitions at a kth state where a kth transition occurs because

of the interaction between an ignorant and a spreader— other possibilities follow in

similar notation.
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Figure 3.1: Interactions between classes and the number of outcomes

In [16], Belen and Pearce give analytical formulae for the number of transitions for

both an extended [DK] and an extended [MT] model. The next section includes this

work.

3.2 The number of transitions in [DK] and [MT]

models

In reality, the variables i, s, r1 and r2 governing the rumour process are integers. There

would also be a finite number of meaningful interactions altogether before the process

stops when s = 0, as opposed to infinite-time in the continuous time model. In cer-

tain applications it may be of interest to know the number of meaningful interactions,

referred to as transitions in this thesis. In applications, it may be an answer to the

question: how long does it take to spread a rumour or how many meaningful interac-

tions are required to make the rumour known as much as possible in the population ?
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It may be important or crucial for some cases; for example, if a rumour is an advertise-

ment introducing a new product then the company may like to know a size of rumour

process where its product is known when the process stops after a certain number of

transitions. They can know, before they introduce their product to the market, the

length of time required for their product to become known by assuming certain time

ratios (which are taken as equal to each other and 1 in our analysis) between states

while each transition occurs, or how many times the advertisement of their product

will be circulated with respect to arbitrary initial conditions in the population size that

varies from small size up to large size going to ∞ in a certain time period. So that,

for example, they may produce a reasonable number of brochures (being equal to the

number of transitions) to circulate in the population.

Thus, it is reasonable to consider the models in a discrete-time framework.

Theorem 3.2.1 (Extended DK model). Let T denote the number of transitions for

the [DK] model extended to general initial conditions. Then

T = 2(r2,T − r2,0) +
3

2
(r1,T − r1,0) − s0 − 1

in terms of (s, r1, r2)

T = −(iT − i0) + (r2,T − r2,0) +
1

2
(r1,T − r1,0) − 1

in terms of (i, r1, r2)

where iT , sT , r1,T , r2,T are the numbers of ignorants, spreaders, first type of stiflers
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and second type of stiflers when the rumour process stops. We evaluate r1 and r2 - see

Chapter 2.

Proof of Theorem 3.2.1 :

Let a, b, c, d ∈ R and n > 0 be the size of population. Also suppose i0 = αn,

s0 = βn, r1,0 = γ1n, r2,0 = γ2n are the initial values of ignorants, spreaders, first type

of stiflers and second type of stiflers at time t = 0 respectively where α, β, γ1 and γ2

are non-negative real numbers. Then we construct an equation such that

a∆sk + b∆ik + c∆r1,k + d∆r2,k = 1 (3.2.1)

where ∆sk = sk+1 − sk, ∆ik = ik+1 − ik, ∆r1,k = r1,k+1 − r1,k, ∆r2,k = r2,k+1 − r2,k

subject to the initial values s0, i0, r1,0, r2,0 at time t = 0.

The ratio constants a, b, c, d are found by using the following equations

a(+1) + b(−1) + 0 + 0 = 1

0 + a(−2) + c(+2) + 0 = 1

0 + a(−1) + 0 + d(+1) = 1

where ∆sk,∆ik, ∆r1,k and ∆r2,k are given according to the possible transitions which

may occur from a state to another state. Hence, a = b+1, −a+c = 1/2, and −a+d = 1.

We may choose b = 0 so a = 1, c = 3/2. d = 2.
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The equation 3.2.1 may be expressed as

ask+1 + bik+1 + cr1,k+1 + dr2,k+1 = ask + bik + cr1,k + dr2,k + 1.

(3.2.2)

Substituting a, b, c, d into (3.2.2) and then iterating gives

sT + 2r2,T +
3

2
r1,T = s0 + 2r2,0 +

3

2
r1,0 + T + 1.

Using initial conditions and the fact that sT = 0;

T = 2r2,T +
3

2
r1,T − βn− 2γ2n− 3

2
γ1n− 1

A similar method is used for verifying the other expression for T, the number of tran-

sitions in terms of (s, r1, r2). The result follows. 2

See also stochastic numerical solutions obtained by our algorithm, for T and for size

of each subpopulation in different sizes of population, tabulated in Table 3.2, Table

3.4 and Table 3.5. These numerical solutions illustrate agreement with Theorem 3.2.1.

This agreement can be shown by substituting numerical values of r2,T , r1,T , r2,0, r1,0, iT , i0

and s0 tabulated in the tables, into the formula derived for T.

Corollary 3.2.1. Let β = s0

n
and λ = limn→∞

T
n

and γ1 = γ2 = 0.

If β = 1
n

then λ = 1.431, and

If s0 is sufficiently large and s0 6= n that is, in the limit α→ 0 then we get λ ≈ 0.748.
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Theorem 3.2.2 (Extended MT model).

T = 2(rT − r0) − s0 − 1

where rT is the total number of stiflers when the rumour process stops.

Proof of Theorem 3.2.2

Let a, b, c, d ∈ R and n > 0 be the size of the population. We construct an equation

such that

a∆sk + b∆ik + c∆r1,k + d∆r2,k = 1 (3.2.3)

where ∆sk = sk+1 − sk, ∆ik = ik+1 − ik, ∆r1,k = r1,k+1 − r1,k, ∆r2,k = r2,k+1 − r2,k.

The following three equations are used to find the ratio constants a, b, c, d :

b(−1) + a(+1) = 1

a(−1) + c(+1) = 1

a(−1) + d(+1) = 1.

Hence, a = b+1, c = 1+a, d = 1+a. Substituting a, b, c, d into (3.2.3) and iterating

gives

sm + 2rm = s0 + 2r0 +m+ 1, 1 < m ≤ T

where m is an integer. Note that c = d. The process stops at m = T with sT = 0, so

that

T = 2(rT − r0) − s0 − 1,
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where rT = r1,T + r2,T and r0 = r1,0 + r2,0. The proof is completed by the substitution

of initial values. 2

Corollary 3.2.2. Let β = s0

n
and λ = limn→∞

T
n
.

If β = 1
n

then λ = 1.593, and

In the limit α→ 0, we get λ ≈ 0.995

See also Table 3.3, Table 3.4 and Table 3.5 for stochastic numerical results obtained

by using our algorithm, illustrating T as well as the number of each subpopulation.

These numerical simulations verify the analytical expression for T given by Theorem

3.2.2. The verifications can be done by substituting numerical values of rT , r0, and s0

tabulated in the tables, into the formula derived for T. Other numerical results for our

extended (to the general initial conditions) models, reproduced in a different form or

for a different size of population, are given also in Chapter 2 and Appendices E - F.
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Text entries in Tables 3.4–3.5 should be read as follow:

‘i(MT)’ the number of final ignorants in the [MT] model, ‘i(DK)’ the number of fi-

nal ignorants in the [DK] model, ‘r(MT)’ the number of final stiflers in the [MT]

model, ‘r1(DK)’ the number of final first type of stiflers in the [DK] model, ‘r2(DK)’

the number of final second type of stiflers in the [DK] model, ‘MT# Tran’ the number

of transitions in the [MT] model, ‘DK# Tran’ the number of transitions in the [DK]

model, ‘MT CPU[sec], DK CPU[sec]’ computation time for each model.

Note that these numerical simulations are given for different population sizes from

very small (e.g. n = 10) to large (e.g. 10 billion).
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By referring to our stochastic numerical results tabulated in Table 3.6 - Table 3.7,

we observe that there is always a proportion of the population who never knows the

rumour even when the initial proportion of the spreaders is very large and is close

to the whole population (but never equals this size, to be able to initiate the rumour

process). According to these tabulated results, our stochastic numerical results also

suggest that there is always an ignorant proportion of population that will never be 0

regardless of the initial values of spreaders (except for the extreme cases where s0 = 0

or s0 = n), at the end of the rumour process. More detailed analytical and numerical

solutions are considered in Chapter 2.

The range of the proportion of transitions is between 0.748 and 1.000 when the

rumour process stops. This is significant when time constraints are considered to be

important in an application. Note that the number of transitions is quite relevant to

the total time in which the rumour process takes place.
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Interaction 1 Interaction 2 Interaction 3

i ⇋ s s ⇋ s s ⇋ r (= r1 ∪ r2)

ik+1 = ik − 1 ik+1 = ik ik+1 = ik

sk+1 = sk + 1 sk+1 = sk − 1 [MT] sk+1 = sk − 1

r1,k+1 = r1,k r1,k+1 = r1,k + 1 [MT] r1,k+1 = r1,k

sk+1 = sk + 1 sk+1 = sk − 2 [DK] sk+1 = sk − 1

r1,k+1 = r1,k r1,k+1 = r1,k + 2 [DK] r1,k+1 = r1,k

r2,k+1 = r2,k r2,k+1 = r2,k r2,k+1 = r2,k + 1

T is
k+1 = T is

k + 1 T is
k+1 = T is

k T is
k+1 = T is

k

T ii
k+1 = T ii

k T ss
k+1 = T ss

k + 1 T ss
k+1 = T ss

k

T sr
k+1 = T sr

k T sr
k+1 = T sr

k T sr
k+1 = T sr

k + 1

ρi

ρi+ρ(s

2)+ρr

ρ(s

2)
ρi+ρ(s

2)+ρr

ρr

ρi+ρ(s

2)+ρr

ρi
ρi+ρ(s−1)+ρr

ρ(s−1)
ρi+ρ(s−1)+ρr

ρr
ρi+ρ(s−1)+ρr

Table 3.1: Possible meaningful interactions, transitions and the relative transition

probabilities for different transitions at rate ρ and r = r1 + r2.
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n i0 s0 r1,0 r2,0 T iT r1,T r2,T

102 30 20 40 10 41 18 44 38

350 105 70 140 35 133 69 156 125

360 108 72 144 36 137 71 160 129

103 300 200 400 100 380 200 438 362

104 3000 2000 4000 1000 3699 2046 4416 3538

106 300 000 200 000 400 000 100 000 373540 202774 441822 355404

Table 3.2: Numerical results for extended [DK] model with respect to different sizes of

population and arbitrary initial conditions.

n i0 s0 r0 T iT rT

102 30 20 50 43 18 82

350 105 70 175 139 70 280

360 108 72 180 141 73 287

103 300 200 500 393 203 797

104 3000 2000 5000 3927 2036 7964

106 300 000 200 000 500 000 394687 202656 797344

Table 3.3: Numerical results for extended [MT] model with respect to different size of

population and different initial conditions.
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n i (MT) i (DK) r (MT) r2 (DK) r1 (DK)

101 1 4 9 4 2

102 16 28 84 42 30

103 215 200 785 458 342

104 2038 2065 7962 4723 3212

105 20329 20242 79671 47276 32482

106 203477 202616 796523 473736 323648

107 2035639 2032267 7964361 4729347 3238386

108 20322212 20321461 79677788 47298973 32379566

109 203203310 203198549 796796690 472988473 323812978

1010 2031882549 2031882608 7968117451 4730060624 3238056768

Table 3.4: Comparison actual values of [MT] and [DK] ignorants and stiflers.
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n MT # Trans. DK # Trans. MT CPU [sec] DK CPU [sec]

101 17 10 0.03 0.01

102 167 128 0.01 0.03

103 1569 1428 0.04 0.05

104 15923 14263 0.11 0.11

105 159341 143274 0.83 0.80

106 1593045 143294 3 8.67 7.72

107 15928721 14316272 84.20 76.19

108 159355575 143167294 846.51 763.07

109 1593593379 1431696412 8496.55 7793.22

1010 15936234901 14317206399 82770.67 126485.20

Table 3.5: Comparison of actual values of [MT] and [DK] transitions.
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β iT/i0 T r2 r1 iT

0.00000001 0.203203 143168591 47298016 32381706 20320278

0.1 0.223786 133386623 47195466 32663794 20140737

0.2 0.244404 124162273 46981587 33466066 19552348

0.3 0.264720 115597426 46785959 34683672 18530369

0.4 0.283909 107803419 46710545 36254886 17034569

0.5 0.301819 100762294 46797471 38111568 15090961

0.6 0.318171 94448624 47077723 40195452 12726825

0.7 0.332792 88800655 47552581 42463662 9983757

0.8 0.346016 83720908 48202776 44876904 6920320

0.9 0.357546 79154742 49035858 47388684 3575458

0.99 0.366287 75401329 49901519 49732194 366287

Table 3.6: Computational results for the extended [DK] model with respect to the

population size n := 108 and r1,0 = 0 and r2,0 = 0.
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β T iT/i0 r1,T/n r2,T/n

0.000000001 1593579410 0.2032102942 0.3237645626 0.4730251431

0.1 1497258565 0.2237452418 0.3266044557 0.4720248282

0.5 1198266799 0.3017331958 0.3811696768 0.4679637551

0.9 1028493619 0.3575319052 0.4739302993 0.4903165102

0.99 1002679785 0.3660106957 0.4973381758 0.4990017414

0.999 1000283769 0.3581149876 0.4997091591 0.4999327362

Table 3.7: Computational results for the extended [MT] model with respect to the

population size n := 109 and r1,0 = 0 and r2,0 = 0.



Chapter 4

Impulsive control of rumours

4.1 Introduction

In Chapter 2, we analysed the evolution from general initial conditions of the deter-

ministic limiting version of the classical stochastic rumour models, Daley-Kendall and

Maki-Thompson. Rumour models can be used to describe a variety of phenomena,

such as the dissemination of information, disinformation or memes and changes in po-

litical persuation and the stock market, for some of which the standard assumption of

a single initial spreader and no initial stiflers is inappropriate. Results for a rumour

process with general initial conditions are also relevant for the present study, which

envisages a second rumour process developing in a situation created by a first.

In an age of mass communication, it is natural to consider the initiation of a rumour

61
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by means of television, radio or the internet (Frost [49]). We use the generic term

broadcast to refer to such an initiation. This chapter envisages a control ingredient being

added to a rumour model by the introduction of one or more subsequent broadcasts,

with the intention of reducing the final proportion of the population never hearing the

rumour. The rumour process is started by a broadcast to subscribers, who constitute

the initial spreaders. Those ignorants who become spreaders after an encounter with

a spreader we term nonsubscriber spreaders. We wish to determine, for given initial

proportions of ignorants, spreaders and stiflers in the population, when to effect a

second broadcast so as to minimise the final proportion of ignorants.

Two basic scenarios are considered. In the first, the recipients of the second broad-

cast are again the subscribers: a subscriber who had become a stifler is reactivated

as a subscriber spreader. In Scenario 2, the recipients of the second broadcast are all

individuals who were once spreaders.

As before, we describe the process in the continuum limit corresponding to a to-

tal population size tending to infinity. The resultant differential equations with each

scenario can be expressed in state–space form, with the upward jump in subscriber

spreaders modelled by an impulsive control input. Since we are dealing with an optimal

control problem, a natural approach would be to employ a Pontryagin–like maximum

principle furnishing necessary conditions for an extremum of an impulsive control sys-
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tem (see, for example, Blaquière [18] and Rempala and Zapcyk [94]). However, because

of the tractability of the dynamical system equations, we are able to solve the given

impulsive control problem without resorting to this theory.

The distinction between subscriber and nonsubscriber spreaders is of some indepen-

dent interest. Before the second broadcast, these groups may be identified with two

types of spreaders in an ordinary rumour, those who were spreaders initially and those

who began as ignorants but became spreaders from an encounter with a spreader.

In Section 4.2.1 we refine the standard rumour model, studying the evolution of

the proportions of these two groups in the population. In Section 4.3 we formulate

Scenario 1 and derive associated results. We prove that the optimal time for the second

broadcast at the end of the first process, that is, when the proportion of spreaders in

the population drops to zero. Section 4.4 parallels Section 4.3 for Scenario 2.

The development utilises the refinement of the basic rumour presented in the follow-

ing section. An alternative approach with multiple broadcasts is given in Section 4.6.

This is published in [86].



64 CHAPTER 4. Impulsive control of rumours

4.2 Impulsive control of rumours for two broad-

casts

4.2.1 Refinement of the rumour model

In this section we consider the evolution of the proportions of subscriber and nonsub-

scriber spreaders in a standard rumour model.

The Daley–Kendall model considers a population of n individuals with subpopula-

tions of ignorants, spreaders and stiflers. Denote the respective sizes of these subpop-

ulations by i, s and r. We define in addition the respective numbers of subscriber and

nonsubscriber stiflers by s1 and s2, so that s = s1 + s2. There is homogeneous mixing

of individuals. The interactions which result in changes of subpopulation in time dτ ,

along with their associated probabilities, are as follows.

Interaction Transition Probability

i ⇋ s (i, s1, s2, r) 7→ (i− 1, s1, s2 + 1, r) is dτ + o(dτ)

s1 ⇋ s1 (i, s1, s2, r) 7→ (i, s1 − 2, s2, r + 2) s1(s1 − 1) dτ + o(dτ)

s2 ⇋ s2 (i, s1, s2, r) 7→ (i, s1, s2 − 2, r + 2) s2(s2 − 1) dτ + o(dτ)

s1 ⇋ s2 (i, s1, s2, r) 7→ (i, s1 − 1, s2 − 1, r + 2) s1s2 dτ + o(dτ)

s1 ⇋ r (i, s1, s2, r) 7→ (i, s1 − 1, s2, r + 1) s1r dτ + o(dτ)

s2 ⇋ r (i, s1, s2, r) 7→ (i, s1, s2 − 1, r + 1) s2r dτ + o(dτ)
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We now adopt a continuum formulation appropriate for n → ∞. Let i(τ), s(τ) (=

s1(τ) + s2(τ)), r(τ) denote respectively the proportions of ignorants, spreaders and

stiflers in the population at time τ ≥ 0. The evolution of the limiting form of the

model is prescribed by the deterministic dynamic equations

di

dτ
= −i s, (4.2.1)

ds1

dτ
= −s1 (1 − i), (4.2.2)

ds2

dτ
= −s2(1 − 2i) + s1i, (4.2.3)

dr

dτ
= s(1 − i) (4.2.4)

with initial conditions

i(0) = α > 0, s1(0) = β > 0, s2(0) = 0 and r(0) = γ ≥ 0 (4.2.5)

satisfying

α + β + γ = 1. (4.2.6)

We remark that (4.2.2) and (4.2.3) may be combined to provide

ds

dτ
= −s (1 − 2i). (4.2.7)

It is convenient to introduce the parameter θ = θ(τ) := i/α, the ratio of the

proportion of ignorants at time τ to the initial proportion. As earlier in Chapter 2 we

have the following dynamics and asymptotics for the basic continuum rumour process.



66 CHAPTER 4. Impulsive control of rumours

Theorem 4.2.3. The evolution of the rumour process prescribed by (4.2.1), (4.2.7)

and (4.2.4) subject to (4.2.5) and (4.2.6) is given parametrically in terms of i by

s = β − 2 (i− α) + ln(i/α) (4.2.8)

= β − 2α (θ − 1) + ln θ (4.2.9)

and r = 1 − i− s.

The process evolves towards an asymptotic state (i∞, 0, r∞), with

i ↓ i∞ = i∞(α, β) as τ → ∞

and

0 < i∞ < 1/2. (4.2.10)

The parameter θ∞ := i∞/α satisfies the transcendental equation

θ∞ e2 α (1−θ∞) = e−β . (4.2.11)

Further,

s→ 0 and r(τ) ↑ r∞ = 1 − i∞ as τ → ∞.

Where we wish to indicate that s is regarded as a function of i (defined by (4.2.8)),

we put

s = S(i) := β − 2(i− α) + ln(i/α).
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The dynamics of the process are specified by augmenting Theorem 4.2.3 with the

following result.

Theorem 4.2.4. In the rumour model prescribed by (4.2.1)–(4.2.4) with initial con-

ditions (4.2.5), (4.2.6) and

s1(0) = β, s2(0) = 0 (4.2.12)

we have

s1 = s exp

(

−
∫ α

i

du

S(u)

)

(4.2.13)

and

s2 = s

[

1 − exp

(

−
∫ α

i

du

S(u)

)]

. (4.2.14)

We have that s1 is strictly decreasing, with the asymptotics of s1 and s2 given by

(i) lim
i−→i∞

s1

s
= 0 ,

(ii) lim
i−→i∞

s2

s
= 1 .

Proof . Equations (4.2.1) and (4.2.2) combine to yield

1

s1

ds1

di
=

1

is
(1 − i)

or

d(ln s1) =
1

is
(1 − 2i)di+

1

s
di .
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Also we have on combining (4.2.1) and (4.2.7) that

ds

di
=

1 − 2i

i
, (4.2.15)

from which we obtain

d(ln s1) =
1

s
ds+

1

s
di .

Equation (4.2.13) now follows on integration and use of the initial condition (4.2.12).

Equation (4.2.14) now follows from s2 = s− s1.

That s1 is strictly decreasing follows from (4.2.2). Because s → 0 as τ → ∞, we

have s1 → 0 and s2 → 0. By l’Hôpital’s rule,

lim
i−→i∞

s1

s
= lim

i−→i∞

ds1/di

ds/di

= lim
i−→i∞

s1(1 − i)/(is)

(1 − 2i)/i

=

(

lim
i−→i∞

1 − i

1 − 2i

)

lim
i−→i∞

s1

s
.

The last step follows from (4.2.10), which also gives (i). Part (ii) follows from s = s1+s2.

2

The asymptotics for s1 and s2 show that the spreader population changes in the

course of time from consisting entirely of subscribers to consisting entirely of nonsub-

scribers.

Suppose that the second broadcast is made when i = ib. Denote by s1b and sb

respectively the proportions of subscriber spreaders and all spreaders just before that
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broadcast. Also denote by s+
1b and s+

b respectively the corresponding proportions im-

mediately after the broadcast. Then by (4.2.13)

s1b = sb exp

[

−
∫ α

ib

du

S(u)

]

(4.2.16)

and by (4.2.8)

sb = β − 2(ib − α) + ln(ib/α) . (4.2.17)

At any time after the second broadcast

s = s+
b − 2(i− ib) + ln(i/ib) . (4.2.18)

4.3 Results for Scenario 1

We now proceed to address Scenario 1 in which only the original subscribers become

spreaders again. Under this Scenario

s+
1b = β ,

and so

s+
b = s+

1b + sb − s1b = β + sb

[

1 − exp

(

−
∫ α

ib

du

S(u)

)]

. (4.3.1)

The rumour process stops when s = 0. Let if , i∞ denote respectively the final pro-

portion of ignorants in the population subsequent to the second broadcast and the

proportion of ignorants at the end of a single rumour process. The problem of find-

ing the optimum broadcast time, or equivalently the value i = ib when the second
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broadcast is made, can be posed as

P1 :































































min
ib

if

subject to s+
b − 2(if − ib) + ln(if/ib) = 0 ,

where s+
b = β + sb

[

1 − exp

(

−
∫ α

ib

du

S(u)

)]

and sb = β − 2(ib − α) + ln(ib/α).

Theorem 4.3.1. For 0 < α ≤ 1−β < 1, the minimum in Problem P1 is given uniquely

by ib = i∞ = i∞(b).

Proof . Implicit differentiation with respect to ib of the constraint equation in Prob-

lem P1 provides

∂s+
b

∂ib
− 2

(

∂if
∂ib

− 1

)

+
1

if

∂if
∂ib

− 1

ib
= 0 . (4.3.2)

From (4.3.1) we have

∂s+
b

∂ib
=
∂sb

∂ib
−

(

∂sb

∂ib
+ 1

)

exp

(

−
∫ α

ib

du

S(u)

)

,

so that by (4.2.16)

∂s+
b

∂ib
=
∂sb

∂ib
−

(

∂sb

∂ib
+ 1

)

s1b

sb

. (4.3.3)

Also from (4.2.17) we have

∂sb

∂ib
=

1 − 2ib
ib

. (4.3.4)

Elimination of ∂sb/∂ib and ∂s+
b /∂ib between (4.3.2)–(4.3.4) provides

∂if
∂ib

=
if

1 − 2if

1 − ib
ib

s1b

sb
. (4.3.5)
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By Theorem 4.2.3 with initial state the state entered immediately after the second

broadcast, we have 0 < if < 1/2 and so if/(1 − 2if ) > 0 and i∞ < ib < α. The

terms (1 − ib)/ib and s1b/sb are also positive, so ∂if/∂ib > 0 for i∞ < ib < α. All

three quotients on the right in (4.3.5) are bounded above. By Theorem 4.2.4 (i),

∂if/∂ib −→ 0 as ib −→ i∞. Hence if is minimised uniquely by the choice ib = i∞. This

completes the proof. 2

Corollary 4.3.1. Put

iω := inf {if : ib ∈ [i∞, α]} .

If the second broadcast time is chosen to coincide with the first, the situation reduces

to one of a single broadcast and if becomes i∞. Since if is strictly increasing as a

function of ib, we have

iω ≤ if ≤ i∞ for ib ∈ [i∞, α] .

Generally, (4.2.9) gives

i∞
α

exp[2(α− i∞)] = exp(−β)

for the first broadcast and

iω
i∞

exp[2(i∞ − iω)] = exp(−β)

for an optimal second broadcast. Multiplying these relations together provides

iω
α

exp[2(α− iω)] = exp(−2β). (4.3.6)
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Figure 4.3.1: if vs ib for various values of β under Scenario 1.

If α + 2β ≤ 1, this relation has a physical interpretation: the final proportion of

ignorants after two broadcasts, the second being optimally timed, is the same as that

resulting from a single broadcast with initial conditions

i(0) = α and s(0) = 2β.

Figure 4.3.1 presents (for α+β = 1 with six different values of β) graphs of the final

proportion if of ignorants after the second broadcast as a function of the proportion

ib of ignorants at the time of the second broadcast.
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Figure 4.3.2: θf vs θb for various values of β under Scenario 1.
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Corollary 4.3.2. Suppose α −→ α0 6= 0 and β −→ 0. By (4.3.6), the limiting value

of iω satisfies

iω
α0

exp [2(α0 − iω)] = 1

and so iω = i∞. By Corollary 1, if = i∞ for each choice of ib ∈ [i∞, α], that is, the

second broadcast is ineffective at any time.

Intuitively this is not surprising. In the limiting case β −→ 0, the reactivation

of subscriber stiflers does not change the state, so if has the same value for every

ib ∈ [i∞, α0]. In the case α −→ 1, the limit i∞ ≈ 0.203. We have accordingly the

following result.

Theorem 4.3.2. In the limiting case β −→ 0, α −→ α0 > 0, any ib ∈ [i∞, α0] is a

solution of Problem P1.

In the limit as α −→ 0 and β −→ β0 6= 0, we have from (4.2.11) that

θ∞ = exp(−β0),

so that for any feasible time for the second broadcast

exp(−β0) < θb ≤ 1. (4.3.7)

Lemma 4.3.1. Suppose α −→ 0 and 0 < β0 ≤ 1. Then

lim
β−→β0

s1b/sb = 1.
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Proof . Since i = α θ, (4.2.16) can be rewritten as

s1b

sb

= exp

[

−α
∫ 1

θb

(1/s) dθ

]

,

so it suffices to show that

h := lim
α−→0

∫ 1

θb

(1/s) dθ <∞.

From (4.2.9),

h =

∫ 1

θb

dθ

β0 + ln θ
= exp(−β0)

∫ exp(β0)

exp(β0) θb

du

ln u
. (4.3.8)

By Abramowitz and Stegun [2], Section 5.1, we may evaluate

∫ exp(β0)

exp(β0)θb

du

lnu
= Ei (ln (exp(β0))) − Ei (ln (exp(β0) θb)) ,

where

Ei(x) := γ + ln(ln x) +
∞

∑

k=1

lnk x

k.k!

and γ is Euler’s constant.

Hence (4.3.8) becomes

h = exp(−β0)

[

ln

(

β0

β0 + ln(θb)

)

+
∞

∑

k=1

βk
0

k · k! −
∞

∑

k=1

lnk (exp(β0) θb)

k · k!

]

. (4.3.9)

When θb = 1, h = 0. On the other hand when (4.3.7) holds with strict inequality,

the leading term in brackets is finite. Both series in (4.3.9) converge absolutely. Hence

h is finite as required. 2

The result given by Lemma 4.3.1 provides an interesting contrast to Theorem

4.2.4(i).
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Theorem 4.3.3. When α −→ 0 and β −→ β0 6= 0, Problem P1 possesses the unique

solution θb = θ∞ = e−β0.

Proof . With if = αθf and ib = αθb, (4.3.5) becomes

∂θf

∂θb
=

θf

1 − 2αθf

1 − αθb

θb

s1b

sb
.

Hence by Lemma 4.3.1, we have that in the limit

∂θf

∂θb

=
θf

θb

, (4.3.10)

which is always positive. This completes the proof. 2

Remark 1. We may deduce from (4.3.10) that ∂2θf/∂θ
2
b = 0 in the limit β −→ β0, so

that θf is linear in θb. For α −→ 0 and β −→ β0, we have by Lemma 4.3.1 that the

first constraint equation in Problem P1 becomes

β0 + ln
θf

θb

= 0 .

This yields θf = e−β0 θb. As may be seen in Figure 4.3.2 for the special case α+β = 1,

the slope of the graph of θf vs θb has the constant value 1/e for β −→ 1. The slope is

not constant for 0 < β < 1.

4.4 Results for Scenario 2

Under Scenario 2 s+
b = α+ β − ib and so (4.2.18) becomes

s = α+ β + ib − 2 i+ ln(i/ib)
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for any time after the second broadcast.

The optimisation problem now has a much simpler form than in Problem P1, namely

P2 :























min
ib

if

subject to α+ β + ib − 2 if + ln(if/ib) = 0 .

When there are no stiflers initially in the population, that is, when α+β = 1, Problem

P2 is independent of β, in contrast to Problem P1. Parallels to Theorems 4.3.1, 4.3.2

and 4.3.3 for this scenario can be combined into a single result, which we give below.

Theorem 4.4.1. When α −→ α0 with 0 < α0 ≤ 1, ib = i∞ is the unique solution to

Problem P2. When α −→ 0 and β −→ β0, with 0 < β0 ≤ 1, θb = θ∞ = e−β0 is the only

solution.

Proof . First suppose α −→ α0 with 0 < α0 ≤ 1. Implicit differentiation of the

constraint equation in Problem P2 gives

(

1

if
− 2

)

∂if
∂ib

=
1

ib
− 1

or

∂if
∂ib

=
if

1 − 2 if

1 − ib
ib

. (4.4.1)

Since 0 < if < 1/2 and 0 < ib < 1, we have ∂if/∂ib > 0, which implies, given

i∞ < ib < α0, that ib = i∞ is the unique solution.

Next consider α −→ 0 and β −→ β0, with 0 < β0 ≤ 1, and let if = α θf and ib = α θb.
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Substitution into (4.4.1) gives

∂θf

∂θb

=
θf

θb

> 0

which implies, given e−β0 < θb < 1, that θb = θ∞ = e−β0 is the only solution. 2

Figure 4.4.2 presents (for α + β = 1 with three different values of β) graphs of if

after the second broadcast as a function of ib.

Remark 2. As with Scenario 1, we have ∂2θf/∂θ
2
b = 0 and through the constraint

equation in Problem P2 we obtain θf = e−β0 θb. In the limit as β −→ 1, the slope of

the graph of θf vs θb has the constant value 1/e, as illustrated in Figure 4.4.1.

Remark 3. Consider the case when there are no stiflers initially, that is, when α+β =

1. In Scenario 2, there are no stiflers left immediately after the second broadcast,

all having become spreaders again. The larger the proportion of ignorants to have

encountered the rumour before the second broadcast, the larger the proportion of stiflers

present. So choosing a broadcast time with the highest proportion of stiflers (as in

Theorem 4.4.1), that is, at the end of the process, is intuitively reasonable in order to

achieve the lowest possible if .

The results for Scenario 1 are less obvious. Intuitively one might want the ratio s/i to

be as large as possible at the start of a process to increase the dispersal of the rumour.

However a second broadcast at the end of the first process does not necessarily make

s/i larger than at earlier stages of the first process.
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Figure 4.4.1: if vs ib for various values of β under Scenario 2. The curve segment starting

with ◦ and ending with + corresponds to the case β −→ 0; the curve segment starting with

⋄ and ending with × corresponds to β = 0.5. The case β −→ 1 is given by a point at the

origin.
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Figure 4.4.2: θf vs θb for various values of β under Scenario 2.

4.5 Conclusions of two broadcasts

We have introduced an impulsive control model of a rumour process and considered

two consecutive broadcasts, the first one starting the rumour process. In both the cases

when spreaders are reactivated from the subscriber stiflers (Scenario 1) as well as from

those stiflers who once were spreaders (Scenario 2), we have shown that optimal time
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for the second broadcast to minimize the final proportion of ignorants is always at the

end of the process started by the first broadcast. In other words, a second rumour

process commences once the first process terminates.

Some of the auxiliary results we obtained are worth mentioning here, because of

their practical significance. One result shows that the spreader population changes

from consisting entirely of subscribers to consisting entirely of nonsubscribers at the

termination of a process. This can perhaps be interpreted as to why the end of the

first process is the best time for a second broadcast. Another result implies that the

final proportion of ignorants after two broadcasts, the second being optimally timed,

is the same as that resulting from a single broadcast with twice the initial proportion

of spreaders, provided this is allowed by the physical constraints. If one considers the

initial proportion of spreaders as the ”resource” available to start the process, then it

may be best to allocate as much of this resource as possible at the beginning of the

process.

4.6 Multiple broadcasts

A model with two broadcasts was envisaged in the previous Sections in this Chapter.

This has been published as [15]. A control ingredient is incorporated, the timing of the

second broadcast.
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This section presents a generalisation of this model to a general number n > 1 of

broadcasts, with the intention of reducing the final proportion of the population never

hearing the rumour. The rumour process is started by a broadcast to a subpopulation,

the subscribers, who commence spreading the rumour. We wish to determine when

to effect subsequent broadcasts 2, 3, . . . , n so as to minimise the final proportion of

ignorants in the population.

Two basic scenarios are considered as it was for the two broadcasts also.

To obtain some results without becoming too enmeshed in probabilistic techni-

calities, we follow Daley and Kendall and, after an initial discrete description of the

population, describe the process in the continuum limit corresponding to a total popu-

lation tending to infinity. Exactly the same formulation occurs in the continuum limit

if one starts with the Maki-Thompson formulation.

The analysis in this section is considerably simpler than that of sections 4.3 and 4.4

where we discussed , a number of other issues neglected in the present more streamlined

account.

We may summarize the key results as follows.

Theorem 4.6.1. In the rumour process prescribed by (2.2.4)–(2.2.7), (a) i is strictly

decreasing with time with limiting value ζ satisfying

0 < ζ < 1/2; (4.6.1)
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(b) ζ is the smallest positive solution to the transcendental equation

ζ

α
e2(α−ζ) = e−β; (4.6.2)

(c) s is ultimately strictly decreasing to limit 0.

The limiting case α → 1, β → 0, γ → 0 is the classical situation treated by Daley

and Kendall. In this case (4.6.2) becomes

ξ

α
e2(1−ξ) = 1.

This is the equation used by Daley and Kendall to determine that in their classical

case ξ ≈ 0.2031878.

In the next Section we introduce two useful preliminary results. In Sections 4.8

and 4.9 we treat Scenarios 1 and Scenarios 2 respectively. Finally, in Section 4.10, we

compare the two scenarios.

4.7 Technical Preliminaries

We shall make repeated use the following theorem.

Theorem 4.7.1. Suppose α, β > 0 with γ ≥ 0 in a single–rumour process. Then we

have the following.
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(a) For α + γ = 1 − β fixed, ζ is strictly increasing in α for α ≤ 1/2.

(b) For α + γ = 1 − β fixed, ζ is strictly decreasing in α for α ≥ 1/2.

(c) For α + β = 1 − γ fixed, ζ is strictly increasing in α.

This is part of [Chapter 2, Theorem 3 at page 34] , except that the statements

there corresponding to (a) and (b) are for α < 1/2 and α > 1/2 respectively. The

extensions to include α = 1/2 follow trivially from the continuity of ζ as a function of

α.

It is also convenient to articulate the following lemma, the proof of which is imme-

diate.

Lemma 4.7.1. For x ∈ [0, 1/2], the map x 7→ xe−2x is strictly increasing.

4.8 Scenario 1

We now address a compound rumour process in which n > 1 broadcasts are made under

Scenario 1. We shall show that the final proportion of the population never hearing a

rumour is minimised when and only when the second and subsequent broadcasts are

made at the successive epochs at which s = 0 occurs. We refer to this procedure as

control policy S. It is convenient to consider separately the cases 0 < α ≤ 1/2 and

α > 1/2. Throughout this and the following two sections, ξ denotes the final proportion

of the population hearing none of the sequence of rumours.
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Theorem 4.8.1. Let 0 < α ≤ 1/2 with β > 0 and γ ≥ 0. Suppose Scenario 1 applies

and n > 1 broadcasts are made. Then

(a) ξ is minimised if and only if the control process S is adopted;

(b) under control policy S, ξ is a strictly increasing function of α.

Proof. Let T be an optimal control policy, with successive broadcasts occurring at

times τ1 ≤ τ2 ≤ . . . ≤ τn. We denote the proportion of ignorants in the population

at τk by ik (k = 1, . . . , n), so that i1 = α. Since i is strictly decreasing during the

course of each rumour and is continuous at a broadcast epoch, we have from applying

Theorem 4.6.1 to each broadcast in turn that

i1 ≥ i2 ≥ · · · ≥ in > ξ > 0, (4.8.1)

all the inequalities being strict unless two consecutive broadcasts are simultaneous.

Suppose if possible that s > 0 at time τn − 0. Imagine the broadcast about to

be made at this epoch were postponed and s allowed to decrease to zero before that

broadcast is made. Denote by ξ′ the corresponding final proportion of ignorants in the

population. Since i decreases strictly with time, the final broadcast would then occur

when the proportion of ignorants had a value

i′n < in. (4.8.2)

Now in both the original and modified systems we have that s = β at τn + 0.

By Theorem 4.7.1(a), (4.8.2) implies ξ′ < ξ, contradicting the optimality of policy T .
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Hence we must have s = 0 at τn − 0 and so by Theorem 4.6.1 that

1

2
> in > ξ .

Applying Theorem 4.7.1(a) again, to the last two broadcasts, gives that in is a strictly

increasing function of in−1 and that ξ is strictly increasing in in. Hence ξ is strictly

increasing in in−1.

If n = 2, we have nothing left to prove, so suppose n > 2. We shall derive the

desired results by backward induction on the broadcast labels. We suppose that for

some k with 2 < k ≤ n we have

(i) s = 0 at time τj − 0 for j = k, k + 1, . . . , n;

(ii) ξ is a strictly increasing function of ik−1.

To establish the inductive step, we need to show that s = 0 at τk−1 − 0 and that ξ is a

strictly increasing function of ik−2. The previous paragraph provides a basis k = n for

the backward induction.

If s > 0 at τk−1−0, then we may envisage again modifying the system, allowing s to

reduce to zero before making broadcast k−1. This entails that, if there is a proportion

i′k−1 of ignorants in the population at the epoch of that broadcast, then

0 < i′k−1 < ik−1 .

By (ii) this gives ξ′ < ξ and hence contradicts the optimality of T , so we must have
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s = 0 at τk−1 − 0. Theorem 4.7.1(a) now yields that ik−1 is a strictly increasing

function of ik−2, so that by (ii) ξ is a strictly increasing function of ik−2. Thus we have

the inductive step and the theorem is proved.

For the counterpart result for α > 1/2, it will be convenient to extend the notation

of Theorem 4.7.1 and use ζ(i) to denote the final proportion of ignorants when a single

rumour beginning with state (i, β, 1 − i− β) has run its course.

Theorem 4.8.2. Let α > 1/2 with β > 0 and γ ≥ 0. Suppose Scenario 1 applies and

n > 1 broadcasts are made. Then

(a) ξ is minimised if and only if the control process S is adopted;

(b) under control policy S, ξ is a strictly decreasing function of α.

Proof. First suppose that in ≥ 1/2. By Theorem 4.6.1 and (4.8.1), this necessitates

that s > 0 at time τ2 − 0. If we withheld broadcast 2 until s = 0 occurred, the

proportion i′2 of ignorants at that epoch would then satisfy

i′2 = ζ(i1) ≤ ζ(in) = ξ < 1/2.

The relations between consecutive pairs of terms in this continued inequality are given

by the definition of ζ , Theorem 4.7.1(b), the definition of ζ again, and Theorem 4.6.1

applied to broadcast n.
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Hence policy S would give rise to ξ′ satisfying

ξ′ < i′n ≤ i′2 ≤ ξ ,

contradicting the optimality of T . Thus we must have in < 1/2 and so

i1 ≥ i2 ≥ · · · ≥ ik ≥ 1/2 > ik+1 ≥ · · · ≥ in > ξ

for some k with 1 ≤ k < n.

Suppose if possible k > 1. Then arguing as above gives

i′2 = ζ(i1) ≤ ζ(ik) ≤ ik+1 < 1/2 .

The second inequality will be strict unless s = 0 at time τk+1 − 0. This leads to

i′3 = ζ(i′2) ≤ ζ(ik+1) ≤ ik+2 < 1/2,

and proceeding recursively we obtain

i′n−k+1 ≤ in < 1/2

and so

i′n−k+2 ≤ ξ .

Thus we have ξ′ < ξ, again contradicting the optimality of T . Hence we must have

k = 1, and so

i1 > 1/2 ≥ i2 ≥ i3 ≥ · · · ≥ in > ξ .
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Consider an optimally controlled rumour starting from state (i2, β, 1− i2 − β). By

Theorem 4.8.1(b), ξ is a strictly increasing function of i2. For T to be optimal, we thus

require that i2 be determined by letting the initial rumour run its full course, that is,

that s = 0 at τ2 − 0. This yields Part (a). Since α > 1/2, Theorem 4.7.1(b) gives that,

with control policy S, i2 is a strictly decreasing function of α. Part (b) now follows

from the fact that ξ is a strictly increasing function of i2.

Remark 4. For an optimal sequence of n broadcasts under Scenario 1, Theorems 4.6.1,

4.8.1 and 4.8.2 provide

ik
ik−1

e2(ik−1−ik) = e−β for 1 < k ≤ n (4.8.3)

and

ξ

in
e2(in−ξ) = e−β. (4.8.4)

Multiplying these relations together provides

ξ

α
e2(α−ξ) = e−nβ,

which may be rewritten as

ξe−2ξ = αe−(2α+nβ). (4.8.5)

By Lemma 4.7.1, the left–hand side is a strictly increasing function of ξ for ξ ∈ [0, 1/2].

Hence (4.8.5) determines ξ uniquely. 2
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Remark 5. Equations (4.8.3), (4.8.4) may be recast as

ike
−2ik = ik−1e

−(β+2ik−1) for 2 ≤ k ≤ n (4.8.6)

and

ξe−2ξ = ike
−(β+2ik) . (4.8.7)

Consider the limiting case β → 0 and γ → 0, which gives the classical Daley–Kendall

limit of a rumour started by a single individual. Since ik ≤ 1/2 for 2 ≤ k ≤ n and

ξ ≤ 1/2, we have by Lemma 4.7.1 that in fact

ik = ξ for 2 ≤ k ≤ n.

If α ≤ 1/2, then the above equality actually holds for 1 ≤ k ≤ n. This is also

clear intuitively: in the limit β → 0 the reactivation taking place at the second and

subsequent broadcast epochs does not change the system physically. This cannot occur

for β > 0, which shows that when the initial broadcast is to a perceptible proportion

of the population, as with the mass media, the effects are qualitatively different from

those in the situation of a single initial spreader. 2

For the standard case of γ = 0, i.e. for α + β = 1, the behaviour of ik, with n = 5

broadcasts, is depicted in Figure 4.8.1(a). In generating the graphs Equation (4.8.6)

has been solved with initial conditions β = 0, 0.2, 0.4, 0.6, 0.8, 1. Comments given in

Remark 5 can also be verified from the figure.
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Figure 4.8.1: An illustration of Scenario 1 with α + β = 1 and 5 broadcasts. In each

simulation β is incremented by 0.2.
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Next we will examine the dependence of ξ on the initial conditions. Equation (4.8.5)

can be rewritten as

nβ + 2 (α− ξ) + ln ξ − lnα = 0 (4.8.8)

The following theorem and its corollary are given in [Chapter 2, Theorem 3 and Corol-

lary 1] for a single broadcast (n = 1). We re-state them here for multiple broadcasts

(n ≥ 2) and provide a suitably modified proof. The proof of the corollary coincides

with that of the single broadcast case.

Theorem 4.8.3. For any n ≥ 1, ξ has the following properties.

(a) For α + γ = 1 − β fixed, ξ is strictly increasing in α for α < 1/2 and strictly

decreasing in α for α > 1/2.

(b) For β + γ = 1 − α fixed, ξ is strictly decreasing in β.

(c) For α + β = 1 − γ fixed, ξ is strictly increasing in α.

Proof. In each part we will use the fact that ξ < 1/2. In part (a) implicit differentiation

of (4.8.8) yields

∂ξ

∂α
=
ξ

α

1 − 2α

1 − 2ξ
,

which is positive for α < 1/2 and negative for α > 1/2, furnishing the required state-

ment. Similarly in the context of (b) we have

∂ξ

∂β
= − nξ

1 − 2ξ
< 0 ,
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giving the required result. For (c) one gets

∂ξ

∂α
=
ξ

α

1 + (n− 2)α

1 − 2ξ
> 0 ,

for any n ≥ 1, which completes the proof.

Corollary 4.8.1. For any n ≥ 1, we have ξ := sup ξ = 1/2. This occurs in the limiting

case α = 1/2 = γ, with β = 0.

Figure 4.8.1(a) provides a graphical illustration of Theorem 4.8.3(c) for γ = 0, i.e.

for α + β = 1.

For 1 ≤ k ≤ n, let θk+1 := ik+1/ik denote the quotient of the proportion of ignorants

at the end of the kth process by that at the beginning of that process. Also set

θ1 := i1/α = 1. The product

Θk+1 = θ1 · · · θkθk+1

is the ratio ik+1/α of the proportion of ignorants at the end of the kth process to that

at the beginning of the first, for 1 ≤ k ≤ n. Note that Θ1 = θ1 = 1. Given n processes,

we define the limiting value η := Θn+1. The relevant equations can be re-written with

these parameters as follows. For the kth process,

Θk+1e
−2αΘk+1 = e−(2α+kβ) , 1 ≤ k ≤ (n− 1) , (4.8.9)

and, for the nth process,

ηe−2αη = e−(2α+nβ) . (4.8.10)
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Put w = −2αη. Then

w ew = −2α e−(2α+nβ) ,

the solution of which is given by the so–called Lambert w function (Corless et al. [29],

Chapter [ 2]). A direct application of the series expression given in Chapter [ 2] and

Appendix C provides

w =

∞
∑

j=1

(

2α e−(2α+nβ)
)j

j!
jj−1 .

Remark 6. In the case of almost no initial ignorants, i.e. when α −→ 0,

η = e−nβ . (4.8.11)

The proportion of ignorants to those at the beginning decays exponentially at a rate

equal to the product of the number n of broadcasts with the proportion β of initial

spreaders. Two further cases, namely (i) β −→ 0 and (ii) β −→ 1, are interesting to

consider. These are elaborated below.

(i) In the case of β −→ 0 there is only one spreader in the infinitely large population,

and so almost all of the initial population consists of stiflers, i.e. γ −→ 1. One

gets

η = 1 .

The number of introduced broadcasts during the rumour process may vary but,

the proportion of ignorants at the beginning remains unchanged.
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(ii) In the case of β −→ 1 almost all of the initial population consists of spreaders,

and we obtain

η = e−n .

Consider Equation (4.8.11) again. For 0 < β < 1, as well as for β −→ 1, we note that

η −→ 0 as n −→ ∞. 2

For the standard case of γ = 0, the behaviour of Θk is illustrated in Figure 4.8.1(b)

by solving (4.8.9) with different initial conditions and for 5 broadcasts. In particular

Remark 6(ii) stated above can be observed from the figure.

Remark 7. Given initial proportions α of ignorants and β of subscribers, with 0 < β <

1 or with β −→ 1, the required number n of broadcasts to achieve a target proportion

η or less of ignorants can be obtained through (4.8.10) as

k =

⌈

− 1

β
[ln(η) + 2α (1 − η)]

⌉

.

2

Equation (4.8.10) can be rewritten as

nβ + 2α (1 − η) + ln η = 0 . (4.8.12)

Theorem 4.8.4. The limiting value η has the following properties.

(a) For α + γ = 1 − β fixed and any n ≥ 1, η is strictly decreasing in α.
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(b) For β + γ = 1 − α fixed and any n ≥ 1, η is strictly decreasing in β.

(c) For α + β = 1 − γ fixed, η is strictly decreasing in α for n = 1 and strictly

increasing in α for n ≥ 2.

Proof. We will use the fact that η < 1/2 (see Chapter 2) and that αη < 1/2. In part

(a), implicit differentiation of (4.8.13) gives

∂η

∂α
= −η(2 − n− 2η)

1 − 2αη
(∗)

for fixed α+β = 1−γ. We observe that for n = 1 (2−n−2η) > 0, and so ∂η/∂α < 0.

On the other hand, (2 − n− 2η) < 0 for n ≥ 2, and we get ∂η/∂α > 0.

∂η

∂α
= −2η(1 − η)

1 − 2αη
,

which is negative, furnishing the required result. In part (b) similarly through

∂η

∂β
= − nη

1 − 2αη
< 0 ,

we get the required result. With the condition of fixed α+ β = 1− γ in (c) we obtain

∂η

∂α
= −η(2 − n− 2η)

1 − 2αη
.

We observe that for n = 1 (2 − n − 2η) > 0, and so ∂η/∂α < 0. On the other hand,

(2 − n− 2η) < 0 for n ≥ 2, and we get ∂η/∂α > 0. This completes the proof.

Now we touch the convexity properties of Theorem 4.8.4. Implicit differentiation of

nβ + 2α (1 − η) + ln η = 0 (4.8.13)
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with respect to α yields

∂η

∂α
= −η(2 − n− 2η)

1 − 2αη
(∗)

for fixed α+β = 1−γ. We observe that for n = 1 (2−n−2η) > 0, and so ∂η/∂α < 0.

On the other hand, (2 − n − 2η) < 0 for n ≥ 2, and we get ∂η/∂α > 0. Implicit

differentiation of 4.8.13 twice with respect to α yields

∂2η

∂α2
=
∂η

∂α

(

−2 − n− 2η

(1 − 2αη)2
+ 2

η

1 − 2αη

)

− 2
η

1 − 2αη
(2 − n− 2η).

Letting

A =
−2 + n+ 2η + 2η − 4αη2

(1 − 2αη)2
,

for α ≈ 0 and n ≥ 2, 4η + n − 2 > 0 so, A > 0 for n ≥ 2. For α ≈ 0 and

n = 1,4η − 1 = 4e−β − 1 since η = e−nβ . So, 4η − 1 > 0 as β → 0 or 1. Thus A > 0

for n = 1. Letting

B = −2
η

1 − 2αη
(2 − n− 2η) =

4η2 + 2nη − 4η

1 − 2αη
,

for α ≈ 0 and n ≥ 2, B > 0. α, for α ≈ 0, n ≥ 2.

B = −2η(2 − n− 2η) = −2η(1 − 2η).

As β → 1, B < 0.
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On the other hand, as β → 0 B > 0. However when α ≈ 0, β ≈ 0 is not the most

expected case and this case may be ignored.

As a conclusion, for n ≥ 2 and α ≈ 0,

∂2η

∂α2
=
∂η

∂α
A+B

is positive since ∂η
∂α
> 0, A > 0 and B > 0. Hence η is a strictly convex function of α,

for α ≈ 0 ,n ≥ 2. On the other hand, for n = 1 and α ≈ 0,

∂2η

∂α2
< 0

since ∂η
∂α

< 0 ,A > 0 and B < 0 . Hence η is a strictly concave function of α for

α ≈ 0 and n = 1.

Now we look at the cases for

α = 1, {n = 1 or n ≥ 2}.

For α = 1 and n = 1,

∂2η

∂α2
= −∂η

∂α
− 2η < 0

since ∂η
∂α

= −η(1−2η)
1−2η

= −η and η > 0. It is negative for both β → 0 or β → 1

analytically, but β → 1 is not the case in the process while α → 1. Hence, η is a
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strictly concave function of α.

For α = 1 and n ≥ 2,

(1 − 2η)
∂2η

∂α2
=
∂η

∂α
X + Y,

where

X =
4η(1 − η) + n− 2

1 − 2η
> 0

(since η < 1/2) and

Y = 4η2 + 2ηn− 4η ≥ 0.

Also ∂η
∂α
> 0 so, ∂2η

∂α2 > 0.

Hence, η is a strictly convex function of α. It is noted that for any α and n = 1,

η is strictly concave function of α and for any α, n ≥ 2, η is a strictly convex function

of α.

A graphical illustration of Theorem 4.8.4(c) for γ = 0 can be seen in Figure 4.8.1(b).

4.9 Scenario 2

Theorem 4.9.1. Let α, β > 0, γ ≥ 0 and suppose Scenario 2 applies and n > 1

broadcasts are made. Then

(a) ξ is minimised if and only if control policy S is adopted;

(b) under control policy S, ξ is a strictly increasing function of α.
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Proof. The argument closely parallels that of Theorem 4.8.1. The proof follows ver-

batim down to (4.8.2). We continue by noting that in either the original or modified

system r = γ at time τn + 0. By Theorem 4.7.1(c), (4.8.2) implies ξ′ < ξ, contradict-

ing the optimality of control policy T . Hence we must have s = 0 at time τn − 0.

The rest of the proof follows the corresponding argument in Theorem 4.8.1 but with

Theorem 4.7.1(c) invoked in place of Theorem 4.7.1(a).

Remark 8. The determination of ξ under Scenario 2 with control policy S is more

involved than that under Scenario 1. For 1 ≤ k ≤ n, set βk = s(τk + 0).

Then ik + βk = 1 − γ = α + β, so that Theorem 4.6.1 yields

ik
ik−1

e2(ik−1−ik) = e−(α+β−ik−1) for 1 < k ≤ n

and

ξ

in
e2(in−ξ) = e−(α+β−in) .

We may recast these relations as

ik e
−2ik = ik−1 e

−(α+β+ik−1) for 1 < k ≤ n (4.9.1)

and

ξ e−2ξ = in e
−(α+β+in) . (4.9.2)

Since ik, ξ ∈ (0, 1/2) for 1 < k ≤ n, Lemma 4.7.1 yields that (4.9.1), (4.9.2)

determine i2, i3, . . . , in, ξ uniquely and sequentially from i1 = α. 2
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For the standard case of γ = 0, i.e. α+β = 1, Figure 4.9.1(a) depicts the behaviour

of ik, with n = 5 broadcasts, by solving (4.9.1). In generating the graphs the initial

values β = 0, 0.2, 0.4, 0.6, 0.8, 1 have been used.

As in the case of Scenario 1, we will examine the dependence of ξ on the initial

conditions. Equations (4.9.1)-(4.9.2) can be rewritten as

β + α+ in − 2ξ + ln ξ − ln in = 0 ; (4.9.3)

β + α+ ik−1 − 2ik + ln ik − ln ik−1 = 0, 1 < k ≤ n . (4.9.4)

We give the following theorem as a companion of Theorem 4.8.3.

Theorem 4.9.2. For any n > 1, ξ has the following properties.

(a) For α + γ = 1 − β fixed, ξ is strictly increasing in α for α < 1/3 and strictly

decreasing in α for α > 1/2.

(b) For β + γ = 1 − α fixed, ξ is strictly decreasing in β.

(c) For α + β = 1 − γ fixed, ξ is strictly increasing in α.

Proof. In each part we use the facts that ξ < 1/2 and ik < 1/2, 1 < k ≤ n.

(a) Implicit differentiation of (4.9.3) yields

∂ξ

∂α
= − ξ

in (1 − 2ξ)

[

in − (1 − in)
∂in
∂α

]

. (4.9.5)

Observe that

∂in
∂α

=
∂in
∂in−1

∂in−1

∂in−2
· · · ∂i3

∂i2

∂i2
∂α

. (4.9.6)
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Figure 4.9.1: An illustration of Scenario 2 with α + β = 1 and 5 broadcasts. In each

simulation β is incremented by 0.2.
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Implicit differentiation of (4.9.4) gives

∂ik
∂ik−1

=
ik
ik−1

1 − ik−1

1 − 2ik
, 2 < k ≤ n ,

and

∂i2
∂α

=
i2
α

1 − 2α

1 − 2i2
.

Substituting these into (4.9.6) and simplifying we get

∂in
∂α

= in
(1 − in−1) · · · (1 − i2)(1 − 2α)

(1 − 2in) · · · (1 − 2i2)α
.

Now the term in square brackets in (4.9.5) can be rewritten as

in − (1 − in)
∂in
∂α

= in

[

1 − (1 − in)(1 − in−1) · · · (1 − i2)(1 − 2α)

(1 − 2in)(1 − 2in−1) · · · (1 − 2i2) α

]

.

We note that

1 − ik
1 − 2ik

> 1 , 2 < k ≤ n .

Furthermore

1 − 2α

α
> 1 for α < 1/3 ,

and

1 − 2α

α
< 0 for α > 1/2 .

Therefore [in−(1− in) ∂in/∂α] is negative for α < 1/3 and so ∂ξ/∂α > 0. Furthermore

[in − (1− in) ∂in/∂α] is positive for α > 1/2 resulting in ∂ξ/∂α < 0. These furnish the

required statement.
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(b) Implicit differentiation of (4.9.3) with respect to β gives

∂ξ

∂β
= − ξ

in (1 − 2ξ)

[

in − (1 − in)
∂in
∂β

]

.

Following a procedure similar to that used in the proof of part (a) it can be shown that

∂in
∂β

= −in
(1 − in−1) · · · (1 − i2)

(1 − 2in) · · · (1 − 2i2)
,

which is negative. Therefore [in − (1 − in) ∂in/∂β] > 0 and so ∂ξ/∂β > 0, providing

the required result.

(c) With α+β = 1−γ fixed, implicit differentiation of (4.9.3) with respect to α yields

∂ξ

∂α
=

ξ

in

1 − in
1 − 2ξ

∂in
∂α

.

Since

∂ik
∂ik−1

=
ik
ik−1

1 − ik−1

1 − 2ik
> 0 , 1 < k ≤ n ,

where i2 = α, we have

∂in
∂α

=
∂in
∂in−1

∂in−1

∂in−2

· · · ∂i3
∂i2

∂i2
∂α

> 0 (4.9.7)

and so ∂ξ/∂α > 0, completing the proof.

Theorem 4.9.2(c) has been illustrated in Figure 4.9.1(a) for γ = 0, i.e. for α+β = 1.

Now convexity of ξ in Theorem 4.9.2 may be addressed as follows. Implicit differ-

entiation of

∂ξ

∂α
=

ξ

in

1 − in
1 − 2ξ

∂in
∂α
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twice with respect to α yields

∂2in
∂α2

(

ξ(1 − in)

(1 − 2ξ)in

)

+
∂in
∂α

∂

∂α

(

ξ(1 − in)

(1 − 2ξ)in

)

=
∂2ξ

∂α2
.

∂2ξ

∂α2
=
∂2in
∂α2

(

ξ(1 − in)

(1 − 2ξ)in

)

+
∂in
∂α

(

1 − in
in

∂ξ

∂α

1

(1 − 2ξ)2
− ξ

1 − 2ξ

∂in
∂α

1

i2n

)

∂2ξ

∂α2
=
∂2in
∂α2

C +
∂in
∂α

D

where

C =
ξ(1 − in)

(1 − 2ξ)in
< 0

and

D =
1 − in
in

∂ξ

∂α

1

(1 − 2ξ)2
− ξ

1 − 2ξ

∂in
∂α

1

i2n
< 0.

Also ∂2in
∂α2 > 0 for α ≈ 1 and 1/2 < in < 1 by the Equation (4.9.7) and ∂in

∂α
>

0. So, ∂2ξ
∂α2 < 0 for α ≈ 1.

Hence ξ is a strictly concave function of α. However,

if 0 < in < 1/2 or α ≈ 0, then ξ can be either concave or convex.

We have not been able to resolve the concavity question for ξ generally if 1/2 <

in < 1 or α ≈ 0.

Using the notation that was introduced for Scenario 1, the recursive equations

(4.9.1)-(4.9.2) can be rewritten as

ηe−2αη = Θn e
−(α+β+Θn) , (4.9.8)
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Θke
−2αΘk = Θk−1 e

−(α+β+Θk−1) , 1 < k ≤ n, (4.9.9)

where Θ1 = 1.

Remark 9. In the case of almost no initial ignorants in the population, i.e. when

α −→ 0, Equations (4.9.8)-(4.9.9) reduce to

η = Θn e
−β , Θk = Θk−1 e

−β ,

which in turn gives

η = e−nβ

This equation is the same as that obtained in Remark 6 made for Scenario 1. The rest

of the discussion given in Remark 6 also holds for Scenario 2. 2

Figure 4.9.1(b) illustrates the above remark for α + β = 1.

Remark 10. Given initial proportions α of ignorants and β of subscribers, the required

number n of broadcasts necessary to achieve a target proportion ǫ or less of ignorants

may be evaluated by solving (4.9.8)-(4.9.9) recursively to obtain the smallest positive

integer n for which

η ≤ ǫ.

2
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4.10 Comparison of Scenarios

We now compare the eventual proportions ξ and ξ∗ respectively of the population never

hearing a rumour when n broadcasts are made under control policy S with Scenarios

1 and 2. For clarity we use the superscript ∗ to distinguish quantities pertaining to

Scenario 2 from the corresponding quantities for Scenario 1.

Theorem 4.10.1. Suppose α, β > 0 and γ ≥ 0 are given and that a sequence of n

broadcasts is made under control policy S. Then

(a) if n > 2, we have

i∗k < ik for 2 < k ≤ n;

(b) if n ≥ 2, we have

ξ∗ < ξ.

Proof. From (4.8.6), (4.8.7) (under Scenario 1) and (4.9.1), (4.9.2) (under Scenario 2),

we see that ξ may be regarded as in+1 and ξ∗ as i∗n+1, so it suffices to establish Part

(a). This we do by forward induction on k.

Suppose that for some k > 2 we have

i∗k−1 ≤ ik−1. (4.10.1)

A basis is provided by the trivial relation i∗2 = i2. We have the defining relations

i∗ke
−2i∗

k = i∗k−1e
−(α+β+i∗

k−1
) (4.10.2)



108 CHAPTER 4. Impulsive control of rumours

and

ike
−2ik = ik−1e

−(β+2ik−1) . (4.10.3)

The inequality

i∗k−1 < α

may be rewritten as

β + 2i∗k−1 < α + β + i∗k−1,

so that

e−(α+β+i∗
k−1

) < e−(β+2i∗
k−1

) .

Hence we have using (4.10.2) that

i∗ke
−2i∗

k < i∗k−1e
−(β+2i∗

k−1
) .

Lemma 4.7.1 and (4.10.1) thus provide

i∗ke
−2i∗

k < ik−1e
−(β+2ik−1) .

By (4.10.3) and a second application of Lemma 4.7.1 we deduce that i∗k < ik, the

desired inductive step. This completes the proof.

Theorem 4.10.1 can be verified for the case of γ = 0 by comparing the graphs in

Figures 4.8.1(a) and 4.9.1(a).



Chapter 5

Conclusions

We have mainly studied elaboration of the two important classical models developed for

rumours in the literature, Daley-Kendall ([DK]) and Maki-Thompson([MT]) models.

The main contribution and results of this thesis may be summarized briefly as follows.

• Partitioning stiflers into two classes according to whether they are formed by

spreader - spreader or spreader - stifler interactions.

• Adopting general initial conditions for classical stochastic rumour processes

• Allowing repeated rumours

• Introducing impulsive control of repeated rumours

All of the above give rise to a wealth of new structural theory and dynamics in a

field in which there have been hitherto very few general results.
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The structural innovations make rumour theory more amenable to nontrivial mod-

elling. We believe that the new structural results will make it more feasible to answer

questions arising out of such modelling.

The algorithms devised have been shown to be efficient through numerical results

simulating analytic solutions.

The ideas in this thesis lead naturally to consideration of a number of variant models

of rumour processes including

• People meeting more than two at a time

• Competing rumours and counter rumours

• Changing the veracity of the rumour

• Non-homogeneous populations.



Appendix A

A stochastic process is a probabilistic experiment that involves time. In other words,

each sample point (i.e. possible outcome) of the experiment is a function of time, called

a sample function. The sample space is the set of all possible sample functions, and

the events are subsets of the sample space.

A stochastic rumour process is a type of system which evolves in time as a result

of chance interactions between the individuals in a closed population. The behaviour

of such a system may be described by a vector-valued family of random variables, uk,

such that

uk = (ik, sk, r1,k, r2,k)
⊤

at time tk for all k = 0, 1, 2, . . ., where (.)⊤ stands for the transpose of the given vector,

the component ik measures the number of people in the population who have never

heard the rumour, sk the number who spread it, r1,k the number of first type of stiflers

and r2,k the number of second type of stiflers.

The family uk can be envisaged as a path of the rumour spreading randomly in space
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Σ. That is, the rumour process as a stochastic process is a family uk of random variables

indexed by tk ∈ R+∪{0}. The random variables, uk at time tk for all k = 0, 1, 2, . . .,

map the sample space Ω into some set Σ. Here Σ is the state space. For each t ∈ [0,∞),

the value of uk is a point in Σ. Note that continuous time processes and discrete time

processes are not distinguished at this stage in this section.

In the discrete case, let ik, sk, r1,k and r2,k be the number of ignorants, spreaders,

first-type stiflers and second-type stiflers at the kth transition. The kth transition

is denoted by the mapping φ : {ik, sk, r1,k, r2,k} 7→ {ik+1, sk+1, r1,k+1, r2,k+1}, for k =

0, 1, 2, . . .. That is, uk is mapped to uk+1 by φ. Here uk : Ω −→ Σ and each quadruplet

uk of numbers represents a new state.

The final outcome of the rumour process is defined by the mapping φT : {i0, s0, r1,0, r2,0}−→

{iT , sT , r1,T , r2,T}. The mapping φT is the T -fold composition, φT = φ ◦ φ ◦ . . . ◦ φ.

The analysis of mathematical models established for certain rumour processes under

prescribed assumptions has shown that asymptotically for a very large population a

fixed proportion of the population remains ignorant about the rumour. We have already

mentioned two such classical cases in the main body of the thesis which have been

introduced by Daley and Kendall [32] and Maki and Thompson [78] (the [DK] model

and the [MT] model respectively).

Differential equations, both ordinary and partial, occur frequently in stochastic
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models. There are various solution methods for these stochastic equations, for exam-

ple the method of Langevin and that of Chapman-Kolmogorov. These methods and

others are discussed in [54]. Langevin’s equation is mentioned very briefly since it

has historical importance for the study of stochastic equations and their applications

in Physics, although it and its other related results are not used in this thesis. By

referring to [54], Langevin’s equation was the first example of a stochastic differential

equation, a differential equation with a random term. Langevin solved the equation of

motion for the position of the particle given by Newton’s law m∂2x
∂t2

= −6πηa∂x
∂t

+ X

where ∂x
∂t

is the velocity of the particle, a is the diameter of the particle, X a fluctuating

force, η is the viscosity and m is the mass of the particle. His solution method was

quite different from that of Einstein [38] and his solution is a random function.

Another example of stochastic differential equations is provided by birth-death equa-

tions. We give a brief introduction to these equations here. In [54], a probability

distribution, P (x, y, t), for the number of individuals at a given time is assumed such

that

Prob(x→ x+ 1; y → y) = k1ax∆t,

Prob(x→ x− 1; y → y + 1) = k2xy∆t,

Prob(x→ x; y → y − 1) = k3y∆t,

Prob(x→ x; y → y) = 1 − (k1ax+ k2xy + k3y)∆t
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where ∆t is the time increment in which change occurs, x is the number of prey, y is

the number of predators, a is the amount of food of the prey and k1, k2, k3 are rate

constants. Thus the probability laws are replaced by simple rate laws. These simple

rate laws are then employed in the Chapman-Kolmogorov equations. In the Chapman-

Kolmogorov equations, the probability at t+ ∆t is expressed as a sum of terms, each

of which represents the probability of a previous state multiplied by the probability of

a transition from that state to state (x, y). Thus

P (x, y, t+ ∆t) − P (x, y, t)

∆t
= k1a(x− 1)P (x− 1, y, t)

+k2(x+ 1)(y − 1)P (x+ 1, y − 1, t)

+k3(y + 1)P (x, y + 1, t)

−(k1ax+ k2xy + k3y)P (x, y, t)

→ ∂P (x, y, t)

∂t
as ∆t→ 0 .

This type of model has a wide application—in fact to any system to which a pop-

ulation of individuals may be attributed.
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In Chapter 2 we required the derivative of the function φ describing the second type

of stiflers. The details of the calculation of this derivative are given below. Recall:

φ2 = 1 − αθ + (1 + α) ln θ + 2α(1 − θ) +
1

2
ln2 θ.

Hence

dφ2

dα
= −

(

θ + α
dθ

dα

)

+

(

ln θ + (1 + α)
1

θ

dθ

dα

)

+ (2(1 − θ) − 2α)
dθ

dα
+ ln θ

1

θ

dθ

dα

= −θ − α
dθ

dα
+ ln θ + (1 + α)

1

θ

dθ

dα
+ 2(1 − θ) − 2α

dθ

dα
+ ln θ

1

θ

dθ

dα

=
1

θ

dθ

dα
(−αθ − 2αθ + (1 + α) + ln θ) − θ + 2 − 2θ + ln θ

=
1

θ

dθ

dα
(1 + α− 3αθ + ln θ) + 2 − 3θ + ln θ
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where α = −1+ln θ
1−2θ

and dθ
dα

= −θ(2θ−1)2

1+2θ ln θ
. Consequently,

dφ2

dα
= − (2θ − 1)2

1 + 2θ ln θ

(

1 − 1 + ln θ

1 − 2θ
+ 3

1 + ln θ

1 − 2θ
θ + ln θ

)

+2 − 3θ + ln θ

= − 2θ − 1

1 + 2θ ln θ
(−(1 − 2θ) + 1 + ln θ − 3(1 + ln θ)θ − (1 − 2θ) ln θ)

+2 − 3θ + ln θ

=
1 − 2θ

1 + 2θ ln θ
(2θ − 3θ − 3θ ln θ + 2θ ln θ)

+2 − 3θ + ln θ

=
1 − 2θ

1 + 2θ ln θ
(−θ − θ ln θ) + 2 − 3θ + ln θ

=
(1 − 2θ)(−θ − θ ln θ) + (1 + 2θ ln θ)(2 − 3θ + ln θ)

1 + 2θ ln θ

=
−θ − θ ln θ + 2θ2 + 2θ2 ln θ + 2 − 3θ + ln θ

1 + 2θ ln θ

+
4θ ln θ − 6θ2 ln θ + 2θ ln2 θ

1 + 2θ ln θ

=
−4θ + 3θ ln θ + 2θ2 − 4θ2 ln θ + 2 + ln θ + 2θ ln2 θ

1 + 2θ ln θ
.
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In Chapter 2, we gave the solution to the spread of a rumour for our extended model

in a closed population. This required the evaluation of the Lambert-w function. Here

we present the details of this calculation. In doing so we require the following result.

Theorem C.1 (LAGRANGE’S THEOREM). [109]

Let f(z) and φ(z) be regular on and inside a closed contour C surrounding a point a,

and let w be such that the inequality |wφ(z)| < |z − a| is satisfied at all points z on

C. Then the equation ζ = a + wφ(ζ), regarded as an equation in ζ, has one root in

the region enclosed by C. Further, any function of ζ regular on and inside C can be

expanded as a power series in w by the formula

f(ζ) = f(a) +
∞

∑

n=1

wn

n!

dn−1

dan−1
{f ′(a)[φ(a)]n}. (C.1)

The Lambert-w function is illustrated in Figure C.1. To evaluate the Lambert-w

function, we solve yey = x by using a Lagrange expansion for the Belen-Pearce (2000)
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Figure C.1: The Lambert-w function.

model as follows. Let

x = a + tψ(x) = a+

∞
∑

n=1

tn

n!

dn−1

dan−1
(ψ(a))n.

Now, putting x→ w, a→ 0, t→ x, we have ψ(x) = e−x and

w =

∞
∑

n=1

xn

n!

dn−1

dan−1
(e−na)|a=0

=
∞

∑

n=1

xn

n!
(−n)n−1e−na |a=0

=

∞
∑

n=1

(−x)n

n!
nn−1.

Hence, λ = 2− α+
∑

∞

n=1
(2(1−α)e−2+α)n

nn!
. Now let us check the conditions of Lagrange’s

theorem: there is a contour C around a and t such that |tψ(z)| < |z − a| on C. That

is, |xe−z| < |z| on a contour C enclosing w with centre at the origin. The proof is
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complete.

Special Case: Solution with zero initial proportion of stiflers and with

arbitrary initial proportions of ignorants and spreaders:

We suppose initial conditions i(0) = α > 0, s(0) = 1 − α, r(0) = 0. From (2.2.4)

and (2.2.5), we deduce that

ds

di
=

1 − 2i

i
. (C.2)

Since i > 0 throughout the process, the right-hand side of (C.2) is well-defined. Inte-

gration with use of the initial conditions leads to

s = 1 + α− 2i+ ln(i/α). (C.3)

Set i∞ = αθ. The parameter θ represents the proportion of the ignorant subpopulation

who never hear the rumour. Since s∞ = 0, we have

1 + α(1 − 2θ) + ln θ = 0 (C.4)

or

wew = −2αe−1−α, (C.5)

where w := −2αθ.

The equation

wew = x (C.6)
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Figure C.2: The graph of the equation yey = x

has two real solutions when −1/e < x < 0 (see Figure C.2). For 0 < α < 1 we have

−2αe−2α < −2αe−1−α,

so that yey|y=−2α < yey|y=−2αθ for 0 < α < 1. Hence one of the real solutions of (C.5)

is less than −2α and the other greater than −2α. As we must have 0 < θ < 1, the

physical solution to (C.5) is the one greater than −2α, that is, the real solution of

(C.6)which is smaller in magnitude. Our solutions are depicted in Figure C.2.

The function w = w(x) giving the unique real solution to (C.6) for x ≥ 0 and the

real solution of smaller magnitude for x < 0 has been in the literature for over 200

years and is known as the Lambert− w function (see [29]).
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Figure C.3: The graph of the equation yey = x

Lagrange’s expansion provides an explicit series evaluation for w:

w =

∞
∑

k=1

(−x)k

k!
kk−1.

Thus for 0 < α < 1

θ = − 1

2α
w(−2αe−1−α) =

∞
∑

k=1

(−2αk)k−1

k!
e−k−kα.

We have that for 0 < α < 1, (C.4) may be used to define a single-valued function

θ = θ(α) with 0 < α < 1. In fact the range of θ is more circumscribed. First suppose,

if possible, that θ > 1/2. Then (C.4) gives 1 + ln θ = α(2θ − 1) < 2θ − 1, since α < 1.

However we have by elementary calculus that 1 + ln θ ≥ 2θ− 1 for 1/2 ≤ θ ≤ 1, which



122 Appendix C

is a contradiction. Therefore

θ ≤ 1/2. (C.7)

Indeed we must have θ < 1/2, since (C.4) yields 1 + ln θ = 0 for θ = 1/2, which is also

a contradiction. Differentiation of (C.4) provides

dθ

dα
= −θ(1 − 2θ)

1 − 2θα
, (C.8)

which by our foregoing discussion must be negative. Hence θ is a strictly monotone

decreasing function of α on (0, 1) (see Figure C.4). Its infimum satisfies the Daley-

Kendall equation 2(1 − θ) + ln θ = 0 and is θ(1) ≈ 0.2031878. The other real solution

θ = 1 to this equation is not feasible in our context. Despite the suggestion from Figure

C.4, it can be shown that θ is not a concave function of α. The supremum of α is

θ(0) = 1/e ≈ 0.36787944. (C.9)

That is, we have the somewhat surprising result that when nearly all the population

are initially spreaders, it is still the case that a proportion 1/e of the initial ignorants

never hear the rumour. See also Figure C.4.
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Figure C.4: The behaviour of the function θ as a function of α
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Appendix D

In this appendix, the variant of the [MT] model called k-fold stifling by Daley and

Gani [33] which was originally solved for 2-fold stifling by Carnal [26], is briefly pre-

sented. The term k-fold stifling means that it is assumed that a spreader does not

decide to cease spreading the rumour until being involved in k stifling interactions.

The proportion of final ignorants to the population is 0.05952021 ([26]) if the spreader

hears the rumour twice before becoming a stifler. If the spreader hears the rumour k

times before becoming a stifler during the process then the proportion of final ignorants

can be formulated for all k = 1, 2 . . . as

− 1

(k + 1)
w

(

−(k + 1)e−(k+1)
)

. (D.1)

Note that (D.1) is one of two solutions of the equation ye(k+1)(1−y) = 1. The other

solution is 1. A graphical depiction of the solutions is given by Figure D.1.
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Figure D.1: k-fold variant of the model
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In this appendix we give upper and lower bounds for the [DK] model by using two

numerical methods, namely a direct iteration method (DIM) and Newton’s method

(NM). Recall from equation (2.6.2) that the final proportion of ignorants in the [DK]

model is

ϕ(θ) = 2θ − ln θ. (E.1)

We use direct iteration to find the fixed point of the equation φ(θ) = θ, yielding the

final proportion of ignorants. Since we have 0 < θ < 1
2

from equation (C.7), choose

θ0 = 0.3. Table E.1 gives the first few iterations of DIM. Clearly ϕ(θ) → 0.0556483.

Table E.1: Convergence for the lower bound of [DK] by DIM-1

θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8

0.09 0.060 0.05610 0.0556986 0.0556539 0.0556489 0.0556483 0.0556483
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Table E.2: Convergence for the lower bound of [DK] by DIM-2

θ1 θ2 θ3 θ4 θ5

0.165 0.06929 0.05718 0.05581 0.0556663

θ6 θ7 θ8 θ9

0.0556503 0.0556485 0.0556483 0.0556483

Table E.3: Convergence for upper bound of [DK] by DIM-1

θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8

0.246 0.2216 0.211 0.206 0.204 0.20365 0.20337 0.20326

θ9 θ10 θ11 θ12 θ13 θ14 θ15

0.20322 0.2032005 0.2031930 0.2031899 0.2031887 0.2031882 0.203188

For purposes of comparison, suppose now that

θ >
1

2
and θ0 = 0.6.

Table E.2 gives iterations of the DIM for θ0 = 0.6. Again we observe that ϕ(θ) →

0.0556483.

From the classical result we know that θ ≤ 0.203188. This is also illustrated in

Tables E.3 and E.4 by the convergence to this value of the DIM given initial values

θ0 = 0.3 and θ0 = 0.2 respectively. The convergence of θ to 0.0556483 illustrated
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Table E.4: Convergence for upper bound of [DK] by DIM-2

θ1 θ2 θ3 θ4 θ5 θ6 θ7

0.122 0.104 0.1012 0.1005 0.1004 0.1003 0.1003

Table E.5: Convergence for upper bound by Newton’s method

θ1 θ2 θ3 θ4

0.1934065 0.2027975 0.2031872 0.2031878

in Tables E.1 and E.2 therefore suggests that this value is a lower bound for θ, i.e.

0.0556483 ≤ θ ≤ 0.203188.

For purposes of comparison, in Tables E.5 and E.6 we report our calculations using

NM instead DIM for the upper and lower bounds using initial values θ0 = 0.3 and

θ0 = 0.2 respectively. We have

ϕ(θ) = 2θ − ln θ

Table E.6: Convergence for lower bound by Newton’s method

θ1 θ2 θ3 θ4 θ5

0.06 0.0554598 0.0556479 0.0556483 0.0556483
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from equation (E.1). Thus

ϕ′(θ) = 2 − 1

θ
=











































> 0, θ > 1
2

= 0, θ = 1
2

< 0, 0 < θ < 1
2

(E.2)

We now apply NM to solve the equation ϕ(θ) = 2θ− ln(θ) = c, where the value of c

is determined by the initial values of the rumour process. As we have seen, θ certainly

assumes values in the range 0.05 ≤ θ ≤ 1, yielding values of c in the range 1.6 < c < 3.

For a given value of c, the recurrence relation for the NM is then

θn+1 = θn − ϕ(θn)
ϕ′(θn)

,

where

ϕ′(θn) = 2 − 1
θn
, that is, θn+1 = θn − 2θn−ln θn−c

2− 1

θn

. As an example, with c = 3 we

obtain

θn+1 = θn − 2θn − ln θn − 3

2 − 1
θn

,

yielding the numerical results presented in Tables E.5 – E.6. Note that, as expected,

Newton’s converges more rapidly than DIM.
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In this appendix we give computational results for both the [MT] model and the [DK]

model.

In the tables in this appendix, β, T , iT , i0, r1 and r2 are respectively the proportion

of the spreaders to total population, the number of transitions, the number of ignorants

when the rumour process stops, the initial number of ignorants, the number of first

type of stiflers and the number of second type of stiflers. The classical results for the

[MT] model with a single initial spreader are illustrated in Table F.1.

The data in this table like all data in other tables in this thesis were obtained by

the algorithm developed and used to obtain the stochastic simulation results. Table

F.2 gives simulation results for the extended [MT] model for the proportion of final

ignorants (iT ) to initial ignorants (i0). The population sizes are 105, 106, 107 and 108,

and β represents the proportion of initial spreaders to total population and varies from

0.00001 to 0.999. In chapter 2, as seen in Table F.2, the value of iT/i0 is approximately

0.358, and is effectively obtained for the population sizes 106, 107, 108.
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n i r T CPU Time [sec]

101 1 9 17 0.030

102 16 84 167 0.010

103 215 785 1569 0.040

104 2038 7962 15923 0.110

105 20329 79671 159341 0.83

106 203477 796523 1593045 8.670

107 2035639 7964361 15928721 84.200

108 20322212 79677788 159355575 846.000

109 203203310 796796690 1593593379 8496.55

Table F.1: The [MT] model for different population sizes n, with one initial spreader
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β 105 106 107 108

0.00001 0.2054520547 0.2028982043 0.2030227184 0.2031623274

0.1 0.2274777740 0.2238677740 0.2235050052 0.2237780839

0.2 0.2469999939 0.2448125035 0.2441484928 0.2443652004

0.3 0.2660999894 0.2656899989 0.2643445730 0.2645373940

0.4 0.2869499922 0.2852266729 0.2836728394 0.2837518752

0.5 0.3035399914 0.3035820127 0.3014937937 0.3016579449

0.6 0.3210499883 0.3190949857 0.3176445067 0.3180365860

0.7 0.3357666731 0.3345266581 0.3322723210 0.3327519000

0.8 0.3466500044 0.3475799859 0.3458814919 0.3458819985

0.9 0.3574000001 0.3594399989 0.3565210104 0.3574211001

0.99 0.3610000014 0.3632000089 0.3652099967 0.3655700088

0.999 0.3499999940 0.3580000103 0.3573000133 0.3583199978

Table F.2: iT /i0 results for the extended [MT] model



134 Appendix F

β T iT/i0 r1/n r2/n

0.000000001 1593579410 0.2032102942 0.3237645626 0.4730251431

0.1 1497258565 0.2237452418 0.3266044557 0.4720248282

0.5 1198266799 0.3017331958 0.3811696768 0.4679637551

0.9 1028493619 0.3575319052 0.4739302993 0.4903165102

0.99 1002679785 0.3660106957 0.4973381758 0.4990017414

0.999 1000283769 0.3581149876 0.4997091591 0.4999327362

Table F.3: The extended [MT] model with the population n:=109.

By using the algorithm for our extended [MT] model, we illustrate in Table F.3 the

total number of transitions T when the rumour process stops, the proportions of final

stiflers of first type (r1) and stiflers of second type (r2) to total population, and also

the proportion of final ignorants to initial ignorants (iT/i0). In this table, β represents

the same type of proportion of the population as in Table F.2. The approximations

presented in these results are best in the case of very large population size (109), a very

large number of initial spreaders (the proportion is 0.999) and nil initial stiflers. Here

the proportion of final transitions to total population is approximately 1, the propor-

tions of final first type of stiflers and final second type of stiflers are both approximately

0.5 and iT /i0 is approximately 0.358.
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The computational results for the extended [MT] model are summarized in Ta-

bles F.4, F.5 and F.6 for the population sizes 105, 107 and 108 respectively. It is

observed that the proportion of transitions to total population is approximately 1 for

any size of population when the initial proportion of spreaders is very large (from 0.99

to 0.9999). In other words, when the number of initial spreaders is very close to the

total population size, the ignorants constitute a small proportion of the population, the

number of initial stiflers is zero, and the number of transitions is almost equal to the

total population size. The final proportions of first type of stiflers and of second type

of stiflers both tend towards 0.50000 in the case of a large initial number of spreaders.

It is also seen that the best approximation for iT /i0 (that is, the value closest to 0.368)

occurs when β=0.99. In the case of population size 107 this value is 0.3652, and for

population size 108 it is 0.3656. If β is taken as 0.99999 or 0.999999 as extreme cases

the algorithm reports no ignorants left. We note, however, that these are extreme cases

with an unrealistic assumption on the initial proportion of spreaders (which is almost

unity).

Under the classical assumption that the initial number of spreaders is just 1, we

expect (and Tables F.4, F.5 and F.6 confirm) that iT/i0=iT/n ≈ 0.203. We also observe

that in this case the final proportion of first type of stiflers and the final proportion of

second type of stiflers are approximately 0.324 and 0.473 respectively.
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n β T iT /i0 iT/n r1/n r2/n

105 0.00001 158908 0.2054520547 0.2054499984 0.3214600086 0.4730899930

105 0.1 149053 0.2274777740 0.2047300041 0.3249199986 0.4703499973

105 0.2 140479 0.2469999939 0.1976000071 0.3337900043 0.4686099887

105 0.3 132745 0.2660999894 0.1862699986 0.3455300033 0.4681999981

105 0.4 125565 0.2869499922 0.1721699983 0.3620299995 0.4657999873

105 0.5 119645 0.3035399914 0.1517699957 0.3799299896 0.4683000147

105 0.6 114315 0.3210499883 0.1284199953 0.4013000131 0.4702799916

105 0.7 109853 0.3357666731 0.1007300019 0.4234699905 0.4758000076

105 0.8 106133 0.3466500044 0.0693299994 0.4467999935 0.4838699996

105 0.9 102851 0.3574000001 0.0357399993 0.4709900022 0.4932700098

105 0.99 100277 0.3610000014 0.0036100000 0.4947200119 0.5016700029

105 0.999 100029 0.3499999940 0.0003500000 0.4969300032 0.5027199984

105 0.9999 100003 0.3000000119 0.0000300000 0.4971199930 0.5028499961

105 0.99999 100000 0.0000000000 0.0000000000 0.4971500039 0.5028499961

Table F.4: Final results for the extended [MT] model with 0 < β < 1 and population

size n = 105
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n β T iT /i0 iT/n r1/n r2/n

107 0.0000001 15939544 0.2030227184 0.2030227035 0.3239650130 0.4730122983

107 0.1 14976909 0.2235050052 0.2011545002 0.3268232942 0.4720222056

107 0.2 14093623 0.2441484928 0.1953188032 0.3346703947 0.4700107872

107 0.3 13299175 0.2643445730 0.1850412041 0.3468995094 0.4680593014

107 0.4 12595925 0.2836728394 0.1702037007 0.3626425862 0.4671536982

107 0.5 11985061 0.3014937937 0.1507468969 0.3813633919 0.4678896964

107 0.6 11458843 0.3176445067 0.1270578057 0.4021945000 0.4707477093

107 0.7 11006365 0.3322723210 0.0996816978 0.4247615933 0.4755567014

107 0.8 10616473 0.3458814919 0.0691763014 0.4488945901 0.4819290936

107 0.9 10286957 0.3565210104 0.0356521010 0.4740580022 0.4902898967

107 0.99 10026957 0.3652099967 0.0036521000 0.4974032938 0.4989446104

107 0.999 10002853 0.3573000133 0.0003573000 0.4998098016 0.4998328984

107 0.9999 10000421 0.2890000045 0.0000289000 0.5000535250 0.4999175966

107 0.99999 10000099 0.0000000000 0.0000000000 0.5000826120 0.4999173880

107 0.999999 10000009 0.0000000000 0.0000000000 0.5000844002 0.4999155998

Table F.5: Final results for the extended [MT] model with 0 < β < 1 and population

size 107 (n).
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n β T iT/i0 iT /n r1/n r2/n

108 0.00000001 159367532 0.2031623274 0.2031623274 0.3237699270 0.4730677307

108 0.1 149719941 0.2237780839 0.2014002800 0.3266167045 0.4719829857

108 0.2 140901565 0.2443652004 0.1954921633 0.3345487118 0.4699591100

108 0.3 132964763 0.2645373940 0.1851761788 0.3468223512 0.4680014253

108 0.4 125949775 0.2837518752 0.1702511162 0.3625861704 0.4671627283

108 0.5 119834205 0.3016579449 0.1508289725 0.3812034130 0.4679676294

108 0.6 114557073 0.3180365860 0.1272146255 0.4020895064 0.4706958532

108 0.7 110034885 0.3327519000 0.0998255685 0.4247498512 0.4754245877

108 0.8 106164719 0.3458819985 0.0691763982 0.4488214850 0.4820021093

108 0.9 102851577 0.3574211001 0.0357421115 0.4739440680 0.4903137982

108 0.99 100268859 0.3655700088 0.0036557000 0.4973450303 0.4989992678

108 0.999 100028335 0.3583199978 0.0003583200 0.4997186661 0.4999229908

108 0.9999 100004437 0.2781000137 0.0000278100 0.4999540746 0.5000180602

108 0.99999 100000999 0.0000000000 0.0000000000 0.4999830425 0.5000169873

108 0.999999 100000099 0.0000000000 0.0000000000 0.4999845922 0.5000153780

Table F.6: Final results for the extended [MT] model with 0 < β < 1 and n = 108
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n i r1 r2 No. of Transitions CPU Time [sec]

101 1 3 6 13 0.010

102 19 47 34 143 0.030

103 208 478 314 1425 0.010

104 2099 4759 3142 14229 0.070

105 20538 47134 32328 142758 0.440

106 203502 472284 324214 1430887 5.410

107 2028546 4732210 3239244 14323284 49.950

108 20321534 47301372 32377094 143168383 496.660

109 203204023 473042539 323753438 1431715233 5385.750

Table F.7: The classical [DK] model with first type and second type of stiflers and one

initial spreaders

Table F.7 gives the results produced by our algorithm for the case of the classical

[DK] model with a single initial spreader. As expected, these results give the final

proportion of ignorants as approximately 0.203 and the final proportion of transitions

to the total population size as approximately 1.4317. The simulations are done for

different population sizes from 10 up to 109.

Tables F.8 and F.9 give computational results for iT/i0, for different β values from

0.1 to 0.99999 and for population sizes 106, 107, 108, and 109. For 0.1 ≤ β ≤ 0.9 we
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β 106 107 108

0.1 0.224050 0.224034 0.223786

0.2 0.244833 0.244594 0.244404

0.3 0.264567 0.264900 0.264720

0.4 0.283243 0.284402 0.283909

0.5 0.302304 0.302087 0.301819

0.6 0.318300 0.318492 0.318171

0.7 0.332823 0.332724 0.332792

0.8 0.345940 0.345874 0.346016

0.9 0.356889 0.357849 0.357546

0.99 0.364700 0.367780 0.366287

Table F.8: iT/i0 for the extended [DK] model with 0 < β < 0.99

β 106 107 108 109

0.999 0.376000 0.365500 0.365500 0.367169

0.9999 0.489918 0.355940 0.365539 0.369200

0.99999 0.699050 0.379484 0.352521

Table F.9: iT /i0 for the extended [DK] model with 0.999 < β < 0.99999
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increment β by 0.1. For larger values we use an increment of 9×10−m for m = 2, . . . , 5.

It is a surprising result that, in contrast to the results obtained using the [MT] model,

iT /i0 is not approximately 0 when β= 0.99999 for any population size between 106

and 109. Instead, it appears to approximate the analytic solution (0.368), particularly

when β = 0.99.

Tables F.10, F.11, F.12, and F.13 summarize the computational results for the

extended [DK] model. We observe that the proportion of final transitions to total

population is approximately 0.75 and the proportions of first type stiflers and second

type of stiflers both tend to approximately 0.499. The proportion of final ignorants

to total population does not go to 0. For large β, the best approximations for final

ignorants are obtained for the larger population sizes. In particular, for β = 0.999999

and n = 107 we obtain iT = 1. For β = 0.999999 and n = 108 we have iT = 36, and

for β = 0.9999 and n = 109 we have iT = 36920.

We again observe that the proportions of final first type stiflers and of final second

type of stiflers are approximately 0.324 and 0.473, respectively, when the process is

initiated by a single spreader.

We conclude that both the extended [MT] and [DK] models, under the classical

initial conditions of a single spreader and no stiflers, have the same final proportions of

first type stiflers (0.324) and second type stiflers (0.473), even though the interactions
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β iT/i0 T r1 r2 i

0.000001 0.203182 1432198 473944 322874 203182

0.1 0.224050 1333808 472554 325800 201645

0.2 0.244833 1241213 470027 334106 195867

0.3 0.264567 1156431 468456 346346 185197

0.4 0.283243 1079115 468068 361986 169946

0.5 0.302304 1007107 467670 381178 151152

0.6 0.318300 944317 470597 402082 127320

0.7 0.332823 888077 475696 424456 99847

0.8 0.345940 837392 482351 448460 69188

0.9 0.356890 791724 490516 473794 35689

0.99 0.364700 754033 499010 497342 3647

0.999 0.376000 750312 499755 499868 376

0.9999 0.490000 749947 499842 500108 49

0.99999 0.700000 749927 499856 500136 7

0.999999 0.000000 749934 499867 500132 0

Table F.10: The extended [DK] model with n = 106
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β iT/i0 T r1 r2 i

0.0000001 0.203424 14313756 4730240 3235518 2034241

0.1 0.224034 13335884 4720692 3263000 2016307

0.2 0.244594 12414751 4699758 3343490 1956752

0.3 0.264900 11559352 4681607 3464092 1854300

0.4 0.284402 10775354 4669947 3623640 1706413

0.5 0.302087 10074313 4679928 3809638 1510434

0.6 0.318492 9442580 4707061 4018972 1273966

0.7 0.332724 8881608 4757730 4244098 998171

0.8 0.345874 8373504 4822255 4485996 691748

0.9 0.357849 7915118 4903784 4738366 357849

0.99 0.367780 7540732 4991801 4971420 36778

0.999 0.365500 7504853 5000674 4995670 3655

0.9999 0.356000 7501260 5001589 4998054 356

0.99999 0.380000 7500852 5001619 4998342 38

0.999999 0.100000 7500823 5001630 4998368 1

Table F.11: The extended [DK] model with n = 107
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β iT/i0 T r1 r2 i

0.00000001 0.203203 143168591 47298016 32381706 20320278

0.1 0.223786 133386623 47195466 32663794 20140737

0.2 0.244404 124162273 46981587 33466066 19552348

0.3 0.264720 115597426 46785959 34683672 18530369

0.4 0.283909 107803419 46710545 36254886 17034569

0.5 0.301819 100762294 46797471 38111568 15090961

0.6 0.318171 94448624 47077723 40195452 12726825

0.7 0.332792 88800655 47552581 42463662 9983757

0.8 0.346016 83720908 48202776 44876904 6920320

0.9 0.357546 79154742 49035858 47388684 3575458

0.99 0.366287 75401329 49901519 49732194 366287

0.999 0.365500 75041799 49993248 49970202 36550

0.9999 0.365600 75005863 50002693 49993650 3656

0.99999 0.353000 75002218 50003494 49996152 353

0.999999 0.360000 75001836 50003579 49996384 36

Table F.12: The extended [DK] model with n = 108
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β iT/i0 T r1 r2 i

0.999 0.367169 750405421 499912349 499720482 367169

0.9999 0.369200 750046240 500003209 499959870 36920

Table F.13: The extended [DK] model with n = 109

between two spreaders are different in the two models. The proportions of first type

stiflers and second type stiflers under the assumption of a large number of initial

spreaders (β → 1) are both approximately 0.5. The proportions of total transitions to

population size are 1.593 and 1.432 for the classical [MT] and [DK] models respectively,

while the corresponding proportions for the extended models in the case that β → 1

are approximately 1 and 0.750. For small β, the proportion of final ignorants to initial

ignorants in both models in both versions (classical and extended) does not tend to 0;

rather, it tends to 0.203. For large β (β → 1) we have iT/i0 ≈ 0.368.
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Glossary

BROADCAST The generic term broadcast refers to an initiation of a rumour by

means of television, radio or the internet.

CLOSED POPULATION A homogeneously mixed population without immigra-

tion, emigration, deaths, or births.

FIRST TYPE OF STIFLERS Meaningful interaction between two spreaders re-

sults in either both becoming stiflers or one of them becoming a stifler while the

other one remains a spreader. This type of stiflers being sub population of stiflers

are referred as first type of stiflers.

IGNORANTS People in the population who haven’t heard the rumour

k-FOLD STIFLING k-fold stifling refers to an interaction in which a spreader does

not decide to cease spreading the rumour until being involved in k stifling inter-

actions.

MEANINGFUL INTERACTION An interaction is called meaningful when it is
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between two spreaders or a spreader and an ignorant or a spreader and a stifler.

NONSUBSCRIBER The ignorants who become spreaders after an encounter with

a spreader we term this type of spreaders as nonsubscriber spreaders.

SECOND TYPE OF STIFLERS Meaningful interaction between a stifler and spreader

results in spreader becoming a stifler while the stifler remains a stifler. This type

of stiflers being sub population of stiflers are referred as second type of stiflers.

SPREADERS People in the population who have heard and spread the rumour.

STIFLERS People in the population who are the former spreaders have ceased to

spread the rumour.

STOCHASTIC RUMOUR PROCESS A stochastic rumour process is a type of

system which evolves in time as a result of chance interactions between the indi-

viduals in a closed population.

SUBSCRIBER People who are the initial spreaders when the rumour process is

started by a broadcast to the spreaders are already portion of the whole popula-

tion as spreaders initially.

TRANSITION The result of a meaningful interaction is a transition from one state

to another.
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