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Abstract

This thesis presents results concerning the limiting behaviour of stochastic rumour

processes.

The first result involves our published analysis of the evolution for the general initial

conditions of the (common) deterministic limiting version of the classical Daley-Kendall

and Maki-Thompson stochastic rumour models, [14].

The second result being also part of the general analysis in [14] involves a new

approach to stiflers in the rumour process. This approach aims at distinguishing two

main types of stiflers. The analytical and stochastic numerical results of two types of

stiflers in [14] are presented in this thesis.

The third result is that the formulae to find the total number of transitions of

a stochastic rumour process with a general case of the Daley-Kendall and Maki-

Thompson classical models are developed and presented here, as already presented

in [16].

The fourth result is that the problem is taken into account as an optimal control
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xiv Abstract

problem and an impulsive control element is introduced to minimize the number of final

ignorants in the stochastic rumour process by repeating the process. Our published

results are presented in this thesis as appeared in [15] and [86].

Numerical results produced by our algorithm developed for the extended [MT]

model and [DK] model are demonstrated by tables in all details of numerical values in

the appendices.
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Tarsus’lu Aziz Pavlus, 1.Korintiler 13, 4-7



xvi



Acknowledgements

I would like to thank Charles E. M. Pearce, my supervisor, for his many productive

suggestions, guidance and support during the years of my graduate research works.

Especially, I am grateful to him very much, for his suggestions and final work on my

thesis during our long meetings in the ICNAAM (International Conference of Numerical

Analysis and Applied Mathematics) held in September 2007 in Corfu in Greece.

I would like also to express my thanks to Timothy Langtry for his reading of the

manuscript of my thesis and his many useful and valuable suggestions during his co-

supervision for about some months while I was visiting UTS for about seven months

in 2002 as a doctorate student.
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