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0.1 Abstract

This thesis is concerned with the theory of invariant bilinear differential pairings on
parabolic geometries. It introduces the concept formally with the help of the jet bundle
formalism and provides a detailed analysis. More precisely, after introducing the most
important notations and definitions, we first of all give an algebraic description for pair-
ings on homogeneous spaces and obtain a first existence theorem. Next, a classification
of first order invariant bilinear differential pairings is given under exclusion of certain
degenerate cases that are related to the existence of invariant linear differential opera-
tors. Furthermore, a concrete formula for a large class of invariant bilinear differential
pairings of arbitrary order is given and many examples are computed. The general
theory of higher order invariant bilinear differential pairings turns out to be much more
intricate and a general construction is only possible under exclusion of finitely many
degenerate cases whose significance in general remains elusive (although a result for
projective geometry is included). The construction relies on so-called splitting opera-
tors examples of which are described for projective geometry, conformal geometry and
CR geometry in the last chapter.
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0.2 Thesis declaration
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knowledge and belief, contains no material previously published or written by any other
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I give consent to this copy of my thesis, when deposited in the University library, be-
ing made available for loan and photocopying, subject to the provisions of the Copyright
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Before you can fly, you have to learn how to walk1

0.4 Constants and notation used throughout

1. M: a manifold of dimension n (for CR geometry M will have real dimension
2n+ 1).

2. g: a semisimple Lie algebra of rank l.

3. [., .]: the bracket in g.

4. G: the simply connected Lie group with Lie algebra g.

5. h: a fixed Cartan subalgebra of g.

6. p: a parabolic subalgebra of g.

7. k0: length of the grading of g.

8. l0: number of simple roots in S\Sp.

9. αi, i = 1, ..., l: simple roots of g.

10. ωi, i = 1, ..., l: fundamental weights corresponding to the simple roots.

11. I ⊂ {1, ..., l}: indices that correspond to simple roots in S\Sp, i.e. to crossed
through nodes.

12. J = {1, ..., l}\I: indices that correspond to simple roots in Sp.

13. W : the Weyl group of g.

14. Wp: the Hasse diagram of G/P .

15. ρ =
∑l

i=1 ωi: integral weight in the dominant Weyl chamber which lies closest to
the origin.

16. B(., .): the Killing form of g.

17. T (a): the tensor algebra of a Lie algebra a.

18. U(a): the universal enveloping algebra of a Lie algebra a.

19. Z(a): the center of the universal enveloping algebra U(a).

20. gllC: the endomorphisms of Cl. These can be identified with Cl×l.

1Nolan Wallach, Brisbane winter school in mathematics.
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21. ⊗: the tensor product symbol.

22. �: the symbol for the symmetric tensor product.

23. Λ: the symbol for the skew symmetric tensor product.

24. }: the Cartan product of representations.

25. G: the total space of the principal bundle defining a parabolic geometry.

26. ω: the Cartan connection of G (the Maurer Cartan form of G is denoted by ωMC).
Note that ω is also used as a symbol for the geometric weight of a representation,
but the context should make the meaning clear.

27. A: the adjoint tractor bundle.

28. Vλ: the irreducible finite dimensional representation (of g or p) that is dual to
the irreducible finite dimensional representation of highest weight λ ∈ h∗.

29. JkV : k-th order jet bundle of a vector bundle V .

30. J kV : k-th order weighted jet bundle.

31. J̄kV : k-th order semi-holonomic jet bundle.

32. J̄ kV : k-th order restricted semi-holonomic jet bundle.

33. E or O: the bundle of smooth (or holomorphic) functions of M.

34. Ea: the bundle of tangent vectors.

35. Ea: the bundle of one-forms.

36. V ∗: the dual of the vector space (representation, bundle, etc.) V .

37. Mp(V): the generalized Verma module associated to a representation V.

38. ∇: a connection.
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0.5 Introduction

0.5.1 What this is all about

It is generally known (see [54], p. 202), that on an arbitrary manifold M one can write
down the Lie derivative LXωb of a one-form ωb ∈ Γ(T ∗M) = Ω1(M) with respect to a
vector field Xa ∈ Γ(TM) = Vect(M) in terms of an arbitrary torsion-free connection
∇a as

LXωb = Xa∇aωb + ωa∇bX
a,

where the indices used are abstract in the sense of [54]. This pairing is obviously linear
in Xa and in ωb, i.e. bilinear, first order and invariant in the sense that it does not
depend upon a specific choice of connection. In [43], 30.1, it is shown that all such
bilinear invariant differential pairings

Vect(M)× Ω1(M) → Ω1(M)

are given by a two parameter family spanned by LXωb and Xa(dω)ab, where d denotes
the exterior derivative. Demanding that a pairing is invariant in the sense that it does
not depend upon a specific choice of connection within the class of all torsion-free con-
nections (in [43] those pairings are called natural) turns out to be rather restrictive.
Instead, one can specify an equivalence class of connections and ask for invariance un-
der change of connection within this equivalence class. This is a standard procedure
in many different geometries. In conformal geometry, for example, one deals with an
equivalence class of connections that consists of the Levi-Civita connections that corre-
spond to metrics in the conformal class. In projective geometry, one is given a projective
equivalence class of connections that consists of all those torsion-free connections, which
induce the same (unparameterised) geodesics. This is equivalent (see [24], p. 2, Propo-
sition 1) to saying that ∇a and ∇̂a are in the same equivalence class if and only if there
is a one form Υa, such that

∇̂aωb = ∇aωb − 2Υ(aωb),

where round brackets around indices denote symmetrization, i.e.

Υ(aωb) =
1

2
(Υaωb + Υbωa).

As a consequence, the difference between the two connections when acting on sections
of any weighted tensor bundle can be deduced (see [24], p. 2) and the invariance of any
expression can be checked by hand. For vector fields, for example, we have

∇̂bX
a = ∇bX

a + ΥbX
a + ΥcX

cδb
a,

so the invariance of the Lie derivative can be checked directly. It is also clear that

Xa(dω)ab = Xa∇[aωb]
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is a first order bilinear invariant differential pairing in that sense, where square brackets
around indices denote skewing, i.e. ∇[aωb] = 1

2
(∇aωb −∇bωa).

To obtain a more interesting example of a first order bilinear invariant differential
pairing in projective geometry, consider pairings

Γ(�2TM)× Ω1(M) → O,

where �2 denotes the second symmetric product and O is the sheaf of holomorphic
(or smooth) functions. The transformation rule for V ab ∈ �2TM under change of
connection is given by ∇̂cV

ab = ∇cV
ab + 2ΥcV

ab + 2ΥdV
d(aδc

b). This implies

V ab∇̂(aωb) = V ab∇(aωb) − 2V abΥaωb and

ωb∇̂aV
ab = ωb∇aV

ab + (n+ 3)ωbΥaV
ab,

where n = dim(M). Therefore the pairing

(n+ 3)V ab∇(aωb) + 2ωb∇aV
ab

does not depend upon a choice of connection within the projective class.

It is natural to ask the question of whether these are all first order bilinear invari-
ant differential pairings between those bundles and whether one can classify pairings
between arbitrary bundles in general.

In the following we will study exactly this question for a large class of geometries
called parabolic geometries. These are special cases of Cartan’s ‘éspace généralisé’ which
are geometric structures that have homogeneous spaces G/P , where G is a Lie group
and P a subgroup, as their models. They are defined by a generalization of the principal
P bundle

P → G
↓

G/P

together with a Cartan connection that generalizes the Maurer Cartan form

ω : TG→ Lie(G) = g.

Riemannian geometry, for example, can be defined as a (torsion-free) Cartan geometry
modeled on Euclidean space G/P with G = EucnR, the group of Euclidean motions,
and P = SOn(R), see [55]. In this case there exists a canonical connection, the Levi-
Civita connection, on the principal bundle. If, however, P is a parabolic subgroup of
a semisimple Lie group G, then the name parabolic geometry is commonly used. For
each parabolic geometry there exists an equivalence class of connections (see [20]) and
one can study invariant operators and invariant pairings as indicated above.
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0.5.2 Invariant differential pairings on the Riemann sphere

In this section we will classify all bilinear invariant differential pairings on the Riemann
sphere CP1. This little warm-up exercise does not only give the reader an idea of how
one might attempt to classify invariant bilinear differential pairings, but also produces
a final formula that will turn out to hold in great generality. More specifically, the
linear equations that we have to solve on the Riemann sphere are exactly those that we
will have to solve twice again in this thesis in a vastly more general setting. One can
see the reason for this phenomena by studying [35], where it is explained how invariant
linear differential operators on CP1 give rise to all standard operators on a general four
dimensional conformal manifold.

The setup

The basic objects that we can pair on CP1 are sections of line bundles, traditionally
denoted by O(q), for q ∈ Z, where O(1) is the hyperplane section bundle. For reasons

to become clear later, we will write O(
q
×) for O(q). Invariance on CP1 means invariance

under Moebius transformations that act not only on CP1, but also on sections of O(
q
×)

in a way to be described below.

The sections of O(
q
×) can be described by pairs of functions {fi}i=1,2 that depend

on one variable z ∈ C and and are related by f1(z) = ζ−qf2(ζ) for ζ = −1
z
. More

precisely, we are really concerned with local sections of these bundles. In that case the
fi are defined in some (connected) open subset of C and are related on the overlap as
indicated above. We can identify those sections with a function sf : SL2C → C, such
that

sf

((
a b
c d

)(
x y
0 x−1

))
= xqsf

(
a b
c d

)
.

Then we have

f1(z) = sf

(
1 0
z 1

)
and f2(ζ) = sf

(
ζ 1
−1 0

)
,

or equivalently

sf

(
a b
c d

)
= aqf1

( c
a

)
= (−c)qf2

(
−a
c

)
.

Again, f1, f2 and sf need not be defined globally, but may just be given on some
appropriate (open and connected) neighborhood of a point. In the sequel we will neglect
this technicality for this expository example.

SL2C acts on the space of sections by

(φsf )(h) = sf (φ
−1h)

and hence by

(φf1)(z) = (d− bz)qf1

(
az − c

d− bz

)
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and

(φf2)(ζ) = (cζ + a)qf2

(
dζ + b

cζ + a

)
,

for

φ =

(
a b
c d

)
.

It is easy to check that
(φf1)(z) = ζ−q(φf2)(ζ),

so {φf1, φf2} is again a section of O(
q
×). The elements in SL2C are generated by the

following three transformations

1. (φf1)(z) = f1(z + µ) for φ =

(
1 0
−µ 1

)
,

2. (φf1)(z) = λ−qf1(λ
2z) for φ =

(
λ 0
0 λ−1

)
and

3. (φf2)(ζ) = f2(ζ + κ) for φ =

(
1 κ
0 1

)
.

A general differential pairing in the first coordinate chart z has the form:

P : O(
q
×)×O(

q′

×) → O(
p
×)

P (f, g)1(z) =
∑
i,j

aij(z)

((
d

dz

)i

f1(z)

)((
d

dz

)j

g2(z)

)
,

for some functions aij(z). P (f, g)2(ζ) is defined analogously with ζ instead of z. In
order for this to be an invariant differential pairing, the invariance equation

P (φf, φg)(z) = (φP (f, g))(z),

for φ ∈ SL2C, has to be satisfied. Moreover, we must have

P (f, g)1(z) = ζ−pP (f, g)2(ζ),

for ζ = −z−1, in order to obtain a section of O(
p
×). The first transformation rule

immediately implies that∑
i,j

aij(z)

((
dif

dzi

)
(z + µ)

)((
djg

dzj

)
(z + µ)

)
=

∑
i,j

aij(z + µ)

((
dif

dzi

)
(z + µ)

)((
djg

dzj

)
(z + µ)

)
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and hence that the functions ai,j(z) are all constant. The last transformation rule
analogously implies that the aij(ζ) are constant. The second transformation rule implies∑

i,j

λ2(i+j)−(q+q′)aij

((
dif

dzi

)
(λ2z)

)((
djg

dzj

)
(λ2z)

)
= λ−p

∑
i,j

aij

((
dif

dzi

)
(λ2z)

)((
djg

dzj

)
(λ2z)

)
and hence p = q + q′ − 2M for some M ∈ N and every term with i + j 6= M vanishes.
Thus the general M -th order invariant differential pairing looks like this:

P : O(
q
×)×O(

q′

×) → O(
q+q′−2M
× )

P (f, g)1(z) =
M∑

j=0

γM,j

((
d

dz

)j

f1(z)

)((
d

dz

)M−j

g2(z)

)
,

for some constants γM,j ∈ C. The equation

P (f, g)1(z) = ζ−(q+q′−2M)P (f, g)2(ζ),

for ζ = −z−1, will determine the constants γM,j uniquely. This is shown by the following
two lemmata:

Lemma 1. The transformation law

z−k−2

(
z2 d

dz

)k+1

z−kψ(z) =
dk+1

dzk+1
ψ(z)

holds for an arbitrary function ψ(z), z 6= 0 and k ≥ −1.

Proof. This lemma is stated in [35] and easily proved by induction.

Lemma 2. If q 6∈ {0, 1, ...,M − 1} or q′ 6∈ {0, 1, ...,M − 1}, then the equation

M∑
j=0

γM,j

(
dj

dzj
f1(z)

)(
dM−j

dzM−j
g1(z)

)

= ζ2M−(q+q′)
M∑

j=0

γM,j

(
dj

dζj
f2(ζ)

)(
dM−j

dζM−j
g2(ζ)

)
uniquely determines the constants γM,j as

γM,j = (−1)j

(
M

j

)M−1∏
i=j

(q − i)
M−1∏

i=M−j

(q′ − i).
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Proof. First of all, we use Lemma 1 to compute

M∑
j=0

γM,j

(
dj

dzj
f1(z)

)(
dM−j

dzM−j
g1(z)

)

=
M∑

j=0

γM,jz
−M−2

((
z2 d

dz

)j

z−j+1f1(z)

)((
z2 d

dz

)M−j

z−M+j+1g1(z)

)
.

Now we change coordinates ζ = −1
z

and therefore z2 d
dz

= d
dζ

. Then we have

M∑
j=0

γM,jz
−M−2

((
z2 d

dz

)j

z−j+1f1(z)

)((
z2 d

dz

)M−j

z−M+j+1g1(z)

)

=
M∑

j=0

γM,jζ
M+2

(
dj

dζj
ζj−1−qf2(ζ)

)(
dM−j

dζM−j
ζM−j−1−q′g2(ζ)

)

=
M∑

j=0

γM,jζ
M+2

(
j∑

i=0

(
j

i

) i∏
l=1

(j − q − l)ζj−1−q−i d
j−i

dζj−i
f2(ζ)

)

×

(
M−j∑
i′=0

(
M − j

i′

) i′∏
k=1

(M − j − q′ − k)ζM−j−1−q′−i′ d
M−j−i′

dζM−j−i′
g2(ζ)

)

= ζ2M−q−q′
M∑

j=0

γM,j

(
dj

dζj
f2(ζ)

)(
dM−j

dζM−j
g2(ζ)

)
+Obstructions.

Let us look at a general obstruction term

ζ2M−q−q′−(M−s−t)

(
ds

dζs
f2(ζ)

)(
dt

dζt
g2(ζ)

)
,

for arbitrary s, t ≤M . The constant in front of this term is given by

M−t∑
j=s

γM,j

(
j

j − s

) j−s∏
l=1

(j − q − l)

(
M − j

M − j − t

)M−j−t∏
k=1

(M − j − q′ − k).

For s+ t = M − 1, we obtain the following M equations:

γM,s(M − s)(M − s− q′ − 1) + γM,s+1(s+ 1)(s− q) = 0, (1)

for s = 0, ...,M − 1. If q 6∈ {0, 1, ...,M − 1} or q′ 6∈ {0, 1, ...,M − 1}, this determines
uniquely (up to scale):

γM,j = (−1)j

(
M

j

)M−1∏
i=j

(q − i)

j∏
i=1

(q′ −M + i)

= (−1)j

(
M

j

)M−1∏
i=j

(q − i)
M−1∏

i=M−j

(q′ − i).
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Having defined γM,j like this, the constants in front of the other obstruction terms are
given by

M−1∏
i=s

(q − i)
M−1∏
i=t

(q′ − i)(−1)M−s−tM !

s!t!

M−t∑
j=s

(−1)j 1

(j − s)!(M − j − t)!
.

If t = M − s, then this constant is exactly γM,s. If s + t 6= M , then this vanishes due
to the fact that

n∑
i=0

(−1)i

(
n

i

)
= 0,

for all n ≥ 1. So the only terms we are left with are

ζ2M−q−q′
M∑

j=0

γM,j

(
dj

dζj
f2(ζ)

)(
dM−j

dζM−j
g2(ζ)

)
.

Therefore, we have proved:

Theorem 1. If q 6∈ {0, 1, ...,M − 1} or q′ 6∈ {0, 1, ...,M − 1}, there is exactly one M-th

order bilinear differential pairing between section of O(
q
×) and O(

q′

×) on the Riemann
sphere that is invariant with respect to Moebius transformations. This pairing is given
by:

P : O(
q
×)×O(

q′

×) → O(
q+q′−2M
× )

P (f, g)(z) =
M∑

j=0

γM,j

((
d

dz

)j

f(z)

)((
d

dz

)M−j

g(z)

)
,

with

γM,j = (−1)j

(
M

j

)M−1∏
i=j

(q − i)
M−1∏

i=M−j

(q′ − i).

The formula in the theorem above also shows a general dichotomy. There is a critical
set of weights K = {0, 1, ...,M − 1}. If q or q′ do not lie in K, then there exists exactly
one pairing as described above. However, if q, q′ ∈ K, then several peculiar things can
happen. Firstly, for q + q′ > M − 2, P (f, g) = 0. However, (1) can still be solved
and there exists an invariant bilinear differential pairing. Secondly, in [35] it is shown
that, for q ∈ K, Dq+1(f) = dq+1

dzk+1f is a linear invariant differential operator. So, for
example for q = q′ = M − 1, there are two independent invariant bilinear differential
pairings given by fDMg and gDMf . This problem will accompany us throughout this
thesis, where we will always have to exclude certain numbers (weights, representations)
in order to obtain a classification of invariant differential pairings. One main aim will
be to associate a certain meaning to these excluded numbers as we have done here: an
excluded number corresponds to the existence of a linear invariant differential operator.
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Remark

The formula above also appears in [53], Theorem 3.46, as the M -th transvectant of two
polynomials f and g.

0.5.3 Outline of this thesis

In the first chapter we give the basic background to representation theory and parabolic
geometry that is needed in order to understand this thesis. The material (especially
about Lie algebras and representation theory) is fairly standard and may be skipped
by anyone who is familiar with the subject. However, many notations are introduced
that will be used freely throughout this thesis.

In the second chapter the basic notion of an invariant bilinear differential pairing
is introduced. These pairings are the central objects of our study. Firstly, we de-
scribe pairings analytically in terms of (weighted-) jet bundles and define (weighted)
bi-jet bundles. Then we give an algebraic definition and study pairings algebraically
on homogeneous spaces which are the model spaces for the various types of parabolic
geometries. The notion of a generalized bi-Verma module is introduced and we
explain how for invariant bilinear differential pairings these modules play the same role
as generalized Verma modules play for invariant linear differential operators. More pre-
cisely, invariant differential pairings can be described by singular vectors in generalized
bi-Verma modules. A first large class of invariant differential pairings is constructed
with this method. Finally, we discuss in detail the notion of invariance for a general
curved parabolic geometry and end by describing the geometric structures that under-
lie parabolic geometries. Apart from the material in the last section (which is taken
directly from various sources in the literature) the concepts introduced are new. The
computations, however, are modelled on those that are used for describing invariant
differential operators.

The third chapter gives a classification of all first order bilinear invariant differential
pairings for all non-degenerate cases. It is explained how a degenerate case corresponds
to the existence of an invariant linear differential operator. Several examples are given.
The methods used are modeled on the methods of [16]. A (weaker version) of this
chapter has been accepted for publication [45].

The fourth chapter deals with higher order invariant differential pairings for which we
can write down an explicit formula including curvature correction terms. The remark-
able result is that those pairings only depend on the order and neither on the specific
parabolic geometry nor on the vector bundles involved. These pairings are obtained by
using Ricci-corrected derivatives as introduced in [12].

In order to construct higher order invariant differential pairings, the fifth chapter
firstly reviews some deep results about Lie algebra cohomology. Essentially using the
ideas from [7], we then define certain tractor bundles (the M-bundles) that encode
the information about the (weighted) M -jets of sections of vector bundles. An easy
argument shows that the tensor products of those tractor bundles decompose into ir-
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reducible components that are exactly the possible targets for our pairings. The final
step is to define splitting operators that include the bundles in question into these
M -bundles. At this stage, the results cease to be 100% satisfactory. To be more precise,
as in the classification of first order invariant differential pairings, certain representa-
tions (or rather certain geometric weights) have to be excluded. However, we can only
conjecture that every excluded weight corresponds to the existence of an invariant linear
differential operator. We will come back to this point in the last section about open
problems. However, modulo the problem of excluding too many representation than
absolutely necessary, all higher order pairings with exactly the right multiplicity that
we expect to exist and that are curved versions of pairings on the homogeneous model
spaces can be constructed this way. The splitting operators defined in this section are
a generalization of the curved Casimir operator defined in [21]. Finally, we examine
closely higher order pairings for projective geometry. In this case, all the excluded rep-
resentations correspond to the existence of invariant linear differential operators. This
result has also been accepted for publication in [45].

The objective of the last chapter is twofold. Firstly, we take a closer look at three
examples of parabolic geometry that we refer to throughout the thesis: projective ge-
ometry, conformal geometry and CR geometry. Then we describe the tractor calculus
for those geometries which enables one to carry out explicit computations with tractors
in order to get a better understanding of the abstract theory which is used in Chapter
five. Secondly, we explicitly construct some special splittings and show how this leads
to explicit formulae for higher order pairings. In particular, one can in theory write
down all the higher order pairings between sections of those bundles for which we have
written down the splitting, even those pairings with multiplicity. In practice this can
be extremely tedious due to complicated expressions for some tractors. The splittings
that we construct for projective geometry were first written down in [30] and those for
conformal geometry (and conformal weight 0) in [26], but we tried to construct these
splittings in a unified manner which is more adapted to the general flavour of this thesis.

The appendix describes the BGG sequences of projective, conformal and CR ge-
ometry. These sequences are not directly used in any part of the thesis, but they
are mentioned every now and then when we talk about standard operators. For the
convenience of the reader, we have included them as an appendix.

The achievements of this thesis

The most important new results and concepts that we have introduced and proved in
this paper are:

1. The conceptual description of bilinear differential pairings in terms of bi-jet bun-
dles, which are constructed out of jet bundles.

2. The algebraic criterion for the existence of invariant bilinear differential pairings
on homogeneous spaces via singular vectors in generalized bi-Verma modules.
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3. The classification of non-degenerate first order invariant bilinear differential pair-
ings and the characterization of degeneracy in terms of the existence of invariant
linear differential operators.

4. A general formula including curvature correction terms for a certain class of higher
order invariant bilinear differential pairings.

5. The construction of general higher order invariant bilinear differential pairings
under the exclusion of certain representations.

6. A precise analysis of higher order invariant bilinear differential pairings on man-
ifolds with a projective structure including the interpretation of each excluded
geometric weight in terms of the existence of an invariant linear differential oper-
ator.

A note on the length of this thesis

The author is aware that this thesis is probably a bit longer than it necessarily needs
to be. Several calculations are taken from various sources in the literature and have
just been rewritten with our conventions and notations. Wherever this is the case,
an explicit reference to the original source will be given. The reason for including all
those explicit calculations is simple: this text is supposed to be as self contained as
possible and accessible to someone with relatively little background knowledge. The
decisions as to which details to include and which to leave out are obviously based on
the background knowledge of the author. For that I apologize.



Chapter 1

Background

In this first chapter we will give the necessary background needed to understand the
theory of pairings as presented in this thesis. Most definitions are absolutely standard,
but they have to be stated in order to introduce notations that will be used freely
throughout this thesis. The first part of this chapter deals with Lie algebras and rep-
resentation theory, whereas the second part is devoted to the introduction of parabolic
geometries.

1.1 Lie algebras

1.1.1 Root spaces

Let g be a complex semisimple Lie algebra. We fix a Cartan subalgebra h of g and
define

gα = {X ∈ g : [H,X] = α(H)X ∀ H ∈ h}
for all α ∈ h∗. Then we set

∆ = ∆(g, h) = {α ∈ h∗ : gα 6= ∅ , α 6= 0}

and call the elements in ∆(g, h) roots of g relative to h. According to a standard result
in linear algebra we get a root space decomposition

g = h⊕
⊕

α∈∆(g,h)

gα.

Example

1. Look at
Al = sll+1C = {X ∈ gll+1C : tr(X) = 0}

with Cartan subalgebra

h =

{
n+1∑
i=1

aiHi :
l+1∑
i=1

ai = 0

}
,

21
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where Hi is the diagonal matrix which has a one in the i-th entry and zeroes
elsewhere. Therefore we find

h∗ = span{εi}i=1,...,l+1/

(
l+1∑
i=1

εi = 0

)
,

where εi is defined by εi(Hj) = δij. We will denote the equivalence class of εi in h∗

also by εi. If we denote the matrix which has a 1 in the i-th row and j-th column
and zeroes elsewhere by Ei,j, we can calculate

[H,Ei,j] = (ai − aj)Eij,

for H =
∑l+1

i=1 aiHi. Therefore Ei,j ∈ gεi−εj
and the set of roots in sll+1C is just

{εi − εj}i,j=1,...,l+1.

2. The next example is

Dl = so2lC =

{(
A B
C D

)
∈ gl2lC : D = −AT and B,C are skew symmetric

}
,

with Cartan subalgebra

h = span{Hi = Ei,i − El+i,l+i, i = 1, ..., l}.

This yields

h∗ = span{εi : εi(Hj) = δi,j}

and one can check that the roots are given by ∆(g, h) = {±εi ± εj}i6=j.

3. The final example is

Bl = so2l+1C =

{(
A v
−vT 0

)
: A ∈ so2lC, v ∈ C2l

}
,

where we can take h to be the Cartan subalgebra of so2lC included in so2l+1C in
the obvious manner. Hence

h∗ = span{εi : εi(Hj) = δi,j}

and

∆(g, h) = {±εi ± εj}i6=j ∪ {±εi}i=1,...,l.
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1.1.2 Dynkin diagrams

As is proved in [40], p. 48, every Cartan subalgebra h has a basis

S = {α1, ..., αl} ⊆ ∆(g, h),

so that every root may be written as a linear combination of elements in S with all
non-negative or all non-positive coefficients. S is then called a system of simple roots
of g. We will fix such a basis S, which induces a partial ordering

λ � µ⇔ λ− µ =
∑

i

aiαi with αi ∈ S and ai ≥ 0,

so that we can set ∆+(g, h) = {α ∈ ∆(g, h) : α � 0} for the set of positive roots.
For every X ∈ g, we have a canonical endomorphism ad(X) : g → g with

ad(X)(Y ) = [X,Y ].

This allows us to define a symmetric bilinear form, the so-called Killing form, by

B(X, Y ) = tr(ad(X) ◦ ad(Y ))

on g which is non-degenerate if and only if g is semisimple (see [40], p. 22). We restrict
this symmetric bilinear form to a non-degenerate form on h ([40], p. 37) and therefore
on h∗. The form on h∗ can be defined by

B(α, β) = B(hα, hβ) ∀ α, β ∈ h∗,

where hα is the unique element in h such that α(H) = B(hα, H) for all H ∈ h. For any
root α we define the co-root α∨ = 2α/B(α, α) and obtain the Cartan integers

cij = B(αi, α
∨
j ),

for all pairs of simple roots αi, αj ∈ S. If α, β are roots, then B(α, β∨) ∈ Z ([40],
p. 40). It can easily be seen that S spans ∆(g, h) over the rational numbers ([40], p. 37
and p. 39) so that the Q subspace EQ of h∗ spanned by all the roots has Q-dimension
l = dimC h∗. If we also allow real coefficients, we get a real vector space E = R⊗Q EQ,
i.e. h∗ is the complexification of E. In this space E we can look at the angle Θ of two
roots α, β and obtain B(α, β∨)B(β, α∨) = 4 cos2 Θ. Therefore our Cartan integers can
only take the values 0,±1,±2,±3 and we can draw a Dynkin diagram, which is a
graph such that nodes correspond to simple roots, and edges determine cij according to

1. B(αi, α
∨
i ) = 2,

2. αi 6= αj are connected if and only if B(αi, α
∨
j ) 6= 0,

3. (a)
α•

β
• ⇔ B(α, β∨) = −1, B(β, α∨) = −1,
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(b)
α• 〉

β
• ⇔ B(α, β∨) = −2, B(β, α∨) = −1 and

(c) • •α β〉 ⇔ B(α, β∨) = −3, B(β, α∨) = −1.

It is the central theorem of semisimple complex Lie algebras that the structure of E
and the knowledge of the Dynkin diagram determines and is determined by g (see [40],
p. 57,65).

Example

1. In the case of Al we can take

S = {αi = εi − εi+1, i = 1, ..., l}

and calculate the Killing form as

B

(∑
i

aiεi,
∑

j

bjεj

)
=

1

2(l + 1)

(∑
i

aibi −
1

l + 1

∑
i,j

aibj

)
.

Therefore we obtain the Dynkin diagram of sll+1C:

• • • •... • ,

where there are l nodes.

2. For Dl we can take

S = {αi = εi − εi+1, i = 1, ..., l − 1, αl = εl−1 + εl}

and calculate the Killing form as

B

(∑
i

aiεi,
∑

j

bjεj

)
=

1

4l − 4

(∑
i

aibi

)
.

The Dynkin diagram has the form

• • •...•
•

•
��

@@ ,

where there are l-nodes.

3. For Bl we can take

S = {αi = εi − εi+1, i = 1, ..., l − 1, αl = εl}
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and calculate the Killing form as

B

(∑
i

aiεi,
∑

j

bjεj

)
=

1

4l − 2

(∑
i

aibi

)
.

The Dynkin diagram has the form

• • • ... •〉•,

where there are l-nodes.

1.1.3 Parabolic subalgebras

Let G be a complex semisimple and simply connected Lie group with Lie algebra g.
Borel subalgebras of g are the maximal solvable subalgebras of g and every Borel
subalgebra is G-conjugate to the standard Borel subalgebra ([40], p. 84)

b = h⊕ n

with

n =
⊕

α∈∆+(g,h)

gα.

A parabolic subalgebra p of g is a subalgebra which contains a Borel subalgebra.
According to the standard form for b we get a standard form for p: Let Sp ⊆ S be any
subset. Then we set

∆(g0, h) = spanSp ∩∆(g, h), ∆(p+, h) = ∆+(g, h)\∆(g0, h)

and accordingly

g0 = h⊕
⊕

α∈∆(g0,h)

gα, p+ =
⊕

α∈∆(p+,h)

gα.

g0 is reductive and can hence be written as g0 = gS
0 +z(g0), where z(g0) is the center of g0

and gS
0 = [g0, g0] is semisimple of rank | Sp |. So finally we get the Levi-decomposition

p = g0 ⊕ p+.

To represent p we take the Dynkin diagram for g and cross through all nodes which lie
in S\Sp.

If we do not have any crossed through nodes, then Sp = S and therefore p = g. If
there are crosses through every node, then Sp = ∅ and we get p = b.
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Example

For Al, n consists of strictly upper triangular matrices, because the positive roots are
the differences εi − εj where i < j and therefore b consists of all the upper triangular
matrices in Al. We will demonstrate one particular example of a parabolic subalgebra,
the general case being similar.

Let l = 3 and Sp = {α2, α3}, then p is given by

p =



∗ ∗ ∗ ∗
0 ∗ ∗ ∗
0 ∗ ∗ ∗
0 ∗ ∗ ∗

 ∈ sl4C

 .

In this example we have E3,2 ∈ g−α2 , E4,3 ∈ g−α3 and E4,2 ∈ g−(α2+α3) lying in p in
addition to the upper triangular matrices. p is represented via the Dynkin diagram as
follows:

× • •.

There is indeed more structure to the parabolic subalgebra p given by a so-called
grading.

1.1.4 |k0|-graded Lie algebras

Let S = {αi}i=1,...,l be the simple roots of g with corresponding fundamental weights
{ωj}j=1,...,l, i.e. B(ωj, α

∨
i ) = δi,j. The parabolic subalgebra p is specified by a subset Sp

of the simple roots, so that
S\Sp = {αi}i∈I ,

where I = {i1, ..., il0}. We set J = {j1, ..., jl−l0} = {1, ..., l}\{i1, ..., il0}. Then we can
define

gj =
⊕
α∈∆j

gα, where ∆j = {α =
l∑

i=1

niαi ∈ ∆(g, h) :
∑
i∈I

ni = j}.

This yields a |k0|-grading:

g = g−k0 ⊕ ...⊕ g−1 ⊕ g0 ⊕ g1 ⊕ ...⊕ gk0 ,

where [gi, gj] ⊂ gi+j and g− = g−k0 ⊕ ...⊕ g−1 is generated by g−1. One can check that
the non-negative part of this grading g0 ⊕ ... ⊕ gk0 = p and p+ = g1 ⊕ ... ⊕ gk0 . The
integer k0 is easily computed: write the highest root γ =

∑l
i=1 niαi as a sum of simple

roots. Then k0 =
∑

i∈I ni. The following facts are known about this grading (see [18],
Proposition 2.2):

1. There exists a grading element E ∈ z(g0) such that the decomposition of g

corresponds to a decomposition under the adjoint action of E into eigenspaces,
i.e. [E,X] = jX if and only if X ∈ gj.
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2. B(gi, gj) = 0 for all j 6= −i and the Killing form B(., .) can be used to define
isomorphisms g−i

∼= g∗i for i = 1, ..., k0.

Remark

In the complex setting, a grading is equivalent to having a parabolic subalgebra p,
see [18]. In the real setting, this is not the case. However, we will start of with a
grading of a real Lie algebra gR that induces a grading of the complexification g and
hence a parabolic subalgebra p ⊂ g. The representation theory will then be applied to
the (complex) pair (g, p).

Example

(a) The grading corresponding to the parabolic subalgebra

× • • •... •

of Al is given by g = g−1 ⊕ g0 ⊕ g1, with

g−1 =

{(
0 0
v 0

)
∈ g

}
, g0 =

{(
x 0
0 A

)
∈ g

}
and g1 =

{(
0 ṽT

0 0

)
∈ g

}
.

Here we have v, ṽ ∈ Cl, x ∈ C, A ∈ gllC with tr(A) + x = 0.

(b) The grading corresponding to the parabolic subalgebra

× • •...•
•

•
��

@@

of Dl is given by g = g−1 ⊕ g0 ⊕ g1, with

g−1 =




0 0 0 0
v 0 0 0
0 wT 0 −vT

−w 0 0 0

 ∈ g

 , g0 =




x 0 0 0
0 A 0 B
0 0 −x 0
0 C 0 −AT

 ∈ g


and

g1 =




0 ṽT 0 w̃T

0 0 −w̃ 0
0 0 0 0
0 0 −ṽ 0

 ∈ g

 .

Here we have v, ṽ, w, w̃ ∈ Cl−1, A,B,C ∈ gll−1C, x ∈ C and B,C have to be skew
symmetric.
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The grading corresponding to

× • • ... •〉•

can be described similarly with

∆−1 = {−(ε1 ± εi)}i=2,...,l ∪ {−ε1}, ∆1 = −∆−1 and ∆0 = ∆\{∆1 ∪∆−1}.

(c) The grading corresponding to the parabolic subalgebra

× • • •... ×

of Al+1 is given by g = g−2 ⊕ g−1 ⊕ g0 ⊕ g1 ⊕ g2, with

g−2 =


 0 0 0

0 0 0
z 0 0

 ∈ g

 , g−1 =


 0 0 0

v 0 0
0 wT 0

 ∈ g


g0 =


 x 0 0

0 A 0
0 0 y

 ∈ g


and

g1 =


 0 ṽT 0

0 0 w̃
0 0 0

 ∈ g

 , g2 =


 0 0 z̃

0 0 0
0 0 0

 ∈ g

 .

Here we have v, ṽ, w, w̃ ∈ Cl, x, y, z, z̃ ∈ C, A ∈ gllC and x+ y + tr(A) = 0.

1.2 Representation theory

1.2.1 Representations of (complex) semisimple Lie algebras

Let V be a finite dimensional representation of g. We denote the action of g on V by
x.v for all x ∈ g and v ∈ V. An element v ∈ V\{0} is called weight vector of weight
λ ∈ h∗ if

H.v = λ(H)v ∀ H ∈ h.

We also denote by ∆(V) the set of all weights that arise via this construction. As in
the last section we write

n =
⊕

α∈∆+(g,h)

gα and n− =
⊕

α∈∆+(g,h)

g−α

for the raising and lowering subalgebras of g. A vector v ∈ V is called maximal
(resp. minimal) if v is killed by n (resp. n−). A maximal (resp. minimal) vector of
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weight λ is called highest weight vector (resp. lowest weight vector) if λ � λ′

(resp. λ � λ′ ) for all λ′ ∈ ∆(V). A weight λ that satisfies

B(λ, α∨) ≥ 0 ∀ α ∈ S

is called dominant for g. Moreover λ is said to be integral for g if and only if

B(λ, α∨) ∈ Z ∀ α ∈ S.

We will represent a weight λ for g by writing the coefficients B(λ, α∨i ) over the i-th
node that represents the simple root αi ∈ S.

Theorem 2 (Theorem of the highest weight). There is a one-to-one correspondence
between finite dimensional irreducible g-modules and dominant integral weights, i.e. ev-
ery finite dimensional irreducible representation of g has a unique (up to scale) highest
weight vector of weight λ, which is dominant integral for g and for every dominant in-
tegral weight there exists a finite dimensional irreducible representation of g which has
a highest weight vector of that weight.

Proof. This is the classification theorem of irreducible finite dimensional representa-
tions of semisimple Lie algebras and the proof may be found in [40], p. 113. The
difficult point is to show that the irreducible representation which we obtain for every
λ ∈ h∗ by means of Verma modules (which will be explained in another section) is finite
dimensional if λ is dominant integral.

1.2.2 Representations of parabolic subalgebras

1. To denote a representation (V, ρ) of a simple Lie algebra g or a parabolic subalge-
bra p ⊂ g we write down the coefficient B(λ, α∨j ) over the j-th node in the Dynkin
diagram for g, with λ being the highest weight of the dual representation (V∗, ρ∗).
The details for this construction and the reason for this slightly odd notation is
explained in [3].

2. It is easy to show that the nilpotent part p+ of p has to act trivially on any
irreducible p-module. g0

∼= p/p+ is reductive and hence the sum of an abelian
algebra z(g0), which has to act via a character on any irreducible representation,
and a semisimple part gS

0 . Since gS
0 is semisimple we can apply the above theorem

to gS
0 and get: the finite dimensional irreducible representations of p are in one-

to-one correspondence with λ ∈ h∗ which are dominant and integral for gS
0 . In our

Dynkin diagram notation that corresponds to having non-negative integers over
the uncrossed nodes. More precisely, a finite dimensional g0-module is completely
reducible if and only if z(g0) acts diagonalizably. Unless stated otherwise, we will
always implicitly assume this.
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Example

The g0-module g1 decomposes into irreducible g0-modules

g1 =
⊕
i∈I

E−αi
,

where Eα has lowest weight −α ∈ h∗ (see [3], p. 129). We will abbreviate E−αi
by gi

1 in
the future. Analogously g−1 decomposes into irreducible factors gi

−1, for i ∈ I, where
the highest weight of gi

−1 is −αi.
It is true in general that the dual of an irreducible finite dimensional module of lowest

weight λ has highest weight −λ.

Example

It can be easily shown ([40], p. 37) that for every α ∈ ∆(g, h) and Xα ∈ gα\{0} there
exists X−α ∈ g−α, such that Xα, X−α and Hα = [Xα, X−α] span a three dimensional
simple subalgebra of g isomorphic to sl2C and that we can calculate B(λ, α∨i ) = λ(Hαi

)
for every αi ∈ S and λ ∈ h∗. For Al, Xαi

and X−αi
correspond to Ei,i+1 and Ei+1,i

respectively. We therefore have Hαi
= Hi − Hi+1, for i = 1, ..., l. So for a weight

λ =
∑l+1

i=1 aiεi, we have

B(λ, α∨i ) = ai − ai+1, for i = 1, ..., l.

1.2.3 Composition series and induced modules

Definition 1. We will write composition series with the help of + signs as explained
in [1], p. 1193 and [28], p. 11, so a short exact sequence

0 → A1 → A → A0 → 0

of modules is equivalent to writing a composition series

A = A0 + A1.

If we have two composition series

A = A0 + A1 and B = B0 + B1,

then we can tensor them together to obtain

A⊗ B = A0 ⊗ B0 +
A0 ⊗ B1

⊕
A1 ⊗ B0

+ A1 ⊗ B1.

This can be easily extended to composition series with more composition factors.
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In general, a composition series

B = A0 + A1 + ...+ AN ,

denotes a filtration
AN = AN ⊆ AN−1 ⊆ ... ⊆ A0 = B,

with Ai = Ai/Ai+1. We will use the same notation for the composition series of vector
bundles.

Remark

1. It can be noted that every composition series B = A0 + A1 + ... + AN has a
projection B → A0 and injections Aj + ..+ AN → B for j = 0, ..., N .

2. The dual of a composition series is obtained by writing down the dual of the
composition factors in opposite order, i.e.

B∗ = A∗
N + A∗

N−1 + ...+ A∗
0.

Composition series will occur in our considerations as so-called branching rules
that describe how a finite dimensional irreducible representation of g composes as
a representation of p. In particular, the grading can be looked at as a composition
series of the adjoint representation when restricted to the parabolic p.

Example

The |k0|-grading of the Lie algebra g corresponding to the parabolic subalgebra p can
be understood if we look at g as a p-module. There exits a p-module filtration

g = g−k0 ⊃ g−k0+1 ⊃ · · · ⊃ gk0 = gk0 ,

with gi = gi ⊕ gi+1 ⊕ · · · ⊕ gk0 . The corresponding composition series is exactly the
grading

g = g−k0 + · · ·+ gk0 .

Definition 2. For any Lie algebra a, let U(a) denote the universal enveloping al-
gebra, which is defined in the following manner: we denote the tensor algebra of a by
T (a) =

⊕∞
i=0⊗ia, then the universal enveloping algebra is defined to be

U(a) = T (a)/I,

where I is the two-sided ideal spanned by X ⊗ Y − Y ⊗ X − [X, Y ] for all X, Y ∈ a.
Every representation of a can in a unique manner be extended to an action of U(a).

Let V be a finite dimensional p-module with dual V∗, then

Mp(V) = U(g)⊗U(p) V∗
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is called an induced module. Here U(g) is a right U(p)-module, V∗ is a left U(p)-
module and ⊗U(p) is the usual tensor product for modules over an algebra. More pre-
cisely

Mp(V) = (U(g)⊗C V∗)/J,

where J is the subspace generated by all uv ⊗ w − v ⊗ v.w for u ∈ U(g), v ∈ U(p) and
w ∈ V∗ and where the dot denotes the given action of U(p) on V∗. U(g) acts on Mp(V)
by multiplication on the left factor.

If V is irreducible, then Mp(V) is called generalized Verma module. More infor-
mation about generalized Verma modules can be found in [50], p. 500 and its correlation
to homogeneous vector bundles on G/P is explained in [3], p. 164.

Remark

Homomorphisms between generalized Verma modules play a decisive role in the classi-
fication of invariant differential operators on homogeneous spaces, see [27]. Bernstein-
Gelfand-Gelfand resolutions ([4]) and generalizations thereof ([50]) have led to the so-
called BGG machinery that produces resolutions of all finite dimensional irreducible
representations of G by invariant differential operators between sections of homogeneous
vector bundles.

1.2.4 The real case

So far we have stated everything in the complex category. However, the theory of
parabolic geometries applies to the complex and the smooth real category. More specif-
ically, we want our theory to apply to real manifolds with a given structure, e.g. real
conformal manifolds. The theory is set up in a way that applies to the real and complex
category at the same time. Although we will, for example, use the usual notation O
for holomorphic objects, we could have also written everything with the symbol C∞ de-
noting smooth objects. In fact, this is the usual way the theory is presented. For every
real algebra gR, we will always consider its complexification g that can be described
as in the first two sections. In particular, any representation of a real Lie algebra gR
on a complex vector space V extends to a representation of the complexification g and
can be dealt with as described above. In fact, there is a bijective correspondence be-
tween complex representations of real Lie algebras and complex representations of their
complexifications making the complex representation theories of gR and g completely
equivalent (see [19]). This allows us to deal with (almost all) the representation theory
in a complex setting.

If we start with a real representation VR, we can always form the complexification V
and consider the extension of the representation to g. There are, however, cases when VR
is irreducible and V is not. A very good example of this phenomena will be encountered
in Chapter 6, when we consider the canonical subbundle of the tangent bundle in CR
geometry. Apart from this example, we will encounter real representations only in the
form of (projective, conformal,..) weights that arise via one dimensional representations
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on R. These representations give rise to line bundles that we tensor other vector bundles
with. This procedure does not affect the representation theory.

The complexification of a |k0|-graded real Lie algebra is |k0|-graded again and the
complexification of the non-negative part of this grading is a parabolic subalgebra as
described in 1.1.4. When referring to specific real manifolds, especially in Chapter 6,
we will state everything in the smooth category.

1.3 Parabolic geometries

Definition 3. We denote the adjoint representation of G on g by Ad. Then we can
define several subgroups of G:

1. P = {g ∈ G : Ad(g)(gi) ⊂ gi ∀ i = −k0, ..., k0} and

2. G0 = {g ∈ G : Ad(g)(gi) ⊂ gi ∀ i = −k0, ..., k0}.

It can be shown ([18], Proposition 2.9) that the Lie algebras of P and G0 are p and
g0 respectively.

Remark

Instead of choosing G to be the simply connected and connected Lie group with Lie
algebra g, one can alternatively choose G = Aut(g) or G = Aut0(g) = Int(g) corre-
sponding to a slightly different geometric structure (orientation, spin, etc.), but our
analysis of pairings is local, so none of these choices affect it.

Remark

In order for an finite dimensional irreducible (complex) representation of p to lift to one
for P , the weight λ has to be integral for g and not just for p, see [3], Remark 3.1.6
and [19], 3.2.10. Therefore, in our Dynkin diagram notation, the coefficient over every
node has to be an integer and the coefficients over uncrossed nodes have to be non-
negative to yield a representation for P . In the specific examples given in Chapter 6,
we will define real representations that will allow us to have arbitrary real projective
or conformal weights. In other (real) examples, there are different restrictions on the
numbers over the crossed through nodes. We will not discuss this in detail, but give
the precise statements in every case considered in Chapter 6.

1.3.1 Cartan connection

A Parabolic geometry (M,G, g, ω) of type (G,P ) consists of

(a) a manifold M,

(b) a principal right P bundle G over M and
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(c) a g-valued 1-form ω on G (the Cartan connection) satisfying the following con-
ditions:

(i) the map ωg : TgG −→ g is a linear isomorphism for every g ∈ G,

(ii) r∗pω = Ad(p−1) ◦ ω for all p ∈ P , where rp denotes the natural right action
of an element p ∈ P in the structure group, and

(iii) ω(ζX) = X for all X ∈ p, where ζX is the (vertical) fundamental vector
field on G associated to X ∈ p.

Remark

The dimension n = dimM of a parabolic geometry of type (G,P ) is easily computed
to be

n = dim g− =
dim g− dim gS

0 − l0
2

.

Formulae for the dimension of the semisimple Lie algebras g and gS
0 are readily available

(see [40]).

Definition 4. We will call the case where the parabolic subalgebra p induces a |1|-
grading, i.e. where k0 = 1, the AHS case and parabolic geometries for |1|-gradings
are called almost hermitian symmetric spaces. It immediately follows (in the complex
setting) that a parabolic subalgebra p which induces a |1|-grading must arise from a
subset Sp ⊂ S, so that S\Sp = {αi0}. In the Dynkin diagram notation this corresponds
to having one cross through the node associated to αi0 . The reverse statement is
obviously not correct.

Definition 5. The curvature of a parabolic geometry is defined to be the curvature
function

κ : G → Λ2g∗− ⊗ g

g 7→ κg with κg(X,Y ) = dωg(ω
−1
g (X), ω−1

g (Y )) + [X, Y ], X, Y ∈ g−.

One can decompose the curvature in terms of homogeneity degree, i.e.

κi(g) : gr ⊗ gs → gr+s+i, i = −k0 + 2, ..., 3k0

or split κ in terms of the grading, i.e. κi(g) : Λ2g− → gi, i = −k0, ..., k0. Moreover one
can compose κ with a map ∂∗ : Λ2g∗− ⊗ g → g∗− ⊗ g, which is the adjoint to the Lie
algebra differential ∂ to be defined in Section 5.1.2. Following [20], we call a parabolic
geometry

1. normal, if ∂∗ ◦ κ = 0,

2. regular, if it is normal and κi = 0 for all i ≤ 0,

3. torsion-free, if κi = 0 for all i < 0 and

4. flat, if κ = 0.
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Remark

The curvature is horizontal, i.e. κg(X, Y ) = 0 for all X ∈ p, Y ∈ g and g ∈ G.

Proof. By definition,

κ(X, Y ) = −ω([ω−1(X), ω−1(Y )]) + [X, Y ].

Now we use the fact that [ω−1(X), ω−1(Y )] = ω−1([X, Y ]) for X ∈ p which follows
from 1.3.1 (c), (ii) and (iii).

Example

(a) Projective geometry in n dimensions can be described as a parabolic geometry
with gR = sl(n + 1,R) and a grading whose complexification corresponds to the
grading in Example 1.1.4 (a). The notation via Dynkin diagrams is

× • • •... • .

The first construction of a canonical Cartan connection on projective manifolds
is due to Cartan, see [10]. For a more modern treatment the reader is advised to
refer to [15, 42, 55].

(b) A conformal manifold (M, [g]) of signature (p, q) is equivalent to a normal parabolic
geometry with gR = so(p+1, q+1) and |1|-grading as in [16], the complexification
of which is the |1|-grading given in Example 1.1.4 (b). The Dynkin diagram
notation is

× • ...• •
•

•
��

@@

for p+ q even and
× • • ... •〉•

for p + q odd. It turns out that this parabolic geometry is automatically regular
and torsion-free (see [18]). The first construction of a canonical Cartan connection
on manifolds with a conformal structure is due to Cartan [9]. See [14] and [15]
for a more modern treatment.

(c) A manifold with partially integrable almost CR-structure with non-degenerate
Levi-form of signature (p, q) is equivalent to a regular parabolic geometry with
gR = su(p + 1, q + 1) endowed with a |2|-grading as in [18], the complexification
of which is the grading given in Example 1.1.4 (c) with Dynkin diagram

× • • •... × .
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The torsion-free parabolic geometries are exactly the CR-structures (see [18]).
The original construction of a canonical Cartan connection for CR-manifolds in
three dimensions is due to Cartan ([8]). The general case is due to Tanaka ([60])
and Chern and Moser ([22]).

1.3.2 The homogeneous model

The homogeneous model for a parabolic geometry of type (G,P ) is the principal
right P -bundle

P → G
↓

G/P

over the generalized flag manifold G/P together with the Maurer-Cartan form

ωMC(X) = (lg−1)∗X, for X ∈ TgG,

where lg denotes left translation and (lg)∗ is the corresponding tangent mapping. The
properties of ωMC are easily computed:

1. (lg−1)∗ : TgG→ TeG = g is a linear isomorphism with inverse map (lg)∗.

2. Let X ∈ TgG, then we compute

(r∗pωMC)X = ωMC((rp)∗X)

= (l(gp)−1)∗(rp)∗X

= (lp−1 ◦ lg−1 ◦ rp)∗X

= (Ad(p−1) ◦ lg−1)∗X

= Ad(p−1) ◦ ωMC(X).

3. We have (lg)∗X = (ζX)g ∈ TgG, so obviously ωMC(ζX) = X for all X ∈ p.

The curvature function vanishes identically because of the structural equation

dωMC(X, Y ) + [ωMC(X), ωMC(Y )] = 0,

see [55], p. 108. In fact, it is known that the curvature κ is a complete obstruction
against local flatness, see e.g. [11, 17].

Examples

(a) The homogeneous model for projective geometry, which we will discuss in some
detail in Chapter 6, is RPn = G/P with G = PSLn+1R and

P =

g ∈ G : g =


∗ ∗ · · · ∗
0 ∗ · · · ∗
...

...
. . .

...
0 ∗ · · · ∗


 .
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Note that P is the isotropy subgroup of the point e = [1 : 0 : · · · : 0] ∈ RPn.

(b) The homogeneous model for conformal geometry, which we will discuss in some
detail in Chapter 6, is the sphere Sn = G/P with G = SO0(p + 1, q + 1) being
the identity connected component of SO(p + 1, q + 1) corresponding to a non-
degenerate bilinear form g̃ of signature (p+ 1, q + 1) on Rn+2, for example given
by

g̃(x0, x, x∞) = 2x0x∞ + 〈x, x〉,

where 〈x, x〉 is the standard inner product of signature (p, q) in Rn. P is the
isotropy subgroup of the point

e = [1 : 0 : · · · : 0] ∈ Sn = {[x0 : x : x∞] ∈ RPn+1 : g̃(x0, x, x∞) = 0}.

(c) The homogeneous model for CR geometry, which we will discuss in some detail
in Chapter 6, is a real hyperquadric H = G/P in CPn+1, for example given by

h̃(z0, z, z∞) = z0z̄∞ + z̄0z∞ + 〈z, z〉,

where 〈z, z〉 is the standard hermitian inner product of signature (p, q) in Cn. So
G = PSU(p+ 1, q + 1) and P is the isotropy subgroup of the point

e = [1 : 0 : · · · : 0] ∈ H = {[z0 : z : z∞] ∈ CPn+1 : h̃(z0, z, z∞) = 0}.

1.3.3 Associated vector bundles

For every representation ρ : P → End(V) we can define a corresponding associated
vector bundle

V = (V, ρ) = G ×P V = (G × V)/ ∼,

where
(gp, v) ∼ (g, ρ(p)v) ∀ g ∈ G, p ∈ P and v ∈ V.

Sections of this bundle can be identified with maps

s : G → V s.t. s(gp) = ρ(p−1)s(g)

for all g ∈ G and p ∈ P . Equivalently, we can differentiate this requirement to obtain

(ζXs)(g) = −ρ(X)s(g) ∀ X ∈ p, g ∈ G.

We will write Γ(V ) = O(G,V)P for the space of sections of V . The tangent bundle TM
and cotangent bundle T ∗M, for example, arise via the adjoint representation of P on
g/p ∼= g− = g−k ⊕ ... ⊕ g−1 and its dual (g/p)∗ ∼= p+. We will denote the bundles and
sections of these bundles by the Dynkin diagram notation for the representation that
induces them.
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Example

1. On a projective manifold M we write

Vect(M) =
1× 0• 0• ... 0• 1• = and Ω1(M) =

−2× 1• 0• ... 0• 0•.

2. On a conformal manifold M we write

Vect(M) =
0× 1• 0• ... 0• 0•��

@@

•

•

0

0

or Vect(M) =
0× 1• 0• ... 0•〉 0•

and

Ω1(M) =
−2× 1• 0• ... 0• 0•��

@@

•

•

0

0

or Ω1(M) =
−2× 1• 0• ... 0•〉 0•.

3. For CR geometry, the tangent and cotangent bundle are no longer irreducible.
Instead they (or more precisely their complexification) have a filtration given by

Vect(M) =
1× 0• 0• ... 0• 0• 1×+

1× 0• 0• ... 0• 1• −1×
⊕

−1× 1• 0• ... 0• 0• 1×

and

Ω1(M) =

−2× 1• 0• ... 0• 0• 0×
⊕

0× 0• 0• ... 0• 1• −2×
+

−1× 0• 0• ... 0• 0• −1× .

1.3.4 Invariant differential

The Cartan connection does not yield a connection on these associated vector bundles,
but we can still define the invariant differential

∇ω : O(G,V) → O(G, g∗− ⊗ V)

with

∇ωs(g)(X) = ∇ω
Xs(g) = [ω−1(X)s](g), ∀ X ∈ g−, g ∈ G and s ∈ O(G,V).

It has to be noted that it does not take P -equivariant sections to P -equivariant sections.
In order to ensure that, we can define the fundamental derivative,

D : O(G,V)P → O(G, g∗ ⊗ V)P

s 7→ X 7→ ∇ω
Xs = ω−1(X)s.
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The distinction between the fundamental derivative and the invariant differential is a
bit artificial and solely done for notational convenience. The bundle G ×P g = A is
called the adjoint tractor bundle. The invariant derivative and the fundamental
derivative will be of vital importance in later chapters. Important properties of the
fundamental derivative can be found in [13], Proposition 3.1. We will just prove that
D takes P -equivariant functions to P -equivariant functions.

Proof. Let f ∈ O(G,V)P (where the bundle V is an associated bundle for a represen-
tation ρ : P → Aut(V)), s ∈ O(G, g)P , g ∈ G and p ∈ P , then we compute

Dsf(gp) = ω−1
gp (s(gp))f by definition

= ω−1
gp (Ad(p−1)s(g))f by the equivariance of s

= (rp)∗ω
−1
g (s(g))f by the property (c) of the Cartan connection

= d(f ◦ rp)ω
−1
g (s(g))

= ρ(p−1)dfω−1
g (s(g)) by the equivariance of f

= ρ(p−1)Dsf(g),

so Dsf ∈ O(G,V)P .

Remark

We have

∇ω
X∇ω

Y −∇ω
Y∇ω

X = ∇ω
[X,Y ] −∇ω

κ(X,Y )

for all X, Y ∈ g.

Proof. By definition

κ(X, Y ) = dω(ω−1(X), ω−1(Y )) + [X, Y ]

= −ω([ω−1(X), ω−1(Y )]) + [X, Y ]

and therefore

∇ω
[X,Y ] −∇ω

κ(X,Y ) = [ω−1(X), ω−1(Y )] = ∇ω
X∇ω

Y −∇ω
Y∇ω

X .
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Example

In the flat homogeneous model spaces G/P we have for all X ∈ g, f ∈ O(G,V)P and
g ∈ G:

(Df(g))(X) = ω−1
MC(X)gf

= ((lg)∗X)f

=
d

dt
f(g exp(tX))|t=0

=
d

dt
f(exp(tAd(g)X)g)|t=0

= ((rg)∗(Ad(g)X))f.

Furthermore, the map G→ g, g 7→ Ad(g−1)X, can be looked at as a section sX ∈ Γ(A),
so we can write

DsX
f = −RXf,

where (RX)g = −(rg)∗X is the (right invariant) vector field on G that is derived from
the action of G on O(G,V)P via (g.s)(h) = s(g−1h) for all g, h ∈ G and s ∈ O(G,V)P .
RX takes P equivariant functions to P equivariant functions.

Definition 6. The filtration

g = g−k0 ⊃ g−k0+1 ⊃ · · · ⊃ gk0 ⊃ {0}

induces a filtration
A = A−k0 ⊃ A−k0+1 ⊃ · · · ⊃ Ak0

on the adjoint tractor bundle A = G ×P g. For s ∈ A0 = G ×P p, we have

(Dsf)(g) = ω−1
g (s(g))f = (ζs(g)f)(g) = −λ(s(g))f(g)

for all f ∈ O(G,V)P , where λ : p → gl(V) is the derived action of p. Following [13], we
will denote this action by Dsf = −s • f .

Remark

If V is a representation of g, then we can define ∇V
s f = Dsf + s • f for s ∈ Γ(A) and

f ∈ O(G,V)P . Since ∇V
s f = 0 for s ∈ Γ(A0), this descends to a mapping

∇V : O(G,V)P → O(G, g∗− ⊗ V)P ,

which is a linear connection on V , see [13], Proposition 3.2. This connection is called
tractor connection and we will make use of it in Chapter 6.



Chapter 2

Pairings

In this second chapter we will define the notion of an invariant bilinear differential
pairing of a certain weighted order. This will firstly be done analytically with the help
of (weighted) jets. Then we give an algebraic description of pairings on homogeneous
spaces and derive the first important theorem.

2.1 Analytic description

This section is a generalization of the description of invariant differential pairings in [45]
to the case of arbitrary parabolic geometries. In particular, a |k0|-grading with k0 > 1
gives rise to the notion of weighted differential operators as detailed in [51].

2.1.1 Filtered manifolds

Weighted modules

Let us examine the universal enveloping algebras of p+ and g− more closely. We will
discuss only the case for p+ since g− can be dealt with by duality. We denote the
tensor algebra of p+ by T (p+) =

⊕∞
i=0⊗ip+ and the universal enveloping algebra by

U(p+) = T (p+)/J , where J is the two-sided ideal spanned by X⊗Y −Y ⊗X− [X, Y ] for
all X, Y ∈ p+. We can define a weighted grading on those algebras via the following
construction. Let i ∈ N and

Ti(p+) = {u =
∑

j

X1,j ⊗ ...⊗Xsj ,j ∈ T (p+) : Xl,j ∈ gtl,j and

sj∑
m=1

tm,j = i ∀ j}.

Since J behaves well with respect to the grading, we can define

Ui(p+) = {u =
∑

j

X1,j...Xsj ,j ∈ U(p+) : Xl,j ∈ gtl,j and

sj∑
m=1

tm,j = i ∀ j}.

41
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Definition 7. Let M be a (smooth) complex manifold and

TM = f−k0 ⊃ f−k0+1 ⊃ ... ⊃ f−1 ⊃ f0 = 0

a filtration of the tangent bundle by subbundles. If [sp, sq] is a section of fp+q for
all sections sp ∈ Γ(fp), sq ∈ Γ(fq) and all integers p, q, then the filtration is called
tangential filtration and M is called filtered manifold.

Example

The grading of g induces a filtration of the tangent bundle on the underlying manifold
M of a parabolic geometry (M,G, g, ω):

TM = f−k0 ⊃ f−k0+1 ⊃ ... ⊃ f−1 ⊃ f0 = 0

with
f−i = G ×P (g−i + ...+ g−1).

If the parabolic geometry is regular, then this is a tangential filtration (see [57], Propo-
sition 2.2) and the concept of weighted order is well defined.

2.1.2 Weighted jet bundles

Let M be a filtered manifold with tangential filtration

TM = f−k0 ⊃ f−k0+1 ⊃ ... ⊃ f−1 ⊃ f0 = 0.

Following [51], we say that a local vector field X on M has weighted order ≤ i if X
is a section of f−i. The minimum of such i is called the weighted order of X and is
denoted by w − ordX. A differential operator P is said to be of weighted order ≤ µ if
P can locally be written as P =

∑
j X

j
1 ...X

j
rj

for local vector fields Xj
1 , ..., X

j
rj

and if

maxj

{∑rj

i=1 w − ordXj
i

}
= µ.

Let E be a vector bundle (with trivial filtration) over M and denote by E the sheaf
of sections of E. For every x ∈ M, let fkxE denote the subspace of Ex consisting of
those germs of sections s ∈ Ex, such that

(P 〈α, s〉)(x) = 0,

for all α ∈ Γ(E∗) and all differential operators P of weighted order < k. The weighted
jet bundle is then defined to be

J kE =
⋃

x∈M

J k
xE, J k

xE = Ex/f
k+1
x E.

We can identify J 0E = E and obtain exact sequences

0 → fkJ kE → J kE → J k−1E → 0,
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for k ≥ 1. A linear differential operator d : Γ(E) → Γ(F ) of weighted order k is a
map

D : J kE → F

with symbol given by the composition map fkJ kE → F . Moreover, we can identify

fkJ kE = (U−k(grTM))∗ ⊗ E, (2.1)

where U(grTxM) is the universal enveloping algebra of the graded algebra

grTxM =
−1⊕

p=−k0

fpx/f
p+1
x

and U−k(grTxM) denotes the subset of all homogeneous elements of degree −k (see [51],
p. 237) as defined in 2.1.1. We will give an inductive definition of this space in 5.1.2.

Note that there is a canonical projection J1E → J 1E from the first order jet bundle
J1E (as defined, for example, in [59]) of E to the weighted first order jet bundle J 1E.

Remark

We can write down more explicitly

J k
xE = Ex/f

k+1
x E ∼=

⊕
l≤k

Hom(U−l(grTxM), Ex)

Ex/f
k+1
x E 3 f 7→ Ff such that Ff (u) = u0f,

where 0 is defined by (Z1...Zl)
0 = (−1)lZl...Z1 for all Zi ∈ grTxM. Under this isomor-

phism (2.1) becomes apparent.

Example

Let (M,G, g, ω) be a parabolic geometry of type (G,P ) with the tangential filtration
as in Example 2.1.1. Then we have

grTxM∼= grg− = g−k0 ⊕ · · · ⊕ g−1.

The first order jet bundle J1E of every associated bundle E is an associated bundle
again (see [56], p. 196), which induces the structure of an associated bundle on J 1E.
The corresponding p-module

J 1E = E + g1 ⊗ E

has a p-module structure that is induced by the p-module structure of J1E.
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2.1.3 Weighted bi-jet bundles and pairings

For every complex (or smooth) filtered manifold M and holomorphic vector bundle
V over M, we denote by J kV the weighted jet bundle over M as described in the
last section. A bilinear differential pairing between sections of the bundle V and
sections of the bundle W to sections of a bundle U is a homomorphism

d : J kV ⊗ J lW → U.

This pairing is of weighted order M if and only if

(a) k = l = M ,

(b) there is a subbundle B of JMV ⊗JMW , so that there is a commutative diagram

JMV ⊗ JMW
↓ ↘ d

(JMV ⊗ JMW )/B
φ→ U

and

(c) the map φ induces a formula that consist of terms in which derivatives of sections
of V are combined with derivatives of sections of W in such a way that the total
weighted order is M (i.e. a term may consist of a differential operator of weighted
order k applied a section of V combined with a differential operator of weighted
order (M − k) applied to a section of W , for k = 0, ...,M).

In fact, B is characterized by (c) as detailed in the next subsection. We will therefore
write JM(V,W ) = (JMV ⊗JMW )/B for this canonical choice of B. This is not to be
confused with the set of all M -jets of V into W as defined in [43], p. 117, Definition 12.2.

If M = G/P is a homogeneous space, then a pairing is called invariant (some
authors use the term equivariant) if it commutes with the action of G on local sections
of the involved homogeneous vector bundles, which is given by (g.s)(h) = s(g−1h) for
all g, h ∈ G and s ∈ Γ(F ) (see also Example 1.3.4 and the Introduction 0.5.2).

In general, there is no commonly accepted notion of invariance for manifolds with a
parabolic structure (see [56], p. 193, Section 2). We will deal with this issue by tak-
ing a pragmatic point of view: first of all, every manifold with a parabolic geometry
is equipped with a distinguished class of connections (Weyl connections), as detailed
in [14], p. 42 and [16], p. 54. A pairing is then called invariant, if φ induces a formula
that consists of terms involving an arbitrary connection from the distinguished equiv-
alence class, but that as a whole does not depend on its choice. We will discuss this
slightly subtle point further in Section 2.3.
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2.1.4 Description of JM(V,W )

Definition 8. Let M be a (smooth) complex filtered manifold and let V,W be holo-
morphic vector bundles (with trivial filtrations) over M. For every holomorphic vector
bundle U (with trivial filtration) over M and every integer k ∈ N, there exists the
weighted jet bundle J kU and for every 0 ≤ l ≤ k there is a projection πk

l : J kU → J lU
(see [51], p. 237). Let U−k(grTM) denote the bundle over M whose fibre at x ∈M is
U−k(grTxM) as defined in 2.1.2. The projections can be put into an exact sequence

0 → (U−k(grTM))∗ ⊗ U → J kU → J k−1U → 0

as described in 2.1.2. This exact sequence induces a filtration

J kU =
k∑

l=0

Ul(grT
∗M)⊗ U

= U + U1(grT
∗M)⊗ U + U2(grT

∗M)⊗ U + ...+ Uk(grT
∗M)⊗ U

on the jet bundle. The mapping

ϕM = ⊕k+l=Mπ
M
k ⊗ πM

l : JMV ⊗ JMW →
⊕

k+l=M

J kV ⊗ J lW

defines a canonical subbundle B = ker ϕM in JMV ⊗ JMW , so that

JM(V,W ) = (JMV ⊗ JMW )/ker ϕM .

We will call the bundles JM(V,W ) weighted bi-jet bundles.

Remark

It is easy to see that the vector bundle JM(V,W ) has a filtration

JM(V,W ) =
M∑

k=0

k⊕
l=0

Ul(grT
∗M)⊗ V ⊗ Uk−l(grT

∗M)⊗W,

which is equivalent to a series of exact sequences

0 →
k⊕

l=0

Ul(grT
∗M)⊗ V ⊗ Uk−l(grT

∗M)⊗W
ι→ J k(V,W ) → J k−1(V,W ) → 0,

for 0 ≤ k ≤M . The exact sequence

0 →
M⊕
l=0

Ul(grT
∗M)⊗ V ⊗ UM−l(grT

∗M)⊗W
ι→ JM(V,W ) → JM−1(V,W ) → 0
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gives rise to a symbol σ = φ ◦ ι for every homomorphism φ : JM(V,W ) → E, i.e. for
every weighted M -th order bilinear differential pairing. As for ordinary jet bundles, we
can define the formal (weighted) bi-jet bundle J∞(V,W ) as the projective limit

J∞(V,W ) → ...→ JM(V,W ) → JM−1(V,W ) → ...→ J 1(V,W ) → V ⊗W → 0.

In the homogeneous case JM(V,W ) is a homogeneous bundle with a p-module struc-
ture on the standard fibre JM(V,W) that is induced by the p-module structures of JMV
and JMW, the standard fibres of JMV and JMW .

2.2 Algebraic description

This section provides an algebraic description for invariant bilinear differential pairings
on homogeneous spaces. Similar to the situation for invariant linear differential opera-
tors, invariant differential pairings can be described by homomorphism between certain
algebraic objects. There is, however, one major difference. An invariant differential
operator between irreducible homogeneous vector bundles is the same as a homomor-
phism between generalized Verma modules and the existence of such a homomorphism
restricts the possible candidates quite severely. In fact, both generalized Verma modules
have to have the same central character and the theorem of Harish-Chandra implies
that their highest weights have to be related by the affine action of the Weyl group. For
pairings there is no such restriction. In fact, Theorem 4 shows that there are infinitely
many pairings between arbitrary irreducible bundles.

The procedure in this section follows the classification of invariant linear differential
operators on homogeneous spaces as presented by L. Barchini and R. Zierau in the
ICE-EM Australian Graduate School in Mathematics in Brisbane, July 2-20, 2007 and
the author would like to express his gratitude for the the inspiration that these lectures
provided.

For this section define K = R or K = C.

2.2.1 Pairings on homogeneous spaces

Let V,W and E be K-vector spaces and denote by C∞(Kn,F) the space of smooth
(K = R) or holomorphic (K = C) F-valued functions on Kn for any vector space F. A
bilinear map

P : C∞(Kn,V)× C∞(Kn,W) → C∞(Kn,E)

is called a bilinear differential pairing if it is of the form

P (φ, ψ) =
∑
α,β

aα,β

(
∂|α|

∂xα
φ⊗ ∂|β|

∂xβ
ψ

)
, ∀ (φ, ψ) ∈ C∞(Kn,V)× C∞(Kn,W), (2.2)

where aα,β ∈ C∞(Kn,Hom(V ⊗W,E)) and x is a coordinate system. The indices α, β
are multiindices in the usual sense, i.e. xα = xα1

1 ...x
αn
n for α = (α1, ..., αn) ∈ Nn.
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If M is a manifold and V,W,E are vector bundles over M, then a mapping

P : Γ(V )× Γ(W ) → Γ(E)

is a differential pairing if, in each local trivialization, P is of the form (2.2). The space
of all such pairings is denoted by P(V ×W,E).

Let us now assume that M = G/P is a homogeneous space and that V , W and E
are associated bundles that arise from representations λ, ν and µ of P on the vector
spaces V,W and E respectively. We will denote the derived representations of p by the
same symbols. A pairing is called G-invariant, if

P (lgφ, lgψ) = lgP (φ, ψ)

for all g ∈ G, φ ∈ Γ(V ) and ψ ∈ Γ(W ) and where lg denotes left translation, i.e.

(lgφ)(h) = (φ ◦ lg−1)(h) = φ(g−1h) ∀ g, h ∈ G.

The space of all G invariant bilinear differential pairings is denoted by

PG(V ×W,E).

We will denote right translation by

(r(X)f)(x) =
d

dt
f(x exp(tX))|t=0

for f ∈ C∞(G,F) and X ∈ g, where F denotes an arbitrary vector space and g is the
Lie algebra of G. It is easy to see that r(X)g = (lg)∗X ∈ TgG is a left invariant vector
field on G. We will write the Lie algebra of G as g = g− + p, where p is the Lie algebra
of P and g− is any vector space complement. Let {Xj}j=1,...,n be a basis of g−, then we
can introduce local coordinates on G/P around gP , g ∈ G:

ϕ : U → G/P

ϕ(x1, ..., xn) = g exp(x1X1 + ...+ xnXn) mod P,

where U ⊂ Kn is an appropriate neighborhood of 0. With respect to these coordinates,
we see that

(r(Xj)f)(g) =
∂f

∂xj

|x=0.

We can canonically extend the action of g via r to the universal enveloping algebra
U(g).

Proposition 1. In each local trivialization, an invariant differential pairing can be
written as

P (φ, ψ) =
∑
α,β

Tα,β(r(Xα)φ⊗ r(Xβ)ψ),

where Tα,β ∈ Hom(V⊗W,E)), r(Xα) = r(X1)
α1 · · · r(Xn)αn and {Xi}i=1,...,n is a basis

of g−.
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Proof. Using the definition of P(V ×W,E) and the local trivialization from above, we
can write each bilinear pairing as

P (φ, ψ) =
∑
α,β

aα,β(r(Xα)φ⊗ r(Xβ)ψ),

for aα,β ∈ C∞(G,Hom(V⊗W,E)). If the pairing is to be G-invariant, we can compute:

P (φ, ψ)(g) = (lg−1P (φ, ψ))(e)

= P (lg−1φ, lg−1ψ)(e)

=
∑
α,β

aα,β(e)(r(Xα)lg−1φ⊗ r(Xβ)lg−1ψ)(e)

=
∑
α,β

aα,β(e)(lg−1r(Xα)φ⊗ lg−1r(Xβ)ψ)(e)

=
∑
α,β

aα,β(e)(r(Xα)φ⊗ r(Xβ)ψ)(g)

and take Tα,β = aα,β(e).

2.2.2 Generalized bi-Verma modules

Definition 9. Let Y =
∑

i Yi,1⊗ Yi,2 be an arbitrary element in U(p)⊗U(p). Then we
define a left (resp. right) U(p)⊗U(p)-module structure on U(g)⊗U(g) and Hom(V⊗W,E)
by

(u1 ⊗ u2).Y =
∑

i

u1Yi,1 ⊗ u2Yi,2

and

(Y.T )(v ⊗ w) = T

(∑
i

(
λ(Y 0

i,1)v ⊗ ν(Y 0
i,2)w

))
respectively. The antiautomorphism 0 of U(p) is defined by (Z1...Zl)

0 = (−1)lZl...Z1

for all Zi ∈ p. Let us denote by

(U(g)⊗ U(g))⊗U(p)⊗U(p) Hom(V⊗W,E)

the tensor product of the two U(p) ⊗ U(p)-modules and abbreviate ⊗U(p)⊗U(p) by ⊗̂.
Furthermore we define an action of P on (U(g)⊗ U(g))⊗U(p)⊗U(p) Hom(V⊗W,E) by

p.(u1 ⊗ u2⊗̂T ) = Ad(p)u1 ⊗ Ad(p)u2⊗̂µ(p) ◦ T ◦ λ(p)−1 ⊗ ν(p)−1

and denote by (
(U(g)⊗ U(g))⊗U(p)⊗U(p) Hom(V⊗W,E)

)P
the space of elements which are fixed under this action.
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Theorem 3. There is an isomorphism

PG(V ×W,E) ∼=
(
(U(g)⊗ U(g))⊗U(p)⊗U(p) Hom(V⊗W,E)

)P
.

Proof. Let us define a mapping

(U(g)⊗ U(g))⊗U(p)⊗U(p) Hom(V⊗W,E) → PG(V ×W,E)∑
j

(∑
i

uij,1 ⊗ uij,2

)
⊗̂Tj 7→

(∑
j

(∑
i

uij,1 ⊗ uij,2

)
⊗̂Tj

)∨
,

where(∑
j

(∑
i

uij,1 ⊗ uij,2

)
⊗̂Tj

)∨
(φ, ψ) =

∑
j

Tj

(∑
i

(r(uij,1)φ⊗ r(uij,2)ψ)

)
.

We will proceed in several steps:

1. We will first show that this is well defined. Using the fact that

r(uY )f = σ(Y 0)r(u)f

for all u ∈ U(g), Y ∈ U(p) and f ∈ C∞(G,F)P (and we have denoted the action
of p on F by σ), we can prove that the mapping is well defined for the tensor
product ⊗̂, i.e.

((u1 ⊗ u2).Y ⊗ T )∨ = (u1 ⊗ u2 ⊗ Y.T )∨ .

To keep notation simple, let Y = Y1 ⊗ Y2 ∈ U(p)⊗ U(p). Then we compute

(((u1 ⊗ u2).Y )⊗ T )∨(φ, ψ) = (u1Y1 ⊗ u2Y2 ⊗ T )∨(φ, ψ)

= T (r(u1Y1)φ⊗ r(u2Y2)ψ)

= T (λ(Y 0
1 )r(u1)φ⊗ ν(Y 0

2 )r(u2)ψ)

= Y.T (r(u1)φ⊗ r(u2)ψ)

= (u1 ⊗ u2 ⊗ Y.T )∨(φ, ψ).

2. Let us first compute for X ∈ g, φ ∈ C∞(G,V)P , g ∈ G and p ∈ P :

(r(X)φ)(gp) =
d

dt
φ(gp exp(tX))|t=0

=
d

dt
φ(g exp(tAd(p)X)p)|t=0

= λ(p−1)(r(Ad(p)X)φ)(g).

The same is obviously also true for ψ ∈ C∞(G,W)P and we see that

(u1 ⊗ u2⊗̂T )∨(φ, ψ)(gp) = T ((r(u1)φ)(gp)⊗ (r(u2)ψ)(gp))

= T (λ(p)−1(r(Ad(p)u1)φ)(g)⊗ ν(p)−1(r(Ad(p)u2)ψ)(g))

= µ(p)−1(p.(u1 ⊗ u2⊗̂T ))∨(φ, ψ)(g).

So (u1 ⊗ u2⊗̂T )∨(φ, ψ) ∈ C∞(G,E)P if and only if (u1 ⊗ u2⊗̂T ) is fixed by the
action of P as defined above.
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3. It is clear that this defines a G-invariant pairing since r and l mutually commute,
see Proposition 1.

4. Injectivity follows from the fact that, as vector spaces,

(U(g)⊗ U(g))⊗U(p)⊗U(p) Hom(V⊗W,E) ∼= (U(g−)⊗ U(g−))⊗C Hom(V⊗W,E)

and the differential operators r(Xα) are linearly independent for Xα ∈ U(g−).

5. The mapping is surjective by Proposition 1.

Corollary 1. Let us now specialize to the case that G is semisimple and P is a parabolic
subgroup as described in the last chapter, i.e. G/P is a generalized flag manifold. More-
over, we assume that the representations of P come from representations of the parabolic
subalgebra p ⊂ g. Then we have an isomorphism

PG(V ×W,E) ∼= HomU(g)

(
Mp(E), (U(g)⊗ U(g))⊗U(p)⊗U(p) V∗ ⊗W∗) .

Proof. We have the following isomorphisms:

U(g)⊗ U(g)⊗U(p)⊗U(p) Hom(V⊗W,E) ∼= U(g)⊗ U(g)⊗U(p)⊗U(p) (V⊗W)∗ ⊗ E
∼=

(
U(g)⊗ U(g)⊗U(p)⊗U(p) (V⊗W)∗

)
⊗ E,

since the U(p)⊗U(p) action on (V⊗W)∗⊗E as defined in Definition 9 is given by the
derived action of p on (V ⊗W)∗ and the trivial action on E. This isomorphism is an
isomorphism of P modules with the action given in Definition 9. Therefore(

U(g)⊗ U(g)⊗U(p)⊗U(p) Hom(V⊗W,E)
)P

= HomP (E∗,U(g)⊗ U(g)⊗U(p)⊗U(p) (V⊗W)∗)

= HomU(p)(E∗,U(g)⊗ U(g)⊗U(p)⊗U(p) (V⊗W)∗)

= HomU(g)(U(g)⊗U(p) E∗,U(g)⊗ U(g)⊗U(p)⊗U(p) (V⊗W)∗)

= HomU(g)(Mp(E),U(g)⊗ U(g)⊗U(p)⊗U(p) (V⊗W)∗)).

The second but last equality follows from the algebraic Frobenius reciprocity, see [62].

Definition 10. Let us define

Mp(V,W) = (U(g)⊗ U(g))⊗U(p)⊗U(p) V∗ ⊗W∗

and call this module, following [23], a generalized bi-Verma module.

Proposition 2. Mp(V,W) is a U(g)-module with action given by

X.(u1 ⊗ u2⊗̂v ⊗ w) = (Xu1 ⊗ u2 + u1 ⊗Xu2)⊗̂v ⊗ w.

Note that the restriction of this action to p is exactly the derived action of P from above.
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Proof. The action of P as defined on

(U(g)⊗ U(g)) ⊗̂Hom(V⊗W,E) ∼= (U(g)⊗ U(g)) ⊗̂V∗ ⊗W∗ ⊗ E

is just the tensorial one. This implies that the action of P on

(U(g)⊗ U(g)) ⊗̂V∗ ⊗W∗

as used in Corollary 1 is also just the tensorial one. For simplicity, let X,Y ∈ g and
v∗ ∈ V∗, w∗ ∈ W∗ and look at the derived action of ξ ∈ p:

ξ.(X ⊗ Y ⊗̂v∗ ⊗ w∗) = [ξ,X]⊗ Y ⊗̂v∗ ⊗ w∗ +X ⊗ [ξ, Y ]⊗̂v∗ ⊗ w∗

+X ⊗ Y ⊗̂ξ.v∗ ⊗ w∗ +X ⊗ Y ⊗̂v∗ ⊗ ξ.w∗

= ξX ⊗ Y ⊗̂v∗ ⊗ w∗ +X ⊗ ξY ⊗̂v∗ ⊗ w∗.

This action can be extended to g (as in Corollary 1) and it is exactly as described
above.

Remark

The module Mp(V,W) can be defined as a direct limit as follows. As a g0-module, we
have the isomorphism

Mp(V,W) ∼= U(g−)⊗C U(g−)⊗C V∗ ⊗C W∗

that allows us to define

Mp(V,W)k = {u1⊗u2⊗v∗⊗w∗ ∈ U(g−)⊗U(g−)⊗V∗⊗W∗ : ui ∈ U−li(g−) and l1+l2 ≤ k}.

This induces a filtration

0 ⊂ V∗ ⊗W∗ ⊂Mp(V,W)1 ⊂ · · · ⊂Mp(V,W)k ⊂Mp(V,W)k+1 ⊂ · · · ⊂Mp(V,W).

Proposition 3. The notion of invariant bilinear differential pairings on generalized
flag manifolds G/P as given in Section 2.1.3 is equivalent to the definition given in this
section.

Proof. Let
P : Γ(V )× Γ(W ) → Γ(E)

be an invariant bilinear differential pairing. According to the last section, this is equiv-
alent to having a homomorphism

JM(V,W ) → E,

for some M . Since the pairing is invariant, it is determined by its action at the identity
coset eP where it determines a p-module homomorphism

JM(V,W) → E.
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We assert that J k(V,W)∗ ∼= Mp(V,W)k for every k ≥ 0 and prove the assertion by
induction. For k = 0 the assertion is trivial. Let us assume that the assertion is true
for k − 1 and use the exact sequence

0 →
k⊕

l=0

Ul(p+)⊗ V⊗ Uk−l(p+)⊗W ι→ J k(V,W) → J k−1(V,W) → 0.

Taking duals of this sequence together with the isomorphism p+
∼= g∗− proves the

assertion. Now we can use the dual map

E∗ → JM(V,W)∗ ∼= Mp(V,W)M ⊂Mp(V,W)

together with the Frobenius reciprocity

Homp(E∗,Mp(V,W)) ∼= HomU(g)(Mp(E),Mp(V,W))

and Corollary 1 to prove the claim.

2.2.3 Singular vectors in Mp(V,W)

Definition 11. A vector Θ ∈Mp(V,W) is called singular vector of weight µ ∈ h∗ iff

1. X.Θ = 0 for all X ∈ n and

2. H.Θ = µ(H)Θ for all H ∈ h.

Remark

Note that we allow singular vectors to be of the form 1 ⊗ 1⊗̂f ∗0 , where f ∗0 is a highest
weight vector of an irreducible component of V∗⊗W∗. These weight vectors correspond
to zero order invariant bilinear differential pairings. So, for example, contraction of a
k-form with a vector field is included.

Proposition 4. Singular vectors in Mp(V,W) are in 1-1 correspondence with invariant
bilinear differential pairings, where we assume all modules to be irreducible.

Proof. Using Theorem 3 it is clear that each invariant bilinear differential pairing
Γ(V ) × Γ(W ) → Γ(E) induces a singular vector by looking at the image of a highest
weight vector of Mp(E) in Mp(V,W).

Conversely, for every singular vector Θ ∈ Mp(V,W) of weight µ, it is enough to
define a U(g)-module homomorphism

Mp(E) →Mp(V,W).

This is easily done by
Y.(1⊗̂e∗0) 7→ Y.Θ,

for Y ∈ U(g) and e∗0 a highest weight vector in E∗ of weight µ. It only remains to show
that there is a finite dimensional irreducible p-module of highest weight µ, i.e. that µ
is dominant integral for p. The following lemma ensures this.
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Lemma 3. Mp(V,W) is the direct sum of finite dimensional irreducible g0 modules.

Proof. As a g0-module

Mp(V,W) ∼= U(g−)⊗ U(g−)⊗ V∗ ⊗W∗

∼= Mp(V)⊗Mp(W).

Now we can use the fact that Mp(F) is the direct sum of finite dimensional irreducible
g0-modules (see [50], p. 500) for every finite dimensional irreducible representation F of
p.

Note that the above homomorphism is not a homomorphism of g-modules. In par-
ticular, the sum of the central character of Mp(V) and Mp(W) cannot be used as the
central character of Mp(V,W).

Theorem 4 (Main result 1). Let G/P be a generalized flag manifold with a filtration
of the Lie algebra g as in 1.1.4. Fix two irreducible finite dimensional representations
V and W and let v∗0 (resp. w∗0) be a highest weight vector of V∗ (resp. W∗) with highest
weight λ (resp. ν). Moreover let αi, i ∈ I, be a simple root. Then there exists an
invariant bilinear differential pairing

Γ(V )× Γ(W ) → Γ(EM,i)

of weighted order M for all M ∈ N and all i ∈ I, where EM,i is the finite dimen-
sional irreducible representation of p that is dual to the finite dimensional irreducible
representation of highest weight λ+ ν −Mαi.

Proof. For i ∈ I as above choose elements Xαi
∈ gαi

, X−αi
∈ g−αi

and Hαi
∈ h such

that [Xαi
, X−αi

] = Hαi
as in Example 1.2.2. Let us define a vector Θαi

M for every M ≥ 0
and i ∈ I by

Θαi
M =

(
M∑

j=0

γM,jX
j
−αi

⊗XM−j
−αi

)
⊗̂v∗0 ⊗ w∗0, (2.3)

for some constants γM,j. To show that ΘM
αi

is annihilated by n it is sufficient to show
that Xα annihilates ΘM

αi
for all α ∈ S. If α 6= αi, then [Xα, X−αi

] ∈ gα−αi
= 0.

Moreover each Xα annihilates v∗0 and w∗0. This implies that ΘM
αi

is annihilated by all
Xα, α ∈ S\{αi}. In U(g) we have the equality

Xαi
Xk
−αi

= Xk
−αi

Xαi
+ kXk−1

−αi
Hαi

+ akX
k−1
−αi

,

where

ak = k(1− k).
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Here we have used that [Hαi
, X−αi

] = −αi(Hαi
)X−αi

= −2X−αi
. Using this, we can

compute

Xαi
.Θαi

M = (
M∑

j=0

γM,j(jλ(Hαi
) + aj)X

j−1
−αi

⊗Xn−j
−αi

+γM,j((M − j)ν(Hαi
) + aM−j)X

j
−αi

⊗XM−j−1
−αi

)⊗̂v∗0 ⊗ w∗0.

So we obtain M equations that have to be satisfied for Θαi
M to be a singular vector:

γM,j+1(j + 1) (q − j) + γM,j(M − j) (q′ −M + j + 1) = 0, (2.4)

for j = 0, 1, ...,M − 1 and q = λ(Hαi
) = B(λ, α∨i ) and q′ = ν(Hαi

) = B(ν, α∨i ). These
equations are exactly the equations that we had to consider in (1) in the Introduction.
Since there are more unknowns than equations, this system can be solved for γM,j to
obtain an (at least) one-paramter family of solutions. The corresponding Θαi

M has weight

H.Θαi
M = (λ+ ν −Mαi)(H)Θαi

M ,

which is exactly the highest weight of }Mgi
−1 } V∗ } W∗, where } denotes the Cartan

product of representations (see [25]). We can now define an inclusion

Mp(EM,i) → Mp(V,W)

Y.(1⊗̂e∗) 7→ Y.Θα0
n ∀ Y ∈ U(g),

where EM,i is dual to an irreducible finite dimensional representation of p with highest
weight λ+ ν −Mαi. This defines an invariant differential pairing of weighted order M

Γ(V )× Γ(W ) → Γ(EM,i).

Corollary 2. 1. With the situation as above. If

q = B(λ, α∨i ) 6∈ {0, ...,M − 1}

or
q′ = B(ν, α∨i ) 6∈ {0, ...,M − 1},

then there exists (up to scalars) exactly one singular vector Θ of the form Θαi
M .

2. If q ≥ 0, then there exists an invariant linear differential operator

Γ(V ) → Γ(Eλ−(q+1)αi
).

Analogously if q′ ≥ 0, then there exists an invariant linear differential operator
Γ(W ) → Γ(Eν−(q′+1)αi

).
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Proof. The first statement follows immediately by looking at the rank of the matrix
that describes the linear equations (2.4) from the proof of Theorem 4.

Say q ≥ 0, then

Ψi
q+1 = Xq+1

−αi
⊗̂v∗0 ∈Mp(V)

is a singular vector of highest weight λ − (q + 1)αi. This vector can be used to define
a g-module homomorphism

Mp(Eλ−(q+1)αi
) →Mp(V),

which in turn defines an invariant linear differential operator Γ(V ) → Γ(Eλ−(q+1)αi
)

(see [3], Theorem 11.2.1). The situation for W is exactly analogous.

Remark

A short examination of the linear equations (2.4) shows that if q ∈ {0, 1, ...,M −1} and
q′ ∈ {0, 1, ...,M − 1}, then there could be a one parameter family or a two parameter
family of singular vectors depending on the relation of q to q′.

2.2.4 Examples

1. M = 1: We define for a, b ∈ C:

Θαi
1 = (a1⊗X−αi

+ bX−αi
⊗ 1)⊗̂v∗0 ⊗ w∗0,

then

Xαi
.Θαi

1 = (aν(Hαi
) + bλ(Hαi

))1⊗ 1⊗̂v∗0 ⊗ w∗0.

Choosing a = λ(Hαi
) and b = −ν(Hαi

) yields a singular vector of highest weight
λ + ν − αi which is exactly the highest weight of V∗ } W } gi

−1. But in case
λ(Hαi

) = ν(Hαi
) = 0, we can choose a, b arbitrarily and obtain two independent

singular vectors. Note that

λ(Hαi
) = B(λ, α∨i ),

so these numbers are exactly the numbers that we write over the i-th (crossed
through) node in the Dynkin diagram notation for V.

Of course, the singular vectors described above correspond to the pairings like

v+1× 0• 0• · · · 0• 1• × w× 0• 0• · · · 0• 0• → v+w−1× 1• 0• · · · 0• 1•

(Xa, f) 7→ wf(∇aX
b − 1

n
δa

b∇cX
c)

−(v + 1)(Xb∇af −
1

n
δa

bXc∇cf),
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v× 1• 0• ... 0• 0•��
@@

•

•

0

0

× w× 0• 0• ... 0• 0•��
@@

•

•

0

0

→ v+w−2× 2• 0• ... 0• 0•��
@@

•

•

0

0

(Xa, f) 7→ wf(∇(aXb) −
1

n
gab∇cX

c)

−v(X(a∇b)f −
1

n
gabX

c∇cf)

or
w× 0• · · · 0• 0• w′× × v× 0• · · · 0• 0• v′× → w+v× 0• · · · 0• 1• −2+w′+v′×

(f, g) 7→ w′f∇ᾱg − v′g∇ᾱf.

For the notational conventions used here, we refer to Chapter 6. Note that the
pairing P (f, g) = wf∇ag− vg∇af is skew in f, g for v = w, so the corresponding
(non-linear) homogeneous operator of degree two given by f 7→ P (f, f) vanishes.
This is an example of a situation where the setup in [23] differs from the setup
presented here.

2. We can even go further and define

Θαi
2 = (a1⊗X2

−αi
+ bX−αi

⊗X−αi
+ cX2

−αi
⊗ 1)⊗̂v∗0 ⊗ w∗0,

for some constants a, b, c ∈ C. This yields the following equations

2a(ν(Hαi
)− 1) + bλ(Hαi

) = 0

2c(λ(Hαi
)− 1) + bν(Hαi

) = 0.

On RPn, for example, this corresponds to pairings like

w× 0• 0• · · · 0• 0• × v× 0• 0• · · · 0• 0• → −4+v+w× 2• 0• · · · 0• 0•
(f, g) 7→ (w − 1)w︸ ︷︷ ︸

a

f∇a∇bg

−2(w − 1)(v − 1)︸ ︷︷ ︸
b

∇(af∇b)g

+ (v − 1)v︸ ︷︷ ︸
c

g∇a∇bf.

In this case αi = α1 with λ(Hα) = w and ν(Hα) = v. The general pattern for
these pairings will be determined in Chapter 4.

2.3 Invariance

2.3.1 The homogeneous case

So far we have only properly defined invariance on the homogenous model spaces G/P .
Invariance here means that a pairing is invariant with respect to the action of G on
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the sections of the vector bundles involved as in Section 2.1.3. In Proposition 3 it was
proved that there is a bijective correspondence between invariant bilinear differential
pairings

Γ(V )× Γ(W ) → Γ(E)

and P -module homomorphisms

JM(V,W) → E,

for some M .

2.3.2 Weyl connections

Definition 12. Let P+ = exp(p+), then it is easy to see ([18], Proposition 2.10) that
P/P+

∼= G0 and we can consider the following two principal bundles

P → G
↓
M

and
P/P+ = G0 → G0 = G/P+

↓
M

.

In fact, G0 is the frame bundle of grTM.

A Weyl structure is given by a G0-equivariant section σ : G0 → G. Writing the g0

component of the Cartan connection on G as ω0, one can define the pullback

γσ = σ∗(ω0),

which is a principal connection, the so-called Weyl connection, on G0. This defines,
for each choice of Weyl structure, a linear connection on M.

Remark

Similarly to the remark made in the Introduction, we again have to issue a warning at
this stage. Our considerations are of a completely local nature, so we can always restrict
ourselves to an appropriate open set in M and consider local Weyl structures. This
is especially important in the holomorphic setting where a global Weyl structure might
not exist (due to the lack of partitions of unity that exist in the smooth category).
We will ignore this problem throughout the thesis and always implicitly restrict our
considerations to an appropriate coordinate patch.

Definition 13. Let A = G×P g be the adjoint tractor bundle induced by the adjoint
representation of P on g. The grading of g induces a grading on A:

A = A−k0 + ...+Ak0 .
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Lemma 4. For each parabolic geometry (M,G, g, ω) of type (G,P ) the space of global
(possibly after restriction to an appropriate open coordinate patch) G0 equivariant sec-
tions σ : G0 → G is a non-empty affine space modeled over the space of all one-forms
on M. More precisely, let σ and σ̂ be two such sections, then

σ̂(u) = σ(u) exp(Υ1(u)) · · · exp(Υk0(u)),

where Υ = (Υ1, ...,Υk0) ∈ Γ(A1 ⊕ · · · ⊕ Ak0) = Γ(grT ∗M).

Proof. A proof may be found in [20], Proposition 3.2.

Let ρ : P → GL(V) be an irreducible representation, which is therefore determined by
ρ|G0 : G0 → GL(V). Then each Weyl structure induces a connection on the associated
bundle V = G ×P V = G0 ×G0 V. Let σ and σ̂ be two Weyl structures related by Υ
as in Lemma 4, then we denote the corresponding connections on V by ∇ and ∇̂. An
explicit formula for the difference ∇− ∇̂ is given in [20], Proposition 3.9:

∇̂ξs = ∇ξs+
∑

‖j‖+l=0

(−1)j

j!
(ad(Υk0)

jk0 ◦ · · · ◦ ad(Υ1)
j1(ξl)) • s, (2.5)

where j = (j1, ..., jk0), (−1)j = (−1)j1+···+jk0 , ‖j‖ = j1+2j2+ · · ·+k0jk0 , j! = j1! · · · jk0 !,
ξ = (ξ−k0 , ..., ξ−1) ∈ Γ(grTM) and where • : A0 × V → V is induced by the repre-
sentation p × V → V. We will give an explicit version of this formula for projective,
conformal and CR geometry in Chapter 6.

Remark

Let us choose a Weyl structure with corresponding Weyl connection ∇ on every irre-
ducible associated bundle V as above. Let E and F be associated bundles that are
induced by representations of p which, as g0-modules, are completely reducible. Exam-
ples are irreducible p-modules or p-modules that are the restrictions of representations
of g, as we shall see later. The Weyl structure induces a trivialization of these bundles
into a direct sum of irreducible subbundles (see the last chapter about trivializations
of tractor bundles for each choice of Weyl structure and how these trivializations vary
when changing from one Weyl structure to another Weyl structure). A semi-invariant
differential operator is given by a formula that consists of terms, each of which is induced
by a mapping

E
∇N

−→ ⊗NΛ1 ⊗ E
φ−→ F,

where φ is induced by a homomorphism Φ : ⊗Np+ ⊗ E → F of g0-modules. A semi-
invariant differential pairing is defined analogously. For the classical groups, semi-
invariance is usually defined as in [38] via local coordinates. However, Weyl’s classical
invariant theory implies that these two definitions are equivalent for the classical groups,
see [38], Section 4. Hence our definition extends the notion of semi-invariant operators
(pairings) to arbitrary parabolic geometries.
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Definition 14. A bilinear differential pairing (linear differential operator) on a parabolic
geometry is called invariant, if it can be written as a semi-invariant formula as de-
scribed in Remark 2.3.2 for any choice of (local) Weyl connection in such a way that the
formula as a whole does not change (i.e. does not involve any Υ-terms) when changing
from one Weyl connection ∇ to another ∇̂. In other words, it has to be independent
of the choice of Weyl structure.

2.3.3 Weyl structures and filtrations

Let V = V0 ⊃ V1 ⊃ · · · ⊃ Vs ⊃ {0} be a filtered p-module, so that

1. z(g0) acts diagonalizably,

2. the associated graded module

grV = gr0V⊕ gr1V⊕ · · · ⊕ grsV,
with griV = Vi/Vi+1, has the property that gi.grjV ⊂ gri+jV and

3. the action of p exponentiates to an action of P .

Then grV is a decomposition into completely reducible g0-modules and we can look at
the associated bundles

V = G ×P V and grV = G0 ×G0 grV = G0 ×G0 V.
Every Weyl structure is given by a G0-equivariant section σ : G0 → G. A choice of

such a section gives an identification σV : grV → V by

σV (u, v) = (σ(u), v).

Since σ isG0-equivariant, this is well defined. Let σ̂(u) = σ(u) exp(Υ1(u)) · · · exp(Υk0(u))
be a different Weyl structure. Then

σ̂V (u, v) = (σ(u), (exp(Υ1(u)) · · · exp(Υk0(u))).v)

and hence
σ̂−1

V ◦ σV (u, v) = (u, (exp(−Υk0(u)) · · · exp(−Υ1(u))).v).

This implies that we can write v ∈ V as
v0

v1
...
vs


for any choice of Weyl structure. Under change of Weyl structure this changes tô

v0

v1
...
vs

 =


v0

v1 −Υ1 • v0
...∑

‖j‖+i=s
(−1)j

j!
(Υ

jk0
k0
◦ · · · ◦Υj1

1 ) • vi

 .
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Example 1

Let us look at an irreducible representation V of p. As discussed in the last section
grJ 1V = V ⊕ g∗−1 ⊗ V. According to the above discussion, for every choice of Weyl
structure, we can write (

v
ϕ

)
for the elements in J 1V . Under change of connection, these elements transform as(̂

v
ϕ

)
=

(
v

ϕ−Υ1 • v

)
.

The action of Z ∈ g1 on gr0J 1V = V will be determined in the next chapter and can
be written as Z.v = ([Z, .]).v ∈ gr1J 1V = g∗−1 ⊗ V. Therefore(̂

v
ϕ

)
=

(
v

ϕ− (ad(Υ1)(.)) • v

)
.

For ξ−1 ∈ gr−1TM, the transformation law for the Weyl connection is given by

∇̂ξ−1s = ∇ξ−1s− (ad(Υ1)(ξ−1)) • s.

One has to be careful about the abuse of notation here: the actions of p on the various
vector spaces are all denoted by a dot ‘.’, although we refer to different actions. The
corresponding actions of A0 are also all denoted by a bullet ‘•’. The above implies that
the mapping

s 7→
(

s
∇s

)
,

which is written with respect to a specific Weyl structure (more precisely, both the
identification of J 1V with grJ 1V and the connection ∇ are chosen with respect to
the same Weyl structure), is in fact independent of the Weyl structure and hence an
invariant differential operator

O(G,V)P → O(G,J 1V)P .

We will see in the next chapter that the invariant derivative really takes P -equivariant
sections to P -equivariant sections.

Example 2

Let V be an irreducible p-module, so that the action of p exponentiates to an action of
P . The fundamental derivative D can be written as a pairing

D : V ×A → V.
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The grading of the vector bundle A can be written as grA = A− ⊕A0 ⊕A+ according
to the filtration of g = g− + g0 + g+ as a p-module. For every choice of Weyl structure
we can therefore write sections of A as a 3-tuple. Under change of Weyl structure, this
3-tuple changes aŝ ξ

X0

µ

 =

 ξ

X0 +
∑

‖j‖+i=0
(−1)j

j!
(ad(Υk0)

jk0 ◦ · · · ◦ ad(Υ1)
j1)(ξi)

∗

 .

Now D is given by

Γ(V )× Γ(grA) 7→ Γ(V )

(v, (ξ,X0, µ)) 7→ ∇ξv −X0 • v.

Using equation (2.5) to determine how ∇ changes and the description of how the split-
ting changes shows that this definition is independent of the Weyl structure.

Remark

Let V and W be two filtered p-modules satisfying the conditions in Section 2.3.3 and
let grΦ : grV → grW be a g0-module homomorphism. We denote the corresponding
mapping between vector bundles by grφ. Then a choice of Weyl structure determines
a mapping

φσ = σW ◦ grφ ◦ σ−1
V : V → W.

It immediately follows that φ is independent of the Weyl structure (i.e. φσ̂ = φσ) if and
only if grΦ is a p-module homomorphism.

Lemma 5. 1. If there is a P -module map Φ : V → W, then the corresponding map

O(G,V)P → O(G,W)P

s 7→ Φ ◦ s

is invariant.

2. The invariant differential

O(G,V)P → O(G,J 1V)P

s 7→ (s,∇ωs)

and the iterated fundamental derivative

O(G,V)P → O(G,⊗kg∗ ⊗ V)P

s 7→ Dks

are invariant.
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Proof. The first statement follows by taking N = 0 in 2.3.2 and making use of Re-
mark 2.3.3. The invariance of the invariant derivative and the fundamental derivative
was proved in Example 1 and 2 for irreducible p-modules. The general case follows
from the fact that they are constructed by using the Cartan connection ω, which is
intrinsic to the parabolic geometry, and they do not make any choice of specific Weyl
structure. In order to obtain explicit formulae like in the examples, one can write down
the corresponding formulae for each g0 irrreducible component and keep in mind that
the individual components are not invariant, just the expression as a whole. We will
see many examples of this subtle point in Chapter 6. Finally note that the symbol of
Dk is given by

⊗kΛ1 ⊗ V
φ−→ ⊗kA⊗ V

with Φ : ⊗k(g/p)∗ ⊗ V ↪→ ⊗kg∗ ⊗ V.

Remark

1. All the pairings and operators to be defined in this thesis are combinations of the
invariant operations defined above and are hence invariant the sense of Defini-
tion 14.

2. In the literature ([13, 16, 17]) it is quite common to use the term natural to
describe the operators in Lemma 5. Those natural operators are defined to be
systems of operators D(G,ω) for a certain category of parabolic geometries that
behave well with respect to morphisms of that category. It can be shown (see, for
example, [20]) that natural operators (pairings) on the category of flat parabolic
geometries (which are locally isomorphic to the homogeneous model, see [18],
Proposition 4.12) are exactly the (translation-) invariant operators (pairings) as
defined in Section 2.2.

2.3.4 Geometric structures

The description of certain geometric structures on manifolds as parabolic geometries
is a complicated issue and it is not trivial to show that various familiar structures
(projective, conformal, CR) are equivalent to parabolic geometries of a certain type.
The paper [18] is dedicated to this problem and we will state (following [20]) the upshot
of these considerations without going into too much detail.

Definition 15. 1. An infinitesimal flag structure of type (g, p) on a smooth
manifold M is given by a filtration

TM = T−k0M⊃ · · · ⊃ T−1M,

such that the rank of T iM equals the dimension of gi/p, and a reduction of the
associated graded vector bundle

grTM = gr−k0(TM)⊕ · · · ⊕ gr−1(TM),
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with gri(TM) = T iM/T i+1M, to the structure group G0. Since we can take
g− = g−k0 ⊕ · · · ⊕ g−1 as the modeling vector space for gr(TM), the reduction is
defined via Ad : G0 → GLgr(g−).

2. Let

TM = T−k0M⊃ · · · ⊃ T−1M

be an infinitesimal flag structure of type (g, p) that makes M into a filtered man-
ifold. There are two ways of defining a bracket gr(TM)× gr(TM) → gr(TM):
firstly, we can use the reduction of grTM to the structure group G0 and the
(algebraic) Lie bracket on g−. Secondly, we can use the fact that M has a tan-
gential filtration to define the Levi-bracket that is induced by the usual bracket
of vector fields. The infinitesimal flag structure is called regular, if those two
brackets coincide.

Let us assume that no simple factor of g lies in g0 and that g does not contain any
simple factors of type A1. Then the following theorem can be proved.

Theorem 5 ([18]). 1. If (g, p) does not contain any simple factor of the form

× • • •... • or × • • •... •〈 ,

then there is an equivalence of categories between regular parabolic geometries and
regular infinitesimal flag structures.

2. If (g, p) contains a simple factor of the form given above, then there is a bijec-
tive correspondence between regular parabolic geometries and underlying P -frame
bundles of degree two (reductions of the second order frame bundle).

Remarks

1. Infinitesimal flag structures can equivalently (see [20]) be described in terms of
frame forms of length 1 in the sense of [18], Definition 3.2. From this descrip-
tion the theorem above is proved by a prolongation procedure.

2. The condition that the algebraic bracket is equivalent to the Levi-bracket can
equally be stated in terms of structure equations as in [18].

3. The conditions in the theorem above are equivalent to demanding that certain
(Lie-algebra-) cohomology groups H1

l (g−, g) vanish (see [18, 65]).

4. The second excluded case in the theorem above corresponds to so-called contact
projective structures. A comprehensive treatment of contact projective structures
can be found in [31].
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Example

If the grading of g is of length one, then the filtration of the tangent bundle is trivial
and an infinitesimal flag structure is equivalent to a reduction of TM to the structure
group G0.

1. For the choice of G and P as in Example 1.3.1 (b) and 1.3.2 (b), we obtain
G0 = CO(p, q), so an infinitesimal flag structure is equivalent to the choice of
a conformal class of metrics (with signature (p, q)). For n = 4, for example, a
different choice of G leads to G0 = S(GL(2,C) × GL(2,C)), which is a 4 − 1
covering of CO(4,C). Reductions of the structure group of TM to this group
correspond to spin structures, see [27].

2. For the choice of G and P as in Example 1.3.1 (a) and 1.3.2 (a), we obtain
G0 = GL(n,R), so it is obvious that an infinitesimal flag structure does not carry
any information at all. Rather, we have to look at the underlying P -frame bundle
of degree two. This is the first excluded case in the theorem above.



Chapter 3

The first order case

This chapter describes a classification of all (non-degenerate) weighted first order in-
variant bilinear differential pairings on a general regular curved parabolic geometry
(M,G, g, ω) of type (G,P ) that we consider fixed throughout the rest of this thesis.
Furthermore we characterize degenerate pairings via the existence of invariant linear
differential operators.

3.1 The obstruction term

3.1.1 The possible candidates

In the following we will fix two finite dimensional irreducible representations given by
λ̃ : p → gl(V) and ν̃ : p → gl(W). Moreover denote the highest weights of V∗ and W∗

by λ ∈ h∗ and ν ∈ h∗ respectively. Sometimes we will want to include this additional
information about a representation in the notation: for any irreducible representation
E of p we will write Eµ to record that E∗µ has highest weight µ ∈ h∗, i.e. V = Vλ and
W = Wν .

There are two exact sequences associated to the first weighted jet bundles of V and
W :

0 → (U−1(grTM))∗ ⊗ V → J 1V → V → 0

and

0 → (U−1(grTM))∗ ⊗W → J 1W → W → 0,

which are the weighted-jet exact sequences as described in the last chapter. All these
bundles are associated bundles, so on the level of p representations we have

0 → g1 ⊗ V → J 1V → V → 0

and

0 → g1 ⊗W → J 1W → W → 0.

65
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In other words, there are two filtered modules

J 1V = V + g1 ⊗ V

and
J 1W = W + g1 ⊗W.

Therefore the tensor product has a filtration

J 1V⊗ J 1W = V⊗W +
g1 ⊗ V⊗W

⊕
V⊗ g1 ⊗W

+ g1 ⊗ V⊗ g1 ⊗W.

The p-module structure of

J 1(V,W) = J 1V⊗ J 1W/(g1 ⊗ V⊗ g1 ⊗W) = V⊗W +
V⊗ g1 ⊗W

⊕
g1 ⊗ V⊗W

is such that

O(G,V)P ⊗O(G,W)P 3 (s, t) 7→ (s⊗ t, s⊗∇ωt,∇ωs⊗ t) ∈ O(G,J 1(V,W))P

is well defined, i.e. maps P -equivariant sections to a P -equivariant section. In order to
see this, we introduce dual (with respect to the Killing form) linear basis {ξα}α=1,...,n

and {ηα}α=1,...,n of g− and p+ respectively. Since g∗−1
∼= g1, we can restrict those basis

to basis {ξα′}α′=1,...,n′ and {ηα′}α′=1,...,n′ of g−1 and g1 respectively. Then the following
lemma holds.

Lemma 6. Let
p : J 1V⊗ J 1W → J 1(V,W)

be the canonical projection, let Z ∈ p and let (v0, X ⊗ v)⊗ (w0, Y ⊗w) ∈ J 1V⊗J 1W.
Furthermore define the action of Z on J 1(V,W) by

j1(λ̃, ν̃)(Z)p((v0, X ⊗ v)⊗ (w0, Y ⊗ w)) = λ̃(Z)v0 ⊗ w0 + v0 ⊗ ν̃(Z)w0

λ̃(Z)v0 ⊗ Y ⊗ w + v0 ⊗
(
Y ⊗ ν̃(Z)w + [Z, Y ]g1 ⊗ w +

∑
α′ η

α′ ⊗ ν̃([Z, ξα′ ]p)w0

)
X ⊗ v ⊗ ν̃(Z)w0 +

(
X ⊗ λ̃(Z)v + [Z,X]g1 ⊗ v +

∑
α′ η

α′ ⊗ λ̃([Z, ξα′ ]p)v0

)
⊗ w0

 ,

where [., .]a denotes the bracket in g followed by the projection onto a subspace a of g.
Then the mapping

O(G,V)P ⊗O(G,W)P 3 (s, t) 7→ (s⊗ t, s⊗∇ωt,∇ωs⊗ t) ∈ O(G,J 1(V,W))P

is well defined, i.e. maps P -equivariant sections to a P -equivariant section and therefore
defines an isomorphism

J 1(V,W ) ∼= G ×P J 1(V,W).
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Proof. We have the following canonical projections:

J1V → J 1V, J1W → J 1W

and
J 1V⊗ J 1W → J 1(V,W).

It is therefore sufficient to define the p-module structure of J1U for an arbitrary repre-
sentation U of p and to check that s 7→ (s,∇ωs) is a well defined mapping

O(G,U)P → O(G, J1U)P

that takes P equivariant sections to P equivariant sections. In other words, that the
mapping s 7→ (s,∇ωs) defines an isomorphism J1U ∼= G ×P J

1U.
So let ρ : p → gl(U) be a representation of p and denote the representation of p on

J1U by j1ρ. First of all note that

−ζZs = −ω−1(Z)s = −∇ω
Zs = ρ(Z)s

for every Z ∈ p and s ∈ O(G,U)P . This shows us exactly how to define the represen-
tation j1ρ.

−ζZ(s,∇ω
Xs) = (−∇ω

Zs,−∇ω
Z∇ω

Xs)

= (ρ(Z)s,−∇ω
X∇ω

Zs−∇ω
[Z,X]s+∇ω

κ(Z,X)

= (ρ(Z)s, ρ(Z)∇ω
Xs+ ρ([Z,X]p)s−∇ω

[Z,X]g−
s)

!
= j1ρ(Z)(s,∇ω

Xs),

for all Z ∈ p and X ∈ g−. Note that we have used the fact that the curvature of any
Cartan connection is horizontal (see Remark 1.3.1). This determines the action j1ρ on
an arbitrary element (u, ϕ) ∈ J1U = U⊕ Hom(g−,U) via

J1ρ(Z)(u, ϕ) = (ρ(Z)u, ρ(Z) ◦ ϕ+ ρ(adp(Z)(.))v − ϕ ◦ adg−(Z)).

Using the isomorphism Hom(g−,U) ∼= p+⊗U, we can write elements in J1U = U⊕p+⊗U
as linear combinations of simple elements of the form (u0, Y ⊗ u). Then the action of
Z ∈ p is given by:

j1ρ(Z)(u0, Y ⊗ u) = (ρ(Z)u0, Y ⊗ ρ(Z)u+ [Z, Y ]⊗ u+
∑

α

ηα ⊗ ρ([Z, ξα]p)u0).

This follows from

(Y ⊗ u)(adg−(Z)(.)) = B(adg−(Z)(.), Y )u = −B(., [Z, Y ])u = −([Z, Y ]⊗ u)

as a map g− → U, where we have used that B(gi, gj) = 0 ∀ i 6= −j, and from

ρ(adp(Z)(.))u =
∑

α

ηα ⊗ ρ([Z, ξα]p)u.

It can now be easily checked that j1(λ̃, ν̃) is exactly the induced representation under
the projections and tensor products given above.
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Corollary 3. g0 acts tensorally on J 1(V,W). If Z ∈ g2 ⊕ ...⊕ gk, then

j1(λ̃, ν̃)(Z)p((v0, X ⊗ v)⊗ (w0, Y ⊗ w)) = 0.

If Z ∈ g1, then

j1(λ̃, ν̃)(Z)p((v0, X ⊗ v)⊗ (w0, Y ⊗ w)) =

 0
v0 ⊗

∑
α′ η

α′ ⊗ ν̃([Z, ξα′ ])w0∑
α′ η

α′ ⊗ λ̃([Z, ξα′ ])v0 ⊗ w0

 .

We will call this term the obstruction term.

Proof. Using [gi, gj] ⊂ gi+j for all i, j, these considerations follow easily from the fact
that p+ acts trivially on W and V.

The reason for this setup is given in the following lemma.

Lemma 7. Weighted first order bilinear invariant differential pairings

Γ(V )× Γ(W ) → Γ(E)

in the flat homogeneous case G/P are in one-to-one correspondence with p-module ho-
momorphisms

J 1(V,W) → E.

In the general curved case, these homomorphisms yield (modulo scalars or curvature
correction terms) all weighted first order invariant bilinear differential pairings.

Proof. The first part of the lemma concerning pairings on homogeneous spaces was dis-
cussed in 2.3.1. In the general curved case, as mentioned above, the p-module structure
of J 1(V,W) ensures that the mapping

O(G,V)P ⊗O(G,W)P 3 (s, t) 7→ (s⊗ t, s⊗∇ωt,∇ωs⊗ t) ∈ O(G,J 1(V,W))P

is well defined. The composition of this mapping with p-module homomorphisms
J 1(V,W) → E yield, following [17], strongly invariant differential pairings of weighted
order one. These are independent of the choice of Weyl structure, see [12], Section 5.1,
and Lemma 5. An arbitrary invariant differential pairing of weighted order one can be
restricted to the flat model, where it is given by the above construction. The original
pairing on a general manifold with parabolic structure can then differ only by scalars
or curvature correction terms from the strongly invariant operator.

Looking at the exact sequence of p-modules

0 →
g1 ⊗ V⊗W

⊕
V⊗ g1 ⊗W

→ J 1(V,W) → V⊗W → 0,
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it is clear that a p-module homomorphism J 1(V,W) → E onto an irreducible p-module
E induces a g0-module homomorphism

g1 ⊗ V⊗W
⊕

V⊗ g1 ⊗W

π→ E

and so the only candidates for E are the irreducible components of g1 ⊗V⊗W viewed
as g0-modules (or as gS

0 modules, since z(g0) acts by a character). However, not every
projection π is a p-module homomorphism. In order to determine which π are allowed,
we use Corollary 3 to note that the action of g0 on J 1(V,W) is just the tensorial
one, so J 1(V,W) can be split as a g0-module. But p+ does not act trivially as on any
irreducible p-module, so in order to check that a specific projection is indeed a p-module
homomorphism and not just a g0-module homomorphism, the image of the action of
p+, when acting in J 1(V,W), has to vanish under π. This is exactly the obstruction
term from above. On the other hand this is obviously sufficient for π to be a p-module
homomorphism.

3.1.2 Casimir computations

Lemma 8. Let V be a finite dimensional irreducible representation of g0 and let λ be
the highest weight of V∗. Moreover let {Ya}, {Y a} be dual basis of g0 with respect to
B(., .) and denote by ρ0 = 1

2

∑
α∈∆+(g0) half the sum over all positive roots in g0. Then

the Casimir operator c =
∑

a YaY
a acts by

c(λ) = B(λ, λ+ 2ρ0)

on V.

Proof. It is well known that the lowest weight of V is −λ. Now let v−λ ∈ V be a lowest
weight vector and take

c =
∑

i

hih
i +

∑
α∈∆+(g0)

(xαx−α + x−αxα),

where {hi}, {hi} are dual basis of h and xα ∈ gα, x−α ∈ g−α are dual with respect to
B(., .) for all α ∈ ∆+(g0). Since v−λ is a lowest weight vector, it is killed by all x−α, so
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the action of the second term is given by∑
α∈∆+(g0)

(xαx−α + x−αxα).v−λ =
∑

α∈∆+(g0)

x−αxα.v−λ

=
∑

α∈∆+(g0)

−[xα, x−α].v−λ

=
∑

α∈∆+(g0)

−hα.v−λ

=
∑

α∈∆+(g0)

λ(hα)v−λ

=
∑

α∈∆+(g0)

B(hλ, hα)v−λ

=
∑

α∈∆+(g0)

B(λ, α)v−λ

= B(λ, 2ρ0)v−λ.

Here, for every µ ∈ h∗, hµ ∈ h is the unique element with µ(H) = B(hµ, H) for all
H ∈ h and [xα, x−α] = B(xα, x−α)hα = hα as in [40], Proposition 8.3. The first term
obviously yields

∑
i λ(hi)λ(hi)v−λ = B(λ, λ)v−λ, see [40], 22.3. By the Schur lemma,

we deduce that the action of c on the whole representation V is given by B(λ, λ+ 2ρ0).
Finally we note that c is independent of the choice of basis.

Lemma 9 ([16]). The obstruction term can be written as
0

v0 ⊗
(∑

i∈I

∑mi

j=1 cνσi,j
πνσi,j

(Z ⊗ w0)
)(∑

i∈I

∑ni

j=1 cλτi,j
πλτi,j

(Z ⊗ v0)
)
⊗ w0

 ,

where

gi
1 ⊗ V = Vτi,1

⊕ ...⊕ Vτi,ni
and gi

1 ⊗W = Wσi,1
⊕ ...⊕Wσi,mi

,

for i = 1, ..., l0, are the decompositions into irreducible g0-modules with corresponding
projections πλτi,j

and πνσi,j
and where

cγκi,j
=

1

2
(c(κi,j)− c(γ)− c(−αi)) .

Proof. Writing down the obstruction term as a mapping

Φ : g1 ⊗ V⊗W →
V⊗ g1 ⊗W

⊕
g1 ⊗ V⊗W

,
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with

Φ(Z ⊗ v ⊗ w) =

(
v0 ⊗

∑
α′ ηα′ ⊗ ν̃([Z, ξα′ ])w0∑

α′ ηα′ ⊗ λ̃([Z, ξα′ ])v0 ⊗ w0

)
,

allows one to use the Casimir operator to turn this into an easier expression.
Let {Ya}, {Y a} be basis of g0, orthonormal with respect to the form B(., .) as in

Lemma 8. The Casimir operator of g0 is c =
∑

a YaY
a and we compute

[Z, ξα′ ] =
∑

a

B(Y a, [Z, ξα′ ])Ya

=
∑

a

B([Y a, Z], ξα′)Ya,

where in the first equality we have written the element [Z, ξα′ ] ∈ g0 in the basis {Ya}
and the second equality follows from the associativity of the Killing form. Furthermore

∑
α′

ηα′ ⊗ λ̃([Z, ξα′ ])v =
∑
α′

ηα′ ⊗ λ̃

(∑
a

([Y a, Z], ξα′)Ya

)
v0

=
∑

a

∑
α′

ηα′([Y
a, Z], ξα′)⊗ λ̃(Ya)v0

=
∑

a

[Y a, Z]⊗ λ̃(Ya)v0,

where this time we have written the element [Y a, Z] ∈ g1 in the basis {ηα′}. Inter-
changing {Ya} with {Y a}, the same calculation can be done to obtain an analogous
expression∑

a

[Y a, Z]⊗ λ̃(Ya)v0 =
∑
α′

ηα′ ⊗ λ̃([Z, ξα′ ])v =
∑

a

[Ya, Z]⊗ λ̃(Y a)v0.

This yields∑
a

[Y a, Z]⊗ λ̃(Ya)v =
1

2

∑
a

YaY
a(Z ⊗ v0)

−1

2

∑
a

(YaY
a.Z)⊗ v − 1

2

∑
a

Z ⊗ (YaY
a.v0)

=
1

2

∑
i∈I

ni∑
j=1

(c(τi,j)− c(−αi)− c(λ))πλτi,j
(Z ⊗ v0),

where −αi is the the highest weight of (gi
1)
∗ = gi

−1, τi,j ranges over the highest weights
of the duals of the irreducible components of gi

1⊗V and πλτi,j
denotes the corresponding

projection.
Exactly the same calculation can be done for

∑
α′ ηα′ ⊗ [Z, ξα′ ].w0
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Lemma 10. With the conventions as above,

2cλτi,j
= ‖τi,j + ρ‖2 − ‖λ+ ρ‖2 and 2cνσi,j

= ‖σi,j + ρ‖2 − ‖ν + ρ‖2,

where ρ =
∑n

k=1 ωk = 1
2

∑
α∈∆+(g,h) α is the half sum over all positive roots in g and

‖µ‖2 = B(µ, µ) ∀ µ ∈ h∗.

Proof. We will do the computation for V, the case of W being analogous. Let µ be
the highest weight of E∗, where E ⊂ gi

1 ⊗ V is an irreducible component. First of all,
we note that E∗ ⊂ gi

−1 ⊗ V∗, so µ can be written as λ plus a weight of gi
−1. But all

weights of gi
−1 have the form −αi −

∑
j∈J njαj, so λ− µ− αi =

∑
j∈J njαj.

Now use the equation

2B(ρ, αi) = B(ρ, α∨i )‖αi‖2 = ‖αi‖2

to deduce

2cλµ = B(µ, µ+ 2ρ0)−B(λ, λ+ 2ρ0)−B(−αi,−αi + 2ρ0)

= B(µ, µ+ 2ρ)−B(λ, λ+ 2ρ)− 2B(ρ− ρ0, µ− λ)− ‖αi‖2 + 2B(αi, ρ0)

= ‖µ+ ρ‖2 − ‖λ+ ρ‖2 + 2B(ρ− ρ0, λ− µ− αi)

= ‖µ+ ρ‖2 − ‖λ+ ρ‖2,

because

B(ρ− ρ0, λ− µ− αi) = B

(∑
i∈I

ωi,
∑
j∈J

njαj

)
= 0.

If Eµ is one of the irreducible components of g1 ⊗ V ⊗W, then we denote by πk
τi,jµ

the projection Vτi,j
⊗W → E(k)

µ onto the k-th copy of Eµ in the decomposition. πk
σi,jµ

is defined analogously as the projection onto the k-th copy of Eµ in V ⊗Wσi,j
. Every

projection

π :
V⊗ g1 ⊗W

⊕
g1 ⊗ V⊗W

→ Eµ

can be written as

π

(
v1 ⊗ Z1 ⊗ w1

Z2 ⊗ v2 ⊗ w2

)
=

∑
i,j,k

aτi,j ,kπ
k
τi,jµ

(
πλτi,j

(Z1 ⊗ v1)⊗ w1

)
+
∑
i,j,k

bσi,j ,kπ
k
σi,jµ (v2 ⊗ πνσ(Z2 ⊗ w2)) ,
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for some constants aτi,j ,k and bσi,j ,k. In order for a projection π to be a p-module
homomorphism, π ◦ Φ(Z ⊗ v ⊗ w)) = 0 has to hold for all Z ∈ g1, v ∈ V and w ∈ W.
This reads

π ◦ Φ(Z ⊗ v ⊗ w) =
∑
i,j,k

aτi,j ,kcλτi,j
πk

τi,jµ(πλτi,j
(Z ⊗ v)⊗ w)

+
∑
i,j,k

bσi,j ,kcνσi,j
πk

σi,jµ(v ⊗ πνσi,j
(Z ⊗ w))

= 0.

Let x denote the number of copies of Eµ in g1 ⊗ V ⊗W, then there are 2x unknowns
and x equations. Since Z, v and w are to be arbitrary and all πk

τi,jµ(πλτi,j
(Z ⊗ v)⊗ w)

lie in different copies of Eµ, we can think of those elements as constituting a basis {ei}
of ⊕xEµ. The same is true for the different πk

σi,jµ(v ⊗ πνσi,j
(Z ⊗ w)), which constitute

a different basis {fj}. Hence there is a linear isomorphism fj =
∑

iAijei connecting
those two basis and we obtain x equations

aicλτ(i) +
∑

j

bjcνσ(j)Aij = 0, i = 1, .., x,

where τ(i) (resp. σ(j)) denotes the representation corresponding to the index i (resp. j),
i.e. the i-th (resp. j-th) copy of Eµ lies in Vτ(i)⊗W (resp. in V⊗Wσ(j)). If all cλτ(i) 6= 0,
then the constants ai are uniquely determined by the bj’s.

This yields an x-parameter family of invariant bilinear differential pairings if cλτi,j
6= 0

for all i, j such that Eµ ⊂ Vτi,j
⊗W. If cλτi,j

= 0, then there exists an invariant linear
differential operator

Γ(V ) → Γ(Vτi,j
),

where Vτi,j
is the associated bundle to the representation Vτi,j

. The roles of the ai and
bj can, of course, be interchanged, so that we can alternatively exclude the situation
where cνσi,j

= 0, which corresponds to the existence of first order invariant differential
operators Γ(W ) → Γ(Wσi,j

). Thus we have proved:

3.2 Classification

3.2.1 The main result

Theorem 6 (Main result 2). Let V and W be two finite dimensional irreducible p-
modules, so that V∗ and W∗ have highest weights λ and ν respectively. Furthermore
denote the decomposition of the tensor products by

gi
1 ⊗ V = Vτi,1

⊕ ...⊕ Vτi,ni
, i = 1, ..., l0

and
gi

1 ⊗W = Wσi,1
⊕ ...⊕Wσi,mi

, i = 1, ..., l0.
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If cλτi,j
6= 0 for all i, j such that Eµ ⊂ Vτi,j

⊗ W or cνσi,j
6= 0 for all i, j such that

Eµ ⊂ V⊗Wσi,j
, then there exists an x-parameter family of first order invariant bilinear

differential pairings

Γ(V )× Γ(W ) → Γ(Eµ),

where x is the number of copies of Eµ in g1⊗V⊗W. Modulo curvature terms, all invari-
ant bilinear differential pairings of weighted order one on regular parabolic geometries
are obtained in such a way.

Corollary 4. The situation is considerably simplified if there is only one copy of Eµ in
g1 ⊗ V⊗W. More precisely, let

Eµ ⊂ Vτi,j1
⊗W and Eµ ⊂ V⊗Wσi,j2

.

Then we can choose a = cνσi,j2
and b = −cλτi,j1

if we normalize the projections correctly.
Every multiple of this pairing is obviously invariant as well. It also shows what happens
if weights are excluded:

1. If cλτi,j1
= 0, then we must take b = 0 and a is arbitrary. This corresponds to the

existence of an invariant first order linear differential operator Γ(V ) → Γ(Vτi,j1
)

combined with a unique projection Γ(Vτi,j1
)⊗ Γ(W ) → Γ(Eµ).

2. If cνσi,j2
= 0, then there exists an invariant first order linear differential operator

Γ(W ) → Γ(Wσi,j2
). This operator can be combined with the unique projection

Γ(Wσi,j2
)⊗ Γ(V ) → Γ(Eµ), i.e. we must take a = 0 and b is arbitrary.

3. If cλτi,j1
= cνσi,j2

= 0, then the statement of the main theorem is not true anymore.
We obtain two independent pairings corresponding to the two invariant linear
differential operators and the projections mentioned above.

Corollary 5. Let us briefly examine the condition cλτ = 0 for the special case that
τ = λ− αi, i ∈ I. This implies

cλτ = −B(λ, αi).

This implies that cλτ = 0 if and only if the number over the i-th node (which is crossed
through) corresponding to the simple root αi in the Dynkin diagram notation for V is
zero. This equation is in accordance with the situation considered in Theorem 4 and the
Introduction.

Remark

Let us write h = hS ⊕ z(g0) for the orthogonal decomposition of h into

hS = span{hαj
: j ∈ J} and z(g0) = {H ∈ h : αj(H) = 0 ∀ j ∈ J}.
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The duals can be characterized by

(hS)∗ = span{αj : j ∈ J} , z(g0)
∗ = span{ωi : i ∈ I}.

If we write λ = λ0 + λ′ for the decomposition of an arbitrary element λ ∈ h∗ into
λ0 ∈ (hS)∗ and λ′ ∈ z(g0)

∗, then the following proposition holds.

Proposition 5. The equation cλτi,j
= 0 is equivalent to

B(λ′, (−αi)
′) = c0λ0(τi,j)0

= −1

2
B((τi,j)0, (τi,j)0 + 2ρ0)

−B(λ0, λ0 + 2ρ0)−B((−αi)0, (−αj)0 + 2ρ0)),

where we have written λ = λ0 + λ′ for λ0 ∈ (hS)∗ and λ′ ∈ z(g0)
∗ and correspondingly

−αi = (−αi)0 + (−αi)
′, τi,j = (τi,j)0 + λ′ + (−αi)

′.

Note that the tensor product decomposition of (gi
1)
∗⊗V∗ only depends on λ0 and (−αi)0.

This is a linear equation on λ′, so in Theorem 6 we have to exclude a codimension one
subspace of weights in z(g0)

∗ for every τi,j with Eµ ⊂ Vτi,j
⊗W.

Proof. This is a direct computation using the fact that z(g0)
∗ and (hS)∗ are orthogonal

with respect to B(., .). In order to see this take λ ∈ z(g0)
∗ and µ ∈ (hS)∗. Then

hλ ∈ z(g0), i.e. α(hλ) = 0 for all α ∈ Sp. Now use the fact that (hS)∗ is spanned by Sp

to deduce that
B(λ, µ) = µ(hλ) = 0.

Corollary 6. We will treat two special cases separately. The case where p induces a
|1|-grading and the case where p = b is a Borel subalgebra.

1. If p induces a |1|-grading, then z(g0) is one-dimensional and spanned by the grad-
ing element E. The action of E on any irreducible representation of p is given by
a scalar which we call geometric weight. z(g0)

∗ is then spanned by ωi0, where
I = {i0} and we scale the inner product B(., .) to an inner product (., .) on h∗, so
that (ωi0 , ωi0) = 1.

The highest weight λ of V∗ can be written as λ = λ0 − ωωi0, where ω is the
geometric weight of V and λ0 ∈ (hS)∗. The geometric weight of g1 is obviously
1, so −αi0 = −ωi0 + (−αi0)0. If F ⊂ g∗1 ⊗ V∗ has highest weight τ , then F has
geometric weight ω + 1 and we can write τ = τ0 − (ω + 1)ωi0. Then we obtain

cλτ = ω − c0λ0τ0
,

where

c0λ0τ0
= −1

2
((τ0, τ0 + 2ρ0)− (λ0, λ0 + 2ρ0)− ((−αi0)0, (−αi0)0 + 2ρ0)) ,

in accordance with [16].



76 CHAPTER 3. THE FIRST ORDER CASE

2. If p = b is a Borel subalgebra, then z(g0) = g0 = h. In this case gi
1 ⊗ V = Vτi

,
with τi = λ− αi for i ∈ I = {1, ..., n}. It immediately follows that

cλτi
= −B(λ, αi).

Example

Let us look at the |1|-grading given by

× • ...• •
•

•
��

@@ .

Then ωi0 = ε1 and −αi0 = ε2 − ε1. This implies

(−αi0)0 = ε2 =
l−2∑
j=2

αj +
1

2
(αl−1 + αl) ∈ span{αj : j = 2, ..., l} = (hS)∗.

Moreover ρ0 =
∑l

j=2 ωj = (l − 2)ε1 + (l − 2)ε2 + (l − 3)ε3 + ... and hence

((−αi0)0, (−αi0)0 + 2ρ0) = 2l − 3.

Let us be even more concrete and set

λ =
v× 1• 0• ... 0• 0•��

@@

•

•

0

0

= (v + 1)ε1 + ε2

and look at τ = vε1, i.e. τ0 = 0, ω = −(v + 1) and λ0 = ε2. Then

ω = c0λ0τ0
⇔ (2l − 2) + v = 0.

Note that n = 2l − 2 is the dimension of the conformal manifold under consideration
(the flat model being the sphere Sn). Of course, we could have also calculated

‖τ + ρ‖2 − ‖λ+ ρ‖2 =
−2

4(l − 1)
(2l − 2 + v).

3.2.2 Examples

We will look at pairings on projective manifolds of dimension n. In this case invariance
means that a given formula does not depend on the choice of connection in the projective
equivalence class. More precisely, recall from the Introduction that if ∇ and ∇̂ are two
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connections that induce the same unparametrized geodesics, then there is a one form
Υa such that

∇̂aωb = ∇aωb −Υaωb −Υbωa

for every one form ωa ∈ Ω1(M). This formula can be used to deduce the difference of
the two connections when acting on any weighted tensor bundle as shown in [24] and
from this the invariance of any differential operator or pairing can be checked by hand.

1. Let

V =
w× 0• 0• ... 0• 0• and W =

1+v× 0• 0• ... 0• 1•,

so we look at pairings between weighted functions and weighted vector fields. We
have

g1 ⊗ V⊗W =
1• 0• ... 0• 1• ⊕ 0• 0• ... 0• 0•

as gS
0 -modules and geometric weights ω1 = −w n

n+1
for V and ω2 = −nv+n+1

n+1
for

W . Taking µ0 = 0 yields c0λ0τ0
= 0 and c0ν0σ0

= n − 1. This corresponds to the
invariant pairing (where we have multiplied everything by −n+1

n
):

(n+ v + 1)Xa∇af − w(∇aX
a)f.

2. Quite similarly we obtain an invariant paring

w× 0• 0• ... 0• 0• × v−2× 1• 0• ... 0• 0• → v+w−4× 2• 0• ... 0• 0•
(f, σb) 7→ (v − 2)σ(a∇b)f − w(∇(aσb))f

from the fact that in this case ω2 − c0ν0σ0
= − n

n+1
(v − 2) for W = Ω1(v).

3. A more sophisticated example can be obtained by taking

V =
1+v× 0• 0• ... 0• 1•, W =

w−(k+1)
× 0• 0• ... 0• 1• 0• ... 0• 0•︸ ︷︷ ︸
1 is in the (k+1)th position

and

E =
v+w−(k+1)

× 0• 0• ... 0• 1• 0• ... 0• 0•︸ ︷︷ ︸
1 is in the (k+1)th position

,

i.e. we pair weighted vector fields with weighted k-forms to obtain weighted k-
forms again. This time the multiplicity is two and indeed, for non-excluded ge-
ometric weights, there is a two parameter family of invariant bilinear differential
pairings given by

Xa∇aωbc...d +
n+ v − w − vw + vk + 1

(n+ v + 1)(v + 1)
(∇aX

a)ωbc...d −
k + 1

v + 1
(∇[aX

a)ωbc...d]
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and

Xa∇[aωbc...d] +
(n− k)w

(n+ v + 1)(v + 1)(k + 1)
(∇aX

a)ωbc...d −
w

v + 1
(∇[aX

a)ωbc...d].

It can be seen that the denominators can only be zero when excluded weights are
encountered, because ω1−c0λ0(τ1)0

= − n
n+1

(n+v+1) and ω1−c0λ0(τ2)0
= − n

n+1
(v+1)

for V . If one of these is zero, then the corresponding operator Xa 7→ ∇aX
a or

Xa 7→ ∇bX
a − 1

n
∇cX

cδb
a is projectively invariant.

3.3 The Problem with higher order pairings

For higher order pairings the reasoning in the last section quickly gets out of hand. In
the second order case for |1|-graded Lie algebras, for example, we have the following
problem: the possible symbols are given by mappings onto irreducible components of

�2g1 ⊗ V⊗W
⊕

g1 ⊗ V⊗ g1 ⊗W
⊕

V⊗�2g1 ⊗W

.

Therefore we have

2× |{E ⊂ �2g1 ⊗ V⊗W}|+ |{E ⊂ g1 ⊗ V⊗ g1 ⊗W}|

unknowns corresponding to the terms which are second order in V , those which are
second order in W and those which are first order in both. However, there are

2× |{E ⊂ g1 ⊗ V⊗ g1 ⊗W}|

obstruction terms. So it is not clear that we should obtain any pairings at all if there are
more obstruction terms than unknowns. In the homogeneous case of M = G/P = CPn,
for example, one can look at all the pairings between

V =
w× 0• 0• ... 0• 0• and W =

1+v× 0• 0• ... 0• 1•

that land in
v+w−2× 1• 0• ... 0• 0•.

The terms at disposal are

f∇a∇bX
b, ∇af∇bX

b, ∇bf(∇aX
b − 1

n
∇cX

cδ b
a ), Xb∇b∇af

and there are four obstruction terms

fΥa∇bX
b, fΥb∇aX

b, (∇af)ΥbX
b, (∇bf)ΥaX

b.
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So one might expect that only the zero paring would be invariant. But, somehow
miraculously from this point of view, this is not the case and we obtain a one parameter
family of invariant pairings spanned by

Xb∇b∇af − (w − 1)(n+ 1)

(v + n+ 1)n
∇af∇bX

b

−w − 1

v + 1
∇bf(∇aX

b − 1

n
∇cX

cδa
b) +

w(w − 1)

(v + 1)(v + n+ 1)
f∇a∇bX

b.

This formula even has a curved version that describes the invariant bilinear differential
pairing for a manifold with a general projective structure. One only has to add the
curvature correction term

w(v + w)

v + 1
PabX

bf,

where Pab is the Schouten tensor to be defined in Chapter 6.
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Chapter 4

Higher order pairings 1

In this chapter we will study certain higher order invariant bilinear differential pairings
for which we can write down explicit formulae for the pairings and the curvature correc-
tion terms. One can only hope for an explicit formula if there is a one-parameter family
of such pairings. It turns out that a certain class of those allows a unified description
which is completely independent of the specific geometry and even of the bundles in-
volved. It only depends on the order of the pairing in the same spirit as the differential
operators described in [12].

4.1 Semi-holonomic jet bundles

In order to study higher order pairings on general (curved) parabolic geometries, it
turns out that we need to consider semi-holonomic jet bundles instead of the usual jet
bundles. The reason for this is that the latter cannot be described as associated bundles
for some representation of P .

4.1.1 Restricted semi-holonomic bi-jets

Definition 16. We will define the k-th restricted semi-holonomic jet prolonga-
tion J̄ kV of a p-module V as in [57] inductively. Firstly, J̄ 1V = J 1V is the usual first
weighted jet prolongation as defined in 2.1.2. Having constructed J̄ k−1V, there are two
canonical projections

J 1(J̄ k−1V) → J 1(J̄ k−2V).

The first one is the usual projection J 1Ṽ → Ṽ for any p-module Ṽ followed by the
inclusion J̄ k−1V ⊂ J 1(J̄ k−2V) that is assumed to exist by the induction hypothe-
sis. The second projection is induced by the first weighted prolongation of the map
J̄ k−1V → J̄ k−2V. Their equalizer is the submodule J̄ kV. The filtration of this module
can be written as

J̄ kV =
k∑

i=0

⊗ig1 ⊗ V.

81
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There are canonical maps πk
l : J̄ kV → J̄ lV for all k ≥ l, so we can define the re-

stricted semi-holonomic bi-jet prolongation J̄ k(V,W) of two p-modules V and
W as in 2.1.4. The filtration of this p-module is given by

J̄ k(V,W) =
k∑

i=0

⊕i
j=0(⊗jg1 ⊗ V)⊗ (⊗i−jg1 ⊗W)

and the p-module structure of J̄ k(V,W) is induced by the p-module structures of J̄ kV
and J̄ kW as described in [57].

Remark

The associated bundles J̄ kV and J̄ k(V,W ) are called the restricted k-th semi-holonomic
jet bundle and the restricted k-th semi-holonomic bi-jet bundle respectively. In con-
trast to J kV the (restricted) semi-holonomic jet bundle J̄ kV is an associated bundle
for each parabolic geometry. This is because J̄ kV is defined by iterating the functor J 1

which maps an associated bundle U to an associated bundle J 1U . The iteration of this
functor yields an associated bundle J 1 · · · J 1︸ ︷︷ ︸

k−times

V and J̄ kV as an associated subbundle

by using the P -module homomorphism

J̄ kV ↪→ J 1 · · · J 1︸ ︷︷ ︸
k−times

V.

Proposition 6. Let Vλ, Wν and Eµ be three irreducible p-modules and let Φ be a
g0-module homomorphism

⊕M
j=0(⊗jg1 ⊗ Vλ)⊗ (⊗M−jg1 ⊗Wν) → Eµ.

Then Φ extends trivially to a p-module homomorphism Φ̃ : J̄ k(Vλ,Wν) → Eµ if and
only if

Φ

(
φ0 ⊗ Z ? ψM−1,

Z ? φ0 ⊗ ψM−1 + φ1 ⊗ Z ? ψM−2,
...

Z ? φj−1 ⊗ ψM−j + φj ⊗ Z ? ψM−j−1,
...

Z ? φM−2 ⊗ ψ1 + φM−1 ⊗ Z ? ψ0,

Z ? φM−1 ⊗ ψ0

)
= 0,
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for φ = (φ0, ..., φM) ∈ J̄M(Vλ) and ψ = (ψ0, ..., ψM) ∈ J̄M(Wν), i.e. φj ∈ ⊗jg1 ⊗ Vλ

and ψj ∈ ⊗jg1 ⊗Wν for j = 0, ...,M . The action ? is defined by

Z ? (U1 ⊗ · · · ⊗ Uj ⊗ u) =
∑

0≤i≤j

∑
α

U1 ⊗ · · · ⊗ Ui ⊗ ηα ⊗ [Z, ξα].(Ui+1 ⊗ · · · ⊗ Uj ⊗ u),

for Z ∈ g1 and dual basis {ηα} and {ξα} of g1 and g−1.

Proof. Let us write

J̄M(Vλ,Wν) = J̄M(Vλ)⊗ J̄M(Wν)/B,

then the action of p+ on J̄M(Vλ,Wν) is defined by

Z ? [φ⊗ ψ] = [(Z ? φ)⊗ ψ + φ⊗ (Z ? ψ)],

where the bracket [.] denotes the equivalence class modulo B and the stars inside the
bracket are the actions of p+ on J̄M(Vλ) and J̄M(Wν) as defined in [56], Proposition
3.9. Furthermore we note that Φ extends to a p-module homomorphism if and only
if Φ annihilates the image of the action of p+ on J̄ k(Vλ,Wν) that lies in the module
⊕M

j=0(⊗jg1 ⊗Vλ)⊗ (⊗M−jg1 ⊗Wν). Finally it has to be noted that p+ is generated by
g1, so we can restrict our attention to the action of g1.

4.1.2 Extremal roots

Definition 17 (The Weyl group). In the first chapter we have introduced the real
vector space E for a semisimple complex Lie algebra g which is equipped with a positive
definite bilinear form B(., .). For every α ∈ ∆(g, h) we will denote by

σα(λ) = λ−B(λ, α∨)α ∀ λ ∈ E

the reflection on the hyperplane perpendicular to α. The Weyl group W is the group
generated by those reflections. In fact, W is generated by simple reflections, i.e. by σα

for α ∈ S, as can be seen in [40], p. 51. Every w ∈ W has a unique length l(w) which
denotes the minimal number of simple reflections necessary to generate w.

1. For simple reflections we can write down an explicit formula for the node coeffi-
cients for any weight λ using the Cartan integers cij:

B(σαi
(λ), α∨j ) = B(λ, α∨j )−B(λ, α∨i )cij.

2. The most significant action of the Weyl group on weights, however, is the affine
action given by

w.λ = w(λ+ ρ)− ρ ∀ λ ∈ E, w ∈ W ,

where ρ is given by ρ =
∑l

i=1 ωi.
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3. The Weyl group has an important subgraph, the Hasse diagram Wp which
is associated to a parabolic subalgebra p of g. It is defined to be the subset
of elements in W whose action sends a weight λ, dominant for g, to a weight
dominant for p. For more information and an easy algorithm to determine Wp

see [3], p. 39–43.

4. For every λ ∈ h∗, let ‖λ‖2 = B(λ, λ). Since B(., .) is invariant under the Weyl
group (an easy exercise), the Weyl group acts by isometries with respect to this
norm.

Example

An easy calculation shows that the Weyl group of sln+1C is isomorphic to the symmetry
group Sn+1 and acts on a weight λ =

∑n+1
i=1 biεi by permuting the bi’s. More precisely,

σαi
exchanges bi and bi+1 and leaves the other numbers unchanged.

Definition 18. Let θ be a root of g such that gθ ∈ g−1. Then there exists an i ∈ I such
that gθ ∈ gi

−1. Let us call all such roots that in addition lie in the same orbit under the
action of W as −αi extremal if αi is a long simple root.

Let Vλ and Wν be two irreducible p-modules so that V∗
λ has highest weight λ ∈ h∗

and W∗
ν has highest weight ν ∈ h∗. Moreover suppose that α, β ∈ h∗ are extremal roots

such that gα, gβ ∈ gi
−1 and λ + kα and ν + kβ are dominant for p for k = 0, ...,M .

For the rest of this chapter we will implicitly assume that this setup is given. Finally,
suppose that there is an irreducible component (of the g0-module tensor product)

Eµ ⊂ ⊗Mg1 ⊗ Vλ ⊗Wν

of multiplicity 1 so that
Eµ ⊂ Vλ+jα ⊗Wν+(M−j)β

is an irreducible component of multiplicity one for j = 0, ...,M .

Remark

This setup excludes exactly those problematic pairings that were considered in 3.3. At
the end of this chapter we will comment on the scope of the construction showing that
it includes a wide class of pairings.

Remark

Let Vκ be an irreducible p-module and let θ be an extremal root such that κ + kθ is
p-dominant. Then kθ is an extremal weight of }kg−1 and hence the Parthasarathy-
Ranga-Rao-Varadarajan conjecture, that was proved in [47], shows that there is an
irreducible component of highest weight κ + kθ in ⊗kg−1 ⊗ V∗

κ as long as κ + kθ is
p-dominant. The triangle inequality shows that κ + kθ appears with multiplicity one,
since θ is a long root.
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4.1.3 Obstruction terms

For some constants γM,j and the setup as above, let us define

Φ : ⊕M
j=0

(
⊗jg1 ⊗ Vλ

)
⊗
(
⊗M−jg1 ⊗Wν

)
→ Eµ

M∑
j=0

φ̃j ⊗ ψ̃M−j 7→
M∑

j=0

γM,jπj

(
πλj

(φ̃j)⊗ πνM−j
(ψ̃M−j)

)
,

where

πλi
: ⊗ig1 ⊗ V → Vλi

, πνi
: ⊗ig1 ⊗W → Wνi

and πj : Vλj
⊗WνM−j

→ Eµ

are the canonical projections and we have used the abbreviations λi = λ + iα and
νi = ν + iβ.

Lemma 11. With the setup as above,

πλj
(Z ? φj−1) =

1

2

(
‖λ+ jα + ρ‖2 − ‖λ+ ρ‖2

)
πλj

(Z ⊗ φj−1)

and

πνj
(Z ? ψj−1) =

1

2

(
‖ν + jβ + ρ‖2 − ‖ν + ρ‖2

)
πνj

(Z ⊗ ψj−1).

Proof. This follows directly from Lemma 9, Lemma 10 and Proposition 6 since

πλj
(Z ? (X1 ⊗ · · · ⊗Xj−1 ⊗ v)

= πλj

( ∑
0≤i≤j−1

∑
α

X1 ⊗ · · · ⊗Xi ⊗ ηα ⊗ [Z, ξα].(Xi+1 ⊗ · · · ⊗Xj−1 ⊗ v)

)

=
1

2

(
j−1∑
i=0

(‖λ+ (i+ 1)α+ ρ‖2 − ‖λ+ iα+ ρ‖2

)
πλj

(Z ⊗X1 ⊗ · · · ⊗Xj−1 ⊗ v)

=
1

2

(
‖λ+ jα + ρ‖2 − ‖λ+ ρ‖2

)
πλj

(Z ⊗X1 ⊗ · · · ⊗Xj−1 ⊗ v).

Here we have used that Vλ+jα ⊂ �jg1 ⊗ Vλ. The calculation for ψ is analogous.

Φ is a p-module homomorphism if and only if the obstruction term from above given
by Φ(Z ? [φ⊗ ψ]) vanishes. This can be computed as

Φ(Z ? [φ⊗ ψ]) =
1

2

M∑
j=1

(
(γM,j

(
‖λ+ jα + ρ‖2 − ‖λ+ ρ‖2

)
+γM,j−1

(
‖ν + (M − j + 1)β + ρ‖2 − ‖ν + ρ‖2

)
)π(Z ⊗ φj−1 ⊗ ψM−j)

)
,
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where π is the projection onto Eµ. Now we note that

‖λ+ jα + ρ‖2 − ‖λ+ ρ‖2 = ‖α‖2j(B(λ+ ρ, α∨) + j).

Thus the vanishing of the obstruction term is equivalent to the following M equations:

γM,j+1(j + 1)‖α‖2(q − j) + γM,j(M − j)‖β‖2(q′ + j + 1−M) = 0, j = 0, ...,M − 1,

where q = −B(λ+ρ, α∨)−1 and q′ = −B(ν+ρ, β∨)−1. Moreover we know that α and
β lie in the same Weyl orbit and therefore have the same length. Hence the equations
reduce to

γM,j+1(j + 1)(q − j) + γM,j(M − j)(q′ + j + 1−M) = 0, j = 0, ...,M − 1. (4.1)

This is the third (and by far the most general) situation in which we encounter these
equations. They are formally equivalent to the ones that we considered in the Intro-
duction and Section 2.2. If q 6∈ {0, 1, ...,M − 1} or q′ 6∈ {0, 1, ...,M − 1}, then (4.1)
determines γM,j up to scale:

γM,j = (−1)j

(
M

j

)M−1∏
i=j

(q − i)
M−1∏

i=M−j

(q′ − i).

4.2 Ricci corrected derivatives

In this section we will formally define the (weighted) M -th order bilinear differential
pairing Γ(Vλ)× Γ(Wν) → Γ(Eµ) that is induced by the mapping Φ described above.

4.2.1 Formal definition of the pairing

Using the full first jet-bundle J1V rather than the weighted first order jet-bundle J 1V
of an associated vector bundle V , we can inductively construct the semi-holonomic
jet bundle J̄kV . This is the next definition.

Definition 19. Let V be a p-module. The k-th order semi-holonomic jet prolongation
J̄kV is defined inductively as follows: J̄1V = J1V the usual first jet prolongation. The
k-th order semi-holonomic jet prolongation J̄kV is defined to be the subbundle of
J1(J̄k−1V) where the two canonical maps to J1(J̄k−2V) coincide. The associated bundle
J̄kV = G ×P J̄

kV is the k-th order semi-holonomic jet bundle. Moreover the iterated
invariant differential

Γ(V ) 3 s 7→ ĵks = (s,∇ωs, ..., (∇ω)ks) ∈ Γ(J̄kV )

defines an embedding of JkV in J̄kV .



4.2. RICCI CORRECTED DERIVATIVES 87

Remark

The fact that the iterated invariant differential takes P -equivariant sections to P equiv-
ariant sections can be checked by an inductive procedure based on the calculations in
Lemma 6, see [57].

Remark

A Weyl structure σ : G0 → G induces an isomorphism between filtered and graded
vector bundles and hence an isomorphism σA : grA → A as detailed in 2.3.3. Thus, fol-
lowing [12], one can use the fundamental derivative to define the first Ricci-corrected
derivative

D
(1)
X s = ∇ω

σA(X)s,

for X ∈ TM and s a section of an arbitrary associated bundle V . The higher order
Ricci-corrected derivatives are defined analogously, using the Weyl connection to define
an isomorphism between the semi-holonomic jet bundle J̄kV and the associated graded
bundle grJ̄kV . Under this isomorphism ĵks is mapped to ĵk

Ds with components denoted
by D(j)s ∈ ⊗jT ∗M⊗ V , for j = 0, ..., k. A pairing (differential operator) can then be
constructed by a simple projection from the graded vector bundle and it is invariant
if and only if the projection of the image of the action of p+ vanishes, exactly as
described above. The following lemma relates the Ricci-corrected derivative to the
Weyl connection

DXs = σVD
(1)
X (σ−1

V s),

where σV : grV → V is the isomorphism induced by the choice of Weyl structure.

Lemma 12.
D

(1)
X s = DXs+ rD(X) • s,

where rD is a T ∗M-valued one form on M and the bullet denotes the action of T ∗M
on V induced by the action of p+ on V.

Proof. This lemma is taken from [12], Proposition 4.2. Together with Appendix A
in [12], this proposition also contains the proof that D is the Weyl connection that is
induced by σ∗ω0 and that rD is the Rho-tensor induced by σ∗ω+.

Construction of the pairings

The formal construction of the pairing is carried out in several steps: we take a section
s ∈ Γ(Vλ), map it via the iterated invariant differential to ĵMs ∈ J̄MVλ, use the Weyl
connection to map it to ĵM

D s = (s,D(1)s, ..., D(M)s) ∈ grJ̄MVλ and then project onto
grJ̄MVλ. The same is done for t ∈ Γ(Wν). Then we can tensor ĵM

D s and ĵM
D t together

and project onto grJ̄M(Vλ,Wν). Using Φ as defined above ensures that the procedure is
independent of the choice of Weyl structure involved. Note that the obvious projection
J̄MV → J̄MV is a p-module homomorphism.
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4.2.2 Explicit formulae

In order to write down explicit formulae in terms of a Weyl connection, we can use
the Ricci-corrected derivatives as in [12], where a recurrence formula for D(k) of ĵk

Ds =
(s,D(1)s, ..., D(k)s) is given. In the following ∇ denotes a choice of Weyl connection and
Dk denotes the k-th Ricci-corrected derivative. Moreover Γ = −1

2
‖αi‖2rD with rD as

in Lemma 12. More precisely, we write down a symbolic formula where all indices are
suppressed. To obtain an actual formula, one has to include all indices and combine
them as prescribed by the projection Φ. The recursion formula from [12], Theorem 6.2,
takes the form

Dks = ∇Dk−1s+ (k − 1)(q − k + 2)ΓDk−2s

for s ∈ Γ(Vλ), Dj = πλj
◦D(j) and q = −B(λ+ ρ, α∨)− 1. This yields

D0s = s

D1s = ∇s
D2s = ∇2s+ qΓs

D3s = ∇3s+ 2(q − 1)Γ∇s+ q∇(Γs)

D4s = ∇4s+ q∇2(Γs) + 2(q − 1)∇(Γ∇s) + 3(q − 2)Γ∇2s+ 3(q − 2)qΓ2s

D5s = ∇5s+ q∇3(Γs) + 2(q − 1)∇2(Γ∇s) + 3(q − 2)∇(Γ∇2s) + 3(q − 2)q∇(Γ2s)

+4(q − 3)Γ∇3s+ 4q(q − 3)Γ∇(Γs) + 8(q − 3)(q − 1)Γ2∇s
D6s = ∇6s+ q∇4(Γs) + 2(q − 1)∇3(Γ∇s) + 3(q − 2)∇2(Γ∇2s) + 3(q − 2)q∇2(Γ2s)

+4(q − 3)∇(Γ∇3s) + 4q(q − 3)∇(Γ∇(Γs)) + 8(q − 3)(q − 1)∇(Γ2∇s)
+5(q − 4)Γ∇4s+ 5(q − 4)qΓ∇2(Γs) + 10(q − 4)(q − 1)Γ∇(Γ∇s)
+15(q − 4)(q − 2)Γ2∇2s+ 15(q − 4)(q − 2)qΓ3s.

Putting q = j − 1 in Dj yields the formulae as in [12].

Remark

With the right scaling, Γ is the Rho-tensor in conformal geometry or the Schouten
tensor in projective geometry. It is easy to determine what is the tensor Γ in the various
geometries. One just has to write down the simplest invariant differential operator of
order two (for example when acting on weighted functions) and compute the curvature
correction term. The general form will be ∇2s + Ts, where T is some tensor. Then it
follows from the above discussion that T = Γ. We will demonstrate this for our usual
three examples (and refer the reader to Chapter 6 for the specific notations):

1. In projective geometry, the differential operator

E(1) → E(ab)(1)

f 7→ ∇a∇bf + Pabf

is invariant, where Pab is the Schouten tensor to be defined in Chapter 6. Hence
Γ = Pab.
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2. In conformal geometry in n dimensions, the differential operator

E [1] → E(ab)[1]

f 7→ ∇a∇bf −
1

n
gab∇c∇cf + (Pab −

1

n
gabP

c
c)f

is invariant, where Pab is the Rho-tensor to be defined in Chapter 6. Hence
Γ = Pab.

3. In CR geometry, the differential operator

E(w, 1) → E (αβ)(w − 2,−1)

f 7→ ∇α∇βf − iAαβf

is invariant, where Aαβ is the pseudohermitian torsion tensor to be defined in
Chapter 6. Hence Γ = −iAαβ (for complex conjugate operators including deriva-
tives ∇α the right tensor is iAαβ).

Remark

It is quite easy to write down a general formula. Dk has

[ k
2 ]∑

j=0

(
k − j

j

)
curvature correction terms. Each term is determined by a sequence of i ∇’s and j Γ’s,
so that i+ 2j = k, in a precise order. This looks like this:

∇ltΓsr∇lt−1 · · ·Γs1∇l1s,

so that the Γ’s are in position i1, ..., ij (j = s1 + ... + sr) counting from the right and
counting each Γ twice (taking the leftmost position of each Γ as im). Then the constant
is in front of this term is:

j∏
m=1

(im − 1)(q − im + 2). (4.2)

Note that this formula is purely algebraic. One can use the Leibniz rule to rearrange
terms, but this only leads to a more complicated expression.

Examples 1

1. The term
∇Γ∇Γs,

that occurs in D6s, has i1 = 2 and i2 = 5, so that the constant is given by 4q(q−3).
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2.
Γ∇Γ2∇s

occurs in D8s and has i1 = 3, i2 = 5 and i3 = 8, so the constant is given by
56(q − 1)(q − 3)(q − 6). The invariant operator corresponding to q = 7 has a
correction term, where this term appears with constant 56× 6× 4× 1 = 1344.

Examples 2

Let us write down the full formula for second and third order pairings:

1.

P2(s, t) = q(q − 1)s(D2t)− 2(q − 1)(q′ − 1)(D1t)(D1s) + q′(q′ − 1)(D2s)t

= q(q − 1)s(∇2t+ q′Γt)− 2(q − 1)(q′ − 1)(∇t)(∇s)
+q′(q′ − 1)(∇2s+ qΓs)t

= q(q − 1)s(∇2t)− 2(q − 1)(q′ − 1)(∇t)(∇s) + q′(q′ − 1)(∇2s)t

+qq′(q + q′ − 2)stΓ

2.

P3(s, t) = q(q − 1)(q − 2)s(D3t)− 3(q − 1)(q − 2)(q′ − 2)(D1s)(D2t)

+3(q − 2)(q′ − 1)(q′ − 2)(D2s)(D1t)− q′(q′ − 1)(q′ − 2)(D3s)t

= q(q − 1)(q − 2)s(∇3t+ 2(q′ − 1)Γ∇t+ q′∇Γt)

−3(q − 1)(q − 2)(q′ − 2)(∇s)(∇2t+ q′Γt)

+3(q − 2)(q′ − 1)(q′ − 2)(∇2s+ qΓs)(∇t)
−q′(q′ − 1)(q′ − 2)(∇3s+ 2(q − 1)Γ∇s+ q∇Γs)t

= q(q − 1)(q − 2)s(∇3t)− 3(q − 1)(q − 2)(q′ − 2)(∇s)(∇2t)

+3(q − 2)(q′ − 1)(q′ − 2)(∇2s)(∇t)− q′(q′ − 1)(q′ − 2)(∇3s)t

+q(q − 2)(q′ − 1)(2q + 3q′ − 8)sΓ∇t
−q′(q′ − 2)(q − 1)(3q + 2q′ − 8)tΓ∇s
+qq′(q − 1)(q − 2)s∇Γt− qq′(q′ − 1)(q′ − 2)t∇Γs.

To summerize, we have shown:

Theorem 7 (Main result 3). Let Vλ and Wν be two irreducible p-modules and let α
and β be two extremal roots so that λ+ jα and ν + jβ are p-dominant for j = 1, ...,M .
Furthermore let Eµ ⊂ ⊗Mg1⊗Vλ⊗Wν be an irreducible component of multiplicity one
that lies in

Vλ+jα ⊗Wν+(M−j)β

for j = 0, ...,M . If

q = −B(λ+ ρ, α∨)− 1 6∈ {0, 1, ...,M − 1}
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or
q′ = −B(λ+ ρ, α∨)− 1 6∈ {0, 1, ...,M − 1},

then there exists a weighted M-th order invariant bilinear differential pairing

PM : Γ(Vλ)× Γ(Wν) → Γ(Eµ)

and this pairing is given by

PM(s, t) =
M∑

j=0

(−1)j

(
M

j

)M−1∏
i=j

(q − i)
M−1∏

i=M−j

(q′ − i)π(Djs⊗DM−jt),

where Dj is defined as above. If q ∈ {0, 1, ...,M−1}, then the linear differential operator
s 7→ Dq+1s is invariant. The analogous statement holds for q′.

4.3 Examples and scope of the construction

4.3.1 Examples

(a) We can always choose α = β = −αi, i ∈ I, as extremal roots and take µ =
λ + ν − Mαi. The pairings thus constructed are the curved analogues of the
pairings described in Theorem 4.

(b) Let Vλ be an irreducible p-module and let α be an extremal root that lies in the
same Weyl orbit as −αi, i ∈ I. Assume that λ+jα is p dominant for j = 1, ...,M ,
but that q = −B(λ + ρ, α∨) − 1 6∈ {0, 1, ...,M − 1}. Then there is a unique
irreducible component Eλ+Mα in ⊗Mg1 ⊗ Vλ, see Remark 4.1.2. Furthermore let
Wν be a one dimensional representation that is given by a character in z(g0)

∗ and
a trivial representation of gS

0 , i.e. sections of Wν are weighted functions. Then
Eλ+Mα+ν satisfies the requirements of Theorem 7 with β = −αi and we can define
an invariant bilinear differential pairing

Γ(Vλ)× Γ(Wν) → Γ(Eλ+Mα+ν).

(c) Projective geometry in n dimensions: for every k ≥ 0, there exists an invariant
bilinear differential pairing

E (i1i2...ik)(v)× E(w) → E(v + w)

given by

k∑
j=0

(−1)j

(
M

j

) k−1∏
i=j

(v + n+ 2k − 1− i)
k−1∏

i=k−j

(w − i)(∇i1 ...∇ijV
i1...ik)(∇ij+1

...∇ikf)

+ C.C.T.

The curvature correction terms (C.C.T.) are given by the combinatorial for-
mula (4.2), where Γ = Pab is the Schouten tensor.
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(d) Conformal geometry in n-dimensions: there exists a k-th order invariant bilinear
differential pairing

E (i1i2...ik)
0 [v]× E [w] → E [v + w]

given by

k∑
j=0

(−1)j

(
M

j

) k−1∏
i=j

(v + n+ 2k − 2− i)
k−1∏

i=k−j

(w − i)(∇i1 ...∇ijV
i1...ik)(∇ij+1

...∇ikf)

+ C.C.T.

The formula for each curvature correction term of DjV and DM−jf is given by
the combinatorial formula (4.2), where Γ = Pab is the Rho-tensor.

(e) CR geometry in dimension 2n + 1: there exists an invariant bilinear differential
pairing

E(α1α2...αk)(w,w
′)× E(v, v′) → E(v′ + w′)

for every k ≥ 0 given by

k∑
j=0

(−1)j

(
M

j

) k−1∏
i=j

(w′+n+k−1− i)
k−1∏

i=k−j

(v′− i)(∇α1 ...∇αjvα1...αk
)(∇αj+1 ...∇αkf)

+ C.C.T.

The curvature correction terms are again given by the combinatorial formula (4.2),
where Γ = −iAαβ is the pseudohermitian torsion tensor.

4.3.2 Scope of the constructuion

The symbols of the differential pairings described above are linear combinations of terms
Djs ⊗ DM−jt and the operators Dis are invariant if q = i − 1 (for Dit the analogous
statement holds). These operators are all standard, but do not inculde every standard
operator. But in certain cases, like conformal geometry in even dimensions, all standard
differential operators are of this type. In the Appendix, we have written down the BGG
sequence for our standard three examples of projective, conformal and CR geometry.
Those BGG sequences clearly show which operators are constructed with this method
and which are not. For more exotic geometric structures the reader is advised to
consult [12].

Remark

The fact that the linear equations (4.1) that we had to solve in this chapter are ex-
actly the ones that had to be solved in the Introduction when we dealt with invariant
bilinear differential pairings on the Riemann sphere can be understood as follows: in
the homogeneous case invariant differential operators on G/B, where B is the Borel
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subgroup, give rise to invariant differential operators on G/P via direct images. The
same is true for invariant differential pairings. Let us demonstrate this for compactified
complexified Minkowski space M = • × •. There is a double fibration

× × ×
µ↙ ↘ ν
× • × • × •

,

where× × ×= G/B. The maps µ and ν commute with the action of G, so in particular

the fibres of µ, which are isomorphic to the Riemann sphere ×, are permuted by G.
Hence an invariant differential pairing on × gives rise to an invariant differential pairing
on G/B. Then one can use the fact that direct images of line bundles on G/B are vector
bundles on G/P , see [3]. Which direct images to take is determined by the extremal
roots α, β. More precisely, let λ be a dominant integral weight for p and let θ be an
extremal root with w(−αi) = θ, w ∈ W . Moreover let w.κ = λ, then

B(κ, α∨i ) = B(w−1.λ, α∨i )

= B(w−1(λ+ ρ), α∨i )− 1

= B(λ+ ρ, w(αi)
∨)− 1

= −B(λ+ ρ, θ∨)− 1

= q.

This implies that q is the number over the node corresponding to αi in the Dynkin
diagram notation for κ. κ induces a line bundle Vκ on G/B whose l(w)-th direct image

ν
l(w)
∗ (Vκ) is Vλ, the vector bundle over G/P induced by Vλ.



94 CHAPTER 4. HIGHER ORDER PAIRINGS 1



Chapter 5

Higher order pairings 2

This chapter deals with general higher order bilinear invariant differential pairings.
The strategy employed is to define a linear invariant differential operator that includes
an arbitrary irreducible associated bundle in some other associated bundle, called M-
bundle (which is in fact a tractor bundle, see [34], p. 7), that encodes all the possible
differential operators up to order M emanating from this bundle. We will then tensor
two of those M -bundles together and project onto irreducible components. First of all,
we have to define the M -bundles:

5.1 The M-module

5.1.1 Formal definition

Throughout this section, we will write s for a vector (s1, ..., sl0) ∈ Rl0 .

We will define a representation VM(E0) of g that is induced from a finite dimensional
irreducible representation E0 of gS

0 in the following way: (hS)∗ can be considered as a
subspace of h∗ in such a way that {αj}j∈J are the simple roots of gS

0 with corresponding
fundamental weights {ωj}j∈J . The highest weight λ0 of (E0)∗ can then be written as
λ0 =

∑
j∈J ajωj with aj ≥ 0. VM(E0) is then defined to be the finite dimensional

irreducible representation of g which is dual to the representation of highest weight

Λ =
∑
i∈I

Miωi + λ0 ∈ h∗,

where M = (Mi1 , ...,Mil0
) ∈ Nl0 . In the Dynkin diagram notation this is easily de-

scribed. There are l0 nodes in the Dynkin diagram for g which denote the simple roots
αi, i ∈ I. If we erase those nodes and adjacent edges, we obtain the Dynkin diagram
for gS

0 . An irreducible representation E0 of gS
0 is denoted by writing non-negative inte-

gers over the nodes of this new diagram corresponding to the highest weight of (E0)∗.
VM(E0) is then denoted by writing those numbers over the uncrossed nodes and Mi

over the node that corresponds to αi, i ∈ I, in the Dynkin diagram for g.

95
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Example

For CR geometry, the Lie algebra of interest is g = sln+2C with gS
0
∼= slnC. For every

representation

E0 =
a1• a2• ...

an−2•
an−1•

of gS
0 and constants M1,M2 ≥ 0 we define

VM(E0) =
M1• a1• a2• ...

an−1• M2• ,

a representation of g.

Lemma 13. VM(E0) has a composition series

VM(E0) = V0 + V1 + ...+ VN

as a p-module, so that gjVi ⊆ Vi+j and V0
∼= E0 as a gS

0 -module.

Proof. As a highest weight module, VM(E0)∗ is a direct sum of its weight spaces and
every weight has the form Λ −

∑n
i=1 kiαi with ki ∈ N (see [40], Theorem 20.2). Let

∆(Λ) be the set of all weights of VM(E0)∗ and define

N = maxµ∈∆(Λ)

{∑
i∈I

kµ
i : µ = Λ−

n∑
i=1

kµ
i αi

}
.

For every element v in the weight space of weight µ and every X ∈ gα, the element Xv
lies in the weight space of weight µ+α. This observation allows us to define a filtration
by p submodules

0 ⊂ (V0)∗ ⊂ (V1)∗ ⊂ · · · ⊂ (VN)∗ = VM(E)∗,

where (Vm)∗ is defined to be the sum of all weight spaces whose weight is of the form

Λ−
∑
j∈J

kjαj −
∑
i∈I

kiαi with
∑
i∈I

ki ≤ m.

The sub-quotients V∗
m = (Vm)∗/(Vm−1)∗ give rise to a composition series

VM(E0)∗ = V∗
N + ...+ V∗

0,

whose dual
VM(E0) = V0 + V1 + ...+ VN

is the desired composition series.
Let us examine those sub-quotients further: for m = 0, 1, ..., N , V∗

m is defined to
consist of those weight spaces of VM(E0)∗ whose weight is of the form

Λ−
∑
j∈J

kjαj −
∑
i∈I

kiαi with
∑
i∈I

ki = m.
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The action of gj maps V∗
i+j to V∗

i . Dually we obtain a mapping gj : Vi → Vi+j

as desired. This also shows that the composition series can alternatively be looked
at as a decomposition into g0-modules and since g0 is reductive (and z(g0) ⊂ h acts
diagonalizably), every Vi decomposes into irreducible components.

Finally one can observe that V0 has acquired the structure of a p-module by being
the unique irreducible quotient of VM(E0). Therefore it is dual to a representation of
highest weight Λ. In particular, V0 is isomorphic to E0 as a gS

0 -module.

From now on we will write V instead of VM(E0) assuming that M and E0 are fixed.
Note that we consider E0 as a g0-module via the isomorphism V0

∼= E0.

5.1.2 Lie algebra cohomology

There is a standard complex of g0-modules associated to a finite dimensional irreducible
g-module V:

0 → V ∂→ p+ ⊗ V ∂→ Λ2p+ ⊗ V ∂→ ...,

where we can identify Λpp+ ⊗V ∼= Hom(Λpg−,V) and therefore write the differential ∂
as

∂φ(X0, ..., Xp) =

p∑
i=0

(−1)iXi.φ(X0, ..., X̂i, ..., Xp)

+
∑
i<j

(−1)i+jφ([Xi, Xj], X0, ..., X̂i, ..., X̂j, ..., Xn),

for Xi ∈ g− (the hat denotes the element which is left out). One can check that ∂2 = 0,
see [46], Proposition 4.1, which allows us to define

Hp(g−,V) =
ker ∂ : Λpp+ ⊗ V → Λp+1p+ ⊗ V
im ∂ : Λp−1p+ ⊗ V → Λpp+ ⊗ V

.

In [45] Kostant provides an algorithm to compute these cohomology groups in terms of
the Hasse diagram Wp associated to p.

Theorem 8 (Kostant). Let F be the dual of a finite dimensional irreducible g-module
of highest weight λ. Then as g0-modules

Hp(g−,F) =
⊕

w∈Wp

l(w)=p

Fw.λ,

where Fw.λ denotes the dual of the representation of highest weight w.λ.

Proof. This theorem was originally proved in [44] and formulated in a suitable way for
our purposes in [2].
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Corollary 7. In the situation described above, we have

H0(g−,V) = E0 and H1(g−,V) =
⊕
i∈I

}Mi+1gi
1 } E0,

where } denotes the Cartan product.

Proof. The first statement is true in general and obvious. The second statement follows
from the fact that the elements of length one in the Hasse diagram Wp are exactly those
simple reflections that correspond to the simple roots αi, i ∈ I and (gi

1)
∗ has highest

weight −αi. Then we compute

αi.Λ = Λ− (Mi + 1)αi

and note that this is exactly the highest weight of the dual representation given by
(E0)∗ } }Mi+1(gi

1)
∗.

Let us have a closer look at the differential ∂. Since it is a g0 module homomorphism
it preserves the grading and so we must have

∂ : Vi →
k0⊕

j=1

gj ⊗ Vi−j,

where we set Vl = 0 for l < 0. The kernel of the first differential is E0, so the mapping
∂ : Vi →

⊕k0

j=1 gj ⊗ Vi−j is injective for all i ≥ 1. The cohomology of the second
differential is ⊕

i∈I

}Mi+1gi
1 } E0

with

}Mi+1gi
1 } E0 ⊂

k0⊕
j=1

gj ⊗ VMi+1−j

and all those have multiplicity one. Schematically this looks like

V = V0 + V1 + V2 + V3 + · · ·
∂ ↓ ∂ ↙ ∂ ↙ ∂ ↙

p+ ⊗ V = g1 ⊗ V0 +
g1 ⊗ V1

⊕
g2 ⊗ V0

+

g1 ⊗ V2

⊕
g2 ⊗ V1

⊕
g3 ⊗ V0

+ · · ·

∂ ↓ ∂ ↙ ∂ ↙

Λ2p+ ⊗ V = Λ2g1 ⊗ V0 +
g1 ∧ g2 ⊗ V0

⊕
Λ2g1 ⊗ V1

+ · · ·

.
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Weighted gradings

Before we proceed let us give an inductive construction of Up(p+) as defined in 2.1.1.

(1) U0(p+) = C

(2) U1(p+) = g1

(3)

U2(p+) =

 g1 ⊗ U1(p+)
⊕

g2 ⊗ U0(p+)

 /J2,

where
J2 = {X ⊗ Y − Y ⊗X − [X, Y ] : X, Y ∈ g1}.

...

(i+1)

Ui(p+) =

(
k0⊕

j=1

gj ⊗ Ui−j(p+)

)
/Ji,

where

Ji =

{
X ⊗ Y u− Y ⊗Xu− [X, Y ]⊗ u :

X ∈ gr, Y ∈ gs, u ∈ Ui−(r+s)(p+)
and 1 ≤ r, s ≤ k0

}
.

The construction for g− is exactly analogous with all integers being negative. We will
also need some notation for the grading of Λ2g− which is given by

Λ2g− =
∑
j<−1

Λ2
jg−,

with
Λ2

jg− =
⊕

p+q=j

gp ∧ gq,

see [65], 2.4. Schematically this looks like

Λ2g− = Λ2g−1︸ ︷︷ ︸
Λ2
−2g−

+ g−1 ∧ g−2︸ ︷︷ ︸
Λ2
−3g−

+
g−1 ∧ g−3

⊕
Λ2g−2︸ ︷︷ ︸
Λ2
−4g−

+
g−1 ∧ g−4

⊕
g−2 ∧ g−3︸ ︷︷ ︸

Λ2
−5g−

+...+ Λ2g−k0︸ ︷︷ ︸
Λ2
−2k0

g−

.

Proposition 7. We have an isomorphism

Vi
∼= Ui(p+)⊗ E0

for all 0 ≤ i ≤ mini∈I{Mi}. Moreover Vj ⊂ Uj(p+)⊗ E0 for all j.
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Proof. We will prove this proposition by induction. The case i = 0 is trivial. Let us
assume that the proposition is true for all integers smaller than i. Then we can use the
induction hypothesis to construct the following commutative diagram.

Vi
∂−−−→

⊕−k0

j=−1 Hom(gj,Vi+j)
∂−−−→

⊕−2k0

l=−2 Hom(Λ2
l g−,Vi+l)

id

y ι

y τ

y
Vi

∂−−−→
⊕−k0

j=−1 Hom(gj ⊗ U−(i+j)(g−),V0)
∂−−−→

⊕−2k0

l=−2 Hom(Λ2
l g− ⊗ U−(i+l)(g−),V0)

We can make this diagram commute by setting

(ι(φ))j(X ⊗ u) = u0.φj(X) for X ⊗ u ∈ gj ⊗ U−(i+j)(g−),

(τ(λ))l(X ∧ Y ⊗ u) = u0.λl(X ∧ Y ) for X ∧ Y ⊗ u ∈ Λ2
l g− ⊗ U−(i+l)(g−),

(∂φ)l(X ∧ Y ) = X.φs(Y )− Y.φr(X)− φl([X, Y ]) for X ∧ Y ∈ gr ∧ gs ⊂ Λ2
l g−

and

(∂ψ)l(X ∧ Y ⊗ u) = ψr(X ⊗ Y u)− ψs(Y ⊗Xu)− ψl([X, Y ]⊗ u)

for X ∧ Y ⊗ u ∈ gr ∧ gs ⊗ U−(i+l)(g−) ⊂ Λ2
l g− ⊗ U−(i+l)(g−). It is straightforward to

check that

∂ ◦ ιφ = τ ◦ ∂φ.

Note that (Xu)0 = −u0X for all u ∈ U(g−) and X ∈ g−. Corollary 7 shows that the
sequence

0 → Vi
∂→

−k0⊕
j=−1

Hom(gj,Vi+j)
∂→

−2k0⊕
l=−2

Hom(Λ2
l g−,Vi+l)

is exact for i ≤ mini∈I{Mi}. Then we can use the description of Ui(p+) from above to
deduce that for i ≤ mini∈I{Mi}

Vi
∼= ker ∂ ∼= Hom(U−i(g−),V0) ∼= Ui(p+)⊗ E0.

The second statement follows from the fact that

Vi
∼= im ∂ : Vi →

−k0⊕
j=−1

Hom(gj,Vi+j)

⊂ ker ∂ :

−k0⊕
j=−1

Hom(gj,Vi+j) →
−2k0⊕
l=−2

Hom(Λ2
l g−,Vi+l)

∼= Ui(p+)⊗ E0

for all i ≥ 1.
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5.1.3 Tensor products

The next step is to look at a tensor product VM(E0)⊗ VM(F0) and decompose it into
irreducible g-modules that themselves will have a composition series as p-modules. The
composition factors of all the irreducible components will then make up the composition
factors of the tensor product.

We will use the following colloquialism: if

V = V0 + ...+ Vk + ...+ VN

is the composition series of a g-module, then we will refer to elements in Vk as lying in
the k-th slot.

Remark

Let Λ and λ0 be defined as above and define VM(F0) analogously with highest weights
Σ and σ0 of VM(F0)∗ and (F0)∗ respectively. All irreducible components in the k-th slot
of VM(E0)⊗ VM(F0) are dual to modules with a highest weight of the form

µ = Λ + Σ−
∑
i∈I

kiαi −
∑
j∈J

kjαj,

with
∑

i∈I ki = k and ki, kj ≥ 0. Thus the number over the I 3 is-th node, s = 1, ..., l0,
(which is crossed through) will be

B(µ, α∨is) = 2Mis −
∑
i∈I

kiB(αi, α
∨
is)−

∑
j∈J

kjB(αj, α
∨
is)

= 2Mis − 2kis −
l∑

is 6=r=1

krB(αr, α
∨
is)

≥ 2(Mis − k).

Proposition 8. Let E0 and F0 be two irreducible representations of gS
0 . If we have

k ≤ M = mini∈I{Mi}, then for every irreducible component H of Uk(p+) ⊗ E0 ⊗ F0

there is a (p-module) projection

VM(E0)⊗ VM(F0) → H.

Proof. Schematically, we have the following situation

VM(E0) = E0 + U1(p+)⊗ E0 + U2(p+)⊗ E0 + ...

and

VM(F0) = F0 + U1(p+)⊗ F0 + U2(p+)⊗ F0 + ... .



102 CHAPTER 5. HIGHER ORDER PAIRINGS 2

Now the tensor product looks like

E0 ⊗ F0 +
E0 ⊗ U1(p+)⊗ F0

⊕
U1(p+)⊗ E0 ⊗ F0

+

E0 ⊗ U2(p+)⊗ F0

⊕
U1(p+)⊗ E0 ⊗ U1(p+)⊗ F0

⊕
U2(p+)⊗ E0 ⊗ F0

+ ... .

Every irreducible component G of E0⊗F0 (as gS
0 -modules) corresponds to an irreducible

component U of VM(E0)⊗VM(F0) that has a composition series that starts with G and
then continues with U1(p+) ⊗ G + U2(p+) ⊗ G + .... We will say that the composition
series is predictable up to the x-th slot, if Uj

∼= Uj(p+)⊗G for all j ≤ x, as gS
0 -modules.

Using Proposition 7 we know that U composes predictably up to the x-th slot if the
minimum of the numbers over the crossed through nodes in G is x.

Removing all those composition factors that correspond to irreducible components
of E0 ⊗ F0 from the composition series of the two g-modules leaves nothing in the
zeroth slot, exactly one copy of E0 ⊗ U1(p+) ⊗ F0 in the first slot, one copy of each
U1(p+) ⊗ E0 ⊗ U1(p+) ⊗ F0 and U2(p+) ⊗ E0 ⊗ F0 in the second slot and so forth.
Therefore the next irreducible components of VM(E0)⊗VM(F0) all have a composition
series that starts with an irreducible component of E0 ⊗ U1(p+) ⊗ F0. Removing the
corresponding composition factors again leaves nothing in the first two slots, exactly
one copy of U2(p+) ⊗ E0 ⊗ F0 in the second slot and so forth. So the next irreducible
components of the g-module tensor product have a composition series that starts with
an irreducible component of the gS

0 -module tensor product U2(p+) ⊗ E0 ⊗ F0. All this
goes well as long as all the compositions series are predictable. This is the case exactly
up to the M -th slot.

The remark above ensures that in the k ≤M -th slot of VM(E0)⊗VM(F0) the lowest
number over the I 3 is-th node, s = 1, ..., l0, (which is crossed through) is bigger or
equal to 2(Mis − k). Some of the factors in here correspond to irreducible components
of VM(E0)⊗VM(F0) as g-representations that themselves decompose according to plan
up to the 2(Mis − k)th slot, which corresponds in the big composition series to the
2Mis − k-th slot. Therefore the predicted decomposition is alright up to k = M . There
could be (and in general this happens) more composition factors of VM(E0)⊗VM(F0),
but those correspond to higher order pairings.

Note that H is defined to be the first composition factor of a composition series and
hence acquires the structure of a p-module.

Remark

Each of the g-modules and p modules considered above induces an associated vector
bundle on our manifold M. These may be tensored by a line bundle that is induced
by the irreducible representation which is dual to the one dimensional representation
of z(g0) with highest weight

∑
i∈I(ki − Mi)ωi. In the Dynkin diagram notation this

corresponds to having ki −Mi over the I 3 i-th node (which is crossed through) and
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zeros over the uncrossed nodes. Tensoring with this representation does not change the
overall structure of the composition series. It just changes the character by which z(g0)
acts. Let us denote this representation and the associated bundle by O(k −M) and
denote the tensor product of an arbitrary representation U with this representation by
U(k −M).

The p module V0(k −M) is dual to a representation of highest weight∑
i∈I

kiωi +
∑
j∈J

ajωj

and by choosing E0 and {ki}i∈I correctly, we can write every finite dimensional irre-
ducible p-module E as E = V0(k −M) of some module VM(E0)(k −M). The idea is
now to define invariant linear differential splitting operators

E → VM(E0)(k −M) and F → VM(F0)(l −M).

Once we have such splitting operators, we can tensor

VM(E0)(k −M)⊗ VM(F0)(l −M)

together and project onto the first composition factor of every irreducible component.
This is clearly an invariant bilinear differential pairing between sections of E and F .

5.2 The splitting operator

In this section we will define splitting operators

E → VM(E0)(k −M)

for an arbitrary irreducible finite dimensional p-module E = V0(k −M) .

5.2.1 Higher order curved Casimir operators

This subsection introduces splitting operators for general curved parabolic geometries.
These splitting operators are defined with the help of general invariant operators, the
higher order curved Casimir operators. These operators are a generalization of the
curved Casimir operator introduced by A. Čap and V. Souček in [21]. Throughout this
section we will implicitly assume that g is a classical simple Lie algebra Al, Bl, Cl, Dl

or G2.

Definition 20. Let g be a simple Lie algebra of rank l with basis {Xµ}. The Lie
algebra is determined by the structure equation

[Xµ, Xν ] = Cλ
µνXλ.
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Following [52], we will call a set S = {Sµ} in T (g) a vector operator, if

[Xµ, Sν ] = Cλ
µνSλ.

Let

ḡµν = tr(ad(Xµ) ◦ ad(Xν))

be the Killing form with inverse ḡµν . Fix a reference representation φ : g → gl(A) and
define

gµ1...µp = tr(φ(Xµ1) ◦ · · · ◦ φ(Xµp))

and

gµ1...µp = tr(φ(Xµ1) ◦ · · · ◦ φ(Xµp)),

where Xµ = ḡµνXν . Then we define elements in T (g) by

K(p) = gµ1...µpXµ1 ⊗ · · · ⊗Xµp and

S(p)
µ = gµµ1...µpX

µ1 ⊗ · · · ⊗Xµp .

Lemma 14. S(p) = {S(p)
µ } is a vector operator and K(p) is an element in Z̃(g), the

center of T (g).

Proof. Using the cyclic property of the trace operator, it is easy to see that

0 =

p∑
j=1

tr(φ(Xµ1) ◦ · · · ◦ φ(Xµj−1
) ◦ φ([Xν , Xµj

]) ◦ φ(Xµj+1
) ◦ · · · ◦ φ(Xµp))

=

p∑
j=1

Cλ
νµj

tr(φ(Xµ1) ◦ · · · ◦ φ(Xµj−1
) ◦ φ(Xλ) ◦ φ(Xµj+1

) ◦ · · · ◦ φ(Xµp))

=

p∑
j=1

Cλ
νµj
gµ1...µj−1λµj+1...µp .

In other words

−
p∑

j=1

Cλ
νµj
gκµ1...µj−1λµj+1...µp = Cλ

νκgλµ1...µp .

The same equation holds for the adjoint representation, i.e.

ḡλµC
λ
νκ + ḡκλC

λ
νµ = 0 ⇒ ḡµλC

λ
νκ = ḡκλC

λ
µν .

This yields

[Xν , X
µ] = ḡµκCλ

νκXλ = −Cµ
νλX

λ.
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Then we compute

[Xν , S
(p)
κ ] = −

p∑
j=1

C
µj

νλgκµ1...µpX
µ1 ⊗ · · · ⊗Xµj−1 ⊗Xλ ⊗Xµj+1 ⊗ · · · ⊗Xµp

= −
p∑

j=1

Cλ
νµj
gκµ1...µj−1λµj+1...µpX

µ1 ⊗ · · · ⊗Xµj−1 ⊗Xµj ⊗Xµj+1 ⊗ · · · ⊗Xµp

= Cλ
νκS

(p)
λ .

This proves the first claim. The second claim follows immediately from the fact that

K(p+1) = Xλ ⊗ S
(p)
λ ,

so

[Xν , K
(p+1)] = [Xν , X

λ]⊗ S
(p)
λ +Xλ ⊗ [Xν , S

(p)
λ ]

= −Cλ
νµX

µ ⊗ S
(p)
λ +Xλ ⊗ Cκ

νλS
(p)
κ

= 0.

Example 1

If g is simple, we can take A = g and the adjoint representation as our reference
representation. Any other choice of representation would lead to gµ1µ2 = Cḡµ1µ2 for
some non-zero constant C, see [52]. For sl2C with standard basis (x, h, y) and the
standard representation on C2 we obtain

gµν =

 0 0 1
0 2 0
1 0 0

 , gµν =

 0 0 1
0 1

2
0

1 0 0


and hence K(2) = x⊗ y + 1

2
h⊗ h+ y ⊗ x. The usual Casimir operator, see [40], can be

computed by projecting c̃ = ḡµ1µ2Xµ1 ⊗Xµ2 onto c ∈ U(g). For sl2C one easily obtains

ḡµν =

 0 0 4
0 8 0
4 0 0

 , ḡµν =

 0 0 1
4

0 1
8

0
1
4

0 0


and hence c̃ = 1

4
x⊗ y + 1

8
h⊗ h+ 1

4
y ⊗ x. This yields c = 1

2
xy + 1

8
h2 − 1

4
h.

Example 2

In order to obtain a non-trivial example, one has to go through a rather lengthly
calculation. So the patient reader is kindly asked to bear with us for a while (while the
impatient reader may skip this part):
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We will explicitly compute the element K(3) for sl3C and see how it acts on a gen-
eralized Verma module Mp(Vλ) of highest weight λ ∈ h∗. Firstly, we take a basis

h1 =

 1 0 0
0 −1 0
0 0 0

 , h2 =

 0 0 0
0 1 0
0 0 −1



x1 =

 0 1 0
0 0 0
0 0 0

 , x2 =

 0 0 0
0 0 1
0 0 0



y1 =

 0 0 0
1 0 0
0 0 0

 , y2 =

 0 0 0
0 0 0
0 1 0



z1 =

 0 0 1
0 0 0
0 0 0

 , z2 =

 0 0 0
0 0 0
1 0 0


of sl3C and compute

ḡµν =
1

18



2 1 0 0 0 0 0 0
1 2 0 0 0 0 0 0
0 0 0 0 3 0 0 0
0 0 0 0 0 3 0 0
0 0 3 0 0 0 0 0
0 0 0 3 0 0 0 0
0 0 0 0 0 0 0 3
0 0 0 0 0 0 3 0


.

Thus the dual basis to

{h1, h2, x1, x2, y1, y2, z1, z2}

is
1

18
{2h1 + h2, h1 + 2h2, 3y1, 3y2, 3x1, 3x2, 3z2, 3z1}.

Now we compute gµνκ with respect to the standard representation. The only non-zero
elements in gµνκ are

g112 = 1 g121 = 1 g122 = −1 g135 = 1 g146 = −1 g153 = −1
g178 = 1 g211 = 1 g212 = −1 g221 = −1 g246 = 1 g253 = 1
g264 = −1 g287 = −1 g315 = −1 g325 = 1 g348 = 1 g351 = 1
g426 = −1 g461 = −1 g462 = 1 g483 = 1 g513 = 1 g531 = −1
g532 = 1 g576 = 1 g614 = −1 g624 = 1 g642 = −1 g657 = 1
g728 = −1 g765 = 1 g781 = 1 g817 = 1 g834 = 1 g872 = −1.
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This allows us to compute 18K(3) to be

(2h1 + h2)⊗ (2h1 + h2)⊗ (h1 + 2h2) + (2h1 + h2)⊗ (h1 + 2h2)⊗ (2h1 + h2)
−(2h1 + h2)⊗ (h1 + 2h2)⊗ (h1 + 2h2)

+(2h1 + h2)⊗ 3y1 ⊗ 3x1 − (2h1 + h2)⊗ 3y2 ⊗ 3x2 − (2h1 + h2)⊗ 3x1 ⊗ 3y1

+(2h1 + h2)⊗ 3z2 ⊗ 3z1 + (h1 + 2h2)⊗ (2h1 + h2)⊗ (2h1 + h2)
−(h1 + 2h2)⊗ (2h1 + h2)⊗ (h1 + 2h2)− (h1 + 2h2)⊗ (h1 + 2h2)⊗ (2h1 + h2)

+(h1 + 2h2)⊗ 3y2 ⊗ 3x2 + (h1 + 2h2)⊗ 3x1 ⊗ 3y1

−(h1 + 2h2)⊗ 3x2 ⊗ 3y2 − (h1 + 2h2)⊗ 3z1 ⊗ 3z2 − 3y1 ⊗ (2h1 + h2)⊗ 3x1

+3y1 ⊗ (h1 + 2h2)⊗ 3x1 + 3y1 ⊗ 3y2 ⊗ 3z1 + 3y1 ⊗ 3x1 ⊗ (2h1 + h2)
−3y2 ⊗ (h1 + 2h2)⊗ 3x2 − 3y2 ⊗ 3x2 ⊗ (2h1 + h2) + 3y2 ⊗ 3x2 ⊗ (h1 + 2h2)

+3y2 ⊗ 3z1 ⊗ 3y1 + 3x1 ⊗ (2h1 + h2)⊗ 3y1 − 3x1 ⊗ 3y1 ⊗ (2h1 + h2)
+3x1 ⊗ 3y1 ⊗ (h1 + 2h2) + 3x1 ⊗ 3z2 ⊗ 3x2 − 3x2 ⊗ (2h1 + h2)⊗ 3y2

+3x2 ⊗ (h1 + 2h2)⊗ 3y2 − 3x2 ⊗ 3y2 ⊗ (h1 + 2h2) + 3x2 ⊗ 3x1 ⊗ 3z2

−3z2 ⊗ (h1 + 2h2)⊗ 3z1 + 3z2 ⊗ 3x2 ⊗ 3x1 + 3z2 ⊗ 3z1 ⊗ (2h1 + h2)
+3z1 ⊗ (2h1 + h2)⊗ 3z2 + 3z1 ⊗ 3y1 ⊗ 3y2 − 3z1 ⊗ 3z2 ⊗ (h1 + 2h2)

=
6h1 ⊗ h1 ⊗ h1 − 6h2 ⊗ h2 ⊗ h2

+3h1 ⊗ h1 ⊗ h2 + 3h1 ⊗ h2 ⊗ h1 + 3h2 ⊗ h1 ⊗ h1

−3h2 ⊗ h1 ⊗ h2 − 3h2 ⊗ h2 ⊗ h1 − 3h1 ⊗ h2 ⊗ h2

+18h1 ⊗ y1 ⊗ x1 − 9h1 ⊗ y2 ⊗ x2 − 9h1 ⊗ x1 ⊗ y1 − 9h1 ⊗ x2 ⊗ y2

−18h2 ⊗ x2 ⊗ y2 + 9h2 ⊗ y2 ⊗ x2 + 9h2 ⊗ x1 ⊗ y1 + 9h2 ⊗ y1 ⊗ x1

+18h1 ⊗ z2 ⊗ z1 − 18h2 ⊗ z1 ⊗ z2 + 9h2 ⊗ z2 ⊗ z1 − 9h1 ⊗ z1 ⊗ z2

−9y1 ⊗ h1 ⊗ x1 + 9y1 ⊗ h2 ⊗ x1

+18y1 ⊗ x1 ⊗ h1 + 9y1 ⊗ x1 ⊗ h2 + 27y1 ⊗ y2 ⊗ z1

−18y2 ⊗ h2 ⊗ x2 + 9y2 ⊗ x2 ⊗ h2 − 9y2 ⊗ h1 ⊗ x2

−9y2 ⊗ x2 ⊗ h1 + 27y2 ⊗ z1 ⊗ y1

+18x1 ⊗ h1 ⊗ y1 + 9x1 ⊗ y1 ⊗ h2

−9x1 ⊗ y1 ⊗ h1 + 9x1 ⊗ h2 ⊗ y1 + 27x1 ⊗ z2 ⊗ x2

−9x2 ⊗ h1 ⊗ y2 + 9x2 ⊗ h2 ⊗ y2

−18x2 ⊗ y2 ⊗ h2 − 9x2 ⊗ y2 ⊗ h1 + 27x2 ⊗ x1 ⊗ z2

−9z2 ⊗ h1 ⊗ z1 − 18z2 ⊗ h2 ⊗ z1 + 18z2 ⊗ z1 ⊗ h1

+9z2 ⊗ z1 ⊗ h2 + 27z2 ⊗ x2 ⊗ x1

+9z1 ⊗ h2 ⊗ z2 + 18z1 ⊗ h1 ⊗ z2 − 18z1 ⊗ z2 ⊗ h2

−9z1 ⊗ z2 ⊗ h1 + 27z1 ⊗ y1 ⊗ y2.

Then we use the canonical mapping π : T (sl3C) → U(sl3C) to compute the corre-
sponding element in the universal enveloping algebra.

18π(K(3)) =
6h3

1 − 6h3
2 + 9h2

1h2 − 9h2
2h1 − 54h2

2 − 27h1h2 − 54h1 − 108h2

−27h2z2z1 + 27h1z2z1 + 81z2x1x2 + 27h1y1x1 + 54h2y1x1

−54h1y2x2 − 27h2y2x2 + 81y1y2z1 − 162y2x2 − 81z2z1.
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Note that we have used the PBW theorem to arrange the terms in two groups. One
group consisting of terms that have a raising operator (x1, x2 or z1) to the right and
another group that consists of terms of elements in h. With this ordering, let us define a
homomorphism ξ : U(g) → U(h) that maps each term that does not exclusively consist
of elements in h to zero. Under this map, 18π(K(3)) is mapped to

6h3
1 − 6h3

2 + 9h2
1h2 − 9h2

2h1 − 54h2
2 − 27h1h2 − 54h1 − 108h2.

Moreover let η be the homomorphism that maps each hi to hi − 1, then

18η(ξ(π(K(3)))) = 6h3
1 − 6h3

2 − 27h2
1 − 27h2

2 + 9h2
1h2 − 9h1h

2
2 − 27h1h2 + 81.

Let us write ϕ = η ◦ ξ|Z(g). Every element z ∈ Z(g) in the center of the universal
enveloping algebra acts on a highest weight module of highest weight λ by a scalar
χλ(z) ∈ C, called the central character. It is easy to compute (see [40]) that

χλ(z) = (λ+ ρ)(ϕ(z)), for z ∈ Z(g).

Let us write

h1 = H1 −H2, h2 = H2 −H3.

Thus we get

18ϕ(π(K(3))) =

6(H3
1 +H3

2 +H3
3 )

−9(H2
1H2 +H2

1H3 +H2
2H1 +H2

2H3 +H2
3H1 +H2

3H2)
+36H1H2H3

−27(H2
1 +H2

2 +H2
3 )

+27(H1H2 +H1H3 +H2H3)
+81

.

As expected, this is a symmetric polynomial of degree 3 in the Hi’s. Note that the
Casimir operator of sl3C is given by

9ϕ(π(K(2))) = H2
1 +H2

2 +H2
3 −H1H2 −H1H3 −H2H3 − 3.

Remark

More generally, the mapping

ϕ := η ◦ ξ|Z(g) : Z(g) → S(h)W ,

where S(h)W is the algebra of elements in the symmetric algebra S(h) that are fixed by
the Weyl group W , is an isomorphism. For more information about basic generators of
S(h)W refer to [41].
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Equivalent formulation

We can equivalently say that K(p) induces a map

B(p) : ⊗pg∗ → R

by firstly identifying g∗ with g with the help of the Killing form and then mapping
a simple element ⊗pg 3 X1 ⊗ ... ⊗ Xp to tr(φ(X1) ◦ · · · ◦ φ(Xp)). This is obviously
a P -module homomorphism (in fact, it is even a G-module homomorphism). Since
there are l non-zero K(di), i = 1, ..., l, for the classical Lie algebras and G2, see [52],
the corresponding B(di) are non-zero as well. Apart form the D series, where an extra
element needs to be defined, see below, the elements π(K(di)) ∈ Z(g), for the canonical
mapping π : T (g) → U(g), generate the center of the universal enveloping algebra of g.

Examples

1. For Al we can take π(K(2)), π(K(3)),...,π(K(l+1)) as the generators of Z(Al).

2. For Bl (and Cl) we can take π(K(2)), π(K(4)),...,π(K(2l)) as the generators of
Z(Bl) (and Z(Cl)).

3. For Dl we can define another Casimir invariant by

K̃(l) = (−1)l(l+2)/2 1

2ll!
εµ1ν1µ2ν2...µlνl

Xµ1ν1 ⊗ · · · ⊗Xµlνl
,

where εµ1...νl
is the completely antisymmetric Levi-Cevita tensor taking the values

0 and ±1 and Xµν = −Xνµ are the basis elements of Dl (µ, ν = 1, .., 2l). Then the
elements π(K(2)), π(K(4)),...,π(K(2l−2)) and π(K̃(l)) are the generators of Z(Dl).

4. For G2 we can take π(K(2)) and π(K(6)) as the generators of Z(G2).

These statements can be found in [52] and references therein. Note that in each case
|W| =

∏
i di.

Definition 21. Recall the adjoint tractor bundle A = G ×P g and the fundamental
derivative

D : O(G,E)P → O(G, g∗ ⊗ E)P

s 7→ X 7→ ∇ω
Xs,

from 1.3.4. This operator can be iterated to an invariant differential operator

Dp : O(G,E)P → O(G,⊗pg∗ ⊗ E)P ,

see Lemma 5. Properties of the fundamental derivative are discussed in [13], 3.1. Using
the elements B(p) from 5.2.1, we can define an invariant linear differential operator

C(p) : O(G,V)P Dp

−→ O(G,⊗pg∗ ⊗ V)P B(p)⊗id−→ O(G,V)P

as the composition (B(p) ⊗ id) ◦Dp.
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Example

For p = 2 this procedure yields the curved Casimir operator in [21]. The authors prove
in this paper that the curved Casimir operator in the flat case is given by

ḡµ1µ2D2(sXµ1
, sXµ2

) = ḡµ1µ2RXµ1
RXµ2

,

see 1.3.4. In [21] the authors prove the following Lemma 15 and Lemma 16 for p = 2
via a direct calculation using an adapted local frame for A.

Lemma 15. Let V be an irreducible representation of P , then C(p) : Γ(V ) → Γ(V ) has
to act by a constant.

Proof. Let V and W be associated vector bundles over M. An invariant linear differ-
ential operator D : V → W arises via a composition

D : V
∇N

−→ ⊗NΛ1 ⊗ V
φ−→ W,

where φ is induced by a P -module homomorphism

Φ : ⊗Np+ ⊗ V → W.

Now suppose that V = W and V is irreducible. By looking at the action of the grading
element one deduces that N = 0 and Schur’s Lemma forces Φ to be a constant multiple
of the identity.

Definition 22. Let z ∈ Z(g) be an arbitrary element in the center of the universal
enveloping algebra of g. Then z can be written as a polynomial

z =
∑

i1,...,il

ai1...ilπ(K(d1))i1 · · ·π(K(dl))il ,

where K(d1), ..., K(dl) are the l non-zero elements of Definition 20. Then we define the
higher order curved Casimir operator associated to z by

Cz =
∑

i1,...,il

ai1...il(C(d1))i1 ◦ · · · ◦ (C(dl))il .

Lemma 16. If V is irreducible, then Cz acts on Γ(V ) by the constant χλ(z), where
χλ : Z(g) → C is the central character associated to λ ∈ h∗, the highest weight of V∗.

Proof. Lemma 15 shows that Cz acts by a constant. We may as well compute this
constant for the homogeneous model case G/P . For this purpose let us first of all take
V to be an arbitrary homogeneous bundle. We will prove the lemma for z = π(K(di)),
the general case then follows from the fact that the central character is an algebra
homomorphism. An invariant linear differential operator is determined by a P -module
homomorphism JkV → V for some k. Following [11], we can view JkV as a subset of

⊕k
i=0 ⊗i g∗ ⊗ V.



5.2. THE SPLITTING OPERATOR 111

The P -module homomorphism that corresponds to Cz is given by

B(di) ⊗ idV,

with k = di. Dually we obtain a mapping

V∗ →Mp(V)

that is given by

v∗ 7→ π(K(di))⊗ v∗ = z ⊗ v∗ ∈ U(g)⊗U(p) V∗.

Finally, this corresponds to a g-module homomorphism

Mp(V) → Mp(V)

u⊗ v∗ 7→ zu⊗ v∗

If V is irreducible, then this action is by definition given by χλ(z).

Example

For the Casimir operator c it is known ([40]) that

χλ(c) = ‖λ+ ρ‖2 − ‖ρ‖2.

The constants by which the higher order Casimir operators K(pi) act on an irreducible
g-module are computed in [52]. It has to be noted that despite the apparent fractional
form of the formulae in [52], these formulae can be proved to be symmetric polynomials
in the coefficients of λ+ρ, where λ can be an arbitrary weight in h∗. For Al, for example,
these can be found in [48].

Theorem 9. Let V be a representation of P with a P -invariant filtration

V = V0 ⊃ · · · ⊃ VN ⊃ {0},

so that each sub-quotient Vi/Vi+1 is completely reducible. Let W ⊂ Vi/Vi+1 be an
irreducible component whose dual has highest weight λ. Moreover, for each j > i, let
µj,k for k = 1, ..., nj be the highest weights of the irreducible representations which are
dual to the irreducible components of Vj/Vj+1. Suppose that χµj,k

6= χλ for all j, k,
then there exist elements zj,k ∈ Z(g), such that χµj,k

(zj,k) 6= χλ(zj,k) for all j, k. The
operator

L =
N∏

j=i+1

nj∏
k=1

(Czj,k
− χµj,k

(zj,k))

descends to an operator Γ(W ) → Γ(V i) that defines an invariant splitting.
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Proof. Let σ ∈ Γ(V j) and denote the projection V j → V j/V j+1 by πj. For brevity
write Lj =

∏nj

k=1(Czj,k
−χµj,k

(zj,k)). The individual operators Czj,k
−χµj,k

(zj,k) commute
with the πj’s by the naturality properties of D, see [13], Proposition 3.1. Hence

πj(Lj(σ)) =

nj∏
k=1

(Czj,k
− χµj,k

(zj,k))π(σ) = 0.

This implies that Lj maps Γ(V j) to Γ(V j+1) and by induction that L vanishes on
Γ(V i+1). Therefore L descends to an operator Γ(V i/V i+1) → Γ(V i) that can be re-
stricted to Γ(W ). Moreover, let σ ∈ Γ(W ) and choose a representative σ̂ ∈ Γ(V i), then
we compute

πi(L(σ̂)) =
N∏

j=i+1

nj∏
k=1

(χλ(zj,k)− χµj,k
(zj,k))σ.

So if χλ(zj,k) 6= χµj,k
(zj,k) for all j, k, then L(Cσ̂) ∈ Γ(V i) is an invariant lift for σ with

C =
(∏N

j=i+1

∏nj

k=1(χλ(zj,k)− χµj,k
(zj,k))

)−1

.

Remark

Theorem 9 is a straightforward extension of Theorem 2 in [21].

Corollary 8. Let E be an irreducible associated bundle, choose k and define the M-
bundle VM(E0)(k −M) as in 5.1. Assume that every generalized Verma module that
is associated to the irreducible composition factors of VM(E0)(k −M) has a different
central character from Mp(E), then the higher order curved Casimir operators Cz can
be used to define an invariant splitting operator

L =
N∏

j=i+1

nj∏
k=1

(Czj,k
− χµj,k

(zj,k)) : Γ(E) → Γ(VM(E0)(k −M)),

where µj,k are the highest weights of the duals of the irreducible components of the
composition factors

Vj(k −M) j = 1, ..., N

of VM(E0)(k −M) and zj,k ∈ Z(g) are such that χµj,k
(zj,k) 6= χλ(zj,k).

Proof. VM(E0) is a representation of g and hence allows a composition series by com-
pletely reducible sub-quotients as in Lemma 13. Tensoring this representation with
O(k − M) does not change the form of the composition series, it just changes the
character by which z(g0) acts. Hence we can apply Theorem 9.

Thus we have proved the next theorem.
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Theorem 10 (Main result 4). Let (M,G, g, ω) be a regular parabolic geometry of type
(G,P ) and let V and W be two finite dimensional irreducible p-modules such that the
action of p lifts to an action of P and let λ (resp. ν) be the highest weight of V∗

(resp. W∗). Moreover denote the corresponding gS
0 modules by V0 and W0 respectively

and define

VM(V0)(kV −M) and VM(W0)(kW −M)

to be the appropriate M-modules as in 5.1 and Remark 5.1.3. The different central
characters of the generalized Verma modules associated to the irreducible composition
factors of those M-modules will be denoted by χτi,j

(j = 1, ..., NV , i = 1, ..., nj) and
χσk,l

(k = 1, ..., NW , l = 1, ...,mk). If

χλ 6= χτi,j

and

χν 6= χσk,l

for all possible k, j, i, l, then there exists an m-parameter family of invariant bilinear
differential pairings

Γ(V )× Γ(W ) → Γ(E)

for each E = E0(kV + kW − 2M) corresponding to an irreducible component of the gS
0

tensor product

E0 ⊂ Ut(p+)⊗ V0 ⊗W0

of multiplicity m for each t ≤M = mini∈I{Mi}. This pairing is of weighted order t.

Proof. We can use Corollary 8 to define splittings

V → VM(V0)(k −M) and W → VM(W0)(l −M)

and Proposition 8 to ensure that there exist the appropriate projections

VM(V0)(kV −M)⊗ VM(W0)(kW −M) → E.

The weighted order can be determined by looking at the symbol of the differential
operator as described in 2.1.4.

Remark

In order to minimize the amount of restrictions χλ 6= χµ, it is best to choose Mi = M
for all i ∈ I. If one is interested in specific pairings, it might be appropriate to vary the
different values of M for V and W . In those cases one has to examine the corresponding
M -bundles carefully and exclude appropriate weights in the spirit of the discussion
above. This procedure can be a lot more efficient in any specific example (see Chapter 6)
than in the general theory developed above.
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5.2.2 Splitting operators on the flat model

On homogeneous spaces G/P , we can define splitting operators with the help of the
following three theorems:

Theorem 11. Invariant linear differential operators between sections of homogeneous
bundles over a flag manifold G/P are in one-to-one correspondence with g-module ho-
momorphisms of induced modules.

Proof. This theorem is proved analogously to Proposition 3 in [27], p. 212. It may
be noted that the theorem is usually stated in terms of generalized Verma modules
(see [3], p. 164). The statement, however, remains true for induced modules with
identical proof.

Theorem 12. If Mp(V0(k −M)) has distinct central character from the generalized
Verma modules associated to all the other composition factors of VM(E0)(k−M), then
it can be canonically split off as a direct summand of Mp(VM(E0)(k −M)).

Proof. The composition series VM(E0)(k−M) = V0(k−M)+ ...+VN(k−M) induces
a composition series

(VM(E0)(k −M))∗ = (VN(k −M))∗ + ...+ (V0(k −M))∗

of the dual representation. Since the functor that associates to every p-module V∗ the
corresponding induced module U(g) ⊗U(p) V∗ is exact (see [62], p. 303, Lemma 6.1.6),
we have a filtration

Mp(VM(E0)(k −M)) = Mp(VN(k −M)) + ...+Mp(V0(k −M))

that induces an injection Mp(V0(k −M)) ↪→ Mp(VM(E0)(k −M)). The weight spaces
of Mp(VM(E0)(k−M)) can be grouped in terms of central character, so the projection
Mp(VM(E0)(k −M)) → Mp(V0(k −M)) may be defined by projecting onto the joint
eigenspace of the central character of Mp(V0(k −M)). Since central character is pre-
served under the action of g, this projection is indeed a g-module homomorphism and
provides a g-module splitting of Mp(VM(E0)(k −M)).

Theorem 13 (Harish-Chandra). Two generalized Verma modules have the same central
character if and only if their highest weights are related by the affine action of the Weyl
group of g.

Proof. A proof of this theorem can, for example, be found in [40], p. 130, Theorem 23.3.
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Remark

The irreducible components of the tensor product Ut(p+) ⊗ V ⊗ W are exactly the
possible targets for invariant bilinear differential pairings of weighted order t between
sections of V and W that are curved analogues of non-zero pairings on the homogeneous
model spaces. This can be seen by looking at the exact sequence

⊕t
j=0Uj(p+)⊗ V⊗ Ut−j(p+)⊗W → J t(V,W) → J t−1(V,W) → 0

↘ ↓
E

.

Remark

1. Theorems 11, 12 and 13 combined are the backbone of the Jantzen-Zuckermann
translation functor as used in [28] and [27].

2. In order to define splitting operators we had to exclude weights, i.e. values of
k, for which the central character of Mp(V0(k −M)) is the same as the central
character of a generalized Verma module associated to another composition factor
of VM(E0)(k −M). A trivial case is k = M , because all the weight spaces of
VM(E0) apart from the highest weight space, which lies in V0, have weights µ so
that

‖Λ + ρ‖2 > ‖µ+ ρ‖2.

The pairings that we obtain via our construction in this trivial case are then
special cases of the parings tη as defined in [11], p. 13, Theorem 3.6.

5.2.3 Comparisons

First order operators via splittings and via p-module homomorphisms

Lemma 10 and Paragraph 4.1.3 show that the results from Chapters three and four are
consistent with the results in this chapter. The first method via bi-jet bundles, however,
is much more efficient, because we only have to exclude those weights that correspond to
operators that actually occur in the pairing. Moreover, the first method shows exactly
what happens for excluded weights whereas the second method using splitting operators
just fails. On the other hand, the construction in this chapter produces the most general
higher order pairings for non-excluded representations.

Splitting operators

Let V, W be two finite dimensional irreducible representations of p with the highest
weight of V∗ (resp. W∗) given by λ (resp. ν). Then we have the following implications.

There exists an invariant differential operator d : Γ(V ) → Γ(W )

⇒ Mp(V) and Mp(W) have the same central character

⇒ ‖λ+ ρ‖2 = ‖ν + ρ‖2,



116 CHAPTER 5. HIGHER ORDER PAIRINGS 2

where we only deal with curved analogues of flat operators, i.e. those operators that
are non-zero when restricted to flat parabolic geometries. Therefore, if

‖λ+ ρ‖2 6= ‖τk,j + ρ‖2

for all j and k, then none of the irreducible composition factors of VM(E0)(k − M)
induces a generalized Verma module that has a central character that is equal to the
one of E, so our construction is more efficient than just using the curved Casimir
operator and the splitting operators defined in [21].

The reverse of the two implications is not true:

Example 1

Let us look at the following weights:

λ =
−1× 0• 1• and µ =

−4× 1• 0•.

Let V∗, W∗ be the irreducible representations of p with highest weights λ and µ respec-
tively. Then

�2g1 ⊗ V =
−4× 2• 0• ⊗ −1× 0• 1• =

−5× 2• 1• ⊕ −4× 1• 0•,

so W appears as a possible symbol for a differential operator emanating from V . The
generalized Verma modules Mp(V) and Mp(W) do not have the same central character:
in the notation of Section 5.3.1 we have

λ+ ρ = (4|4, 5, 7) and µ+ ρ = (6|3, 5, 6)

and those numbers do not differ by a permutation. Equivalently, in [48] one can see
that K(3) acts on Mp(V) and Mp(W) differently. However, λ + ρ = −ε3 − 3ε4 and
µ+ ρ = 3ε2 + ε3 and hence

‖λ+ ρ‖2 = ‖µ+ ρ‖2 =
3

4
.

This means that in

2• 0• 1•(v − 1) =
v+1× 0• 1• +

v× 0• 0•
⊕

v−1× 1• 1•
+

v−2× 1• 0•︸ ︷︷ ︸
=µ for v=−2

⊕
v−3× 2• 1•

+
v−4× 2• 0• ,

we would have to exclude v = −2 if we wanted to define a pairing via the curved Casimir
operator. However, with the higher order curved Casimir operators, we do not have
to exclude this weight (in the next chapter we will see that the weights to exclude are
v = −4,−1, 0), since λ and µ do not have the same central character. In particular,
there is no invariant differential operator between the corresponding bundles. Finally
note that we will prove in the last chapter that the splitting in the general curved case
can be written down with the help of tractor calculus, see Theorem 15.
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Example 2

Let
λ =

0• 0× 0• and µ =
1• −4× 1•

and define V , W as above. The generalized Verma modules Mp(V) and Mp(W) have
the same central character (see [27]) and

�3g1 ⊗ V = (
3• −6× 3• ⊕ 1• −4× 1• )⊗ 0• 0× 0• =

3• −6× 3• ⊕ 1• −4× 1• ,

hence W is a possible symbol for a differential operator emanating from V . But, in
the conformally flat case, the classification in [27] shows that there is no invariant
differential operator Γ(V ) → Γ(W ). However, it has to be noted that the weight for

0• 3• 0•(v − 3) =
0• v× 0• +

1• v−2× 1•︸ ︷︷ ︸
(∗)

+

2• v−4× 2•
⊕

0• v−2× 0•
+

3• v−6× 3•
⊕

1• v−4× 1•︸ ︷︷ ︸
=µ for v=0

+ ...

that has to be excluded according to the above discussion is v = 0, which has to be
excluded at an even earlier stage (∗), because for v = 0 the exterior derivative

d :
0• 0× 0• → 1• −2× 1•

is an invariant operator.

Remark

We have not been able to find an example of a composition series of VM(V0)(k −M)
such that

1. there exists an irreducible composition factor W so that the generalized Verma
modules Mp(W) and Mp(V0(k −M)) have the same central character and

2. there is no invariant differential operator d : V → E, where E is an irreducible
composition factor of VM(V0)(k−M) and V is the bundle induced from V0(k−M).

It is plausible to conjecture that this is not possible. At present, however, this is still
an open question.

5.3 Higher order pairings for projective geometry

In this section we will work exclusively on an n-dimensional manifold M with a projec-
tive structure that is given in terms of a parabolic geometry (M,G, sln+1C, ω) of type
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(SLn+1R, P ) with P as given in 1.3.1 (a) and 1.3.2 (a). For the notation the reader is
also advised to refer to Chapter 6.

Note that we will use Dynkin diagrams for the visualization of four objects: an irre-
ducible representation of p, the corresponding irreducible homogeneous vector bundle,
its sections and the generalized Verma module associated to the representation. In
every case it should be clear which meaning we refer to and sometimes it is convenient
that two meanings are denoted at the same time.

5.3.1 Branching rules

Definition 23. For every representation

E =
a1• a2• ...

an−2•
an−1•

of gS
0 = slnC and every constant M ≥ 1 we define

VM(E) =
M• a1• a2• ...

an−2•
an−1• ,

a representation of g, which we also denote by

VM(E) = (0, b0, b1, b2, ...., bn−1) =

(
0,M, a1 +M,a1 + a2 +M, ...,

n−1∑
i=1

ai +M

)
.

When referring to a representation of p, we will use the notation (a|b, c, ..., d, e, f) for
b−a× c−b• ...

e−d•
f−e
• . This is important whenever we want to describe the action of the

Weyl group W on the weight, because W ∼= Sn+1 and it acts by permutation (and
renormalization to account for the usual ambiguity

(a+m|b+m, c+m, ..., d+m, e+m, f +m) = (a|b, c, ..., d, e, f)

for all m ∈ Z).

The g-module VM(E) has, as a p-module, a composition series

VM(E) = V0 + V1 + V2 + ...+ VN ,

where each Vi decomposes into a direct sum of irreducible p-modules and

V0 =
M× a1• a2• a3• ...

an−2•
an−1• .

We may tensor this composition series by O(k −M) to obtain

V0(k −M) =
k× a1• a2• a3• ...

an−2•
an−1• .
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This is the p-module that we are interested in and we want to define a mapping

V0(k −M) → VM(E)(k −M)

using the theorems from the last section. Hence we have to make sure that the
generalized Verma modules associated to all the irreducible composition factors of
VM(E)(k −M) have a central character which is different from the central character
of Mp(V0(k −M)).

Remark

In the case of projective geometry, Proposition 7 can be proved directly using Pierie’s
formula, as in [32], p. 225, for the tensor product �lg1 ⊗ E and the branching rules
for restrictions of representations of sln+1C to slnC as in [33], p. 350. The upshot
of this procedure is that we obtain a more precise statement than Proposition 7,
namely that Vl(k − M) consists of terms (M − k + l|b̃0, b̃1, ..., b̃n−1) that interlace
(M − k|b0, b1, ...., bn−1), i.e.

0 ≤ b̃0 ≤ b0 ≤ b̃1 ≤ b1 ≤ b̃2 ≤ b2 ≤ ... ≤ b̃n−1 ≤ bn−1

and
∑n−1

i=0 bi−
∑n−1

i=0 b̃i = l. We can also see that N =
∑n−1

i=1 ai +M , because for l > N

it is not possible for any (M − k + l|b̃0, b̃1, ..., b̃n−1) to interlace (M − k|b0, b1, ..., bn−1).

Proposition 9. The only irreducible components of Vl(k −M) that can induce gener-
alized Verma modules with the same central character as Mp(V0(k −M)) are the ones
that are of the form

(M − k + l|b0, b1, ..., bj−1, bj − l, bj+1, ..., bn−1),

for j = 0, 1, ..., n − 1. If j ∈ {1, ..., n − 1}, then this is only allowed for aj ≥ l and if
j = 0, then this is only allowed for l ≤ M . In that case the generalized Verma module
has the same central character as Mp(V0(k −M)) if and only if

k = −

(
j∑

i=1

ai + j − l + 1

)
.

For j = 0, this condition reads k = l − 1.

Proof. Using the remark in Section 5.3.1, we know that an arbitrary irreducible com-
ponent Vl,v(k −M) of Vl(k −M) has to be of the form (M − k + l|b̃0, ..., b̃n−1) so that
(M − k + l|b̃0, ..., b̃n−1) interlaces (M − k|b0, ..., bn−1). Let us assume that there are at
least two integers 0 ≤ i < j ≤ n− 1 such that b̃i < bi and b̃j < bj. We can assume that
i is the smallest integer with this property and that j is the biggest integer with this
property.

Theorem 13 implies that the central characters of the generalized Verma modules
Mp(V0(k−M)) and Mp(Vl,v(k−M)) are identical if and only if there is an element in
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the Weyl group, i.e. a permutation, that maps the weight (M − k + l|b̃0, ..., b̃n−1) + ρg

to (M − k|b0, ..., bn−1) + ρg. Using ρg = (1, 2, ..., n, n+ 1), we obtain the condition that
the two sets

{M − k + 1, b0 + 2, b1 + 3, ..., bi + i+ 2, ..., bj + j + 2, ..., bn−1 + n+ 1}

and

{M − k + l + 1, b̃0 + 2, b̃1 + 3, ..., b̃i + i+ 2, ..., b̃j + j + 2, ..., b̃n−1 + n+ 1}

have to be equal. This is equivalent to

{M − k + 1, bi + i+ 2, ..., bj + j + 2} = {M − k + l + 1, b̃i + i+ 2, ..., b̃j + j + 2},

where the sets contain all those bm + m + 2, resp. b̃m + m + 2, for which b̃m 6= bm.
Furthermore, leaving outM−k+1, all numbers in the first set are increasing from left to
right. Since b̃i < bi, b̃i+i+2 is smaller than the second entry in the first set and therefore
smaller than everything but the first entry, i.e. we must have b̃i + i + 2 = M − k + 1.
Moreover b̃j < bj implies that there has to be an integer m < j so that

b̃j + j + 2 = bm +m+ 2 ⇒ b̃j + j = bm +m.

This is not possible, because b̃j ≥ bm and j > m. That proves the first claim.
Let us now assume that Vl,v(k−M) = (k−M + l|b0, b1, ..., bj−1, bj − l, bj+1, ..., bn−1).

In this case Mp(Vl,v(k −M)) has the same central character as Mp(V0(k −M)) if and
only if

{M − k + l + 1, bj − l + j + 2} = {M − k + 1, bj + j + 2},

which is equivalent to k = −bj +M − j + l − 1 = −
(∑j

i=1 ai + j − l + 1
)
.

5.3.2 Excluded weights

Proposition 10. If

k = −

(
j∑

i=1

ai + j − l + 1

)
,

then there exitst an l-th order invariant linear differential operator

k× a1• a2• a3• ...
an−2•

an−1• → k−l× a1• a2• ...
aj−l
•

aj+1+l
• ...

an−2•
an−1• .

Proof. As proved in [16], p. 65, Corollary 5.3, the condition for this operator to be
invariant is

ω = (α̃+ εn−j, ρ)−
1

2
(l − 1)(|α̃|2 + 1)− (−εn−j, λ̃),

where ω = − 1
n+1

(
nk +

∑n−1
i=1 (n− i)ai

)
is the geometric weight of

k× a1• ...
an−2•

an−1• ,

(., .) is the normalized Killing form as in Corollary 6 and α̃ = −εn is the highest weight
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of g1. Moreover ρ = ρslnC =
∑n−1

i=1 (n − i)εi, |α|2 = (α, α) and λ̃ =
∑n−1

i=1 λiεi (we can

always assume that λn = 0, which implies λn−j =
∑j

i=1 aj) is the highest weight of E.
Using

(α̃+ εn−j, ρ) =
nj

n+ 1
,

|α̃|2 =
n− 1

n+ 1
,

(εn−j, λ̃) =
nλn−j −

∑n
i=1 λi

n+ 1

and the formula for ω from above, we see that

ω = (α+ εn−j, ρ)−
1

2
(l − 1)(|α̃|2 + 1)− (−εn−j, λ̃) ⇔ k = −

(
j∑

i=1

ai + j − l + 1

)
.

Note that these calculations for j ∈ {1, ..., n − 1} make only sense if aj ≥ l. If j = 0,
then l may be arbitrary.

We could have also proven this proposition utilizing Chapter 4.

The problem is, when we look at M -th order pairings, we do not really want to
exclude weights that correspond to operators that have a higher order. The following
lemma excludes such a situation at the cost of a restriction on the integers ai.

Lemma 17. Let M ≥ maxi{ai}, then no weights have to be excluded for l > M .

Proof. As discussed earlier, an irreducible component of Vl(k − M) that induces a
generalized Verma module with the same central character as Mp(V0(k−M)) can only
arise by taking

(M − k|b0, b1, ..., bn−1)

and subtracting l from one of the bi’s to obtain

(M − k + l|b̃0, b̃1, ..., b̃n−1)

so that (M − k + l|b̃0, ..., b̃n−1) interlaces (M − k|b0, ..., bn−1). But

bi − bi−1 = ai ≤M < l ∀ i = 1, ..., n− 1,

so subtracting l from any bi, i ≥ 1, leads to b̃i = bi − l < bi−1, which is not allowed.
Subtracting l from b0 leaves b̃0 = M − l < 0, which is also not allowed. Therefore all
irreducible components of Vl(k −M), for l > M , induce a generalized Verma module
that has a central character which is different from the one of Mp(V0(k −M)).
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Examples

(a) Let us look at symmetric two tensors of projective weight v, i.e. sections of the
vector bundle �2TM⊗O(v) for M = 2:

2• 0• ... 0• 2•(v) =
2+v× 0• ... 0• 2• +

1+v× 0• ... 0• 1•
⊕

v× 1• 0• ... 0• 2•
+

v× 0• ... 0• 0•
⊕

v−1× 1• 0• ... 0• 1•
⊕

v−2× 2• 0• ... 0• 2•

+

v−2× 1• 0• ... 0• 0•
⊕

v−3× 2• 0• ... 0• 1•
+

v−4× 2• 0• ... 0• 0• .

The weights to exclude are

1. v = −2,−(n + 3) which correspond to the first order invariant linear differ-
ential operators ∇aV

bc − 2
n+1

δa
(b∇dV

c)d and ∇aV
ab respectively;

2. v = −1,−(n+ 2) which correspond to second order invariant linear differen-
tial operators ∇a∇bV

cd +PabV
cd− trace and ∇a∇bV

ab +PabV
ab respectively.

(b) Another example for vector fields of projective weight v, i.e. sections of TM⊗O(v),
with M = 1:

1• 0• ... 0• 1•(v) =
1+v× 0• ... 0• 1• +

v× 0• ... 0• 0•
⊕

v−1× 1• 0• ... 0• 1•
+

v−2× 1• 0• ... 0• 0• .

The weights to exclude are v = −1,−(n + 1) corresponding to the first order
invariant linear differential operators ∇aV

b − 1
n
δa

b∇cV
c and ∇aV

a respectively.

(c) The last example deals with weighted functions and a general M :

M• 0• ... 0• 0•(w −M) =
w× 0• ... 0• 0• +

w−2× 1• 0• ... 0• 0• +
w−4× 2• 0• ... 0• 0•

+...+
w−2M× M• 0• ... 0• 0• .

The weights to exclude are w = 0, 1, ...M−1 corresponding to the invariant linear
differential operators ∇(a...∇c)︸ ︷︷ ︸

w+1

f + C.C.T. respectively.
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5.3.3 Classification and Examples

To state the main theorem, we have to define precisely what we mean by excluded
weights.

Definition 24. Let
k× a1• a2• ...

an−2•
an−1• be a representation of p. Then the excluded

weights up to orderM consist of all k such that there is a 1 ≤ l ≤M and a 0 ≤ j ≤ n−1
with

k = −

(
j∑

i=1

ai + j − l + 1

)
and aj ≥ l.

For j = 0, the excluded weights are k = l − 1 for 1 ≤ l ≤M .

Theorem 14. Let
k× a1• a2• ...

an−2•
an−1• and

m× b1• b2• ...
bn−2•

bn−1• be irreducible

associated bundles on M. If M ≥ maxi{ai, bi} and k and m are not equal to one of the
excluded weights up to order M , then there exists an r parameter family of M-th order
invariant bilinear differential pairings

k× a1• a2• ...
an−2•

an−1• × m× b1• b2• ...
bn−2•

bn−1• → s× c1• c2• ...
cn−2•

cn−1• ,

where r is the multiplicity of
c1• c2• ...

cn−2•
cn−1• in

�Mg1 ⊗
a1• a2• ...

an−2•
an−1• ⊗ b1• b2• ...

bn−2•
bn−1• .

Excluded weights correspond to the existence of invariant linear differential operators of
order ≤M emanating from the bundles in question.

Proof. If M ≥ maxi{ai, bi} and k and m are not equal to one of the excluded weights
up to order M , we can use Lemma 17, Proposition 9 and Corollarly 8 to define invariant

differential operators that take
k× a1• a2• ...

an−2•
an−1• and

m× b1• b2• ...
bn−2•

bn−1• into

their M -bundles. Then we decompose the tensor product of the M -bundles as described
in Proposition 8 and project onto the first composition factor of each of the irreducible
components. That also yields all the invariant pairings of order smaller than M , but
we may have to exclude more weights than necessary. Moreover there cannot be more
invariant bilinear differential pairings that are non-zero in the flat case, because then one
would be able to find a linear combination of all those pairings that does not involve the
highest order terms (M derivatives) in sections of one of the bundles. But obstruction
terms involving M − 1 derivatives in the sections of that bundle and one Υ-term would
therefore only occur in �M−1g1 ⊗ E⊗ g1 ⊗ F (if E and F denote the corresponding gS

0 -
modules as before) and one would not be able to eliminate them, because no operator
in the formula is invariant. The last statement follows from Proposition 10.
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Example

Let us carry out the described construction for first order pairings between weighted
2-forms and weighted vector fields for four dimensions. The corresponding M bundles
have composition series

1• 0• 1• 0• =
1× 0• 1• 0• +

0× 0• 0• 1•
⊕

−1× 1• 1• 0•
+

−2× 1• 0• 1•

and

1• 0• 0• 1• =
1× 0• 0• 1• +

0× 0• 0• 0•
⊕

−1× 1• 0• 1•
+

−2× 1• 0• 0• .

If we tensor these together, we obtain a composition series

1• 0• 1• 0• ⊗ 1• 0• 0• 1• =


2× 0• 1• 1•
⊕

2× 1• 0• 0•

+

 4× 1× 0• 1• 0• ⊕ 2× 0× 1• 1• 1•
⊕

2× 0× 2• 0• 0• ⊕ 2× 1× 0• 0• 2•



+



3× −1× 1• 0• 2• ⊕ 6× −1× 1• 1• 0•
⊕

5× 0× 0• 0• 1• ⊕ −2× 2• 1• 1•
⊕

−1× 0• 2• 1• ⊕ −2× 3• 0• 0•


+



5× −2× 1• 0• 1• ⊕ 2× −1× 0• 0• 0•
⊕

2× −3× 2• 1• 0• ⊕ 2× −2× 0• 2• 0•
⊕

−3× 2• 0• 2• ⊕ −2× 0• 1• 2•



+



−4× 2• 0• 1•
⊕

−3× 0• 1• 1•
⊕

0× 1• 0• 0•


.

This composition series can be split up according to

1• 0• 1• 0• ⊗ 1• 0• 0• 1• =
2• 0• 1• 1• ⊕ 0• 1• 1• 1• ⊕ 2• 1• 0• 0•

⊕ 1• 0• 0• 2• ⊕ 0• 2• 0• 0•

⊕2× 1• 0• 1• 0• ⊕ 0• 0• 0• 1•,
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which compose as

2• 0• 1• 1• =
2× 0• 1• 1• +

1× 0• 0• 2•
⊕

0× 1• 1• 1•
⊕

1× 0• 1• 0•

+

−1× 1• 0• 2•
⊕

−2× 2• 1• 1•
⊕

0× 0• 0• 1•
⊕

−1× 1• 1• 0•

+

−2× 1• 0• 1•
⊕

−3× 2• 1• 0•
⊕

−3× 2• 0• 2•

+
−4× 2• 0• 1• ,

0• 1• 1• 1• =
0× 1• 1• 1• +

−1× 0• 2• 1•
⊕

−1× 1• 0• 2•
⊕

−1× 1• 1• 0•

+

−2× 0• 1• 2•
⊕

−2× 1• 0• 1•
⊕

−2× 0• 2• 0•

+
−3× 0• 1• 1• ,

2• 1• 0• 0• =
2× 1• 0• 0• +

1× 0• 1• 0•
⊕

0× 2• 0• 0•
+

−1× 1• 1• 0•
⊕

−2× 3• 0• 0•
+

−3× 2• 1• 0• ,

1• 0• 0• 2• =
1× 0• 0• 2• +

0× 0• 0• 1•
⊕

−1× 1• 0• 2•
+

−1× 0• 0• 0•
⊕

−2× 1• 0• 1•
+

0× 1• 0• 0• ,

1• 0• 1• 0• =
1× 0• 1• 0• +

0× 0• 0• 1•
⊕

−1× 1• 1• 0•
+

−2× 1• 0• 1•

and
0• 2• 0• 0• =

0× 2• 0• 0• +
−1× 1• 1• 0• +

−2× 0• 2• 0• ,

0• 0• 0• 1• =
0× 0• 0• 1• +

−1× 0• 0• 0• .

There are 5 first order invariant bilinear differential pairings according to the projections
onto (including the weights k = 1 + v for vector fields of projective weight v and
m = w− 3 for 2-forms of projective weight w, i.e. we have to tensor by the line bundle
O(k −M)⊗O(m−M) = O(v + w − 4)):

v+w−4× 2• 0• 0• , v+w−3× 0• 0• 2• , v+w−4× 1• 1• 1•
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and the two projections onto

v+w−3× 0• 1• 0• = Ω2(v + w) ,

corresponding to

0• 0• 1• ⊗ g1 ⊗
0• 1• 0• = 2× 0• 1• 0• ⊕ 1• 1• 1• ⊕ 2• 0• 0• ⊕ 0• 0• 2• .

The concrete formulae for the two projections onto Ω2(v + w) were given at the end
of 3.2.2.

5.3.4 Weighted functions of excluded geometric weight

Returning to Example 5.3.2 (c), let us assume that the central character of the gener-
alized Verma module Mp(V0(w −M)) equals the central character of Mp(Vl(w −M)),
i.e. 0 ≤ w = l − 1 ≤ M − 1. This corresponds to an l-th order invariant differential
operator

D :
w× 0• 0• 0• ... 0• 0• → w−2l× l• 0• ...0• 0• ... 0• 0•.

Hence one can invariantly write D(f), for f ∈ O(w). Now we look at the p-module

ṼM,l(C)(w −M) = Vl(w −M) + Vl+1(w −M) + ...+ VM(w −M).

The central character of Mp(Vl(k−M)) is different from the central character of all the
other generalized Verma modules, because each Mp(Vs(w −M)) has the same central
character as Mp(V0(w − M)) if and only if w = s − 1. Therefore we can define an
invariant differential mapping

O(w)
D→ Vl(w −M) → ṼM,l(C)(w −M) ↪→ VM(C)(w −M).

The invariant pairings that we obtain via this construction do not involve derivatives
of f of order smaller than l. This is confirmed by the formulae obtained earlier.

These considerations yield:

Corollary 9. If M ≥ maxi{ai} and k does not equal one of the excluded weights up to

order M for V =
k× a1• a2• ...

an−2•
an−1• , then there exists a one parameter family of

invariant bilinear differential pairings of order M between sections of V and arbitrarily
weighted functions onto every bundle that is induced by an irreducible component of

�Mg1 ⊗
a1• a2• ...

an−2•
an−1• .

Remark

Using Pierie’s formula, it is clear that the tensor product �Mg1 ⊗
a1• a2• ...

an−2•
an−1•

does not have multiplicities.
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Example

Let us analyze the example given in 3.3, where we considered second order pairings
Vect(M)(v)×O(w) → Ω1(v + w). For this purpose we decompose

�2g1 ⊗
0• 0• ... 0• 1• =

2• 0• ... 0• 1• ⊕ 1• 0• ... 0• 0•.

Therefore if v 6= −1,−(n+ 1) (for the other projection we also need to exclude v = 0),
then there should be a second order invariant differential pairing. This is true and the
formula was given in 3.3. Moreover one can clearly see which terms vanish in case the
weight w is excluded.
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Chapter 6

Explicit formulae: Tractor calculus

In this chapter we will review some of the basic properties of projective, conformal and
CR geometry in order to construct some explicit splittings with the help of tractor cal-
culus. These splittings can be used to obtain explicit formulae for invariant differential
pairings for the parabolic geometry in question. All these examples will deal with real
manifolds M and smooth tensor bundles.

To denote the various tensor bundles that occur, we will use Penrose’s abstract in-
dices. The tangent space (and sections thereof) will be denoted by Ea and the cotangent
space (and sections thereof) by Eb. All tensor bundles have a description in terms of ab-
stract indices that denote the symmetries of the elements involved. (Ea

b)0, for example,
denotes the bundle of elements Xa

b, such that Xa
a = 0, i.e. which are trace-free.

6.1 Projective geometry

Throughout this section gR = sln+1R with complexification g = An and the grading as
given in Example 1.1.4 (a). The description of the tractor calculus for manifolds with
a projective structure follows [1].

6.1.1 Projective manifolds

Definition 25. A projective structure on a manifold M is given by an equivalence
class of torsion-free affine connections which have the same (unparametrized) geodesics.

Proposition 11 ([64]). Two torsion free connections ∇, ∇̂ have the same unparametrized
geodesics if and only if there is a one form Υa such that

∇̂aωb = ∇aωb −Υaωb −Υbωa

for every one-form ωb.

Proof. A proof may be found in [24], Proposition 1.

129
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Corollary 10. Since ∇̂af = ∇af for every function f and every connection satisfies
a Leibniz rule, the difference of ∇̂ and ∇ when acting on vector fields can be deduced.
Again using the Leibniz rule, it is then straightforward to deduce the difference of ∇̂
and ∇ when acting on arbitrary tensor bundles.

Definition 26. For every w ∈ R, let E(w) denote the line bundle of densities of
projective weight w. This bundle (assuming that M is oriented) can be defined as
(Λn)−

w
n+1 , where Λn is the line bundle of n-forms on the manifold M of dimension n.

The tensor product of an arbitrary bundle EΦ, where Φ denotes some indices, and E(w)
will be denoted by EΦ(w). Note that

∇̂af = ∇af + wΥaf

for f ∈ E(w).

Definition 27. The curvature tensor, defined by

(∇a∇b −∇b∇a)V
c = Rab

c
dV

d

for every vector field V a ∈ Ea, can be written as

Rab
c
d = Cab

c
d + 2δ[a

cPb]d + βabδd
c,

where Cab
c
d is the trace-free Weyl tensor, βab = −2P[ab] is skew and Pab is the Schouten

tensor. This tensor has a transformation law

P̂ab = Pab −∇aΥb + ΥaΥb.

6.1.2 Tractor calculus

Definition 28. Let A be the standard representation of gR on Rn+1. The associated
bundle EA = G ×P A is called standard tractor bundle and it has a composition
series

0• 0• 0• ... 0• 1• =
0× 0• 0• ... 0• 1• +

−1× 0• 0• ... 0• 0•.

In accordance with 2.3.3, for every choice of connection ∇, we can write the elements
in EA as

EA 3 V A =

(
V a

σ

)
,

where V a ∈ Ea(−1) and σ ∈ E(−1). Under change of affine connection to ∇̂, these
elements transform as (̂

V a

σ

)
=

(
V a

σ −ΥaV
a

)
.

As explained in the remark at the end of Section 1.3.4, there is a canonical connection,
the tractor connection, on the bundle EA given for each choice of connection by

∇a

(
V b

σ

)
=

(
∇aV

b + σδa
b

∇aσ − PabV
b

)
.
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Let A∗ be the dual of the standard representation of gR on Rn+1. The associated
bundle EA = G ×P A∗ is called standard co-tractor bundle and it (or rather its
complexification) has a composition series

1• 0• 0• ... 0• 0• =
1× 0• 0• ... 0• 0• +

−1× 1• 0• ... 0• 0•.

For every choice of connection ∇, we can write the elements in EA as

EA 3 VA =

(
σ
Va

)
,

where Va ∈ Ea(1) and σ ∈ E(1). Under change of connection to ∇̂ these elements
transform as (̂

σ
Va

)
=

(
σ

Va + Υaσ

)
.

The tractor connection on the bundle EA is, for each choice of connection, given by

∇a

(
σ
Vb

)
=

(
∇aσ − Va

∇aVb + Pabσ

)
.

Remark

This description of EA can be used to determine descriptions of all tensor powers of
EA and the corresponding tractor connections by requiring ∇ to satisfy a Leibniz rule.
All bundles that are induced from representations of the whole Lie algebra g are called
tractor bundles and we use capital letters A,B, .. as abstract indices in the same
spirit as small letters a, b, .. are used as indices for tensor powers of the tangent bundle
Ea. Moreover we can tensor any tractor bundle with a line bundle E(w) to change
the projective weight as in Remark 5.1.3. The tractor connection is not invariant on
weighted tractor bundles EΦ(w), but has a transformation law ∇̂af = ∇af +wΥaf , for
f ∈ EΦ(w).

This remark also applies to the tractor calculus for conformal and CR structures to
be presented in the next two sections.

Definition 29. Let f ∈ EΦ(w) be a section of a tractor bundle of weight w (Φ denoting
some tractor indices). There exists an invariant operator

DA : EΦ(w) → EΦ ⊗ EA(w − 1)

f 7→
(

wf
∇af

)
,

where ∇a denotes the appropriate tractor connection on EΦ.
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6.1.3 Special splittings

Proposition 12. If V i1...ik ∈ E (i1...ik)(v) and v 6∈ {−(n+ k + α− 1)}α=1,...,k, then there
exists a unique lift to an element V I1...Ik ∈ E (I1...Ik)(v + k) such that

DAV
AI2...Ik = 0.

Each excluded weight v corresponds to the existence of an invariant differential operator.

Proof. We will regard the elements of E (I1...Ik)(v + k) as elements in EI1...Ik(v + k)
satisfying certain symmetry relations. This can be easily demonstrated for the case
k = 2:

EAB(v + 2) = Eab(v) +
Ea(v)
⊕

Eb(v)
+ E ,

so that V AB ∈ EAB can be written as

V AB =

 V a
1

V ab
2 + ⊕ + V0

W b
1

 ,

where we will use lower indices to indicate the valence of the corresponding tensor. If
V AB ∈ E (AB)(v + 2), then

1. V ab
2 ∈ E (ab)(v) and

2. V a
1 = W a

1 ∈ Ea(v).

For higher valence tensors V I1...Ik , each component V i1...iα
α has to be totally symmetric

and is equal to all other components with α indices.
We can write V I1I2...Ik ∈ E (I1I2...Ik)(v + k) as

V I1I2...Ik =

(
V i1I2...Ik

k

V I2...Ik
k−1

)
and

∇aV
I1I2...Ik =

(
∇aV

i1I2...Ik
k + δa

i1V I2...Ik
k−1

∇aV
I2...Ik
k−1 − V bI2...Ik

k Pab

)
.

It is then straightforward to compute

DI1V
I1...Ik =

(
∇aV

aI2...Ik
k + (v + k + n)V I2...Ik

k−1

)
.

Moreover, for each l = 1, ..., α and α = 1, ..., k, we can compute

∇aV
i1...ilIl+1Il+2...Iα
α =

(
∇aV

i1...ilil+1Il+2...Iα
α + δa

il+1V
i1...ilIl+2..Iα

α−1

∇aV
i1...ilIl+2...Iα

α−1 − V
i1...ilbIl+2...Iα
α Pab

)
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and hence

∇aV
ai2...ilIl+1Il+2...Iα
α =

(
∇aV

ai2...ilil+1Il+2...Iα
α + V

i2...ilil+1Il+2..Iα

α−1

∇aV
ai2...ilIl+2...Iα

α−1 − V
ai2...ilbIl+2...Iα
α Pab

)
.

Using this equation one can see that DI1V
I1...Ik = 0 is equivalent to the following k

equations

∇aV
ai1...iα−1
α + (v + n+ k + α− 1)V

i1...iα−1

α−1 − (k − α)V
abi1...iα−1

α+1 Pab = 0, (6.1)

for α = 1, ..., k. If v 6∈ {−(n+ k + α− 1)}α=1,...,k, then these equations can be uniquely
solved starting with V i1...ik

k = V i1...ik . This shows the uniqueness of the splitting. The
existence can either be shown by explicitly using the transformation rules under change
of connection as in Remark 6.1.2 or by using the general theory from the last chapter.

If v = −(n+ k+α− 1), then we can use Proposition 10 from the last chapter to see
that the differential operator

V i1...ik 7→ ∇i1 ...∇ik+1−α
V i1...ik + C.C.T,

where C.T.T. stands for curvature correction terms, is projectively invariant.

Remark

This proposition was first proved in [30], Proposition 2.1, without explicit use of tractors.
The elements Ṽ I1...Ik in this paper are written down as elements in E (I1...Ik)(v+k) and so
are related to our elements V I1...Ik by the projection EI1...Ik → E (I1...Ik). More explicitly(

Ṽ i1...iα
α

)
Fox

=

(
k

α

)(
V i1...iα

α

)
here

.

Corollary 11. For v = −(n+k+α0−1), it is possible to write down the full form (in-
cluding curvature correction terms) of the corresponding invariant differential operator
in Proposition 12 using the equations (6.1) from the proof of the proposition.

Proof. We can solve the equation

∇aV
ai1...iα−1
α + (α− α0)V

i1...iα−1

α−1 − (k − α)V
abi1...iα−1

α+1 Pab = 0,

for α = k, ..., α0 + 1. The next line

∇aV
ai1...iα0−1
α0 − (k − α0)V

abi1...iα0−1

α0+1 Pab = 0

can then be written as ∇i1 ...∇ik−α0+1
V i1...ik + C.C.T.. This line is the first non-zero

projection of DAV
AI2...Ik and hence an invariant expression.
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Example

Let us take α0 = k − 2, then the first non-zero entry of DAV
AI1...Ik−1 is

∇a∇b∇cV
abci1...ik−3 + 2∇a(PbcV

abci1...ik−3) + 2Pab∇cV
abci1...ik−3 ,

for V i1...ik ∈ E (i1...ik)(−n− 2k+ 3), in accordance with the expressions for the curvature
correction terms given in Chapter 4. Note that the sign convention of [30] for Pab is
different.

Theorem 15. If

v 6∈ {−(n+ k + α− 1)}α=1,...,k ∪ {α− k}α=0,...,M−1,

then there exists a splitting

E (i1...ik)(v) →
(
E (I1...Ik)

(J1...JM )

)
0
(v + k −M) =

M• 0• 0• ... 0• k•(v + k −M).

Each excluded weight corresponds to the existence of an invariant differential operator:

1. If v = −(n+ k + α− 1), α = 1, ..., k, then

v+k× 0• 0• ... 0• k• → v+α−1× 0• 0• ... 0• α−1•

V i1...ik 7→ ∇i1 ...∇ik+1−α
V i1...ik + C.C.T

is projectively invariant and

2. if v = −(k + α), α = 0, ...,M − 1, then

v+k× 0• 0• ... 0• k• →
v+k−2(α+1)

× α+1• 0• ... 0• k•

V i1...ik 7→ ∇(j1 ...∇jα+1)V
i1...ik − trace + C.C.T

is projectively invariant.

These splittings are given explicitly by tractor formulae.

Proof. Let V i1...ik ∈ E i1...ik(v), then we can use the splitting of Proposition 12 to obtain
an element V I1...Ik ∈ EI1...Ik(v + k). The element

D(J1 ...DJM )V
I1...Ik ∈ (E (I1...Ik)

(J1...JM ))0(v + k −M)

is trace-free by construction of V I1...Ik and has as its projection onto E i1...ik(v) the
element

M−1∏
α=0

(v + k − α)V i1...ik .

Proposition 12 from the last chapter ensures that the excluded weights correspond
to the existence of invariant linear differential operators. Since those operators can
be constructed as Ricci-corrected derivatives (as we will see in the Appendix), the
machinery in Chapter 4 produces explicit formulae for the curvature correction terms.
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Corollary 12. This theorem can be used to explicitly write down the formula for every
invariant bilinear differential pairing between sections of E (i1...ik1

)(v1) and E (i1...ik2
)(v2).

In practice this can be rather tedious, since the expressions for elements in certain
tractor bundles can be rather complicated. This is due to the fact that the tractor
bundles above encode the information about all invariant bilinear differential pairings.
In specific cases, however, one can use certain tricks to make the computations easier.
We will demonstrate this in Example 2 below.

6.1.4 Examples

Example 1

Let us have a look at weighted vector fields.

EA
B(v) = Ea(v) +

Ea
b(v)
⊕
E(v)

+ Eb(v).

For Xa ∈ Ea(v) and v 6∈ {−1,−(n+ 1)}, we can define XA ∈ EA(v + 1) as in Proposi-
tion 12 and then compute

DBX
A =

 ∇bX
a − 1

n+v+1
δb

a∇cX
c

(v + 1)Xa − 1
n+v+1

∇b∇aX
a −XaPab

− v+1
n+v+1

∇aX
a


∈ (EA

B)0(v) =
1• 0• 0• · · · 0• 1•(v).

This can be used to determine the exact form of the two invariant bilinear differential
pairings

Ea(v)× Eb(w) → Eb(v + w)

(Xa, Y b) 7→ (DCX
A)(DAY

B) or (DCY
A)(DAX

B)

given by

(v + 1)Xa(∇aY
b − 1

n+ w + 1
δa

b∇cY
c)− (w + 1)(v + 1)

n+ v + 1
Y b∇aX

a

and

(w + 1)Y a(∇aX
b − 1

n+ v + 1
δa

b∇cX
c)− (v + 1)(w + 1)

n+ w + 1
Xb∇aY

a.

Note that by writing down the formulae in terms of tractors we implicitly project onto
the first slot in the composition series.

This result may be contrasted with the theory of natural bilinear differential pairings.
The only natural bilinear differential pairings Γ(TM)×Γ(TM) → Γ(TM) are constant
multiples of the Lie bracket, see [43], Remark 30.5. We can obtain the Lie bracket for
v = w = 0 by taking the first minus the second pairing from above.
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Example 2

The pairing
E (ab)(v)× E(w) → E(v + w)

can be computed by
V ABDADBf,

where V AB is the lift of V ab ∈ E (ab)(v) as in Proposition 12. The exact formula is given
by

V ab∇a∇bf −
2(w − 1)

n+ v + 3
(∇aV

ab)(∇b)f +
w(w − 1)

(n+ v + 3)(n+ v + 2)
f∇a∇bV

ab

+
w(w + v + n+ 1)

v + n+ 2
fV abPab,

in accordance with 4.3.1 (c).

6.2 Conformal geometry

In this section g will denote son+2C and in the Dynkin diagram notation we will have
to distinguish n even (in which case we use Dm) and n odd (in which case we use Bm).
The description of the tractor calculus for conformal manifolds follows [1].

6.2.1 Conformal manifolds

Definition 30. A conformal manifold is a pair (M, [g]), whereM is an n-dimensional
manifold and [g] is an equivalence class of metrics with equivalence given by

ĝ ∼ g ⇔ ĝ = Ω2g

for some smooth nowhere vanishing function Ω.

Definition 31. Let (M, [g]) be a conformal manifold and define Q to be the bundle of
metrics, which is a subbundle of �2T ∗M with fiber R+. For every w ∈ R, write E [w] for
the line bundle that is associated to the principal fiber bundle Q via the representation
R+ 3 x 7→ x−

w
2 ∈ gl(R). Analogous to the projective case, we will write EΦ[w] for the

tensor product of E [w] with an arbitrary bundle EΦ.

Proposition 13. Let M be a manifold endowed with an equivalence class of metrics
[gab]. Any two metrics are related by ĝab = Ω2gab for some smooth nowhere vanishing
function Ω. Let Υa = Ω−1∇aΩ = ∇a log Ω, then the Levi-Civita connections ∇̂ and ∇
associated to ĝab and gab are related by

∇̂af = ∇af + wΥa, f ∈ E [w]

∇̂aX
b = = ∇aX

b + (w + 1)ΥaX
b −XaΥ

b +XcΥcδa
b, Xb ∈ Eb[w]

∇̂aωb = = ∇aωb + (w − 1)Υaωb −Υbωa + Υcωcgab, ωb ∈ Eb[w]
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Proof. A proof may be found in [54].

Definition 32. The Riemann curvature tensor, defined by

(∇a∇b −∇b∇a)V
c = Rab

c
dV

d,

can be written as
Rabcd = Cabcd + 2gc[aPb]d + 2gd[bPa]c,

where Cabcd is the conformally invariant totally trace-free Weyl curvature and Pab is the
Rho-tensor. Let us write P = P a

a. The Rho-tensor has a conformal transformation
law

P̂ab = Pab −∇aΥb + ΥaΥb −
1

2
ΥcΥ

cgab.

6.2.2 Tractor calculus

Definition 33. Let A be the standard representation of g on C2n (or C2n+1) and denote
by EA the sheaf of sections of the associated standard tractor bundle. This bundle
has a composition series

EA = E [1] + Ea[−1] + E [−1].

This composition series is a result of the composition series for A as a p-module. For
Dm this composition series has the form

1• 0• 0• ... 0• 0•��
@@

•

•

0

0

=
1× 0• 0• ... 0• 0•��

@@

•

•

0

0

+
−1× 1• 0• ... 0• 0•��

@@

•

•

0

0

+
−1× 0• 0• ... 0• 0•��

@@

•

•

0

0

and for Bm it takes the form

1• 0• 0• ... 0•〉 0• =
1× 0• 0• ... 0•〉 0• +

−1× 1• 0• ... 0•〉 0• +
−1× 0• 0• ... 0•〉 0• .

For every choice of metric, elements in EA can be identified with tuples σ
µa

ρ

 ,

where σ ∈ E [1], µa ∈ Ea[−1] and ρ ∈ E [−1]. Under change of metric these elements
transform as ̂ σ

µa

ρ

 =

 σ
µa + Υaσ

ρ−Υaµ
a − 1

2
ΥaΥ

aσ

 .
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There is a canonical connection, the tractor connection, on the bundle EA. For each
choice of metric, this is given by

∇b

 σ
µa

ρ

 =

 ∇bσ − µb

∇bµ
a + δb

aρ+ Pb
aσ

∇bρ− Pbaµ
a

 ,

where the ∇ within the bracket is the Levi-Civita connection.

Corollary 13. There is a canonical section XA ∈ EA[1] given by

XA =

 0
0
1

 ,

for each choice of metric.

Definition 34. The bundle EA carries a non-degenerate symmetric form hAB, the
tractor metric, which is, for each choice of metric, defined by

hABX
AY B = XaYa + σβ + ρα,

where

XA =

 σ
Xa

ρ

 and Y B =

 α
Y a

β

 .

It is easy to see that this definition is independent of the choice of metric within the
conformal class. This form can be used to identify EA with its dual EA. In particular,
we will use hAB and its inverse hAB to raise and lower tractor indices analogous to
normal tensor indices.

Remark

As in the projective case, these definitions can be used to determine the explicit de-
scriptions of all tractor bundles and the corresponding tractor connections. We will use
capital letters A,B, .. to denote tractor indices.

Definition 35. There exists an invariant differential operator

DA : EΦ[w] → EΦ
A [w − 1]

f 7→

 w(n+ 2w − 2)f
(n+ 2w − 2)∇af
−(∆ + wP )f

 ,

where Φ denotes arbitrary tractor indices, ∇ is the corresponding tractor connection
and ∆ = ∇a∇a is the tractor Laplacian.
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6.2.3 Special splittings

Proposition 14. Let V i1...ik ∈ E (i1...ik)
0 [v] be a totally symmetric and totally trace-free

tensor of conformal weight v. If

v 6∈ {−(n+ k + α− 2)}α=1,...,k,

then there exists a unique lift to an element

V I1...Ik ∈ E (I1...Ik)
0 [v + k]

such that
XAV

AI2...Ik = 0 and DAV
AI2...Ik = 0.

The excluded weights v correspond to conformally invariant operators

V i1...ik 7→ ∇i1 ...∇iαV
i1...ik + C.C.T.,

for α = 1, ..., k.

Proof. As in the projective case, we will view elements in E (I1...Ik)
0 [v+k] as elements in

EI1...Ik [v+k] that satisfy certain symmetry and trace conditions. More specifically, each

component V i1...iα
α of V I1...Ik ∈ E (I1...Ik)

0 [v+k] is totally symmetric, totally trace-free and
equal to every other component with α indices and of the same conformal weight. The
equation XAV

AI2...Ik = 0 ensures that V I1...Ik ∈ E (I1...Ik)
0 [v + k] has k + 1 independent

components, one for each number of indices.
We can write every V I1I2...Ik ∈ E (I1I2...Ik)

0 [v + k] with XI1V
I1I2...Ik = 0 as

V I1I2...Ik =

 0

V i1I2...Ik
k

V I2...Ik
k−1


and compute

∇aV
I1I2...Ik =

 −(Vk)a
I2...Ik

∇aV
i1I2...Ik
k + δa

i1V I2...Ik
k−1

∇aV
I2...Ik
k−1 − V bI2...Ik

k Pab

 .

It follows that

∇b∇aV
I1I2...Ik =

 −∇b(Vk)a
I2...Ik −∇a(Vk)b

I2...Ik − gabV
I2...Ik
k−1

∗
∗


and hence

DAV
I1...Ik =0BB@

0 w(n + 2(w − 1))V
i1I2...Ik
k w(n + 2(w − 1))V

I2...Ik
k−1

∗ (n + 2(w − 1))
“
∇aV

i1I2...Ik
k + δa

i1V
I2...Ik
k−1

”
∗

2∇aV aI2...Ik + nV
I2...Ik
k−1 ∗ ∗

1CCA ,
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with w = v + k. Taking the trace yields

DI1V
I1...Ik = (n+ 2(v + k))

(
∇aV

aI2...Ik
k + (v + k + n− 1)V I2...Ik

k−1

)
.

The expression ∇aV
aI2...Ik
k +(v+k+n−1)V I2...Ik

k−1 is in itself invariant and therefore can
serve as the defining equation. That means that we do not have to exclude the case
that n+ 2(v + k) = 0.

Moreover, for every α = 1, ..., k and l = 2, ..., α, we have

∇aV
i1...ilIl+1Il+2...Iα
α =

 −V i1...il
α a

Il+2...Iα

∇aV
i1...ilil+1Il+2...Iα
α + δa

il+1V
i1...ilIl+2..Iα

α−1

∇aV
i1...ilIl+2...Iα

α−1 − V
i1...ilbIl+2...Iα
α Pab


and hence

∇aV
ai2...ilIl+1Il+2...Iα
α =

 0

∇aV
ai2...ilil+1Il+2...Iα
α + V

i2...ilil+1Il+2..Iα

α−1

∇aV
ai2...ilIl+2...Iα

α−1 − V
ai2...ilbIl+2...Iα
α Pab

 ,

since V I1...Ik is totally trace-free. Iterating this rule shows that DAV
AI2...Ik = 0 is

equivalent to the following k equations

∇aV
ai1...iα−1
α + (v + n+ k + α− 2)V

i1...iα−1

α−1 − (k − α)V
abi1...iα−1

α+1 Pab = 0, (6.2)

for α = 1, ..., k. In order to see this, note that for α = k, ..., 1 the equation

∇aV
aI1...Iα−1
α + (v + n+ k − 1)V

I1...Iα−1

α−1 − (k − α)V
abI1...Iα−1

α+1 Pab = 0

is equivalent to the two equations

∇aV
ai1I2...Iα−1
α + (v + n+ k)V

i1I2...Iα−1

α−1 − (k − α)V
abi1I2...Iα−1

α+1 Pab = 0,

∇aV
aI2...Iα−1

α−1 + (v + n+ k − 1)V
I2...Iα−1

α−2 − (k − (α− 1))V abI2...Iα−1
α Pab = 0

and those equations are equivalent to the three equations

∇aV
ai1i2I3...Iα−1
α + (v + n+ k + 1)V

i1i2I3...Iα−1

α−1 − (k − α)V
abi1i2I3...Iα−1

α+1 Pab = 0,

∇aV
ai1I3...Iα−1

α−1 + (v + n+ k)V
i1I3...Iα−1

α−2 − (k − (α− 1))V abi1I3...Iα−1
α Pab = 0,

∇aV
aI3...Iα−1

α−2 + (v + n+ k − 1)V
I3...Iα−1

α−3 − (k − (α− 2))V
abI3...Iα−1

α−1 Pab = 0.

These three equations are equivalent to four further equations and so forth until we
obtain α equations. Carrying out this procedure starting with α = k yields the k
independent equations as given above. The reason for obtaining k equations is as
follows: DAV

AI2...Ik ∈ E (I2...Ik)
0 [v + k − 1] also has the property that

XADBV
BAI3...Ik = 0,
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so DAV
AI2...Ik has k independent components.

If v 6∈ {v + n + k + α − 2}α=1,...,k, then those equations can be uniquely solved
starting with V i1...ik

k = V i1...ik . This shows the uniqueness. The existence can either be
deduced by considering the explicit description (behavior under change of metric) of

E (I1...Ik)
0 [v + k] or by the general theory of the last chapter.

If v = −(n + k + α − 2), then one can use the theory developed in [14] to deduce
that the (standard) invariant differential operator

V i1...ik 7→ ∇i1 ...∇ik−α+1
V i1...ik

has a curved analogue.

Remark

This splitting was first written down in [26], p. 1658, for the case v = 0. The components
σi1...iα

α in this article differ, however, from our components by a constant. To be more

precise, the components σ
i1...ik−α

k−α in [26] are given by

V
i1...ik−α

k−α = C(α)σ
i1...ik−α

k−α

with

C(0) = 1 and for 1 ≤ α ≤ k

C(α) = αC(α− 1).

Corollary 14. For each excluded weight v in Proposition 14, the explicit form of the
corresponding invariant differential operator can be explicitly determined using (6.2).

Proof. Let v = −(n+ k + α0 − 2), then the equations

∇aV
ai1...iα−1
α + (α− α0)V

i1...iα−1

α−1 − (k − α)V
abi1...iα−1

α+1 Pab = 0

can be uniquely solved for α = k, ..., α0 + 1. The next line

∇aV
ai1...iα0−1
α0 − (k − α0)V

abi1...iα−1

α0+1 Pab

can be written as

∇i1 ...∇ik−α0+1
V i1...ik + L.O.T,

where L.O.T. stands for lower order terms combined with curvature terms Pab. This is
the first non-zero part of DAV

AI2...Ik and hence an invariant expression.
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Example

The linear differential operator

∇a∇b∇c∇dV
abcdi1...ik−4 + 3∇a∇b

(
V abcdi1...ik−4Pcd

)
+ 4∇a

(
Pbc∇dV

abcdi1...ik−4
)

+ 3Pab

(
∇c∇dV

abcdi1...ik−4
)

+ 9PabPcdV
abcdi1...ik−4

is invariant in case v + n+ 2k − 5 = 0 in accordance with (4.2).

Theorem 16. If we exclude certain weights as follows:

1. v 6∈ {−(n+ k + α− 2)}α=1,...,k,

2. v 6∈ {α− k − 1}α=0,...,k−1,

3. v 6∈ {α}α=0,...,M−1 and

4. v 6∈ {1− n
2
− k + α}α=0,...,k+M−1,

then there exists a splitting

E (i1...ik)
0 [v] → M• k• 0• ... 0• 0•��

@@

•

•

0

0

[v −M ]

for n even or

E (i1...ik)
0 [v] → M• k• 0• ... 0•〉 0•[v −M ]

for n odd, given by an explicit tractor formula. Each excluded weight v corresponds to
the existence of an invariant linear differential operator on the flat model space Sn.

Proof. Let V i1...Ik ∈ E (i1...ik)
0 [v]. Then we can define the splitting in three steps, each

time excluding appropriate weights:

1. Define

V I1...Ik ∈ E (I1...Ik)
0 [v + k] =

k• 0• 0• ... 0• 0•��
@@

•

•

0

0

[v + k]

or

V I1...Ik ∈ E (I1...Ik)
0 [v + k] =

k• 0• 0• ... 0•〉 0•[v + k]
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as in Proposition 14. The weights to exclude are

v 6∈ {−(n+ k + α− 2)}α=1,...,k

and correspond to the existence of invariant linear differential operators

−(n+k+α−2)
× k• 0• ... 0• 0•��

@@

•

•

0

0

→ −(n+k+α−2)
× α−1• 0• ... 0• 0•��

@@

•

•

0

0

or
−(n+k+α−2)

× k• 0• ... 0•〉 0• →
−(n+k+α−2)

× α−1• 0• ... 0•〉 0•

V i1...ik 7→ ∇i1 ...∇ik−α+1
V i1...ik .

2. Set TBQCR...DS = pair skew(DBDC ...DDV QR...S), where, following [34], p. 223,
‘pair skew’ means to simultaneously take the skew part over each of the index
pairs BQ,CR, ..., DS. Then

TBQCR...DS ∈ 0• k• 0• ... 0• 0•��
@@

•

•

0

0

[v]

or
TBQCR...DS ∈ 0• k• 0• ... 0•〉 0•[v].

From the proof of Proposition 14 one can see that the weights to exclude are

v 6∈ {1− n

2
+ α− k}α=0,...,k−1 ∪ {α− k − 1}α=0,...,k−1,

because the projection onto the first factor in pair skew(DBDC ...DDV QR...S) will
be (modulo a non-zero scalar):

k−1∏
α=0

(n+ 2(v + k − α)− 2)(v + k − α+ 1)V i1...ik .

These excluded weights correspond to the existence of invariant linear differential
operators

α−k−1× k• 0• ... 0• 0•��
@@

•

•

0

0

→ −k−2× k−α−1• α+1• ... 0• 0•��
@@

•

•

0

0

or
α−k−1× k• 0• ... 0•〉 0• → −k−2× k−α−1• α+1• ...

0•〉 0•

V i1...ik 7→ pair skew∇j1 ...∇jα+1Vi1...ik ,
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which are standard operators, and

1−n
2
+α−k
× k• 0• ... 0• 0•��

@@

•

•

0

0

→ −1−n
2
−α−k
× k• 0• ... 0• 0•��

@@

•

•

0

0

or
1−n

2
+α−k
× k• 0• ... 0•〉 0• →

−1−n
2
−α−k
× k• 0• ... 0•〉 0•

V i1...ik 7→ ∆α+1V i1...ik + ... ,

which are non-standard operators.

3. Define

D(J1 ...DJM )T
BQCR...DS − trace ∈ M• k• 0• ... 0• 0•��

@@

•

•

0

0

[v −M ]

or
D(J1 ...DJM )T

BQCR...DS − trace ∈ M• k• 0• ... 0•〉 0•[v −M ].

The weights to exclude here are

v 6∈ {α, 1− n

2
+ α}α=0,...,M−1

and correspond to the existence of invariant linear differential operators

α× k• 0• ... 0• 0•��
@@

•

•

0

0

→ −α−2× k+α+1• 0• ... 0• 0•��
@@

•

•

0

0

or
α× k• 0• ... 0•〉 0• → −α−2× k+α+1• 0• ... 0•〉 0•

V i1...ik 7→ ∇(i1 ...∇iα+1Viα+2...ik+α+1) − trace,

which are standard operators, and

1−n
2
+α
× k• 0• ... 0• 0•��

@@

•

•

0

0

→ −1−n
2
−α−2k
× k• 0• ... 0• 0•��

@@

•

•

0

0

or
1−n

2
+α
× k• 0• ... 0•〉 0• →

−1−n
2
−α−2k
× k• 0• ... 0•〉 0•

V i1...ik 7→ ∆α+k+1V i1...ik + ... ,

which are non-standard operators.
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Remark

The existence of the invariant linear differential operators for the various excluded
weights in Theorem 16 follows from the classification of invariant linear differential op-
erators on the homogeneous model space Sn as in [5] and [6]. All the so-called standard
operators (that correspond to individual arrows in the BGG resolution) have curved
analogues (see [17]), but not all higher powers of the Laplacian in even dimensions allow
curved analogues, see [39] and [36].

6.2.4 Examples

Example 1

Let us look at weighted vector fields Xa ∈ Ea[v]:

XA =

 0
Xa

− 1
n+v

∇cX
c


and hence

D[AXB] =

 (v + 2)(n+ 2v)Xb

(n+ 2v)∇[aXb] − (v+2)(n+2v)
n+v

∇cX
c

∆Xb − n+2v−2
n+v

∇b∇cX
c + (v + 1)PXb − (n+ 2v + 2)PbaX

a

 .

Now we can easily use the formula in Definition 35 for DA to obtain the explicit de-
scription of D(J1 ...DJM )D

[AXB] − trace. The excluded weights (up to M = 1) have the
following meaning (on Sn):

1. If v + n = 0, then the semi-invariant operator Xa 7→ ∇aX
a is invariant.

2. If v + 2 = 0, then Xa 7→ ∇[aXb] is invariant.

3. If n+ 2v = 0, then Xa 7→ ∆Xa − 4
n
∇a∇bX

b + 2−n
2
PXa − 2PabX

b is invariant.

4. If v = 0, then Xa 7→ ∇(aXb) − 1
n
(∇cX

c)gab is invariant.

5. If n+ 2v − 2 = 0, then Xa 7→ ∆2Xa + ... is invariant.
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These are exactly the same weights that have to be excluded when we carry out the
construction in the last chapter and compare the central characters:

1• 1• 0• ... 0• 0•��
@@

•

•

0

0

[v − 1] =
v× 1• 0• ... 0• 0•��

@@

•

•

0

0

+

v× 0• 0• ... 0• 0•��
@@

•

•

0

0

⊕

v−1× 0• 1• ... 0• 0•��
@@

•

•

0

0

⊕

v−2× 2• 0• ... 0• 0•��
@@

•

•

0

0

+

v−3× 1• 1• ... 0• 0•��
@@

•

•

0

0

⊕

v−2× 1• 0• ... 0• 0•��
@@

•

•

0

0

⊕

v−2× 1• 0• ... 0• 0•��
@@

•

•

0

0

+

v−3× 0• 1• ... 0• 0•��
@@

•

•

0

0

⊕

v−4× 2• 0• ... 0• 0•��
@@

•

•

0

0

⊕

v−2× 0• 0• ... 0• 0•��
@@

•

•

0

0

+
v−4× 1• 0• ... 0• 0•��

@@

•

•

0

0

.

A similar composition series holds for Bm.
This allows us, in theory, to write down the three invariant bilinear differential

pairings
Ea[v]× Eb[w] → Ea[v + w]

according to

3× 2• 1• 0• ... 0• 0•��
@@

•

•

0

0

[v+w−2] ⊂ 1• 1• 0• ... 0• 0•��
@@

•

•

0

0

⊗ 1• 1• 0• ... 0• 0•��
@@

•

•

0

0

[v+w−2]
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or
3× 2• 1• 0• ... 0•〉 0•[v + w − 2] ⊂ 1• 1• 0• ... 0•〉 0• ⊗ 1• 1• 0• ... 0•〉 0• [v + w − 2]

and the projections

2• 1• 0• ... 0• 0•��
@@

•

•

0

0

[v + w − 2] → v+w× 1• 0• ... 0• 0•��
@@

•

•

0

0

or
2• 1• 0• ... 0•〉 0•[v + w − 2] → v+w× 1• 0• ... 0•〉 0•.

These pairings can be computed as

(a)

v(v + 2)(v + n)Xa∇bY
b − (w+n)v(v+2)

n
Y a∇bX

b + (w + n)v(v + n)Yb∇[aXb]

−(w + n)(v + n)(v + 2)Yb(∇(aXb) − 1
n
gab∇cX

c)
,

(b)

v(v + 2)(v + n)Xb∇[aY b] + (w+2)v(v+2)(n−1)
2n

Y a∇bX
b − 1

2
(w + 2)v(v + n)Yb∇[aXb]

−1
2
(w + 2)(v + 2)(v + n)Yb(∇(aXb) − 1

n
gab∇cX

c)

and

(c)

v(v + 2)(v + n)Xb(∇(aY b) − 1
n
gab∇cY

c)− wv(v+2)(n+2)(n−1)
2n2 Y a∇bX

b

−wv(v+n)(n+2)
2n

Yb∇[aXb] + w(v+2)(v+n)(2−n)
2n

Yb(∇(aXb) − 1
n
gab∇cX

c)
.

Example 2

Let us look at the second order pairing

E (ab)
0 [v]× E [w] → E [v + w].

This pairing is given by

V ab∇a∇bf −
2(w − 1)

n+ v + 2
(∇aV

ab)(∇bf) +
w(w − 1)

(v + n+ 2)(v + n+ 1)
f∇a∇bV

ab

+ w
v + w + n

v + n+ 1
PabV

abf

and can be written as
V ABD̃AD̃Bf,
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where

D̃Af =

 wf
∇af

0

 .

This operator is not generally invariant, however ˆ̃DAf = D̃Af + XAΦ(Υ), where Φ is
just some function of Υ, see [34]. So we can use the fact that V ABXA = 0 for the unique
lift V AB of V ab, to deduce that V ABD̃AD̃Bf is invariant. This formula is in accordance
with 4.3.1 (d).

6.3 CR-geometry

In order to be consistent with [37], the complexification of the underlying Lie algebra
of this parabolic geometry is An+1. The description of the geometry and the tractor
calculus of CR-manifolds in this section follows closely [37] and the reader is advised to
consult this article for more details.

6.3.1 CR-manifolds

Throughout this section M will be a real 2n+1 dimensional manifold with a subbundle
T 1,0 ⊂ C⊗ TM of the complexified tangent bundle such that

dimCT
1,0 = n, T 1,0 ∩ T 0,1 = {0}, where T 0,1 = T 1,0,

and
[Γ(T 1,0),Γ(T 1,0)] ⊂ Γ(T 1,0).

Define a complex line bundle (the canonical bundle) by K = Λn+1((T 0,1)⊥). Follow-

ing [37], we will assume that K allows an (n+ 2)nd root and set E(1, 0) = K−
1

n+2 . The
bundle E(w,w′) is then defined to be the associated bundle of the C∗ principal bundle
E(1, 0)\{0} corresponding to the representation

C∗ 3 λ 7→ λwλ̄w′ = |λ|2w′ exp((w − w′) log(λ)) ∈ gl(C).

The representation is defined for w,w′ ∈ C with w − w′ ∈ Z and it will always be
implicitly assumed that this is the case. We will use the notation Eα (resp. E ᾱ) for the
sheaf of sections of T 1,0 (resp. T 0,1) and Eα (resp. Eᾱ) for its dual.

Definition 36. A Levi form is a Hermitian form h = hαβ̄ = hβ̄α on T 1,0 defined by
h(Z, W̄ ) = −2idθ(Z, W̄ ) for a non-vanishing global section θ of H⊥ ⊂ T ∗M (assuming
as usual that M is orientable), where H = (T 1,0⊕T 0,1)∩TM⊂ TM has the property
that its complexification C⊗H is T 1,0⊕T 0,1. We will only deal with non-degenerate Levi
forms of arbitrary signature (p, q), p+ q = n. The choice of section θ is called pseudo-
hermitian structure. It can be shown that a pseudohermitian structure determines
a connection, the Tanaka-Webster connection, see [63] and [61]. This connection
satisfies ∇h = 0, so raising an lowering indices commutes with differentiation.
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Remark

The notations and definitions for CR-manifolds are taken from the case where M is a
codimension 1 real submanifold of a complex manifold. Then we can define for every
x ∈M:

Hx = {v ∈ TxM :
√
−1v ∈ TxM}

and obtain a complex structure Jx : Hx → Hx given by Jx(v) =
√
−1v. This allows

one to define T 1,0
x and T 0,1

x as the +
√
−1 and −

√
−1 eigenspaces of Jx when acting on

C⊗Hx.
The canonical bundle is isomorphic to the restriction of the canonical bundle of

(n+ 1, 0) forms on the complex manifold, see [49].

Remark

The two filtrations

C⊗ TM⊃
T 1,0

⊕
T 0,1

⊃ 0 and TM⊃ H ⊃ 0

of the complexified tangent bundle and the tangent bundle are reflected in the fact that
the complexified Lie algebra g = An+1 allows a |2|-grading, where g−1 is the direct sum
of two irreducible g0-modules, whereas the original Lie algebra gR = su(p+1, q+1) has
a |2|-grading as in [18], 4.14, where it is clear that (gR)−1 is an irreducible g0-module.

Proposition 15. The Tanaka -Webster connection preserves the splitting

C⊗ TM = T 1,0 ⊕ T 0,1 ⊕ span T,

where T is the unique vector field on M satisfying θ(T ) = 1 and ιTdθ = 0.

Proof. Details and a proof may be found in [61].

This implies that we can compute the covariant derivative componentwise. To denote
these components we will use the notation ∇α,∇ᾱ and ∇0.

Proposition 16. Under change of pseudohermitian structure θ̂ = exp(Υ)θ, the con-
nection transforms as

∇̂αf = ∇αf + wΥαf

∇̂ᾱf = ∇ᾱf + w′Υᾱf

∇̂0f = ∇0f + iΥγ̄∇γ̄f − iΥγ∇γf

+
1

n+ 2
((w + w′)Υ0 + iwΥγ

γ − iwΥγ̄
γ̄ + i(w′ − w)ΥγΥγ) f
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for f ∈ E(w,w′) and

∇̂ατβ = ∇ατβ + (w − 1)Υατβ −Υβτα

∇̂ᾱτβ = ∇ᾱτβ + w′Υᾱτβ + hβᾱΥγτγ

∇̂0τβ = ∇0τβ + iΥγ̄∇γ̄τβ − iΥγ∇γτβ − i(Υγ
β −ΥγΥβ)τγ

+
1

n+ 2
((w + w′)Υ0 + iwΥγ

γ − iwΥγ̄
γ̄ + i(w′ − w)ΥγΥγ) τβ

for τα ∈ Eα(w,w′). We have used the abbreviation Υα = ∇αΥ, Υᾱ = ∇ᾱΥ and so forth
to denote the components of the derivative of Υ. Using the Leibniz rule (and complex
conjugation) one can easily determine the transformation law on an arbitrary tensor
bundle.

Proof. These explicit formulae can be found in [37], Proposition 2.3. Note that, as far
as invariance and obstruction terms are concerned, ∇0 should be treated as a weighted
second order operator.

Definition 37. There are several quantities related to the torsion and curvature of ∇:

1. The pseudohermitian curvature tensor Rαβ̄γδ̄ ∈ Eαβ̄γδ̄(1, 1),

2. the pseudohermitian torsion tensor Aαβ ∈ E(αβ),

3. the Webster-Ricci tensor Rαβ̄ = Rγ
γαβ̄ ∈ Eαβ̄,

4. the Webster scalar curvature R = Rα
α ∈ E(−1,−1),

5. Pαβ̄ = 1
n+2

(
Rαβ̄ − 1

2(n+1)
Rhαβ̄

)
∈ Eαβ̄,

6. P = Pα
α ∈ E(−1,−1),

7. Tα = 1
n+2

(∇αP − i∇βAαβ) ∈ Eα(−1,−1) and

8. S = − 1
n

(
∇αTα +∇ᾱTᾱ + Pαβ̄P

αβ̄ − AαβA
αβ
)
∈ E(−2,−2).

The transformation laws for these objects can be found in [37].

6.3.2 Tractor calculus

Definition 38. Let EA be the standard representation of su(p+1, q+1) on Rn+2, then
the (complexified) representation of An+1 on Cn+2 has, as a p-module, a composition
series.

EA =
1• 0• 0• ... 0• 0• =

1× 0• 0• ... 0• 0• +
−1× 1• 0• ... 0• 0× +

0× 0• 0• ... 0• −1× .

In terms of sheaves,
EA = E(1, 0) + Eα(1, 0) + E(0,−1).
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The elements can be identified with tuples

EA 3 vA =

 σ
vα

ρ

 ,

where σ ∈ E(1, 0), vα ∈ Eα(1, 0) and ρ ∈ E(0,−1). Under change of pseudohermitian
structure, θ̂ = exp(Υ)θ, these elements transform aŝ σ

vα

ρ

 =

 σ
vα + Υασ

ρ−Υβvβ − 1
2
(ΥβΥβ + iΥ0)σ

 .

Let us denote the dual bundle by EA and the conjugate bundle by EĀ. There is an
invariant Hermitian metric hAB̄ on EA induced by hαβ̄ that we can use to lower (and its
inverse to raise) tractor indices in the same way that hαβ̄ is used.

Via hĀB we can identify

EĀ = EB = E(0, 1) + Eᾱ(0, 1) (= Eβ(−1, 0)) + E(−1, 0).

We can represent elements in this bundle as

EĀ 3 wĀ =

 τ
wᾱ

κ

 ,

where τ ∈ E(0, 1), wᾱ ∈ Eᾱ(0, 1) and κ ∈ E(−1, 0). Under change of pseudohermitian
structure, θ̂ = exp(Υ)θ, these elements transform aŝ τ

wᾱ

κ

 =

 τ
wᾱ + Υᾱτ

κ−Υβ̄wβ̄ − 1
2
(Υβ̄Υβ̄ − iΥ0)τ

 .

Then the mapping

EA × EB̄ → E
(vA, wB̄) 7→ hAB̄vAwB̄ = σκ+ vαwβ̄h

αβ̄ + ρτ

is invariant.
There is a canonical section XA ∈ EA(1, 0) that is (for each choice of pseudohermitian

structure) given by

XA =

 0
0
1

 .
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Proposition 17. There are two invariant operators defined on arbitrary weighted trac-
tor bundles.

DĀ : EΦ(w,w′) → EΦ
Ā(w,w′ − 1)

DĀf =

 w′(n+ w + w′)f
(n+ w + w′)∇ᾱf

−
(
∇β̄∇β̄f − iw′∇0f + w′

(
1 + w−w′

n+2

)
Pf
)


and

DA : EΦ(w,w′) → EΦ
A(w − 1, w)

DAf =

 w(n+ w + w′)f
(n+ w + w′)∇αf

−
(
∇β∇βf + iw∇0f + w

(
1 + w′−w

n+2

)
Pf
)
 ,

where the connections ∇α,∇ᾱ and ∇0 are the appropriate tractor connections uniquely
determined by the formulae on EA and EĀ given by

∇β̄

0@ σ
vα

ρ

1A =

0@ ∇β̄σ

∇β̄vα + hαβ̄ρ + Pαβ̄σ

∇β̄ρ + iAβ̄
αvα − Tβ̄σ

1A , ∇β̄

0@ τ
wᾱ

κ

1A =

0@ ∇β̄τ − wβ̄

∇β̄wᾱ − iAᾱβ̄τ

∇β̄κ− Pβ̄
ᾱwᾱ + Tβ̄τ

1A ,

∇β

0@ σ
vα

ρ

1A =

0@ ∇βσ − τβ

∇βvα + iAαβσ
∇βρ− Pβ

αvα + Tβσ

1A , ∇β

0@ τ
wᾱ

κ

1A =

0@ ∇βτ
∇βwᾱ + hᾱβκ + Pᾱβτ
∇βκ− iAβ

ᾱwᾱ − Tβτ

1A
and

∇0

 σ
τα
ρ

 =

 ∇0σ + i
n+2

Pσ − iρ

∇0τα − iPα
βτβ + i

n+2
Pτα + 2iTασ

∇0ρ+ i
n+2

Pρ+ 2iTατα + iSσ

 ,

∇0

 τ
wᾱ

κ

 =

 ∇0τ − i
n+2

Pτ + iκ

∇0wᾱ + iPᾱ
β̄wβ̄ − i

n+2
Pwᾱ − 2iTᾱτ

∇0κ− i
n+2

Pκ− 2iT ᾱwᾱ − iSτ

 .

Proof. These operators are defined and the invariance is verified in [37].

6.3.3 Special splittings

Proposition 18. If
w′ 6∈ {−(n+ s)}s=0,...,k−1,

then there exists a unique lift for every element vi1...ik ∈ E(i1...ik)(w,w
′) to an element

vI1...Ik
∈ E(I1...Ik)(w − k, w′), so that

DAvAI2...Ik
= 0

and
XAvAI2...Ik

= 0.

Each excluded weight w′ corresponds to the existence of an invariant linear differential
operator.
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Proof. Let vI1...Ik
∈ E(I1...Ik)(w − k, w′) be an element with XAvAI2...Ik

= 0, looked at
as an element in EI1...Ik

(w − k, w′) with special symmetries. To be more precise, there
are k + 1 independent components realized as totally symmetric tensors vi1...is with s
indices, s = 0, ..., k, and where the tensor with k indices is exactly vi1...ik .

We can write

vI1...Ik
=

 0
vi1I2...Ik

vI2...Ik

 .

Then we have

DAvAI2...Ik
= (n+ w + w′ − k + 1)

(
∇βvβI2...Ik

+ (n+ w′)vI2...Ik

)
.

Using

∇βvβI2...Ik
=

 0
∇βvβi2I3...Ik

+ vi2I3...Ik

∇βvβI3...Ik
+ iAαβvαβI3...Ik


and the symmetries of vI1...Ik

it is easy to show that DAvAI2...Ik
= 0 is equivalent to the

two equations

∇βvβi2I3...Ik
+ (n+ w′ + 1)vi2I3...Ik

= 0

∇βvβI3...Ik
+ (n+ w′)vI3...Ik

+ iAαβvαβI3...Ik
= 0.

Iterating this process (in the same way as for projective geometry and conformal geom-
etry) yields the following k equations:

∇βvβi2...is + (n+ w′ + s)vi1...is + (k − 1− s)iAαβvαβi1...is , s = k − 1, ..., 0. (6.3)

This proves uniqueness. Existence can either be proved by using the explicit description
of the transformation laws or by the general theory in the last chapter.

If w′ + n+ k − l = 0, l = 1, ..., k, then there exists an invariant differential operator

w−2k× k• 0• ... 0• w′× → w−2k+l× k−l• 0• ... 0• −l+w′×

vi1...ik 7→ ∇i1 ...∇ilvi1...ik + C.C.T. .

Remark

w−2k× k• 0• ... 0• w′×

has the same central character as

w−2k+l× k−l• 0• ... 0• −l+w′×

if and only if w′ + n+ k − l = 0, l = 1, ..., k.
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Proposition 19. If

w 6∈ {−(n+ s)}s=0,...,k−1,

then there exists a unique lift for every element vī1...̄ik ∈ E(̄i1...̄ik)(w,w
′) to an element

vĪ1...Īk
∈ E(Ī1...Īk)(w,w

′ − k), so that

DĀvĀĪ2...Īk
= 0

and

XĀvĀĪ2...Īk
= 0.

Each excluded weight w corresponds to the existence of an invariant linear differential
operator.

Proof. This is proved exactly as Proposition 18. The equations to solve are

∇β̄vβ̄ī2...̄is + (n+ w + s)vī1...̄is − (k − 1− s)iAᾱβ̄vᾱβ̄ī1...̄is , s = k − 1, ..., 0

and excluded weights correspond to invariant operators

w× 0• 0• ... 0• k• w′−2k× → w−l× 0• 0• ... 0• k−l• w′−2k+l×

vī1...̄ik 7→ ∇ī1 ...∇īlvī1...̄ik + C.C.T. .

Corollary 15. For w′ = −(n + s), the corresponding invariant linear differential op-
erator in Proposition 18 can be written down explicitly by using the equations (6.3)
in the proof of that proposition. An analogous statement holds for w = −(n + s) in
Proposition 19.

Proof. This is done exactly as in the projective and conformal case.

Example

Let us take s = k − 2, then

∇α∇βvαβi1...ik−2
− iAαβvαβi1...ik−2

is an invariant differential operator for vi1...ik ∈ E(i1...ik)(w,−n− k + 2).

Now we can use the operators DA and DĀ to include vI1...Ik
in the appropriate

M -bundle just like in the projective and conformal case. We will demonstrate this
procedure for an example where k = 1.
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6.3.4 Examples

Example 1

For first order splittings of vα ∈ Eα(w,w′) we have to compute

w−2× 1• 0• ... 0• w′× = Eα(w,w′) 3 vα → DĀDBD[CvD] ∈
1• 1• 0• ... 0• 1• (w − 3, w′ − 1).

Note that DADAf = 0 for every tractor field f of arbitrary weight. We proceed in
several steps:

1. First of all, we use Propostion 18 to define

vA =

 0
vα

− 1
w′+n

∇γvγ

 ∈ EA(w − 1, w′).

The weight to be excluded is w′+n = 0. If w′+n = 0, then the linear differential
operator vα 7→ ∇γvγ is invariant.

2. Then we map vA to D[AvB] ∈ E[AB](w − 2, w′). This can be computed by

DAvB =

 ∗ (w − 1)(n+ w + w′ − 1)vβ ∗
−(n+ w + w′ − 1)vβ ∗ ∗

∗ ∗ ∗


and hence

D[AvB] =

 ∗
w(n+ w + w′ − 1)vβ ∗

∗


∈

E[αβ](w,w
′)

Eα(w,w′)+ ⊕ +Eα(w − 1, w′ − 1)
E(w − 1, w′ − 1)

.

The following weights have to be excluded:

(a) If w = 0, then vα 7→ ∇[αvβ] is invariant.

(b) If n + w + w′ − 1 = 0, then vα 7→ ∆vα + ... is invariant, where the operator
is given by ∆ = −(∇β∇β +∇β̄∇β̄).

3. Next, we compute DAD[BvC] ∈
1• 1• 0• ... 0• 0•(w − 3, w′). The following weights

have to be excluded:

(a) If w − 2 = 0, then vα 7→ ∇(βvα) is invariant.

(b) If w + w′ + n− 2 = 0, then vα 7→ ∆2vα + ... is invariant.
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4. Finally, we compute DĀDBD[CvD] ∈
1• 1• 0• ... 0• 1•(w − 3, w′ − 1) and note that

the following weights have to be excluded:

(a) If w′ = 0, then vα 7→ ∇β̄vα − 1
n
∇γvγhβ̄α is invariant.

(b) If n+ w + w′ − 3 = 0, then vα 7→ ∆3vα + ... is invariant.

The existence of the differential operators given above can only be guaranteed for the
flat model space H. If the operator in question is standard (as are all cases (a) from
above), [17] guarantees that it allows a curved analogue.

This can be used, for example, as follows: we can compute the two invariant bilinear
differential pairings

Eα(v, v′)× Eβ(w,w′) → Eα(v + w − 1, v′ + w′ − 1)

(ωα, τβ) 7→ τ B̄DB̄ωA or ωB̄DB̄ωA

as

(a)

τ β̄(∇β̄ωα −
1

v′ + n
hβ̄α∇γωγ)−

v′

w′ + n
ωα∇βτβ

and

(b)

ωβ̄(∇β̄τα −
1

w′ + n
hβ̄α∇γτγ)−

w′

v′ + n
τα∇βωβ.

Note that we have divided the pairings by n+v+v′−1 and n+w+w′−1 respectively.

Example 2

Let vαβ ∈ E(αβ)(w,w
′) and f ∈ E(v, v′), then the pairing

vαβ∇α∇βf − 2(v′ − 1)

w′ + n+ 1
(∇αvαβ)(∇βf) +

v′(v′ − 1)

(w′ + n+ 1)(w′ + n)
f∇α∇βvαβ

− v′(v′ + w′ + n− 1)

w′ + n
iAαβvαβf

is invariant. It can also be written as

vABD̃
AD̃Bf,

where

D̃Af =

 v′f
∇αf

0

 .

This operator is not invariant in general, but has an easy transformation law given by
ˆ̃DAf = D̃Af + XAΦ(Υ), where Φ is some function of Υ. Now we can use the fact that
XAvAB = 0 to deduce that vABD̃

AD̃Bf is invariant. This is in accordance with the
formulae given in 4.3.1 (e).



Chapter 7

Appendix

7.1 The BGG sequence

For the convenience of the reader, we will write down the BGG sequences for the
three geometries that we have considered throughout this paper: projective geometry,
conformal geometry and CR geometry. We will emphasize which of the maps in the
BGG sequence give rise to curved analogues via the construction in Chapter 4 as Ricci
corrected derivatives Dj. In this case we will say that an operator arises via extremal
roots. These operators can then be paired in the canonical way described in Chapter 4.

The general theory

The BGG sequences are resolutions of finite dimensional irreducible representations of
G via invariant linear differential operators on G/P . They arise dually via resolutions
of generalized Verma modules. These resolutions first appeared for Verma modules
(which are generalized Verma modules for the special case that p = b is a borel sub-
algebra) in [4] and were generalized in [50]. The interpretation of these resolutions in
terms of differential operators first appeared in [27] and more details of this construc-
tion can be found in [3]. In [17] these sequences were generalized to general curved
parabolic geometries. In particular, this shows that all standard differential operators
(i.e. those which occur in a BGG sequence) have curved analogues. This is not true
for non-standard operators as mentioned earlier. In fact, the problem of determining
all non-standard differential operators on G/P is still not solved. Only in certain cases
(including conformal and projective geometry) this has been solved in [5] and [6].
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7.1.1 An: The projective case

Let us have a look at × • • ... • • . All roots in g−1 belong to the same orbit of the

Weyl group. Hence all roots in g−1 are extremal and we denote them by

{θ1, ..., θn}, θi = −(ε1 − εi+1) = −
i∑

j=1

αi,

in the Dynkin diagram notation

θ1 =
−2× 1• 0• ... 0• 0•, θ2 =

−1× −1• 1• ... 0• 0•, θ3 =
−1× 0• −1• 1• ... 0• 0•, ...,

θn =
−1× 0• 0• ... 0• −1•

.

Schematically, the BGG resolution looks like this:

V1 → V2 → V3 → · · · → Vn → Vn+1,

more precisely

a× b• c• ... e•
f
• (a+1)θ1−→ −a−2× a+b+1• c• ... e•

f
•

(b+1)θ2−→ −a−b−3× a• c+b+1• ...
e•

f
•

...
(e+1)θn−1−→

x+f+1
× a• b• ... d•

e+f+1
•

(f+1)θn−→ x× a• b• ... d• e• ,

with x = −(a + b + c + ... + e + f + n + 1). The meaning of an arrow V
mθi−→ W is as

follows: the highest weight of W∗ is equal to the highest weight of V∗ plus mθi, i.e. the
differential operator between those bundles is of order m and arises via the extremal
root θi. One can see that all standard invariant linear differential operators (which in
fact include all invariant linear differential operators in projective geometry) arise via
extremal roots.

7.1.2 Bl: The odd dimensional conformal case

Let us now look at × • • ... •〉• . αl is the only short simple root. The roots in g−1

can be grouped into two orbits of the Weyl group. One only contains αl = εl and the
other one contains all the others, including −α1. In fact

g−1 = ⊕α∈∆−1gα with ∆−1 = {−(ε1 ± εi)}i=2,...,l ∪ {−ε1}.
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We denote the roots in g−1 by

θi = −ε1 + εi+1 = −
i∑

j=1

αj, i = 1, ..., l − 1,

θl = −ε1 = −
l∑

j=1

αj

and

θl+i = −ε1 − εl+1−i = −
l−i∑
j=1

αj − 2
l∑

j=l+1−i

αj, i = 1, ..., l − 1.

In pictures

θ1 =
−2× 1• 0• ... 0•〉 0•, θ2 =

−1× −1• 1• ... 0•〉 0•, θ3 =
−1× 0• −1• ...

0•〉 0•
...

θl−1 =
−1× 0• 0• ... −1• 〉 2•, θl =

−1× 0• 0• ... 0•〉 0•, θl+1 =
−1× 0• 0• ... 1•〉−2•

...

θ2l−3 =
−1× 0• 1• ... 0•〉 0•, θ2l−2 =

−1× 1• −1• ...
0•〉 0•, θ2l−1 =

0× −1• 0• ... 0•〉 0•.

Note that all θi apart from θl are extremal roots. The BGG schematically looks like
this

V1
θ1−→ · · · θl−1−→ Vl

θl−→ Vl+1
θl+1−→ · · · θ2l−1−→ V2l,

more precisely

a× b• c• ... e•〉
f
• (a+1)θ1−→ −a−2× a+b+1• c• ... e•〉

f
•

(b+1)θ2−→ −a−b−3× a• c+b+1• ...
e•〉

f
•

...
(e+1)θl−1−→

y
× a• b• ... d•〉

f+2e+2
•

(f+1)θl−→
y−f−1
× a• b• ... d•〉

f+2e+2
•

(e+1)θl+1−→
y−f−e−2
× a• b• ... d+e+1• 〉

f
•

...
(a+1)θ2l−1−→ x× b• c• ... e•〉

f
•,

where y = −(a + b + c + ... + e)− l and x = −(a + 2b + 2c + ... + 2e + f)− 2l. So all
standard invariant linear differential operators apart from the one that occurs in the
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middle of the BGG resolution arise via extremal roots. The form of the operator that
occurs in the middle of the BGG resolution is indeed different from the standard form
of Ricci-corrected derivatives owing to the fact that the target representation occurs in
⊗kg1 ⊗ V with multiplicity. An example is given in [16], Remark 6.6.

7.1.3 Dl: The even dimensional conformal case

For conformal geometry in even dimensions all roots in g−1 belong to the same orbit of
the Weyl group, so all roots in g−1 are extremal. We have g−1 = ⊕θ∈∆−1gθ with

∆−1 = {−(ε1 ± εi)}i=2,...,l.

In terms of simple roots these can be written as

θi = −(ε1 − εi+1) = −
i∑

j=1

αj , i = 1, ..., l − 1

and

θ2l−i−1 = −(ε1 + εi+1) = −
i∑

j=1

αj − 2
l−2∑

j=i+1

αj − αl−1 − αl, i = 1, ..., l − 1.

In the Dynkin diagram notation

θ1 =
−2× 1• 0• ... 0• 0•��

@@

•

•

0

0

, θ2 =
−1× −1• 1• ... 0• 0•��

@@

•

•

0

0

, θ3 =
−1× 0• −1• ... 0• 0•��

@@

•

•

0

0...

θl−3 =
−1× 0• 0• ... −1• 1•�

�

@@

•

•

0

0

, θl−2 =
−1× 0• 0• ... 0• −1•�

�

@@

•

•

1

1

, θl−1 =
−1× 0• 0• ... 0• 0•��

@@

•

•

−1

1

θl =
−1× 0• 0• ... 0• 0•��

@@

•

•

1

−1

, θl+1 =
−1× 0• 0• ... 0• 1•��

@@

•

•

−1

−1

, θl+2 =
−1× 0• 0• ... 1• −1•�

�

@@

•

•

0

0...

θ2l−4 =
−1× 0• 1• ... 0• 0•��

@@

•

•

0

0

, θ2l−3 =
−1× 1• −1• ... 0• 0•��

@@

•

•

0

0

, θ2l−2 =
0× −1• 0• ... 0• 0•��

@@

•

•

0

0

.

This fits into the BGG sequence as follows:

a× b• c• ... e•
f
•��
@@

•

•

g

h

(a+1)θ1−→ −a−2× a+b+1• c• ... e•
f
•��
@@

•

•

g

h

(b+1)θ2−→ · · ·
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y−g−1
× a• b• ... d• e•��

@@

•

•

f

h + f + g + 2(g + 1)θl−1 ↗

(f+1)θl−2−→ y
× a• b• ... d• e•��

@@

•

•

g + f + 1

h + f + 1 (h+ 1)θl ↘

−y−h−1
× a• b• ... d• e•��

@@

•

•

g + f + h + 2

f
(h+ 1)θl ↘

y−g−h−2
× a• b• ... d• e•��

@@

•

•

f + h + 1

f + g + 1

(f+1)θl+1−→ · · ·
(g + 1)θl−1 ↗

(b+1)θ2l−3−→ x× a+b+1• c• ... e•
f
•��
@@

•

•

h

g

(a+1)θ2l−2−→ x× b• c• ... e•
f
•��
@@

•

•

h

g

,

where y = −(a+b+c+...+e+f)−l+1 and x = −2(b+c+...+e+f)−g−h−a−2(l−1).
The general pattern looks like this:

Vl

θl−1 ↗ θl ↘
V1

θ1→ · · · θl−2→ Vl−1 Vl+2
θl+1→ · · · θ2l−2→ V2l

θl ↘ θl−1 ↗
Vl+1

.

So we see that all standard invariant linear differential operators arise via extremal
roots.

7.1.4 An+1: The CR case

In CR geometry g = An+1, so all roots have the same length. Therefore all roots θi with
gθi

∈ g−1 are extremal. In the BGG resolution, however, only those operators arise via
extremal roots that do not involve the g−2 part. More precisely, for × • • ... • ×, we

have

g− = ⊕α∈∆−2gα +

⊕α∈∆1
−1

gα

⊕
⊕α∈∆2

−1
gα

= g−2 +
g1
−1

⊕
g2
−1

with

∆1
−1 = {−(ε1 − εi)}i=2,...,n+1, ∆2

−1 = {εn+2 − εi}i=2,...,n+1 and ∆−2 = {−ε1 + εn+2}.
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Let us write θi = −(ε1 − εi+1) and Θi = εn+2 − εi+1 for i = 1, ..., n. Schematically the
BGG resolution looks this:

V1,1

V2,1

V2,2

V3,1

V3,2

V3,3

Vn+1,1

Vn+1,2

Vn+1,n

Vn+1,n+1

...
...

... W1,1

W2,1

W2,2

W3,1

W3,2

W3,3

Wn+1,1

Wn+1,2

Wn+1,n

Wn+1,n+1

���

@@R

���

@@R

���

@@R

���

@@R

���

@@R

���

@@R

. . .

. . .

. . .

. . .

@@R

@@R

@@R

���

���

���

@@R

@@R

���

���

@@R

���

�
���

�
���

�
���

@
@@R

@
@@R

@
@@R

....-

....-

....-

....- .

All the arrows, apart from the horizontal ones that are drawn with dotted lines, arise
via extremal roots. For

V1,1 =
a1× a2• a3• ...

an•
an+1× ,

for example,

1. the map Vi,j → Vi+1,j arises via θi (the order of the operator is ai + 1),

2. the map Vi,j → Vi+1,j+1 arises via Θn+1−i (the order of the operators is an+2−i+1),

3. the map Wi,j → Wi−1,j arises via Θi−1 (the order of the operator is ai + 1) and

4. the map Wi,j → Wi−1,j−1 arises via θn+2−i (the order of the operator is an+2−i+1).

7.2 Outlook

There are a few points that remain open and we will list them in no particular order.

1. The most obvious open question is the conjecture stated in 5.2.3. This conjecture
would associate a meaning to every excluded representation (geometric weight).

2. Are there invariant bilinear differential pairings on a homogeneous space G/P
that do not allow a curved analogue? This happens for invariant linear differential
operators and the obstruction is given by interesting tensors like the Bach tensor
in conformal geometry. We have not encountered such a situation as yet, so this
is a totally open question.

3. Other Cartan geometries (not necessarily parabolic). This is a field which has not
been studied very much at all. It would be interesting to see how many concepts
carry over from the parabolic case. One might, for example, find a parabolic
geometry that lies above a given Cartan geometry and then one would be able
use tools such as the BGG sequence. This is a whole new interesting research
area.
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[43] I. Kolář, W. Michor, and J. Slovák, Natural Operations in Differential Geometry,
Springer-Verlag, Berlin, (1993). vi+434 pp. ISBN: 3-540-56235-4.

[44] B. Kostant, Lie algebra cohomology and the generalized Borel-Weil theorem, Ann.
of Math. (2) 74 (1961) 329–387.

[45] J. Kroeske, Invariant differential pairings, to appear in Acta Math. Univ. Come-
nian. 77 (2008), no. 2.

[46] A. W. Knapp, Lie groups, Lie algebras and cohomology, Mathematical Notes,
34. Princeton University Press, Princeton, NJ, (1988). xii+510 pp. ISBN: 0-691-
08498-X

[47] S. Kumar, Proof of the Parthasarathy-Ranga-Rao-Varadarajan conjecture, Invent.
Math. 93 (1988), no. 1, 117–130.

[48] J. ,D. Louck and L. C. Biedenharn, Canonical unit adjoint tensor operators in
U(n) J. Mathematical Phys. 11 (1970), 2368–2414.

[49] J. M. Lee, The Fefferman metric and pseudo-Hermitian invariants, Trans. Amer.
Math. Soc. 296 (1986), no. 1, 411–429.

[50] J. Lepowsky, A generalization of the Bernstein-Gelfand-Gelfand resolution, Jour.
Alg. 49 (1977) 496–511.

[51] T. Morimoto, Lie algebras, geometric structures and differential equations on fil-
tered manifolds, Lie groups, geometric structures and differential equations—one
hundred years after Sophus Lie (Kyoto/Nara, 1999), Adv. Stud. Pure Math., 37,
Math. Soc. Japan, Tokyo, (2002) 205–252.

[52] S. Okubo, Casimir invariants and vector operators in simple and classical Lie
algebras Journal of Mathematical Physics, Vol. 18, No. 12, (1977), 2382–2394.

[53] P. J. Olver, Equivalence, Invariants, and Symmetry, Cambridge University Press,
Cambridge, (1995). xvi+525 pp. ISBN: 0-521-47811-1.



BIBLIOGRAPHY 167

[54] R. Penrose and W. Rindler, Spinors and Space-time, Volume 1, Two-spinor cal-
culus and relativistic fields, Cambridge Monographs on Mathematical Physics.
Cambridge University Press, Cambridge, (1984). x+458 pp. ISBN: 0-521-24527-
3.

[55] R. W. Sharpe, Differential geometry. Cartan’s generalization of Klein’s Erlan-
gen program, Graduate Texts in Mathematics, 166. Springer-Verlag, New York,
(1997). xx+421 pp. ISBN: 0-387-94732-9.

[56] J. Slovák, On the geometry of almost Hermitian symmetric structures, Pro-
ceedings of the Conference Differential Geometry and Applications, Brno, 1995
(Masaryk University in Brno, 1996) 191–206.

[57] J. Slovák, Parabolic geometries, Research Lecture Notes, Part of DrSc. Disserta-
tion, Preprint IGA 11/97, electronically available at www.maths.adelaide.edu.au,
70pp.
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