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Decontracted double BRST symmetry on the lattice

L. von Smekal, M. Ghiotti,* and A.G. Williams

Centre for the Subatomic Structure of Matter, The University of Adelaide, South Australia 5005, Australia
(Received 4 July 2008; published 20 October 2008)

We present the Curci-Ferrari model on the lattice. In the massless case the topological interpretation of

this model with its double Becchi-Rouet-Stora-Tyutin (BRST) symmetry relates to the Neuberger 0=0

problem which we extend to include the ghost/antighost symmetric formulation of the nonlinear-covariant

Curci-Ferrari gauges on the lattice. The introduction of a Curci-Ferrari mass term, however, serves to

regulate the 0=0 indeterminate form of physical observables observed by Neuberger. While such a massm

decontracts the double BRST/anti-BRST algebra, which is well known to result in a loss of unitarity,

observables can be meaningfully defined in the limit m ! 0 via l’Hospital’s rule. At finite m, the

topological nature of the partition function used as the gauge-fixing device seems lost. We discuss the

gauge parameter � and mass m dependence of the model and show how both cancel when m � mð�Þ is
appropriately adjusted with �.

DOI: 10.1103/PhysRevD.78.085016 PACS numbers: 11.15.�q, 11.15.Ha, 11.30.Ly, 12.38.�t

I. INTRODUCTION

In the covariant continuum formulation of gauge theo-
ries, in terms of local field systems, one has to deal with the
redundant degrees of freedom due to gauge invariance.
Within the language of local quantum field theory, the
machinery for that is based on the so-called Becchi-
Rouet-Stora-Tyutin (BRST) symmetry which is a global
symmetry and can be considered the quantum version of
local gauge invariance [1,2]. In short, one starts out from
the representations of a BRST algebra on indefinite metric
spaces with assuming the existence (and completeness) of
a nilpotent BRST charge QB. The physical Hilbert space
can then be defined as the equivalence classes of BRST
closed (which are annihilated by QB) modulo exact states
(which are BRST variations of others). In QED this machi-
nery reduces to the usual Gupta-Bleuler construction. For
the generalization thereof, in non-Abelian gauge theories,
all is well in perturbation theory also. Beyond perturbation
theory, however, there is a problem with such a construc-
tion that has not been fully and comprehensively addressed
as yet. It relates to the famous Gribov ambiguity [3], the
existence of so-called Gribov copies that satisfy the Lorenz
condition [4] (or any other local gauge-fixing condition)
but are related by gauge transformations, and are thus
physically equivalent. As a result of this ambiguity, the
usual definitions of a BRST charge fail to be globally valid.

A rigorous nonperturbative framework is provided by
lattice gauge theory. Its strength and beauty derives from
the fact that gauge fixing is not required. However, in order
to arrive at a nonperturbative definition of non-Abelian
gauge theories in the continuum, from a lattice formula-
tion, we need to be able to perform the continuum limit in a

formally watertight way. There is the gap in our present
understanding. The same problem as described above
comes back to haunt us in another dress when attempting
to fix a gauge via BRST formulations on the lattice. There
it is known as the Neuberger problem which asserts that the
expectation value of any gauge invariant (and thus physi-
cal) observable in a lattice BRST formulation will always
be of the indefinite form 0=0 [5].
The BRST algebra requires the introduction of further

unphysical degrees of freedom. These are the Faddeev-
Popov ghosts and antighosts which violate the spin-
statistics theorem of local quantum field theory on positive
definite metric (Hilbert) spaces. Contrary to what the name
antighost might suggest, however, in the usual linear-
covariant gauges the treatment of ghosts and antighosts is
completely asymmetric. On the other hand, it is also known
for many years that it is possible to extend the BRST
algebra to be entirely symmetric with respect to (w.r.t.)
ghosts and antighosts. This additional symmetry arises
naturally in the Landau gauge but can also be extended
to more general gauges, the so-called Curci-Ferrari gauges,
at the expense of quartic-ghost self-interactions. The most
interesting feature of these gauges for our purpose, how-
ever, is that they allow the introduction of a mass term for
gluons and ghosts [6]. While such a Curci-Ferrari mass m
breaks the nilpotency of the BRSTand anti-BRST charges,
which is known to result in a loss of unitarity [7,8] and
which therefore meant that this relatively old model re-
ceived little attention for many years, it also serves to
regulate the Neuberger zeros in a lattice formulation. In
[9] this was exemplified in a simple Abelian toy model
where the zeros in the numerator and denominator of
expectation values become proportional to m2 and allow
to compute a finite value for m2 ! 0 via l’Hospital’s rule.
For the SUðNÞ gauge theory on a finite four-dimensional

lattice things are naturally much more complicated than in
the toy model. In this paper we develop a full lattice
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formulation of the time-honored model by Curci and
Ferrari with its decontracted double BRST/anti-BRST
and ghost-mass term, as announced in [10]. After introduc-
ing the general setup for double BRST on the lattice in
Sec. II, we next review Neuberger’s no-go-theorem in a
generalized version to include the ghost/antighost symmet-
ric case of the nonlinear-covariant Curci-Ferrari gauges for
m2 ¼ 0 in Sec. III, a case originally excluded by
Neuberger. At nonvanishing Curci-Ferrari mass the parti-
tion function of the model used as the gauge-fixing device
is shown to be polynomial in m2 and to be thus nonvanish-
ing, in a special gauge-parameter limit in Sec. IV. In this
way regularizing the Neuberger zeros, the leading power of
that polynomial can be extracted from a suitable number of
derivatives (w.r.t. m2) before the limit m2 ! 0 is taken, in
the spirit of l’Hospital’s rule. This could provide a lattice
BRST model without Neuberger problem. The massive
Curci-Ferrari model is no longer purely topological in
nature, however, and as a result, its gauge-parameter �
independence requires tuning of the Curci-Ferrari mass
with � as explained in Sec. V. The gauge-orbit indepen-
dence of this procedure is discussed in Sec. VI. A short
summary is given in Sec. VII, and our conclusions and
outlook are provided in Sec. VIII. Several appendices are
provided with supplementary derivations.

II. DOUBLE BRST ON THE LATTICE

For the topological lattice formulation of the double
BRST symmetry of the ghost/antighost symmetric cova-
riant gauges, we start out from the standard gauge-fixing
functional VU½g� of covariant gauges which here assumes
the role of a Morse potential on a gauge orbit,

VU½g� ¼ � 1

2�

X
i

X
j�i

trUg
ij ¼ � 1

�

X
x;�

Re trUg
x;�: (1)

Here, in the first form, Uij 2 SUðNÞ is the directed link

variable connecting nearest neighbor sites i and j. The sum
j� i denotes summation over all nearest neighbors j of
site i. We assume periodic boundary conditions. The
double sum thus runs twice over all links hiji, and with

Uy
ij ¼ Uji it is therefore equivalent to the simple sum over

links in the second form, where Ux;� stands for the same

link field U at position x in direction �. The constant � is
the normalization of the SUðNÞ generators X. We use anti-
Hermitian ½Xa; Xb� ¼ fabcXc with trXaXb ¼ ���ab. We
explicitly only need the fundamental representation, where
� ¼ �fund ¼ 1=2.

As usual, under gauge transformations the link variables
U transform

Uij ! Ug
ij ¼ gyi Uijgj: (2)

BRST transformations s and anti-BRST transformations �s
in the topological setting do not act on the link variables U
directly, but on the gauge transformations gi like infinitesi-

mal right translations in the gauge group with real ghost
and antighost Grassmann fields cai , �c

a
i as parameters, re-

spectively,

sg ¼ gXaca ¼ gc; �sg ¼ gXa �ca ¼ g �c; (3)

where we introduced Lie-algebra valued, anti-Hermitian

ghost fields ci � Xacai with c
y
i ¼ �ci, and analogous anti-

ghost fields �ci � Xa �cai . For consistency, we furthermore
require

sgy ¼ ðsgÞy ¼ �cgy; �sgy ¼ ð �sgÞy ¼ � �cgy: (4)

For the gauge-transformed link variables this then implies

sUg
ij ¼ �ciU

g
ij þUg

ijcj; �sUg
ij ¼ � �ciU

g
ij þUg

ij �cj:

(5)

The BRST transformations for (anti)ghosts and
Nakanishi-Lautrup fields b are straightforward lattice ana-
logues (per site) of their continuum counterparts, see, e.g.,
Refs. [11,12],

sca ¼ �1
2ðc� cÞa; (6)

s �ca ¼ ba � 1
2ð �c� cÞa; (7)

sba ¼ �1
2ðc� bÞa � 1

8ððc� cÞ � �cÞa: (8)

The relatively obvious notation of using the ‘‘cross-
product’’ herein refers to the structure constants for
SUðNÞ, for example, ð �c� cÞa � fabc �cbcc.
In the ghost/antighost symmetric gauges as considered

here, the anti-BRST variations are obtained by substituting
c ! �c and �c ! �c according to Faddeev-Popov conjuga-
tion. Thus,

�sca ¼ �ba � 1
2ð �c� cÞa; (9)

�s �ca ¼ �1
2ð �c� �cÞa; (10)

�sba ¼ �1
2ð �c� bÞa þ 1

8ðð �c� �cÞ � cÞa: (11)

The action of the topological lattice model for gauge fixing
à la Faddeev-Popov with double BRST invariance can then
be written in compact form as

SGF ¼ is �s

�
VU½g� þ i

�

2�

X
i

tr �cici

�
: (12)

This is the lattice counterpart of the continuum gauge-
fixing Lagrangian

L GF ¼ i

2
s�sðAa

�A
a
� � i� �cacaÞ with SGF ¼

Z
dDxLGF

(13)

in D Euclidean dimensions.
For the purpose of a self-contained presentation wework

out the double (anti)BRST variation on the right of (12)
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explicitly in Appendix A. This leads to

SGF ¼
X
i

�
�ibai F

a
i ðUgÞ � i �cai M

a
FPi½c�

þ �

2
bai b

a
i þ

�

8
ð �ci � ciÞ2

�
; (14)

where

Fa
i ðUgÞ ¼ � 1

2�

X
j�i

trðXaðUg
ij �Ug

jiÞÞ (15)

defines, of course, the standard gauge-fixing form of co-
variant gauges with the continuum limit,

Fa
i ðUgÞ���!a!0

a2@�A
ga
� þOða4Þ: (16)

The Faddeev-Popov operator Mab
FPij is obtained from the

short-hand notation in (14),X
i

�cai M
a
FPi½c� ¼

X
i;j

�cai M
ab
FPijc

b
j ; (17)

and given explicitly for later reference in alternative forms
in Eqs. (A11) or (A15). It is symmetric w.r.t. simultaneous
interchanges of color and site indices, and identical to the
one obtained in [13] as the Hessian of VU½g� from varia-
tions along one-parameter subgroups of the SUðNÞ gauge
group. In the continuum limit it reduces to the symmetrized
and thus Hermitian

Mab
FPij !a!0 � a212ð@Dab þDab@Þ�ðx� yÞ þOða4Þ

of the ghost/antighost symmetric Curci-Ferrari gauges. In
contrast, the Faddeev-Popov operator of the linear-
covariant gauges for � � 0 is not a Hessian because it is
not symmetric. It can be read off as a by-product of our
BRST derivation from Eq. (A9). In particular, this non-
symmetric Faddeev-Popov operator needs to be used when
implementing other linear-covariant gauges such as the
Feynman gauge with � ¼ 1 on the lattice as discussed in
[14,15]. In Landau gauge � ¼ 0 the distinction is an illu-
sion. To keep the symmetric Hessian for � � 0, however, is
only possible within the ghost/antighost symmetric frame-
work where it necessarily comes along with the quartic-
ghost self-interactions in (14).

The full symmetry of the ghost/antighost symmetric
Curci-Ferrari gauges [6,12] is given by a semidirect prod-
uct of a global SLð2;RÞ, which includes ghost number and
Faddeev-Popov conjugation, with the BRST/anti-BRST
symmetries as used above [16]. This is the global symme-
try of the Landau gauge, and it is sometimes referred to as
extended BRST symmetry, see [1].

Among the general class of all covariant gauges [11],
with a Lagrangian which is polynomial in the fields,
Lorentz, globally gauge and BRST invariant, and renorma-
lizable in D ¼ 4, the ghost/antighost symmetric case is
special and interesting in that it allows to smoothly connect

to the Landau gauge for � ! 0, without changing the
global symmetry properties.
In particular, introducing with [11] a second gauge

parameter � 2 ½0; 1�, to interpolate between the various
generalized covariant gauges, the linear-covariant gauges
of standard Faddeev-Popov theory correspond to the line
� ¼ 0 in the two gauge-parameter plane ð�;�Þ. Along this
line, the global symmetry changes abruptly when reaching
the Landau-gauge limit; and for � ¼ 1, one obtains a
mirror image of standard Faddeev-Popov theory with the
roles of ghosts and antighosts interchanged. The ghost/
antighost symmetric gauges discussed here then corre-
spond to the line � ¼ 1=2. The � ¼ 0 gauge is � indepen-
dent. The whole interval for � 2 ½0; 1� at � ¼ 0 is
equivalent and corresponds to the Landau gauge. The
important difference is, however, that the SLð2;RÞ sym-
metric line at � ¼ 1=2 provides a unique class of covariant
gauges which share the full extended BRST symmetry of
the Landau gauge for any value of �. The limit � ! 0 is
thus a smooth one, as far as this symmetry is concerned,
only along the line of � ¼ 1=2. The price to pay are the
quartic-ghost self-interactions in (14) which again vanish
only in the Landau-gauge limit.
For a further discussion of the general ghost creating

gauges, and their geometrical interpretation, see [12]. The
one-loop renormalization was first discussed in [11], for
explicit calculations of renormalization constants and
anomalous dimensions of the ghost/antighost symmetric
case up to including the three-loop level, see [8,17]. The
Dyson-Schwinger equations of these gauges were studied
in [18]. A nonrenormalization theorem relating to the
Curci-Ferrari mass was recently reported in [19].

III. THE NEUBERGER PROBLEM

Following Neuberger, we introduce an auxiliary pa-
rameter t in the Euclidean partition function to be used
as the gauge-fixing device via the Faddeev-Popov proce-
dure of inserting unity into the unfixed partition function of
SUðNÞ lattice gauge theory. The gauge-fixing action of the
double BRST invariant model given by (12) consists of two
terms both of which are separately BRST (and anti-BRST)
exact. Multiplying the 1st term in (12) by the real parame-
ter t amounts to a mere redefinition of the Morse potential
which should have no further effect. We can therefore write
the gauge-fixing partition function with double BRST,

ZGFðtÞ ¼
Z

d½g; b; �c; c� exp
�
�is�s

�
tVU½g�

þ i
�

2�

X
i

tr �cici

��
; (18)

which is independent of the set of link variables fUg and
the gauge parameter � because of its topological nature.
Moreover, the t independence is really no different from
the � independence here, and it is thus rather obvious.
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Explicitly, the derivative with respect to t (or �) produces
the expectation value of a BRST exact operator which
vanishes, i.e.,

Z0
GFðtÞ ¼ 0: (19)

At t ¼ 0 on the other hand, we obtain with the BRST
variations given in (A4) and (A12) of Appendix A,

ZGFð0Þ ¼ N
Z

d½b; �c; c� exp
�
�X

i

�
�

2
bai b

a
i

þ �

8
ð �ci � ciÞ2

��
; (20)

where the volume of the gauge group on the lattice, from
the invariant integrations

Q
idgi via the Haar measure over

gi 2 SUðNÞ per site i, is absorbed in the constantN . The
Gaussian integrations over the Nakanishi-Lautrup fields b

are also well defined and produce a factor ð2�=�ÞðN2�1Þ=2
per site.

One might be tempted to conclude at this point that the
quartic-ghost self-interactions in (20) might remove the
uncompensated Grassmann integrations of the linear-
covariant gauges where no such self-interactions occur.
The ghost/antighost integrations at t ¼ 0 also factorize
into independent integrations d �cai dc

a
i over 2ðN2 � 1Þ

Grassmann variables per site. For N ¼ 3, for example,
the 4th order term of the exponential in (20) produces a
monomial in �cai , cai which contains each of these 16
Grassmann variables exactly once, so that their integration
might produce a nonvanishing result. This is not the case,
however. Working out the prefactor of this monomial, as
we will do explicitly in the more general case with includ-
ing a nonvanishing Curci-Ferrari mass m below, one finds
that the prefactor of this term in (20) vanishes in the
massless case and thus,

ZGFð0Þ ¼ 0: (21)

Because of the t independence (19), this implies the van-
ishing of the gauge-fixing partition function (18) of the
ghost/antighost or SLð2;RÞ symmetric formulation with
double BRST invariance in the same way as that of stan-
dard Faddeev-Popov theory observed in [5]. As for the
latter, the sign-weighted sum over all Gribov copies, as
originally proposed to generalize the Faddeev-Popov pro-
cedure in presence of Gribov copies [20,21], vanishes.

This cancellation of Gribov copies is well known [22].
The fact that it also arises here, in the ghost/antighost
symmetric formulation with its quartic self-interactions,
directly relates to the topological interpretation [23,24] of
the Neuberger zero: ZGF can be viewed as the partition
function of a Witten-type topological model to compute
the Euler characteristic � of the gauge group. On the lattice
the gauge group is a direct product of SUðNÞ’s per site, and
because the Euler characteristic factorizes,

ZGF ¼ �ðSUðNÞ#sitesÞ ¼ �ðSUðNÞÞ#sites ¼ 0#sites:

For t ¼ 0 the action in (18) decouples from the link-field
configuration and ZGFð0Þ, albeit computing the same topo-
logical invariant, has of course no effect in terms of fixing a
gauge. In the present formulation, with ZGFð0Þ in (20), the
independent Grassmann integrations per site of the quartic-
ghost term which contains the curvature of SUðNÞ each
compute its Euler characteristic via the Gauss-Bonnet
theorem [25]. This explicitly produces one factor of zero
per site on the lattice. It provides the topological explana-
tion for the vanishing of the prefactor of the corresponding
monomial of degree 2ðN2 � 1Þ in the Grassmann variables
�c, c, which could otherwise exist in the expansion of the
exponential in (20) for all odd N. For N ¼ 3, for example,
the zero in this prefactor arises, upon normal ordering,
from a cancellation of 368 nonvanishing individual terms
when expanding the square of the square of the quartic-
ghost self-interaction. This cancellation would be rather
unnatural to arise accidentally, without such explanation.
The vanishing of the gauge-fixing partition function at

the t ¼ 0 part in Neuberger’s argument, in the ghost/anti-
ghost symmetric gauges with their SLð2;RÞ 2double
BRST symmetry, therefore most directly reflects the topo-
logical origin of the Neuberger zero. Equation (20) pre-
cisely represents a product of one Gauss-Bonnet integral
expression for �ðSUðNÞÞ per site of the lattice.
Note that the gauge parameter � can be removed com-

pletely from the expression for ZGFð0Þ in Eq. (20) by a
rescaling

ffiffiffi
�

p
b ! b and

ffiffiffi
�4

p
�c ! �c,

ffiffiffi
�4

p
c ! c, which leaves

the integration measure unchanged. The same rescaling for
the full gauge-fixing partition function ZGFðtÞ in (18),
which amounts to replacing the action in SGF in (14) by

SGFðtÞ ¼
X
i

�
�itbai F

a
i ðUgÞ � it �cai M

a
FPi½c�

þ �

2
bai b

a
i þ

�

8
ð �ci � ciÞ2

�
; (22)

furthermore shows that t and � really represent a single
parameter t=

ffiffiffi
�

p
. Setting t ¼ 0 in Neuberger’s argument is

therefore the same as the � ! 1 limit which is usually
what is considered as the Gauss-Bonnet limit in topologi-
cal quantum field theory [25]. As mentioned above, there is
no gauge fixing in this limit, but it provides a simple way to
compute the value (zero here) of the partition function
which is independent of t=

ffiffiffi
�

p
.

In the opposite limit, that of the Landau gauge � ! 0 or
t=

ffiffiffi
�

p ! 1, of course, ZGFðtÞ still reduces to the sign-
weighted sum over all Gribov copies as usual [20,21],

ZGFðtÞ !
X

copiesfgðiÞg
signðdetMFPðUgðiÞ ÞÞ; (23)

which because of the t (and �) independence (19) thus
computes the same topological zero [22–24], in this case
via the Poincaré-Hopf theorem [25].
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IV. THE MASSIVE CURCI-FERRARI MODEL ON
THE LATTICE

In the previous section we have seen that the quartic-
ghost self-interactions of the SLð2;RÞ 2double BRST
symmetric Curci-Ferrari gauges have no effect on the
disastrous conclusion of the 0=0 problem in lattice
BRST. They rather serve to reveal most clearly the topo-
logical origin of this problem.

We will demonstrate explicitly below that this zero can
be regularized, however, by introducing a Curci-Ferrari
mass m, as proposed in [9,10]. The gauge-fixing action
SGF is thereby once more replaced by

SmGFðtÞ ¼ iðs�s� im2Þ
�
tVU½g� þ i�

X
i

tr �cici

�
(24)

[where we dropped in the 2nd term the factor 1=ð2�Þ ¼ 1,
in the fundamental representation]. The BSRT and anti-
BRST transformations of Ug, �c, and c in Eqs. (5)–(7), (9),
and (10) of Sec. II remain unchanged. Those for the
Nakanishi-Lautrup b fields, Eqs. (8) and (11), are replaced
by [12]

sba ¼ im2ca � 1
2ðc� bÞa � 1

8ððc� cÞ � �cÞa; (25)

�sba ¼ im2 �ca � 1
2ð �c� bÞa þ 1

8ðð �c� �cÞ � cÞa: (26)

In the derivation of the explicit form for SmGFðtÞ, using
these modified (anti)BRST transformations, the only modi-
fication in comparison to Sec. II and Appendix A, arises
from sð �cabaÞ in (A12), which now becomes

sð �cabaÞ ¼ �im2 �caca þ baba þ 1
4ð �c� cÞ2: (27)

The additional first term on the right contributes an addi-
tional term �ið�=2Þm2 �cai c

a
i to the gauge-fixing

Lagrangian, cf. Eq. (A5). Together with the same contri-
bution from the explicit mass term �ið�=2Þm2 �cai c

a
i in (24)

we therefore obtain twice that as the final ghost mass term
of the massive Curci-Ferrari model (this subtlety will be
worth remembering for later). The action of the massive
Curci-Ferrari model therefore becomes, explicitly,

SmGFðtÞ ¼ m2tVU½g� þ
X
i

�
�itbai F

a
i ðUgÞ � it �cai M

a
FPi½c�

þ �

2
bai b

a
i � im2� �cai c

a
i þ

�

8
ð �ci � ciÞ2

�
: (28)

BRST and anti-BRST transformations are no longer nilpo-
tent at finite m2, but we have [1,6,12]

s2 ¼ im2�þ; �s2 ¼�im2��; s�sþ �ss¼�im2�0;

(29)

where �� and �0 generate the global SLð2;RÞ including
ghost number and Faddeev-Popov conjugation. The Curci-
Ferrari mass decontracts the slð2;RÞ 2double BRST alge-
bra of the massless case to the ospð1j2Þ superalgebra ex-

tension of the Lie algebra of the three-dimensional Lorentz
group SLð2;RÞ. Conversely, the m2 ! 0 limit is inter-
preted as an Inonu-Wigner contraction of the simple super-
algebra ospð1j2Þ [1,12]. The BRST and anti-BRST
invariance of the massive Curci-Ferrari action in (24) itself
follows readily from this algebra as given in (29), noting
that only �c and c transform nontrivially under the SLð2;RÞ.
We emphasize that this algebra decontraction has from

the very beginning been known to lead to a breakdown of
unitarity when attempting a BRST-cohomology construc-
tion of a physical Hilbert space in analogy to the massless
case [6]. In fact, explicit examples exist for states of
negative norm surviving in any such construction [7,8].
They do not belong to BRST quartets and can therefore not
be removed by the quartet mechanism [1]. Only through
the algebra contraction bym2 ! 0 do these states reduce to
zero norm components which have no effect on the physi-
cal S-matrix elements, and the unitarity of the S matrix is
restored in this limit.
Here we deliberately do not want to interpret the mass

parameter by Curci and Ferrari as a physical mass. It rather
serves to meaningfully define a limitm2 ! 0 on the lattice,
perhaps in parallel with the continuum limit, to recover
nilpotent (anti)BRST transformations.
To study the parameter dependence, we first define the

partition function of the massive Curci-Ferrari model, ex-
plicitly listing all three parameters (even though these
again really only represent two independent ones as we
will show below),

ZmGFðt; �; m2Þ ¼
Z

d½g; b; �c; c� expf�SmGFðtÞg; (30)

with SmGFðtÞ from (24) or (28). We note in passing that the
terms proportional to m2 in the massive Curci-Ferrari
action (28) are given by

O ðt; �Þ � tVU½g� � i�
X
i

�cai c
a
i ; (31)

or, in the continuum,

O ðt; �Þ ¼
Z

dDx

�
t

2
Aa
�ðxÞAa

�ðxÞ � i� �caðxÞcaðxÞ
�
: (32)

For t ¼ 1 this coincides with the on-shell BRST invariant
(at m2 ¼ 0) operator proposed by Kondo as a possible
candidate for a dimension 2 condensate [26]. The doubling
of the explicit ghost mass term in (12), by the BRST
variation of �cb in (27) as mentioned above, is crucial
here. Without this difference in the relative factor of 2
between the two terms in Oðt; �Þ and the gauge-fixing
functional

� iWGF ¼ tVU½g� � i
�

2

X
i

�cai c
a
i ; (33)

one could not have both, the on-shell BRST invariance of
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O and the gauge-fixing action in (12) from the double
BRST variation SGF ¼ s�sWGF, at the same time.

The observation that the mass terms in (28) are given by
m2Oðt; �Þ could in principle be used to obtain the expec-
tation value of Kondo’s operator from the derivative

hOðt; �Þi ¼ � @

@m2
lnZmGFðt; �;m2Þjm2¼0; (34)

upon insertion into the unfixed partition function of lattice
gauge theory, i.e., with taking the additional expectation
value in the gauge-field ensemble. As any other observable
atm2 ¼ 0 this expectation value as it stands, unfortunately,
of course also suffers from Neuberger’s 0=0 problem of
lattice BRST.

In order to demonstrate that the Curci-Ferrari mass
regulates the Neuberger zero, for t ¼ 0 we will verify by
explicit calculation that

ZmGFð0; �; m2Þ � 0: (35)

In fact, from (28) and (30),

ZmGFð0; �; m2Þ ¼ N
Z

d½b; �c; c� exp
�
�X

i

�
�

2
bai b

a
i

� im2� �cai c
a
i þ

�

8
ð �ci � ciÞ2

��
; (36)

which again factorizes into independent Grassmann (and
b-field) integrations per site on the lattice. Using the same
rescaling

ffiffiffi
�

p
b ! b and

ffiffiffi
�4

p
�c ! �c,

ffiffiffi
�4

p
c ! c as mentioned

in the last section, we obtain

ZmGFð0; �; m2Þ ¼ ðVNð2�ÞðN2�1Þ=2INðm2
ffiffiffi
�

p ÞÞ#sites; (37)

where VN is the group volume of SUðNÞ, and

INðm̂2Þ ¼
Z YN2�1

a¼1

dði �caÞdca exp
�
im̂2 �c � c� 1

8
ð �c� cÞ2

�
;

(38)

where we used the rather obvious abbreviations �c � c ¼
�caca, ð �c� cÞa ¼ fabc �cbcc, and m̂2 ¼ m2

ffiffiffi
�

p
. Note that we

define the Grassmann integration measure to include the
imaginary unit i with the real antighosts �c so as to repro-
duce the result of integrating over complex conjugate
Grassmann variables ca � i �ca. Expanding the exponential
and collecting the relevant powers in the ghost/antighost
variables, for SUð2Þ we straightforwardly obtain

I2ðm̂2Þ ¼ 3
4m̂

2ð1þ 4
3m̂

4Þ: (39)

For SUð3Þ the computation is a bit more tedious, the result
is

I3ðm̂2Þ ¼ 45

64
m̂4

�
1þ 4m̂4 þ 64

15
m̂8 þ 64

45
m̂12

�
: (40)

In both cases we factorized the leading power for m̂2 ! 0.
INðm̂2Þ is polynomial in m̂2 ¼ m2

ffiffiffi
�

p
of degree N2 � 1, for

all N. The successively lower powers of m̂2 decrease by 2
in each step in this polynomial, reflecting an increasing
power of the quartic-ghost self-interactions contributing to
each term. Therefore, the polynomials INðm̂2Þ are odd/even
in m̂2 for N even/odd.
Because the polynomial is odd for all even N, there can

thus not be an order-zero term in the first place. The powers
of the quartic interactions alone never match the number of
independent Grassmann variables, and the Neuberger zero
at m̂2 ¼ 0 arises rather trivially for even N, for the same
reason that the Euler characteristic of an odd-dimensional
manifold, here of dimension N2 � 1, necessarily vanishes.
For N odd, INðm̂2Þ is an even polynomial which could in

principle have an order zero, constant term. The fact that
this term is absent, e.g., as explicitly verified for SUð3Þ in
(40), reflects the vanishing of the Euler characteristic of
SUðNÞ also for odd N, as mentioned above. The even
dimension N2 � 1 of the algebra is irrelevant in this case,
because, for the purpose of cohomology, the parameter
space of SUðNÞ behaves as a product of odd-dimensional
spheres S3 � S5 � S7 � � � � S2N�1 [27].
The polynomials INðm̂2Þ do not have a constant term in

either case and therefore vanish with m̂2 ! 0, i.e., INð0Þ ¼
0, as expected. Moreover, the scaling argument used here
and in the last section shows that the partition function (30)
of the massive Curci-Ferrari model can only depend on two
of the three parameters,

ZmGFðt; �;m2Þ ¼ fðt= ffiffiffi
�

p
; �m4Þ: (41)

An independent route of deriving this generic form, from
the equations of motions, will be presented below. In this
section we explicitly obtained fð0; yÞ with y ¼ m̂4 to con-
strain this function fðx; yÞ of two variables along the x ¼
t=

ffiffiffi
�

p ¼ 0 line, and verified that

ZmGFð0; �; m2Þ ¼ fð0; �m4Þ /
� ð�m4Þ#sites=2; N ¼ 2
ð�m4Þ#sites; N ¼ 3

for m2 ! 0. Because of the topological explanation of the
zero obtained in this limit, i.e., fð0; 0Þ ¼ 0, as discussed in
the last section, this actually constrains f to vanish along
the entire y ¼ 0 line, fðx; 0Þ ¼ 0 for all x ¼ t=

ffiffiffi
�

p
.

For x ¼ 0 we can in principle therefore define a non-
vanishing, finite limit,

lim
m2!0

ð�m4Þ�NtotZmGFð0; �; m2Þ ¼ const (42)

with an appropriate power Ntot ¼ # of sites on a finite
lattice for odd N, or half that for even N. This constant
could thus be inserted into the unfixed lattice gauge theory
measure without harm, i.e., avoiding the zero in (21).
Because x ¼ t=

ffiffiffi
�

p ¼ 0, however, this still has no effect
in terms of gauge fixing by the Faddeev-Popov procedure
either. We need to get away from x ¼ 0, at least by a small
amount, in order to suppress those parts of the gauge orbits
with large violations of the Lorenz condition. At a finite
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Curci-Ferrari mass m2, however, this is aggravated by the
fact that the gauge-fixing partition function of the Curci-
Ferrari model is no longer that of a topological model, and
we thus no longer have the t independence (or x indepen-
dence) of (19) either. We can therefore not as yet conclude
at this point that the constant in (42) will essentially remain
unchanged when going to some finite x ¼ t=

ffiffiffi
�

p
� 0 as we

must.
We are not quite there yet, and we will therefore have to

have a closer look at the parameter dependence of the
massive Curci-Ferrari model in the next section.

V. PARAMETER DEPENDENCES

From Eqs. (24) and (30) or (28) we immediately obtain
the following (logarithmic) derivatives:

t
@

@t
lnZmGFðt;�;m2Þ¼�ihðs�s� im2ÞtVU½g�im2 ;

2�
@

@�
lnZmGFðt;�;m2Þ¼�i

�
ðs�s� im2Þ

�
�i�

X
i

�cai c
a
i

��
m2
;

m2 @

@m2
lnZmGFðt;�;m2Þ¼�hm2Oðt;�Þim2 ; (43)

where the subscripts m2 on the right denote expectation
values within the Curci-Ferrari model at finite mass. In
particular, the derivative w.r.t. m2 in the last line differs
from (34) only in that m2 has not been set to zero here yet.
All these expectation values can, in general, depend on the
link-field configuration fUg which acts as a background
field to the model. Independence of fUg is only guaranteed
to hold in the topological limit m2 ! 0.

From the definition of O in (31), we thus find that�
t
@

@t
þ 2�

@

@�
�m2 @

@m2

�
lnZmGFðt; �;m2Þ

¼ �ihs�sOðt; �Þim2 : (44)

The standard argument that the expectation value of an
(anti)BRST exact operator vanishes does not hold at finite
m2. Neither are BRST and anti-BRST variations nilpotent,
nor is O invariant under the BRST or anti-BRST trans-
formations. However, the equations of motion for (anti)
ghost and Nakanishi-Lautrup fields on the lattice, i.e., their
lattice Dyson-Schwinger equations, can be used to show
that, indeed,

hs�sOðt; �Þim2 ¼ 0; (45)

even at finite m2. This is shown explicitly in Appendix B.
Therefore,�

t
@

@t
þ 2�

@

@�
�m2 @

@m2

�
ZmGFðt; �; m2Þ ¼ 0: (46)

This differential equation entails that we can write the
partition function of the model in the generic form (41).

As we already did in the previous sections, we therefore
continue to use the new parameters x ¼ t=

ffiffiffi
�

p
and m̂2 ¼

m2
ffiffiffi
�

p
from now on, writing

ZmGF � ZmGFðx; m̂2Þ: (47)

Again using rescaled fields
ffiffiffi
�

p
b ! b,

ffiffiffi
�4

p
�c ! �c,

ffiffiffi
�4

p
c ! c

and with
ffiffiffi
�4

p
�s ! �s,

ffiffiffi
�4

p
s ! s, so that the (anti)BRST trans-

formations of Eqs. (6)–(11) remain formally unchanged,
the only modification is the replacement of m2 by m̂2 in
those of the massive model in Eqs. (25) and (26).
Correspondingly, all other relations above are then con-
verted by the formal replacements � ! 1, t ! x, and
m2 ! m̂2. In particular,

SmGFðxÞ ¼ iðs�s� im̂2Þ
�
xVU½g� � i

2

X
i

�cai c
a
i

�

¼ X
i

�
�ixbai F

a
i ðUgÞ � ix �cai M

a
FPi½c� þ

1

2
bai b

a
i

þ 1

8
ð �ci � ciÞ2

�
þ m̂2OðxÞ; (48)

with

O ðxÞ ¼ xVU½g� � i
X
i

�cai c
a
i : (49)

The two independent derivatives remaining are readily
read off in an analogous way to give

@

@x
lnZmGFðx; m̂2Þ ¼ �ihðs�s� im̂2ÞVU½g�im̂2 ;

@

@m̂2
lnZmGFðx; m̂2Þ ¼ �hOðxÞim̂2 :

(50)

In the absence of a topological argument for the gauge-
parameter independence at finite Curci-Ferrari mass, the
best we can do to achieve independence of x ¼ t=

ffiffiffi
�

p
is to

allow an x dependent mass parameter m̂2 � m̂2ðxÞ. In
particular, the x ¼ 0 results of the previous section are
then to be interpreted as being expressed in terms of
m̂2ð0Þ. These results will remain unchanged for x � 0, if
we adjust the mass function m̂2ðxÞ with x in the partition
function ZmGF, accordingly; that is, if

0 ¼ d

dx
ZmGFðx; m̂2ðxÞÞ

¼
�
@

@x
þ dm̂2

dx

@

@m̂2

�
ZmGFðx; m̂2ðxÞÞ: (51)

From Eq. (50) we see that this requires that

dm̂2

dx
¼ �i

hðs�s� im̂2ÞVU½g�im̂2

hOðxÞim̂2

: (52)

This might not appear to be a very profound insight,
because we simply arranged matters by hand to achieve
gauge-parameter independence in this way. The crucial
question at this point is whether the tuning of the Curci-
Ferrari mass parameter with x is possible independent of
the link configuration fUg which is far from obvious here.
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Otherwise we would have to choose a different trajectory
in the parameter space ðx; m̂2Þ for different gauge orbits
which would be of little use then, as far as the Faddeev-
Popov gauge-fixing procedure is concerned. If it is pos-
sible, on the other hand, we can then use the value of the
mass m̂2

0 ¼ m̂2ð0Þ at x ¼ 0 to regulate the Neuberger zero

and use the x and fUg independent, nonvanishing and finite
constant

lim
m̂2

0
!0

ðm̂4
0Þ�NtotZmGFðx; m̂2ðxÞÞ ¼ const (53)

as the starting definition of Faddeev-Popov gauge fixing on
the lattice. Then, of course, we would also expect that there
should be a topological meaning to this constant which is
so far, however, unfortunately unknown to us.

VI. ORBIT INDEPENDENT GAUGE- PARAMETER
EXPANSION OF THE CURCI-FERRARI MASS

As we have seen in the previous section, the gauge-
parameter independence of the gauge-fixing partition func-
tion ZmGF of the massive Curci-Ferrari model will in
general require the rescaled Curci-Ferrari mass parameter
m̂2 ¼ m2

ffiffiffi
�

p
to depend on the gauge parameter in a non-

trivial way, i.e., m̂2 � m̂2ðxÞ, via x ¼ t=
ffiffiffi
�

p
.

Gauge-parameter independence requires the derivative
of m̂2ðxÞ to be given by Eq. (52). Together with the condi-
tion that m̂2ð0Þ ¼ m̂2

0, we can use this equation to obtain

the coefficients of m̂2ðxÞ in a Taylor series expansion
around x ¼ 0, where we can do explicit calculations.
Importantly, we can then verify that these coefficients
will not depend on the gauge orbit, i.e., on (the class of
gauge-equivalent) link configurations fUg. Being based on
the tensor method of invariant integrations over the gauge-
group elements per site i of the lattice, this perturbative
expansion of the Curci-Ferrari mass parameter at small x
will in fact be gauge-orbit independent at every order. As
always, of course, nothing can be learned in such an
expansion about possible nonanalytic contributions. We
therefore assume the analyticity of the massive Curci-
Ferrari model in the ‘‘would-be-Gauss-Bonnet’’ limit x !
0. This should surely be valid in the massless limit, but we
need to assume here that the limits x ! 0 and m̂2

0 ! 0 can

be interchanged, in addition. While this is all well on a
finite lattice, it certainly needs to be kept in mind when
studying the model in the infinite-volume and continuum
limits.

On a finite lattice, it is relatively straightforward to show
that m̂2 is in fact independent of the gauge parameter x at
1st order in this expansion, i.e., that

dm̂2

dx

								x¼0
¼ 0: (54)

This is simply because the numerator in Eq. (52) vanishes
at x ¼ 0 while the denominator is a finite number. To see
this explicitly, first consider at x ¼ 0 Eq. (36) with our new

variables and rescaled fields, before the gauge-group inte-
grations,

ZmGFð0; m̂2
0Þ ¼

Z
d½g; b; �c; c� exp

�
�X

i

�
1

2
bai b

a
i

þ 1

8
ð �ci � ciÞ2 � im̂2

0 �ci � ci
��
: (55)

As mentioned above, it decouples from the link-field con-
figuration and factorizes. Relative to this partition function,
we obtain

hi �cai cbj im̂2 jx¼0 ¼
�ab�ij

N2 � 1

I0Nðm̂2
0Þ

INðm̂2
0Þ
; (56)

which is easily verified from the rules of Grassmann in-
tegration and Eqs. (36)–(38). Because Oð0Þ ¼ �i

P
i �c

a
i c

a
i ,

the denominator in (52) at x ¼ 0 is obtained from the trace
in (56),

hOðxÞim̂2 jx¼0 ¼
�
�i

X
i

�cai c
a
i

�
m̂2

								x¼0

¼ �ð#sitesÞ � I0Nðm̂2
0Þ

INðm̂2
0Þ
; (57)

which on a finite lattice with nonvanishing m̂2
0 is finite.

For the numerator in (52) we have to compute

@

@x
lnZmGFðx; m̂2Þ ¼ �ihðs�s� im̂2ÞVU½g�im̂2

¼ hiðb; FÞ þ ið �c;MFPcÞ � m̂2VU½g�im̂2 ;

(58)

where the brackets are introduced for summation over site
and color indices. At x ¼ 0, the b-field integration is
Gaussian and the first term in (58), linear in b, therefore
vanishes. Because the gauge fields decouple from the
measure in (55), Eq. (56) produces the trace of the
Faddeev-Popov matrixMFP in the second term on the right
of (58) for x ¼ 0. With

trMFPðUgÞ ¼ �2C
�
2VU½g�; (59)

where C
�
2 is the quadratic Casimir invariant in representa-

tion �, Cf
2 ¼ ðN � 1=NÞ=2 in the fundamental one, we see

that the second becomes proportional to the third, and both
proportional to the expectation value of theMorse potential
VU½g�. This is linear in Ug and contains exactly one

element gi (or g
y
i ) in each and every term for which the

invariant integration over the gauge group at the particular
site i produces a zero. Therefore,

hVU½g�im̂2 jx¼0 ¼ 0; (60)

which establishes (54). It means that the derivative of m̂ðxÞ
is of the order x near x ¼ 0, or

m̂ 2ðxÞ ¼ m̂2
0 þOðx2Þ: (61)
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In order to compute the constant in the second order term,
and verify that it is nonvanishing and independent of fUg,
we can consider the derivative w.r.t. x of the numerator in
(52), or

@2

@x2
lnZmGFðx; m̂2Þ ¼ hðiðb; FÞ þ ið �c;MFPcÞ

� m̂2VU½g�Þ2im̂2 � hiðb; FÞ
þ ið �c;MFPcÞ � m̂2VU½g�i2m̂2 : (62)

The second (disconnected) term again vanishes at x ¼ 0.
Expanding the square in the first, we once more use that
every term linear in the b field will also vanish at x ¼ 0,
and therefore

@2

@x2
lnZmGFðx; m̂2Þjx¼0 ¼ hðib; FÞ2im̂2;0

þ hði �c;MFPcÞ2im̂2;0

þ m̂4
0hV2

U½g�im̂2;0

� 2m̂2
0hði �c;MFPcÞVU½g�im̂2;0;

(63)

where we used short-hand h� � �im̂2;0 � h� � �im̂2 jx¼0.

We calculate and discuss each of the individual terms on
the right of (63) separately in Appendix C (with the ex-
ception that, by the same argument that led to (59), the last
two are essentially the same again, i.e., both / hV2

Uim̂2;0). In

particular, we show there that they are indeed all indepen-
dent of fUg. The results for SUðNÞ gauge groups in D
Euclidean dimensions are summarized in Table I, where
IN is defined in Eq. (38) and JN analogously by

JNðm̂2Þ ¼
Z YN2�1

a¼1

dði �caÞdca
�
� 1

8
ð �c� cÞ2

�

� exp

�
im̂2 �c � c� 1

8
ð �c� cÞ2

�
: (64)

A comparison of the integral expression for JN with the
analogous one for IN in Eq. (38) shows that, with an
explicit interaction inserted in the integral, JNðm̂2Þ is a

polynomial in m̂2 of two orders less than INðm̂2Þ. Just as
INðm̂2Þ, this polynomial has no zero-order, constant term
because the Euler characteristic of SUðNÞ vanishes and we
essentially obtain a Gauss-Bonnet integral for m̂2 ! 0
again. Therefore,

JNðm̂2Þ � INðm̂2Þ ! 0; for m̂2 ! 0: (65)

Explicitly, for SUð2Þ, see Appendix C,

J2ðm̂2Þ ¼ 1
8I

00
2 ðm̂2Þ ¼ 3

4m̂
2; (66)

while for SUð3Þ a straightforward but a bit more tedious
computation analogous to that used for Eq. (40) yields

J3ðm̂2Þ ¼ 135

64
m̂4 þ 45

8
m̂8 þ 3m̂12: (67)

With the results in Table I we can go back to the
derivative of the Curci-Ferrari mass parameter m̂2ðxÞ
w.r.t. x. Recall that the independence of the massive
Curci-Ferrari model on the gauge parameter x ¼ t=

ffiffiffi
�

p
requires this derivative to be given by the ratio,
cf. Eqs. (50) and (52),

dm̂2

dx
¼

@
@x lnZmGFðx; m̂2Þ

hOðxÞim̂2

: (68)

With (63) and the results from the table, in the limit x ! 0
we therefore find

dm̂2

dx
!x!0

x2D

�
N2 � 1

N

INðm̂2
0Þ

I0Nðm̂2
0Þ
� 2

N

JNðm̂2
0Þ

I0Nðm̂2
0Þ

� m̂4
0

INðm̂2
0Þ

I0Nðm̂2
0Þ
� 2m̂2

0

1

N

�
; (69)

for N � 3, and

dm̂2

dx
!x!0

x2D

�
3
I2ðm̂2

0Þ
I02ðm̂2

0Þ
� 1

4

I002 ðm̂2
0Þ

I02ðm̂2
0Þ
� 2m̂4

0

I2ðm̂2
0Þ

I02ðm̂2
0Þ
� 2m̂2

0

�

¼ �x2Dm̂2
0	2ðm̂2

0Þ (70)

for SUð2Þ, where, using Eq. (39) for I2,

	2ðm̂2
0Þ ¼

3þ 18m̂4
0 þ 8m̂8

0

3þ 12m̂4
0

: (71)

In either case, the expansion of the Curci-Ferrari mass
parameter around x ¼ 0 for SUðNÞ in D dimensions can
finally be written in the general form

m̂ 2ðxÞ ¼ m̂2
0 � x2Dm̂2

0	Nðm̂2
0Þ þOðx3Þ; (72)

where 	Nðm̂2
0Þ is a ratio of polynomials in m̂2

0 obtained via

(69), for N � 3, from

	Nðm̂2
0Þ ¼

2

N

�
1þ JNðm̂2

0Þ
m̂2

0I
0
Nðm̂2

0Þ
�
�

�
N2 � 1

N
� m̂4

0

�

� INðm̂2
0Þ

m̂2
0I

0
Nðm̂2

0Þ
: (73)

TABLE I. The ratios of expectation values needed to compute
the leading contribution to the right-hand side of Eq. (68) from
the individual terms in Eq. (63) for the numerator in the limit
x ! 0.

Ratio of expectation values N ¼ 2 N � 3

hðib; FÞ2im̂2 ;0=hOðxÞim̂2;0 6D
3m̂2

0
þ4m̂6

0

3þ12m̂4
0

2DðN � 1
NÞ

IN ðm̂2
0
Þ

I0N ðm̂2
0
Þ

hV2
U½g�im̂2;0=hOðxÞim̂2;0 �4D

3m̂2
0
þ4m̂6

0

3þ12m̂4
0

�2D
IN ðm̂2

0
Þ

I0N ðm̂2
0
Þ

hði �c;MFPcÞVU½g�im̂2 ;0=hOðxÞim̂2 ;0 2D 2D=N

hði �c;MFPcÞ2im̂2 ;0=hOðxÞim̂2 ;0 �2D
6m̂2

0

3þ12m̂4
0

�2D 2
N

JN ðm̂2
0
Þ

I0N ðm̂2
0
Þ
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For N ¼ 3, using (40) and (67), we find explicitly

	3ðm̂2
0Þ ¼

1

3

90þ 855m̂4
0þ 1692m̂8

0þ 1088m̂12
0 þ 192m̂16

0

90þ 720m̂4
0þ 1152m̂8

0þ 512m̂12
0

:

(74)

To work out 	N for general N in the limit m̂2
0 ! 0, remem-

ber that INðm̂2
0Þ is an odd/even polynomial in m̂2

0 for N
even/odd. In either case there is no constant term INðm̂2

0Þ !
0 for m̂2

0 ! 0. Therefore

INðm̂2
0Þ

m̂2
0I

0
Nðm̂2

0Þ
���!m̂2
0
!0

�
1; N even;
1
2 ; N odd:

(75)

For the leading power n of m̂2
0 in INðm̂2

0Þ near m̂2
0 ¼ 0,

which is n ¼ 1 when N is even and n ¼ 2 when N is odd,
we need to expand the exponential of the ghost self-
interactions in its integral representation (38) to a power
p such that

nþ 2p ¼ N2 � 1:

Otherwise the Grassmann integrations over N2 � 1 ghost
(and antighost) variables will produce zero. Therefore,

p ¼
� N2�2

2 ; N even;
N2�3

2 ; N odd:
(76)

Comparing the definition of JN in Eq. (C37) to that of IN in
(38), we see that the exponential of the ghost self-
interactions in the integral representation of JN needs to
be expanded to one power less, i.e., to the power p� 1 for
the leading term. Comparing the prefactors of these terms
in each case we therefore find

JNðm̂2
0Þ

INðm̂2
0Þ

���!m̂2
0
!0 p!

ðp� 1Þ! ¼ p: (77)

With (75) and (76) this then implies

JNðm̂2
0Þ

m̂2
0I

0
Nðm̂2

0Þ
���!m̂2
0
!0

� N2�2
2 ; N even;

N2�3
4 ; N odd:

(78)

For even N � 4 we thus obtain from Eq. (73)

	N ! 2

N

�
1þ N2 � 2

2

�
� N2 � 1

N
¼ 1

N
; (79)

and twice that for SUð2Þ, cf. Eq. (71), where 	2 ! 1 ¼
2=N for N ¼ 2, in the limit m̂2

0 ! 0. This doubling in the

SUð2Þ case essentially comes about because for the expec-
tation values containing terms which are at most quadratic
in the link variables U at this order, only for N ¼ 2 we
obtain contributions from two types of invariant integrals,
Eqs. (C3) and (C6), while only the gauge-group integra-
tions of the form in (C3) contribute for N � 3 at this order
[additional contributions similar to those for SUð2Þ here,
will arise, e.g. for SUð3Þ at the next order etc.].

For all odd N � 3, at the present order, (75) and (76)
therefore give

	N ! 2

N

�
1þ N2 � 3

4

�
� N2 � 1

2N
¼ 1

N
; (80)

which again leads to the same result as obtained for the
even N � 4 above, i.e.,

	Nðm̂2
0Þ !

1

N
; for m̂2

0 ! 0; (81)

and all N � 3.
All these results are gauge-orbit independent as they

must. While this is merely necessary, but not sufficient, it
demonstrates that we can get away from x ¼ 0, at least
perturbatively in a small x expansion. This is of qualitative
importance as a nonzero value of x ¼ t=

ffiffiffi
�

p
, no matter how

small, corresponds to a large but finite � at t ¼ 1 and thus
eliminates the gauge freedom.
In summary, the gauge-orbit independence of the con-

stant in the second order term of the small x expansion of
m̂2ðxÞ is a direct consequence of the invariant integrations
over the gauge-group elements at each site. The gauge-
group integrations can in fact be performed at any order in
this Taylor expansion around x ¼ 0 because the action is
independent of the gauge group there [cf. Eq. (55)].
Moreover, the invariant tensor method can be used to
demonstrate how these integrations will ensure that the
coefficients in this Taylor expansion are indeed indepen-
dent of fUg at any order in x. This gauge-orbit indepen-
dence of the mass expansion is verified explicitly for the
constant in the second order term of (61) from the results in
Appendix C. In particular, as we have shown above, in D
Euclidean dimensions the gauge-parameter expansion of
the Curci-Ferrari mass in Eq. (61) becomes

m̂ 2ðxÞ ¼ m̂2
0ð1�D	Nðm̂2

0Þx2 þOðx3ÞÞ; (82)

where 	2 and 	3 for SUð2Þ and SUð3Þ are explicitly given
by Eqs. (71) and (74). Moreover, at leading order in the
Curci-Ferrari mass parameter, 	Nðm̂2

0Þ is finite and of the

order 1=N in the limit m̂2
0 ! 0. For general SUðNÞ gauge

groups we found

	Nðm̂2
0Þ ¼

�
1þOðm̂4

0Þ; N ¼ 2;
1
N þOðm̂4

0Þ; N � 3:
(83)

The leading x dependence of the Curci-Ferrari mass is
therefore order N suppressed. Without need to adjust the
Curci-Ferrari mass parameter m̂2 with x, the gauge-fixing
partition function ZmGF of the massive Curci-Ferrari model
therefore becomes gauge parameter independent at least up
to the order x3 in the large N limit.

VII. SUMMARY

We have formulated the Curci-Ferrari model on the
lattice. In the massless case this model provides an explicit
demonstration of the topological origin of the Neuberger
0=0 problem of lattice BRST. The starting point of
Neuberger’s original argument was the observation of un-
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compensated Grassmann integrations producing a zero
result in a certain limit. This same limit in the massless
Curci-Ferrari model with its double BRST symmetry and
quartic-ghost self-interactions corresponds to the Gauss-
Bonnet limit, � ! 1, of a topological model that computes
the Euler characteristic of the lattice gauge group which
vanishes for compact Lie groups. The fact that the
Neuberger zero is independent of this special limit then
follows directly from the gauge-parameter � independence
of the topological model.

Introducing a Curci-Ferrari mass term regularizes the
Neuberger zero. The analogue of the Gauss-Bonnet-
Neuberger limit here corresponds to the gauge parameter
� ! 1 limit together with the Curci-Ferrari mass m2 ! 0
such that the product m2

ffiffiffi
�

p
remains finite, i.e., m2

ffiffiffi
�

p !
m̂2 for some finite m̂2. In this limit, the partition function of
the massive Curci-Ferrari model on a finite lattice is ob-
tained as a polynomial in the newmass parameter m̂2 and is
hence nonvanishing. The 0=0 problem is thus avoided.
However, the massive Curci-Ferrari model is no longer a
purely topological model. BRST and anti-BRST are ex-
plicitly broken by the Curci-Ferrari mass. The slð2;RÞ 2
double BRST algebra of the massless Curci-Ferrari model
is decontracted into a simple superalgebra form2 � 0. As a
result of this BRST breaking, meaning that neither BRST
nor anti-BRST transformations are nilpotent anymore, the
gauge-fixing partition function of the massive Curci-
Ferrari model is a priori not independent of the gauge
parameter �. This implies that the Curci-Ferrari mass has
to depend on � so as to restore total � independence, a
requirement which in turn allows one to determine this �
dependence of m2. A gauge-orbit independent Taylor se-
ries expansion of m2ð�Þ, in D dimensions of the form,
cf. Eq. (82),

m2ð�Þ ¼ m̂2
0ffiffiffi
�

p
�
1�D	N

�
þ � � �

�
; (84)

around the Gauss-Bonnet limit of 1=� ! 0 is possible with
�-independent mass parameter m̂2

0, to show that one can

meaningfully define a limit m̂2
0 ! 0 in the spirit of

l’Hospital’s rule. In this limit, 	N ! 1=N, for SUðNÞ
gauge theory with N � 3 [and 	2 ! 1 for SUð2Þ].

VIII. CONCLUSIONS AND OUTLOOK

The explicit BRST breaking by the Curci-Ferrari mass
term is well known to lead to unitarity violations in the
continuum quantum field theory. The BRST-cohomology
construction of a positive physical Hilbert space breaks
down together with this BRST breaking. There are explicit
examples of negative norm states mixing into what would
otherwise be defined as the physical subspace [7,8]. For
that reason, the parameterm2 should not be interpreted as a
physical mass but rather only as a regulator for the
Neuberger 0=0 problem of lattice BRST.

In the Landau-gauge limit with � ¼ 0, for example, it
has the effect of reweighting different Gribov copies de-
pending on their value for the Morse potential on the gauge
orbit, VU½g�, which avoids their perfect cancellation. The
analogue of the Poincaré-Hopf theorem for the Euler char-
acteristic of the lattice gauge group, Eq. (23) for finite m2,
becomes

ZmGFðt; 0; m2Þ ¼ X
copiesfgðiÞg

signðdetMFPðUgðiÞ ÞÞ

� expf�m2tVU½gðiÞ�g: (85)

At finite m2 this leads to a suppression of Gribov copies
outside the fundamental modular region, i.e., a suppression
of all copies relative to the absolute minima of VU½g�.
In particular, because we furthermore have VU½g� /

�trMFP, each positive (negative) eigenvalue will increase
(suppress) the weight of a given copy. The situation is thus
similar to that in the Gribov-Zwanziger approach [3,28]
which includes a horizon functional to suppress Gribov
copies with negative eigenvalues, outside the first Gribov
region. As in the massive Curci-Ferrari model, this leads to
a certain BRST breaking in the Gribov-Zwanziger frame-
work also. While the renormalizability of this framework is
maintained [28], the unitarity violations when attempting a
BRST-cohomology construction of a physical Hilbert
space remain to be a problem there as well.
The so-called soft BRST breaking of the Gribov-

Zwanziger framework, which really means that it is a
nonperturbative BRST breaking, should not be a problem,
if it is effective in restricting the Landau gauge to the
fundamental modular region, the set of absolute minima
along the gauge orbits [29]. This should be intuitively
expected, of course, for a perfect gauge fixing, but because
of the existence of many degenerate absolute minima it is
not mathematically obvious.
Note that we could at least formally achieve the same

restriction here, if we define the Landau-gauge limit of the
massive Curci-Ferrari model as the limit of vanishing
gauge-parameter, � ! 0, at finite mass parameter m̂2 ¼
m2

ffiffiffi
�

p
(analogous to the opposite limit � ! 1 at fixed m̂2

considered above). In fact, the nonrenormalization theo-
rems in [19] can be used to show that m̂2 is a renormaliza-
tion group invariant mass parameter of the continuum
Curci-Ferrari model in the Landau gauge which can be

verified explicitly at three loops in theMS scheme from the
results in [17]. It seems therefore not unreasonable to
define a Landau-gauge limit as � ! 0 at fixed m̂2 also on
the lattice, which would then imply m2 ¼ m̂2=

ffiffiffi
�

p ! 1 in
(85), so as to suppress all copies but the absolute minima of
VU½g�. In principle, this limit could thus be realized by the
procedure of simulated annealing with a control ‘‘tempera-
ture’’

ffiffiffi
�

p
=m̂2 and a sufficiently slow annealing schedule

(more and more slowly on larger lattices which poses the
practical limitation of this procedure).
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The arguments for the Gribov-Zwanziger framework to
achieve this further restriction to the absolute minima in
lattice formulations [30], furthermore involve the thermo-
dynamic or infinite-volume limit, in which the common
boundary of the fundamental modular region and the first
Gribov region dominate the minimal Landau-gauge con-
figuration space [31]. To find absolute minima in lattice
simulations is not feasible for large lattices as this is a
nonpolynomially hard computational problem. When sam-
pling the local minima of the first Gribov region on a finite
lattice, as is usually done in minimal lattice Landau-gauge
implementations numerically, BRST breaking and unitar-
ity violations could therefore be a potential problem there
also.

In fact, related to this potential problem of minimal
Landau-gauge implementations on finite lattices might be
the question of a gluon mass and the infrared behavior of
the gluon and ghost propagators in Landau gauge. While
early lattice studies of those propagators [32,33] supported
the predicted infrared behavior based on their Dyson-
Schwinger equations qualitatively well [34,35], small but
significant differences are increasingly being observed
nowadays in detailed comparisons and studies of finite-
volume effects [36–40]. In particular, as a result of these
differences, the Kugo-Ojima confinement criterion of local
quantum field theory is now frequently stated to be violated
in the infinite-volume limit:

Based on the assumption that BRST invariance is un-
broken, and that a nilpotent BRST charge can be defined
nonperturbatively, the continuum prediction is that the
infrared dominant correlations are mediated by the
Faddeev-Popov ghosts, whose propagator is then found
to be infrared enhanced in the Landau gauge, while the
gluon propagator is found to be infrared suppressed. This
infrared behavior can be completely understood in terms of
confinement in QCD [2,41]; it is a consequence of the
celebrated Kugo-Ojima confinement criterion. The subse-
quent verification of this infrared behavior with a variety of
different functional methods in the continuum meant a
remarkable success [42–44]. In fact, it is directly tied to
the validity and applicability of the framework of local
quantum field theory for non-Abelian gauge theories be-
yond perturbation theory. Consistent with the conditions
for confinement in local quantum field theory, these pre-
dictions all lead to a conformal infrared behavior for
gluonic Green’s functions which is yet to be observed in
lattice simulations. Because simulations must necessarily
be done in a finite volume, where such a behavior can
strictly never be observed, finite-volume effects have long
been blamed for the remaining mismatch with the contin-
uum studies. Recently, these effects have been analyzed
carefully in the Dyson-Schwinger equations [36,37]. These
results together with latest lattice data on huge lattices [38–
40], corresponding to physical lengths of more than 20 fm
in each direction, clearly rule out finite-volume effects as
the sole origin for the observed discrepancies.

Rather, the most likely origin for these discrepancies
potentially hints at a much more profound problem: a
BRST breaking that a sampling of minima of the gauge-
fixing potential in lattice simulations might bring about
much like the restriction to the first Gribov region does in
the Gribov-Zwanziger framework. The observed evidence
of a massive infrared behavior of the gluon propagator
together with a massless free ghost propagator without
infrared enhancement in the infinite-volume limit in cur-
rent lattice Landau-gauge implementations in fact suggests
that this is the case. While this infrared behavior can be
explained quite naturally as a dynamical effect related to
the formation of a dimension 2 condensate in the Gribov-
Zwanziger framework [45,46], the question of BRST
breaking remains to be addressed. Any reweighting of
Gribov copies, inside or outside the first Gribov region,
appears to correspond to a BRST breaking procedure
similar in effect to the introduction of an explicit Curci-
Ferrari mass. Only if the numerical lattice procedure con-
verges towards a correct sampling of the fundamental
modular region in the infinite volume and continuum lim-
its, can the BRST breaking effects be expected to go away.
The most important remaining question then is to see
whether the massive infrared behavior of the gluon propa-
gator persists or not. If it does, it will preclude the infrared
enhancement of the ghost propagator necessary for con-
finement in ghost/antighost symmetric gauges such as the
Landau gauge. Because this Kugo-Ojima confinement cri-
terion is based on the assumption of the existence of a
nilpotent BRST charge, however, its potential violation can
certainly not be inferred from the results of any BRST
breaking procedure as this would not be within the rules of
local quantum field theory for covariant gauge fields on
indefinite metric spaces.
An interesting alternative procedure based on stereo-

graphic projection to define lattice gauge fields is provided
by the modified lattice Landau gauge of Ref. [47]. This
gives rise to a manifestly BRST invariant lattice formula-
tion. The Neuberger 0=0 problem is avoided there because
it is not the vanishing Euler characteristic of the lattice
gauge group that is calculated by the gauge-fixing partition
function in this case, but that of a stereographically pro-
jected manifold. In this approach the pure lattice-artifact
Gribov problem of compact Uð1Þ is avoided because the
Faddeev-Popov operator is positive, and there are thus no
cancellations between Gribov copies [47]. Consequently,
there are none along the maximal Abelian subgroup
Uð1ÞN�1 of SUðNÞ either. This is just enough, however,
to remove the complete cancellation of Gribov copies in
SUðNÞ also. The remaining cancellations between copies
of either sign in SUðNÞ, which persist in the continuum
limit, are necessarily incomplete because the Euler char-
acteristic of the coset manifold is nonzero. It is essentially
determined by that of the even-dimensional spheres S2 �
S4 � � � � S2N�2 or, more precisely, of the corresponding
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even-dimensional, real projective spaces RP2n, of one
dimension less than the odd-dimensional spheres of the
group manifold. The perhaps most promising feature of the
modified lattice Landau gauge is, however, that it provides
a way to perform gauge-fixed Monte Carlo simulations
sampling all Gribov copies of either sign in the spirit of
BRST. Bridging the gap between gauge-fixed lattice and
continuum studies this should, in particular, resolve the
present discrepancies observed in the QCD Green’s func-
tions once and for all, and at the same time put our
theoretical knowledge of QCD and all gauge theories of
the standard model on solid ground in a completely non-
perturbative manner.

Meanwhile, the decontracted double BRST supersym-
metry of the massive Curci-Ferrari model on the lattice
provides an interesting test bed with a controlled BRST
breaking and regularized Neuberger zeros. It might have its
own interesting topological features and interpretation as
indicated by its potential gauge-orbit and gauge-parameter
independence. This certainly deserves further study, espe-
cially with regard to its potential to generalize the topo-
logical field theory relation between the Gauss-Bonnet and
Poincaré-Hopf theorems [25,48,49]. In fact, an extension
to Morse theory similar to (85), but corresponding to the
introduction of an imaginary Curci-Ferrari mass parameter
[i.e., using a real parameter 
 � im2t in (85)], and its
relation to a generalized Gauss-Bonnet theorem reminis-
cent of (36) were discussed in Ref. [50]. This might help to
understand how it is possible to achieve the gauge parame-
ter and orbit independence in the massive Curci-Ferrari
model in general. It might provide an interesting new
topological interpretation of the Curci-Ferrari model
within the decontracted double BRST ospð1j2Þ superalge-
bra framework.
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APPENDIX A: BRST DERIVATION OF FADDEEV-
POPOVOPERATORANDGAUGE-FIXINGACTION

In this Appendix we show explicitly how the double
(anti)BRST variation in the gauge-fixing action of the
topological model in Eq. (12) leads to the explicit form
given in (14). This lattice transcription of a well-known
continuum procedure is mainly given for the reader’s
convenience and ready reference.

Performing the anti-BRST variation on the right-hand
side in Eq. (12) first, we obtain

�sVU½g� ¼ 1

2�

X
i

X
j�i

trð �ciUg
ij � �cjU

g
ijÞ ¼ �X

i

�cai F
a
i ðUgÞ;

(A1)

where

Fa
i ðUgÞ ¼ � 1

2�

X
j�i

trðXaðUg
ij �Ug

jiÞÞ (A2)

is used in the standard gauge-fixing condition of covariant
gauges. In the continuum limit it reduces to

Fa
i ðUgÞ !a!0

a2@�A
ga
� þOða4Þ: (A3)

With Eqs. (9) and (10) we furthermore have

�sð �cacaÞ ¼ �caba; (A4)

and therefore, for the gauge-fixing action, the alternative
form

SGF ¼ �i
X
i

s

�
�cai

�
Fa
i ðUgÞ þ i�

2
bai

��
: (A5)

As in the continuum formulation, in this form it looks
exactly like the gauge-fixing action of standard Faddeev-
Popov theory for the linear-covariant gauge. The specific
features of the ghost/antighost symmetric framework show
when working out the remaining BRST variation. From the
first term we have ðiÞ,

X
i

ðs �cai ÞFa
i ¼ � 1

2�

X
i

X
j�i

trðbiðUg
ij �Ug

jiÞÞ

þ 1

4�

X
i

X
j�i

trðf �ci; cigðUg
ij �Ug

jiÞÞ: (A6)

Herein, the first term on the right implements the gauge-
fixing condition as in standard Faddeev-Popov theory. The
second term, containing the anticommutator f �c; cg, is char-
acteristic of ghost/antighost symmetry because it combines
with the remaining quadratic ghost terms to produce a
Hermitian Faddeev-Popov operator (for any gauge parame-
ter �). To see this explicitly, consider ðiiÞ,

X
i

�cai ðsFa
i Þ ¼

1

2�

X
i

X
j�i

trð �ciciUg
ij � �ciU

g
ijcj

þ cjU
g
ji �ci � ci �ciU

g
jiÞ; (A7)

so that the difference ðiÞ � ðiiÞ yields
X
i

sð �cai Fa
i Þ ¼ � 1

2�

X
i

X
j�i

trðbiðUg
ij �Ug

jiÞÞ

þ 1

2�

X
i

X
j�i

tr

�
�ciU

g
ijcj � ciU

g
ij �cj

� ½ �ci; ci� 12 ðU
g
ij þUg

jiÞ
�

� X
i

bai F
a
i þ

X
i;j

�cai M
ab
FPijc

b
j ; (A8)

which defines the lattice Faddeev-Popov operator MFP of
the ghost/antighost symmetric Curci-Ferrari gauges.
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Note that the terms in (A7) can be written in the form

X
i

�cai ðsFa
i Þ ¼

1

4�

X
i;j�i

�cai ftrð½Xa; Xb�ðUg
ij �Ug

jiÞÞðcbi þ cbj Þ

þ trðfXa; XbgðUg
ij þUg

jiÞÞðcbi � cbj Þg: (A9)

This yields the standard Faddeev-Popov operator of the
linear-covariant gauges on the lattice. It differs by the
quadratic ghost terms in (A6) from the ghost/antighost
symmetric one, MFP in (A8). These terms are of the form

� 1

4�

X
i

X
j�i

trðf �ci; cigðUg
ij �Ug

jiÞÞ

¼ 1

2

X
i

�cai f
abcFc

i ðUgÞcbi : (A10)

In lattice Landau gauge, where Fa
i ðUgÞ ¼ 0, the forms

from Eqs. (A7) and (A8) both, of course, lead to the
same Faddeev-Popov operator, as they do in the continuum
where the standard and symmetric versions differ by an
analogous term / fabc@�A

c
�=2 which vanishes for � ¼ 0.

For � � 0, on the other hand, the two Faddeev-Popov
operators do differ and, in particular, only the ghost/anti-
ghost symmetric framework based on (A8) leads to a
Hermitian one which can be written in the alternative form,

X
i;j

�cai M
ab
FPijc

b
j ¼ � 1

4�

X
x;�

ftrðfXa; XbgðUg
x;� þUgy

x;�ÞÞ

� ð �caxþ�̂ � �caxÞðcbxþ�̂ � cbxÞ þ trð½Xa; Xb�
� ðUg

x;� �Ugy
x;�ÞÞð �caxðcbxþ�̂ � cbxÞ

� ð �caxþ�̂ � �caxÞcbxÞg: (A11)

We have added and subtracted the term proportional to
�caxc

b
x in the last line here to underpin that in the continuum

limit the MFP herein reduces to the ghost/antighost sym-
metric Faddeev-Popov operator,

Mab
FPij !a!0 � a212ð@Dab þDab@Þ�ðx� yÞ þOða4Þ:

To complete the derivation of the gauge-fixing action in the
ghost/antighost symmetric framework, we furthermore
need work out the BRST variation of s�sð �cacaÞ ¼ sð �cabaÞ
from (6)–(8). This, however, is done in exactly the same
way as in the continuum, the result is ðiiiÞ,

sð �cabaÞ ¼ baba þ 1
4ð �c� cÞ2: (A12)

Putting together all terms from ðiÞ to ðiiiÞwe obtain the full
gauge-fixing action with extended double BRST invariance
on the lattice in the form

SGF ¼
X
i

�
�ibai F

a
i ðUgÞ � i �cai M

a
FPi½c�

þ �

2
bai b

a
i þ

�

8
ð �ci � ciÞ2

�
; (A13)

where we introduced the short-hand notation that

Ma
FPi½c� � � 1

4�

X
j�i

ftrð½Xa; Xb�ðUg
ij �Ug

jiÞÞcbj

þ trðfXa; XbgðUg
ij þUg

jiÞÞðcbi � cbj Þg;
which corresponds to the ghost/antighost symmetric
Faddeev-Popov operator in (A11). In particular, we haveX

i

�cai M
a
FPi½c� ¼

X
i;j

�cai M
ab
FPijc

b
j ; (A14)

with Mab
FPij in a simplified alternative form given by

Mab
FPij ¼ � 1

2�

X
k�i

fRe trðfXa; XbgUg
ikÞ�ij

� 2Re trðXbXaUg
ikÞ�kjg: (A15)

The Faddeev-Popov operator of lattice Landau gauge was
first derived in [13]. It might be worth recalling that the
derivation presented there, based on the differentials of the
gauge-fixing potential VU½g� along one-parameter sub-
groups of the SUðNÞ gauge group, by construction leads
directly to the Hermitian MFP in (A15), and not to that of
standard Faddeev-Popov theory on the lattice following
from (A9). They are equivalent in Landau gauge, of course.
Their subtle difference needs to be kept in mind, however,
when attempting to implement smeared covariant gauges
for � � 0 on the lattice as was done, e.g., in Refs. [14,15].
It reflects the different symmetry properties of standard
Faddeev-Popov theory and the ghost/antighost symmetric
framework for � � 0.

APPENDIX B: PROOF OF EQ. (45)

In this Appendix we give the explicit proof of Eq. (45),

hs�sOðt; �Þim2 ¼ 0; (B1)

from the Dyson-Schwinger equations of the lattice model.
It would actually not really be necessary because the scal-
ing argument used in Sec. IV, in particular, Eq. (41), im-
plies the differential equation for the gauge-fixing partition
function ZmGFðt; �;m2Þ of the massive Curci-Ferrari model
in (46) which is sufficient to establish (B1).
To verify explicitly that this expectation value vanishes

at all values of the Curci-Ferarri mass m, first note that

s�sOðt; �Þ ¼ ts�sVU½g� � i�s�s
X
i

�cai c
a
i : (B2)

From Eqs. (A1) and (A8) in the previous Appendix,

s�sVU½g� ¼ �X
i

bai F
a
i �

X
i;j

�cai M
ab
FPijc

b
j ; (B3)

while from Eqs. (27) and (A4),

s�s
X
i

�cai c
a
i ¼ X

i

�
bai b

a
i � im2 �cai c

a
i þ

1

4
ð �ci � ciÞ2

�
: (B4)
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With our short-hand bracket notation for the summation
over color and site indices as in the main text, we can thus
write

s�sOðt; �Þ ¼ �tðb; FÞ � tð �c;MFPcÞ � i�ðb; bÞ �m2�ð �c; cÞ
� i

�

4
ðð �c� cÞ; ð �c� cÞÞ: (B5)

On the other hand, with (28), from

@SmGF

@bai
¼ �itFa

i þ �bai ;

we obtain the equation of motion for the Nakanishi-
Lautrup field on the lattice as�

@SmGF

@bai
bbj

�
m2

¼ h�itFa
i b

b
j þ �bai b

b
j im2 ¼ �ab�ij: (B6)

Likewise, from the left derivative w.r.t. the antighosts,

@SmGF

@L �c
a
i

¼ �itMa
FPi½c� � im2�cai �

�

4
ðð �c� cÞ � cÞai ;

the Dyson-Schwinger equation for the ghosts in the mas-
sive Curci-Ferrari model on the lattice is obtained as�
@SmGF

@L �c
a
i

�cbj

�
m2

¼ �ithMa
FPi½c� �cbj im2 � im2�hcai �cbj im2

� �

4
hðð �c� cÞ � cÞai �cbj im2

¼ �ab�ij: (B7)

The difference of the two Dyson-Schwinger equations (B6)
and (B7) is zero, and upon taking the trace over color and
site indices, we therefore find

0 ¼ Tr

�
@SmGF

@L �c
a
i

�cbj

�
m2

� Tr

�
@SmGF

@bai
bbj

�
m2

¼ ithð �c;MFPcÞim2 þ im2�hð �c; cÞim2 � �

4
hðð �c� cÞ;

ð �c� cÞÞim2 þ ithðb; FÞim2 � �hðb; bÞim2 : (B8)

Comparing (B5) and (B8) we therefore observe that

hs�sOðt;�Þim2 ¼ iTr

�
@SmGF

@L �c
a
i

�cbj

�
m2

� iTr

�
@SmGF

@bai
bbj

�
m2

¼ 0;

as promised.

APPENDIX C: EXPECTATION VALUES IN THE
‘‘WOULD-BE-GAUSS-BONNET’’ LIMIT

Here we describe the explicit calculations to derive the
results for the expectation values in Eq. (63), as summa-
rized in Table I, which are needed at the 2nd order in the
expansion of the Curci-Ferrari mass parameter m̂2ðxÞ
around x ¼ 0, the ‘‘would-be-Gauss-Bonnet’’ limit.

For the first term we use hbai bbj im̂2;0 ¼ �ab�ij to obtain

hðib; FÞ2im̂2;0 ¼ �hðF; FÞim̂2;0: (C1)

Remember the explicit form (15) of the gauge condition,

Fa
i ðUgÞ ¼ �X

j�i

trðXaðgyi Uijgj � gyj UjigiÞÞ: (C2)

All terms in the sum of the squares of this condition are
quadratic in g and in gy. For N � 3 the only nonvanishing
results of the group integration arise in terms where all the

gi’s match up pairwise with gyi ’s at identical sites (the
special case of N ¼ 2 will be discussed separately below).
We can then use for the fundamental g’s at that site i,

V�1
N

Z
dgiðgiÞklðgyi Þmn ¼ 1

N
�kn�lm: (C3)

In one particular term Fa
i F

a
i , without summation over i,

only the two mixed terms then survive and we have (no
sum i)

V�1
N

Z
dgiF

a
i F

a
i ¼ �2V�1

N

Z
dgi

�X
j�i

trðXagyi UijgjÞ
�

�
�X
k�i

trðXagykUkigiÞ
�

¼ � 2

N

X
k;j�i

trðXaXagykUkiUijgjÞ

¼
�
1� 1

N2

� X
k;j�i

trðgykUkiUijgjÞ: (C4)

The integrations over the gauge-group elements at all sites
k� i, attached to site i, by the same argument yield a
nonvanishing result only if j ¼ k in the double sum over
all neighbors of site i in (C4). For those terms the group
integration yields trUjiUij ¼ N. Therefore, in D dimen-

sions,

hðF; FÞim̂2;0 ¼ N
Z Y

i

dgiðF; FÞ ¼ ð#sitesÞ � 4DCf
2 ;

(C5)

for SUðNÞ with N � 3, where Cf
2 ¼ 1

2 ðN � 1=NÞ is the

value of the quadratic Casimir operator in the fundamental
representation.
For N ¼ 2 we obtain an additional contribution to

hðF; FÞim̂2;0 from the squares of the two terms in the gauge

condition (C2). This is because for g 2 SUð2Þ,

V�1
2

Z
dgiðgiÞklðgiÞmn ¼ 1

2�km�ln: (C6)

Again, however, only the squares of the same links con-
tribute in the double sum over the neighbors of site i. For
these, e.g.,
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ðtrXagyj UjigiÞ2V�2
2 ���!

R
dgidgj

3
4 detUji ¼ Cf

2 : (C7)

There are two such terms in Fa
i F

a
i for each of the 2D links

attached to site i. Therefore, the total additional contribu-
tion from those terms in SUð2Þ equals that from the mixed
terms calculated for general N above; we have

hðF; FÞim̂2;0 ¼ ð#sitesÞ � 8DCf
2 ; for SUð2Þ: (C8)

Next, to compute the expectation value / hV2
Uim̂2;0 of

V2
U½g� ¼

�X
i;j�i

trgyi Uijgj

�� X
k;l�k

trgykUklgl

�
; (C9)

we consider one term for fixed (neighbors) i and j in the
double sum. Integrating this term over gj via (C3),

V�1
N

Z
dgj trg

y
i Uijgj

� X
k;l�k

trgykUklgl

�

¼ 1

N

X
l�j

trgyi UijUjlgl; (C10)

for N � 3, where the only contribution arises when k ¼ j.
Then, l must be one of the neighbors of j. Successive
integration over gi singles out that neighbor of jwith l ¼ i,

V�1
N

Z
dgi

1

N

X
l�j

trgyi UijUjlgl ¼ 1

N
trUijUji ¼ 1:

We obtain one such contribution for every one of the 2D
neighbors j� i at site i, thus summing

P
i;j�i yields

hV2
U½g�im̂2;0 ¼ ð#sitesÞ � 2D; N � 3: (C11)

Note that the number of sites in all these expectation values
cancels with that in (57) when computing the ratio of
Eq. (52).

Again, for N ¼ 2 in SUð2Þ we obtain an additional
contribution from (C6). Starting again from the contribu-
tion to (C9) for fixed neighbors i and j as in (C10), we now
obtain for N ¼ 2

V�1
2

Z
dgj trg

y
i Uijgj

� X
k;l�k

trgykUklgl

�

¼ 1

2

X
l�j

trgyi UijUjlgl þ 1

2

X
k�j

�su�rtðgyi UijÞsrðgykUkjÞut:

(C12)

The second group integration over gi then produces, in
addition to the above, an according contribution from the
second term, which is given by

V�1
2

Z
dgi

1

2

X
k�j

�su�rtðgyi UijÞsrðgykUkjÞut

¼ 1

4
�su�rt�su�vwðUijÞvrðUijÞwt ¼ 1

4
4 detUij ¼ 1:

(C13)

This equals the first term obtained for all N; and together
the two again give for SUð2Þ twice the result for N � 3 in
(C11) above, i.e.,

hV2
U½g�im̂2;0 ¼ ð#sitesÞ � 4D; N ¼ 2: (C14)

The hardest task here is to compute the last remaining
term in (63), hði �c;MFPcÞ2im̂2;0. For a start, we first note that

hi �cai cbj i �cckcdl im̂2;0 ¼ ð�ab�ij�
cd�kl � �ad�il�

bc�jkÞAac
ik ;

where

Aab
ij ¼ hði �ccÞai ði �ccÞbj im̂2;0; (C15)

using the notation ði �ccÞai � i �cai c
a
i without implicit summa-

tions over a and i, here. The expectation value in (C15) is
of course independent of fUg. It depends on the site indices
only in that we need to distinguish whether i ¼ j or not,
i.e.,

Aab
ij ¼

8<
:Pab

N ðm̂2
0Þ; Pab

N ¼
�
Pba
N ; a � b

0; a ¼ b
; i ¼ j:

QNðm̂2
0Þ; independent of fa; bg; i � j;

(C16)

where both Pab
N and QN are site independent. We have

QNðm̂2
0Þ ¼

1

ðN2 � 1Þ2
�
I0Nðm̂2

0Þ
INðm̂2

0Þ
�
2
; (C17)

from (56), while Pab
N has a more complicated structure, in

general. Only its sum simplifies,

X
a;b

Pab
N ðm̂2

0Þ ¼ 2
X

a;b>a

Pab
N ðm̂2

0Þ ¼
I00Nðm̂2

0Þ
INðm̂2

0Þ
; (C18)

which follows immediately from its definition via (C15)
and (C16) and with Eqs. (36)–(38). With these results,

hði �c;MFPcÞ2im̂2;0 ¼
� X
i;j;a;b

ðMaa
ii M

bb
jj �Mab

ij M
ba
ji ÞAab

ij

�
m̂2;0

¼ 2QNðm̂2
0Þ

X
i;j>i;a;b

hðMaa
ii M

bb
jj

�Mab
ij M

ba
ji Þim̂2;0 þ 2

X
i;a;b>a

Pab
N ðm̂2

0Þ

� hðMaa
ii M

bb
ii �Mab

ii M
ba
ii Þim̂2;0: (C19)

The first part with the contributions from different sites j �
i would be a disaster for the intended m̂2

0 ! 0 limit:

Because I0Nðm̂2
0Þ=INðm̂2

0Þ always is of the order 1=m̂2
0, we
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have that QNðm̂2
0Þ is of the order 1=m̂4

0. Recalling that we

need to divide all terms computed here by the expectation
value in (57) which is proportional to I0Nðm̂2

0Þ=INðm̂2
0Þ, this

then implies that the second derivative w.r.t. x of m̂2ðxÞ
would contain a contribution proportional 1=m̂2

0 at x ¼ 0
and therefore become infinite in the limit m̂2

0 ! 0. Luckily,
this contribution turns out to be zero for all N because of a
cancellation between the two terms in the expectation
value of this part in (C19). To see this, first consider

X
a;b

Maa
ii M

bb
jj ¼ 4Cf2

2

X
k�i

X
l�j

Re trðgyi UikgkÞRe trðgyj UjlglÞ

¼ Cf2

2

X
k�i

X
l�j

ðtrUg
ik trU

g
jl þ trUg

ki trU
g
lj

þ trUg
ik trU

g
lj þ trUg

ki trU
g
jlÞ: (C20)

Because i � j, only the first two terms in the brackets
contribute when integrating gi via (C3). For those, the
different group integrations over gi and gj, by the method

now familiar, then yield

V�2
N

Z
dgidgj

X
a;b

Maa
ii M

bb
jj ¼ 2Cf2

2

X
k�i

X
l�j

�li�kj: (C21)

After summation over j we can replace j by k here. The
fact that in this sum we need to restrict j � i does not
matter because the nonzero contributions arise for j ¼ k,
where k is a neighbor of i and thus necessarily different
from i. Subsequent summation over the neighbors l of k
now, then due to the second Kronecker symbol picks up
neighbor i of site k. We have

X
i;j�i

V�2
N

Z
dgidgj

X
a;b

Maa
ii M

bb
jj ¼ 2Cf2

2

X
i;k�i

X
l�k

�li

¼ ð#sitesÞ �D

�
N � 1

N

�
2
: (C22)

As before, there is an additional contribution from (C6) for
SUð2Þ here also. As i and j are different, after integrating
gi this time, this contribution is nonzero only for precisely
the other two terms in the brackets above. Using (C6) it is
straightforward to verify that the result for those two terms
again matches the contribution just calculated from (C3).
We can therefore summarize that, for all N including N ¼
2,

X
i;j�i;a;b

hMaa
ii M

bb
jj im̂2;0 ¼ ð#sitesÞ � 2D2Cf2

2 ð1þ �N;2Þ:

(C23)

For the second term in the first part of (C19) with i � j,
which allowed us to drop the diagonal terms in both
Faddeev-Popov operators, we need that in the fundamental
representation,

ðXbXaÞijðXaXbÞkl ¼ 1

4

�
N � 2

N

�
�il�jk þ 1

4N2
�ij�kl;

and

ðXaXbÞijðXaXbÞkl ¼ � 1

2N
�il�jk þ 1

4

�
1þ 1

N2

�
�ij�kl;

so that we can write (for i � j)

X
a;b

Mab
ij M

ba
ji ¼ 4

X
k�i

X
l�j

Re trðXbXagyi UikgkÞRe trðXaXbgyj UjlglÞ�kj�li

¼ X
k�i

X
l�j

ðtrXbXaUg
ij þ trXaXbUg

jiÞðtrXaXbUg
ji þ trXbXaUg

ijÞ�kj�li

¼ X
k�i

X
l�j

�
1

2
ðN2 � 2Þ þ 1

2N2
trUg

ij trU
g
ji �

1

2N
ðtrUg

ijU
g
ij þ trUg

jiU
g
jiÞ þ

1

4

�
1þ 1

N2

�
ððtrUg

ijÞ2 þ ðtrUg
jiÞ2Þ

�
�kj�li:

(C24)

The group integrations via (C3) and, in addition, for the
special case of N ¼ 2 via (C6) proceed as before. The
explicit results of the corresponding calculations above
can all be reduced to essentially using two relations sum-
marized as follows:

htrðgyi UijgjÞtrðgykUklglÞim̂2;0 ¼ �il�ki þ �N;2�ik�jl;

htrðgyi Uijgjg
y
kUklglÞim̂2;0 ¼ N�il�ki � �N;2�ik�jl:

(C25)

These are the basic terms that arise at the quadratic order in
x, and hence in the gauge-transformed links Ug, of our
mass expansion (recall that the terms linear in x vanish in

this expansion because the linear order terms in Ug do
upon the group integrations). Using the relations (C25) in
(C24), we obtain

X
a;b

hMab
ij M

ba
ji im̂2;0 ¼

�
1

2
ðN2 � 2Þ þ 1

2N2

þ�N;2

�
1

N
þ 1

2

�
1þ 1

N2

���X
k�i

X
l�j

�kj�li;

(C26)

and hence, together with (C23),
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X
i;j�i;a;b

hðMaa
ii M

bb
jj �Mab

ij M
ba
ji Þim̂2;0 ¼ ð#sitesÞ2D�

8>>>><
>>>>:

1
2

�
N � 1

N

�
2 � 1

2 ðN2 � 2Þ � 1
2N2 ¼ 0; N � 3;�

N � 1
N

�
2 � 1

2 ðN2 � 2Þ � 1
2N2 �

�
1
N þ 1

2

�
1þ 1

N2

��
¼ 0; N ¼ 2:

(C27)

The two terms from (C23) and (C26) therefore cancel and
the first part in (C19) thus vanishes in either case, whether
N ¼ 2 or N � 3. At the same time this cancels the other-
wise quite disastrous singularity of the mass expansion in
the m̂2

0 ! 0 limit, as promised.
In the second term in (C19), the one with i ¼ j, we need

products of diagonal entries of the Faddeev-Popov operator
of the form [cf. Eq. (A15); no implicit sum over i here
either],

Mab
ii ¼ �X

k�i

1

2
ðtrfXa; XbgUg

ik þ trfXa; XbgUg
kiÞ

¼ X
k�i

�
1

2N2
�abðtrUg

ik þ trUg
kiÞ

þ 1

2
dabcðtriXcUg

ik þ triXcUg
kiÞ
�
; (C28)

where we have used the identity

fXa; Xbg ¼ � 1

N
�ab � idabcXc: (C29)

For SUð2Þ we set dabc ¼ 0 which then leaves us with only
the first term in (C28). Because, e.g.,

htrðgyi UikgkÞtrðiXagyl UligiÞim̂2;0

¼ 1

N
htrðiXagyl UliUikgkÞim̂2;0 ¼ 0; (C30)

due to the tracelessness of the generators Xa, there will be
no terms linear in the X’s in the expectation values of
squares of the operators in (C28) for N � 3 either. The
terms quadratic in the X’s simplify from relations as fol-
lows:

htrðiXagyi UikgkÞtrðiXbgyl UligiÞim̂2;0

¼ 1

N
htrðiXbgyl UliUikgkiX

aÞim̂2;0 ¼
1

2N
�ab�kl: (C31)

We do not have to worry about corresponding terms from
(C6) for N ¼ 2 here because these contain the d symbols
which are zero in SUð2Þ. With (C25), (C30), and (C31) we
therefore obtain

hMab
ii M

cd
ii im̂2;0 ¼

X
k�i

�
1

2N2
�ab�cdð1þ�N;2Þ þ 1

4N
dabedcde

�

¼N>2 2D

4N

�
2

N
�ab�cd þ dabedcde

�
: (C32)

We therefore have, implicitly summing over color indices
again but not over sites i (yet),

hði �caMabcbÞiði �ccMcdcdÞiim̂2;0 ¼ hði �cacbÞiði �cccdÞiim̂2;0hMab
ii M

cd
ii im̂2;0

¼ � 2D

4N

�
2

N
hð �cacaÞ2i im̂2;0 þ dabedcdehð �cacb �cccdÞiim̂2;0

�

¼ � 2D

4N
hfabeð �cacbÞifcdeð �cccdÞiim̂2;0

¼ � 2D

4N
hð �c� cÞ2i im̂2;0; (C33)

for N � 3, and twice that for N ¼ 2 again, where the d’s
are zero and where the x ¼ 0 expectation value of the
remaining first term above agrees with that of the
quartic-ghost interaction,

� hð �c� cÞ2i im̂2;0 ¼ hði �cacaÞ2i im̂2;0 ¼
I002 ðm̂2

0Þ
I2ðm̂2

0Þ
: (C34)

Finally, summing in (C33) over the sites i of the lattice, and

from (C19) with (C26), we obtain

hði �c;MFPcÞ2im̂2;0

¼ 2Dð#sitesÞ
8><
>:
� 1

4N hð �c� cÞ2im̂2;0 � 2
N

JNðm̂2
0
Þ

INðm̂2
0Þ
; N � 3;

� 1
4 hð �c � cÞ2im̂2;0 ¼ 1

4

I00
2
ðm̂2

0
Þ

I2ðm̂2
0
Þ ; N ¼ 2:

(C35)
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The only piece left to compute is the expectation value (at
x ¼ 0) of the quartic-ghost interaction,

� 1

8
hð �c� cÞ2im̂2;0 �

JNðm̂2
0Þ

INðm̂2
0Þ
: (C36)

The integral expression for JN, analogous to that for IN ,
cf. Eq. (38), is given by

JNðm̂2Þ ¼
Z YN2�1

a¼1

dði �caÞdca
�
� 1

8
ð �c� cÞ2

�

� exp

�
im̂2 �c � c� 1

8
ð �c� cÞ2

�
: (C37)

For SUð2Þ and SUð3Þ, respectively, the resulting J2ðm̂2Þ
and J3ðm̂2Þ are given explicitly in Eqs. (66) and (67). This
completes the computations of the terms in (63). The
results are summarized in Table I.
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