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The inertial dynamics of thin film flow of non-Newtonian fluids
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Abstract

Consider the flow of a thin layer of non-Newtonian fluid over
a solid surface. I model the case of a viscosity that depends
nonlinearly on the shear-rate; power law fluids are an impor-
tant example, but the analysis here is for general nonlinear
dependence. The modelling allows for large changes in film
thickness provided the changes occur over a large enough
lateral length scale. Modifying the surface boundary con-
dition for tangential stress forms an accessible base for the
analysis where flow with constant shear is a neutral critical
mode, in addition to a mode representing conservation of
fluid. Perturbatively removing the modification then con-
structs a model for the coupled dynamics of the fluid depth
and the lateral momentum. For example, the results model
the dynamics of gravity currents of non-Newtonian fluids
even when the flow is not very slow.

Keywords: thin fluid flow; non-Newtonian fluid; inertia;
power law rheology
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1 Introduction

Consider the two dimensional flow of a thin layer of fluid
over a flat substrate. The fluid of thickness η(x, t) spreads
with mean lateral velocity ū(x, t). Suppose the fluid has
the non-Newtonian, power law, stress-strain relation that
the stress ∝ (strain-rate)s for some fixed exponent s: the
exponent s = 1 for a Newtonian fluid; s < 1 is shear thinning;
and s > 1 is shear thickening. Such a power law is sometimes
called Ostwald’s or Norton’s constitutive relation [5]. Then
the systematic analysis developed in this article supports the
nondimensional model

∂η

∂t
+

∂

∂x
[ηū] = 0 , (1)
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[
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∂ū
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ū2 ∂η
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]

≈ −
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√
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)

, (2)
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where Re is the nondimensional Reynolds number, cs is the
coefficient of proportionality in the nonlinear stress-strain re-
lation, and where g1 and g2 are the nondimensional compo-
nents of gravity along and normal to the flat substrate. Fluid
is conserved through (1). The momentum equation (2) incor-
porates effects of inertia, self-advection, bed drag and grav-
itational forcing; the dependence of the coefficients upon s

models the subtle effects of the power law rheology.
This model not only applies to the flow of simple liquids,

it applies to: gravity currents of suspensions with medium to
high volume fractions as these are non-Newtonian [17]; power
law rheologies are used to model ice flow [9, 18, e.g.] and at
even a few metres per year the Reynolds number is signifi-
cant for a thick glacier; and a modified model would apply
to turbulent flow as the Smagorinsky large eddy closure of
turbulence corresponds to the shear thickening case of expo-
nent s = 2 [8, Eqn. (6), e.g.]. This article puts models such
as (1)–(2) within the sound support of modern dynamical
systems theory, Section 3, to empower us to systematically
control error, assess domains of validity, and to systemati-
cally account for further physical effects.

The analysis here encompasses not only power law fluids
but a general nonlinear dependence of the stress upon the
strain-rate as codified in Section 2. In contrast, almost all
previous thin fluid film modelling use only a power law de-
pendence. Some industrial plastics have a complicated non-
monotonic dependence [3] that cannot be represented by a
simple power law. Similarly, dense suspensions often have
non-monotonic dependence [17]. The resultant model de-
rived in Section 4 also applies to such complicated industrial
plastics and dense suspensions.

The lubrication approximation of very slow flow, low
Reynolds number, underpins previous theoretical models for
non-Newtonian thin fluid films: Perazzo & Gratton [10] and
Betelu & Fontelos [1] examined flow with surface tension;
this followed experiments compared with travelling waves
and similarity solutions by Gratton, Minotti & Mahajan [5].
Gratton et al. comment “the differences between Newtonian
and non-Newtonian currents are significant and can clearly
be observed in experiments”. But the lubrication approxi-
mation, that creates models expressed only in terms of the
fluid thickness η(x, t), does not model inertia and so can-
not resolve any wave-like dynamics. To model faster flows,
potentially with wave effects, we must resolve the dynam-
ics of both the fluid thickness and a measure of horizontal
momentum [12, 16], we used η and ū in (1)–(2). For exam-
ple, Harris et al. [6] modelled particle driven gravity currents
using shallow water equations that resolve the dynamics of
both the fluid thickness and the mean lateral velocity. How-
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ever, such modelling of essentially dissipative flows, albeit
dissipative via turbulence, by the laminar inviscid founda-
tion of shallow water equations appears a contradiction that
demands resolution. This article shows how such models of
non-Newtonian fluid flow may be put on a sound mathemat-
ical basis to empower accurate physical forecasts.

2 Differential equations to model

non-Newtonian flow

Let the incompressible fluid have thickness η(x, t), constant
density ρ, a nonlinear rheology, and let the fluid flow with
some varying velocity field u = (u, v) = (u1, u2) and pres-
sure field p.

Nonlinear constitutive relation Define the strain-rate
tensor [5, 17]1

ε̇ij = 1
2

(

∂ui

∂xj

+
∂uj

∂xi

)

, (3)

where x1 = x and x2 = y are distances along and normal
to the solid substrate, respectively. Then the stress tensor
for the fluid is σij = −pδij + 2ρνε̇ij : for a Newtonian fluid
the kinematic viscosity ν is constant; but when the kine-
matic viscosity varies with strain-rate then we model shear
thickening or shear thinning non-Newtonian fluids.

The important class of non-Newtonian fluids that we ad-
dress has viscosity which depends only upon the magnitude ε̇

of the second invariant of the strain-rate tensor [1]:

ε̇2 =
∑
i,j

ε̇2
ij . (4)

For example, Bird et al. [2, see [1]] report that a solution of
0.5% Hydroxyethylcellulose is shear thinning: at 20 ◦C the
solution has viscosity µ = mε̇s−1 for exponent s = 1/1.96

and coefficient m = 0.84N ss / m2 .

Partial differential equations Make equations nondi-
mensional with respect to some velocity scale, a typical fluid
thickness, and the fluid density. The nondimensional pdes
for the incompressible, two dimensional, fluid flow are firstly
the continuity equation

∇ · u =
∂u

∂x
+

∂v

∂y
= 0 , (5)

and secondly the momentum equation

Re

(

∂u

∂t
+ u · ∇u

)

= −∇p + ∇ · τ + g , (6)

where Re is the appropriate Reynolds number, τ is the
nondimensional deviatoric stress tensor, and g = (g1, g2)

is the nondimensional forcing of gravity. For a fluid with
a nonlinear stress-strain relation, the nondimensional devia-
toric stress tensor

τij = 2ν(ε̇)ε̇ij = ν(ε̇)

(

∂ui

∂xj

+
∂uj

∂xi

)

. (7)

1Some, such as Betelu & Fontelos [1], use double this tensor.

Boundary conditions Solve these pdes with nondimen-
sional boundary conditions:

• on the bed of no-slip,2

u = 0 on y = 0 ; (8)

• the kinematic condition on the free-surface of

∂η

∂t
+ u

∂η

∂x
= v on y = η ; (9)

• the stress normal to the free surface comes from con-
stant environmental pressure and surface tension, that
is,

−p +
1

1 + η2
x

(

τ22 − 2ηxτ12 + η2
xτ11

)

=
We ηxx

(1 + η2
x)3/2

on y = η , (10)

where We is a nondimensional Weber number charac-
terising the importance of surface tension;

• and there must be no tangential stress at the free sur-
face,

(1 − η2
x)τ12 + ηx(τ22 − τ11) = 0 on y = η . (11)

This boundary condition of zero tangential stress im-
plicitly is effectively one of zero shear at the surface;
this is not appropriate for material with a finite yield
stress. Here we assume the fluid yields for arbitrarily
small stress.

3 Centre manifold theory supports

the modelling

This section shows how to place models such as (1)–(2) on
a sound theoretical base. Artificially modify the zero tan-
gential stress free surface condition (11) to have an artificial
forcing proportional to the local velocity, a forcing which we
later remove by evaluating at parameter γ = 1 :

(1 − 1
6
γ)
[

(1 − η2
x)τ12 + ηx(τ22 − τ11)

]

= (1 − γ)
ν(e)

η
u on y = η . (12)

Evaluated at γ = 1 this artificial right-hand side becomes
zero so the boundary condition (12) reduces to the physical
boundary condition (11). However, when the parameter γ =

0 and the lateral gravity and lateral derivatives negligible,
g1 = ∂x = 0 , a neutral mode of the dynamics is the lateral
shear u =

√
2ey where I define e to be proportional to the

mean lateral strain-rate:

e =
1√
2η

∫η

0

∂u

∂y
dy =

1√
2η

u|y=η .

2If modelling turbulent flows by a large eddy closure, we may justi-
fiably replace this no-slip bed condition by a mixed boundary condition
on the lateral velocity: u∝

∂u
∂y

.
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This neutral lateral shear mode arises because in pure shear
flow τ12 = νuy and hence the artificial free surface condi-
tion (12) reduces to νuy = νu/η on y = η . Conservation
of fluid provides a second neutral mode in the dynamics.
That is, when γ = g1 = ∂x = 0 then a two parameter
family of equilibria exists corresponding to some uniform
lateral shear flow, u = ey , on a fluid of any constant thick-
ness η. For large enough lateral length scales, these equilib-
ria occur independently at each location x [11, 13, e.g.] and
hence the space of equilibria are in effect parametrised by
e(x) and η(x). Provided we can treat lateral derivatives ∂x as
a modifying influence, that is provided solutions vary slowly
enough in x, centre manifold theory [4, 7, 14, e.g.] assures us
three things: this space of equilibria is perturbed to a slow
manifold, on which the evolution is slow, that exists for a

finite range of γ and g1, and which may be parametrised
by the mean lateral shear e(x, t) and the local thickness
of the fluid η(x, t); the slow manifold is attractive for all

nearby initial conditions ; and that a formal power series in
the parameters γ, g1 and derivatives ∂x approximates the
slow manifold. That is, the theory supports the existence,
relevance and construction of slow manifold models such as
(1)–(2).

4 Low order models of the dynamics

Computer algebra readily constructs slow manifold models
as asymptotic solutions of the governing differential equa-
tions and boundary conditions.

4.1 Power law fluids

For simplicity, suppose the rheology is a nondimensional
power law for the kinematic viscosity, ν = csε̇

s−1 .
Computer algebra [15, §3] derives that for such a power

law fluid, the evolution of the fluid thickness η and the stress
parameter e is

∂η

∂t
= −

∂

∂x

[(

1 + 5
√

2
48s

γ
)

1
2
η2

e

]

+ O
(

∂2
x + g2

1 + γ3
)

, (13)

Re
∂e

∂t
= −5

2

(

γ +
1−1/s

4
γ2
)

cs

e
s

η2

− Re
√

2

[

(

3
8

+
1−8/s

96
γ
)

ηe

∂e

∂x
− 1

6s
γe

2 ∂η

∂x

]

+
√

2
[

3
4

−
1+1/s

16
γ
]

η−1

(

g1 − g2

∂η

∂x

)

+ O
(

∂2
x + g2

1 + γ3
)

. (14)

The nonlinear rheology primarily appears as a nonlinear drag
on the bed. However, changes to the vertical profiles of ve-
locity and pressure due to different power laws affect the
coefficients of this model through their dependence upon ex-
ponent s.

In modelling the flow of thin fluid layers, researchers gen-
erally prefer to use the mean lateral velocity or the lateral
fluid flux instead of the shear parameter e. Using the veloc-

ity fields computed simultaneously with (13)–(14) the com-
puter algebra [15, §3] also derives the mean lateral velocity

ū =
1

η

∫η

0

udy =
1√
2

(

1 + 5
24s

γ +
5(4−1/s)

288s
γ2
)

ηe

+
η2

e
1−s

scs

[

Re

160
e

∂e

∂x
+ 1

48

(

g1 − g2

∂η

∂x

)]

+ · · · .

Reverting this series to express e in terms of ū, and sub-
stituting into the model (13)–(14) leads to a model for the
coupled evolution of η(x, t) and ū(x, t). Evaluating at the
physically relevant γ = 1, to remove the artifice in the sur-
face boundary condition (12), then gives the model (1)–(2)
discussed in the Introduction of this article.

Computer algebra experiments [15, §1] suggest that the
convergence of the asymptotic series in γ is markedly im-
proved by the factor (1 − 1

6
γ) on the left-hand side of the

tangential stress boundary condition (12). This factor is
equivalent to an Euler transformation of the asymptotic se-
ries. As shown in other similar applications [12, e.g.], eval-
uation at γ = 1 is valid provided the lateral derivatives are
small enough.

Computer algebra [15, §3] may construct terms in the for-
mal power series solutions to higher order in the parameters
γ, g1 and ∂x to generate many valid approximations of vary-
ing orders of accuracy. For example, to resolve any effects
of surface tension we need to compute terms in ∂2

x that are
neglected in (2) and (14). With the support of centre man-
ifold theory, researchers may choose an approximate model
that suits the parameter regime of their application.

4.2 More general non-Newtonian fluids

We now return to the more general case where the viscosity ν

of the fluid depends quite generally upon the magnitude of
the shear-rate ε̇, instead of being a simple power law. In
this more general case the expressions for the modelling are
much more complicated. The reason is the general nonlinear
dependence of viscosity on strain-rate: for conciseness define

ē =

√
2ū

η
, ν̄ = ν(ē) and Rν̄ =

1

ν̄ + ēν̄ ′
, (15)

where primes on ν̄ denote the derivatives d/de of the vis-
cosity ν(e) and evaluated at e =

√
2ū/η .

The procedure is as for the power law case: computer al-
gebra [15, §3] constructs the slow manifold and evolution
thereon to some order of error; then revert the asymptotic
series to find stress parameter e as a function of mean ve-
locity ū; and substitute to express the model in terms of
η and ū. Conservation of fluid again derives (1) (to any
order of error). The dynamics of momentum then leads to

Re
∂ū

∂t
= −

[

5γ
2

+ 5γ2

48
ēν̄R2

ν̄

(

2ν̄ ′ + ēν̄ ′′
)

] ν̄ū

η2

− Re
[

7
4

− 13γ
48

+ γ
96

ēR2
ν̄

(

38ν̄ν̄ ′ + 12ēν̄ ′2 + 13ēν̄ν̄ ′′
)

]

ū
∂ū

∂x

− Re
√

2
[

1
8

− γ
16

+ 13γ
192

ē
2R2

ν̄

(

2ν̄ ′2 − ν̄ν̄ ′′
)

]

ēū
∂η

∂x
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+
[

3
4

+ γ
12

− γ
24

ēν̄R2
ν̄

(

2ν̄ ′ + ēν̄ ′′
)]

(

g1 − g2

∂h

∂x

)

+ O
(

∂2
x + g2

1 + γ3
)

. (16)

Evaluate this equation at γ = 1 to recover a physically rele-
vant model of the dynamics of lateral momentum.

The power law model (2) is just one specific subclass of
the general model (16): obtain (2) by the specific choice of
a power law viscosity, ν(ε̇) = csε̇

s−1 .

5 Conclusion

Following similar modelling for Newtonian thin films [12],
this approach places the modelling of an important class of
non-Newtonian fluids upon the sound basis of centre mani-
fold theory [4, 7, 14, e.g.]. This modern dynamical system
foundation empowers us to systematically derive the novel
and accurate models (2), (14) and (16) for the lateral mo-
mentum of fluids with nonlinear rheology.

These models of thin fluid flow can be directly applied
to flows as diverse as those of industrial plastics [3, e.g.],
ice [9, 18, e.g.], and medium to dense suspensions [17, e.g.].
When you desire more accuracy than that presented here,
computer algebra readily computes higher order approxima-
tions [15, §3]. Modifying the no-slip boundary condition on
the bed, (8), will empower the modelling of turbulent lay-
ers of flow over a substrate via large eddy closures. There
are enormous applications for this approach to modelling the
dynamics of laterally extensive layers of fluids.
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