

Fundamental Numerical Schemes for Parameter Estimation in Computer Vision

by

Tony Scoleri

Thesis submitted for the degree of

Doctor of Philosophy

Faculty of Engineering, Computer and Mathematical Sciences The University of Adelaide, Australia

2008

Abstract

An important research area in computer vision is parameter estimation. Given a mathematical model and a sample of image measurement data, key parameters are sought to encapsulate geometric properties of a relevant entity. An optimisation problem is often formulated in order to find these parameters. This thesis presents an elaboration of fundamental numerical algorithms for estimating parameters of multi-objective models of importance in computer vision applications. The work examines ways to solve unconstrained and constrained minimisation problems from the view points of theory, computational methods, and numerical performance.

The research starts by considering a particular form of multi-equation constraint function that characterises a wide class of unconstrained optimisation tasks. Increasingly sophisticated cost functions are developed within a consistent framework, ultimately resulting in the creation of a new iterative estimation method. The scheme operates in a maximum likelihood setting and yields near-optimal estimate of the parameters. Salient features of the method are that it has simple update rules and exhibits fast convergence. Then, to accommodate models with functional dependencies, two variant of this initial algorithm are proposed. These methods are improved again by reshaping the objective function in a way that presents the original estimation problem in a reduced form. This procedure leads to a novel algorithm with enhanced stability and convergence properties.

To extend the capacity of these schemes to deal with constrained optimisation problems, several a posteriori correction techniques are proposed to impose the so-called ancillary constraints. This work culminates by giving two methods which can tackle ill-conditioned constrained functions. The combination of the previous unconstrained methods with these post-hoc correction schemes provides an array of powerful constrained algorithms.

The practicality and performance of the methods are evaluated on two specific applications. One is planar homography matrix computation and the other trifocal tensor estimation. In the case of fitting a homography to image data, only the unconstrained algorithms are necessary. For the problem of estimating a trifocal tensor, significant work is done first on expressing sets of usable constraints, especially the ancillary constraints which are critical to ensure that the computed object conforms to the underlying geometry. Evidently here, the post-correction schemes must be incorporated in the computational mechanism. For both of these example problems, the performance of the unconstrained and constrained algorithms is compared to existing methods. Experiments reveal that the new methods perform with high accuracy to match a state-of-the-art technique but surpass it in execution speed.

Declaration

This thesis contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution. To the best of my knowledge and belief, it contains no material previously published or written by any other person, except where due reference is made in the text.

I give consent to this copy of my thesis, when deposited in the University Library, being made available in all forms of media, now or hereafter known.

Tony Scoleri July 2008

Acknowledgments

The work in this thesis has been very challenging until the end and several people come to my mind for what they have contributed, directly or indirectly.

Firstly, I would like to offer my deeply felt thanks to my supervisor Professor Wojciech Chojnacki. I am grateful for his encouragement, diligence, and support throughout the course of my PhD. He has shared with me his experience and passion for mathematics and computer vision, and always displayed much enthusiasm and positive attitude.

Secondly, I would like to express my gratitude to my other supervisors, Professor Michael Brooks and Professor Michael Murray, for their assistance in various situations.

My thanks also extend to the current and former members of the Computer Vision group at the University – Dr. Anton van den Hengel, Dr. Darren Gawley, Dr. Thorsten Thormählen, Dr. John Bastian, Dr. Daniel Pooley, and Rhys Hill – for many interesting discussions and shared experiences.

I would like to acknowledge my friends, in particular Dr. Julian Sorensen, Dr. Luke Rosenberg, and Voon Siong Wong for their help and perspectives.

Finally, my greatest thanks go to my family for their understanding, love, and support over the years, especially after a near-death cycling accident which occurred beyond my control only a few months before this thesis was due. I would have had many reasons to give up this work but they gave me the courage necessary to carry it out to completion.

Publications

- [1] T. Scoleri, W. Chojnacki and M. J. Brooks. A multi-objective parameter estimator for image mosaicing. In A. Bouzerdoum and A. Beghdadi, editors, Proceedings of the *Eighth IEEE International Symposium on Signal Processing and its Applications (ISSPA-05)*, Sydney, Australia, 28-31 August, 2005, vol 2, pp. 551-554. ISBN 0-7803-9244-2.
- [2] T. Scoleri, W. Chojnacki and M. J. Brooks. A decoupled algorithm for vision parameter estimation with application to the trifocal tensor. Proceedings of the *Fifth Digital Image Computing Techniques and Applications (DICTA-07)* conference, Adelaide, Australia, 3-5 December, 2007, vol 2, pp. 138-143. ISBN 0-7695-3067-2.
- [3] T. Scoleri, W. Chojnacki and M. J. Brooks. Dimensionality Reduction for More Stable Vision Parameter Estimation. *IET Computer Vision journal*, vol 2, issue 4, December 2008. ISSN 1751-9632.
- [4] T. Scoleri. Post-hoc Correction Techniques for Constrained Parameter Estimation in Computer Vision. Proceedings of the Sixth Digital Image Computing Techniques and Applications (DICTA-08) conference, Canberra, Australia, 1-3 December, 2008.

Contents

Headin	g				Pa	ge
Abstrac	ct					iii
Declara	ation					v
Acknov	vledgm	ents				vii
Publica	ations					ix
Conten	its					xi
List of	Figures	5				xv
List of	Tables				Х	vii
List of A	Algorit	hms				xix
List of	Symbo	ls				xxi
Vector	and Ma	trix Sizes			X	xiii
Chapte	r 1. Int	troduction				1
1.1	Thesis	outline	 	, .		2
1.2	Thesis	contributions	 	. .	•	3
Chapte	r 2. To	wards Constrained Parameter Estimators				7
2.1	Parame	etric model	 		•	7
2.2	Cost fu	nctions and estimators	 	. .		9
	2.2.1	Algebraic least squares	 •			11
	2.2.2	Generalised total least squares	 			11
	2.2.3	Maximum likelihood	 			12
	2.2.4	Approximated maximum likelihood	 			14
	2.2.5	Equivalent form of the AML cost function	 	. .	•	17

	2.2.6	Optimisation of the AML cost function	18
2.3	Coping	with linear dependencies	20
	2.3.1	Problem description	21
	2.3.2	Sub-constraint vectors and generalised inverses	22
	2.3.3	Enter all constraints	23
	2.3.4	General recipe	25
	2.3.5	Equivalence problem	26
2.4	Reduce	d fundamental numerical scheme	26
	2.4.1	Problem reformulation	27
	2.4.2	Reduced variational equation	29
	2.4.3	Algorithm details	31
2.5	Incorpo	prating ancillary constraints	32
	2.5.1	Gauss-Newton correction	33
	2.5.2	Weighted nonlinear least-squares correction	36
	2.5.3	Kanatani-like correction	39
2.6	Coping	with rank-deficient Jacobian and Hessian	40
	2.6.1	The Levenberg-Marquardt method	41
	2.6.2	The truncated Gauss-Newton method	41
2.7	Conclu	sion	43
Chapte	r 3. Ap	plication I: Homography Matrix Estimation	45
3.1	Introdu	ction	45
	3.1.1	Two types of homography	46
	3.1.2	Homography model and associated cost functions	46
	3.1.3	Normalised algebraic least-squares estimate	47
3.2	Experir	nental evaluation	48
	3.2.1	Experiments with synthetic image data	48
	3.2.2	Experiments with real image data	55
3.3	Visuali	sing the AML cost function	62
	3.3.1	Bracketing the AML minimiser	62
	3.3.2	Examining the derivative of the AML cost function	64
3.4	Conclu	sion	66

Chapte	r 4. Ge	eometry and Algebra of the Trifocal Tensor	67
4.1	Monoc	ular vision and stereo vision	68
	4.1.1	Single view and the perspective camera	68
	4.1.2	Stereo vision and the fundamental matrix	71
4.2	Trinoc	ular vision and the trifocal tensor	74
	4.2.1	Parameterisation from three projections	75
	4.2.2	Parameterisation from two projections	78
4.3	Contra	ctions of the trifocal tensor	79
	4.3.1	Single contraction: the tensorial slices	79
	4.3.2	Two contractions: transfer between views	84
	4.3.3	Three contractions: the trilinearities	90
4.4	Proper	ties of the tensorial slices	93
	4.4.1	The trifocal matrices	95
	4.4.2	The homography matrices	98
4.5	Ancilla	ary constraints on the trifocal tensor	104
	4.5.1	Papadopoulo-Faugeras' constraints	105
	4.5.2	Canterakis' constraints	107
	4.5.3	Ressl's constraints	109
4.6	Recove	ering 3-D information from the trifocal tensor	112
	4.6.1	Retrieving the epipoles	112
	4.6.2	Retrieving the fundamental matrices	113
	4.6.3	Retrieving the projections and camera centres	113
4.7	Conclu	sion	114
Chanta		anliestion II. Trifegel Tenger Estimation	447
	г э. Ар		117
5.1	Point ii		11/
5.2	Hartley		118
	5.2.1		119
	5.2.2	Normalised algebraic least-squares estimate	119
	5.2.3		120
5.3	FNS: F	full and reduced forms	122
	5.3.1	Parameterisation for FNS and RFNS	122

	5.3.2	Curtailing or truncating ?	. 123
	5.3.3	Data covariances	. 123
5.4	Gold S	tandard method	. 123
5.5	Experi	ments with synthetic data	. 124
	5.5.1	Scene and camera configuration	. 124
	5.5.2	Performance measures part I: Unconstrained estimation	. 126
	5.5.3	Performance measures part II: Constrained estimation	. 127
5.6	Consid	lering real images	. 132
	5.6.1	Chemistry department sequence	. 132
	5.6.2	Dredger sequence	. 140
5.7	Conclu	ision	. 146
Chanto	r 6 C	anclusion	147
6 1	Thesis	review	147
0.1	Thesis		. 14/
0.2	Future		. 151
Append	dix A. (Complementary Proofs for Reduced FNS	153
A.1	Problem	m equivalence	. 153
A.2	Common minimisers		. 155
			4.5.7
Append		Homography Types	157
B.1	Plane-i	nduced homography	. 157
B.2	Rotatio	on-induced homography	. 158
Append	dix C. ⁻	Trifocal Tensor Homography Matrices	161
C.1	Colum	n properties	. 161
C.2	Row p	roperties	. 162
			4.05
Append	dix D. V	Vector Cross-product	165
Bibliog	raphy		167

List of Figures

Figure		Page
2.1	Global constrained and unconstrained minimisers of a quadratic in \mathbb{R}^2	10
2.2	Intersection of two sub-constraint functions in \mathbb{R}^2	20
2.3	Contours of a quadratic in \mathbb{R}^2 for well and ill-conditioned problems $\ldots \ldots$	21
2.4	Action of the projection matrix on a parameter estimate	35
3.1	A synthetic planar scene photographed by a pair of cameras	50
3.2	Left and right noise-free images acquired by the two cameras	50
3.3	Histograms showing the convergence of FNS at several noise levels	51
3.4	Cost values of the $J_{\rm AML}$ function based on three constraint vectors and a 2-	
	truncated g-inverse for: (a) very small noise levels; (b) larger noise levels	53
3.5	Images of the IMAX theatre sequence	55
3.6	IMAX theatre panoramic mosaic	57
3.7	An Adelaide convention centre sequence	58
3.8	Panorama of the Adelaide convention centre	59
3.9	Images of the war memorial sequence	60
3.10	War memorial panoramic mosaic	61
3.11	Graph of the AML cost function	63
3.12	Cross-sections of the AML cost function	64
3.13	Graph of the AML cost function derivative	65
3.14	Cross-sections of the AML cost function derivative	66
4.1	An image line back-projects to a plane in space	69
4.2	The perspective camera model with principal rays and principal planes	71
4.3	Epipolar geometry between two views	72
4.4	Two-view point transfer via a plane in space	73
4.5	A world line imaged in three views	76
4.6	A representation of the trifocal tensor as a cube of numbers	77

List of Figures

4.7	A representation of the correlation slices \mathcal{I}_i and some of their elements \ldots	81
4.8	A representation of the homography slices ${\mathcal J}_j$ and some of their elements \ldots	82
4.9	A representation of the homography slices \mathcal{K}_k and some of their elements \ldots	83
4.10	Three-view point transfer via a plane in space	86
4.11	Pencil of lines through an image point	88
4.12	A trifocal tensor mapping point m' and line l'' to point m in view 1 $\ldots \ldots$	88
4.13	A trifocal tensor mapping points \mathbf{m}' and \mathbf{m}'' to point \mathbf{m} in view $1 \dots \dots$	89
4.14	A triangulation example for a constrained and unconstrained trifocal tensor	93
4.15	Geometric construction to interpret a column vector of matrix \mathcal{I}_i	97
4.16	Geometric interpretation of the columns of matrices \mathcal{I}_i	97
4.17	Point transfer via the principal planes in view 2	99
4.18	An example of a vertex arising in the first view	101
4.19	Geometric interpretation of the rows and columns of matrices \mathcal{J}_j	102

5.1	A synthetic 3-D scene with three cameras viewing the scene 125
5.2	Noise-free images acquired by the three cameras
5.3	Histograms of J_{AML} values for five unconstrained methods $\ldots \ldots \ldots$
5.4	Histograms of J_{AML} values for five constrained methods $\ldots \ldots \ldots$
5.5	Cuboid 3-D models from a projective and metric trifocal tensor estimate 131
5.6	Chemistry department image sequence
5.7	Two views of the chemistry department 3-D model
5.8	An example of epipolar lines for the chemistry department sequence 139
5.9	Epipolar lines viewed at sub-pixel level
5.10	Dredger image sequence
5.11	Two views of the dredger 3-D model
5.12	An example of epipolar lines for the dredger sequence
5.13	Epipolar lines viewed at sub-pixel level

List of Tables

Table	F	Page
3.1	Average J_{AML} cost values for various selection of equations	53
3.2	Average cost values of J_{AML} based on two equations $\ldots \ldots \ldots \ldots \ldots$	54
3.3	Average $J_{\rm ML}$ cost values for simulated data $\ldots \ldots \ldots \ldots \ldots \ldots \ldots$	54
3.4	Average computation time per homography	54
3.5	FNS convergence characteristics when computing the first homography in the	
	IMAX sequence	56
3.6	$J_{\rm AML}$ residuals for several homographies between the first two images \ldots \ldots	57
3.7	Computation time for various homographies	57
3.8	FNS convergence characteristics when computing the first homography in the	
	Adelaide convention centre sequence	58
3.9	$J_{\rm AML}$ residuals for several homographies between the first two images \ldots \ldots	59
3.10	Computation time for various homographies	59
3.11	FNS convergence characteristics when computing the first homography in the	
	war memorial sequence	60
3.12	$J_{\rm AML}$ residuals for several homographies between the first two images \ldots \ldots	61
3.13	Computation time for various homographies	61
4.1	Geometric interpretation of the canonical basis vectors of \mathbb{R}^3	71
4.2	Summary of trilinearities	92
4.3	Principal rays as intersection of principal planes	94
4.4	Epipolar lines as mappings of principal rays	94
4.5	Algebraic and geometric properties of the columns of matrices \mathcal{J}_j	100
4.6	Algebraic and geometric properties of the rows of matrices \mathcal{J}_j	101
5.1	Average residual errors and computational performance of five unconstrained	
	algorithms	126
5.2	Mean J_{AML} values when using different parameter covariance matrices	129
5.3	Mean RMS errors when using different parameter covariance matrices	129

List of Tables

5.4	Average residual errors and computational performance of several constrained algorithms	130
5.5	Residual errors and computational performance of five unconstrained schemes applied to the chemistry department data	133
5.6	FNS and RFNS convergence characteristics when computing a trifocal tensor from to the chemistry department data	134
5.7	Residual errors and computational performance of FNS followed by four post- correction schemes	135
5.8	Residual errors and computational performance of RHEIV followed by four post-correction schemes	135
5.9	Residual errors and computational performance of RFNS followed by four post- correction schemes	136
5.10	Some constraint values for two unconstrained and two constrained estimates	137
5.11	Reprojection error and constraint values for various fundamental matrices	138
5.12	Residual errors and computational performance of four unconstrained schemes applied to the dredger data	141
5.13	FNS and RFNS convergence characteristics when computing a trifocal tensor from to the dredger data	141
5.14	Residual errors and computational performance of FNS followed by four post- correction schemes	142
5.15	Residual errors and computational performance of RFNS followed by four post- correction schemes	142
5.16	Some constraint values for two unconstrained and two constrained estimates	143
5.17	Reprojection error and constraint values for various fundamental matrices	143
C.1	Algebraic and geometric properties of the columns of matrices \mathcal{K}_k	162

List of Algorithms

Algorith	nm	Pa	age
1	Algebraic Least Squares		11
2	Generalised Total Least Squares		11
3	Fundamental Numerical Scheme I		19
4	Fundamental Numerical Scheme II		24
5	Fundamental Numerical Scheme III		25
6	Reduced Fundamental Numerical Scheme		32
7	Gauss-Newton correction scheme		36
8	Weighted Nonlinear Least-Squares correction scheme		38
9	Kanatani-like correction scheme		40
10	Levenberg-Marquardt correction scheme		41
11	Truncated Gauss-Newton correction scheme		43
12	Normalised Algebraic Least-Squares method for homography fitting		47
13	Gold Standard method for homography fitting		52
14	Hartley's algorithm for trifocal tensor estimation	•	121
15	Gold Standard method for trifocal tensor estimation	•	123

List of Symbols

$\mathbf{a} \in \mathbb{R}^p$	column vector of length p
$\mathbf{A} \in \mathbb{R}^{n \times m}$	$n \times m$ dimensional matrix
$I_{n \times n}$	$n \times n$ identity matrix
K_n	$n \times n$ commutation matrix
A^{\top}	transpose of A
A^{-1}	inverse of A
A^+	Moore-Penrose inverse of A
\mathtt{A}_r^-	<i>r</i> -truncated pseudo-inverse of A
$\dim(\mathbf{a})$	dimensionality of a
$\operatorname{tr}(\mathtt{A})$	trace of matrix A
$\det(\mathtt{A})$	determinant of A
$\operatorname{vec}(\mathtt{A})$	vectorisation of A
$\operatorname{rank}(\mathtt{A})$	rank of A
$\operatorname{diag}(\sigma_1,\ldots,\sigma_n)$	$n \times n$ matrix with $\sigma_1, \ldots, \sigma_n$ along the diagonal and zeros elsewhere
$\ A\ _{F}$	Frobenius norm of A
$\mathbf{a} \times \mathbf{b}$	cross product of a and b
$\mathtt{A}\otimes \mathtt{B}$	Kronecker product of A and B
$\partial_{\boldsymbol{\theta}} J$	Jacobian (row) vector of J , $\left[\frac{\partial J}{\partial \theta_1}, \ldots, \frac{\partial J}{\partial \theta_n}\right]$
$\partial^2_{\theta\theta} J$	Hessian matrix of J , $\left[\frac{\partial^2 J}{\partial \theta_i \partial \theta_j}\right]_{1 \le i,j \le n}$
$H_{oldsymbol{ heta}}$	alternative notation for the Hessian matrix of J
\mathbb{P}^2	projective plane
\mathbb{P}^{2*}	dual projective plane

Vector and Matrix Sizes

f	multi-objective constraint vector of length m
\mathbf{f}'	multi-objective sub-constraint vector of length r
Φ	multi-objective ancillary constraint vector of length q
θ	parameter vector of length l
μ	reduced parameter vector of length $l-m$
α	complementary parameter vector of length m such that $\boldsymbol{\theta} = [\boldsymbol{\mu}^{T}, \boldsymbol{\alpha}^{T}]^{T}$
$oldsymbol{eta}$	parameter vector of length s
\mathbf{x}_i	$k \times 1$ element of data; $i = 1, \dots, n$
U_i	$l \times m$ measurement matrix made from \mathbf{x}_i
\mathbf{U}_i'	$(l-m) \times m$ reduced measurement matrix made from \mathbf{x}_i
$\operatorname{vec}(\mathtt{U}_i)$	vector of length ml
$\operatorname{vec}(\mathtt{U}'_i)$	vector of length $m(l-m)$
$\partial_{\mathbf{x}_i} \mathrm{vec}(\mathbf{U}_i)$	$ml \times k$ derivative matrix of $\operatorname{vec}(\mathtt{U}_i)$ with respect to \mathbf{x}_i
$\partial_{\mathbf{x}_i} \mathrm{vec}(\mathbf{U}'_i)$	$m(l-m) \times k$ derivative matrix of $vec(\mathbf{U}'_i)$ with respect to \mathbf{x}_i
$\Lambda_{\mathbf{x}_i}$	$k \times k$ covariance matrix of \mathbf{x}_i
B_i	$ml \times ml$ propagated covariance matrix of \mathbf{x}_i
Σ_i	$m \times m$ matrix
$oldsymbol{\eta}_i$	Lagrange multiplier vector of length m
Ĩ	$(l-m) \times m$ "centroid" of U'_i
C_{θ}	$l \times l$ covariance matrix of $\boldsymbol{\theta}$
X_{θ}	$l \times l$ matrix involved in the derivative of J_{AML} with respect to $oldsymbol{ heta}$
\mathbf{r}_k	residual vector of length l
J_k	$l \times s$ Jacobian matrix of \mathbf{r}_k
\mathbf{p}_k	search direction vector of length s