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Appendix A. Further Discussion and 

Results of the Shorted Turn Fault Test 

A.1. Current Harmonics Induced in the Rotor Winding 

The air-gap MMF which is produced by the stator winding of a squirrel cage three-phase 

2p-pole induction motor can be expressed as in (Eq. A.1), assuming that the three-phase 

supply is balanced [19]. 

 |��!N �� � �)� �� * ¡��� A* 
w� J�� ¢^�¢{
�	K

^

�1�
B t 
w� J��! � ���¢{ �K£

&

U61�
 (Eq. A.1) 

where �s is the stator MMF space harmonic rank, Is is the maximum value of the stator 

phase current, �s is the angular supply frequency, Ns is the number of turns of each stator 

coil, c is the number of coils of each stator phase, 	cb is the bth coil pitch, 	p is the pole step, 

and x is the circumferential angular position. 
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This stator MMF in the air-gap causes a flux to be induced in the rotor. The flux 

induced in the �th mesh of the rotor is given by (Eq. A.2) [19]. 

 ���Nm�!� �  ¤2|��!N ��¥
�¦

�§
y^ '� (Eq. A.2) 

where �o is the magnetic permeability of air, lc is the core length, � is the air gap length, 

and x1, x2 are the defined angular positions of the �th mesh. 

Hence, 
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where 
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 (Eq. A.4) 

and Dr is the external rotor diameter. 

The presence of shorted turn faults in the stator windings will affect the distribution 

of the stator MMF in the air-gap because a degree of the stator current will now flow 

through the short-circuited turns. Therefore by considering the relationship of the induced 

flux in (Eq. A.3) and the affected stator MMF, the presence of shorted turn faults will be 

expected to introduce new frequency components (Eq. A.5) in the rotor currents [19, 36]. 

A generalisation of these fault frequency components which include the stator time 

harmonics is shown in (Eq. 5.1). 

 ��:�:�O�� � � �� � � 
� � �� (Eq. A.5) 

where k = 1, 2, 3, … 
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A.2. Current Harmonics Induced in the Stator Winding 

The air-gap MMF which is produced by the rotor winding is shown in (Eq. A.6) [19]. 

 |��!N �� � * � �U ?F��
&

U©1�
* �� 
w� 9�¢^�	 = t 
w� ���� � 
��!�
&

.1�
 (Eq. A.6) 

where Irv max is the maximum value of the vr
th harmonic rotor current and 	cr is the rotor 

equivalent coil pitch. 

This rotor MMF in the air-gap causes a flux to be induced in the stator winding. The 

final expression of the flux induced by the kth harmonics in the bth stator coil is given in 

(Eq. A.7) [19]. 

 ���N�N.�!� � �?F� �N.
w� ��� ��� ! � ���! ; � 	��ª � ��� � (Eq. A.7) 

where �r is the angular rotor frequency and 

 �?F� �N. � ¤2 �U ?F��y^ �̈)��¥�� 
w� 9�¢^�	 = 
w� J� �	 ¢^�¢{ K (Eq. A.8) 

The presence of shorted turn faults in the stator windings is expected to affect the 

frequency components that exist in the stator current. By considering the induced flux 

relation in (Eq. A.7), the shorted turn faults will be expected to vary the frequency 

components in (Eq. A.9) in the stator current [19, 37]. A generalisation of these fault 

frequency components is the frequency components in (Eq. 5.3). 

 ���F�:�O�� � � ��� � � 
� � �� (Eq. A.9) 
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A.3. Experimental Results for Turn to Turn Fault Analysis 

Using Fundamental Sidebands of Rotor Frequency Harmonics 

Components at k = 2 and v = ±1 

Figure A.1 shows how the frequency components in (Eq. 5.1) at k = 2 and v = ±1 in the 

current and the leakage flux signals vary under different loading and turn to turn 

conditions. The figure shows that both the upper (v = +1) and the lower (v = -1) sidebands 

in the current and the flux signals do not display consistent and significant magnitude 

variation between the different turn to turn severities. As a consequence, these frequency 

components may not be suitable for turn to turn features. 
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Figure A.1 – Magnitude of the frequency components in (Eq. 5.1) at k = 2 and v = ±1 in the 

current and the leakage flux signals as a function of load. 

Components at k = 3 and v = ±1 

Figure A.2 shows that these frequency components cannot be considered as turn to turn 

features because they may have low signal to noise ratio (hence difficult to detect) and they 

do not show significant and consistent magnitude variation between the healthy and the 

faulty conditions. 

Based on the analysis so far, it seems that the effectiveness of the frequency 

components in (Eq. 5.1) to detect turn to turn faults reduces as the variable k is increased. 

As the variable k is increased, the magnitude of the frequency components in (Eq. 5.1) 

seems to get weaker and weaker. Therefore, it is desirable to keep the variable k in (Eq. 
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5.1) to 1, which is the value that the shorted turn investigation in this thesis will 

concentrate on. 

 
Figure A.2 – Magnitude of the frequency components in (Eq. 5.1) at k = 3 and v = ±1 in the 

current and the leakage flux signals as a function of load. 

Components at k = 1 and v = ±3 
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severity of the fault increases. Therefore, the frequency components in the flux signal can 

be considered as turn to turn features. 

 
Figure A.3 - Magnitude of the frequency components in (Eq. 5.1) at k = 1 and v = ±3 from 

the current and leakage flux signals as a function of load. 

Components at k = 1 and v = ±5 

Figure A.4 shows that the frequency components in the current signal cannot be considered 

as features because they have low signal to noise ratio and their magnitude variation 
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Figure A.4 - Magnitude of the frequency components in (Eq. 5.1) at k = 1 and v = ±5 from 

the current and the leakage flux signals as a function of load. 
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A.4. Experimental Results for Turn to Turn Fault Analysis 

Using Twice Supply Frequency 

Figure A.5 - Figure A.7 show how the magnitudes of the twice supply frequency 

component in the vibration sensor signals vary under the different loading and turn to turn 

fault conditions. Figure A.5 shows that the frequency component from the DEH vibration 

signal can only distinguish between the healthy and the 7.1% fault (20 shorted turns) 

effectively, where the magnitude of the healthy condition is about 5 dB lower than the 

magnitude of the faulty condition. Similarly the frequency component from the NDEH 

vibration signal (Figure A.6) can distinguish between the healthy and only the 7.1% fault 

condition when the load is less than 60% but when the load is greater than 60%, the 

component can distinguish the healthy, 5.3% fault, and 7.1% fault conditions. On the other 

hand, the twice supply frequency component in the DEV vibration signal (Figure A.7) does 

not show observable magnitude variation among the different fault severities, except at the 

no load condition. Hence, it cannot be considered to be a useful feature. 
 

 
Figure A.5 – Magnitude of the twice supply frequency in the DEH vibration signal as a 

function of load. 
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Figure A.6 - Magnitude of the twice supply frequency in the NDEH vibration signal as a 

function of load. 

 
Figure A.7 - Magnitude of the twice supply frequency in the DEV vibration signal as a 

function of load. 
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be used as a feature to detect turn to turn faults if the fault severity is greater than or equal 

to 5.3%. On the other hand, the upper sideband component in the current signal shows no 

useful magnitude variation among the different fault severities. 

Figure A.8 also demonstrates that the frequency components in the flux signal show 

some magnitude variation between the healthy and the faulty conditions (about 5 to 10 dB 

between the healthy and the 7.1% fault). However, the magnitude variations are not 

consistent enough for these frequency components to be considered as good turn to turn 

features. 
 

 
Figure A.8 - Magnitude of the frequency components in (Eq. 5.3) at nd = 0, k = 1, v = -1 

(top), nd = 0, k = 1, v = +1 (bottom), from the current and leakage flux signals as a function 
of load. 
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Components at nd = 0, k = 2, and v = ±1 

Figure A.9 shows the magnitude variations of the rotor slot harmonics (at nd = 0, k = 2, and 

v = ±1) from the current and the leakage flux signals under different loading and turn to 

turn conditions. The figure shows that the magnitude of these components are weaker (by 

about 45 dB in the current signal and about 15 dB in the flux signal) than the counterpart 

components at k = 1. Unlike the components at k = 1 in the flux signal, the magnitude of 

these frequency components in both current and flux signals do not show any consistent 

variation among the different fault severities. 
 

 
Figure A.9 - Magnitude of the frequency components in (Eq. 5.3) at nd = 0, k = 2 and v = 

±1 from the current and leakage flux signals as a function of load. 
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Components at nd = 0, k = 3, and v = ±1 

Figure A.10 shows that the magnitudes of the sidebands in the current signal fluctuate 

between -90 and -95 dB under the different loading and turn to turn conditions. These 

magnitudes are weaker than the counterpart components at k = 1 and k = 2, and they can be 

difficult to detect. In addition, the magnitude variations among the different fault severities 

show no useful pattern. 
 

 
Figure A.10 - Magnitude of the frequency components in (Eq. 5.3) at nd = 0, k = 3 and v = 

±1 from the current and leakage flux signals as a function of load. 
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k = 2. The magnitudes tend to decrease as the severity of the fault increases. However, the 

magnitude variations among the different fault severities are not better than the counterpart 

components at k = 1 and they are not consistent enough for these sidebands to be 

considered as turn to turn features. 

Examining the behaviour of the frequency components in (Eq. 5.3) so far, it seems 

that the magnitude of the frequency components decreases as the variable k increases. This 

reduction in the magnitude also reduces the effectiveness of the frequency components to 

detect turn to turn faults. Therefore, it is desirable to keep the variable k to 1, which is the 

value that the shorted turn investigation in this thesis will concentrate on. 

Components at nd = 0, k = 1, and v = ±3 

Figure A.11 shows that the magnitudes of the sidebands in the current signal vary between 

-45 and -75 dB under the different loading and turn to turn conditions. These magnitudes 

are weaker than the counterpart components at k = 1 and v = ±1. Although the magnitudes 

tend to decrease as the fault severity increases, the magnitude variations among the 

different fault severities are not significant enough (i.e. less than 5 dB). As a consequence, 

it is difficult to consider these sidebands as turn to turn features. 

On the other hand, the sidebands in the leakage flux signal show significant 

magnitude variation between the healthy and the faulty conditions (i.e. greater than 5 dB), 

where the magnitude tends to decrease as the severity of the fault increases, especially 

when the load is less than 80%. However, the magnitudes of these sidebands may not 

always be able to distinguish the different fault severities. 
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Figure A.11 - Magnitude of the frequency components in (Eq. 5.3) at nd = 0, k = 1 and v = 

±3 from the current and leakage flux signals as a function of load. 
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Figure A.12 - Magnitude of the frequency components in (Eq. 5.3) at nd = 0, k = 1 and v = 

±5 from the current and leakage flux signals as a function of load. 
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Figure A.13 – Magnitude of the third fundamental harmonic in the current signal as a 

function of load. 

 
Figure A.14 - Magnitude of the third fundamental harmonic in the leakage flux signal as a 

function of load. 
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Figure A.15 - Magnitude of the frequency component in (Eq. 5.1) at k = 1 and v = ±3 from 

the leakage flux signal as a function of load. 

A.8. Experimental Results for Phase to Phase Turn Fault 

Analysis Using Twice Supply Frequency 

Figure A.16 and Figure A.17 show how the magnitude of the twice supply frequency 

component in the motor vibration signals varies under different loading conditions and 

different phase to phase turn fault severities. 
 

 
Figure A.16 - Magnitude of the twice supply frequency in the DEH vibration signal as a 

function of load. 

0 50 100 150
-56

-54

-52

-50

-48

-46

-44

Load (%)

F(
f)*

F(
f) 

in
 d

B

 

 

0 50 100 150
-60

-55

-50

-45

-40

-35

Load (%)
F(

f)*
F(

f) 
in

 d
B

 

 

�90

�85

�80

�75

�70

�65

�60

0 20 40 60 80 100 120 140

F(
f)
*F
(f
)�i
n�
dB

Load�(%)

0

1.7%

3.5%

5.3%

7.1%

Flux: k=1, v=+3 

Flux: k=1, v=-3 

DEH: 2f Phase to phase 
turn severity 

Phase to phase 
turn severity 

0
1.7%
3.5%
5.3%
7.1%



A.9. EXPERIMENTAL RESULTS FOR PHASE TO PHASE TURN FAULT ANALYSIS USING ROTOR 
SLOT HARMONICS 

255 

 
Figure A.17 - Magnitude of the twice supply frequency in the NDEH vibration signal as a 

function of load. 

A.9. Experimental Results for Phase to Phase Turn Fault 

Analysis Using Rotor Slot Harmonics 

Figure A.18 and Figure A.19 show how the magnitude of the frequency component in (Eq. 

5.3) at nd = 0, k = 1 and v = ±1, ±3 from the leakage flux signal varies as functions of 

loading condition and phase to phase turn fault severity. 
 

 
Figure A.18 - Magnitude of the frequency component in (Eq. 5.3) at nd = 0, k = 1 and v = 

±1 from the leakage flux signal as a function of load. 
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Figure A.19 - Magnitude of the frequency component in (Eq. 5.3) at nd = 0, k = 1 and v = 

±3 from the leakage flux signal as a function of load. 

A.10. Experimental Results for Phase to Phase Turn Fault 

Analysis Using Third Harmonic of the Fundamental 

Figure A.20 and Figure A.21 show how the magnitude of the frequency component at 3f in 

the stator current and the leakage flux signals varies as functions of loading condition and 

phase to phase turn fault severity. 
 

 
Figure A.20 - Magnitude of the third supply harmonic in the current signal as a function of 

load. 
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Figure A.21 - Magnitude of the third supply harmonic in the leakage flux signal as a 

function of load. 
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Appendix B. Further Results of the Static 

Eccentricity Fault Test 

B.1. Experimental Results for Static Eccentricity Fault Analysis 

Using Rotor Slot Harmonics 

Figure B.1 and Figure B.2 show how the magnitude of the dynamic eccentricity 

components of the rotor slot harmonics in (Eq. 6.1) from the stator current and axial 

leakage flux signals varies under different loading conditions and different static 

eccentricity severities. 
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Figure B.1 – Magnitude of the lower sideband of the dynamic eccentricity components in 
(Eq. 6.1) from the current and the leakage flux signals as a function of load (top) and as a 

function of static eccentricity level (bottom). 
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Figure B.2 – Magnitude of the upper sideband of the dynamic eccentricity components in 
(Eq. 6.1) from the current and the leakage flux signals as a function of load (top) and as a 

function of static eccentricity level (bottom). 
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Using Rotor Frequency Sidebands of the Fundamental 

Figure B.3 and Figure B.4 show how the magnitude of the frequency components in (Eq. 

6.2) from the current and leakage flux signals varies under different loading conditions and 

different static eccentricity severities. 
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Figure B.3 – Magnitude of the lower sideband of the frequency components in (Eq. 6.2) 

from the current and the leakage flux signals as a function of load (top) and as a function of 
static eccentricity level (bottom). 
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Figure B.4 – Magnitude of the upper sideband of the frequency components in (Eq. 6.2) 

from the current and the leakage flux signals as a function of load (top) and as a function of 
static eccentricity level (bottom). 
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Using Rotor Frequency Sidebands of Twice the Fundamental 

Figure B.5 shows how the magnitude of the frequency components in (Eq. 6.3) from the 

motor vibration signal varies under different loading conditions and different static 

eccentricity severities. 
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Figure B.5 – Magnitude of the rotor frequency sidebands of the twice fundamental (Eq. 

6.3) from the vibration signal as a function of load (top) and as a function of static 
eccentricity level (bottom). 

B.4. Experimental Results for Static Eccentricity Fault Analysis 

Using Third Harmonic of Rotor Frequency 

Figure B.6 shows how the magnitude of the frequency component at 3fr in the motor 

vibration signal varies under different loading conditions and different static eccentricity 
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Figure B.6 – Magnitude of the third harmonic of the rotor frequency (Eq. 6.4) from the 
vibration signal as a function of load (left) and as a function of static eccentricity level 

(right). 

B.5. Experimental Results for Static Eccentricity Fault Analysis 

Using Twice Supply Frequency 

Figure B.7 shows how the magnitude of the frequency component at 2f in the motor 

vibration signal varies under different loading conditions and different static eccentricity 

severities. 
 

 
Figure B.7 – Magnitude of the twice supply frequency (Eq. 6.5) in the vibration signal as a 

function of load (left) and as a function of static eccentricity level (right). 
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B.6. Experimental Results for Static Eccentricity Fault Analysis 

Using Rotor Frequency 

Figure B.8 shows how the magnitude of the frequency component at fr in the motor 

vibration signal varies under different loading conditions and different static eccentricity 

severities. 
 

 
Figure B.8 – Magnitude of the rotor frequency (Eq. 6.6) in the vibration signal as a 

function of load (left) and as a function of static eccentricity level (right). 
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Figure B.9 shows how the magnitude of the frequency components in (Eq. 6.7) from the 

motor vibration signal varies under different loading conditions and different static 

eccentricity severities. 
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Figure B.9 – Magnitude of the second harmonic of the rotor frequency sidebands of the 

fundamental (Eq. 6.7) in the vibration signal as a function of load (top) and as a function of 
static eccentricity level (bottom). 

B.8. Experimental Results for Static Eccentricity Fault Analysis 

Using RMS Vibration 

Figure B.10 shows how the RMS vibration level varies under different loading conditions 

and different static eccentricity severities. 
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Figure B.10 – Magnitude of the RMS vibration as a function of load (left) and as a function 

of static eccentricity level (right). 
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